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ENGLISH SUMMARY 
Autism spectrum disorders (ASDs) is a heterogeneous group of neurodevelopmental 

disorders with a significant genetic component as shown by family and twin studies. 

However, only a few genes have repeatedly been shown to be involved in the 

development of ASDs. The aim of this study has been to identify possible ASD 

susceptibility genes.  

Genome screens in ASD patients suggest possible susceptibility gene regions on 

almost every chromosome. We identified four ASD patients with chromosomal 

rearrangements, two of which were familial rearrangements involving one of these 

putative susceptibility gene regions and two were de novo rearrangements. We 

characterised all chromosomal breakpoints at the molecular level with Fluorescence in 

situ hybridization (FISH) and Southern blot analysis when necessary. In addition, 

Bacterial artificial chromosome (BAC) array-CGH (Comparative genome 

hybridization) was performed for all four patients. By combination of these methods we 

identified several putative susceptibility genes for ASDs. Expression patterns were 

established for several of these genes by Quantitative PCR (Q-PCR) or in situ 

hybridization and one gene was sequenced in 157 ASD patients. Our results support a 

complex genetic basis of ASDs and that detailed molecular dissection of patients with 

inherited as well as de novo chromosomal rearrangements may reveal information about 

susceptibility genes for ASDs. In addition, two of the candidate susceptibility genes 

identified provide a potential link between a genetic predisposition and an environmental 

factor (stress) that in a mouse model system result in a male specific effect. Accordingly, 

these two autosomal genes are candidates for the male preponderance in ASDs. 
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DANSK RESUMÉ 
Autisme spektrum forstyrrelser (ASDs) er en heterogen gruppe af forstyrrelser der er 

forårsaget af defekter i den neuronale udvikling. Tvillinge- og familiestudier har tydeligt 

vist, at genetiske faktorer spiller en stor rolle for udviklingen af disse forstyrrelser, men 

indtil nu er der kun identificeret ganske få gener, der i mere end ét tilfælde har været 

involveret i udviklingen af ASDs. Formålet med dette projekt har været at identificere 

kandidatgener, der øger risikoen for at udvikle ASDs.  

Ved hjælp af genomskanninger af grupper af ASD patienter er der blevet 

identificeret områder på næsten alle kromosomer, der kan indeholde mulige 

kandidatgener for ASDs. Vi identificerede fire ASD-patienter, der samtidig havde et eller 

flere kromosomale rearrangementer. To af disse patienter havde arvet rearrangementer 

hvor mindst ét kromosombrud var inden for et kromosomområde, der tidligere var 

identificeret som muligt kandidatgen-område. De sidste to ASD patienter havde 

nyopståede rearrangementer (de novo). Vi karakteriserede alle kromosomale 

brudpunkter med fluorescens in situ hybridisering (FISH) og herefter med Southern 

blot når det var nødvendigt. Herudover blev alle fire patienter undersøgt ved hjælp af 

BAC array-CGH (komparativ genom hybridisering). Ved at kombinere disse metoder 

kunne vi identificere adskillige mulige kandidatgener for ASDs. For flere af disse gener 

brugte vi metoderne kvantitativ PCR (Q-PCR) eller in situ hybridisering til at undersøge 

hvilke væv de var udtrykt i. Vi sekventerede også ét af disse gener i 157 ASD patienter. 

Vores resultater underbygger tidligere rapporter om at det genetiske nedarvningsmønster 

for ASDs er komplekst og viser endvidere, at man ved at karakterisere både nedarvede 

og nyopståede kromosomale rearrangementer kan identificere mulige kandidatgener for 

ASDs. Herudover etablerer to af de identificerede gener en mulig sammenhæng imellem 

en genetisk prædisposition og en miljømæssig faktor (stress), der i musemodeller har vist 

sig at resultere i en effekt specifikt i mænd. Disse to autosomale gener kan derfor være 

medvirkende til at skabe den store overvægt af mænd med ASDs. 
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1 INTRODUCTION 
Childhood autism was first recognized as a psychiatric disorder distinguishable from 

mental retardation by Leo Kanner in 1943 [1, 2]. One year later, Hans Asperger 

described patients with resembling clinical manifestations [2]. Even though both Kanner 

and Asperger suggested a neuropathological origin for autism, deficiencies in parenting 

and “refrigerator mothers” were thought to be the cause of the disorder through the 

1950s [1, 2]. This hypothesis has for long been proved wrong by twin and family studies 

that demonstrate a robust genetic foundation for childhood autism and the broader 

autism spectrum of disorders. Nevertheless, only very few susceptibility genes have been 

identified for these disorders.  

 

1.1 Classification of Autism Spectrum Disorders (ASDs) 

For decades, little agreement has existed on the relative emphasis on phenomenology 

and aetiology in the classification of mental disorders [3]. To ensure a worldwide 

agreement on diagnostic criteria, the “ICD-10 (International Classification of Diseases, 

tenth revision) Classification of Mental and Behavioural Disorders” was elaborated 

within the framework of the World Health Organization (WHO) [4]. In parallel, the 

“Diagnostic and Statistical Manual of Mental Disorders, fourth revision (DSM-IV)” 

was developed by the American Psychiatric Association and effort has been made to 

unify these two classification systems to avoid discrepancies [3]. DSM-IV is used in many 

countries besides America, however, in Denmark ICD-10 is used.   

Childhood autism, atypical autism, Asperger’s disorder, Rett syndrome and 

childhood disintegrative disorder are differential diagnoses of pervasive developmental 

disorders (PDDs) that are characterized by severe impairments in reciprocal social 

interaction and verbal and nonverbal communication as well as the presence of limited, 

stereotyped behaviour, interests and activities [3, 4]. These qualitative impairments are 

reflected in all situations, but the severity can vary greatly between individuals [4]. 

Childhood autism, atypical autism and Asperger’s disorder are often in unity referred to 

as autism spectrum disorders (ASDs). The prevalence of ASDs is estimated to be 

between 27,5 and 116,1 in 10.000 [5-7] with a male to female ratio of four to one [2].  
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The diagnostic criteria for childhood autism have changed over time and in 

addition, concepts like ASDs are not being used consistently throughout the literature. 

This sometimes makes it difficult to categorize old findings in up-to-date clinical concepts. 

In this introduction I have consistently tried to categorize the original clinical descriptions 

into either of the groups “childhood autism” or the broader “ASDs”.   

1.1.1 Childhood autism 

Childhood autism is also referred to as infantile autism, Kanner’s autism or simply autism 

[3, 4]. Approximately 1/3 (10-38,9 of 10.000) of all individuals diagnosed within the ASD 

spectrum have the “childhood autism” diagnosis [5, 6]. Some symptoms and signs of 

childhood autism can be present from birth but most children will not fulfil the criteria for a 

childhood autism diagnosis before the age of 18-24 months where deficits in developing 

phrase speech and participating in interactive play become apparent [2-4]. However, by 

definition, the onset of childhood autism is before three years of age [2-4].  

The impairment in reciprocal social interaction is reflected in many ways. These 

children often have little or no interest in establishing friendships and in addition do not 

understand the standards of social interaction or the needs of others [2-4]. Accordingly, 

most of these children fail to develop relationships appropriate to developmental level [2-

4]. Moreover, abnormal use of eye contact, facial expression and gestures are common 

observations [2-4].  

It is estimated that between 1/3 and 1/2 of children with childhood autism never 

develop an actual language [2, 8]. In the remaining individuals, development of speech is 

delayed and the pitch, rhythm or stress may be abnormal and grammatical structures are 

immature and repetitive [2-4]. Moreover, individuals with speech may have difficulties in 

initiating or sustaining a conversation [3, 4].  

The third diagnostic criterion that defines childhood autism is “restricted, 

repetitive, and stereotyped patterns of behaviour, interests, and activities”[3]. This 

includes inflexibility to deviate from routines and rituals, stereotyped and repetitive motor 

mannerisms (clapping), overly focused interests (remembering bus timetables, soccer 

statistics etc.) and a persistent preoccupation with inanimate objects [3, 4]. In some 

cases, abnormal body posture or body movements (walking on tip toe, odd hand 

movements) are observed [3, 4].  



 14

In addition to the characteristics of childhood autism described above, several 

other features are commonly found in these individuals [3, 4]. Their reaction to sensory 

stimuli may be abnormal in the form of oversensitivity to sounds or touch or a high pain-

threshold [3, 4]. Abnormal eating or sleeping habits can be seen as well as unusual 

emotional reactions such as fear in response to harmless objects and a lack of fear in 

response to real dangers and giggling or weeping for no apparent reason [3, 4]. 

Moreover, self-injurious behaviours may be present [3, 4]. 

1.1.2 Atypical autism 

Atypical autism is distinguished from childhood autism either by having a later onset or by 

partial fulfilment of the three key diagnostic criteria (impairment in reciprocal social 

interaction and communication in addition to repetitive and restricted behaviour and 

interests) [4].   

1.1.3 Asperger’s syndrome 

Individuals with Asperger’s syndrome manifest abnormal social interaction and restricted, 

repetitive patterns of behaviour and interests as described for childhood autism [3, 4]. 

However, contrary to childhood autism, there is no significant delay in language and 

cognitive development [3, 4]. Developmental delay in motor function or motor clumsiness 

is nonetheless often observed [3, 4]. Asperger’s syndrome is eight times as frequent in 

males compared to females [4]. 

1.2 Genetics 

1.2.1 Family and Twin studies 

A genetic aetiology for childhood autism was first suggested from the observation that the 

risk of having a second child with childhood autism (the recurrence rate) was 

approximately 3% [9], which is up to 10 times as high as in the general population. 

Subsequently, twin studies clearly showed that the genetic contribution to the 

development of childhood autism was significant. When comparing the concordance rate 

of monozygotic (MZ) versus dizygotic (DZ) twin pairs diagnosed with childhood autism 

the relative magnitude of genetic and environmental influence on the development of the 

disorders can be estimated: the higher the MZ versus the DZ concordance rate, the more 

important is the genetic contribution. Three twin studies have been carried out for same-
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sex twins with childhood autism (reviewed in [2]). It is important that the twins are of 

same sex considering the significant male preponderance in this disorder. At least one 

twin in each pair was diagnosed with childhood autism. Only 66 twin pairs in total were 

involved in these studies, 36 MZ pairs and 30 DZ pairs. On average a MZ concordance 

rate of 70% and a DZ concordance rate of 0% were reported. When broadening the 

phenotype in co-twins to include milder cognitive or social deficits the MZ concordance 

rate increased to 82% and the DZ concordance rate to 10%. The low DZ concordance 

rate observed when using the strict phenotype criteria (0%) is suggested to be an 

outcome of the few DZ twin pairs in the studies since it is expected to be identical to the 

recurrence risk (3%) [2]. The considerably higher MZ versus DZ concordance rate 

indicates that childhood autism and the associated milder phenotypes observed in MZ 

twins are highly heritable [2]. This is further substantiated by the observation that 

Asperger’s syndrome clusters in families [10] and the recognition of one, two or three of 

the conceptually same traits as those defining childhood autism (impaired social and 

communication skills, preference for routines and difficulty with change) in close family 

members (parents, siblings, first cousins) of ASD children than of controls [2, 11]. These 

milder traits have become known as “the broader autism phenotype” and are usually not 

associated with difficulties in functioning and might even be associated with high 

achievement [2]. “The broader autism phenotype” is more commonly observed in male 

compared to female relatives [11]. Moreover, delayed onset of speech and difficulty with 

reading are also common findings in family members of ASD patients [2, 12] in addition 

to bipolar disorder [10, 13], major depression [14], schizophrenia [10] and anxiety 

disorders [15]. This suggests an overlap in either diagnostic criteria or genetic 

susceptibility factors for at least some of these disorders and ASDs.  

1.2.2 Comorbid disorders 

In approximately 3/4 of children with childhood autism a comorbid diagnosis of mental 

retardation of varying degree is madeA [3]. In addition, 5 - 38,3% of ASD patients develop 

epilepsy [16, 17]. The major risk factor for developing epilepsy is severe mental 

retardation with or without motor deficits [16, 17]. Moreover, 22% of ASD patients present 

tic disorders: 11% have Gilles de la Tourette syndrome whereas 11% have chronic motor 

tics [18].  
                                                 
A DSM-IV: profound mental retardation: IQ<20; severe mental retardation: 20≤IQ≤34; moderate 
mental retardation: 35≤IQ≤49; mild mental retardation: 50≤IQ≤69 [3]. 
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Individuals with ASDs are frequently reported to have abnormal emotional and 

behavioural reactions such as hyperactivity, short attention span, impulsivity, 

aggressiveness, self-injurious behaviours and temper tantrums [3]. In line with this, 

Leyfer et al found at least one comorbid psychiatric disorder in 72% of children 

diagnosed with childhood autism [19]. Of these, 44% had comorbid phobia, 37% had 

obsessive compulsive disorder (OCD) and 25% had major depression [19]. In 

addition, Stahlberg et al. found that 38% of ASD patients had comorbid attention deficit 

and hyperactivity disorder (ADHD) whereas 7% had bipolar disorder and 7,8% had 

schizophrenia [20]. The high incidence of comorbid psychiatric disorders in individuals 

with ASDs implicate, that ASD patients should be tested for additional psychiatric 

disorders since the symptoms of several of these can be relieved by drugs [19].  

The finding of comorbid “brain disorders” in a considerable proportion of ASD 

individuals suggests diagnostic overlap and/or a common genetic aetiology for at least 

some of these disorders.  

1.2.3 Possible genetic inheritance models 

In approximately 5-10% of individuals with ASDs an associated genetic disorder 

(described later), chromosomal rearrangement or environmental agent has been inferred 

as the cause of the disorder [21]. This renders the remaining approximately 90% of ASD 

cases idiopathic (of unknown cause) [21]. When looking at the actual findings in family 

and twin studies, information about the possible inheritance models emerge.  

1.2.3.1 Single gene (major locus) model 

If childhood autism was inherited as an autosomal recessive or fully penetrant dominant 

Mendelian disorder, a sibling recurrence risk of 25% and 50%, respectively, would be 

expected. Instead a recurrence risk of 3% is observed [9]. This argues against a 

Mendelian inheritance pattern for at least the majority of childhood autism cases. 

However, approximately 3% of ASDs are associated with chromosomal abnormalities 

(translocations, inversions, deletions, duplications and supernumerary markers) [21] and 

these abnormalities are in most cases suggested to be the primary cause of the 

phenotype, albeit additional genes might modulate the phenotypic outcome.  
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1.2.3.2 Poly- or multigenic inheritance models 

The occurrence pattern in pedigrees suggeste the most likely inheritance model for ASDs 

to involve several epistatic genes [22]. The suggested number of genes involved ranges 

from two to 10 with the most likely being three epistatic genes [22]. Hence, it is 

suggested that ASDs occur when a child inherits approximately three genes from the 

parents that each contribute to the phenotype [2]. However, whether these genes are 

always the same or whether several combinations of genes from a larger pool of 

susceptibility genes can cause ASDs is not specified by this model [2]. This model 

suggests that the inherited genes are all part of the same biological pathway and 

therefore with additive effect result in the full ASD phenotype [22]. An alternative 

multigenic inheritance model arise by considering the ASD phenotype as a combination 

of elements (social reticence, repetitive behaviour, impaired communication skills) that 

are inherited separately [12, 22]. This model does not fit data well when assuming a 

single locus for each phenotypical element [22], but it might be possible that each of 

these elements is also polygenic. In poly- or multigenic models like these, the male 

preponderance in ASDs and the broader autism phenotype is explained as a lower 

threshold in males compared to females [11]. Accordingly, female probands require a 

relatively higher number of risk factors to develop ASDs and an excess of affected family 

members of female probands is therefore expected [11]. However, there is no difference 

in familial loading, or variation in severity and type of expression of the broader autism 

phenotype in relatives of male and female probands, which implies that a simple sex-

limited additive genetic multigenic threshold model can not explain the observed 

inheritance patterns [11].  

1.2.3.3 Interplay between genetic and environmental factors  

A concordance rate of 100% in MZ twins is expected for a purely genetic disorder. The 

slightly lower observed concordance rate (70-82%) in ASDs is therefore consistent with 

the involvement of environmental factors in the development of ASDs [11, 23].   

In utero exposure to ethanol, thalidomide, valproic acid or misoprostol early within 

the first trimester of pregnancy increases the risk of developing ASDs [24-27]. The 

pathological mechanisms underlying these associations are unknown but it has been 

suggested that valproic acid dysregulates retinoic acid, which subsequently leads to 

altered gene expression of homeobox A1 (Hoxa1) among other genes [24, 26].  
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In addition, a number of studies indicate that dysregulation or dysfunction of the 

immune system might be involved in the development of ASDs in some individuals [28]. 

The pathological effects have been suggested to be mediated either by auto-antibodies 

or by an ineffective immune response to pathogen challenges [28] but infection of the 

fetal CNS with viruses (rubella and measles) during critical times of development can 

also lead to ASDs [28]. In addition, animal models suggest that the maternal immune 

response to infections during pregnancy can influence brain development in the fetus and 

thus possibly cause ASDs [28]. Childhood vaccinations, such as the measles, mumps, 

rubella (MMR) vaccine, have also for long been suspected to cause ASDs, but there is 

no scientific evidence confirming that the vaccinations as such or the mercury 

preservatives used in some vaccinations are involved in the development of ASDs [29]. 

Maternal care during development result in animals less emotional and in general 

better able to respond to the demands of the environment [30]. Since maternal care 

during development increases innervations of the hippocampus and enhances spatial 

learning and memory this might be the responsible underlying biological mechanism [30]. 

On the contrary, pre- and postnatal stress can be maladaptive and lead to impairments in 

challenging situations later in life [30]. In agreement with this, mothers of children with 

autism have reported significantly more stressful events during pregnancies than mothers 

of non-autistic children [31]. The underlying biological mechanisms are not known but 

experiments in rats suggest how this might happen and how the effect can be male-

specific: Chronic stress for 21 days in adult rats that had been exposed to corticosterone 

late in pregnancy (corresponding to prenatal stress) caused dendritic atrophy of the CA3 

pyramidal neurons in male rats but not in female rats [30]. Hence, it is clear that pre- and 

postnatal stress can influence brain development but whether this leads to increased 

susceptibility to ASDs and to what extent it is dependent on genetic predisposition is not 

known. 

1.2.3.4 X-linkage 

A considerable male preponderance is observed for ASDs. This immediately suggests an 

X-linked inheritance pattern. In favour of this theory is that some mutations in the X-linked 

genes causing Rett syndrome (methyl CpG binding protein 2; MECP2) [32] and Fragile 

X syndrome (fragile X mental retardation 1; FMR1) [33] as well as in neuroligin 3 and 

4 (NLGN3 and 4) [34, 35] and aristaless related homeobox (ARX) [36] can cause 

ASDs. However, the father-to-son transmission of ASDs (including the broader 
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phenotype) together with the lack of significant linkage signals on the X-chromosome 

implies either that X-linkage explains only a minor proportion of the sex-specific variance 

[2], that not one or a few X-linked genes are involved but instead numerous different X-

linked genes may contribute to the phenotype or that the X-specific factor may be 

epigenetic in nature [2]. Several studies have implied how this latter suggested factor 

might work. In general, normal females tend to have better social and communicative 

skills compared to males and accordingly, ASDs have been suggested to represent an 

extreme male pattern [2, 37]. In addition, subjects with Turner syndrome (45,X karyotype) 

had considerably better social skills if their single X-chromosome was of paternal origin 

compared to those with an X of maternal origin [38]. Hence, the presence of a maternally 

imprinted locus on the X-chromosome was suggested [38]. According to this “imprinted-X 

liability threshold model of risk for ASDs”, genetic vulnerability is due primarily to the 

effects of autosomal genes that are equally inherited from the father and the mother, but 

females have a higher threshold for expressing the ASD phenotype due to expression of 

the paternally derived X-linked gene  [39]. In such a model females can be affected either 

due to a skewed X-inactivation pattern or because the imprinted locus on the paternally 

inherited X-chromosome is damaged or silenced by rearrangements or mutations [39]. 

This model has however been questioned by the identification of solely paternally 

imprinted genes on the X-chromosome in mouse [40]. Other mechanisms could be 

involved in creating the considerable sex-difference: over-expression of maternal-specific 

X-linked genes might lower the ASD threshold in males but not in normal females due to 

random X-inactivation [40], genes on the Y-chromosome might lower the ASD threshold 

in males, or sex-hormones might play part by creating an extreme male brain pattern 

[37]. None of these theories have to date been able to explain the considerable male 

preponderance in ASDs, including the lower male threshold for developing ASDs 

suggested by the multigenic inheritance model.  

1.3 Biological changes identified in ASDs 

Several neurobiological changes have been identified in individuals within the ASD 

spectrum; however, none of these are present in all ASD patients.  

 The brain is often enlarged in children with ASDs and it is suggested that this 

enlargement occurs predominantly in the postnatal period [41]. Apart from this finding, 

neuropathological and MRI (Magnetic Resonance Imaging) data are equivocal and it is 
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suggested that this might be due to small sample size, heterogeneity of the disorders or 

inability to control for confounding variables such as gender, mental retardation and 

epilepsy [42]. However, the most consistent findings in neuropathological investigations 

of ASD individuals are: reduced cell size including reduced dendritic arborisation and 

increased cell packing in hippocampus and amygdala; a decrease in size and number of 

Purkinje cells in the cerebellum and dysgenesis of the neocortex including high neuronal 

density and poor lamination [41, 42]. Moreover, disrupted development of multiple 

neurotransmitter systems (Glutamate, GABA, Acetylcholin, Serotonin, Catecholamines) 

have been identified in ASD patients and it has accordingly been suggested that ASDs 

might arise when the balance between excitatory and inhibitory neurotransmitter systems 

has been skewed [41, 43].  

1.4 Strategies to identify susceptibility genes for ASDs 

1.4.1 Linkage analyses 

The main statistical tool used for analyzing the inheritance of ASDs are segregation 

analysis [44]. Linkage analyses have been used with success to identify several 

Mendelian disease genes [45-47]. However, for complex disorders like ASDs there are 

several problems in employing this strategy [44]. Since the mode of inheritance of ASDs 

has not been determined it is not possible to provide the system with a genetic model 

(autosomal recessive, dominant etc.) which is required in parametric analyses [44]. One 

way to circumvent this problem is to identify families with “near-Mendelian” inheritance 

patterns [44]. The “near-Mendelian” inheritance pattern in a family might arise because 

some families have a Mendelian form of the disorder that phenotypically can not be 

distinguished from the non-Mendelian majority, or it might arise because several 

susceptibility genes are, by chance, present in the family and the Mendelian segregation 

of one susceptibility factor tips the balance [44]. Such families are, however rare since 

the majority of individuals with ASDs do not have children. Another way to circumvent the 

problem of parametric linkage analysis is to perform non-parametric (without model) 

linkage analysis [44]. Such methods identify chromosomal segments that are shared 

more often by affected individuals in a family than would be expected [44]. Due to 

random segregation, sib pairs share 0,1 or 2 parental chromosome segments with 

frequencies ¼, ½ and ¼, which means that chromosomal regions where sharing is above 
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the expected frequency might harbour a susceptibility gene for the shared disorder [44]. 

There are, however, some drawbacks of this method that should be kept in mind. 

Succesful linkage analyses rely on reproducible  diagnostic criteria and are sensitive to 

genetic heterogeneity [44]. Moreover, sib pairs share many chromosomal segments by 

chance which can lead to false positives and if a susceptibility factor is neither necessary 

nor sufficient for the development of ASDs then not all affected sib pairs will share a 

chromosomal segment and linkage might not be established [44]. Nevertheless, genome 

screens or sib pair analyses like these are among the most frequently used methods for 

identifying susceptibility genes for ASDs. Regions on almost every chromosome have 

been suggested to harbour susceptibility genes for ASDs, but only a few of these regions 

have been replicated by different groups. Results from linkage studies for ASDs are 

summarized in Appendix A and in [2, 48]. 

1.4.2 Mapping of chromosomal rearrangements 

Chromosomal rearrangements such as translocations, inversions, insertions, deletions 

and duplications might alter the expression pattern or expression level of one or more 

genes and hence cause disease. Accordingly, molecular characterization of such 

changes has pinpointed disease genes for several Mendelian disorders [49, 50] as well 

as susceptibility genes for complex disorders [51, 52]. Even though chromosomal 

rearrangements can result in disease this is far from always the case. Therefore, de novo 

chromosomal rearrangements or rearrangements that segregate with a phenotype in a 

family have preferably been studied.  

Approximately 3% of ASD individuals have chromosomal abnormalities [21]. The 

rearrangements are not distributed evenly across the genome but rather tend to cluster in 

specific regions [48]. The autosomal abnormalities most frequently reported to be 

involved in ASD patients are: maternal duplications of the Prader Willi/Angelman 

syndrome region on 15q11-13 (either tandem repeats or marker chromosome) as well as 

loci along most of 7q in addition to 22q11.2 and 22q13.3 [48]. Many chromosomal 

rearrangements in ASD patients have already been examined with molecular techniques 

such as Fluorescence In Situ Hybridization (FISH). The putative susceptibility genes 

for ASDs identified through chromosomal rearrangements are listed in Appendix B.  
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1.4.3 ASDs associated with disorders with known genetic origin 

Rett syndrome, fragile X syndrome, tuberous sclerosis, neurofibromatosis, Angelman and 

Prader Willi syndrome are medical disorders with known genetic aetiology that are all 

frequently associated with ASDs. Deciphering the molecular mechanisms behind these 

associated disorders might shed light on the biological pathways involved in the 

development of ASDs and thereby reveal additional susceptibility genes. 

 Rett syndrome is characterized by mental retardation, autistic behaviour and 

sometimes epilepsy [53]. Mutations in MECP2 at Xq28 are most often the cause of Rett 

syndrome but a few mutations have been identified in female patients with isolated ASD 

phenotypes [53, 54]. The MECP2 protein is involved in transcriptional suppression and 

localize to the nuclear compartment as well as postsynapses where it  plays a key role in 

the control of neuronal activity-dependent gene regulation [53, 55]. Mecp2 deficiency in 

mice leads to temporal and regional changes in expression of proteins involved in 

cytoskeletal rearrangement, chromatin modelling, energy metabolism, cell signalling, and 

neuroprotection [56]. Moreover, Fukuda et al. demonstrated delayed maturation of 

neurons and reduced postsynaptic density (PSD) maturation in Mecp2-/Y mice 

suggesting a role of MECP2 in synaptogenesis [53].  

 Fragile X is the most common inherited form of human mental retardation [57]. 

The prevalence of childhood autism among individuals with fragile X syndrome is 25-33% 

whereas the prevalence of fragile X syndrome is estimated to be 2.1% among ASD 

patients [57]. Fragile X syndrome is primarily caused by expansion of the CGG repeat in 

the 5’ end of the FMR1 gene at Xq27.3 resulting in hypermethylation and reduced or 

absent production of the corresponding mRNA [33]. The FMR1 gene encodes the 

Fragile X Mental Retardation Protein (FMRP), which is an RNA-binding protein 

presumably involved in translation [58]. FMRP is abundantly expressed in neurons in the 

hippocampus and cerebellum [57]. Fmr1 knock out mice show abnormal dendritic spines 

[58] and FMRP associates with polyribosomes within and at the base of dendritic spines 

in wild type neurons [58]. Accordingly, FMRP has been suggested to function as a 

translational suppressor involved in synaptic plasticity through regulation of local protein 

synthesis in response to synaptic stimulation [58]. In addition it has been suggested that 

FMRP may be required for the normal process of maturation and elimination of synapses 

during cerebral cortical development [59].  
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 The prevalence of childhood autism in individuals with tuberous sclerosis (TS) is 

estimated to be between 16 and 65% and, reversely, the prevalence of TS in individuals 

diagnosed with childhood autism is 0.4% [57]. Heterozygous mutations in the genes 

tuberous sclerosis 1 (TSC1) (9q34) or tuberous sclerosis 2 (TSC2) (16p13) lead to 

TS, a hamartomatous disorder characterized by benign tumours in brain, kidneys, heart 

and eyes [60]. Well known neurological manifestations of TS is epilepsy, mental 

retardation and autism [60]. TSC2 encodes tuberin that functions as a GAP (GTPase-

activating protein) accelerating hydrolysis of GTP to GDP by RAP1 and RAB5 [61, 62]. 

TSC1 encodes hamartin that binds tightly to tuberin in vivo [63]. Hamartin and tuberin 

participate in a conserved growth-regulating pathway that controls soma size, the density 

and size of dendritic spines as well as the properties of excitatory synapses in 

hippocampal pyramidal neurons [60]. In addition, the proteins affect neuronal migration 

[64]. 

 Neurofibromatosis type one (NF1) is observed in up to 1.4% of individuals with 

childhood autism [57]. NF1 is an autosomal dominant disease caused by mutations in the 

NF1 gene located at 17q11.2 [57]. The disease is characterized by neurofibromas, café-

au-lait spots, axillary or groin freckles, predisposition to developing neoplasias and 

sometimes mental retardation or learning difficulties [57, 65]. NF1 encodes the tumour 

suppressor protein neurofibromin [65]. Neurofibromin is a multidomain protein that (like 

TSC2) functions as a GAP, however for a different GTPase (RAS) [65]. Neurofibromin is 

involved in the regulation of several intracellular processes including the ERK 

(extracellular signal regulated kinase) MAPK (Mitogen Activated Protein Kinase) 
signalling cascade, the adenylyl cyclase signalling pathway and cytoskeleton assembly 

[66]. Also, neurofibromin binds syndecans, which are trans-membrane heparin sulphate 

proteoglycans that supposedly function as co-receptors in some receptor tyrosin kinase 

signalling pathways (e.g. FGF) [65]. Moreover, neurofibromin associates with micro-

tubules that are found in high concentrations in axons and dendrites and are among 

other things important in signal transduction [65]. In addition, NF1+/- mice show defects in 

hippocampal long term potentiation (LTP) [66]. All in all this clearly shows that 

neurofibromin is a versatile protein involved in several different signalling pathways 

important for memory and learning.  

 Chromosome 15q11-q13 is the most frequently reported autosomal region 

involved in chromosomal rearrangements in individuals diagnosed with ASDs [67]. 
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Maternally derived duplications or supernumerary inv dup(15) marker chromosomes are 

the most common forms of chromosome 15 abnormalities in this patient group [67]. 

Aberrant imprinting pattern, uniparentel disomy as well as deletions in the same region is 

involved in Prader Willi syndrome and Angelman syndrome that both show some 

phenotypical overlap with ASDs [57]. Patients with Angelman syndrome have severe 

mental retardation, show poor motor coordination, seizures and have significant 

language impairment as seen in ASD patients, whereas patients with Prader Willi 

syndrome often show aggression, preoccupation with ordering and arranging and 

resistance to change in daily routines, which are also characteristic features of ASDs 

[57]. The prevalence of childhood autism in individuals with Prader Willi syndrome is 

estimated to be 25.3% [57]. Prader Willi syndrome arises due to lack of paternal 

contribution within this chromosomal region [57]. Approximately 42% of individuals with 

Angelmann syndrome meet criteria for childhood autism and reversely, 1% of individuals 

with ASDs have Angelmann syndrome [57]. This syndrome arises due to silencing or 

disruption of the maternally derived ubiquitin protein ligase 3A (UBE3A) [57]. Since 

ASDs are more frequently observed in patients with Prader Willi syndrome due to 

maternal uniparental disomy compared to patients where Prader Willi syndrome arose 

due to a paternal deletion it has been suggested, that overexpression of UBE3A confers 

a risk for developing ASDs [68]. The ubiquitin proteasome pathway is responsible for the 

degradation of abnormal proteins as well as for the normal turnover of many intracellular 

proteins [69]. E3 ubiquitin protein ligases (like UBE3A) confer specificity to substrate 

recognition for ubiquitination which subsequently leads to protein degradation by the 

proteasome [70]. Hence, increased amounts of UBE3A due to a maternally inherited 

duplication most likely result in decreased amounts of the target proteins of which only a 

few are known. However, a mouse model of Angelman syndrome has shown that 

reduced amounts of UBE3A is associated with a calcium/calmodulin-dependent protein 

kinase II mediated defect in hippocampal long-term potentiation [70]. In addition to 

UBE3A the non-imprinted genes gamma-aminobutyric acid (GABA) A receptor beta 

subunit (GABRB3), GABA A receptor alpha subunit (GABRA5) and GABA A 

receptor gamma subunit (GABRG3) within the Prader Willi/Angelman syndrome region 

at 15q11-13 have been suggested to be susceptibility genes for ASDs [57]. 
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1.4.4 Candidate gene approach 

Putative susceptibility genes for ASDs can also be identified by making educated 

guesses on the basis of previous findings such as linkage intervals, reported 

chromosomal rearrangements or neuropathological investigations. This approach was 

used with success by Jamain et al. who sequenced NLGN4 located in a region (Xp22.3) 

that had previously been reported to be deleted in three ASD females [34, 71]. They 

identified a maternally inherited frameshift mutation in NLGN4 in a two Swedish brothers, 

one diagnosed with childhood autism and the other with Asperger’s syndrome [34]. In 

addition they sequenced NLGN3 at Xq13 and identified a missense mutation in a 

different Swedish family, where one of the males was diagnosed with childhood autism 

and the brother with Asperger’s syndrome [34]. Isoform expression differences of NLGN3 

and 4 have subsequently been identified in two female ASD patients and additional 

mutations have been identified in these genes in ASD patients as well as in mentally 

retarded individuals [35, 72]. Neuroligins are postsynaptic membrane proteins that 

through their interaction with presynaptic neurexins induce synapse maturation and 

hence suggests that defect synaptogenesis might be the underlying cause of some forms 

of ASDs  [73]. 

1.5 Proposed susceptibility genes for ASDs and their functions 

Despite ongoing efforts in identifying susceptibility genes for ASDs only a few genes 

have unambiguously been shown to be associated with ASDs. In the table on the 

following pages I have listed the putative susceptibility genes for ASDs and the functions 

of the encoded proteins. 
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Chr. Band Gene Protein function Biological pathways Refs. 
RAPGEF4 Guanine nucleotide exchange factor  [74] q31.1 CHRNA1 Acetylcholin receptor subunit Neurotransmission [75] 
NRP2 Semaphorin III receptor Axon guidance [76] 
GPR1 G protein-coupled receptor  [76] 
ADAM23 Disintegrin and metalloproteinase Neuronal migration [76] 
KLF7 Transcription factor Differentiation of neurons and synaptogenesis [76] 
CREB1 cAMP responsive element Synaptic plasticity related to long term memory [76] 

q33.3 

FZD5 Wnt5A receptor Regulates neuronal potential [76] 
MAP2 Microtubule associated protein Neurite outgrowth [76] q34 ERBB4 Neuregulin receptor Modulation of synaptic plasticity [76] 

2 

q36.1 SCG2 Secretory protein Neuronal migration [77] 
q27.3 SST  Migration of cerebellar granule cells [78] 3 q28 FGF12 Fibroblast growth factor 12 Nervous system development/function [78] 

GABRA4 GABA receptor subunit Neurotransmission [79] p12 GABRG1 GABA receptor subunit Neurotransmission [80] 
q21.21 FGF5 Fibroblast growth factor 5 Proliferation and/or migration of neurons [78] 
q21.3 MAPK10 Mitogen activated protein kinase Stress-induced neuronal apoptosis [78] 
q22.1 SNCA  Presynaptic activity-dependent regulator of domamine release [78] 
q22.1-22.1 GRID2 Glutamate receptor subunit Neurotransmission [78] 
q22.2 ATOH1 Proneural gene Required for granule-cell genesis [78] 
q22.3 UNC5 Netrin-1 receptor Cell migration and axon guidance [78] 
q27-28.1 FGF2 Fibroblast growth factor 2 Neuronal proliferation and protection, synaptogenesis, long term potentiation Paper III 
q28.1 NUDT6 FGF2 antisense  Paper III 

TDO2 Enzyme Serotonin catabolism [81] 
GLRB Glycine receptor subunit Neurotransmission [82] q32.1 
GRIA2 AMPA receptor subunint Neurotransmission [82] 
NPY1R Neuropeptide Y receptor Affects cognitiv function, learning and memory [82] q32.2 NPY5R Neuropeptide Y receptor Affects cognitiv function, learning and memory [82] 

q34.1 GLRA3 Glycine receptor subunit Neurotransmission [82] 

4 

q35.2 FAT Adhesion molecule  Paper I 
5 p14.1 CDH9 Adhesion molecule Synaptogenesis PaperIV 
6 q16.3 GRIK2 Glutamate receptor subunit Neurotransmission [83] 

q11.22 AUTS2   [84] 
FZD9 Wnt1 receptor Critical determinant of hippocampal development [78] 
STX1A Post synaptic membrane protein Vesicle priming and neurotransmitter exocytosis  [78] 
LIMK1 Regulates actin cytoskeleton Synaptogenesis, Long term potentiation, dendritic spine morphogenesis [78] 
CYLN2 Links membranous organelles to microtubules Brain development [78] 
GTF2IRD1 Transcription factor Cognitive development [78, 85] 

q11.23 

GTF2I Transcription factor  [78, 85] 
q22.1 REELIN Glycoprotein Neuronal migration [86] 
q31.2 RAY1 Multi-transcript system with non-coding RNAs  [87] 

7 

q36.3 EN2 homeobox transcription factor Neuron differentiation and guidance of growth cones [88] 
RIM2 Presynaptic membrane protein Associative memory and learning  Paper IV q22.3 BAALC Postsynaptic membrane protein Synaptogenesis Paper IV 8 

q24.44 KCNQ3 K+ channel  sensory-motor behaviour,  learning and memory  Paper II 
Table 1. Chromosome 1-8. Chromosome position, protein function and inferred biological pathway for putative susceptibility genes for ASDs. Chromosome 
position refers to UCSC march 2006 (hg18). Papers I-IV refers to papers presented in this thesis
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Chr. Band Gene Protein function Biological pathways Refs. 

9 q34.13 TSC1  Inhibition of cell growth, brain development [57] 
q22.3 KCNMA1 Ca2+- and depolarization activated K+ channel Action potential [89] 10 q23.31 PTEN Enzyme Cell cycle arrest and/or apoptosis [90] 

12 q14.2 AVPR1A Hormone Induction of social behaviour  [91] 
q13.2-13.3 NBEA AKAP family protein  [92, 93] 

MAB21L1 Highly expressed in brain, especially cerebellum  [92] 
DCAMKL1 Microtubule associated protein Migration of neurons [92] 13 q13.3 
SMAD9 Signal transduction  [92] 
NDN Interacts with NGF Neuron differentiation [94] 
SNRPN Splicing factor, small nucleolar RNA, UBE3A antisense Brain-specific RNA splicing, regulation of UBE3A? [94] 
SNURF SNRPN upstream reading frame  [94] q11.2 

UBE3A E3 ubiquitin protein ligase Protein degradation and Long Term Potentiation [78, 94] 
GABRB3 GABA receptor subunit Synaptic transmission [78, 94] 
GABRA5 GABA receptor subunit Synaptic transmission [78, 94] 

15 

q12 
GABRG3 GABA receptor subunit Synaptic transmission [78, 94] 

16 p13.3 TSC2 GTPase-activating protein for RAP1and RAB5 Inhibition of cell growth, brain development [57] 
17 q11.2 NF1 GTPase-activating protein for RAS Long term potentiation [57] 

q12.1 MAPRE2 Microtubule binding protein Neurite outgrowth Paper I 
BRUNOL4 RNA binding  protein Differentiation and maintenance of neurons  Paper I 
SLC39A6 Zinc transporter  Paper I 
ZNF397 Transcription factor  Paper I 
ZNF396 Transcription factor  Paper I 
ZNF271 Transcription factor  Paper I 
ZNF24 Transcription factor  Paper I 
STATIP1 Scaffolding protein JAK-STAT signalling neuronal and glial cell proliferation, survival and differentiation  Paper I 

q12.2 

GALNT1 O-glycosylation enzyme Neuronal differentiation and migration  Paper I 
q21.1 ZBTB7C Transcription factor  Paper IV 

18 

q21.33 BCL2 Inner mitochondrial membrane protein Inhibition of apoptosis [95] 
PCP4 Highly expressed in brain  [78] 21 q22.2 DSCAM Cell adhesion molecule Axon guidance [78] 
FTSJ1 RNA methyl transferase Regulation of translation [96] 
HDAC6 Tubulins deacetylase Clearing of misfolded proteins [96] 
PQBP1 Polyglutamin and RNA binding protein Inhibits basal transcription [96] 
GRIPAP Nucleotide exchange factor for Ras in brain Synaptic localisation of AMPA receptors  [96] 

p11.23 

SYP Synaptic vesicle protein  Short- and longterm synaptic plasticity [96] 
p11.3 MAOA Enzyme Degrades catecholamines and serotonin [97] 
p21.3 ARX homeobox transcription factor Axonal guidance and neuronal maintenance [36] 
p22.2 GRPR GRP receptor Long term potentiation and regulation of fear reaponse [98] 
p22.31 VCX3A Deleted in mental retardation  [99] 
p22.31-22.32 NLGN4 Post synaptic membrane protein Synaptogenesis [34, 99] 
q13 NLGN3 Postsynaptic membrane protein Synaptogenesis [34] 
q27.3 FMR1 RNA-binding protein Synaptogenesis and long term potentiation [57] 

X 

q28 MECP2 Methylated CpG island binding protein Transcriptional silencer, synaptogenesis, neuroprotection [54, 100] 
Table 1 continued. Chromosome 9-22 and X. Chromosome position, protein function and inferred biological pathway for putative susceptibility genes for 
ASDs. Chromosome position refers to UCSC march 2006 (hg18). Papers I-IV refers to papers presented in this thesis.  
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2 OBJECTIVES OF PRESENT STUDY 
Understanding the pathophysiological mechanisms underlying the development of 

ASDs will hopefully reveal information on the abnormal and normal development of 

the brain, which is not only of academic interest but might also reveal medical 

treatment strategies for ASDs and comorbid brain disorders. Moreover, having a child 

with an ASD can be a lifelong challenge and hence, identifying susceptibility genes 

for ASDs is important in making accurate genetic counselling and prenatal diagnosis 

possible for the involved families.  

  

The aim of the present study was to identify putative susceptibility genes for 
ASDs by characterizing chromosomal rearrangements at the molecular level.  
 

Four ASD patients, each with at least one chromosomal rearrangement, were 

included in our study. The general inclusion criteria were:  

1. Apparent overlap in location of inferred putative susceptibility genes for ASDs 

and cytogenetically determined breakpoints.  

2. Apparent overlap in location of previous linkage results for ASDs and 

cytogenetically determined breakpoints. 

3. Apparently identical breakpoints in unrelated patients with similar phenotypes.  

de novo rearrangements are preferably chosen for candidate susceptibility gene 

identification because the concomitant de novo nature of phenotype and genotype 

infers a direct connexion. Moreover, inherited rearrangements that segregate with a 

phenotype in a family are also widely used. In addition, for complex disorders like 

ASDs identifying individuals with inherited chromosomal rearrangements from both 

parents would agree with the suggested multigenic inheritance pattern.  

 

All patients investigated in this study had apparently balanced chromosome 

aberrations. The patients and inclusion criteria were as follows: 

 

Paper I : t(5;18)(q34;q12.2)de novo 

In addition to the de novo nature of this translocation it was of interest in concern to 

ASDs since several neurotransmitter receptor genes are located at 5q34 and 

deletions of 18q12 had been reported to cause very mild dysmorphic features hardly 

disclosed at birth, psychomotor delay, hypotonia, ataxia, some degree of mental 

retardation and behavioural abnormalities [101]. 
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Paper II: t(3;8)(q21;q24)de novo 

This translocation was de novo in origin. Moreover, it was interesting in concern to 

ASDs because the chromosome 8 breakpoint apparently coincided with a suggestive 

linkage interval [102] and the breakpoint on chromosome 3 was seemingly shared by 

another ASD patient in the Mendelian Cytogenetics Network Database:  

(MCNdb, http://www.mcndb.org). 

 

Paper III: t(4;16)(q27;p13.3)mat 

Linkage studies for ASDs had identified both 4q26 and 16p13 as regions harbouring 

possible susceptibility genes [103, 104]. Accordingly, this translocation was of interest 

in concern to ASDs. 

 

Paper IV + V: t(9;18)(p22;q21.1)pat, inv(10)(p11.2q21.2)mat 

Linkage studies had suggested 9p22, 10p12, 10q22 and 18q21 as a candidate 

susceptibility region for ASDs, however not all with LOD scores above 1.5 [105-108]. 

Moreover, deletion of chromosome band 18q21 had been reported to cause mild to 

profound mental retardation [109]. In addition, the inheritance of both a paternal 

translocation as well as a maternal inversion as described in paper IV agrees with the 

most often suggested multigenic inheritance pattern for ASDs.  
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ABSTRACT 
Autism spectrum disorders (ASDs) are a heterogeneous group of disorders with 

unknown aetiology. Even though ASDs are suggested to be amongst the most 

heritable complex disorders, only a few reproducible mutations leading to 

susceptibility for ASD have been identified. In a female patient with childhood autism 

we identified an apparently balanced de novo translocation, t(5;18)(q34;q12.2). 

Further analyses revealed a 3.2 Mb deletion at the 18q breakpoint and a 1.27 Mb 

deletion on chromosome 4q35, which was not involved in the translocation. One of 

the 17 genes within the deleted region at 18q was BRUNOL4 (bruno-like 4 RNA 

binding protein), which is of particular interest with regards to ASD. BRUNOL4 is 

highly expressed in the limbic system, cerebellum and cerebral cortex which are the 

areas most consistently found to be affected in neuropathological investigations of 

ASD brains. Furthermore, presence of a 4.4 Mb stable gene desert 5’ to BRUNOL4 

with five ultra conserved sequences (UCSs) around BRUNOL4 suggests that it is an 

important developmental gene. We sequenced the coding region of BRUNOL4 and 

the five UCSs around the gene in 157 autistic patients, and identified three nucleotide 

changes in two UCSs that were not present in 167 controls analyzed. We suggest 

BRUNOL4 as a susceptibility gene for at least some forms of ASDs. 

 

KEYWORDS 
Autism, BRUNOL4, ultra conserved sequences, chromosome 18, translocation, 

deletion. 

 

INTRODUCTION 
Childhood autism is a neurodevelopmental disorder with onset in early childhood. It is 

characterized by impairment of social interaction and communication accompanied by 

stereotypic behaviour or interests with onset of symptoms before the age of three. 

The prevalence of childhood autism is estimated to be between 10 and 60 in 10.000 

[5-7] with a male to female ratio of four to one [2]. Cumulative evidence from family 

and twin studies suggests that childhood autism is amongst the most heritable 

complex disorders with a concordance rate of 60-90% in monozygotic twins and a 

recurrence rate of 2-3% in siblings of affected probands [1, 2]. The mode of 

inheritance is not known but the variation in phenotype reflects genetic heterogeneity 

[105]. The most parsimoniously suggested genetic model involves several epistatic 

genes but it is not known whether these genes are always the same or vary among 
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families [2]. Moreover, since the monozygotic concordance rate is not 100% it is likely 

that environmental factors also play a part in the development of autism in at least a 

subset of patients. Finally, some cases of autism may arise as a Mendelian or near-

Mendelian disorder through for example chromosomal rearrangements that are seen 

in approximately 3% of patients with autism spectrum disorders (ASDs) [21, 48]. In 

this study we present a female childhood autism patient with a de novo translocation, 

t(5;18)(q34;q12) and two submicroscopic deletions, one at the 18q translocation 

breakpoint and the other in a chromosome not involved in the translocation. Among 

the genes deleted one of them, BRUNOL4, is of special interest in regards to autism.  

 

METHODS 
Patients 
The translocation patient: 
The patient is a 38 year old Danish woman with an apparently balanced de novo 

translocation t(5;18)(q34;q12). She is the first of two children of unrelated and healthy 

parents. Her younger sister is phenotypically normal. At birth, her mother was 21 and 

her father was 24 years old. She was born at term after a pregnancy with reduced 

intrauterine movement as described by the mother. Delivery was prolonged and 

asphyxia was noted at birth. Birth weight was 2500 g and birth length was 50 cm. Mild 

cerebral palsy, hyper flexible joints, excessive myopia (dioptry: -12, -11) as well as a 

hypersensitivity to sounds was later observed. She did not have any dysmorphic 

features. She sat at 9 months of age, walked alone at 17 months and said her first 

words and sentences at 42 months of age. At 3 years of age she was diagnosed with 

childhood autism. She attended a school for autistic children until the age of 18 where 

she moved to an institution for adults diagnosed with autism. At the age of 34 she was 

tested with an Autism Diagnostic Observation Schedule (ADOS) [110] module 4 for 

adults with fluent speech and her mother was interviewed with Autism Diagnostic 

Interview-Revised (ADI-R) [111]. Both tests clearly showed that the patient fulfilled the 

criteria for childhood autism diagnosis as defined in the International Classification of 

Diseases, tenth revision (ICD-10). In the ADOS test, the patient scored 7 points in 

both the “communication” area (autism cut-off 3) and “qualitative impairment in 

reciprocal social interaction” area (autism cut-off 6) and thus the total score was 14 

points (autism cut-off10). The results from the ADI-R gave equivalently a score of 27 

in the “qualitative impairment in reciprocal social interaction” area (autism cut-off 10); 

a score of 18 in the “communication” area (autism cut-off 8); and a score of 9 in the 

“restricted, repetitive behaviour” area (autism cut-off 3). At the same time the 
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Wechsler Adult Intelligence Scale-Revised (WAIS-R) showed a verbal IQ of 78, a 

performance IQ of 105 and a full IQ of 88. Today, she lives in a small sheltered house 

for adult autistic patients. 

The National Ethics Committees and the Danish Data Protection Agency 

approved the study, and informed consent was obtained. 

 

DNA for sequencing analysis: 
For mutation screening DNA from a total of 157 autistic patients was collected. One 

hundred autistic patients were recruited at the Hospital Pediátrico de Coimbra, 

originating from mainland Portugal and the Azorean islands. The male to female ratio 

was 4.8:1, and the ages ranged between 2-18 years (mean age 6.8 years). Idiopathic 

subjects were included after clinical assessment and screening for known medical 

and genetic conditions associated with autism, including testing for Fragile X 

mutations (FRAXA and FRAXE), chromosomal abnormalities, neurocutaneous 

syndromes, endocrine (thyroid function screening) and metabolic disorders. Another 

35 children diagnosed with childhood autism were recruited at child psychiatric 

hospitals in the western part of Denmark (Jutland) (age range 3-30 years, with mean 

age of 10 years and male-female ratio of 3:1). Part of the sample has been described 

elsewhere [112]. 13 autistic patients were ascertained at the John F. Kennedy 

Institute, Glostrup, Denmark. These patients were all unrelated and were part of the 

IMGSAC group. Assessment methods and inclusion criteria has previously been 

described [108]. 11 of the 13 patients had siblings and some even additional relatives 

with a Pervasive Developmental Disorder (PDD) diagnosis. Four patients diagnosed 

with childhood autism were collected at Psychiatric Hospital, Frederiksborg Amt, 

Denmark. In all of these 152 patients, autism was diagnosed in accordance with 

DSM-IV or ICD-10 criteria using ADI-R in addition to ADOS or the Childhood Autism 

Rating Scale (CARS) [113, 114]. In addition, five DNA samples from ASD patients 

with chromosomal rearrangements were included. Two of these DNA samples were 

collected at The Wilhelm Johannsen Center for Functional Genome Research, 

University of Copenhagen, Denmark and were from Danish males diagnosed with 

childhood autism in accordance with ICD-10. Two DNA samples from a Swedish, 

male twin couple were collected by Ulf Kristoffersson at the Department of Clinical 

Genetics, University Hospital Lund, Sweden and one male DNA sample was collected 

by James Lespinasse at Laboratoire de Genetique Chromosomique, Centre 

hospitalier Chambery, Chambery, France. These three patients have an ASD 

diagnosis but have not been diagnosed according to ICD-10 or DSM-IV.  
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A total of 167 DNA samples from normal controls were collected. 96 DNA 

samples were collected at Statens Serum Institut, Copenhagen, Denmark. DNA was 

extracted and amplified from blood spots on filter-paper used in the Danish newborn 

screening program. The study was totally anonymous and the samples were taken 

randomly from a pool of daily routine samples. 71 normal DNA samples (32 females, 

39 males) were collected at Department of Medical Genetics, Institute of Molecular 

and Cellular Medicine, University of Copenhagen, Denmark. These DNA samples 

were parent DNA from a larger collection of Danish non-consanguineous families with 

at least four children and no known diseases.  

 

Whole Genome DNA amplification 
The 100 DNA samples from Hospital Pediátrico de Coimbra and some of the 35 DNA 

samples from child psychiatric hospitals in the western part of Denmark were genome 

amplified by us using GenomiPhi™ DNA Amplification Kit (GE Healthcare, 

Buckinghamshire, UK).  

The kit Phi29 WGA (Amplicon, Brighton, UK) was used to amplify DNA from 

blood spots at Statens Serum Institut. 

 

Fluorescence in situ hybridization (FISH) 
Metaphase chromosomes were prepared from peripheral blood lymphocytes and the 

karyotype of the translocation patient was determined by G-banding. FISH was 

performed using bacterial artificial chromosome (BAC) clones from the RPCI-11 

library and standard protocols. The BAC clones were obtained from the MCN 

reference centre at Max Planck Institute for Molecular Genetics, Berlin 

(http://www.molgen.mpg.de/~cytogen/) or the Welcome Trust Sanger Institute, 

Cambridge (http://www.sanger.ac.uk/cgi-bin/software/archives/new_clone_login.cgi). 

250 ng BAC DNA was biotin-14-dATP labelled by nick translation and hybridized to 

patient metaphase chromosomes. Signals were visualized using avidin-FITC 

detection system and chromosomes were counterstained with DAPI. Signals were 

investigated using a Leica DMRB epifluorescence microscope equipped with a 

Sensys 1400 CCD camera (photometrics) and an IPLab Spectrum imaging software 

(Vysis). 
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Microarray-based CGH 
Array-based comparative genome hybridization (array-CGH) with a whole genome 

32K BAC array was performed for the translocation patient. The method is described 

in [115]. 

 

Real-time quantitative PCR analysis (Q-PCR) 
mRNA and total RNA panel (tissues used listed in supplementary table 1A+1B) 

(Clontech, CA, USA) was DNase treated before cDNA synthesis with SuperScript II 

reverse transcriptase (Invitrogen) was performed according to manufacturer’s 

protocol. cDNA was checked for DNA contamination by PCR with three primer pairs 

located in a region with no known genes (supplementary table 5). Q-PCR analysis 

was carried out on a DNA Engine Opticon 2 (Bio-Rad, Göteborg, Sweden) using 

LightCycler FastStart DNA MasterPLUS SYBR GreenI (Roche, Hvidovre, Denmark). 

From 12 analyzed housekeeping genes, six were selected for normalization by using 

the BestKeeper software [116]. Primers used are listed in supplementary table 2.  

 

In situ hybridization  
12 µm thick coronal cryostat sections of the mouse brain were prepared and mounted 

on Superfrost Plus® slides. The sections were hybridized as previously described 

[117] with  three 38-mer 35S-labeled oligonucleotide probes complementary to 

BRUNOL4 mRNA. An oligonucleotide probe was used for sense control 

(supplementary table 3).  

 The commercially synthesized probes were suspended in sterile DEPC-water 

to a concentration of 5 pmol/µl. Five µl of the probe was then labeled with [35S]dATP 

with terminal transferase (Roche, Basel, Schwitzerland) to a specific activity of 1 x 

1018 dpm/mol. Frozen sections were fixed after thawing for 5 min in 4% 

paraformaldehyde in PBS, washed twice in PBS, and acetylated for 10 min in 0.25% 

acetic anhydride in 0.9% NaCl containing 0.1 M triethanolamine. Sections were then 

dehydrated in ethanol, delipidated in chloroform, rehydrated partially and allowed to 

dry. Section hybridization was performed in a humid chamber overnight at 42˚C with 

200 µl labelled probe in 4X SCC buffer containing 50% (v/v) formamide, 1X Denhardt  

solution (0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, 0.02% Ficoll), 

10% (w/v) dextran sulfate, 10 mM DDT, 0.5 mg/ml salmon sperm DNA and 0.5 mg/ml 

yeast tRNA. Slides were washed in 1X SCC at 55˚C and then room temperature, and 

finally rinsed in distilled water. Sections were exposed to an X-ray film for 1 to 2 

weeks. The X-ray film was developed by using a commercial developing machine.  
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Images of the sections on X-ray film were transferred to a computer using a 

light box, a COHU 4912 high performance CCD camera, and Image 1.42 software 

(Wayne Rasband, NIH, Bethesda, MD). The pictures were mounted in Adobe 

Photoshop 7.0. 

 

Denaturing high performance liquid chromatography (dHPLC)  
Mutation analysis of the ultra conserved sequences (UCS) around BRUNOL4 

included the sequences originally defined by Bejerano [118]. 157 patients within the 

ASD spectrum were screened for mutations together with 167 normal controls. 

Primers were designed using the Oligo6 software (Molecular Biology Insights, USA) 

and are available online in supplementary table 4. Melting temperature (Tm) was 

predicted based on the fragment sequence by using: 

http://insertion.stanford.edu/melt.html. Sequences were analyzed using standard 

operating procedure of a Varian HelixTM DHPLC analysis system with a Helix™ 

DHPLC column (Varian Inc. CA., USA). Subsequent sequencing was performed as 

described below. 

 

Sequencing  
Mutation analysis of the BRUNOL4 gene was done by direct sequencing in 157 ASD 

patients. We analyzed all coding exons and splice sites corresponding to clone 

NM_020180. Primers were designed using the Oligo6 software (Molecular Biology 

Insights, USA) and are available online in supplementary table 6. The sequencing 

reactions were carried out by Macrogen Inc in Korea (http://www.macrogen.com/) and 

ChromasPro version 1.33 (Technelysium Pty ltd, Australia) was used to analyze the 

data.  

 

RESULTS 
FISH analyses 
FISH was carried out to characterize the breakpoints of the translocation patient. On 

chromosome 5 the BAC clone RP11-541P9 (AC113414) was spanning the 

breakpoint, while RP11-256N5 (AC091921) was proximal and RP11-2A20 

(AC091930) was distal. No known genes were located within this breakpoint region. 

On chromosome 18 a microdeletion of approximately 3.2 Mb containing 17 annotated 

RefSeq genes was identified (supplementary table 7). FISH on parent chromosomes 
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with BAC clone RP11-797E24 (AC090386) located within this deletion showed that 

the deletion was de novo in origin.  

 FISH with clone RP11-121i22 confirmed the presence of a deletion on 

chromosome 4q35 as identified by array-CGH and showed that the deletion was 

inherited from the father.  

 

 
Figure 1. The 3.2 Mb deletion involving 17 genes on chromosome 18q12 in the translocation patient. 
RefSeq genes and ultra conserved sequences (uc.429 – uc.433) are shown (UCSC Genome Browser, 
May 2004 assembly). Ultra conserved sequences are numbered in accordance with [118]. 
 

Array-CGH 
Array-based comparative Genome Hybridization (array-CGH) was performed for the 

translocation patient. In addition to the deletion on chromosome 18q12 ranging from 

RP11-667A14 to RP11-95G24 (chr18:30,09-33,35 Mb; NCBI35; HG17) a deletion of 

approximately 1.2 Mb was identified at 4q35 (RP11-215A19 to RP11-746B09; 

chr4:187,648-188,915 Mb, NCBI35; HG17). This deletion comprised two RefSeq 

genes: MTNR1A (Melatonin receptor 1A) and FAT (Human homolog of the Drosophila 

fat tumor suppressor gene).  

 

Q-PCR  
The information on most of the genes deleted at 18q12 was sparse. We therefore 

performed real-time quantitative PCR (Q-PCR) on 14 of the 17 genes to pinpoint 

which genes were possible ASD susceptibility genes based on their tissue expression 

profile. Dystrobrevin alpha (DTNA) and polypeptide N-acetylgalactosaminyltransfe-

rase (GALNT1) were already well described and were therefore not included and 

KIAA1328 was not annotated at the time of our investigations. The expression pattern 

of the 14 genes in human brain tissue is shown in figure 2.  
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Figure 2. Cluster analysis of brain specific, normalized Q-PCR data for 14 of 17 genes within the 
deletion of our translocation patient. Yellow is high expression, black is low expression and grey refers to 
expression outside of the standard curve. Multiple Array Viewer has been used to produce this figure. 
The Q-PCR data is listed in supplementary table 1A + 1B.  
 

In situ with mRNA from Brunol4 

 
Figure 3. In situ hybridization for mRNA transcript of Brunol4 on coronal sections of the mouse brain. 
The montage shows images on x-ray films of hybridized coronal sections from rostral to caudal levels(A-
G). A coronal section of the forebrain, hybridized with a sense probe, is seen in Ham = amygdala; ce = 
cerebellum; de = dentate gyrus; hy = hypothalamus; hi = hippocampus; ma = mamillary nuclei; mg = 
medial geniculate body; pi =  piriform cortex; sp = septum; sr = striatum; su = superior colliculus; te = 
tegmental area; th = thalamus. 
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A strong hybridization signal for Brunol4 was found in many areas of the mouse brain 

(figure 3): the neocortex, striatum, cerebellum, amygdala, hippocampus and piriform 

cortex. A strong hybridization signal was also seen in the hypothalamus including the 

mammillary body. Hybridization with a sense probe did not result in any signal (figure 

3, H). These results agree with previous findings [119-121].  

 

Mutation Screening of BRUNOL4 
All the 12 coding exons and splice sites for BRUNOL4 (NM_020180) were sequenced 

in 157 patients with ASDs. Three new silent nucleotide changes were identified within 

the coding region of BRUNOL4: ss67005831, ss67005837, ss67005840.  

 

Mutation Screening of Ultra Conserved Sequences 
Five ultra conserved sequences (UCS) have previously been identified around  

BRUNOL4 (figure 1) [118], Two of these UCSs were deleted in the translocation 

patient (uc.429 and uc.430). All five UCS’s were screened for mutations in 157 ASD 

patients using dHPLC and samples with possible mutations were sequenced 

subsequently. Three nucleotide changes were identified in three unrelated autistic 

patients: a C>T nucleotide change was identified in uc.430 (ss67005811) and a C>A 

nucleotide change (ss67005820) as well as a T>C (ss67005817) nucleotide transition 

was identified in uc.432. These nucleotides are conserved in mouse, rat, rabbit, dog, 

armadillo, elephant, opossum, and chicken. The T>C substitution in uc.432 was 

inherited from the phenotypically normal farther. The parental origin for the remaining 

changes is not known since DNA from the parents of these patients was not available. 

These sequence changes could not be identified in 167 controls. Moreover, a 

common nucleotide change was identified in uc.432 in both patients and controls. An 

additional nucleotide change (ss68074235) was identified in uc.430 in a control 

subject. 

 

DISCUSSION 
In a female patient diagnosed with childhood autism we identified a 1.27 Mb deletion 

on chromosome 4q35 encompassing MTNR1A and FAT and a 3.2 Mb deletion on 

chromosome 18q12.1-q12.2 encompassing 17 known genes (figure 1) in addition to 

the already identified de novo translocation t(5;18)(q34;q12). Since chromosomal 

imbalances are a known cause of mental retardation and other congenital anomalies 

[122] it is likely that deletion of one or more genes in this patient may lead to the 

observed autism phenotype due to haploinsufficiency. 
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 On chromosome 4, two known genes were deleted: MTNR1A and FAT. In 

addition, approximately 900 kb of a gene desert located 5´ to these genes is deleted. 

According to the Database of Genomic Variants [123] two deletions have previously 

been identified in this area: a normal control has a deletion overlapping the gene 

desert [124], whereas a patient with a chromosomal rearrangement and unknown 

phenotype has a deletion including MTNR1A and FAT in addition to six other genes 

[125]. Moreover, an additional 4q deletion possibly containing the FAT gene has been 

published in a patient with schizoaffective disorder [126] and Blair et al showed that 

FAT and its protein partners may be components of a molecular pathway involved in 

susceptibility to bipolar disorder [127]. Several lines of evidence suggest that some 

susceptibility genes for ASDs, schizophrenia and bipolar disorder are shared [10, 13, 

20] intimating that haploinsufficiency of FAT might contribute to the phenotype of our 

patient. 

 A large number of deletions of varying size and location on the long arm of 

chromosome 18 have already been published [101, 128-134]. However, most case 

reports that describe deletions that apparently overlap with our deletion have not 

been fine mapped, and therefore offer a poor resolution of the deletion breakpoints 

[101, 131-133], which renders them difficult to use for genotype/phenotype 

correlations. However, the most common features of 18q12 deletion patients 

described in the literature are very mild dysmorphic features hardly disclosed at birth, 

psychomotor delay, hypotonia, ataxia, some degree of mental retardation and 

behavioural abnormalities [101]. These features indicate that one or more genes 

within this region are crucial for development and normal function of the brain. More 

recently, McEntagart and colleagues have reported a patient with del(18)(q11.2q12.2) 

which was overlapping with the deletion described in this paper (figure 4) [135]. The 

borders of the deletion described by McEntagart are uncertain (figure 4) but the 

deletion certainly fully overlaps the deletion described here. Thus, deletion of the 17 

known genes identified in our translocation patient is common in both patients.  

 The phenotypes of our translocation patient and McEntagart’s patient are very 

similar (table 1). Even though McEntagart’s patient does not have an ASD diagnosis, 

he has delayed psychomotor and language development and some degree of 

behavioural difficulties which are core symptoms in ASDs. The overlap in genotype 

and phenotype of our translocation patient and McEntagart’s patient makes it 

reasonable to conclude that haploinsufficiency of one or more genes within our 

deletion is most likely causing this shared phenotype.  
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Figure 4. Screen plot from the UCSC genome browser (May 2004) showing the deletion in our 
translocation patient together with the minimal and maximal deletion from McEntagart’s case report. 
 

Phenotype Our patient McEntagart [135] 

Hypotonia No Yes 

Febrile convulsions No Yes 

Cerebral paresis Yes No 

Delayed psychomotor development Yes Yes 

Delayed language development Yes Yes 

Behavioural difficulties Yes Yes 

IQ 85 61 

Autism Yes  

Myopia Yes  

Table 1. Phenotype comparison of our translocation patient to McEntagarts patient. 

 

Some of the 17 genes within the shared deletion can readily be excluded as 

possible susceptibility genes. The Database of Genomic Variants [136] states that a 

part of c18orf10 and KIAA1328 [137] is deleted in a normal control subject and that 

FHOD3 is deleted in two normal control subjects in two separate studies [137, 138] 

suggesting that haploinsufficiency of these genes in our translocation patient and in 

McEntagart’s patient is not causing the shared phenotype. Moreover, our Q-PCR data 

imply that c18orf37, P15RS and MOCOS are not susceptibility genes since they are 

not expressed in the brain (figure 2). Our Q-PCR data also show that several genes 

are expressed in the brain and thus may contribute to the phenotype (figure 2). When 

considering the biological processes of the proteins encoded by these genes they 

might all contribute to the phenotype: a zinc transporter that assures cofactors for 
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hundreds of cellular enzymes (SLC39A6) [139]; four zinc finger transcription factors 

(ZNF397, ZNF396, ZNF271, ZNF24); a scaffolding protein of the JAK-STAT signalling 

pathway suggested to be involved in neuronal and glial cell proliferation, survival and 

differentiation (STATIP1) [140-142]; an O-glycosylating enzyme that might enable 

cells to adhere, differentiate and migrate (GALNT1) [143] and a microtubule 

associated protein that is possibly involved in the development of neuronal processes 

(MAPRE2) [144]. However, especially BRUNOL4 is interesting with respect to the 

shared phenotype. The expression pattern of BRUNOL4 (supplementary Q_PCR 

data, figure 3, and [119]) mirrors the brain areas most consistently found to be 

affected in neuropathological investigations of autism, namely: the limbic system, 

cerebellum and cerebral cortex [42].  

 BRUNOL4 belongs to the bruno-like elav (embryonic lethal abnormal visual 

system) family of genes [119, 145]. This gene family encodes RNA binding proteins 

containing three highly conserved RNA recognition motifs that are important in 

posttranscriptional regulation of gene expression, such as alternative mRNA splicing, 

regulation of translation and rate of mRNA turnover [119, 145]. Similar gene functions 

have been reported for genes affected in X-linked Mental Retardation (XLMR): FMR1, 

PQBP1, FTSJ1 [146]. This is not surprising since mutations in some genes (ARX, 

NLGN4, MECP2) [35, 36, 147] have been reported to cause both ASDs and mental 

retardation, suggesting an overlap in aetiology of these phenotypes. Spontaneous 

mutations in vertebrate elav-like genes have according to Antic et al [145] previously 

not been identified. However, experiments with deletions of the entire elav gene in 

Drosophila strongly suggest a role for elav in differentiation and maintenance of 

neurons in the CNS, as well as for the embryonic development of the eye [148-150]. 

The phenotype of our patient suggests a similar role for BRUNOL4 in humans even 

though haploinsufficiency for one or more of the additional genes within the deletion 

may also play a part as described above.  

 Several lines of evidence support the conclusion that BRUNOL4 is an 

important developmental gene. There is a 4.4 Mb large evolutionary stable gene 

desert located at the 5’-end of the gene [151]. Stable gene deserts (in contrast to 

variable gene deserts) are defined as having a density of more than 2% evolutionary 

conserved regions (>100 bp and >70% identity in a sliding window) when comparing 

the genome of chicken and human [151]. Stable gene deserts presumably contain 

long distance transcriptional regulatory elements since some stable gene deserts 

include regions that have previously been shown to harbour such elements [151]. 

Moreover, comparative sequence analysis of human gene deserts with homologous 
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Fugu counterparts revealed that 98% of the total number of evolutionary conserved 

regions identified in gene deserts was located in stable gene deserts, and three times 

as many conserved elements within stable gene deserts compared to variable gene 

deserts have regulatory potential [151]. In addition, only 2 out of 172 stable gene 

deserts are interrupted by a synteny breakpoint, suggesting that stable gene deserts 

are functionally linked to at least one of the flanking genes [151]. Stable gene deserts 

are primarily positioned next to genes involved in transcriptional regulation, DNA 

binding, regulation of metabolism and development [151]. In addition, five ultra 

conserved non-coding sequences (UCS) are located close to BRUNOL4 within a 

region spanning from 343 kb downstream within intron 5 of KIAA1328 to 918 kb 

upstream within the gene dessert (figure 1). The UCSs are defined as sequences 

≥200 bp with 100% identity in the human, mouse and rat genome [118, 152]. This 

makes UCSs more highly conserved between species than proteins and thus 

suggests a very important function in the human genome [118, 152]. Some UCSs 

have been shown to posses enhancer activity [153], suggesting that UCS are 

involved in regulation of gene expression. UCSs appear to be associated with genes 

involved in RNA processing or in regulation of transcription and development [118, 

152]. Thus, the presence of five UCSs around BRUNOL4 substantiates the 

developmental importance of this gene.  

 The three nucleotide changes identified within the coding region of BRUNOL4 

are all silent and are therefore not likely to be involved in the pathogenesis of ASDs. 

However, the identification of three mutated nucleotides in two ultra conserved 

sequences can not readily be rejected as implicated in the ASD development since 

they were not identified in 167 control subjects. It is currently not known whether 

nucleotide changes in UCSs can contribute to disease development. Richler and 

colleagues conducted a similar analysis of UCSs on chromosome 7q and found 

several nucleotide changes both in autism patients and controls [154]. They conclude 

that their findings are probably of no relevance to the development of autism because 

the findings are rare and some changes are even inherited from phenotypically 

normal parents. Likewise, our results show that mutations in the coding region of 

BRUNOL4 and the five surrounding UCSs are not frequent causes of ASDs. 

However, since the UCSs may be important in gene regulation and ASDs are 

considered to be both multifactorial and polygenic in aetiology it is possible that the 

identified mutations in the UCSs in conjunction with other genetic variations result in 

susceptibility to ASDs. Future functional assays with UCSs will hopefully shed light on 
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the function of these elements and thereby help to understand their possible role in 

the development of ASDs. 

 We have identified multiple possible susceptibility genes for ASDs within the 

deletion of our patient. This is in line with the most frequently suggested genetic 

model of autism as a complex, polygenic disorder. More experiments must be carried 

out before the importance of the identified genes in the aetiology of ASDs can be 

assessed.  
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SUPPLEMENTS 
Total RNA BRUNOL4 c18orf10 P15RS FHOD3 MAPRE2 ZNF271 ZNF397 c18orf37 STATIP1 MOCOS SLC39A6 c18orf21 ZNF24 ZNF396 

Fetal brain 3467.06 23.83 27.46 133.14 46.65 4.45 7.08 4.56 7.75 1.61 164.09 22.46 151.34 31.84 

Retina 136.89 7.88 9.45 39.07 7.92 3.37 2.24 4.39 6.38 10.42 43.66 10.82 89.93 32.85 

Brain 2464.01 13.35 18.72 38.69 22.59 5.88 1.59 3.37 3.56 NA 23.87 9.93 66.47 12.53 

Putamen 1358.19 8.26 7.97 19.12 7.18 5.25 1.53 3 4.11 1.47 22.37 10.26 92.08 13.95 

Sub Nigra 1456.02 15.66 16.49 34.94 7.64 16.74 1.9 2.86 4.64 1.4 48.72 10.71 127.71 23.3 

Dorsal root Ganglion 112.62 26.47 4.49 54.96 26.62 6.11 NA 3.37 6.55 11.35 22.44 5.68 31.44 9.9 

Fetal brain 3567.89 26.7 27.14 137.83 76.26 12.14 6.23 3.49 11.72 2.48 167.45 24.72 129.27 30.88 

Cerebellum 671.68 11.44 10.9 14.66 27.81 2.98 NA 3.35 6.09 2.36 32.19 11.35 28.25 6.27 

Whole Brain 3306.18 15.81 12.73 46.03 19.33 7.31 2.34 3.89 4.54 1.28 20.57 12.7 43.18 13.59 

Fetal liver NA 7.33 3.01 1.56 3.62 2.68 NA 2.61 3.05 37.44 3.35 3.37 6.9 1.06 

Heart 2.95 1.73 1.36 54.18 4.67 NA NA 1.52 NA 2.16 NA NA 3.19 NA 

Lung NA 9.16 7.88 4.25 8.44 4.83 NA 4.12 5.53 14.5 14.61 9.26 76.17 22.06 

Placenta 1 7.09 4.61 2.88 4.78 3.04 NA 8.92 3.77 72.88 24.87 5.16 30.91 2.6 

Prostate 3.46 5.52 12.22 31.44 3.74 6.59 3.36 2.17 8.73 25.92 106.93 8.73 83.28 31.35 

Salivary gland 2.03 4.12 3.93 9.53 1.04 1.52 NA 2.6 3.33 7.77 9.77 5.32 17.35 7.01 

Skeletal muscle NA NA 3.69 40.51 1.38 5.68 NA 3.3 2.89 2.24 2.18 7.42 24.96 1.61 

Spleen NA 4.37 2.76 1.34 4.3 3.78 NA 4.21 7.44 1.13 6.27 8.58 64.38 5.13 

Thymus NA 12.06 2.13 4.67 7.9 2.76 NA 3.3 5.53 2.09 3.18 7.2 15.37 4.72 

Trachea 2.44 6.84 1.78 12.37 1.49 2.11 NA 2.38 2.97 18.63 6.89 3.99 21.29 8.3 

Uterus 2.44 6.68 2.55 6.44 2.61 3.49 NA 1.84 5.96 7.01 8.57 4.65 17.36 2.14 

Colon 1.48 3.3 NA 3.23 NA 1.19 NA NA 1.41 12.14 1.25 2.18 6.1 2.26 

Small Intestine 4.96 3.65 3.04 4.36 1.73 1.76 NA 1.47 1.82 47.8 3.6 3.35 12.81 1.93 

Stomach 2.16 4.81 4.36 5.62 2.23 2.96 NA 2.52 3.64 18.98 7.47 5.94 34.17 11.03 

Pancreas NA 4.66 5.29 NA 2.22 2.38 NA 1.33 4.95 9.56 15.81 9.78 30.38 13.96 

Kidney NA 4.09 3.07 36.75 2.41 2.59 NA 2.1 3.2 7.06 9.9 7.22 24.34 19.64 

Spinal cord 141.99 13.16 452.38 21.33 4.4 4.52 NA 1.81 4.38 2.41 21.22 5.45 55.12 8.84 

Testis 118.89 86.05 23.98 15.88 2.73 5.25 1.47 30.66 13.37 19.6 28.73 41.72 63.87 83.52 

Fetal liver NA 6.79 1.78 1.3 3.85 2.4 NA 2.39 3.9 35.01 2.88 3.5 7.89 2.24 

Supplementary table 1A. Q-PCR data from 14 genes within the deletion on 18q12. 
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Total RNA BRUNOL4 c18orf10 P15RS FHOD3 MAPRE2 ZNF271 ZNF397 c18orf37 STATIP1 MOCOS SLC39A6 c18orf21 ZNF24 ZNF396 

Fetal brain 0.972 0.277 0.061 0.966 0.612 0.266 1.000 0.149 0.580 0.022 1.000 0.538 1.000 0.381 

Retina 0.038 0.092 0.021 0.283 0.104 0.201 0.316 0.143 0.477 0.143 0.266 0.259 0.594 0.393 

Brain 0.691 0.155 0.041 0.281 0.296 0.351 0.225 0.110 0.266 NA 0.145 0.238 0.439 0.150 

Putamen 0.381 0.096 0.018 0.139 0.094 0.314 0.216 0.098 0.307 0.020 0.136 0.246 0.608 0.167 

Sub Nigra 0.408 0.182 0.036 0.254 0.100 1.000 0.268 0.093 0.347 0.019 0.297 0.257 0.844 0.279 

Dorsal root Ganglion 0.032 0.308 0.010 0.399 0.349 0.365 NA 0.110 0.490 0.156 0.137 0.136 0.208 0.119 

Fetal brain 1.000 0.310 0.060 1.000 1.000 0.725 0.880 0.114 0.877 0.034 1.020 0.593 0.854 0.370 

Cerebellum 0.188 0.133 0.024 0.106 0.365 0.178 NA 0.109 0.455 0.032 0.196 0.272 0.187 0.075 

Whole Brain 0.927 0.184 0.028 0.334 0.253 0.437 0.331 0.127 0.340 0.018 0.125 0.304 0.285 0.163 

Fetal liver NA 0.085 0.007 0.011 0.047 0.160 NA 0.085 0.228 0.514 0.020 0.081 0.046 0.013 

Heart 0.001 0.020 0.003 0.393 0.061 NA NA 0.050 NA 0.030 NA NA 0.021 NA 

Lung NA 0.106 0.017 0.031 0.111 0.289 NA 0.134 0.414 0.199 0.089 0.222 0.503 0.264 

Placenta 0.000 0.082 0.010 0.021 0.063 0.182 NA 0.291 0.282 1.000 0.152 0.124 0.204 0.031 

Prostate 0.001 0.064 0.027 0.228 0.049 0.394 0.475 0.071 0.653 0.356 0.652 0.209 0.550 0.375 

Salivary gland 0.001 0.048 0.009 0.069 0.014 0.091 NA 0.085 0.249 0.107 0.060 0.128 0.115 0.084 

Skeletal muscle NA NA 0.008 0.294 0.018 0.339 NA 0.108 0.216 0.031 0.013 0.178 0.165 0.019 

Spleen NA 0.051 0.006 0.010 0.056 0.226 NA 0.137 0.556 0.016 0.038 0.206 0.425 0.061 

Thymus NA 0.140 0.005 0.034 0.104 0.165 NA 0.108 0.414 0.029 0.019 0.173 0.102 0.057 

Trachea 0.001 0.079 0.004 0.090 0.020 0.126 NA 0.078 0.222 0.256 0.042 0.096 0.141 0.099 

Uterus 0.001 0.078 0.006 0.047 0.034 0.208 NA 0.060 0.446 0.096 0.052 0.111 0.115 0.026 

Colon 0.000 0.038 NA 0.023 NA 0.071 NA NA 0.105 0.167 0.008 0.052 0.040 0.027 

Small Intestine 0.001 0.042 0.007 0.032 0.023 0.105 NA 0.048 0.136 0.656 0.022 0.080 0.085 0.023 

Stomach 0.001 0.056 0.010 0.041 0.029 0.177 NA 0.082 0.272 0.260 0.046 0.142 0.226 0.132 

Pancreas NA 0.054 0.012 NA 0.029 0.142 NA 0.043 0.370 0.131 0.096 0.234 0.201 0.167 

Kidney NA 0.048 0.007 0.267 0.032 0.155 NA 0.068 0.239 0.097 0.060 0.173 0.161 0.235 

Spinal cord 0.040 0.153 1.000 0.155 0.058 0.270 NA 0.059 0.328 0.033 0.129 0.131 0.364 0.106 

Testis 0.033 1.000 0.053 0.115 0.036 0.314 0.208 1.000 1.000 0.269 0.175 1.000 0.422 1.000 

Fetal liver NA 0.079 0.004 0.009 0.050 0.143 NA 0.078 0.292 0.480 0.018 0.084 0.052 0.027 

Supplementary table 1B. Normalized Q-PCR data from 14 genes within the deletion on 18q12. Each gene is normalized to the highest expression for that gene 
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Gene 
name 

Primers Length 

Forward: 5' GCG AGA ACA ACA ACG ACA 3' 
MAPRE2 

Reverse: 5' TCT TGG GTT ATC GAG GTA GAA T 3' 
164 bp 

Forward: 5' AGA GCA TCC CAA GAG TCA AC 3' 
ZNF397 

Reverse: 5' AGT TTC TCC CCT GTA GCA CTT 3' 
233 bp 

Forward: 5' AAT TAT GAA TCT CAG GAA CAC CAC 3' 
ZNF271 

Reverse: 5' TTG CCC ATA TTC GTC ACA G 3' 
237 bp 

Forward: 5' AGT TTG TTG CCA TCC TAC CC 3' 
ZNF24 

Reverse: 5' TAG TAC TTC CCG TTT TCG TCG 3' 
158 bp 

Forward: 5' TTG GGA AAG TCA TCA TCA CTC CTA ACA C 3' 
ZNF396 

Reverse: 5' CAT GAG CTG GCT ACT TGG CAA TTC 3' 
492 bp 

Forward: 5' ACC TGA AAC AAA TCC TCG CTT CT 3' 
c18orf37 

Reverse: 5' TCT GGG GGT CTG TGT AGT TGG 3' 
150 bp 

Forward: 5' CGA GAA GCG AGA AAC TAT ACA CTC 3' 
c18orf21 

Reverse: TCT GTT GCA TGT TTT ACA AGT GAT 3' 
105 bp 

Forward: 5' CAT TCA CCA CCG TAA ACA C 3' 
P15RS 

Reverse: 5' ACC TTT CTT CCC AAA TAG ATA AC 3' 
254 bp 

Forward: 5' CAA CTA TCT CTG TCC AGC CAT CAT CAA CC 3' 
SLC39A6 

Reverse:5' AGC ATC ACC ACT CAA AGT CCC AAC G 3' 
259 bp 

Forward: 5' CCT TTC AGC CCT CCA TAC TTA C 3' 
STATIP1 

Reverse:5' GCC ATC TGC GTG ACT GTC 3' 
256 bp 

Forward: 5' GTG GTG CGG ATT TAC AGC GAT T 3' 
MOCOS 

Reverse:5' TGA TGA GTG CAG GCG AGT GTC 3' 
369 bp 

Forward: 5' GGA ACT GAT GAC TCG CCC AAT GT 3' 
FHOD3 

Reverse: 5' TGG GGT CAG GCC GCT CTT 3' 
171 bp 

Forward: 5' CTG GCA GAC CTG GAG GAC GAT A 3' 
c18orf10 

Reverse: 5' GGG TGA TGA GCA GGC GGT AA 3' 
244 bp 

Forward: 5' TTC CTC CCT TTC GGC TTC GTG 3' 
BRUNOL4 

Reverse: 5' ATC CTG CCC TGT GCG AGT CCT 3' 
193 bp 

Supplementary table 2. Primers used for Q-PCR are listed together with the size 
of the PCR product. A melting curve was made from 55oC->98oC. 

Probe name Sequence 

Brunol4_antisense 1 5' TGG CGC AGG CAG CTA CTA CCT CCT CGG CTC TCG CTG TC 3' 

Brunol4_antisense 2 5' GGC GGC GCA CGT CGT CCT CAG ATT GTT GCT TGT TGA GC 3' 

Brunol4_antisense 3 5' CAG CTT GAT GGC ATC GTG GTC CTT CAT GGG AAT GGT CG 3' 

Brunol4_sense 1 5' GAC AGC GAG AGC CGA GGA GGT AGT AGC TGC CTG CGC CA 3' 

Supplementary table 3. Probes used for radioactive in situ hybridization of 
Brunol4. 
 

Sequence 
name 

Primer sequences Length 
Melting 
temp. 

Forward: 5' GCA CTG CTG GTG TTT AAG 3' 
Uc429 

Reverse: 5' GGC TCT GTA TCT AAA AGT GTG 3' 
412 bp 57OC 

Forward: 5' CCG TCC CAA CAT ACA CTC AC 3' 
Uc430 

Reverse: 5' AGA GGG GGA GGT TTA GGA TTT 3' 
519 bp 

57/60 

OC 

Forward: 5' TGT CAT AAT CAA AAG GCG GGA CTA CAG 3' 
Uc431 

Reverse: 5' GCT TGC CCA CCA ACT AAC GAG AAC 3' 
480 bp 57 OC 

Forward: 5' GTC TAT CTT CTC ATG TGT CAG CAA CAA GT 3' 
Uc432 

Reverse: 5' ACT CCT TCC ATT ACC CTC GCT AAA C 3' 
529 bp 57 OC 

Forward: 5' GCA AGC AAT TAC TGG CGA TTT GT 3' 
Uc433 

Reverse: 5' TGT ATG GTG GCT CGC AAA GG 3' 
424 bp 57 OC 

Supplementary table 4. Primers for dHPLC screening and sequencing of UCSs. 

 

Sequence 
name 

Primer sequences Length 

Forward: 5' ATA AAG GTT CCT GTG ATG TCA G 3' 
CHR7 

Reverse: 5' GTAAGTTATTTAGATGATTTTGAATGC 3' 

266 bp 

Forward: 5' ATT AAA CAT GAT AAA AGG GAT TCT TAC 3' 
CHR13 

Reverse: 5' ATA ATG AGC ACT TAG AGC AGG A 3' 

213 bp 

Forward: 5' AAA CGT GTG CTC TTT TCC CCA TCT TAT 3' 
CHR20 

Reverse: 5' GCT AGC CCT CTC TGG ATT CCT TCT TC 3' 

354 bp 

Supplementary table 5. Primers used for PCR check of genomic contamination 
of cDNA 
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Exon Primers Length 

Forward: 5' TGT GTG TAT GCG TGT GCG TGT GT 3' 
1 

Reverse: 5' GCT TAG TCC GCC GCT CGT CA 3' 
476 bp 

Forward: 5' TGA CCC TTC TTG GCG CTT GCT 3' 
2 

Reverse: 5' GCA GGA ACT TCA CGG CCA CG 3' 
339 bp 

Forward: 5' GCA GCA TGT TGT GGG AGC GCG TGT 3' 
3 

Reverse: 5' CTC TGT CCC CAA CCC TCA GCC ACG AGA T 3' 
354 bp 

Forward: 5' CTC CCT TTC CCT GCC GCT CTC 3' 
4 

Reverse: 5' CAG GTG AAC GCA GAC GGG TGA 3' 
379 bp 

Forward: 5' CTC AAT CTC TGC CTC ACC CGT CT 3' 
5 

Reverse: 5' GGC ATT TTC CAC CTG GGT AAC CT 3' 
380 bp 

Forward: 5' GGA AGC CCA GGG ATG TTA AGG A 3' 
6 

Reverse: 5' GAG GGA GAG GGC AAG GGA TAG AG 3' 
464 bp 

Forward: 5' AGG GCT TTC TGG AGT GGT AGT TG 3' 
7 

Reverse: 5' CCG CTG GTA GCT GAA ATT AGG TC 3' 
368 bp 

Forward: 5' GGT CCA AGT CTA TCC GCA GGT 3' 
8 

Reverse:  5' AAA GAA TGT GCT GCA TAC GGA AAT 3' 
316 bp 

Forward: 5' ACT CAG GGT TTC TGT CTC GGA T 3' 
9 

Reverse: 5' GGT GTC ACA GGC GTG GAG 3' 
283 bp 

Forward: 5' CTT TTT GGC TGA TCT GCT TTT ACT GC 3' 
10 

Reverse:: 5' CAC AAG AAG CGG ACC TCT ACC CTT A 3' 
387 bp 

Forward: 5' TCC CTG CTG CGC TGC CTA ACT 3' 
11 

Reverse: 5' TTA CTT TGG TTA GTC GCC CGA TCC AC 3' 
235 bp 

Forward: 5' AAA CCC AGG CCC TCG TCC CTC GTG TCT C 3' 
12 

Reverse: 5' AGG AGC AGG GCG AGG AGC AGG TTG AGC 3' 
350 bp 

Supplementary table 6. Primers for sequence analysis of BRUNOL4. 

 

Probe Name Accession nr. Chromosomal position Result  
RP11-252a7 AC087814 29,545,452-29,727,556 Proximal 
RP11-756m1 AC018972 29,664,156-29,824,757 Proximal 
RP11-704i20 AP001131 29,718,544-29,869,997 Proximal 
RP11-594p16 AC087397 29,764,080-29,949,991 Proximal 
RP11-379l18 AC104985 29,917,692-30,089,878 Proximal 
RP11-732e23 AC104988 30,047,928-30,219,417 Proximal 
RP11-812d8 AP001125 30,184,237-30,378,471 Proximal 
RP11-108g18 AC103768 30,197,999-30,378,471 Deleted 
RP11-502p14 AC069131 30,262,228-30,440,155 Deleted 
RP11-734h19 AP002895 30,373,720-30,529,001 Deleted 
RP11-138h11 AC022601 30,478,145-30,636,743 Deleted 
RP11-849j9 AP001165 30,834,503-31,010,999 Deleted 
RP11-158h5 AC011815 30,973,085-31,129,339   
RP11-140n10 AC127506 31,089,012-31,240,845   
RP11-322e11 AC007998 31,171,484-31,379,284 Deleted 
RP11-616h5 AC036180 31,241,591-31,424,228   
RP11-723j4 AP001905 31,773,519-31,995,543 Deleted 
RP11-594b10 AP001155 31,995,859-32,163,467 Deleted 
RP11-843p6 AP001401 32,443,591-32,645,221   
RP11-95o2 AC015961 32,925,213-33,089,023 Deleted 
RP11-843p6 AP001401 32,443,591-32,645,221 Deleted 
RP11-139k2 AQ383018/AQ383019 33,042,275-33,225,650 Deleted 
RP11-797e24 AP001454 33,055,287-33,240,851 Deleted 
RP11-680k13 AP002501 33,141,414-33,329,595 Deleted 
G248P8789E10 G248P8789FE10/G248P8789RE10 33,308,719-33,352,196 Deleted 
G248P85590D6 G248P85590RD6/G248P85590FD6 33,355,485-33,392,002 Deleted 
RP11-1147p1 AC129908 33,276,774-33,467,582 Distal 
RP11-298g9 AQ506634/AQ506631 33,276,776-33,467,576 Distal 
RP11-661b20 AQ611604/AQ518661 33,417,988-33,578,547 Distal 
RP11-776m20 AP001356 33,492,805-33,670,124 Distal 
RP11-862c6 AP001912 34,142,324-34,340,289 Distal 

Supplementary table 7. FISH results for delineation of deletion on 18q12.  
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ABSTRACT 
Autism spectrum disorders (ASDs) are a heterogeneous group of disorders with unknown 

aetiology. Even though ASDs are suggested to be amongst the most heritable complex 

disorders, only a few reproducible mutations leading to susceptibility for ASD have been 

identified. In a patient with childhood autism we have identified a de novo t(3;8)(q21;q24) 

translocation, where the 8q24 breakpoint disrupts the KCNQ3 (Potassium Channel, 

voltage-gated KQT-like subfamily, member 3) gene. Since KCNQ3 is a subunit of the M-

channels that apparently are important for neural network excitability, postnatal brain 

development and cognitive performance, we suggest that KCNQ3 may be a candidate 

susceptibility gene for ASD. 

 

KEYWORDS 
Autism, chromosome 8, KCNQ3, translocation.  

  

INTRODUCTION 
Autism spectrum disorders (ASDs) are neurodevelopmental disorders with early 

childhood onset and a lifelong persistence. They are characterized by impairments in 

reciprocal social interaction and communication as well as by stereotypic behaviour or 

interests. The prevalence of ASDs is estimated to be between 1 - 6 in 1000 [6] with a 

male to female ratio of 4:1 [2]. The genetic basis of ASDs plays a greater role in disease 

development than in any other common neuropsychiatric disorder since the concordance 

rate in monozygotic twins is 60-90% compared to a concordance rate of approximately 

5% in dizygotic twins [1, 2]. The most consistently suggested genetic model of 

inheritance in ASDs involves numerous epistatic genes [2]. Whether these genes are 

always the same or vary between families is not known but it is likely that the variation 

observed in ASD phenotype reflects a correspondingly heterogeneous genetic basis. 

Despite the apparent robust genetic basis of ASDs no susceptibility genes or 

pathophysiological mechanisms have been unambiguously elucidated. We identified, and 

characterized, a de novo t(3;8)(q21;q24) translocation in a patient with childhood autism 

where the chromosome 8 breakpoint apparently coincided with a suggestive linkage 

interval identified in an a previous autism study [102].  
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METHODS 
Patient 

 
Figure 1. Pedigree showing translocation carriers with a dot and examined non-carriers with an N. Unmarked 
individuals have not been cytogenetically examined. III:1 has Asperger’s syndrome, III:3 is the proband and 
III:4 has behavioural difficulties. 
 

An eight year old Danish boy was diagnosed with childhood autism before the age of 

three. He is the second child of healthy, unrelated parents who both have academic 

degrees. The mother has seasonal affective disorder, which requires light therapy. He 

has a phenotypically normal older sister. The mother’s sister’s son (figure1, III:4) has 

behavioural difficulties and a paternal cousin has a son (figure 1, III:1) diagnosed with 

Asperger’s syndrome. The pregnancy and delivery at gestational week 40+1 was 

uncomplicated. His weight at birth was 3900 g and his birth length was 53 cm. Apgar 

scores were 9/1 and 10/5. A weak quivering noted at birth and was present the first five 

weeks but was not observed at three months of age. No underlying physical 

abnormalities that could explain the quivering were identified. No dysmorphic features or 

other physical abnormalities have been identified in the patient. His development within 

the first year was normal. At approximately one year of age the parents noticed that he 

became withdrawn and it was difficult to obtain eye contact. A  WISC-III (Wechsler 

Intelligence Scale for Children) test scoring performance on a scale between 1 and 19 

(19 is the best and 10 is average for age) was carried out when the proband was eight 

years old. The results for language were: information 19, similarities 19, arithmetic 12, 
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vocabulary 13, comprehension 10, digit span 14, which adds up to a verbal IQ of 103. 

The results of performance were: picture completion 14, coding 3, picture arrangement 

10, block design 11, object assembly 9, symbol search 8, mazes 16, which adds up to a 

performance IQ of 60. His full IQ was 79. Accordingly, the patient has a very uneven 

WISC profile with specific impairments of visuospatial skills. His motor development is 

normal. He is currently attending a kindergarten for normal children under supervision of 

a speech therapist. He is now able to speak in whole sentences but he only does so 

when it is necessary for fulfilling his needs. Cytogenetical analyses revealed a de novo 

t(3;8)(q21;q24) translocation and at the same time fragile X was excluded as causative of 

the identified autism phenotype. The parents and the older sister had normal karyotypes.  

The National Ethics Committees and the Danish Data Protection Agency 

approved the study, and informed consent was obtained. 

 

Fluorescence in situ hybridization (FISH) 
FISH was performed using bacterial artificial chromosome (BAC) clones from the RPCI-

11 library and standard protocols. The BAC clones were obtained from the MCN 

reference centre at Max Planck Institute for Molecular Genetics, Berlin 

(http://www.molgen.mpg.de/~cytogen/) or the Welcome Trust Sanger Institute, 

Cambridge  

(http://www.sanger.ac.uk/cgi-bin/software/archives/new_clone_login.cgi). 250 ng BAC 

DNA was biotin-14-dATP labelled by nick translation and hybridized to patient metaphase 

chromosomes. Signals were visualized using avidin-FITC detection system and 

chromosomes were counterstained with DAPI. Signals were investigated using a Leica 

DMRB epifluorescence microscope equipped with a Sensys 1400 CCD camera 

(photometrics) and an IPLab Spectrum imaging software (Vysis). 

 

Microarray-based CGH 
Array CGH with a whole genome 32K BAC array was carried out as described previously 

[155].  

 

RESULTS AND DISCUSSION 
In a patient with childhood autism we identified an apparently balanced de novo 

translocation t(3;8)(q21;q24). The translocation was investigated further since the 
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chromosome 8 breakpoint apparently coincided with a suggestive linkage interval [102] 

and the breakpoint on chromosome 3 was seemingly shared by another autism patient in 

the Mendelian Cytogenetics Network Database  

(MCNdb, http://www.mcndb.org). FISH was carried out to characterize both breakpoints. 

On chromosome 3 BAC clone RP11-332M2 was proximal, RP11-77P16 was distal and 

RP11-93K22, RP11-134C13, RP11-24P17, RP11-60C5 and Fosmid clone 

G248P83642D1 were spanning the breakpoint. No genes are located within this 

breakpoint region. On chromosome 8 BAC clone RP11-71N3 was proximal, RP11-454L8 

was distal and clones RP11-721F1, RP11-960B24, RP11-668I20 and RP11-213I2 were 

spanning the breakpoint. The translocation disrupts the KCNQ3 gene in intron 1. 

 To investigate whether a deletion/duplication was present in the patient 

microarray-CGH was carried out. A deletion on Yq11.23 (chrY: 23,540 - 26,800 kb; 

UCSC genome browser May 2004) was identified. This region contains numerous 

segmental duplications known to predispose to deletions and duplications. Similar 

deletions have been identified in other cohorts (Reinhard Ullmann unpublished results) 

and thus suggests that it is of no clinical relevance.  

 The most consistently suggested inheritance pattern for autism spectrum 

disorders (ASDs) involves several epistatic genes [2] and thus fits either an oligogenic or 

polygenic model of inheritance. The existence of a threshold or a point of balance has 

been postulated [156] where you exceed the threshold if you inherit a sufficient number 

of susceptibility genes from both parents. In line with this theory we identified a de novo 

truncating mutation of KCNQ3 and the family history suggests the presence of additional 

susceptibility genes for mental disorders (Asperger syndrome, behavioural difficulties and 

recurrent depressive disorder with seasonal pattern). It is likely that there is an overlap in 

susceptibility factors for some mental disorders since bipolar disorder, schizophrenia and 

attention deficit hyperactivity disorder (ADHD) tend to segregate in the same families as 

ASDs, show considerable overlap in linkage intervals and some patients with ASD even 

have comorbid bipolar disorder, schizophrenia or ADHD [10, 13, 20].  

 The brain areas most consistently found to be affected in neuropathological 

investigations of autism are the limbic system, cerebellum and cerebral cortex [42]. 

Interestingly, immunohistochemical studies of Kcnq3 in adult mice showed widespread 

brain localization, however, the most prominent staining was observed in the 

hippocampal formation, the cortex and the cerebellum as well as the reticular thalamus 



 

 53

and the red nucleus [157]. The intensity of the immunohistochemical staining pattern 

increased and the staining pattern changed during development, from a predominantly 

somatic staining to a gradually more dendritic/axonal staining during maturation [157]. 

 KCNQ3 is one of five known genes encoding subunits for potassium ion channels 

[158]. KCNQ3 can coassemble with KCNQ2 and KCNQ5 into heteromeric slowly opening 

and closing voltage-gated potassium channels called M-channels [158]. Several 

neurotransmitters and neuromodulators can influence the properties of M-channels [158]. 

M-channels are partially active in the range of the neuronal resting membrane potential 

but becomes further activated by membrane depolarization [158]. Since the M-channels 

are slow reacting they are not involved in the fast propagation of action potentials but 

rather restrain repetitive neuronal discharges that may otherwise lead to hyper-excitability 

[158]. The importance of this mechanism is substantiated by the identification of 

mutations in KCNQ2 and KCNQ3 in patients with dominantly inherited benign familial 

neonatal convulsions (BFNC) [159, 160]. BFNC is characterized by the occurrence of 

frequent generalized tonic-clonic seizures starting within the first days of life and 

spontaneously disappearing after a few weeks or months [160]. These infants experience 

normal growth and development but 10-16% experience a recurrence of seizures later in 

life [158, 161]. Even minor reductions in the M-channel activity can lead to BFNC, which 

is supported by the identification of a deletion of most of the KCNQ2 gene in a patient 

with BFNC [162]. The translocation in our patient disrupts KCNQ3 and thus may likewise 

lead to haploinsufficiency for a subunit of the M-channel. Although the translocation 

patient did not have the classically described neonatal convulsions he had a weak 

quivering during the first weeks after birth.  

 The phenotype observed in a transgene mouse expressing a dominant negative 

KCNQ2 protein varied according to when it was expressed during development [161]. 

Expression of dominant negative KCNQ2 during the first weeks of life resulted in 

morphological abnormalities in the hippocampus, behavioural hyperactivity and frequent 

seizures whereas expression during adulthood caused impairment of hippocampus-

dependent memory without causing morphological changes [161]. Moreover, this 

experiment showed that M-channels are essential for the characteristic sub-threshold 

theta frequency resonance of hippocampal pyramidal cells, which is believed to be 

important for temporal coding and synaptic plasticity and therefore is important in 

sensory-motor behaviour,  learning and memory [161, 163]. Accordingly, the M-channel 
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seems to be important for neural network excitability, postnatal brain development and 

cognitive performance [161]. This is interesting in concern to the translocation patient as 

a deficit in the integration of cognitive mechanisms has been suggested as an underlying 

cause of autism, schizophrenia, epilepsy and other brain-derived disorders [164]. 

However, even though the dominant negative KCNQ2 protein was specifically shown to 

attenuate mouse KCNQ2/KCNQ3-mediated currents in an in vitro expression system 

[161] it is still not known whether the observed phenotype in the dominant negative 

mouse is due entirely to KCNQ2/KCNQ3 M channel dysfunction or whether KCNQ2-

specific functions are crucial in developing the phenotype. Thus, reduced KCNQ3 may 

not lead to the same phenotype. Even so, our translocation patient has an inactivating 

mutation of KCNQ3 that is likely to reduce the M-current, which again may have 

influenced the postnatal brain development and cognitive performance and thus has 

contributed to the development of autism. We therefore hypothesize that KCNQ3 is a 

susceptibility gene for ASD.  
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ABSTRACT 
Autism spectrum disorders (ASDs) is a heterogeneous group of neurodevelopmental 

disorders with evidence for a strong genetic component. However, only a few 

susceptibility genes have been confirmed. We molecular characterized a maternally 

inherited translocation t(4;16)(q27;p13.3)mat in a Danish, male ASD patient. The 

chromosome 4 breakpoint disrupts the FGF2 (Fibroblast growth factor 2) antisense gene, 

NUDT6. Since dysregulation of the FGF signalling network has previously been 

implicated in the development of some psychiatric disorders and this dysregulation can 

partly explain how the observed male preponderance arise and how environmental 

factors (stress) might induce ASD in genetically vulnerable individuals we suggest FGF2 

and NUDT6 as susceptibility genes for ASD.   

 

KEYWORDS 
Autism spectrum disorder (ASD), translocation, Chromosome 4q27, NUDT6, FGF2,  

 

INTRODUCTION 
Autism spectrum disorders (ASDs) are characterized by impairments in reciprocal social 

interaction and communication as well as by stereotypic behaviour or interests. ASDs are 

considered to be neurodevelopmental disorders with early childhood onset and a lifelong 

persistence. The prevalence of ASDs is estimated to be between 3 - 9 in 1000 [5] with a 

male to female ratio of 4:1 [2]. ASDs are amongst the most heritable complex disorders 

with a monozygotic concordance rate of 60-90% compared to a dizygotic concordance 

rate of approximately 5% [1, 2]. However, since the monozygotic concordance rate is not 

100% environmental factors also play part in the development of at least some ASD 

cases. The mode of inheritance is not known but it is likely that the huge variation in 

phenotype reflects a huge genetic heterogeneity. The most commonly suggested genetic 

model involves several epistatic genes but whether these genes are always the same or 

change between families is not known [2]. Despite the apparent robust genetic basis of 

ASDs no susceptibility genes or pathophysiological mechanisms have been 

unambiguously elucidated.  

Recent evidence suggest that dysregulation of the FGF signalling network 

can be involved in the development of some psychiatric disorders [30, 165]. In addition, a 

LOD score of 2,65 at marker D4S3250 close to NUDT6 and FGF2 was reported in a 
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genome wide screen for ASDs [104], which further suggests a role for FGF2 in the 

development of ASDs. In line with this theory we report an ASD patient with a disruption 

of the antisense FGF2 gene, NUDT6, by a maternally inherited translocation. 

 
MATERIALS AND METHODS 
Patient 

 
Figure 1. Pedigree showing translocation carriers with a dot and examined non-carriers with an N. Unmarked 
individuals have not been cytogenetically examined. 
 

A 22 year old Danish man carries a translocation t(4;16)(q27;p13.3)mat. An Autism 

Diagnostic Interview (ADI-R) as well as an Autism Diagnostic Observation Scheme 

(ADOS) was used to confirm that the autism spectrum disorder (ASD) diagnosis was in 

accordance with ICD-10 criteria. He was 17,5 years of age when the described tests 

were conducted. He can not read or write. A WISC test revealed language skills 

corresponding to a 9 - 9,5 year old and performance skills corresponding to a 6 to 12 

year old whereas, the Peabody Picture Vocabulary Test (PPVT) revealed a passive 

vocabulary corresponding to a 17,7 year old. Pregnancy and delivery were without 

complications. To provide the needed help, the proband and his mother lived first in an 

institution and afterwards in a foster family. When the proband was approximately 1,5 

years old he was transferred to a home for infants where he lived untill the age 5 where 

he moved to a foster home. Accordingly, little is known about the developmental 

milestones within his first years. At the age of 12 he moved to a residential home run by 
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his foster parents. This institution houses three children or youngsters. The proband has 

attended a school for children with learning difficulties. He recently moved to his own flat 

in a house shared by 29 additional youngsters that all require supervision by social 

workers.  

The mother (II:4; figure 1) is a carrier of the same translocation as the 

proband. She works as an IT-supporter and has four children with four different men. 

Only the youngest child lives with the mother (and father). The mother was given the 

custody of her youngest child but under supervision. The maternal grandmother (I:2; 

figure 1) also carries the translocation and is phenotypically normal. The father (II:1; 

figure 1) can not read or write and has impairment of speech. He has attended Danish 

lessons at a school for mentally retarded individuals. He has two children (younger than 

the proband) with another woman. Both of these children have attended a day care 

centre and a school for children with special needs where they have received remedial 

teaching.  

The National Ethics Committees and the Danish Data Protection Agency 

approved the study, and informed consent was obtained. 

 

Fluorescence in situ hybridization (FISH) 
Metaphase chromosomes were prepared from peripheral blood lymphocytes and the 

karyotype of the patient was determined by G-banding. Fluorescence in situ hybridization 

(FISH) was performed using bacterial artificial chromosome (BAC) clones from the RPCI-

11 library and standard protocols. The BAC clones were obtained from the MCN 

reference center at Max Planck Institute for Molecular Genetics, Berlin 

(http://www.molgen.mpg.de/~cytogen/) or the Welcome Trust Sanger Institute, 

Cambridge: (http://www.sanger.ac.uk/cgi-bin/software/archives/new_clone_login.cgi). 

250 ng BAC DNA was biotin-14-dATP labeled by nick translation and hybridized to 

patient metaphase chromosomes. Signals were visualized using avidin-FITC detection 

system and chromosomes were counterstained with DAPI. Signals were investigated 

using a Leica DMRB epifluorescence microscope equipped with a Sensys 1400 CCD 

camera (photometrics) and an IPLab Spectrum imaging software (Vysis). 
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Southern blot 
The location of restrictions sites and sizes of restriction fragments were identified by the 

NEBcutter program: http://tools.neb.com/NEBcutter2/index.php. Templates for probes 

were made by cloning PCR-products (primer information table 1) using a TOPO TA 

cloning® kit (Invitrogen, Carlsbad, CA, USA) and subsequently re-amplifying the PCR 

products using a biotinynaled M13 primer (TAG Copenhagen, Copenhagen, DK). The 

biotinylated strand was retained using streptavidin-coated DynaBeads (Dynal, Oslo, 

Norway) and the complementary strand was resynthesized in the presence of α-32P-

dATP and modified dCTP as described in the Strip-EZTM DNA kit (Ambion, Ausin, TX, 

USA). The radioactive strand was isolated, dissolved in hybridization solution (Ambion, 

Ausin, TX, USA) and used as probe. Hybond N filters (Amersham Biosciences, NJ, USA) 

were used. The filters were stripped as described in Strip-EZTM DNA kit. 

Primer name  Primer sequence 
Size of PCR 
product 

Forward 5’ GCGATGCTTGCCCGAACCTAC 3’ 
NUDT6 cDNA  

Reverse 5’ TTTGTGTGCTGTTGCCGAATACTCA 3’ 
608 bp 

Forward 5’ CCATTTCACCCAACCGCCTTAGAGA 3’ 
NUDT6 exon 1 

Reverse 5’ CATTTGGGCAACGGACGAATTAAGC 3’ 
476 bp 

Table1. PCR primers for southern blot probes. 

 

Micro-array based CGH 
Array CGH with a whole genome 32K BAC array was carried out as described in [115]. 

and detailed protocols can be downloaded from: 

http://www.molgen.mpg.de/~abt_rop/molecular_cytogenetics/.  

Data analysis and visualization was done in CGHPRO [166]. 

 

Sequencing  
Mutation analysis of the FGF2 and NUDT6 genes was carried out by direct sequencing in 

the proband and the maternal grandmother. We analyzed all coding exons and splice 

sites corresponding to clones NM002006 and NM007083. The sequencing reactions 

were carried out by Macrogen Inc in Korea (http://www.macrogen.com/) and ChromasPro 

version 1.33 (Technelysium Pty ltd, Australia) was used to analyze the data. Primers 

used are listed in table 2. 
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Primer name Primer sequence 
Size of PCR 
product 

Forward 5’ CCTCTCCCCCGCCCCCGACTG 3’ 
FGF2 exon1 

Reverse 5’ TGGAGGGGAGAGAGCGGGCGAGAAC 3’ 
803 bp 

Forward 5’ GACACAGGAGCGACAAGGA 3’ 
FGF2 exon2 

Reverse 5’ TTACAGGGTGACTATGACGATGA 3’ 
470 bp 

Forward 5’ GCCCATTGAATCTTGTTAGTTTGA 3’ 
FGF2 exon3 

Reverse 5’ TTTTCTTTACTGGGACAATGGTTACATA 3’ 
509 bp 

Forward 5’ CCATTTCACCCAACCGCCTTAGAGA 3’ 
NUDT6 exon1 

Reverse 5’ CATTTGGGCAACGGACGAATTAAGC 3’ 
476 bp 

Forward 5’ AACAAGCAAGAAATTGGGTGAACGTCTA 3’ 
NUDT6 exon2 

Reverse 5’ ACATCTGTTACGTGCCAAGCATTGTC 3’ 
549 bp 

Forward 5’ CCTGGCACAGAGTAGAAACTCATTGAA 3’ 
NUDT6 exon3 

Reverse 5’ AGAGAGTGTGGGAGGAGATTAAGGTGA 3’ 
467 bp 

Forward 5’ TTAATTTCCTCAACATTTTTAAGCCAAT 3’ 
NUDT6 exon4 

Reverse 5’ GGGAGAAAGGATGGAAGCTAGAA 3’ 
260 bp 

Forward 5’ CTATTTCTTATGTCATTCGTT 3’ 
NUDT6 exon5 

Reverse 5’ GAGCCTTTACATAATGCTAC 3’ 
549 bp 

Table 2. Primers used for sequencing of FGF2 and NUDT6. 
 

RESULTS 
Fluorescence in situ hybridization (FISH) 
BAC clones RP11-951C12 and RP11-698H1 on chromosome 16 were both distal to the 

breakpoint whereas the overlapping cosmid clone 352F10 (AC005361) was proximal. 

Thus, the breakpoint on chromosome 16 was most likely located in the gene free area 

between serine protease 33 (PRSS33) and serine protease 21 (PRSS21). 

On chromosome 4 BAC clone RP11-379D14 was proximal, RP11-636M7 

was distal and RP11-170N16 (AC021205) was spanning the breakpoint which narrowed 

down the breakpoint region to approximately 60 kb encompassing Nucleoside 

Diphosphate-Linked Moiety X Motif 6 (NUDT6) as well as part of Fibroblast Growth 

Factor 2 (FGF2) and spermatogenesis associated factor SPAF5 (SPATA5). 

 

Southern blot 
DNA from the proband and two controls was digested with BtgI, BanI, AseI, DraIII, EcoRI 

and hybridized with a probe specific to exon 1 (Figure 3) of NUDT6 whereas the DNA 

digested with AflIII were hybridized with a NUDT6 cDNA probe. The AflIII band of 1999 

bp corresponds to the restriction fragment containing exon 1 of NUDT6 whereas the 
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band of 2449 bp corresponds to the fragment encompassing exon 2. One restriction site 

of BtgI is located within the probe used for southern blot. Because of this 142 bp of the 

475 bp probe recognizes the restriction fragment of 15338 bp whereas 333 bp of the 

probe recognizes the restriction fragment of 2108 bp. By adding all southern results 

(Figure 2) the breakpoint on chromosome 4 was narrowed down to 812 bp within intron 1 

of NUDT6 (Figure 3). 

 

 
Figure 2. Southern blot results. K1 and K2 are controls, P is the patient. Additional bands in the patient lane 
(corresponding to restriction fragments encompassing the translocation breakpoint) are marked with an 
arrow.  
 

 
Figure 3. Screen plot from the UCSC genome browser Mar.2006 showing southern blot enzyme restriction 
sites and annotated genes within the breakpoint region. The translocation breakpoint was located within 
restriction fragments highlighted in blue but not in fragments highlighted in red. 
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Micro-array based CGH 
Apart from known DNA copy number variants as listed in the Database of Genomic 

Variants (http://projects.tcag.ca/variation/), no other DNA copy number changes were 

detected by means of array CGH.  

 

Sequencing 
No changes were identified in FGF2 in the proband and the maternal grandmother. Both 

the grandmother and the proband were homozygous (C/C) for SNP rs13134412 and 

(G/G) for SNP rs12648093 in NUDT6. Moreover, the grandmother was heterozygous 

(A/G) for SNP rs1048201. 

 

DISCUSSION 
The most consistently suggested inheritance pattern for ASDs involves transmission of 

several epistatic genes [2] and thus fits either an oligogenic or polygenic model of 

inheritance. The existence of a threshold or point of balance has been postulated [156] 

meaning that a threshold is reached when a sufficient number of susceptibility genes are 

inherited from both parents. According to this theory a full ASD phenotype in the parents 

of the proband would not be expected even though they carry some of the ASD 

susceptibility genes. It is, however, common to find the conceptually same traits in 

parents and siblings of ASD patients but in a milder form that is not necessarily 

associated with difficulties in functioning and might even be associated with high 

achievement [2]. This broader autism phenotype is characterized by social reticence, 

communication difficulties, preference for routines and difficulty with change [2]. In line 

with this theory the disruption of NUDT6 on chromosome 4 by the maternally inherited 

translocation might contribute to the ASD phenotype in the proband even though the 

female translocation carriers do not have an ASD diagnosis. In addition, delayed onset of 

speech and difficulty with reading is a common finding in family members of ASD 

individuals [2]. In agreement with this observation the father of the proband is unable to 

read and write and has impairment of speech. Hence, it is likely that genetic factors from 

both the mother and the father were involved in the development of ASD in the proband. 

However, sequencing of NUDT6 and FGF2 in the proband and the maternal grandmother 

showed that the paternal contribution to the ASD phenotype in the proband is not 

mediated by mutations in NUDT6 and FGF2. 
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On chromosome 16, the breakpoint is most likely located between PRSS33 

(serine protease 33) and PRSS21 (serine protease 21). PRSS33 is predominantly 

expressed in spleen, stomach, retina, ovary and leukocytes and it is suggested to be 

associated with macrophages [167] whereas PRSS21 is predominantly expressed in 

lung, pancreas, spleen, thymus, prostate and testis [168]. Accordingly, these genes are 

not likely susceptibility genes for ASD.  

NUDT6 encodes a protein of the nudix family of phosphohydrolases (MutT 

family), whose function in mammalian cells is currently unknown but the E.coli ortholog 

reduces the spontaneous mutation rate 100-1000 fold [169]. NUDT6 is also known as the 

FGF2 antisense (FGF2AS) gene because it is transcribed from the opposite DNA strand 

of the FGF2 gene and overlaps the 3’ end of FGF2 [170]. Moreover, FGF2 and NUDT6 

are co-ordinately transcribed on a tissue-specific and developmentally regulated basis 

[171]. In addition, an inverse association of NUDT6 and FGF2 mRNA level has been 

observed in a variety of tissues across several species and forced over-expression of 

NUDT6 mRNA in stably transfected cells effectively suppresses FGF2 expression [170, 

172]. It has therefore been suggested that NUDT6 mRNA is implicated in the 

posttranscriptional regulation of FGF2 mRNA expression either by nuclear retention or 

rapid degradation of the mRNA or interference with mRNA processing, transport, 

translation or stability [172]. There are no identified copy number variations of the 

chromosomal region encompassing NUDT6 and FGF2 in the database of genomic 

variants (http://projects.tcag.ca/variation/) which implies that dosage of these genes is 

important. 

FGF2 is highly expressed in brain and is a member of the heparin-binding 

growth factor superfamily that comprises 21 additional human FGF ligands [173, 174]. 

Together with the five identified FGF receptors (FGFR) they constitute the FGF signaling 

system that is dynamically organized in spatial and temporal expression patterns [175]. 

FGF2 plays versatile biological roles. At an early developmental time point FGF2 

functions as a mitogen for different neuronal precursor cells and as a differentiating factor 

for calbindin-expressing hippocampal neurons [173]. Likewise, FGF2 induces 

proliferation of neural progenitor cells in the hippocampus and the subventricular zone in 

the adult brain [173]. The mitogenic function of FGF2 is substantiated by knock out mice 

that display abnormal cytoarchitecture and fewer mature neurons and glia cells in the 

neocortex, particularly in the frontal motor sensory areas [176, 177]. Furthermore, FGF2 
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seems to be important in cell positioning in the developing neocortex since a fraction of 

postmitotic neurons fail to reach their target layer in FGF2-/- mice [178]. The knock out 

mice are otherwise viable, fertile and phenotypically indistinguishable from normal mice 

[176]. In addition, FGF2 can promote long term potentiation (LTP) in hippocampal slices, 

induce synaptogenesis in cultured rat embryonic hippocampal neurons and is particularly 

effective in promoting branching of axons in cultured cortical neurons [179-182]. 

Moreover, spatial learning and physical activity increases the expression of FGF2 mRNA 

in rat hippocampus [180]. Accordingly FGF2 is suggested to be involved in learning and 

memory. 

Of particular interest in concern to the translocation patient is, that FGF2 

function as a trophic and neuroprotective factor, preventing neuronal death within 

lesioned brain regions after ischemia and of cholinergic neurons of the hippocampus and 

dopaminergic nigrostriatal neurons after fiber transection or chemical injury [173, 183]. 

Similarly, FGF2 expression is increased following acute restraint stress [30]. Because 

FGF2 is neuroprotective it is possible that reduced expression can increase the 

vulnerability of selected neuronal populations. This has been proposed as an underlying 

cause of some psychiatric disorders [184]. In line with this theory, a recent study 

identified dysregulation of multiple FGF/FGFR transcripts in postmortem brains from 

major depressed individuals and to a lesser degree in schizophrenic individuals [175]. In 

addition, this signaling system is modulated by treatment with psychotropic drugs 

(serotonin reuptake inhibitors, diazepam, clozapine) [165]. The level of FGF2 transcripts 

are specifically reduced in the fronto-cortical area and several limbic system structures in 

post mortem brains and increased in hippocampus after administration of the above 

mentioned drugs [175, 184]. It is likely that there is an overlap in susceptibility factors for 

at least some mental disorders since bipolar disorder, schizophrenia and attention deficit 

hyperactivity disorder (ADHD) tend to segregate in the same families as ASDs, show 

considerable overlap in linkage intervals and some patients with ASD have comorbid 

major depression, bipolar disorder, anxiety disorder, schizophrenia or ADHD [10, 13, 20, 

185, 186]. It is therefore conceivable that dysregulation of the FGF system might also be 

involved in the development of ASD in some patients. This might at least be part of the 

explanation for the phenotype in the translocation patient described above. He only has 

one functional copy of NUDT6 which possibly causes misregulation of FGF2 which would 

render him more vulnerable to stress. In addition, adverse events during late pregnancy 
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and early postnatal life in otherwise normal rats can produce permanent neurobiological 

and behavioural abnormalities later in life, including increased responsiveness to stress 

[30]. Some of these effects are male-specific [30] which may in part explain the observed 

difference in phenotype of the proband and the two female translocation carriers in the 

family (Figure 1; I:2, II:3). Hence, our proposal of FGF2 and NUDT6 as candidate 

susceptibility genes for ASD may have relevance for both the observed preponderance of 

males in ASD and for how environmental factors (stress) could elicit ASD in genetically 

predisposed individuals.  
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ABSTRACT 
Autism Spectrum disorders (ASDs) are heterogeneous disorders with unknown aetiology. 

Even though ASDs are suggested to be amongst the most heritable complex disorders 

only a few susceptibility genes have been confirmed. In a Swedish, male monozygotic 

twin couple diagnosed within the ASD spectrum we identified a maternally inherited 

inv(10) and a paternally inherited t(9;18)(p22;q21.1). We showed that the inverted 

chromosome 10 is a benign variant chromosome with no apparent phenotypical 

implications (paper V) [187]. Further analyses of the chromosomes of the patients 

revealed several genomic changes that might have contributed to the development of 

ASD. The translocation breakpoint at 18q21 disrupts ZBTB7C (zinc finger and BTB 

containing 7C gene). We showed that ZBTB7C was expressed in many brain regions, 

including the limbic system, cerebellum and cerebral cortex, regions known to be affected 

in ASDs. Furthermore, analyses with array-CGH revealed a maternally inherited deletion 

on chromosome 8q22 encompassing the RIM2 (Rab3A-interacting molecule 2) and 

BAALC (Brain and Acute Leukemia Gene, Cytoplasmic) genes as well as a duplication 

on 5p14 including exons 1 and 2 of the CDH9 (cadherin 9) gene in the twins. The 

corresponding protein products function at synapses. In addition, a paternally inherited 

nucleotide change in an ultra conserved sequence (UCS) located in the conserved 

regulatory landscape at BRUNOL4 (bruno-like 4 RNA binding protein) was identified. 

Since UCSs are suggested to be gene regulatory elements such a mutation might alter 

the expression of BRUNOL4. Like ZBTB7C, BRUNOL4 is expressed in the limbic 

system, cerebellum and cerebral cortex and might accordingly be involved in the 

development of ASDs. The common functional theme of the candidate susceptibility 

genes identified in this study suggests that synaptic dysfunction is the basis for ASD in 

the presented twins. Moreover, the identification of accumulated genetic alterations 

inherited from both parents in the patients presented here supports the complex genetic 

basis of ASDs, which has most commonly been suggested. Furthermore, the study 

supports that detailed molecular dissection of patients with multiple inherited 

chromosomal rearrangements may reveal information about susceptibility genes for 

ASDs.  
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INTRODUCTION 
ASDs are neurodevelopmental disorders with onset in early childhood. They are 

characterized by impairment in reciprocal social interaction and communication 

accompanied by stereotypic behaviours or interests [2]. The severity of the qualitative 

impairments can vary greatly between individuals. The prevalence of childhood autism is 

estimated to be between 10 and 60 in 10000 [5-7] with a male to female ratio of 4:1 [2]. 

Childhood autism is amongst the most heritable complex disorders with a monozygotic 

concordance rate of 60-90% compared to a dizygotic concordance rate of approximately 

3% [1, 2]. The mode of inheritance for ASDs is not known but it is likely that the large 

variation in phenotype reflects a large genetic heterogeneity. The most common genetic 

model suggests involvement of several epistatic genes but whether these genes are 

always the same or whether different combinations of genes from a larger pool of 

susceptibility genes can be involved is not known [2]. Despite considerable ongoing 

efforts towards identification of putative susceptibility genes for ASDs, only a few genes 

have been reproducibly shown to be associated [41]. Some of the proteins encoded by 

these genes are involved in synaptogenesis and/or maintenance of the synapses, which 

suggests that alterations of these biological processes might be involved in the 

development of at least some cases of ASDs.  

 

METHODS 
Patients 
The patients are 13 year old Swedish, male twins diagnosed within the ASD spectrum. 

The diagnosis was made when the twins were three years old. The pregnancy and 

delivery was normal but a cupping glass was used at the delivery of patient 1. At birth 

patient 1 had a weight of 3015 g, a length of 48 cm and a head circumference of 34 cm. 

Apgar scores were 6 after 1 minute, 9 after 5 minutes and 9 after 10 minutes. The birth 

weight of patient 2 was 2925 g, birth length was 47 cm and head circumference at birth 

was 33 cm. Apgar scores were 9 after 1 minute and 10 after 5 minutes. Delayed motor 

development was noted at 10 month of age for both twins. Both twins could crawl at 16 
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months of age and walk at 52 months. The twins do not speak but can to some degree 

communicate by means of pictures. No dysmorphic features are noted in the twins. The 

older sister and the parents are phenotypically normal and the parents are unrelated. No 

mental handicaps have previously been diagnosed in the family. The initial 

cytogenetically determined karyotype of the twins was: 

46,XY,t(9;18)(p22;q21.1)pat,inv(10)(p11.2q21.2)mat.  

The National Ethics Committes and the Danish Data Protection Agency 

approved the study, and informed consent was obtained. 
 

Test of monozygocity 
7 markers (D2S2393, D6S1691, D10S213, D12S80, D14S80, D15S1048, D20S196) 

were typed by standard methods. Primers were radioactively end labelled, PCR was 

carried out under standard conditions and bands were separated by electrophoresis 

under denaturing conditions on polyacrylamide gels, and autoradiography was carried 

out. 
 

Cytogenetic analyses and Fluoresence in situ hybridisation (FISH) 
Metaphase chromosomes were prepared from peripheral blood lymphocytes and the 

karyotypes were determined by G-banding. FISH was performed using bacterial artificial 

chromosome (BAC) clones from the RPCI-11 library and standard protocols. The BAC 

clones were obtained from the MCN reference centre at the Max Planck Institute for 

Molecular Genetics, Berlin (http://www.molgen.mpg.de/~cytogen/) or the Welcome Trust 

Sanger Institute, Cambridge 

(http://www.sanger.ac.uk/cgi-bin/software/archives/new_clone_login.cgi). 

 

Southern Blot 
The location of restriction enzyme sites for EcoRI, SacI and ApaLI and sizes of restriction 

fragments were identified by the NEBcutter program:  

http://tools.neb.com/NEBcutter2/index.php. Probes were prepared by cloning PCR-

products using a TOPO TA cloning® kit (Invitrogen, Carlsbad, CA, USA) and 

subsequently re-amplifying the PCR products using a biotinynlated M13 primer (TAG 

Copenhagen, Copenhagen, DK). The biotinylated strand was retained using streptavidin-

coated DynaBeads (Dynal, Oslo, Norway) and the complementary strand was 
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resynthesized in the presence of α-32P-dATP and modified dCTP as described in the 

Strip-EZTM DNA kit (Ambion, Ausin, TX, USA). The radioactive strand was isolated, 

dissolved in hybridization solution (Ambion, Ausin, TX, USA) and used as probe. 

Sequences of all primers are listed in supplementary table 1. 

 
Microarray-based CGH 
Array-based comparative genome hybridization (array-CGH) with a whole genome 32K 

BAC array was performed for patient 1 and both parents. The method is described in 

[115]. 

 

Denaturing high performance liquid chromatography (dHPLC)  
Mutation analysis of the five ultra conserved sequences (UCS) close to BRUNOL4 

included the sequences originally defined by Bejerano [118]: uc.429: chr18:32,732,529-

32,732,765; uc.430: chr18:33,315,638-33,315,849; uc.431: chr18:33,430,588-

33,430,816; uc.432: chr18:33,816,920-33,817,129; uc.433: chr18:34,315,620-34,315,824 

(position refers to hg16). Primer sequences are listed in supplementary table 2. Melting 

temperature (Tm) was predicted based on the fragment sequence by using: 

http://insertion.stanford.edu/melt.html. Fragments were analyzed using standard 

operating procedure of a Varian HelixTM DHPLC analysis system with a Helix™ DHPLC 

column (Varian Inc. CA., USA).  

 

Sequencing analyses  
The sequencing reactions of UCSs were carried out by Macrogen Inc in Korea 

(http://www.macrogen.com/) and ChromasPro version 1.33 (Technelysium Pty ltd, 

Australia) was used to analyze the data. Sequencing of the two identified coding exons of 

ZBTB7C was carried out using a Thermo sequenase [P33] Terminator Cycle Sequencing 

Kit (Amersham Biosciences, NJ, USA) according to the manufacturer’s instructions. 

Sequencing gels were analyzed using a StormTM 860 Gel and Blot Imaging System 

(Amersham Biosciences). Primer sequences for UCSs and ZBTB7C are listed in 

supplementary table 2 and 4 respectively. 
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Real-time quantitative PCR analysis (Q-PCR) of ZBTB7C 
Messenger RNA and total RNA from 34 tissues (supplementary table 7 and 8)(Clontech, 

CA, USA) were DNase treated before cDNA synthesis with SuperScript II reverse 

transcriptase (Invitrogen) was carried out according to manufacturer’s instructions. 

Synthesized cDNA was checked for DNA contamination by PCR with three primer pairs 

(supplementary table 3). Q-PCR analysis was carried out on a DNA Engine Opticon 2 

(Bio-Rad, Göteborg, Sweden) using LightCycler FastStart DNA MasterPLUS SYBR GreenI 

(Roche, Hvidovre, Denmark). From 12 analyzed housekeeping genes, six were selected 

for normalization by using the BestKeeper software [116]. Primers used are listed in 

supplementary table 6.  

 

mRNA in situ hybridization  
Coronal cryostat sections of the mouse brain, 12 µm in thickness, were cut and mounted 

on Superfrost Plus® slides. The sections were hybridized as previously described [117] 

with  three 38-mer 35S-labeled oligonucleotide probes complementary to mRNA encoding 

ZBTB7C. An oligonucleotide probe was used for sense control (see supplementary table 

5 for probe information). Sections were exposed to an X-ray film for 1 to 2 weeks.  

 

RESULTS 
Test of monozygocity 
Zygocity was evaluated by genetic analysis of 7 highly polymorphic markers located at 7 

different chromosomes.   
Marker Mother Father Twin 1 Twin 2 Li 

D2S2393 1, 2 1, 2 2, 2 2, 2 0.25 

D6S1691 1, 3 2, 3 2, 3 2, 3 0.25 

D10S213 1, 3 1, 2 1, 3 1, 3 0.25 

D12S80 1, 2 1, 2 1, 1 1, 1 0.25 

D14S80 1, 3 2, 4 3, 4 3, 4 0.25 

D15S1048 1, 2 2, 3 1, 3 1, 3 0.25 

D20S196 1, 3 2, 4 1, 2 1, 2 0.25 

Table 1. Marker analysis in a pair of twins and their parents. The number in the DNA genotypes of the 
individuals represent the different alleles at a specific locus. Li is the likelihood ratio of conditional 
probabilities of dizygotic and monozygozic twins to be identical at a given locus. 
 

The probability of monozygosity, P(MZ), was calculated according to Bayers principle of 

conditional probabilities: P(MZ) = 1/(1+(Q*L)) [188]. Q is the ratio of dizygotic and 
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monozygotic twins in the population (Q = 2.33 in European populations) and L is the 

likelihood ratio of conditional probabilities of dizygotic and monozygotic twins to be 

identical at a given combination of genetic markers. L is calculated by multiplying the Li 

values. The probability of monozygosity was 0.99994. 

 

Fluorescence in situ hybridization (FISH) 
FISH was carried out to characterize the translocation and inversion breakpoints. The 

inversion of chromosome 10 was a common variant most likely with no phenotypical 

relevance as published by our group (paper V) [187].  

On chromosome 18 the BAC clone RP11-8K24 was proximal, RP11-246E12 was 

distal and RP11-656P10 spanned the breakpoint. The breakpoint region on chromosome 

18 was narrowed down to 26.8 kb within the overlap of the proximal and distal BAC 

(chr18:43,796,962-43,823,759; NCBI35; HG17). ZBTB7C is the only annotated gene 

within this region.  

 On chromosome 9 the BAC clone RP11-380P16 and cosmid clone 

G248P87527B3 were distal, BAC clone RP11-1057A18 was proximal and the BAC 

clones RP11-158I17 and RP11-956G20 as well as the cosmid clone G248P86061B3 

were spanning the breakpoint. The breakpoint region on chromosome 9 was narrowed 

down to approximately 40.6 kb (chr9:21,351,027-21,391,627; NCBI35; HG17) including 

two interferon α genes: IFNA2 and IFNA13.  

 FISH was carried out to affirm the BAC array-CGH results. FISH with BAC clone 

RP11-318M2 confirmed the presence of the 8q22 deletion in both twins as well as in the 

mother. FISH with BAC clone RP11-184A13 located within the duplicated region on 5p14 

revealed signals only on the two short arms of chromosome 5, which therefore excludes 

that the duplication has been inserted into a different chromosome. 

 

Southern Blot 
The breakpoint on chromosome 18 was narrowed down by Southern blot analysis to 

1165 bp within exon 2 of ZBTB7C (figure 1). Position of the probe identifying the junction 

fragment is at: chr18:43,820,703-43,821,065 (NCBI35; HG17).  
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Enzyme  Restriction sites (NCBI35; HG17) Restriction fragment size 

EcoRI chr18:43,818,423–43,823,597 5174 bp 

ApaLI chr18:43,820,295–43,823,676 3381 bp 

SacI chr18:43,816,879–43,821,459 4580 bp 

Table 2. Position of restriction sites and sizes of normal restriction fragments recognized by the probe. 

 

 
Figure 1. A: Southern blot hybridization. DNA digested with EcoRI. The probe detects a 5 kb normal 

fragment in all individuals, and an approximately 4.8 kb junction fragment in the father (F) and both patients 

(P1 and P2). B: Southern blot hybridization. DNA digested with SacI and ApaLI. Following the SacI digestion, 

the probe detects a 4.5 kb normal fragment in all individuals and an approximately 10 kb junction fragment in 

the father and both patients. Likewise, for the ApaLI digestion, the probe detects a normal fragment of 3.3 kb 

in all individuals and an approximately 9 kb junction fragment in the father and both patients. C: The physical 

map of the genomic region at the 18q21.1 breakpoint. Restriction sites for EcoRI, ApaLI and SacI as well as 

the probe identifying the southern blot junction fragment on chromosome 18 by Southern blot analysis are 

shown. The breakpoint is narrowed down to 1165 bp within exon 2 of ZBTB7C between the ApaLI restriction 

site (chr18:43,820,295) and the SacI restriction site (chr18:43,821,459). The green arrows indicate that we 

have identified a non-coding exon 1 that is not depicted in the screenplot from the UCSC genome browser 

May2004. M = mother, K1 = control 1, K2 = control 2. 
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Array CGH 
Array-based Comparative Genome Hybridization (array-CGH) was performed on DNA 

from patient 1. A deletion of approximately 931 kb on 8q22 (chr8:104,04 -104,97 Mb; 

NCBI35; HG17) comprising 7 RefSeq genes, as well as a duplication of 875 kb on 5p14.1 

(chr5:26,95 - 27,83 Mb; NCBI35; HG17) comprising exons 1 and 2 of CDH9 was 

identified. Array CGH revealed that the duplication on 5p14 was inherited from the 

mother. 

 Following array-CGH the karyotype of the patients were thus established as: 

46,XY,t(9;18)(p22;q21.1)pat,inv(10)(p11.2q21.2)mat, 
arr cgh 5p14.1(RP11-349J03->RP11-271D15)x3, 8q22.3(RP11-754L23->RP11-739L19)x1 

 

Mutation screening of UCSs 
BRUNOL4 and two out of the five ultra conserved sequences (UCSs) located close by 

this gene is deleted in another ASD patient examined in our laboratory. Accordingly, we 

screened the five UCSs for mutations in 157 ASD patients including the twins presented 

here. A paternally inherited C>A nucleotide change (ss67005820) was identified in the 

twins in uc.432 located 5’ to BRUNOL4. This nucleotide is conserved in mouse, rat, 

rabbit, dog, armadillo, elephant, opossum, and chicken. The nucleotide change was not 

identified in 167 controls. 

 

ZBTB7C 
We designed several intron-spanning primers for reverse transcriptase PCR (RT-PCR) to 

ascertain that ZBTB7C is expressed in the brain and to establish its genomic 

organization. The EST clone fs01a03.y1 was obtained from the Wellcome Trust Sanger 

Institute and sequenced. The sequence of this clone agreed partly with our RT-PCR 

findings and the clone annotated in the UCSC genome browser (NM_001039360), 

however we identified a noncoding exon 1 (EF120357).  

 The two coding exons were screened for mutations in the twins and the parents. 

The twins, the mother and a control were all heterozygous (G/A) for SNP ss68362639 

within exon 2 of ZBTB7C. The mother was heterozygous for two more SNPs within exon 

2 of ZBTB7C (G/A; ss68362638) (T/C; ss68362640) whereas the control was 

homozygous (T/T; ss68362640) and the twins were homozygous (C/C; ss68362640) for 

one of the SNPs.  
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Q-PCR analysis of ZBTB7C 
The observed expression of ZBTB7C was not high in any of the tissues examined. 

However, highest expression was observed in brain but also testis, prostate, lung, 

trachea, pancreas and kidney showed some expression of the gene (Supplementary 

table 2).  

 

RNA in situ hybridization of mouse zbtb7c  

  
 

Figure 3. In situ hybridization for mRNA transcript of zbtb7c on coronal sections of the mouse brain. The 
montage shows  images on x-ray films of hybridized coronal sections from rostral to caudal levels(A-F). G: 
Control.: A coronal section of the forebrain, hybridized with a sense probe. am = amygdale; ce = cerebellum; 
de = dentate gyrus; hy = hypothalamus; hi = hippocampus; ma = mamillary nuclei; nc =  neocortex; pi =  
piriform cortex; sp = septum; sr = striatum; su = superior colliculus; th = thalamus. The strongest signal was 
observed in cerebellum. Less intense signals were observed in the neocortex, amygdala, thalamus and 
piriform cortex.  
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A moderate level of zbtb7c gene expression was present in the forebrain, brain stem and 

cerebellum. The strongest signal was observed in the granular layers of cerebellum and 

the dentate gyrus, and the pyramidal cell layer of the cerebellum. Less intense signals 

were observed in the piriform cortex, the neocortex, the amygdaloid complex, the 

intralaminar and reticular nuclei in the thalamic complex. The mammillary nuclei also 

expressed a moderate signal.  

 

DISCUSSION 
In a Swedish, male monozygotic twin couple diagnosed within the ASD spectrum we 

identified a maternally inherited inversion inv(10)(p11.2q21.2) and a paternally inherited 

translocation t(9;18)(p22;q21.1). Both inversion breakpoints as well as the chromosome 9 

breakpoint of the translocation were apparently located within or close to suggestive 

linkage intervals identified in autism genome screens [103, 107, 108]. The other 

translocation breakpoint in chromosome 18q21 lies within a region that was apparently 

deleted  in a patient with mild to profound mental retardation [109]. Accordingly, we 

decided to molecular examine all four chromosomal rearrangement breakpoints as they 

might reveal susceptibility genes for ASDs. 

 Two interferon genes, IFNA2 and IFNA13, were located within the translocation 

breakpoint region on 9p21.3. These are not obvious susceptibility genes for ASDs. In 

contrast, we found that ZBTB7C was truncated by the 18q21 translocation breakpoint. 

ZBTB7C, first described in 1998 by Reuter et al as a putative cervical tumour suppressor 

[189], contains an N-terminal BTB/POZ domain (amino acid 34-131) that is known to 

mediate protein-protein interaction and four DNA-binding C2H2 zinc-finger domains [189, 

190]. The expression pattern of zbtb7c in mouse brain overlaps the areas most 

consistently found to be affected in neuropathological investigations of autism brains: the 

limbic system, cerebellum and cerebral cortex [42], which makes this gene an attractive 

susceptibility gene for ASDs.   

 Using BAC array-CGH we identified a 931 kb deletion comprising 7 genes on 

chromosome 8q22.3. Copy number variations have not been described for this region  

[191]. Two of the deleted genes namely BAALC (Brain and Acute Leukemia Gene, 

Cytoplasmic) and RIMS2 (Rab3A-interacting molecule 2) which are both expressed in 

brain are of special interest with regards to ASDs: BAALC is a gene that is absent in 

lower organisms but is highly conserved amongst mammals [192]. Two protein isoforms 
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have been detected in brain. In rat, one of these isoforms is located in lipid rafts in the 

postsynaptic membrane (figure 4) [193]. Since postsynaptic lipid rafts are believed to be 

involved in membrane trafficking, signal transduction or regulation of the actin 

cytoskeleton, and since disruption of these rafts leads to depletion of excitatory and 

inhibitory synapses, loss of dendritic spines and instability of surface AMPA receptors, 

the importance of these functional entities in normal synapse function is substantiated 

[193, 194]. Moreover, the developmental protein expression profile of rat BAALC is in 

parallel with the profile of synaptogenesis in the forebrain and thus suggests a role of 

BAALC in this process [193].  
 

 
Figure 4. Schematic view of the location and function of synaptic proteins that have been found mutated in 
patients with ASDs, mental retardation and/or epilepsy. 1) Synaptic vesicles are filled with neurotransmitter 
by active transport. 2) Vesicles can be recruited to the active zone in the presynaptic membrane. 3) The 
recognition of RAB3-GTP by RIM proteins is involved in docking and fusion of synaptic vesicles. 4) The 
SNARE proteins Synaptobrevin, Syntaxin and SNAP-25 promote vesicle priming. 5) Ca2+ triggered fusion-
pore opening. 5-10) The synaptic vesicles undergo endocytosis and recycle via several routes. A) RAB-GAP 
accelerates intrinsic GTPase activity of RAB3 [195] B) RAB-GDI prevents dissociation of GDP from RAB3 
and solubilizes RAB3 from membranes [195] C) RAB-GEF increases the GDP dissociation rate [195]. 
Neuroligin and its binding partner, neurexin, is involved in synapse formation. PSD95, PSD97 and SAP-102 
are large MAGUK proteins that couple transmembrane signaltransducers (NMDA receptors and K+ 
channels) to intracellular signalling pathways and the cytoskeleton. BAALC is located in lipid rafts at the 
postsynaptic membrane. This figure is adapted from [196]. 
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The RIM family of proteins includes RIM1, RIM2, NIM1, NIM2 and NIM3 that are 

all located in the active zone of the presynaptic membranes (figure 4) and probably 

functions as protein scaffolds that coordinate the docking and fusion of neurotransmitter 

vesicles [197]. RIM genes are almost exclusively expressed in the brain [198]. RIM2 

shows high homology to the more thoroughly investigated RIM1 protein [198]. Both RIM 

proteins exhibit the same overall domain architecture consisting of an N-terminal zinc-

finger module, a single central PDZ domain, and two C-terminal C2 domains [198]. The 

N-terminal zinc finger domain of RIM proteins binds to the synaptic vesicle protein RAB3 

in a GTP-dependent manner whereas the C-terminal C2 domains associates with the N-

type Ca2+ channels and synaptotagmin-I (SYT-1) as well as other proteins [197]. Thus, it 

seems that RIM proteins are RAB3 effectors that assure rapid and efficient synaptic 

transmission by associating with N-type Ca2+ channels and thereby assures docking of 

secretory vesicles close by [197].  

 There are no records of a RIM2 knock out mouse in the literature. However, since 

RIM1 and RIM2 are highly homologous and a knock out mouse of the largest and most 

abundant isoform of the RIM1 protein, RIM1α, has been made, it is interesting to 

speculate whether reduced expression of RIM2 has a similar effect. RIM1α, plays an 

essential role in maintaining normal probability of neurotransmitter release as well as in 

long-term presynaptic potentiation in the hippocampus and cerebellum and thus is 

important for associative memory and learning [199, 200]. RIM1α knock out mice show 

deficits in maternal behaviour without structural abnormalities in brain architecture [201]. 

Moreover, increased locomotor activity in response to the mild stress of a novel 

environment was also observed and interpreted as an abnormal fear response [200]. 

These observations are interesting in relation to ASDs since deficits in maternal 

behaviour of RIM1α-/- mice might be a sign of abnormal social interaction in the mouse, 

and this is one of the key diagnostic criteria for ASDs. Moreover, an abnormal stress 

response to novel situations and environments as seen in the RIM1α-/- mice is also a very 

common observation in autistic patients.  

 An 874 kb maternal duplication on 5p14.1 comprising exon 1 and 2 of the 12 

exons in CDH9 was identified by BAC array-CGH in the twins. In the database of 

genomic variants [191] a variation of 179.5 kb overlapping the 3’ end of CDH9 was 

reported in a normal control subject. However, it is unfortunately not stated whether this 

region is deleted or duplicated and thus does not help us to infer whether our finding is of 
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clinical importance. Cadherins are Ca2+ dependent adhesion molecules (figure 4) that 

mediate homophilic binding and are important in tissue histogenesis, neural 

differentiation, neurite outgrowth and synapse formation [202, 203]. The essential role of 

cadherins in synapse formation appears to be mediated early in synaptic development 

since early disruption of cadherin function affects synaptogenesis and subsequent 

synaptic stability [203, 204]. Intracellularly, cadherins interact with the actin cytoskeleton 

and several signalling pathways as well as play a role in localizing synaptic vesicles at 

nascent synapses [204]. In rat, CDH9 is most extensively expressed in CA3 in 

hippocampus but expression was also found in the basolateral nucleus of the amygdala, 

the epithelial layer lining the ventricles and covering the surface of the brain and the 

cingulate cortex [202]. Since cadherins seem to play an indispensable role in synapse 

formation it is imaginable that disruption of these genes can be involved in the 

development of ASDs. 

 Defective synapse function has previously been identified as an underlying cause 

of some cases of ASDs and Asperger syndrome where NLGN3 (neuroligin 3) or NLGN4 

(neuroligin 4) have been mutated [34]. Neuroligins are postsynaptic membrane proteins 

that are required for proper synapse maturation and brain function [73]. Mutations in 

NLGN3 and NLGN4 have been identified in patients with childhood autism, Asperger 

syndrome and mental retardation [34, 35]. The mutations identified in autistic individuals 

impairs cell surface transport of the mutant proteins, but do not completely abolish 

synapse formation activity [205-207]. Likewise, several genes encoding synaptic proteins 

are mutated in individuals with mental retardation and epilepsy that are common 

comorbid diagnosis to ASDs: DLG3 (homolog of disc large 3) encoding SP102, DLG1 

(homolog of disc large 1) encoding SAP97, SYNI (synapsin I), RabGDIα (Rab GDI-

dissociation inhibitor α), RAB3GAP (Rab3 GTPase activating protein), MECP2 (methyl 

CpG binding protein 2), TSC1 (tuberous sclerosis 1) encoding hamartin or TSC2 

(tuberous sclerosis 2) encoding tuberin [53, 60, 208-215]. In figure 4 the location and 

functions of these defect synapse proteins are depicted. It is conceivable that mutations 

in any of the genes encoding proteins involved in the processes depicted in figure 4 may 

lead to similar phenotypes and thus also suggests that RIM2, BAALC and CDH9 as well 

as other binding partners may be susceptibility genes for ASDs.  

 In another patient diagnosed with childhood autism we have identified a deletion 

including BRUNOL4 and two of the five ultra conserved sequences (UCSs) located close 
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to this gene (paper I). The UCSs are defined as sequences ≥200bp with 100% identity in 

the human, mouse and rat genome [118, 152]. We sequenced the five UCSs that are 

located close to BRUNOL4 in 157 patients with ASDs (including the present twins). We 

identified a nucleotide change in uc.432 in the twins and their father. This nucleotide 

change was not found in 167 controls.  

 BRUNOL4 belongs to the elav (embryonic lethal abnormal visual system) family 

of RNA-binding proteins that is involved in neuronal differentiation and maintenance [119, 

145, 216, 217]. This family of genes is important in posttranscriptional regulation of gene 

expression such as alternative mRNA splicing, regulation of translation and rate of mRNA 

turnover [119, 145]. These processes have proved important not only in synthesizing 

somatic proteins, but also in selective targeting of these proteins to synapses as well as 

regulated translation of dendritically localized mRNAs near synaptic contacts, which is 

crucial in inducing synaptic plasticity [217, 218]. Genes encoding proteins with similar 

functions, e.g. FMR1 (fragile X mental retardation 1), are mutated in several types of X-

linked mental retardation [146] which substantiates their possible role in the development 

of ASDs. In addition, when knocking out the gene encoding the RNA-binding protein 

translin in mice, a male-specific deficit in learning and memory, locomotor activity, 

anxiety-related behaviour and sensorimotor gating is noted. This is interesting in concern 

to ASDs considering the pronounced preponderance of males compared to females 

[219]. All in all these findings suggest that this group of RNA-binding proteins is important 

for neuronal development and maintenance in general and synaptic development and 

function specifically and thus may be susceptibility genes for ASDs. 

 The most consistently suggested inheritance pattern for ASDs involves 

transmission of several epistatic genes [2] and thus fits either an oligogenic or polygenic 

model of inheritance. The existence of a threshold or point of balance has been 

postulated [156] meaning that a threshold is reached when a sufficient number of 

susceptibility genes are inherited from both parents. In line with this theory, the mother of 

our patients is hemizygous for RIM2, BAALC and CDH9, and the father is hemizygous for 

ZBTB7C and has a nucleotide change in an UCS that is probably associated with 

BRUNOL4. It is conceivable that ASD arose in our patients due to the additive effects of 

these alterations. This does not exclude the involvement of genetic factors that were not 

detected by us. However, the study suggests that detailed molecular dissection of 

patients with multiple inherited chromosomal rearrangements may reveal information 
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about susceptibility genes for ASDs. The common functional theme of the candidate 

susceptibility genes identified in this study suggests that synaptic dysfunction is the basis 

for ASD in the Swedish twins presented here. The numerous identified mutations in 

genes encoding synapse proteins in patients with autism, mental retardation, and 

epilepsy as described above substantiates that abnormal development of synapse 

function as well as a skewed balance between neurotransmitter systems may indeed be 

the underlying cause of ASD in some individuals [41, 43, 220]. Thus, we find it most likely 

that future genetic research will elucidate changes in the properties of complex gene 

networks involved in synaptogenesis and/or synapse maintenance in ASD patients.   
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SUPPLEMENTS 

Name of sequence Primer sequence Product length 

5' GGT CGG GCA GCG GGA AGT AGG G 3' 
ZNF_cDNA_2 

5' TGT GAC CAC CTG CAC CGC CAC A 3' 
403 bp 

5' GTG TGG AAA GAA GTC CGG GGC GAA TG 3'  
ZNF_cDNA_1 

5' GAC AAG GAG GAC GAT GAC GAC GAC GAA GA 3' 
363 bp 

Supplementary table 1. Primers for southern blot probes.  

 

Name of Sequence  Primer sequences 
Lengt
h 

Melting 
temp. 

Forward: 5' GCA CTG CTG GTG TTT AAG 3' 
Uc429 

Reverse: 5' GGC TCT GTA TCT AAA AGT GTG 3' 
412 bp 57OC 

Forward: 5' CCG TCC CAA CAT ACA CTC AC 3' 
Uc430 

Reverse: 5' AGA GGG GGA GGT TTA GGA TTT 3' 
519 bp 57/60 OC 

Forward: 5' TGT CAT AAT CAA AAG GCG GGA CTA CAG 3' 
Uc431 

Reverse: 5' GCT TGC CCA CCA ACT AAC GAG AAC 3' 
480 bp 57 OC 

Forward: 5' GTC TAT CTT CTC ATG TGT CAG CAA CAA GT 3' 
Uc432 

Reverse: 5' ACT CCT TCC ATT ACC CTC GCT AAA C 3' 
529 bp 57 OC 

Forward: 5' GCA AGC AAT TAC TGG CGA TTT GT 3' 
Uc433 

Reverse: 5' TGT ATG GTG GCT CGC AAA GG 3' 
424 bp 57 OC 

Supplementary table 2. Primers for dHPLC screening and sequencing of UCSs. 
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Name of sequence Primer sequence Length 
Forward: 5' ATA AAG GTT CCT GTG ATG TCA G 3'                               

CHR7 
Reverse: 5' GTAAGTTATTTAGATGATTTTGAATGC 3' 

266 bp 

Forward: 5' ATT AAA CAT GAT AAA AGG GAT TCT TAC 3'                   
CHR13 

Reverse: 5' ATA ATG AGC ACT TAG AGC AGG A 3' 
213 bp 

Forward: 5' AAA CGT GTG CTC TTT TCC CCA TCT TAT 3'                   
CHR20 

Reverse: 5' GCT AGC CCT CTC TGG ATT CCT TCT TC 3' 
354 bp 

Supplementary table 3. Primers used for PCR check of genomic contamination of cDNA 
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ABSTRACT 
The pericentric inv(10)(p11.2q21.2) has been frequently identified in cytogenetic 

laboratories, is phenotypically silent and is considered to be a polymorphic variant. 

Cloning and sequencing of the junction fragments on 10p11 and 10q21 revealed that 

neither inversion breakpoint directly involved any genes or repetitive sequences, 

although both breakpoint regions contain a number of repeats. In our series of apparently 

unrelated inv(10) families, all 20 had identical breakpoints and detailed haplotype 

analysis showed that the inversions were identical-by-decent. Thus although considered 

a common variant, the inv(10)(p11.2q21.2) has a single ancestral founder among 

Northern Europeans. 

 

 

A small number of cytogenetically visible human chromosome rearrangements are 

considered to be polymorphic variants, including several common pericentric inversions 

[221]. These inversions fall into two classes: one where both breakpoints occur within 

heterochromatin (chromosomes 1, 3, 9 and 16) and the other where both breakpoints 

occur within euchromatin (chromosomes 2, 5 and 10). The heterochromatic variants are 

the most frequent but may be a consequence of alterations in the amount and distribution 

of heterochromatin rather than true inversions. 

The pericentric inv(10)(p11.2q21.2) is not associated with any phenotypic 

abnormalities [222] and has been frequently identified in cytogenetic laboratories in the 

UK [222], France [223], Denmark and Sweden [224], and North America [225]. The 

estimated frequency of the inv(10) among prenatal diagnostic referrals to the laboratories 

taking part in this study is 1 in 3600 in Germany, 1 in 7100 in Denmark and 1 in 12800 in 

the UK. Thus while the great majority of chromosome inversions appear to be unique 

rearrangements, the frequency and wide geographical distribution of the 

inv(10)(p11.2q21.2), suggests that it might be a recurrent variation that has arisen 

independently in different populations [226]. 

Repetitive sequence elements have been implicated in the formation of a range of 

recurrent structural rearrangements [227]. For example, the breakpoints of the most 

frequently occurring non-Robertsonian translocation, t(11;22), are within palindromic AT-

rich repeat sequences (PATRRs) [228]  and low copy number repeats (LCRs) or 

duplicons mediate the formation of microdeletions and microduplications [229]. 
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No Patient Country of Origin 
1 Ger1 Germany 

2 Sw1 Sweden 

3 Sw2 Sweden 

4 Dk1 Denmark 

5 Dk2 Denmark 

6 Dk3 Denmark 

7 Uk1 United Kingdom 

8 Uk3 United Kingdom 

9 Uk4 United Kingdom 

10 Uk5 United Kingdom 

11 Uk6 United Kingdom 

12 Uk7 United Kingdom 

13 Uk8 United Kingdom 

14 UK9 United Kingdom 

15 UK10 United Kingdom 

16 Ger2 Germany 

17 Ger3 Germany 

18 Ger4 Germany 

19 Ger5 Germany 

20 Rus1 North Western Russia 

Table 1. Study Population. Bold = phase known 
 

We have studied a series of 20 apparently unrelated families with cytogenetically 

identical inv(10)s comprising nine families from the UK, five from Germany, three from 

Denmark, two from Sweden and one from North Western Russia (Table 1). Our study 

had two specific aims: (1) to characterize the inv(10) breakpoints at the molecular level to 

ascertain whether the formation of the inversion is mediated by repetitive sequence 

elements and (2) haplotype analysis to determine the proportion of inv(10)s which arose 

independently and the proportion which share an ancestral founder and are identical-by-

descent (IBD). 

The inv(10) breakpoints of patients 1 and 2 were located by fluorescent in situ 

hybridization (FISH) in the cytogenetic bands 10p11.21 and 10q21.1. For both inv(10) 

carriers the BAC clone RP11-92B19 spans the breakpoint on 10p11.21. On 10q21.1 the 

breakpoints of both carriers were within the overlapping region of BAC clones RP11-
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22H3 and RP11-806B6. Subsequent analysis showed that the breakpoints of a further 

seven inv(10) carriers fell in the same spanning BAC clones [230]. 

A) 

10pter - GTAGTAATGTATGCATTTGTAATAGTAATAGTTAACATTACCA 

  GTAGTAATGTATGCATTTGT--TAGTAATAGTTAACATTACCA 

 

  ATCAATTAGTGTATTCATAATTCTATGTAATGTAATTATTATTAA  - 10qter 

  ATCAATTAGTGTATTCATAA--CTATGTAATGTAATTATTATTAA 

B) 

 

Sequence of the 10p GTA TGC ATT TGT AA TTA TGA ATA CAC 

junction fragment  CAT AGC TAA ACA TT AAT ACT TAT GTG 

 

Sequence of 10q   ACA ATT ACA TAG TAG TAA TAG TTA  

junction fragment  TGT TAA TGT ATC ATC ATT ATC AAT 

 

Figure 1. Sequence Analysis of Junction Fragments. (A) Genomic sequence encompassing breakpoints. (B) 
Sequence of PCR-amplified junction fragments showing the chromosome 10 genomic sequence (normal 
text), the sequence flanking the 10p11 breakpoint (white text), the sequence flanking the 10q21 breakpoint 
(underlined text), and the sequence from either 10p11 or 10q21 (boxed). The genomic sequences shown 
have the following coordinates in NCBI 35 (November 2005):10p: 37,148,066 – 37,148,108 / AL390061.9; 
4,483 – 4,525 and 10q: 59,748,173 – 59,748,217 / AC016396.6; 120,582 – 120,626. 
 

The inversion breakpoints of patient 1 were further refined by Southern blot 

analysis and subsequently cloned. Sequence analysis revealed an overall loss of two 

nucleotides. The break in the 10q junction fragment could be unambiguously assigned, 

but in the 10p junction fragment there was a 2 bp overlap common to both 10p11 and 

10q21 sequences (Figure 1). Thus it is not possible to tell at which breakpoint site the 

deletion occurred. Apart from the 2 bp identity at the breakpoint, there was no extensive 

homology between the 10p11 and 10q21 sequences. 

To determine whether other inv(10) carriers in our series contained the same 

breakpoints, we designed PCR assays to specifically amplify the rearranged 

chromosome 10 (Table 2). PCR fragments of identical length were amplified at both 

breakpoints in the remaining 19 families and sequencing revealed that the breakpoints 

were identical in all the inv(10) carriers.  
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The 10p11 breakpoint maps to 37,148 kb from 10pter (NCBI 35, Nov 2005) in a 

gene desert with no known gene for 300 kb on either side of the breakpoint. The 10q21 

breakpoint maps to 59,748 kb within a cluster of four genes (IPMK, CJ070, UBE2D1 

[MIM 602961] and TFAM [MIM 600438]). Although a position effect cannot be excluded, 

no genes are directly disrupted by either breakpoint. This observation is consistent with 

the benign nature of the inversion.  
 

Breakpoint Primer Sequences Fragment Size PCR Conditions 

10p11.2 GAGGCCAGGCTTAAA  

GCAACCCCACTATGGTCTGCACCAG 
354 bp 39 cycles: 95oC 30s, 57oC 30s, 

72oC 40s 

10q21.2 AGCTGCTGTAGCCTTTGCAC 

AACTGGTAAAAGAAGATCCTTGG 
513 bp 39 cycles: 95oC 30s, 56oC 30s, 

68oC 40s 

Table 2. Amplification of 10p11 and 10q21 Junction Fragments. 
 

The breakpoints did not directly involve any repetitive sequences. However, 

although the breaks occurred within short stretches of unique single copy sequence, in 

both cases these were flanked by several repeats. The RepeatMasker program showed 

that the sequence around both breakpoints was enriched for interspersed repetitive 

elements. The 10 kb interval on 10p11, 5 kb on either side of the breakpoint, contained 

34% repetitive sequences (15% SINEs, 14% LTRs) and the 10 kb interval on 10q21 

contained 47% repetitive sequences (20% LINEs, 10% LTRs, 9% SINEs). Interspersed 

repeats may promote instability and the formation of DNA double strand breaks and/or 

act as substrates for recombination [227]. Therefore, while it seems unlikely that the 

sequences around each breakpoint predisposed to the formation of the inversion, we 

cannot exclude this possibility. 

The presence of the same breakpoints in all inv(10) carriers and the lack of 

obvious predisposing factors suggest a founder effect, i.e. that all 20 families share a 

common ancestor. In order to determine whether the inv(10)s were all IBD we undertook 

detailed haplotype analysis using microsatellites and SNPs. DNA was available for more 

than one inversion carrier from five of the 20 families. The five haplotypes for which 

phase was known were identical or differed at no more than two of the 17 microsatellites 

tested within the inversion, (Table 3). This suggests that all five inv(10)s are IBD and 

allowed us to predict the likely ancestral haplotype which was identical to that observed 
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for family 8 (UK 3). In contrast to the degree of allele sharing within the inverted region, 

the flanking haplotypes were completely divergent outside the inversion breakpoints. 

We also typed the same microsatellites in the 15 families where DNA was 

available from only a single carrier (Table 4). This demonstrated that all 20 families are 

IBD. The alleles in eight of the 20 families were consistent with the common haplotype, 

while in 12 families there was at least one difference. In total there were nine allele 

differences: five were private mutations, while four were seen in more than one family. 

The most common allele change observed was at the microsatellite D10S220 from a 

PCR product length of 107 bp in the ancestral haplotype to 109 bp in five families. 

For SNP analysis (Supplementary Table 1) we compared three families where 

phase was known and four families where phase was unknown. In contrast to the 

microsatellites, which spanned the whole inversion, SNPs were chosen in the immediate 

vicinity of the breakpoints over a few kb. All seven inv(10) families tested had exactly the 

same haplotype (Table 5) providing further evidence that the inversions are IBD. Families 

2 (Sw1) and 3 (Sw2) had identical haplotypes even though they differed at four of the 17 

microsatellites. This is likely to be due to the higher mutation rates in microsatellites 

compared to SNPs. Thirty-six control SNP haplotypes were generated from 18 normal 

individuals (from nine trios) to assess the frequency of the inversion haplotype. There 

were 19 different haplotypes and in total six of the 36 control chromosomes carried the 

inversion haplotype (one homozygous and four heterozygous individuals). Thus it is 

unlikely that the SNP haplotype shared by the inv(10) carriers is coincidental. 

The haplotype analysis demonstrated complete suppression of recombination 

within the inverted segment. Our data can not distinguish between a direct effect, i.e. 

crossing over does not occur, or indirect selection against unbalanced recombinant 

products. The inversion breakpoints are close to the centromeric areas of low 

recombination. No recombinants were seen in two studies of 33 and 15 inv(10) families 

[222, 224]. 
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Het Alleles Mb Locus Family 2 Family 3 Family 8 Family 9 Family 15 Founder 
0.84 10 28.7 D10S600 178 182 190 186 182 - 

0.83 9 29.5 D10S213 188 180 . 188 188 172 182 - 

0.76 12 29.7 D10S204 291 291 319 329 295 - 

0.82 9 30.6 D10S193 214 220 224 224 220 - 

0.80 9 31.7 D10S208 180 182 182 178 182 - 

0.86 12 32.4 D10S199 173 173 173 179 179 - 

0.72 10 33.7 D10S1666 266 258 276 274 256 - 

1.00 unknown 33.9 D10S1175 320 320 316 310 348 - 

0.70 10 36.8 D10S176 114 94 94 94 94 - 

0.73 6 37.1 D10S1791 207 201 201 . 207 201 201 - 

  37.1 10p11.21       

0.67 unknown 37.8 D10S508 184 184 184 184 184 184 

 Centromere  39 – 41        

0.85 13 42.8 D10S141 115 115 115 . 131 115 115 115 

0.87 10 42.8 D10S469 123 123 123 . 137 123 123 123 

0.84 10 44.8 ZNF22 151 151 151 151 151 151 

0.90 17 48.0 sJRH 303 299 299 299 299 299 

0.86 11 49.5 D10S1793 254 254 254 252 254 254 

0.75 5 50.4 D10S1766 171 171 171 171 171 171 

0.84 10 51.7 D10S220 107 107 107 107 109. 107 

0.79 6 51.8 D10S196 100 94 100 100 94 . 100 100 

0.84 11 54.6 D10S1790 191 193 193 193 193 193 

0.76 8 54.7 D10S539 93 93 93 93 93 93 

0.88 14 56.8 D10S1124 231 231 231 231 231 231 

0.78 7 57.3 D10S1788 249 249 249 249 249 249 

0.71 13 58.0 D10S1767 256 256 256 256 256 256 

0.84 9 58.4 D10S1756 192 192 . 194 192 192 192 192 

0.88 unknown 58.6 D10S524 369 365 369 369 369 369 

0.75 8 58.7 D10S1659 184 184 184 184 184 . 194 184 

  59.8 10q21.1       

0.79 8 60.8 D10S589 190 186 184 184 186 - 

0.78 8 60.9 D10S464 140 140 144 134 140 - 

0.78 10 63.8 D10S1652 167 163 165 161 171 - 

0.80 12 65.2 D10S581 142 134 . 138 136 136 148 - 

0.78 9 66.8 D10S1743 227 - 235 243 241 - 

0.76 12 68.2 D10S1670 305 301 305 305 . 307 321 - 

0.80 6 69.4 D10S210 135 - 133 129 . 133 131 - 

0.82 9 70.3 D10S1647 204 208 212 208 206 - 

0.87 12 70.6 D10S1665 240 - 238 218 234 . 240 - 

0.83 9 71.7 D10S537 - - 298 290 292 - 

0.85 12 72.6 D10S1650 136 - 132 124 138 - 

Table 3. Microsatellite Analysis in Families were Phase is Known. The first four columnns give details of the 
microsatellites used, the next five columns show the allele sizes for each family and the last column shows 
the inferred ancestral haplotype. Allele sizes are taken from the total size of the PCR product and are given  
in base pairs to the nearest whole number Breakpoints are shown as horizontal black bars and the 
centromere as a grey bar. All microsatellite details are available from the Genome Database and distances 
were taken from Ensembl. Alleles outside the inversion are in italics. Shared alleles and the common 
haplotype are shown in bold, allele differences are highlighted in white text. 
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Locus 
Ancestral 
Haplotype 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

10p11.21                                          

D10S508 184  - - - - - - - - - - - - - - - - - - - - 

Centromere                                          

D10S141 115  - - - - - - - - - - - - - - - - - - - - 

D10S469 123 - - - - - - - - - - - - - - - - - - - - 

ZNF22 151 - - - - - - - - - - - - - - - - - - - - 

sJRH 299 - 303  - - - - - - - - - -  - - - -  303 303 - - 

D10S1793 254 - - - - - - - - 252  - - - - - - - - - - - 

D10S1766 171  - - - - - - - - - - - - - - - - - - - - 

D10S220 107  109 - - - - - - - -  109  109 - - -  109 - - - -  109 

D10S196 100 - -  94 - - - - - - - - - - - -  - - - - - 

D10S1790 193 - 191  - - - - - - - - - - - - - - - - - - 

D10S539 93 - - - - - - - - - - - - - - - - - - - - 

D10S1124 231 - - - - - - - - - -  213/223 - - - - - - - - - 

D10S1788 249 - - - - - - - - - - - - - - - -  - - - - 

D10S1767 256 - - - - - - - - - - - 254  254 - - - - - - - 

D10S1756 192 - - - - - - - - - - - - - - - -  190 190 - - 

D10S524 369 - - 365 - - - - - - - - - - - - - - - - - 

D10S1659 184 - - - - - - - - - - - - - - - - - - - - 

10q21.1                                         

Table 4. Microsatellite Results for All 20 Inv(10) Families. The common ancestral haplotype is shown in the second column. Subsequent column show the 
results for each family. A dash “-“ indicates the same allele is present as in  the ancestral haplotype. Where no allele is shared with the ancestral haplotype, 
i.e. a microsatellite mutation, the size of the divergent allele is shown .. Allele sizes are taken from the total size of the PCR product and are given in base 
pairs to the nearest whole number Only microsatellites within the inverted region are shown. 
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It is difficult to make an accurate estimation of the age of the inversion. The 

geographical distribution of the 20 inversion carriers, the accumulation of microsatellite 

mutations within the inversion, estimates for which range from 10-2 to 10-4 per locus per 

generation, and the occurrence of crossovers very close to both the 10p11 and 10q21 

breakpoints in most, if not all, families suggest that the rearrangement is not a recent event. 

This is consistent with the calculation of average reproductive fitness for inversions of 0.926 ± 

0.085 [231]. 

The breakpoints of a small number of other pericentric inversions have also been 

determined. In contrast to the inv(10), these inversions were studied because they were 

associated with specific abnormal phenotypes and consequently the majority of breakpoints 

were identified within the introns of genes [232-236]. Graw et al. [237] cloned the breakpoints 

of the inv(8)(p23.1q22.1) which is associated with various clinical manifestations including 

mental retardation and heart defects in unbalanced carriers (Rec 8 syndrome, MIM 179613). 

The results were similar to the inv(10) in a number of ways: no genes were directly disrupted 

by the inversion; the breakpoint sequences showed little homology; the breakpoints lay in 

unique sequences flanked by repetitive elements and the inversion has spread widely from a 

single founder.  

The 20 inv(10) families studied were all from Northern Europe. It would be interesting 

to establish whether all cases worldwide are also derived from the same founder. Of the 

inv(10) cases in the literature only one has been reported as de novo [238]. Breakpoint 

sequencing and haplotype analysis should be applied to any potentially unrelated or non-

European inv(10) carriers. We have contacted several cytogenetic laboratories worldwide 

whose populations are unlikely to be of European origin. To date we have had replies from 

three laboratories (in Egypt, Mexico and Singapore), none of whom have identified a single 

inv(10). The only non-European cases in the literature are from the USA and Canada [223], 

and these could conceivably be individuals of European origin.  

Thus the overall evidence suggests that although it is considered a common variant, 

the inv(10) may well be a unique rather than a recurrent rearrangement, with a single 

European founder. It would be interesting to apply the approaches used in this study to other 

common inversions, such as the variant inv(2)(p11q13), to establish whether they are also 

identical-by-descent. 
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10p Alleles Inv(10) 

rs3898062  A / G G 

rs2488748  C / G  G 

rs12257945 A / G A 

rs12572077  A / C A 

rs2695081  C / G G 

rs4934835  C / G C 

rs11010897 A / G A 

Breakpoint 

rs2463226  A / T A 

rs10827731  C / T C 

rs11817755  G / T T 

rs3867222  C / T T 

rs2490841  G / T T 

10q Alleles Inv(10) 

rs16851  C / T T 

rs11818916  A / C A 

rs2486489  G / T T 

rs12248484  A / G G 

Breakpoint 

rs7072568  A / G G 

rs12241885  C / T C 

rs1007915 C / T T 

Table 5. Conserved SNP Haplotype. Twelve SNPs around the 10p breakpoint and seven SNPs around the 10q 
breakpoint were selected for SNP analysis by enzyme digestion or sequencing. All details are given in 
Supplementary Table 1. 
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SUPPLEMENTS 
Chr. SNP Sekv/ 

enz. 
SNP Primers PCR 

fragment  
PCR  conditions Restriction 

enzymes 
Restriction fragments 

rs3898062 Enz. A/G 5’ AGGAGAATGGCGTGAATC 3’ 
5’ GATATTATCATGGAGGCTTTAGG 3’ 

344 bp Platinium taq. 96° C 5 min.; (96°C 30s.; 59.8-66.4°C 
30 s.; 68°C 30s)x39; 68°C 10 min. 

Mse I A: 29, 42, 117, 156 bp 
G: 42, 146, 156 bp 

rs2488748 Enz. C/G 5’ GTGGCAAGAAAGCTAGTAAGT 3’ 
5’ TCAAATAGCAGAGTCGCA 3’ 

320 bp Ordinary Taq. 96° C 5 min.; (96°C 30s.; 48-56.4°C 
30 s.; 72°C 30s)x39; 72°C 10 min. 

Fnu4HI C: 81, 239 bp 
G: 58, 81, 181 bp 

rs12257945 Sekv. A/G 5’ TTGTATTAGAGGAACCCGAAGCA 3’ 
5’GGAGCCAGTGTAACACGGTAGAT 3’ 

324 bp Ordinary Taq. 96° C 5 min.; (96°C 30s.; 48-56.4°C 
30 s.; 72°C 30s)x39; 72°C 10 min. 

  

rs12572077
. rs2695081 

Sekv. A/CG/C 5’ CATCTTTTCCCCACCATAGTGTT 3’ 
5’ CTCAGCCACAGATTCAAGTTCC 3’ 

272 bp Ordinary Taq. 96° C 5 min.; (96°C 30s.; 48-56.4°C 
30 s.; 72°C 30s)x39; 72°C 10 min. 

  

rs4934835 Sekv. G/C 5’ aggctgctcaaataaacacgtgaa 3’ 
5’ GTGGTGGTGTACCCGTGGTC 3’ 

224 bp Ordinary Taq. 96° C 5 min.; (96°C 30s.; 48-68°C 30 
s.; 72°C 30s)x39; 72°C 10 min. 

  

  
rs11010897 

Enz.   A/G 5’ GTACACCACCACAGCTAATG 3’ 
5’ GTTGGCTATAATACGGAGTTCTA 3’ 

354 bp Platinium taq. 96° C 5 min.; (96°C 30s.; 48-59.8°C 
30 s.; 68°C 30s)x39; 68°C 10 min. 

Alu I A: 14, 108, 232 bp 
G: 14, 340 bp 

Breakpoint 
rs2463226 Sekv. A/T 5’ CAAGGATCTTCTTTTACCAGTTA 3’ 

5’ AATGAAACTAATTTTATCATAGGCT 3’ 
155 bp Ordinary Taq. 96° C 5 min.; (96°C 30s.; 48-56.4°C 

30 s.; 72°C 30s)x39; 72°C 10 min. 
  

rs10827731 Sekv. C/T 5’ GCACCAATATAAAAATGACTCAAA 3’ 
5’ CTCAAGAGCAGCCAGAGTG 3’ 

170 bp Ordinary Taq. 96° C 5 min.; (96°C 30s.; 48-56.4°C 
30 s.; 72°C 30s)x39; 72°C 10 min. 

  

rs11817755 Enz. G/T 5’ GAGGTGTGGAAGGAGAGGCGCAGGT 3’ 
5’AGCTGAGGCCCGGCAAGAATTTGAGT 3’ 

239 bp Platinium taq. 96° C 5 min.; (96°C 30s.; 69-70°C 30 
s.; 68°C 30s)x39; 68°C 10 min. 

Alu I G: 2, 20, 74, 143 bp 
T: 2, 20, 60, 74, 83 bp 

rs3867222 Enz. C/T 5’ GTTCCATCACAGGTCATCTT 3’ 
5’ CAATAAAATGTTGGGCTATTAAA 3’ 

332 bp Ordinary taq. 96° C 5 min.; (96°C 30s.; 48-59.8°C 30 
s.; 72°C 30s)x39; 72°C 10 min. 

Tsp45I C: 332 bp 
T: 83, 249 bp 

10p 

rs2490841 Enz. G/T 5’ TGGCTGTGTTTTCAGATTGG 3’ 
5’ GAGAGGGAAAGAGCAATGACA 3’ 

272 bp Ordinary taq. 96° C 5 min.; (96°C 30s.; 48-63.7°C 30 
s.; 72°C 30s)x39; 72°C 10 min. 

Alu I G: 78, 194 bp 
T: 272 bp 

rs16851 Enz. C/T 5’ TATCTACACATTCCATTATTCCC 3’ 
5’ CATAATATATGTCAGGCGTTTG 3’ 

195 bp Ordinary taq. 96° C 5 min.; (96°C 30s.; 48-56.4°C 30 
s.; 72°C 30s)x39; 72°C 10 min. 

Taq I C:44, 151 bp 
R:195 bp 

rs11818916 Enz. A/C 5’ TGGATGTTTGATGGAGTTGGTAGTTTTG 3’ 
5’ GTAGTGTCTGCTGGGTTCACCGAA 3’ 

199  bp Ordinary taq. 96° C 5 min.; (96°C 30s.; 48-68°C 30 
s.; 72°C 30s)x39; 72°C 10 min. 

Tsp45I A: 61, 138 bp 
C: 199 bp 

rs2486489 Sekv. G/T 5’ TTCCCCCACAAAACATCTCAACTG 3’ 
5’ TGGTTTCCAGCTAGTAGATTTGAATCCAC 
3’ 

221 bp Ordinary Taq. 96° C 5 min.; (96°C 30s.; 48-66.4°C 
30 s.; 72°C 30s)x39; 72°C 10 min. 

  

rs12248484 Sekv. A/G 5’ AGTCTGATTGTGGCTATTTGC 3’ 
5’ TATACTGTTAGCCTCTGACCCAT 3’ 

252 bp Ordinary Taq. 96° C 5 min.; (96°C 30s.; 51.2-63.7°C 
30 s.; 72°C 30s)x39; 72°C 10 min. 

  

rs4644605 Sekv. C/T 5’ ATTTTGGGGGATAGGAGTATGTG 3’ 
5’TTTAGCATTTGGGCAGTCATAA 3’ 

271 bp Ordinary Taq. 96° C 5 min.; (96°C 30s.; 48-59.8°C 
30 s.; 72°C 30s)x39; 72°C 10 min. 

  

Breakpoint 
rs7072568 Sekv. A/G 5’ AGGTGGGCGGGATGTTAATGT 3’ 

5’ TGACCGGGAGAAAAGGCTTAAGA 3’ 
272 bp Ordinary Taq. 96° C 5 min.; (96°C 30s.; 48-64.8°C 

30 s.; 72°C 30s)x39; 72°C 10 min. 
  

rs12241885 Enz. C/T 5’ CATAAATTGCCCGATTGCCGACT 3’ 
5’ AGGGATCTTGCAGCCGTCAGAA 3’ 

307 bp Ordinary taq. 96° C 5 min.; (96°C 30s.; 64.8-68°C 30 
s.; 72°C 30s)x39; 72°C 10 min. 

Fnu4HI C: 12, 50, 61, 184 
T: 12, 50, 245 bp 

10q 

rs1007915 Enz. C/T 5’ TACACTTCCTTCCTCCTGCGTAG 3’ 
5’ AGATGTGGGCACCAGGATATG 3’ 

334 bp Ordinary taq. 96° C 5 min.; (96°C 30s.; 56.4-64.8°C 
30 s.; 72°C 30s)x39; 72°C 10 min. 

Mse I C: 81, 116, 137 bp 
T: 12, 81, 116, 125 bp 

Supplementary table 1. Primers and PCR conditions used to amplifyPCR product for SNP analysis. Restriction enzymes as well as size of restriction 
fragments are stated. 
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8 DISCUSSION 
The phenotypical spectrum of ASDs displays considerable variation even when 

contemplating only the clinically best defined diagnosis “childhood autism”. Some 

individuals have severely mental retardation whereas others have a non-verbal IQ above 

average; some individuals obtain verbal fluency whereas others remain mute; some 

individuals have comorbid epilepsy, phobia, tourette syndrome, OCD, ADHD, major 

depression, bipolar disorder or schizophrenia whereas others do not [3, 14, 16, 17, 20, 

185, 186]. When including the phenotypes observed in close family members the 

variation is even greater and involves delayed onset of speech, difficulty with reading, 

bipolar disorder, major depression, schizophrenia  and anxiety disorders in addition to the 

broader autism phenotype [2, 10, 12-15]. It is therefore necessary to consider different 

possible explanations for this variation. 

 A poly- or multigenic inheritance pattern of several epistatic genes is the most 

consistently suggested explanation for the observed phenotypical variation [2]. According 

to this theory both parents contribute with one or more susceptibility genes that in 

conjunction result in the ASD phenotype but separately or in a different genetic setting 

have different phenotypical outputs that might or might not be within what is considered 

the normal spectrum [2]. Hence, the variation in ASD phenotype is an outcome of the 

number and nature of the inherited susceptibility genes. Paper II and paper IV support 

this inheritance model. In paper II KCNQ3 is disrupted by a de novo translocation in a, 

male patient with childhood autism. Moreover, there might be additional susceptibility 

genes for ASDs on both the maternal and paternal side of the family since the mother 

has seasonal affective disorder, the mother’s sister has a son with behavioural difficulties 

and a paternal cousin has a son diagnosed with Asperger’s syndrome. Hence, we have 

suggested that the de novo translocation in conjunction with unknown genetic factors 

inherited from both parents have resulted in childhood autism in this patient. In paper IV 

the monozygotic, male twin couple with ASD has inherited chromosomal rearrangements 

from both parents. Accordingly, the twins are hemizygous for ZBTB7C due to a paternally 

inherited translocation as well as hemizygous for BAALC and RIM2 because of a 

maternally inherited deletion and they are functionally hemizygous for CDH9 due to a 

maternally inherited duplication. Thus, we suggested that ASD has arisen in the twins 

due to the additive effects of these (and potentially additional, uncharacterized) genetic 
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alterations. The parents do not have any psychiatric disorders or abnormal cognitive 

development. 

 A different, although related, explanation for the observed variation in phenotype 

is that different genes are responsible for different diagnostic entities in ASDs (e.g. 

language impairment, social deficits). This is still a poly- or multigenic inheritance model 

but the genes do not need not be epistatic or function in the same biological pathways. 

This inheritance model is suggested in paper III where we present a Danish man with 

ASD and a maternally inherited translocation. The patient is diagnosed with ASD 

because he only fulfils two of the three core diagnostic criteria for childhood autism: 

social reticence and impairment in verbal and nonverbal communication. The mother has 

four children with four different men but only the youngest child lives with the mother. She 

has supervised custody of this child and has only occasional contact with the proband. 

Even though the mother does not have a clinical diagnosis and therefore in principle is 

considered normal the family history support that she has reduced social capacity. The 

father can not read or write and has impairment of speech. He is most likely either 

severely dyslexic or mentally retarded. He has two children (younger than the proband) 

with another woman. Both of these children have attended a day care centre and a 

school for children with special needs where they have received remedial teaching. 

Hence, our hypothesis is that the proband inherited the reduced social capacity from the 

mother and the communication deficit from the father, which adds up to the ASD 

phenotype.  

 The third proposed explanation for the phenotypic variation implies that 

environmental factors can modulate the phenotypical output of identical genetic 

backgrounds. This effect might also in part be involved in the development of ASD in the 

proband in paper III described above. The maternally inherited translocation disrupts 

NUDT6 that presumably regulates FGF2. Since FGF2 is neuroprotective it is possible 

that altered expression of FGF2 can increase the vulnerability of selected neuronal 

populations which in combination with e.g. stress might result in neuronal death.  

 The fourth possible explanation of the observed phenotype variation is that a 

major locus is involved in the development of ASD and the variability in phenotype arises 

either because of different effects of different mutations in the same gene, or due to 

stochastic variations arising because “genetic programming is probabilistic rather than 

deterministic” [239]. There are several examples of this for ASDs since mutations in ARX 
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can cause autism, infantile spasms, epilepsy, mental retardation or cerebral 

malformations [36]; mutations in NLGN3 and NLGN4 can cause childhood autism, 

Asperger’s syndrome and mental retardation [34, 35], mutations in MECP2 can cause 

childhood autism, Rett syndrome, mental retardation, Angelman syndrome and 

progressive spasticity [54, 147, 240], mutations in FMR1 can cause mental retardation 

and ASDs [57] and mutations in TSC1 and TSC2 can cause tuberous sclerosis, ASDs, 

lymphangioleiomyomatosis, focal cortical dysplasia of taylor [241, 242]. 

The last, and in my opinion most likely, explanation for the phenotypical 

variation is that the ASD spectrum is composed of aetiologically distinct subgroups that 

overlap in phenotypical spectrum. Therefore, no single model will be valid to all ASD 

cases but rather all of the above mentioned inheritance models. This is substantiated by 

the identification of an ASD phenotype in several syndromes and medical conditions with 

known genetic aetiology: Smith-Lemli-Opitz syndrome (DHCR7) [243], Bannayan-Riley-

Ruvalcaba syndrome (PTEN) [244], Rett syndrome (MECP2) [54], Neurofibromatosis 

(NF1) [57], Tuberous sclerosis (TSC1/TSC2) [57], Angelman syndrome/ Prader Willi 

syndrome (15q11-13 copy number variations) [57, 67] among others. Accordingly, no 

genes will probably be necessary or sufficient to develop ASDs, which poses a problem 

when looking for susceptibility genes by linkage analysis. This might, however, explain 

the few reproducible linkage results obtained for ASDs and it substantiates, that it may be 

difficult if not impossible to identify genetically homogeneous subgroups of ASD patients 

by their phenotype. In addition, it suggests that alternative methods to identify putative 

ASD susceptibility genes must be considered.   

Defining endo-phenotypes in ASD patients such as “age of first word” is a 

well known way of trying to unify the genetic aetiology [245]. One could argue that 

classifying ASD patients according to biologically founded parameters such as 

“decreased volume of hippocampus as identified by MRI scans” or “increased plasma 

serotonin” might be more likely to identify genetically homogeneous groups as these are 

measurable values that are not subject to subjective evaluation.  

Approximately 75% of individuals diagnosed with childhood autism have 

comorbid mental retardation [3]. In addition, mutations in several genes have already 

been shown to result in both mental retardation and/or ASDs (MECP2 [54], NF1 [57, 65], 

TSC1 [57], TSC2 [57], NLGN3 [34, 35], NLGN4 [34, 35], ARX [36], AUTS2 [84]) and it 

might thus be reasonable to suggest that these two disorders for a large part share 
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genetic aetiology. Accordingly, the numerous mental retardation genes identified on the 

X-chromosome might be interesting to consider for ASDs as these might in part explain 

the male preponderance observed in ASDs. Similarly, there might be an overlap in 

susceptibility genes for ASDs and other psychiatric disorders since they tend to 

segregate in the same families as ASDs, show considerable overlap in linkage intervals 

and 72% of patients with ASDs have comorbid other psychiatric disorders [10, 13, 20, 

185, 186]. A different approach to identify susceptibility genes for ASDs could therefore 

be to perform linkage studies in families where the broader autism phenotype or the 

above mentioned cognitive and/or psychiatric disorders are prevalent or to include these 

family members in genome wide screens.  

The easiest way to circumvent the above mentioned problems is perhaps to 

characterize observed chromosomal rearrangements at the molecular level and in 

addition identify additional copy number variations (CNV) by array-CGH. This 

combined strategy makes no assumptions on inheritance models or on whether or not 

susceptibility genes are shared by other ASD patients. This method has primarily been 

used to characterize de novo translocations in ASD patients from the notion that these 

chromosomal rearrangements would pinpoint ASD forms caused by a “major locus” 

mutation. Our results clearly suggest that the strategy is not only suitable for identifying 

major locus susceptibility genes caused by de novo rearrangements but might also 

pinpoint one or more susceptibility genes for polygenic forms of ASDs caused by familial 

chromosomal rearrangements (papers I, II, III, IV).  

However, this method will naturally also identify chromosomal 

rearrangements, CNVs and genes that turn out not to confer susceptibility to ASDs. As 

an example we demonstrate in paper V that the inv(10)(p11.2q21.2) observed in the 

Swedish, male monozygotic twin couple described in paper IV is identical to the 

inversions observed in 19 unrelated individuals without ASDs. Hence, this inversion is 

considered a variant chromosome with no apparent phenotypical implications. This is 

further substantiated by another study describing 33 families with apparently similar 

inversions but no overlapping clinical diagnosis [222]. 

 Distinguishing true susceptibility factors from irrelevant genetic variations is a 

general problem for complex disorders since no single gene is necessary or sufficient to 

cause the disorder and therefore even true susceptibility alleles will be found in some 

controls and be absent from some patients, which is in contrast to Mendelian disorders 



 

 99

[44]. Accordingly, looking for mutations in putative susceptibility genes for ASDs in a 

cohort of patients can not alone reveal the disease-causing potential of the genes but 

must rather be combined with additional information. Functional studies and association 

studies are two approaches to gain information about the relevance of suggested 

susceptibility genes. Another approach could be to pool data of all putative susceptibility 

genes for ASDs and try to identify common developmental pathways like “neuronal 

migration”, “synapse function”, “neurite outgrowth” and eventually even more detailed 

signalling pathways. This would potentially group the disorders into genetically 

meaningful entities and it would provide a functional framework) for identification of 

additional putative susceptibility factors (e.g. protein binding partners. Obviously, this is 

not an easy task since all cellular processes are somehow connected and some proteins 

are therefore involved in several of the above mentioned pathways, but it might 

nevertheless reveal that some pathways are more often involved in the aetiology of ASDs 

than others and thereby sort out relevant from irrelevant genes. In line with this theory 

approximately 40% of the genes in table 1 (5 of the genes identified by us: FGF2, CDH9, 

RIM2, BAALC, KCNQ3) are suggested to encode proteins involved in “synapse function”, 

which means “synaptogenesis”, “neurotransmission”, “long term potentiation (LTP)/ 

learning and memory”, and “neurotransmitter production/degradation”. In addition, 

abnormal synapse function has emerged as an underlying cause of several cases of 

mental retardation and epilepsy as described in paper IV. This further strengthens the 

aetiological overlap in these disorders and supports the importance of synapse 

dysfunction in the aetiology of ASDs. In line with this theory, several recent papers review 

how the normal processes underlying memory formation are changed in Rett syndrome, 

Neurofibromatosis and Angelmann syndrome that are all frequently associated with 

ASDs as well as in some mental retardation syndromes [66, 246]. Future experiments will 

presumably reveal whether abnormal synapse function is indeed one of the main 

underlying causes of ASDs and furthermore reveal whether the candidate ASD 

susceptibility genes identified by us are actually involved in disease development.   
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9 CONCLUSIONS AND PERSPECTIVES 
The studies included in this report support the multigenic inheritance patterns for ASDs 

that have previously been suggested (paper I, II, III, IV). Moreover, the candidate 

susceptibility genes identified in paper III (NUDT6/FGF2) provide a potential link between 

a genetic predisposition and an environmental factor (stress) that in a mouse model 

system result in a male specific effect. Accordingly, NUDT6/FGF2 are to my knowledge 

the first autosomal candidates for the male preponderance in ASDs. Thus, in concert with 

previous findings our studies imply that ASDs are composed of many aetiologically 

different disorders that may be caused by different types of mutations. As a direct 

consequence we suggest that characterization of cytogenetically visible chromosomal 

rearrangements in combination with array-CGH may be a powerful strategy to identify 

putative susceptibility genes for ASDs. In this regard we propose that not only de novo 

chromosomal rearrangements (paper I and II) or rearrangements that segregate with a 

phenotype in a family are useful but also multiple chromosomal rearrangements inherited 

from two clinically normal parents might reveal putative susceptibility genes for ASDs 

(paper IV). The candidate susceptibility genes identified include: BRUNOL4, MAPPRE2, 

ZNF397, ZNF396, ZNF271, ZNF24, STATIP1, GALNT1, SLC39A6, FAT (paper I); 
KCNQ3 (paper II); FGF2, NUDT6 (paper III); RIM2, BAALC, CDH9, ZBTB7C (paper IV). 

In addition, we identified three nucleotide changes in two UCSs that are believed to 

regulate nearby genes (paper I). Moreover, we show that the inv(10)(p11.2q21.2)mat 

identified in a monozygotic twin couple with ASD most likely does not have phenotypical 

implications (paper V).  

On the basis of the present (paper II, III, IV) and previous findings we 

suggest that abnormal synapse function (synaptogenesis, LTP/memory and learning, 

neurotransmission, neurotransmitter formation/degradation) might be the underlying 

cause of a considerable proportion of ASD cases. We suggest, that in the future, 

categorizing all putative susceptibility genes for ASD into biological pathways such as 

“synapse function” or “neuronal migration” or even more specific molecular signalling 

pathways such as those forming the basis of memory or learning will reveal general 

biological pathways that are abnormal in ASD patients. This will group ASD patients into 

biological meaningful entities that might require different treatments or genetic 

counselling strategies and might also identify new putative susceptibility genes (e.g. 
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protein binding partners). In addition, this strategy might be helpful in sorting irrelevant 

from relevant candidate susceptibility genes.  

 Since very little is known about most of the putative susceptibility genes for ASDs 

identified in our studies, functional studies, knock out models and association studies are 

needed to reveal which of these genes actually play a part in the development of ASDs. 

We are currently sequencing KCNQ3 in 157 ASD patients and NUDT6 and FGF2 in 137 

male ASD patients to shed light on their possible involvement in the aetiology of ASDs. 

However, due to the complex nature of ASDs a much larger cohort or additional 

functional studies will probably be needed to definitively weaken or affirm their role in the 

aetiology of ASDs. 
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10 APPENDIX A 
Chr. Band Marker LOD Ref. 

p13.2 D1S1675 2,15 [105] 

q23.1 D1S1653 2,63 [247] 1 
q42.2 D1S1656 3,06 [104] 

q31.1 D2S2188 3,74 [103] 
2 

q31.1-q31.3 D2S364-D2S335 2,39 [248] 

D3S3037 4,31 [247] 
3 q26.32 

D3S3715-D3S3037 4,81 [247] 

q23 D4S1647 2,87 [104] 
4 

q26.1 D4S3250 2,65 [104] 

D5S2494 2,18 [104] 

D5S2494 2,55 [102] p13.1 

D5S2494 2,54 [249] 
5 

p14.3 D5S1473 2,13 [104] 

q14..3 D6S1270 2,61 [104] 
6 

q16.3 D6S283 2,23 [106] 

q21.1 D7S1813 2,1 [250] 

q21.2 D7S1813 2,2 [251] 

q22.1 D7S477 3,2 [103] 

q32.2-q34 D7S530-D7S684 2,53 [108] 

q36.1 D7S483 2,13 [102] 

7 

q36.2 D7S2462 3,04 [247] 

p14 D10S1412 2,02 [104] 
10 

q22.3 D10S2327 2 [104] 

D11S1392 2,1 [104] 
11 p13 

D11S1392 2,24 [249] 

q12.2 D13S217-D13S1229 2,3 [251] 

D13S800 2,54 [250] 13 q22.1 

 D13S800 3 [251] 

p13.12-p13.13 D16S3102 2,93 [103] 
16 

p13.13 D16S3102 2,93 [103] 

HTTINT2 2,34 [103] 
17 q11.2 

D17S1800 2,83 [249] 

D19S714 2,31 [104] 
19 p13.12 

D19S714 2,53 [102] 

q11.1 DXS7132 2,75 [247] 
X 

q25 DXS1047 2,67 [102] 

Linkage result for ASDs with LOD≥2.0. Chromosome position refers to UCSC  
march 2006 (hg18). 
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11 APPENDIX B 
Chr. Band Gene Refs. 

NRP2 [76] 
GPR1 [76] 
ADAM23 [76] 
KLF7 [76] 
CREB1 [76] 

q33.3 

FZD5 [76] 
MAP2 [76] q34 ERBB4 [76] 

2 

q36.1 SCG2 [77] 
q27.3 SST [78] 
q28 FGF12 [78] 
p12 GABRG1 [80] 
q21.21 FGF5 [78] 
q21.3 MAPK10 [78] 
q22.1 SNCA [78] 
q22.1-
22.1 GRID2 [78] 

q22.2 ATOH1 [78] 
q22.3 UNC5 [78] 
q27-28.1 FGF2 Paper III 
q28.1 NUDT6 Paper III 

GLRB [82] q32.1 GRIA2 [82] 
NPY1R [82] q32.2 NPY5R [82] 

q34.1 GLRA3 [82] 

3 

q35.2 FAT Paper I 
5 p14.1 CDH9 PaperIV 

q11.22 AUTS2 [84] 
FZD9 [78] 
STX1A [78] 
LIMK1 [78] 
CYLN2 [78] 
GTF2IRD1 [78, 85] 

q11.23 

GTF2I [78, 85] 
q22.1 REELIN [86] 
q31.2 RAY1 [87] 

7 

q36.3 EN2 [88] 
RIM2 Paper IV q22.3 BAALC Paper IV 8 

q24.44 KCNQ3 Paper II 
Chromosome position and reference of candidate 
genes identified by chromosomal rearrange-
ments. 

 
 
 
Chr. Band Gene Refs. 

10 q22.3 KCNMA1 [89] 
q13.2-13.3 NBEA [92, 93] 

MAB21L1 [92] 
DCAMKL1 [92] 13 q13.3 
SMAD9 [92] 
NDN [94] 
SNRPN [94] 
SNURF [94] q11.2 

UBE3A [78, 94] 
GABRB3 [78, 94] 
GABRA5 [78, 94] 

15 

q12 
GABRG3 [78, 94] 

q12.1 MAPRE2 Paper I 
BRUNOL4 Paper I 
SLC39A6 Paper I 
ZNF397 Paper I 
ZNF396 Paper I 
ZNF271 Paper I 
ZNF24 Paper I 
STATIP1 Paper I 

q12.2 

GALNT1 Paper I 

18 

q21.1 ZBTB7C Paper IV 
PCP4 [78] 21 q22.2 DSCAM [78] 
FTSJ1 [96] 
HDAC6 [96] 
PQBP1 [96] 
GRIPAP [96] 

p11.23 

SYP [96] 
p21.3 ARX [36] 
p22.2 GRPR [98] 
p22.31 VCX3A [99] 

X 

p22.31-
22.32 NLGN4 [34, 99] 

Chromosome position and reference of candidate 
genes identified by chromosomal rearrange-
ments. 
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