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Abstract Fibroblast growth factor (FGF) receptor (FGFR)
consists extracellularly of three immunoglobulin (Ig) modules
(Ig1–3). Currently, there are two competing models (symmetric
and asymmetric) of the FGF–FGFR–heparin complex based on
crystal structures. Indirect evidence exists in support of both
models. However, it is not clear which model is physiologically
relevant. Our aim was to obtain direct, non-crystallographic evi-
dence in support of them. We found by nuclear magnetic reso-
nance that Ig2 could bind to FGF1 not only via the primary
site (present in both models), but also via the secondary site
(present only in the symmetric model). Thus, our data support
the symmetric model.
� 2008 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Fibroblast growth factor (FGF) receptors (FGFR) are a

family of receptor protein tyrosine kinases, which regulate a

multitude of cellular processes including cell proliferation,

migration, differentiation and survival (for review, see [1,2]).

They interact with various ligands, such as FGFs [3], hepa-

rin/heparan sulfate proteoglycans (HS) and neural cell adhe-

sion molecules [4–6]. The FGFR-ligand interaction results in

receptor dimerization and activation of the tyrosine kinase do-

main, which triggers the downstream cell signaling.

It was found that HS proteoglycans are required for FGF

signaling [7] and the high-affinity FGF–FGFR interaction
Abbreviations: FGF, fibroblast growth factor; FGFR, fibroblast
growth factor receptor; HS, heparin/heparan sulfate proteoglycans;
HSQC, heteronuclear single quantum correlation; Ig, immunoglobu-
lin; NMR, nuclear magnetic resonance; NTA, nitrilotriacetic acid;
PBS, phosphate buffered saline; SPR, surface plasmon resonance
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[21,22]. Based on this, several models of FGFR dimerization

were proposed, which involved the FGFR immunoglobulin

(Ig) modules 2 and 3. The FGFR Ig1 module (structure re-

cently determined by Kiselyov et al. [8]) was found to have a

regulatory function [9] by binding to the Ig2 module [10]. Crys-

tallographic studies suggested two fundamentally different

models of FGFR dimerization. Plotnikov et al. [11] and

Schlessinger et al. [12] proposed a so-called symmetric ‘‘two-

end’’ model. In this model, heparin interacts with both FGF

and FGFR within each 1:1 FGF:FGFR complex. Heparin

also interacts with FGFR of the adjoining 1:1 FGF:FGFR

complex. There is also an interaction between FGFs and

FGFRs of the adjoining complexes via primary (in Ig2, Ig3)

and secondary (in Ig2) sites as well as a direct interaction be-

tween the Ig2 modules of the two receptors. Pellegrini et al.

[13] proposed a second model, often called an asymmetric

model. The main feature of the model is a heparin bridge be-

tween trans-oriented FGFs. In this model, each FGF binds

only to one FGFR in the dimer through the primary site

and there are no direct receptor-receptor contacts, and no

FGF–FGFR interaction through the secondary site. Further-

more, there are absolutely no protein–protein contacts be-

tween the two FGF–FGFR complexes and the dimer is

stabilized solely by heparin. It should be noted that in the sym-

metric model, the Ig2 module interacts with FGF through its

primary and secondary sites, whereas in the asymmetric model

– only through the primary site. Since the contacts identified

by crystallography may be artifacts due to crystal packing, it

is important to validate the presence of these contacts in solu-

tion by other methods. Indirect evidence has been obtained in

favor of both models. Ibrahimi et al. [14] showed that muta-

tions in the secondary site (present only in the symmetric mod-

el) reduced FGF10 signaling, thus supporting the symmetric

model and arguing against the asymmetric model. However,

mass spectroscopy and gel filtration analysis of the ternary

complex indicates that both types of complexes could be

formed in solution [15–17].

Here we studied the interaction between the FGFR Ig2 mod-

ule and FGF in solution by nuclear magnetic resonance

(NMR) with an aim to obtain a direct and non-crystallo-

graphic evidence to confirm one of the two competing models.
blished by Elsevier B.V. All rights reserved.
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We showed by surface plasmon resonance (SPR) analysis that

the Ig2 module bound to FGF with a Kd value of 39 nM and

demonstrated that the module bound to FGF not only via the

primary but also the secondary site, which is only present in

the symmetric model. Thus, our data support the symmetric

model of the FGFR ternary complex.
2. Materials and methods

2.1. Production and purification of recombinant proteins
The Ig2 module of mouse FGFR1 consists of a His-tag,

AGHHHHHH, and amino acids 140–251 (Swissprot P16092). The
Ig2 module was produced as previously described [5]. In brief, the pro-
tein was expressed in KM71 strain of yeast Pichia pastoris (Invitrogen).
For the 15N-labeled protein 15N-labeled ammonium sulfate was used
as a nitrogen source. After expression, the supernatant (which contains
protein) was loaded on an affinity chromatography column (Ni2+-
nitrilotriacetic acid (NTA) resin, Qiagen, Holland) and washed over-
night with 800 ml. of the 20% glycerin and 1 M NaCl in phosphate buf-
fered saline (PBS) (pH 7.4). Afterwards the protein was eluted from the
column by 0.25 M imidazole in PBS (pH 7.4). The protein was degly-
cosylated by Endo HF enzyme (New England Biolabs, USA) for 4–6 h
at room temperature and purified by size-exclusion chromatography in
PBS on Superdex 75 HiLoad 16/60 column (GE Healthcare, USA).
The protein purification was performed using AktaFPLC instrument
(GE Healthcare, USA).

2.2. Surface plasmon resonance (SPR) analysis
Binding analysis was performed using a BIAcore 2000 instrument

(GE Healthcare, USA). Experiments were performed at 25 �C with
PBS (pH 7.40) used as a running buffer and a flow-rate of 20 ll/min.
The Ig module 2 of FGFR1 was immobilized on the sensor chip
CM5 using an amine coupling kit (GE Healthcare, USA) in three
steps: activation, protein immobilization and blocking. 20 ll of the
activation solution were used for the chip (CM5) activation. Then,
12 ll of 20 lg/ml protein in 10 mM sodium phosphate buffer (pH
6.0) were used for immobilization and the chip was blocked by 35 ll
of blocking solution (during immobilization 5 ll/min flow-rate was ap-
plied). For analysis, FGF1 was injected simultaneously into a flow-cell
with the immobilized FGFR Ig2 module and into a control flow-cell
(activated and blocked in the same way as the one used for immobili-
zation) with no protein immobilized. The unspecific binding was sub-
tracted from the sensorgram, and the resulting curve was used for
analysis.
Fig. 1. SPR analysis of the binding between the FGFR Ig2 module
and FGF1. Binding of soluble FGF1 at the indicated concentrations to
the immobilized Ig2 module of FGFR1 is shown. Measurement of the
FGF1 binding at all of the indicated concentrations was performed
nine times.
2.3. NMR measurements
The following samples were used for recording of NMR spectra:

15N-labeled 0.1 mM Ig2 module of FGFR1 with or without addition
of 0.05, 0.10 or 0.50 mM FGF1. PBS (pH 7.40) was used as a buffer.
The 15N-heteronuclear single quantum correlation (HSQC) spectra
were recorded using the standard set-up provided by ProteinPack.
The spectra were processed by NMRPipe [18] and analyzed by Pron-
to3D [19]. The NMR experiments were performed using Varian Unity
Inova 750 and 800 MHz spectrometers. All spectra were recorded at
25 �C.
3. Results and discussion

In order to study interaction between the Ig2 module of

mouse FGFR1 and FGF1, the two proteins were produced

in a yeast expression system of P. pastoris and in Escherichia

coli, respectively. The proteins were found to be correctly

folded as judged by one-dimensional NMR analysis.

3.1. SPR analysis of the interaction between FGF1 and Ig

module 2 of FGFR1

To test whether the recombinantly expressed Ig2 module of

FGFR was capable of binding to FGF1, SPR analysis was

used. As appears from Fig. 1, FGF1 was capable of binding

to Ig2 module with a dissociation constant (Kd) of

39 ± 8 nM, which is in agreement with the 65 nM Kd value

for the interaction between the Ig2 module of human FGFR

and FGF1 (determined by isothermal titration calorimetry)

[20], thus giving us evidence that both recombinant proteins

are functionally active. When FGF1 was immobilized, soluble

Ig2 module bound with a Kd value 38 ± 33 nM (data not

shown).

3.2. NMR analysis of the interaction between FGF1 and Ig2

module of FGFR1

Resonance assignment of the mouse Ig2 module of FGFR

has previously been described [10]. It should be noted that

the linker region connecting the C and D b-strands of the

Ig2 module of human FGFR is very flexible in solution and

adopts different conformations in the solution [20] and crystal

[11–13] structures of FGFR1. In the mouse Ig2 module of

FGFR1, resonances corresponding to this linker region (resi-

dues 200–213) are completely missing, which could be caused

by either an intermediate exchange between the alternate linker

conformations, enhanced flexibility compared to the human

module, or maybe due to both of these effects.

The interaction between the Ig2 module and FGF1 was

studied by NMR spectroscopy, which allows identification of

residues in the vicinity of the binding sites. The 15N-HSQC

spectrum of a 15N-labeled protein records the one bond cou-

pling of the H–N bond, and it can be used as a useful tool

for monitoring site specific perturbations. The chemical shift

changes of the signals provide a method for identification of

the amino acid residues whose NMR signals are perturbed

by the binding of another molecule. 15N-HSQC spectra of

0.1 mM Ig2 module were recorded in the presence of 0, 0.05,

0.1 or 0.5 mM FGF1. Addition of FGF1 led to either line

broadening, chemical shift changes or disappearance of the

NMR signals for certain residues (see Fig. 2). The recorded

changes of chemical shifts after addition of 0.1 and 0.5 mM

FGF1 are shown in Fig. 3. As the highest change of the chem-

ical shift was 0.23 ppm, the residues with the signals disappear-

ing are indicated in Fig. 3 by a 0.3 ppm change of the chemical



Fig. 2. Effect of FGF1 on NMR signals of the FGFR Ig2 module.
15N-HSQC spectra of the representative residues of 0.1 mM 15N-
labeled FGFR Ig2 module in the absence (in red) or presence (in
yellow) of FGF1 at the indicated concentrations are shown. The
spectra in the presence of FGF1 are shown as overlapping the
reference spectrum (in the absence of FGF1).

Fig. 3. Identification of the Ig2 module�s residues involved in binding
to FGF1. Changes in chemical shifts of 0.1 mM 15N-labeled Ig2
module after addition of 0.10 (A) and 0.5 (B) mM unlabeled FGF1.
The change of the chemical shift was calculated using the following
expression: ((5*DH)^2 + (DN)^2)^0.5, where DH is the change of the
1H chemical shift and DN is the change of the 15N chemical shift. Bars
in diagrams representing chemical shifts 0.3 ppm does not represent
the actual chemical shifts, but correspond to amino acids with
disappeared signals (strongest effect).
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shift. As can be seen from Fig. 3B, addition of 0.5 mM FGF1

led to disappearance of most the signals, which indicates that

the exchange between the bound and free form of Ig2 module

is intermediate on the NMR time scale. The residues with the

changes of the chemical shifts of greater than 0.1 ppm or com-

pletely disappeared signals after addition of 0.1 mM FGF1

(Fig. 3A) were considered to be significantly perturbed. Map-

ping of the significantly perturbed residues is shown in Fig. 4,

and as can be seen from the figure, the perturbed residues

(A167, V168, A170, A171, K172, T173, V174, K175, F176, V220,

V221, G226, T229, Q244, L245, D246, V247, V248, E249) are located

in two clusters on the opposite sides of the module, thus sup-

porting the notion that the Ig2 module has two binding sites
for FGF. According to the crystal structure of the FGFR-

FGF dimer [11,12], the primary binding site of the Ig2 module

consists of residues L165, A167, P169 and V248, and as can be

seen from Fig. 4A, these residues are located approximately

in the middle of the cluster of residues perturbed by the

FGF1 binding. The secondary site in the crystal structure of

the Ig2 module consists of residues P199, D200, I203, G204,

G205, S219 and V221 [11,12]. Unfortunately, residues P199,

D200, I203, G204 and G205 are located in the flexible part of

the module (C–D linker) whose NMR signals are absent in

the spectrum of the mouse Ig2 module (see above). However,

as can be seen from Fig. 4B, the second cluster of the perturbed

residues is immediately adjacent to the residues of the second-

ary site and partly overlaps it (see Fig. 4B), which indirectly

provides evidence that these residues are involved in binding

to FGF1 in solution. It should be noted that it is not possible

to completely exclude a possibility that binding to one of the
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Fig. 4. Mapping of the residues of the FGFR Ig2 module perturbed by binding to FGF1 onto the module�s structure. Blue and magenta – residues of
the Ig2 module perturbed by the FGF1 binding. Magenta – perturbed residues which are also involved in binding to FGF1 as seen in the crystal of
the ternary FGF–FGFR–heparin complex [11–12]. Red – non-perturbed residues which are involved in binding to FGF1 as seen in the crystal.
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clusters observed in this study leads to a rearrangement of the

protein backbone that results in perturbation of the residues

from the other cluster. If we assume that this is the case, then

binding of FGF1 to just one cluster of the Ig2 module is ex-

pected to affect substantially the backbone conformation for

most of the module�s residues, because addition of 0.5 mM

FGF to the module results in disappearance of most of the

module�s NMR signals. However, the crystal structures of

the Ig2 module from the ternary FGF–FGFR–heparin com-

plexes are very similar to those from the FGFR not bound

to FGF [11,12], which makes this assumption (that the second

cluster appears due to coincidental rearrangement of the mod-

ule�s backbone upon binding to the first) unlikely.

Thus, we have by NMR obtained direct non-crystallo-

graphic evidence that the Ig2 module of FGFR1 has two dis-

tinct binding sites for FGF1. One of these sites overlaps with

the primary site of the Ig2 module for FGF, and the other

one partly overlaps with the secondary site, which supports

the symmetric model of the ternary FGFR-FGF-heparin com-

plex. Our results are consistent with those of Ibrahimi et al.

[14] who showed that mutations in the secondary site (present

only in the symmetric model) reduced FGF10 signaling and

those of Canales et al. [23] demonstrating that heparin ana-

logues not capable of inducing FGF1 dimerization (as required

by the asymmetric model) can substitute natural heparins in

FGF1 mitogenesis assays.
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