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Abstract

Heritability measures the familial aggregation of a disease or trait and agrorieritabil-
ity suggests that a genetic component may be present. Reliable heritability estarate
necessary in the planning phase of a linkage or genetic association studftdm these
estimates are obtained from other studies where the composition of pedigagdse dif-
ferent from the study that is prepared. The impact of pedigree steuotuprecision and
accuracy of heritability estimates is examined for data and models both with armltvith
dominance effects. Analytical and simulation results find that for pureljtiseldjenetic
effects all but the simplest pedigree structures provide the same infornadthon the her-
itability of a quantitative trait. In the presence of dominance effects thereubstantial

difference in the precision obtained by different pedigree structures.



| ntroduction

The concept of heritability plays an important role in gemepidemiology since familial ag-
gregation of a disease or trait is a necessary conditiorféo &ngenetic component. Heritability
estimation is usually considered the first step in unravglihe genetic basis of a disease or trait
and countless studies present heritability estimatesifiarent traits or diseases. Subsequent
steps in gene identification often rely heavily on herit@piestimates from pilot studies or
from published studies since these estimates help detertinerequired sample size in order
for the study to have a certain power to identify the susbdityi gene.

Reliable heritability estimates are important in the plagnphase of a linkage study or
genetic association study since these studies are irrglaméess a substantial genetic variation
is present in the population. However, it has only rarelynlb@eamined how different pedigree
structures influence the heritability estimates and ineates from a particular set of pedigree
structures are directly applicable to a study employingferint set of pedigree structures.

In a recent paper by Hsu et al. (2005) the authors find diftenenitability estimates for
pulse pressure in three different populations and concludafter a resampling approach to
match pedigree sizes for the three populations — that peeligfructure is one of the important
factors affecting heritability estimates. The results sti¢t al. (2005) contradict earlier results
by Mallinckrodt et al. (1997), who found hardly any diffecenbetween the confidence inter-
vals of the heritability when estimates were obtained framu¢ated data of random pedigree
structures or fixed pedigree structures.

The purpose of the present paper is twofold: First, we wigéxamine the impact of pedi-
gree structure on the precision and accuracy of heritglaitimates and secondly we wish to
determine the necessary sample size to obtain a given joreoisthe heritability estimate. In
the next section we discuss the multivariate Gaussiann@giaomponent model for heritability
estimation of quantitative traits and how the heritabiptgcision is influenced by the variance
of the variance components. We illustrate the impact oked#ht pedigree structures on the
heritability estimates through a set of simulations befeeadiscuss the design requirements

for obtaining reliable heritability results from a pilousty.



M ethods

Lety, be the vector of observed phenotypes for pedigenprisingn; individuals. The clas-
sical multivariate normal additive polygenic model (Laregeal., 1976; Hopper and Mathews,
1982) assumes that the mean of the observed phenotype islgive, = E(y;) = fg(x) and
depends ohparameter$fs, ..., 3) through a known functiori and a set of covariates. Fur-
thermore, the variance-covariance matfl,is a linear combination of independent matrices

with known covariance structure,
Q = 022d; 4 ol;. 1)

o2 and 0,2 are the variance component effects corresponding to auasadiditive effect and a
non-shared environmental effect, respectively. Thé&)'th element of the kinship coefficient
matrix, @/, is defined as the probability that an allele drawn at random fan arbitrary locus
in individual j is identical by descent to an allele drawn at random from #meslocus in

individual k. I is the identity matrix. The log-likelihood of pedigrebecomes
n| 1 l TA—1
loglL = ) log(2m) — > log(|<i) — i(yi — M) QY — 1) (2)

The polygenic model defined by (1) and (2) form the basis ofyriankage studies of quan-
titative traits, and has been extended to accommodate &ongbe dominance effects, shared
environmental effects (Hopper and Mathews, 1982) and plelgenotyped loci (Almasy and
Blangero, 1998).

The (narrow) sense heritability is defined as the propouidhe total phenotypic variance

that is attributable to additive genetic effects (Falccareat Mackay, 1996)
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The bias of the estimator is defined as the difference betweeemean heritability estimate
and the true heritability valu€h? — h2.

The heritability estimate has asymptotic variance givethigymatrix product

A

V(h2> = nl<o.§7o-|2) r n/(0§70|2)T7 (4)



wherel” = Var(62, 67) is the asymptotic variance-covariance matrix of the twoarare com-

ponents and where the partial derivativegjokith respect tas? ando? are

g2

9 2 _ 42
on _ (021027 whenof = o3 5)
do? 9k 2_g2
j (021077 whenaJ =0

Leto? =02+ 0,2 denote the total phenotypic variance for an individual. pasial deriva-

tives in (5) then corresponds th— h?) /o2 and—h?/a? respectively. Furthermore, if we write

r— Yin Y12 (©)

iz Y22
we can calculate the variance from formula (4) as

A 1—h? 1-h2 —h? _n2
2 2 2
V(h%) = y11( o2 ) +2Y12<77) + VZZ(F) @)
1
~ (022 ((M)2(ya1+ 2ya2+ Yo2) — 20P(Va1+ Va2) + Ya1) -

The variance of the heritability estimate is a second degogomial inh? and the quadratic
coefficient must always be positive singg1 + 212+ y»2) = Var(g2 + ) > 0 . Hence, we

see that variance of the heritability is minimized when

e 2wty yutye
2(y11+2y12+ Vo2) Yt 22+ a2

(8)

In general, however, we do not have any control over the topilation heritability and we
cannot design a study that will achieve the minimum variankcestead we need to investi-
gate how the pedigree structure influences the precisidmeofdriance components since they
determine the sample variance through (7).

A well-known result from asymptotic theory states that theance of the variance com-
ponent maximum likelihood estimatds, can be obtained from the inverse Fisher information
matrix, S~1, whereSin the present situation becomes

tr(Q - 120Q120) tr(Q 20Q?)

1
S— = : 9
2\ re o 20) w@tal



see Lynch and Walsh (1998, p. 788—789) for more detail. Ttmgspedigree structure enters
the heritability estimate throug® andQ in (9). If we fix g2 and g (and hence we fix the
heritability h?), we can calculat& for different pedigree structures and see how the strusture
affectS

[Figure 1 about here.]

Figure 1 shows the different pedigree structures we examitieis paper. The pedigree
structures range from simple (sib pairs) to more complitétecond cousins family) and rep-
resent many of the pedigrees found in existing linkage é#agigure 2 shows the theoretical
sample variance (7) for the different pedigree structuces/érying values oh?. The total
number of observations is kept constamt=(84) for each of the different pedigree structures
such that the variances of the heritability estimates shovilgure 2 are directly comparable.
Obviously the number of pedigrees will depend on the pedigize such that a total af= 84
is achieved.

The results from figure 2 suggest that there is hardly angmiffce in precision of heri-
tability estimates for different pedigree structures @tder sib pairs (a) that have a relatively

larger variance than the other pedigree structures.

[Figure 2 about here.]

Dominance effects

The variance-covariance matr®, changes to
Q; = 0220; + 0207 + 7l (10)

when dominance effects are included in the model. Hefeis the variance component cor-
responding to the dominance effect algl is Jacquard’s condensed coefficient of identity and
includes the probability of two individuals sharing twoeddls identical by descent at a given
locus (Jacquard, 1974).

The narrow sense heritability is defined as previously (3),

o

h2: 0.2 0.2 0.2 _
I’]( as»Yd> I) 0'5—1—0'5—}—0127

(11)



but when non-additive effects are present we can also centid broad sense heritability

2 42
~ os+ 0
H2: 0-2,0-2,02 = - a d . 11«
n(og,0g,07) 02+ 02+ 0F (11:)
Following the same steps as before, we find the partial derdsof (11) as
2
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We can then proceed exactly as before and derive the forroudlad variance of the heritability,

which for the narrow sense heritability (11) becomes

. 1-h2, h2(1—h h2\?
V() = yua(=5)? - 202)2 J(Yor+ Yao -+ yor+ yis) + (;) (Vo2 + Ya2+ Yos+ s3)
(13)
and for the broad sense heritability becomes
. 1-h2, h2(1—h2 h2\ 2
V(H?) = (Y1 + Yor + Yaz + ¥o2)( 52 )2 — EOZ)z ) (Ys1+ Va2 + Yaz+ Vo3) + (;) ¥3.
(13+)

In both (13) and (18) we have extended the variance-covariance matrix (®3{@nd we can
insert the corresponding information from the inverse &ismatrix. The results are shown
in figure 3 where the variance of the narrow and broad senseliéties are compared for
different dominance effects. Clearly, the variance of therava sense heritability is much
smaller than the broad sense heritability, but figure 3 alsxws that while there is hardly
any difference in variance of narrow sense heritabilitytfor different pedigrees (top panels
in figure 3), there are quite noticeable differences in breaake heritability (bottom panels).
Large pedigrees containing little information about doamoce deviance (e.g., pedigrees (Q)

and (h) from figure 1) have a markedly larger variance tharllenmaedigrees. It is also worth



noting that the variance generally increases when the piiopof the heritability that is due

to dominance effects increases.

[Figure 3 about here.]

Simulation study

We use a set of simulations to investigate the simultaneopsdt of pedigree structure and
sample size on accuracy (bias) and precision of heritglaitimates. For each pedigree struc-
ture we simulated phenotypic data using the multivariatesS&n polygenic model (2), where
o2 and af were fixed such that? 4 o = 1 and whereo? varied to obtain true heritabilities
of 0.1,0.33 and 05. To investigate the influence of sample size we simulatéadsets with
either 60, 120, 240, 360, 600 or 1200 individuals. This setay result in different number of
pedigrees for the eight pedigree structures examined keejis the sample size constant. One
thousand datasets were simulated for each combinationdignee structure, sample size and

heritability.
[Figure 4 about here.]

Figure 4 shows the mean estimated heritability and the raamsquared error for the
three different heritability levels and the six differeangple sizes. The upper left panel shows
the mean estimated heritabilities for all three heritaplivels, and — not surprisingly — the
bias decreases noticeably with increasing sample sizeofhiee three panels show the root of
the mean squared error (MSE) for different true heritabiflues. The MSE increases with
heritability but decreases with sample size.

The estimated mean squared error is practically identaradli combinations of pedigree
type and heritability except for the sib pair pedigree dtrices(a) that are shown with bold lines
on all four panels in figure 4. The sib pairs show a large biasioall sample sizes and a
low heritability of 0.1 and have markedly higher MSE. Theglar MSE could also be seen on
figure 2, where the variance curve for the sib pair pedigreesabstantially higher than the

other variance curves.



Dominance effects

We investigate the impact of dominance effects in two situst First we generate data from
the dominance model (10) and also use the correct modelitoatstthe variance components.
This enables us to evaluate the bias in heritability esesiahd compare the MSE for different
pedigree types. Secondly, we generate data from the dooemandel (10) but use the (incor-
rect) additive model (1) to estimate the parameters to exarmow a misspecification of the
model will influence the estimates, when a dominance eftegbt modeled.

Figure 5 shows the mean heritability estimates and root nsgaared error of the broad
sense heritability for data generated and estimated usenthe dominance model (10). There
is hardly any difference in root mean squared error for thiemint pedigrees structures but
Figure 5 suggests that sample size has a substantial induEneritability bias for small
sample sizes. The figure also shows that a large number ajneedimay be needed to achieve
a reasonable accuracy in the heritability estimates. Tlep®digree structures that perform

consistently worst are the first and second cousins pedigpeeligrees (g) and (h) in Figure 1).
[Figure 5 about here.]

Figure 6 shows the result when data are generated from a mattieh dominant genetic
component but where an additive model is used to estimaténtimeow sense) heritability.
In this case there is virtually no impact of pedigree streeton root mean squared error or
heritability estimates but there is a considerable biasaingedigrees underestimate the true

heritability. The downward bias increases with increaslominant genetic component.

[Figure 6 about here.]

Mixed pedigrees datasets

In most real situations data consists of pedigrees of varsbuctures. A dataset consisting of
one of each of the 8 pedigree structures shown in Figure 1 wadated in order to compare
the results of a mixed pedigree dataset with the datasetssioigée pedigree structure. The
combined dataset contains information on 61 individualsictv is comparable to the base
sample size used in the simulations above. The resultsdaniked pedigrees dataset generally
resemble the results shown for the first cousins pedigrées (@igures 4, 5 and 6 (data not
shown). In other words, a few large pedigree structuresappebe sufficient to stabilize the

variance components estimates.



Discussion

In this paper | have investigated the impact of pedigreecire on precision and accuracy of
heritability estimates. Eight different pedigree struetiare examined both analytically and
through simulations.

Most of the heritability information from human pedigreeustures comes from parent-
offspring regression and the variation between and withih dib families. Falconer and
Mackay (1996, equation 10.10) present explicit formulastfe heritability sampling vari-
ance for simple pedigree structures, and they show how tiglsay variance from full sib
families is twice as precise as the sampling variance frolfrsiiafamilies. Similar predictions
can be made for other types of (simple) pedigrees, see \és$2004) for a comparison of the
sampling variance obtained from monozygotic and dizogwtios in a variance component
setup identical to the one described here. Hill and Nich(1&34) show that the correlation
between heritability estimates from mid-parent regressiod estimates from full sib correla-
tions are not trivial, and that pedigrees including infotim@aon both parents and offspring are
more informative than pedigrees based on offspring alohes& results suggest that extended
pedigrees may provide very little additional informatidmoat the heritability relative to the
simpler nuclear family, and that is consistent with the ltssshown in figures 2, 4, and 6.

Estimates based fullsib pairs alone cannot distinguisipgny determine the dominance
effects as the dominance effects are confounded with thigaeldffects. Covariance matrices
from fullsib pairs all have homogeneous off-diagonal estiso®; andA; (and also a shared
environment covariance structure if that is included inrtiadel) can not be separated.

Figures 2, 4, and 6 provide consistent results that show-thexcept for datasets consisting
solely of sib pairs — there may be virtually no impact of pedegstructure on the precision
and accuracy of heritability estimates when the heritghgiestimated using an additive model
(1). Sib pair datasets have markedly higher heritabilitmgi@ variance than the remaining
pedigree structures (all 3 figures) but the sib pair datadytleé same estimates as the other
pedigree structures.

The heritability estimates are generally too small wherdia contain a dominance effect
but the model only accommodates an additive effect (figurd Bis downward bias is caused
by the model not being able to account for the dominance tsffgesent in the dataset and the

bias increases with increasing dominance effect. Sib pairgoees provide relatively larger



heritability estimates that are closer to the true valu¢hisicase however, the sib pair pedigrees
fares better simply because the additive and dominanceteféee virtually indistinguishable
based on sib-pair covariances alone and therefore any docereffects are easily classified as
additive effects.

The results are somewhat different when data contain a domoeeffect and the correct
model is used to estimate the (broad sense) heritabilityrgi§). Here, there is substantial dif-
ferences in the accuracy of heritability where some pedigtaictures quickly converge to the
correct heritability while others require notably largangple sizes. The full sib pair pedigrees
perform quite well with respect to accuracy and it is acfufitst and second cousin pedigrees
(i.e., pedigrees (g) and (h) from figure 1) that show the Ilsireas. This bias is caused by the
lack of information about the dominance effect in those gestis. Although these pedigrees
are fairly large there is only one relationship — the fulllsig pair — that provides any infor-
mation about the dominance effects. Thus, there is lithermation to distinguish dominance
from additive effects and this results in an inflated estentdtthe dominance effects. However,
it should be emphasized that there is no difference in ro@msguared error among the dif-
ferent pedigree structures except for first and second rqesdigrees which have somewhat
larger MSE than the other pedigrees. This is identical ta¢lsalts seen in figures 2, 4, and 6

It is worth noting that even with very large sample sizes.(e1g00 individuals) there is
still a large MSE — even for the more complicated pedigreecstires. The reason for impre-
cision of heritability estimates is that the heritabilis/dalculated from the estimated variance
parameters and the variance of variances needs large nwintheta before it stabilizes. Con-
sequently, it is quite costly to obtain very precise estenaif the heritability, and the results
from figure 4 suggests that even with 400 individuals thetability estimate is on average off
by 0.10!

Pedigree size also influences the sample variance of theliéty, but a pedigree con-
sisting of four full siblings show virtually the same MSE && tmore complicated pedigree
structures. Thus, pedigreseze may be important for heritability precision but not the exac
pedigreestructure. The only place where pedigree structure appears to havebstesitial im-
pact is on the broad sense heritability (figure 5) when datdades a dominance effect. Not
surprisingly, the simulations suggest that the small-darbjas of broad sense heritability is
reduced if pedigrees with several relationships that pi@wmformation about the dominance

correlation are sampled.
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Although there may generally be little impact of pedigre@aiure on the heritability es-
timates based on an additive model as shown in figures 2, 46 ahe pedigree structure can
have a huge impact on quantitative trait locus (QTL) detecfiVilliams and Blangero, 1999).
Variance component QTL linkage analysis use the informdtiom the locus-specific correla-
tions among individuals to identify any excess correlatioe to the QTL. A sib pair pedigree
has only one relationship (that of the two siblings) thatgeovide information about the QTL,
while a second cousin pedigree has numerous pairwise cguparhat provide information
about the excess correlations potentially caused by the QTL

De Andrade and Amos (2000) discuss ascertainment issuesiange component models.
They consider two ascertainment schemes: conditionindgpetrait value of the proband and
conditioning on the probability that the trait value in alpand is above a pre-specified thresh-
old. De Andrade and Amos (2000) conclude that failure toexrfor ascertainment affects the
estimates of the variance component such that heritab#itiynates are too low in the presence
of a common major allele. The downward bias of the heritgbdstimates was removed when
ascertainment correction was used in the analyzes. Cledibn estimating variance compo-
nents and heritability the correct model should always bpleyed and that includes a proper
ascertainment correction whenever that is known.

In conclusion, the present study suggests that pedigneetste is not so important for her-
itability studies as long as the sampled pedigrees are oenatelsize. Also, it is unnecessary
to sample complicated pedigrees instead of, say, nuclealid¢a, since there is no practical
difference in the MSE between large, complex and pedigréesoderate size. However, if
only sib pairs are available it is still feasible to estimtte heritability since the bias for sib
pair pedigrees is the same as for the more complex pedigkeeptavhen both the sample size
and heritability are low. Sib pairs pedigrees have incréaseiance it will be more difficult to
detect differences in heritability between populationsest if the heritability is significantly
different from 0. The additive model heritability estimatere downward biased in the pres-
ence of dominance effects. However, the heritability estén can still be used in the planning
of linkage or association studies since the estimatedatwlrtyy will be too low, which in turn
results in a demand for an increased number of pedigreessegeo obtain a given power.

The simulation results also suggest that a large numbedafiduals are required to obtain
a good precision of the heritability and that the improvetmeMSE of the heritability estimate
does not outweigh the cost of sampling additional pedig(ees, 200—-400 individuals are

11



generally enough to get a reasonable stable estimate).
Simulation and estimation was done using the PediPet sgods which can be found and

downloaded fronwww. st ati stics. |ife. ku. dk/ ~ekstroni pedi pet/.
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(a) Sib pair (b) Two offspring nuclear family
(c) Four offspring nuclear family (d) Six offspring nuclear family

0L
Jo000000 0000

(e) CEPH (f) Double half sib family

L0
O

(g) First cousins (h) Second cousins

Figure 1: Pedigree trees of pedigrees examined in the papempedigrees are a) sib pair, b) 2
offspring nuclear family, c) 4 offspring nuclear family, @)ffspring nuclear family, e) CEPH
pedigree, f) double half sib family, g) first cousins familydeh) second cousins family.
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to be in each dataset. Top panels show the the narrow sentabhigy while bottom panels
are broad sense heritability. From left to right the doma®adeviance effect constitutes 15%,
35% and 55% of the total heritability, respectively.
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Figure 4. Mean heritability estimates and root mean squanex of the heritability estimates
for eight different pedigree structures (a)—(h) (see figyrand three levels of heritabilithf =
0.1,0.33 or Q5). The upper left picture shows the mean heritability fdrtlalee heritability
levels. The bold lines correspond to the sib pair pedigneetitre (a). All results are based on
1000 simulated datasets.
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Figure 6: Mean heritability estimates and root mean squareast of the narrow sense heri-
tability estimates for eight different pedigree structufa)—(h) (see figure 1) and three levels
of heritability (W? = 0.1 (solid line), 0.33 (dashed line) ands0(dotted line)). Simulated data
include a dominance effect accounting for 25%, 50% or 75%heftbtal genetic variation
(columns 1-3 respectively) but the heritability estimaesestimated from an additive model
that does not accommodate dominance effects. The bolddoresspond to the sib pair pedi-
gree structure (a). All results are based on1]9000 simulatabdts.



