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ABSTRACT

A sequence of one-dimensional geometric descriptions
is suggested, for representing the contours of text characters
(blobs) in black and white scanned textual images. This
representation can be used to analytically encode alphabets
of similar blobs into pseudo-fonts that are resolution in-
dependent, while simultaneously maximizing compression
potential. Such a sequential one-dimensional representation
was found to retain flexibility and to be at least twice
as compact, when compared to two-dimensional contour
representations classically used for representing generated
resolution independent fonts.
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Electronic storage and transmission of scanned office
documents is of increasingly important in office environ-
ments. The fax machine has already been used worldwide
for decades, and with the maturing of the Internet it has be-
come possible to make old paper documents, such as patents,
electronically available.
The raw scanned format is a wasteful representation

which is inefficient for direct storage and transmission: A
full page is roughly 90 square inches, and if a scanning reso-
lution of 600 dots per inch is used, this corresponds to
black and white pixels or 4 megabytes. Conversely, the main
carrier of information for most office documents is the text,
which only consists of approximately 5000 characters from
an alphabet of 128 possible or about 2.5 kilobytes. Unfortu-
nately, neglecting page layout and font sets by sending only
non-formatted text seriously diminishes reading quality.
The work presented in this article is proposed to be part

of a larger textual image compression system like JBIG2 [1],
where an office document is represented in a lossy manner as

This work is part of a joint study program between the Depart-
ment of Computer Science, University of Copenhagen, Denmark
and IBM, Almaden Research Center. The major part of the effort
was conducted at Almaden Research Center.

the alphabet of blobs plus a list of blob codes and placements.
We will also study the lossless compression of blob bitmaps
from such an alphabet.
Several other lossy compression systems have been sug-

gested to date. Systems based on frequency encoding such
as the JPEG standard do not perform well on black and white
images, since very high frequencies are present. Systems
that try explicitly to identify the font sets and type also exist,
but they have two main disadvantages: Firstly, the number of
fonts grows day by daymaking the task increasingly difficult,
and secondly, when the wrong font or type is identified, the
result is found to be very disturbing to the human eye.
The most powerful lossless systems like JBIG2 are based

on nearby pixel compression models. Such algorithms
mostly disregard the geometrical content and compresses
based on the statistics of the neighboring pixels. Such sys-
tems are highly successful in terms of compression, but they
have some limitations. Firstly, they are essentially one di-
mensional and inherently partition the document into what
has been read and what has not. Hence, the full two dimen-
sional structure is neglected. Secondly, these systems do not
use a model class that is close to what originally produced
the data. Characters are often the result of a geometrical
language, e.g. characters in the Postscript language and the
MetaFont program are represented by a collection of polyno-
mials. Finally, the model is not present in an analytical form,
and requires multiple representations to decode at various
resolutions.
Wewill here study a geometrical an analytical representa-

tion of scanned blobs. Blobs are representable by their closed
contours, since the filling of the space between contours eas-
ily can be asserted by the odd/even fill rule: Examine any
straight line on a page starting from a known color, and flip
color each time a contour is crossed. The goal of this work is
to code blobs in a lossless manner, by splitting the code into
a geometrical model and a noise signal. It is the underlying
intent to investigate the usability of the model alone as a lossy
code.
The list of literature for geometrical descriptors of con-

tours is extremely long, but we have especially found [2, 3, 4]
to be valuable. It seems that the novelty of our work is to
combine the myopic view of differential geometry with in-
formation theory to gain a connection between local and



global models. Connecting local and global is not possible
without comparison of description complexity with the error
of the approximation. For this we will use the Minimum
Description Length methodology [5].

Many models for contours are based on modeling each
of the two coordinate functions and , where

gives the contour. This representation is how-
ever not rotational invariant, and not a very compact one
either, since contours are essentially 1D structures.
The Fundamental Theorem of Curves states that any con-

tinuous 2D curve can be described by the curvature function
up to a Euclidean movement [6]. In the (local) Frenet co-
ordinate system this implies that the curves are locally well
represented by the Frenet approximation,

where and are the tangent and the normal vectors for
the curve.
Although the curvature uniquely describes the curve, it

might not be the computationally most feasible representa-
tion. One major draw-back is that in order to solve the Frenet
approximation given a curvature function, one has to solve
a differential equation and the errors accumulated thereby
seem difficult to handle. Further, it is unclear how to in-
corporate the full knowledge of the limited set of curvature
functions that generate closed non-intersecting curves.
An alternative approach is to cut the shape into pieces

representable as 1D functions each with its own coordinate
system. This is known as a Monge patch. An example of
this is shown in Figure 1. The closed curve is cut into three
pieces, say, and the positions of the cuts (knots) define local
coordinate systems for each piece. For symmetry reasons,
the origin of each local coordinate system has been place on
the center point connecting two knots.
One obvious advantage of this representation is that the

shape is studied as a one dimensional entity, and although it

is not the intrinsic curvature function, each piece will con-
verge towards the Frenet approximation as the density of
knots tends to infinity. Further, if the knots are distributed
according to the absolute curvature, the derivations from the
intrinsic shape is greatly reduced. To see this, view the shape
in the myopic perspective, i.e. by zooming until everything
looks locally linear. Clearly, a representation by piecewise
linear functions differs very little from the intrinsic shape in
this perspective. The amount of zooming necessary is pro-
portional to the curvature: When the curvature is large the
zooming has to be great, and vice versa for small curvatures.
The major disadvantage is that the cutting is a global process,
i.e. each placement of a knot depends on the placement of
the neighboring knots and the curve in between. Secondly,
when only very few knots are used, the functions between
knots are far from the intrinsic shape. E.g. a circle needs at
least 2 cuts, while its curvature function is a constant.
To summarize, we will use a set of coordinate pairs and

connecting 1D functions. Although we make use of 2D coor-
dinates this representation is still rotational invariant since the
majority of contour points are modeled as rotational invari-
ant 1D functions, and the knots will be chosen in a rotational
stable fashion to be described in the following. We call this
the 1+1D model.

In order to approximate a contour by the 1+1D model, we
need to identify a number of knots on the contour, and model
the contour in between knots by 1D functions. To reduce the
description length of a blob we further need to decide on the
model complexity.

Psychophysically, the semantically important points on
a contour are those with extremal curvature (corners) [7].
However, the locations of extremal curvature points are sen-
sitive to noise, hence the image and its derivatives must be
regularized. For this we will use a scale-space [8, 9], in
which an image is extended with a scale parameter such that
the image structure is simplified as scale is increased. In
this paper we will use the Linear scale-space, defined by the
diffusion equation:

where is an any dimensional image, is the spatial
coordinate and the scale coordinate. The Greens function
of the diffusion equation is the Gaussian or normal kernel,
implying that we can implement the diffusion equation by
smoothing the original image with a Gaussian kernel.
Other scale-spaces are also available, and especially the

Mean Curvature scale-space of curves [10] have been exam-
ined in this context [11]. However, for Internet applications
it is important to be able to progressively decode blobs in a
coarse to fine manner, which the linear scale-space models.
Wewill therefore prefer this scale-space over others here, but
we note that the Mean Curvature scale-space is the simplest
to use if the resolution of the image is fixed.



Taking the set of corners as knots does not absolutely
guarantee that the contour in between can be viewed as a 1D
function. For example, a perfect circle has no corners and
must be cut in at least two points, for it to be codeable as a
sequence of 1D functions. Hence, we are forced to introduce
extra knots. Several methods have been suggested in the
Spline literature, and we choose to sample the integral of
the square root of the absolute curvature linearly in between
knots as suggested by de Boor [12]. This implies that extra
knots are introduced when there is much curvature, which
conforms with the myopic view as described earlier.
Hence the algorithm so far is as follows:

1. Calculate a scale-space of the orig-
inal image and find the contour of
the blobs at each scale.

2. Calculate the curvature function and
find extremal curvature point for
each scale.

3. Track the evolution of extremal cur-
vature points over scale.

4. Represent the curves between knots
as a 1D function, adding extra knots
where needed according to the in-
tegral of the square root of the
absolute curvature.

The algorithm has 3 parameters: The sampling density
in (natural ) scale, a threshold for which extremal
points are semantically important, and a parameter control-
ling the frequency of non-extremal knots.
Most importantly is the setting of the sampling density in

the natural scale variable. This can fairly easily be set a pri-
ori depending on the desired precision of the corner tracking.
Increasing with 10% each step seems a reasonable setting
in general. The threshold for extremal points depends more
on the task and the noise level of the images. Finally, the
Monge Patch approximation restricts the allowable constant
increment in the integral of the square root of the absolute
curvature. The smaller this value is, the better the approx-
imation. It is clear that the curve must not turn more than

, and a reasonable guess is to disallow turns larger than
.
Both the semantical threshold and the frequency of non-

extremal knots very much affect the computation time of the
algorithm, since the computational most expensive part of the
algorithm is the minimization of the descriptive complexity,
which will be explained in the next section.

An important concept in descriptive complexity is the
Minimum Description Length (MDL) principle [5]. The
MDL principle states that data should be described in the
shortest possible fashion given a class of functions. An ap-
proximation of the MDL principle used often in the literature
is,

(1)

where is a vector of data points, and is a vector of
parameters identifying a model given a model class up to a

given precision , is the number of bits used to code
the parameters, and is the number of bits used to code
the residual. The equation in (1) is only an approximation,
since a specific estimator for limits the possible data sets
, which can have been the cause of the estimate . Hence

should be renormalized to reduce the code length
[5]. A code of the contour may be designed using a great
variety of models. We have performed experiments onmodel
constraints such as first order continuity at the knots and
progressive estimation of tangent on the knots. In this article
we will present the simplest version, where a polynomial is
fitted to the curve between knots such that the polynomial
exactly passes through the knots and the squared distance is
minimized. This implies zero order continuity but first order
discontinuity at knots. Such a choice is reasonable for knots
that represent corners. Further, since two degrees of freedom
have been fixed, fitting a contour piece with a third degree
polynomial implies fitting the remainder with a line using the
method of weighted least squares.
The fitting of polynomial pieces only depends on the

knots and not on the neighboring fits. Hence we may code a
contour by first sending the set of knots followed by the set
of polynomial parameters for each contour piece. The total
code length of a contour is thus given as

knot contour-piece

Since the code length of each contour-piece only depend on
the knots we may complete our algorithm from Section 3 as
follows:

5. Calculate the code of knots
knot and for each contour-

piece , find the optimal model that
minimizes contour-piece .

6. Iteratively remove a knot yielding
largest reduction in the total cod-
ing cost until no further decrease
can be found.

The algorithm thus sketched is a split and merge algo-
rithm, and we emphasize that finding the global minimum is
intractable [13]. However a variant exists that uses the scale-
space structure to perform local instead of global mergings
resulting in a shorter computation time [14].

We have modeled 157 blobs by their contours taken from
a standard CCITT fax image . The blob sizes ranged from

pixel to pixels. In order to compare model
flexibility with the Postscript font encoding we choose to
enforce that the models should meet in knots, and we fix
the model class to a 2 parameter polynomial. This implies
that each contour piece will be fitted with a local 3 order
polynomial (4 degrees of freedom). For the 157 blobs we
found 1193 polynomial pieces and an equal number of knots.
That is an average of about 7.5 pieces per blob with the use

ftp://ftp.funet.fi/pub/graphics/misc/test-
images
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Image 3, 2.41 bits/pixel
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Image 19, 1.10 bits/pixel
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Image 34, 0.51 bits/pixel
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Image 76, 0.30 bits/pixel
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Image 114, 0.23 bits/pixel
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Image 110, 0.22 bits/pixel
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Image 101, 0.22 bits/pixel
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Image 118, 0.17 bits/pixel
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Image 130, 0.20 bits/pixel
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Image 74, 0.38 bits/pixel
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Image 82, 0.31 bits/pixel
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of a total of 55957 bits (as estimated by the MDL functional).
A representative selection is shown in Figure 2.
Visually we judge the resulting geometric models to be

very good. We observe that the models use 3–4 knots to code
a circular boundary, where 4 knots are used for large circles.
There is a tendency that straight pieces are not coded as such,
but we conclude that this is only natural, since straight pieces
are not a generic part of the 2 parameter polynomial model
class.

Models for describing blobs are a central issue in applica-
tions related to image storage or transmission. In this work, a
novel model class has been suggested taking the one dimen-
sional nature of blob borders into account. Experimentally
this has been shown to yield both compact codes and good
descriptors. Optimization is very much a part of finding
good models within a class, and here we have presented a
greedy thinning algorithm applied on a carefully selected set
of knots. This seems to use a good tradeoff between com-
pression time and ratio, and we conclude that this model class
is useful in a system like JBIG2 [1] symbol bitmap coder.
To end, this work has shown that sequences of 1D func-

tions is a feasible representation of typical blobs in office
documents, and that it is possible to estimate such a repre-
sentation from bitmaps. This has two implications.
We note that automatic conversion of scanned bitmaps

into analytical representations is a useful tool:
Since blobs can be decoded any resolution indepen-
dently on original scanning resolution, the framework
presented here could be used as an interface between
low resolution originals and higher resolution printers.
It is also possible to derive a resolution depended de-
scription on the described model class, which would be
useful for progressive decoding of blobs in a coarse to
fine manner by transmitting further knots.

Finally and most importantly, sequences of 1D functions
may be used to refine the font technology of e.g. the Postscript
language. We have demonstrated that our representation is
independent on the position and orientation of the coordinate
system, and that the representation uses only half the num-
ber of parameters while retaining the same functionality as
Postscript fonts. Hence, this representation can be used to
compress the very large Postscript font dictionaries without
essentially limiting functionality.
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