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Abstract

Heritability measures the familial aggregation of a disease or trait and a non-zero heritabil-

ity suggests that a genetic component may be present. Reliable heritability estimates are

necessary in the planning phase of a linkage or genetic association study but often these

estimates are obtained from other studies where the composition of pedigreesmay be dif-

ferent from the study that is prepared. The impact of pedigree structure on precision and

accuracy of heritability estimates is examined for data and models both with and without

dominance effects. Analytical and simulation results find that for purely additive genetic

effects all but the simplest pedigree structures provide the same informationabout the her-

itability of a quantitative trait. In the presence of dominance effects there is a substantial

difference in the precision obtained by different pedigree structures.
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Introduction

The concept of heritability plays an important role in genetic epidemiology since familial ag-

gregation of a disease or trait is a necessary condition to infer a genetic component. Heritability

estimation is usually considered the first step in unravelling the genetic basis of a disease or trait

and countless studies present heritability estimates for different traits or diseases. Subsequent

steps in gene identification often rely heavily on heritability estimates from pilot studies or

from published studies since these estimates help determine the required sample size in order

for the study to have a certain power to identify the susceptibility gene.

Reliable heritability estimates are important in the planning phase of a linkage study or

genetic association study since these studies are irrelevant unless a substantial genetic variation

is present in the population. However, it has only rarely been examined how different pedigree

structures influence the heritability estimates and if estimates from a particular set of pedigree

structures are directly applicable to a study employing a different set of pedigree structures.

In a recent paper by Hsu et al. (2005) the authors find different heritability estimates for

pulse pressure in three different populations and conclude— after a resampling approach to

match pedigree sizes for the three populations — that pedigree structure is one of the important

factors affecting heritability estimates. The results of Hsu et al. (2005) contradict earlier results

by Mallinckrodt et al. (1997), who found hardly any difference between the confidence inter-

vals of the heritability when estimates were obtained from simulated data of random pedigree

structures or fixed pedigree structures.

The purpose of the present paper is twofold: First, we wish toexamine the impact of pedi-

gree structure on the precision and accuracy of heritability estimates and secondly we wish to

determine the necessary sample size to obtain a given precision of the heritability estimate. In

the next section we discuss the multivariate Gaussian variance component model for heritability

estimation of quantitative traits and how the heritabilityprecision is influenced by the variance

of the variance components. We illustrate the impact of different pedigree structures on the

heritability estimates through a set of simulations beforewe discuss the design requirements

for obtaining reliable heritability results from a pilot study.
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Methods

Let yi be the vector of observed phenotypes for pedigreei comprisingni individuals. The clas-

sical multivariate normal additive polygenic model (Langeet al., 1976; Hopper and Mathews,

1982) assumes that the mean of the observed phenotype is given by µ i = E(yi) = fβ (xi) and

depends onl parameters(β1, . . . ,βl) through a known functionf and a set of covariatesxi. Fur-

thermore, the variance-covariance matrix,Ω, is a linear combination of independent matrices

with known covariance structure,

Ωi = σ2
a 2Φi +σ2

I Ii. (1)

σ2
a andσ2

I are the variance component effects corresponding to a residual additive effect and a

non-shared environmental effect, respectively. The( j,k)’th element of the kinship coefficient

matrix,Φ jk, is defined as the probability that an allele drawn at random from an arbitrary locus

in individual j is identical by descent to an allele drawn at random from the same locus in

individual k. I is the identity matrix. The log-likelihood of pedigreei becomes

logL = −
ni

2
log(2π)−

1
2

log(|Ωi|)−
1
2
(yi −µ i)

TΩ−1
i (yi −µ i). (2)

The polygenic model defined by (1) and (2) form the basis of many linkage studies of quan-

titative traits, and has been extended to accommodate for example dominance effects, shared

environmental effects (Hopper and Mathews, 1982) and multiple genotyped loci (Almasy and

Blangero, 1998).

The (narrow) sense heritability is defined as the proportionof the total phenotypic variance

that is attributable to additive genetic effects (Falconerand Mackay, 1996)

h2 = η(σ2
a ,σ2

I ) =
σ2

a

σ2
a +σ2

I

. (3)

The bias of the estimator is defined as the difference betweenthe mean heritability estimate

and the true heritability value,Eĥ2−h2.

The heritability estimate has asymptotic variance given bythe matrix product

V (ĥ2) = η ′(σ2
a ,σ2

I ) Γ η ′(σ2
a ,σ2

I )T, (4)
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whereΓ = Var(σ̂2
a , σ̂2

I ) is the asymptotic variance-covariance matrix of the two variance com-

ponents and where the partial derivatives ofη with respect toσ2
a andσ2

I are

∂η
∂σ2

j

=







σ2
I

(σa
2+σI

2)2 whenσ2
j = σ2

a

−
σ2

a
(σa

2+σI
2)2 whenσ2

j = σ2
I

. (5)

Let σ2 = σ2
a +σ2

I denote the total phenotypic variance for an individual. Thepartial deriva-

tives in (5) then corresponds to(1−h2)/σ2 and−h2/σ2 respectively. Furthermore, if we write

Γ =





γ11 γ12

γ12 γ22



 (6)

we can calculate the variance from formula (4) as

V (ĥ2) = γ11(
1−h2

σ2 )2 +2γ12(
1−h2

σ2

−h2

σ2 )+ γ22(
−h2

σ2 )2

=
1

(σ2)2

(

(h2)2(γ11+2γ12+ γ22)−2h2(γ11+ γ12)+ γ11
)

.
(7)

The variance of the heritability estimate is a second degreepolynomial inh2 and the quadratic

coefficient must always be positive since(γ11+ 2γ12+ γ22) = Var(σ2
a + σ2

I ) > 0 . Hence, we

see that variance of the heritability is minimized when

h2 =
2(γ11+ γ12)

2(γ11+2γ12+ γ22)
=

γ11+ γ12

γ11+2γ12+ γ22
. (8)

In general, however, we do not have any control over the true population heritability and we

cannot design a study that will achieve the minimum variance. Instead we need to investi-

gate how the pedigree structure influences the precision of the variance components since they

determine the sample variance through (7).

A well-known result from asymptotic theory states that the variance of the variance com-

ponent maximum likelihood estimates,Γ, can be obtained from the inverse Fisher information

matrix,S−1, whereS in the present situation becomes

S =
1
2





tr(Ω−12ΦΩ−12Φ) tr(Ω−12ΦΩ−1)

tr(Ω−1Ω−12Φ) tr(Ω−1Ω−1)



 , (9)

4



see Lynch and Walsh (1998, p. 788–789) for more detail. Thus,the pedigree structure enters

the heritability estimate throughΦ andΩ in (9). If we fix σ2
a andσ2

I (and hence we fix the

heritability h2), we can calculateS for different pedigree structures and see how the structures

affectS.

[Figure 1 about here.]

Figure 1 shows the different pedigree structures we examinein this paper. The pedigree

structures range from simple (sib pairs) to more complicated (second cousins family) and rep-

resent many of the pedigrees found in existing linkage datasets. Figure 2 shows the theoretical

sample variance (7) for the different pedigree structures for varying values ofh2. The total

number of observations is kept constant (n = 84) for each of the different pedigree structures

such that the variances of the heritability estimates shownin figure 2 are directly comparable.

Obviously the number of pedigrees will depend on the pedigree size such that a total ofn = 84

is achieved.

The results from figure 2 suggest that there is hardly any difference in precision of heri-

tability estimates for different pedigree structures except for sib pairs (a) that have a relatively

larger variance than the other pedigree structures.

[Figure 2 about here.]

Dominance effects

The variance-covariance matrix,Ω, changes to

Ωi = σ2
a 2Φi +σ2

d ∆7i +σ2
I Ii. (10)

when dominance effects are included in the model. Here,σ2
d is the variance component cor-

responding to the dominance effect and∆7i is Jacquard’s condensed coefficient of identity and

includes the probability of two individuals sharing two alleles identical by descent at a given

locus (Jacquard, 1974).

The narrow sense heritability is defined as previously (3),

h2 = η(σ2
a ,σ2

d ,σ2
I ) =

σ2
a

σ2
a +σ2

d +σ2
I

, (11)
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but when non-additive effects are present we can also consider the broad sense heritability

H2 = η̃(σ2
a ,σ2

d ,σ2
I ) =

σ2
a +σ2

d

σ2
a +σ2

d +σ2
I

. (11∗)

Following the same steps as before, we find the partial derivatives of (11) as

∂η
∂σ2

j

=







σ2
I

(σa
2+σd

2+σI
2)2 for σ2

j ∈ {σ2
a ,σ2

d }

−
σ2

a
(σa

2+σd
2+σI

2)2 whenσ2
j = σ2

I

, (12)

while the partial derivatives of the broad heritability (11∗) are

∂ η̃
∂σ2

j

=







σ2
I

(σa
2+σd

2+σI
2)2 for σ2

j ∈ {σ2
a ,σ2

d }

−
σ2

a +σ2
d

(σa
2+σd

2+σI
2)2 whenσ2

j = σ2
I

. (12∗)

We can then proceed exactly as before and derive the formula for the variance of the heritability,

which for the narrow sense heritability (11) becomes

V (ĥ2) = γ11(
1−h2

σ2 )2−
h2(1−h2)

(σ2)2 (γ21+ γ12+ γ31+ γ13)+

(

h2

σ2

)2

(γ22+ γ32+ γ23+ γ33)

(13)

and for the broad sense heritability becomes

V (Ĥ2) = (γ11+ γ21+ γ12+ γ22)(
1−h2

σ2 )2−
h2(1−h2)

(σ2)2 (γ31+ γ32+ γ13+ γ23)+

(

h2

σ2

)2

γ33.

(13∗)

In both (13) and (13∗) we have extended the variance-covariance matrix (6) toR
3
3, and we can

insert the corresponding information from the inverse Fisher matrix. The results are shown

in figure 3 where the variance of the narrow and broad sense heritabilities are compared for

different dominance effects. Clearly, the variance of the narrow sense heritability is much

smaller than the broad sense heritability, but figure 3 also shows that while there is hardly

any difference in variance of narrow sense heritability forthe different pedigrees (top panels

in figure 3), there are quite noticeable differences in broadsense heritability (bottom panels).

Large pedigrees containing little information about dominance deviance (e.g., pedigrees (g)

and (h) from figure 1) have a markedly larger variance than smaller pedigrees. It is also worth
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noting that the variance generally increases when the proportion of the heritability that is due

to dominance effects increases.

[Figure 3 about here.]

Simulation study

We use a set of simulations to investigate the simultaneous impact of pedigree structure and

sample size on accuracy (bias) and precision of heritability estimates. For each pedigree struc-

ture we simulated phenotypic data using the multivariate Gaussian polygenic model (2), where

σ2
a andσ2

I were fixed such thatσ2
a + σ2

I = 1 and whereσ2
a varied to obtain true heritabilities

of 0.1,0.33 and 0.5. To investigate the influence of sample size we simulated datasets with

either 60, 120, 240, 360, 600 or 1200 individuals. This setupmay result in different number of

pedigrees for the eight pedigree structures examined but itkeeps the sample size constant. One

thousand datasets were simulated for each combination of pedigree structure, sample size and

heritability.

[Figure 4 about here.]

Figure 4 shows the mean estimated heritability and the root mean squared error for the

three different heritability levels and the six different sample sizes. The upper left panel shows

the mean estimated heritabilities for all three heritability levels, and — not surprisingly — the

bias decreases noticeably with increasing sample size. Theother three panels show the root of

the mean squared error (MSE) for different true heritability values. The MSE increases with

heritability but decreases with sample size.

The estimated mean squared error is practically identical for all combinations of pedigree

type and heritability except for the sib pair pedigree structure (a) that are shown with bold lines

on all four panels in figure 4. The sib pairs show a large bias for small sample sizes and a

low heritability of 0.1 and have markedly higher MSE. The larger MSE could also be seen on

figure 2, where the variance curve for the sib pair pedigrees are substantially higher than the

other variance curves.
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Dominance effects

We investigate the impact of dominance effects in two situations: First we generate data from

the dominance model (10) and also use the correct model to estimate the variance components.

This enables us to evaluate the bias in heritability estimates and compare the MSE for different

pedigree types. Secondly, we generate data from the dominance model (10) but use the (incor-

rect) additive model (1) to estimate the parameters to examine how a misspecification of the

model will influence the estimates, when a dominance effect is not modeled.

Figure 5 shows the mean heritability estimates and root meansquared error of the broad

sense heritability for data generated and estimated using the the dominance model (10). There

is hardly any difference in root mean squared error for the different pedigrees structures but

Figure 5 suggests that sample size has a substantial influence on heritability bias for small

sample sizes. The figure also shows that a large number of pedigrees may be needed to achieve

a reasonable accuracy in the heritability estimates. The two pedigree structures that perform

consistently worst are the first and second cousins pedigrees (pedigrees (g) and (h) in Figure 1).

[Figure 5 about here.]

Figure 6 shows the result when data are generated from a modelwith a dominant genetic

component but where an additive model is used to estimate the(narrow sense) heritability.

In this case there is virtually no impact of pedigree structure on root mean squared error or

heritability estimates but there is a considerable bias andall pedigrees underestimate the true

heritability. The downward bias increases with increasingdominant genetic component.

[Figure 6 about here.]

Mixed pedigrees datasets

In most real situations data consists of pedigrees of various structures. A dataset consisting of

one of each of the 8 pedigree structures shown in Figure 1 was simulated in order to compare

the results of a mixed pedigree dataset with the datasets of asingle pedigree structure. The

combined dataset contains information on 61 individuals, which is comparable to the base

sample size used in the simulations above. The results for the mixed pedigrees dataset generally

resemble the results shown for the first cousins pedigrees (g) in Figures 4, 5 and 6 (data not

shown). In other words, a few large pedigree structures appear to be sufficient to stabilize the

variance components estimates.
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Discussion

In this paper I have investigated the impact of pedigree structure on precision and accuracy of

heritability estimates. Eight different pedigree structures are examined both analytically and

through simulations.

Most of the heritability information from human pedigree structures comes from parent-

offspring regression and the variation between and within full sib families. Falconer and

Mackay (1996, equation 10.10) present explicit formulas for the heritability sampling vari-

ance for simple pedigree structures, and they show how the sampling variance from full sib

families is twice as precise as the sampling variance from half sib families. Similar predictions

can be made for other types of (simple) pedigrees, see Visscher (2004) for a comparison of the

sampling variance obtained from monozygotic and dizogotictwins in a variance component

setup identical to the one described here. Hill and Nicholas(1974) show that the correlation

between heritability estimates from mid-parent regression and estimates from full sib correla-

tions are not trivial, and that pedigrees including information on both parents and offspring are

more informative than pedigrees based on offspring alone. These results suggest that extended

pedigrees may provide very little additional information about the heritability relative to the

simpler nuclear family, and that is consistent with the results shown in figures 2, 4, and 6.

Estimates based fullsib pairs alone cannot distinguish properly determine the dominance

effects as the dominance effects are confounded with the additive effects. Covariance matrices

from fullsib pairs all have homogeneous off-diagonal entries soΦi and∆7i (and also a shared

environment covariance structure if that is included in themodel) can not be separated.

Figures 2, 4, and 6 provide consistent results that show that— except for datasets consisting

solely of sib pairs — there may be virtually no impact of pedigree structure on the precision

and accuracy of heritability estimates when the heritability is estimated using an additive model

(1). Sib pair datasets have markedly higher heritability sample variance than the remaining

pedigree structures (all 3 figures) but the sib pair data yield the same estimates as the other

pedigree structures.

The heritability estimates are generally too small when thedata contain a dominance effect

but the model only accommodates an additive effect (figure 6). This downward bias is caused

by the model not being able to account for the dominance effects present in the dataset and the

bias increases with increasing dominance effect. Sib pair pedigrees provide relatively larger
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heritability estimates that are closer to the true value. Inthis case however, the sib pair pedigrees

fares better simply because the additive and dominance effects are virtually indistinguishable

based on sib-pair covariances alone and therefore any dominance effects are easily classified as

additive effects.

The results are somewhat different when data contain a dominance effect and the correct

model is used to estimate the (broad sense) heritability (figure 5). Here, there is substantial dif-

ferences in the accuracy of heritability where some pedigree structures quickly converge to the

correct heritability while others require notably larger sample sizes. The full sib pair pedigrees

perform quite well with respect to accuracy and it is actually first and second cousin pedigrees

(i.e., pedigrees (g) and (h) from figure 1) that show the largest bias. This bias is caused by the

lack of information about the dominance effect in those pedigrees. Although these pedigrees

are fairly large there is only one relationship — the full sibling pair — that provides any infor-

mation about the dominance effects. Thus, there is little information to distinguish dominance

from additive effects and this results in an inflated estimate of the dominance effects. However,

it should be emphasized that there is no difference in root mean squared error among the dif-

ferent pedigree structures except for first and second cousin pedigrees which have somewhat

larger MSE than the other pedigrees. This is identical to theresults seen in figures 2, 4, and 6

It is worth noting that even with very large sample sizes (e.g., 1200 individuals) there is

still a large MSE — even for the more complicated pedigree structures. The reason for impre-

cision of heritability estimates is that the heritability is calculated from the estimated variance

parameters and the variance of variances needs large numberof data before it stabilizes. Con-

sequently, it is quite costly to obtain very precise estimates of the heritability, and the results

from figure 4 suggests that even with 400 individuals the heritability estimate is on average off

by 0.10!

Pedigree size also influences the sample variance of the heritability, but a pedigree con-

sisting of four full siblings show virtually the same MSE as the more complicated pedigree

structures. Thus, pedigreesize may be important for heritability precision but not the exact

pedigreestructure. The only place where pedigree structure appears to have an substantial im-

pact is on the broad sense heritability (figure 5) when data contains a dominance effect. Not

surprisingly, the simulations suggest that the small-sample bias of broad sense heritability is

reduced if pedigrees with several relationships that provide information about the dominance

correlation are sampled.
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Although there may generally be little impact of pedigree structure on the heritability es-

timates based on an additive model as shown in figures 2, 4, and6, the pedigree structure can

have a huge impact on quantitative trait locus (QTL) detection (Williams and Blangero, 1999).

Variance component QTL linkage analysis use the information from the locus-specific correla-

tions among individuals to identify any excess correlationdue to the QTL. A sib pair pedigree

has only one relationship (that of the two siblings) that canprovide information about the QTL,

while a second cousin pedigree has numerous pairwise comparisons that provide information

about the excess correlations potentially caused by the QTL.

De Andrade and Amos (2000) discuss ascertainment issues in variance component models.

They consider two ascertainment schemes: conditioning on the trait value of the proband and

conditioning on the probability that the trait value in a proband is above a pre-specified thresh-

old. De Andrade and Amos (2000) conclude that failure to correct for ascertainment affects the

estimates of the variance component such that heritabilityestimates are too low in the presence

of a common major allele. The downward bias of the heritability estimates was removed when

ascertainment correction was used in the analyzes. Clearly,when estimating variance compo-

nents and heritability the correct model should always be employed and that includes a proper

ascertainment correction whenever that is known.

In conclusion, the present study suggests that pedigree structure is not so important for her-

itability studies as long as the sampled pedigrees are of moderate size. Also, it is unnecessary

to sample complicated pedigrees instead of, say, nuclear families, since there is no practical

difference in the MSE between large, complex and pedigrees of moderate size. However, if

only sib pairs are available it is still feasible to estimatethe heritability since the bias for sib

pair pedigrees is the same as for the more complex pedigrees except when both the sample size

and heritability are low. Sib pairs pedigrees have increased variance it will be more difficult to

detect differences in heritability between populations ortest if the heritability is significantly

different from 0. The additive model heritability estimates are downward biased in the pres-

ence of dominance effects. However, the heritability estimates can still be used in the planning

of linkage or association studies since the estimated heritability will be too low, which in turn

results in a demand for an increased number of pedigrees necessary to obtain a given power.

The simulation results also suggest that a large number of individuals are required to obtain

a good precision of the heritability and that the improvement in MSE of the heritability estimate

does not outweigh the cost of sampling additional pedigrees(e.g., 200–400 individuals are

11



generally enough to get a reasonable stable estimate).

Simulation and estimation was done using the PediPet sourcecode, which can be found and

downloaded fromwww.statistics.life.ku.dk/~ekstrom/pedipet/.
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(a) Sib pair (b) Two offspring nuclear family

(c) Four offspring nuclear family (d) Six offspring nuclear family

(e) CEPH (f) Double half sib family

(g) First cousins (h) Second cousins

Figure 1: Pedigree trees of pedigrees examined in the paper.The pedigrees are a) sib pair, b) 2
offspring nuclear family, c) 4 offspring nuclear family, d)6 offspring nuclear family, e) CEPH
pedigree, f) double half sib family, g) first cousins family and h) second cousins family.
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Figure 2: Theoretical variance of heritability estimate asa function of true heritability,h2, for
eight different pedigree structures (a)–(h) (see figure 1).A total of 84 individuals are assumed
to be in each dataset.
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Figure5:Meanheritabilityestimatesandrootmeansquared errorofthebroadsenseheritability
estimatesforeightdifferentpedigreestructures(a)–(h) (seefigure1)andthreelevelsofheri-
tability(h2=0.1(solidline),0.33(dashedline)and0 .5(dottedline)).Simulateddatainclude
adominanceeffectaccountingfor25%,50%or75%ofthetotal geneticvariation(columns
1–3respectively).Theboldlinescorrespondtothesibpair pedigreestructure(a).Allresults
arebasedon1000simulateddatasets.
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Figure 6: Mean heritability estimates and root mean squarederror of the narrow sense heri-
tability estimates for eight different pedigree structures (a)–(h) (see figure 1) and three levels
of heritability (h2 = 0.1 (solid line), 0.33 (dashed line) and 0.5 (dotted line)). Simulated data
include a dominance effect accounting for 25%, 50% or 75% of the total genetic variation
(columns 1–3 respectively) but the heritability estimatesare estimated from an additive model
that does not accommodate dominance effects. The bold linescorrespond to the sib pair pedi-
gree structure (a). All results are based on 1000 simulated datasets.

19


