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Abstract

In this project I describe the status of inverse kinematics research,
with the focus firmly on the methods that solve the core problem. An
overview of the different methods are presented
Three common methods used in inverse kinematics computation have
been chosen as subject for closer inspection. The three methods are
described in some detail. An analysis is performed where the three
methods are compared, and benchmarked against each other.
I conclude which of the methods are the most promising and what their
respective forces, weaknesses and prospects are. All figures shown are
made using the test suite, developed in this project and in [4].
Source code developed for this project includes the CCD method ,
improvements on the BFGS method and Jacobian inverse originally
developed in [4]. 1

Figure 2: Figure reaching for a moving ball, posed with bfgs. The figure
have been constrained to obtain a more realistic pose.

1The source can be found at http://www.opentissue.org/svn/OpenTissue/branches/IK/.
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1 INTRODUCTION

——————————

1 Introduction

According to [9] ”Kinematics is the study of the motion of rigid bodies with-
out consideration of Newtonian laws”.
This is the broadest possible definition, and I will be using a much more
narrow definition in the rest of this text. When i refer to kinematics in the
following, i refer to algorithms for calculating the placement of skeletal joints
with regard to a given base. I.e. given a skeleton structure, We want to be
able to calculate the placement of the joints in the skeleton relative to the
root of the skeleton. The easiest way to do this, is by forward kinematics.
Forward kinematics computes the placement of an end-effector given the
placement of all the joints from the root and out.
This is not a very intuitive way of posing a skeleton though, and since my
object of study is interactive kinematics for animation purposes, it is quite
vital that the interaction interface is intuitive. This leads to the develop-
ment of inverse kinematics.
As the name implies inverse kinematics is the inverse of forward kinematics.
Given the intended position and orientation of an end-effector we wish to
compute the parameters of each of the joints.
This project is about inverse kinematics (IK).

Figure 3: Figure reaching for a moving ball, posed with BFGS. The figure
has been constrained preventing it from reaching the ball.
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1.1 Motivation and goals 1 INTRODUCTION

1.1 Motivation and goals

I was motivated to this project by a wish to obtain a broader knowledge
and a deeper understanding of the methods used in IK. It was born in part
from previous work done in the field by me, and others [4], partly with the
intention of doing future work on the subject.

1.2 Overview of the project

This section describes the project, and gives an overview of the work done,as
well as a walkthrough of the document.
To be able to make a comparison of the three methods, I needed an imple-
mentation of them all. This was only possible because two of the methods
were made available in OpenTissue [1], by another project in which I par-
ticipated simultaneously with this project [4].The Document is split in the
following parts:

Section 1 Here I introduce the subject, and explain certain terms and no-
tations special to this project. The foundation on which this work is
build is described.

Section 2 explains in more details the methods that i have chosen to eval-
uate, to give the reader an understanding of the forces and weaknesses
of the methods.

Section 3 is perhaps the most important in the project, since it is here i
discuss and test the strengths and weaknesses of the methods.

Section 4 I conclude on the project and the results obtained in section 3.

Section 5 is a look into the future where I try to describe possible future
work.

1.3 Notes on language and notation

Since this text deals with linked skeletons I will be using terminology from
this area of research. The terminology is not coherent though and some
terms are found in many variants. This section will try to clarify some of the
terminology so as to prevent it from inhibiting the readers understanding.
The notation used in the formulas troughout the document is for the most
part standard notation. However there are some peculiarities that can not
be expected to be known, and some variables so widely used in the text, I
have decided to list them here for reference.
Throughout the document I use J to mean the Jacobian matrix and J+ to
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1.4 Background 1 INTRODUCTION

mean its pseudo inverse. H means the Hessian B its approximation. Other
notations and variables are explained in the context where necessary.

Constraint types. The position and orientation of a joint can be con-
strained by several factors. The physical limits of the joint,collisions with
external objects, gravity or other external forces. All of these can be grouped
in two groups, joint limits and global constraints, when i talk about con-
straints in this text it may refer to one or both.

Figure 4: E.R.I.K. The human model used throughout the document, posed
with the BFGS method.

1.4 Background

IK has been the object of study for decades and a large and rich literature
is available for the interested student of the problem.
Getting an overview of the problem however, is made difficult by the very
fact that the subject is so well studied. Many texts that claim to deal with
IK is in fact not IK but rather motion blending [3]. Motion blending is a fast
and effective way of posing figures given a number of poses to blend between.
It has little to do with IK though, and even though impressive results can
be obtained this way [10, 3], the fact remains that a convex boundary on
the possible poses are given by the example poses.
IK on the other hand computes the pose given one or more goal positions
and possibly a number of constraints, which means that within the con-
straints, any pose can be computed. This comes at a cost in computation
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1.4 Background 1 INTRODUCTION

though, and many solutions have been proposed, most of them based on
optimization theory.
To make a shortcut I have chosen to start with someone who has done the
same thing that I’m trying to, namely Martin Fedor [5]. His article is from
2003 however, and this text can be seen as an update on that work. As will
become apparent later, the problem is still solved in much the same way as
it was when Fedor wrote his article.
One quite recent article [8] proposes to solve the problem using linear pro-
gramming. One problem pose itself when using this approach though. The
simplex algorithm is used to solve the problem and even though it performs
well in most cases, the worst case complexity of the algortihm is unviable
in real time applications. This implies that an approach using an iterative
nonlinear solver of some kind would be better. More research is necessary
before this approach can be completely ignored though.
Martin Fedor [5] describes three methods for inverse kinematics, two of
which are allmost kanonical in all literature concerning IK. this is the Jaco-
bian Inverse and the CCD 2. A third method, (the analytical approach) is
also described, however it is tailored specifically to a certain skeleton type,
which of course is a limit to its generality.
The CCD method is also described in [12] where a comparison with the
jacobian transpose method is done.
The Jacobian inverse can be combined with constraints to make a con-
strained IKsolver . This is described in [13] which also give a thorough de-
scription of the CCD method, with constraints. The constrained Jacobian-
inverse 3 is not implemented in [13].
In [15] a method for calculating constrained inverse kinematics are presented,
which is widely cited and very interesting indeed. It uses a quasi-newton
BFGS optimisation [11], combined with a constraint function that finds a
Karusch-Kuhn-Tucker point [11]. The constraint method used is a gradient
projection method mentioned in [4, 11].
Much of the recent research on IK has mostly concerned itself with how to
augment the core solver, wtih different ways of making life easier for the
artist. These subjects are beyond this project, even though they are part of
the knowledge base. The interested reader is refered to e.g. [2, 6, 14].
On the basis of the presented, I have chosen to concentrate my attention on
the following three methods: CCD as presented in[5], Jacobian Inverse[7]
and BFGS [15, 11].

2Cyclic Coordinate Descent
3or as it is the Jacobian transpose
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2 THEORY

2 Theory

In the following I will shortly describe the methods I have chosen to con-
centrate on. I will briefly describe the theory and ideas behind them, and
give a short desriptionof the pros and cons of each of them, based on their
theoretical properties.

2.1 Chosen methods

I have chosen to focus on three methods for solving the IK problem. They
are:

• Cyclic coordinate descent. A heuristic approach that takes the local
greedy choice to solve the problem, one joint at a time. This method
is elaborated in section 2.2

• Jacobian Inverse. A Newton based iterative optimization method that
tries to solve the problem by iteratively updating the parameter vector
x by the following equation

xi+1 = xi + ∆xi; (1)

As can be seen from the above, this is a first order approximation
of the updated parameter vector. This method is explained in more
detail in section 2.3 where it is also explained how to find ∆x.

• The BFGS method is an optimization method that tries to solve the
problem as a minimization problem. the method used for solving this
is similar in many ways to the above Jacobian inverse. The BFGS is
a second order approximation to a scalar function. This fact makes
the calculations very similar, since the gradient is a vector and the
hessian is a matrix. The search direction is found using these two, in
much the same way as the parameter vector and the Jacobian is used
in Jacobian inverse. More details on this method is included in section
2.4

2.2 Cyclic Coordinate Descent

Cyclic coordinate descent, (CCD) is a heuristic approach that uses the
greedy paradigm. For each joint we perform a transformation of that joint
that brings the endeffector as close as possible to the goal. We then move
to the next joint and do the same. This is done until a satisfactory solution
is obtained.

9



2.3 Jacobian inverse 2 THEORY

2.2.1 The basic idea

in the following I consider revolute joints, but prismatic joints can be treated
similarly.
Given a position of the current joint p, a position of the end effector e and
a goal position g, we can construct two vectors u = e−p

‖e−p‖ and v = g−p
‖g−p‖ . I

can now compute the axis of rotation and the angle by the following

axis = u× v (2)

angle = arcsin ‖axis‖ (3)

Since arcsin isn’t uniquely determined, it is possible to look at the dot prod-
uct of the two vectors to obtain the cosine and thereby determine the angle
uniquely. This implies that the use of arctan would be a better choice and
specifically the function arctan2. For an explanation of arctan2 see [9].
Thus the angle is computed as

angle = arctan 2
(‖axis‖

~u·~v
)

(4)

The next step is to perform the rotation on the joint in question. Since
I am using a quaternion representation I need to construct the rotation
quaternion. This is given by

Q = cos(angle/2), sin(angle/2)
(

axis

‖axis‖
)

(5)

2.2.2 Incorporating constraints

Constraints can be incorporated in the Ccd method. Some constraints are
easier than others though. Since the method is local it is difficult to imple-
ment global constraints such as equality constraints between several joints.

2.2.3 Pros and cons

The CCD method is simple and easy to implement. Furthermore the cost
per iteration is quite low, which makes it an obvious first choice of method.
The method is not without problems though. As will become apparent in
the following the method has problems with the convergence properties.

2.3 Jacobian inverse

The Jacobian inverse method (JI)and its variant the jacobian transpose
(JT), takes a global approach by trying to solve the problem for all joints
simultaneously.
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2.3 Jacobian inverse 2 THEORY

2.3.1 The basic idea

The basic idea is that we try to solve the equation:

y1 = f(x0 + ∆x) (6)

where y1 is a desired endeffector position 4, x0 is a current parameter vector
and ∆x is an unknown modifikation to x0 which will satisfy y1.
Knowing the desired goal and the current value of x = x0, we can find the
value of ∆x. First we need to perform a Taylor expansion of the function
f(x0 + ∆x):

y1 = f(x0) +
∂f

∂x
(x0)∆x + O‖∆x‖2 (7)

Since f(x) is a vector function, ∂f
∂x is a matrix of first order partial deriva-

tives. Such a matrix is usually denoted J so ignoring the remainder term
we can shorten the expression to:

y1 = f(x0) + J(x0)∆x (8)

Since the solution to f(x0) is y0 we can Isolate the unknown ∆x:

∆x = J(x0)−1(y1 − y0) (9)

The expression (y1 − y0) is the desired solution minus the current solution
which means that we now have an iterative scheme which can be used to
find the correct configuration.

2.3.2 Incorporating constraints

It is not straight forward to implement constraints in the Jacobian method.
[13, 4] uses a simple projection where the unconstrained solution is projected
unto the feasible region, in the hope that it will still lie close to an optimal
solution. In [5] a penalty based method is used with the adverse effect of
damping the system, thus resulting in bad convergence.

2.3.3 Pros and cons

One great advantage of the Jacobian inverse is, that it minimizes the work
done, in the sense that any given solution is a minimum change solution,
compared to the previous iterate. This gives a more fluid motion without
the erratic discontinuities of the CCD.
On the other hand Jacobian inverse has its own problems. The method
requires the inversion of a matrix that might be singular, it might not even
be square5.

4or position and orientation
5actually it will usually be either over or underdetermined
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2.4 BFGS 2 THEORY

The problem with non square Jacobians can be solved by using the pseu-
doinverse instead [7]. This does not take care of singularity though, so we
still need to adress this.
Another problem is the fact that we dont have a general way of incorporat-
ing constraints. The problem is not bigger than it is for the CCD method,
but it is still a problem.

2.4 BFGS

The problems with the ill conditioning of the jacobian matrix is avoiding in
BFGS,where the solution is found as a second order approximation of a real
function.

minG(θ) (10)
subject to: aT

i θ = bi, i = 1, 2, ...., l (11)
aT

i θ <= bi, i = l + 1, l+, 2, ...., k (12)

2.4.1 The basic idea

The method for solving this problem is a Quasi-newton method (see [11]
for a more thorough explanation of this), where the search direction pN

k is
found by solving the equation:

pN
k = −∇2f−1

k ∇fk (13)

where∇2fk is the hessian matrix and ∇fk is the gradient of the objective
function. This is given by

∇fk = J(e− g) (14)

where e is the end-effector position and g is the goal position.

Hessian approximation Calculating the exact Hessian is a time con-
suming business. Quasi Newton methods avoid this by working with an
approximation of the Hessian. The main difference between Quasi New-
ton methods lie in the way they aproximate the Hessian. BFGS uses the
following formula to obtain an estimate of the Hessian:

Bi+1 = Bi − Bisis
T
i Bi

sT
i Bisi

+
gig

T
i

gT
i si

(15)

where i denotes the present iteration, si = xi+1−xi , g = ∇f(xi+1)−∇f(x),
and B is an positive definite approximation of the Hessian
The Initial value of the Hessian is not uniquely defined. several different
versions have been proposed such as H = I or H = ∇f(x)T∇f(x), both
versions seem to work fine, but i have decided on the latter since it seemed
the more precise approximation.
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2.4 BFGS 2 THEORY

2.4.2 Incorporating constraints

Since the BFGS method is posed as a minimization problem it is straight for-
ward to incorporate constraints and several possible methods present them-
selves. In [15] a gradient projection method is used, and it does seem the
most obvious choice, since the IK problem has exactly the properties de-
scribed in [11] to make it a candidate. These are that the constraints take
the form:

li ≤ xi ≤ ui (16)

where li and ui are upper and lower bounds on individual DOFs.

2.4.3 Pros and cons

The BFGS method have all the advantages of the JI method and does not
suffer from the singularity problems. It is also well described [11, 15] how to
incorporate constraints. It is however complex and difficult to understand
and implement, and has a high per iteration cost.
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3 VALIDATION

3 Validation

The following three methods have been chosen as the subject of my investi-
gation and hence my validation.

1. The cyclic coordinate descent method

2. The Jacobian inverse

3. BFGS method

I am interested in the following properties of the different approaches:

1. Efficiency measured as rate of convergence and benchmarking of the
time until convergence is obtained.

2. Scaling. How well do the methods scale (scale is measured in the
complexity of the model i.e. number of joints.)

3. Precision measured as compliance with goal position

Figure 5: Test case for convergence. The chain consists of 5 joints and the
goal is placed 25 units away from the goal, out of reach of the end effector.

3.1 Efficiency

There are two parts to measuring the efficiency of the different methods.
First I will have to analyse the convergence properties of each of the methods.
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3.2 The test suite 3 VALIDATION
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Figure 6: The convergence of the three methods measured in iterations

This is done as simple as possible by plotting the objective function value
for each iteration as shown in figure 6. Second I will have to benchmark the
three methods to be able to compare their actual performance.

3.2 The test suite

To test the methods I have made three different models, one very simple
arm with one single chain skeleton with 5 joint (see figure 5), one slightly
more complicated with 5 chains(see figure 7) and one human model with 32
joints and 78 DOFs. I have mainly used the two simple skeletons for this
section, since they present the simplest results which lend itself well to this
kind of analysis. Results was written to log files and plotted using simple
matlab functions.

3.3 Tests

I have performed test both with regard to precision, scaling, and conver-
gence. The results are presented in the following.

3.3.1 Convergence

In this test a 5 joint chain was used. The goal was placed 25 units from
the end-effector and each of the three methods was allowed to run until
they converged. The convergence criteria in this test was the relative one
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3.3 Tests 3 VALIDATION

Figure 7: The model used in the benchmarking tests. It consists of 5 chains
with 2,3,4,5 and 6 joints each. Notice that the first joint after the root is
shared by all chains.

of testing change in the solutio compared to previous iteration. This was
chosen because it gives a better picture of the real convergence properties of
the methods. The reason for this is that the goal is out of reach so none of
the methods could ”get lucky” and find a solution that fullfilled the absolute
stopping criteria. The test setup is shown in figure 5.

The results of the test is shown in figure 6. As can be seen from the
figure, CCD shows erratic behaviour for the first many iterations and then
it converges to a solution. The two other methods show nice monotonically
decreasing behavior. The monotonically decreasing behavior is of great im-
portance in real time applications where a fixed number of iterations is often
used to ensure an upper limit on the time spent.

3.3.2 Scaling

For testing the scaling of the methods I used a special skeleton consisting of
5 chains with increasing length. The skeleton used can be seen in figure 7.
Obviously I could have chosen to use longer chains but my experiments have
shown that for the purposes of this discussion i would gain little from this
approach.
I have performed two comparisons of the methods with regards to scaling.
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Figure 8: milliseconds pr. iteration for increasing number of joints

First I have compared the time per iteration when the number of joints
grow. The results of this test can be seen in figure 8. Second I have tested
the number of iterations each method has to use before they converge, as
the number of chains grow, the result of this test can be seen in figure 9.

As can be seen from figure 8 both the BFGS and JI methods seem to
have quadratic scaling here, whereas the CCD looks linear.
This fits well with what we know about the methods, since the JI must
perform an inversion of a n×n matrix where n is the number of DOFs, and
the BFGS method does something similar, with the Hessian matrix.
Properly implemented the BFGS method should avoid this behaviour though,
so the results may be because of inacurate measurements or bugs in the im-
plementation.

The time it takes to perform one iteration is not the only criterion. More
important is the number of iterations, and how they scale, since this might
just as easily dominate the result.
Figure 9 shows how the iteration count rises with the number of joints. As
can be clearly seen here, the CCD method obtains the worst result. The JI
seems to actually fall in iteration count. This is the result of the fail safes
that are implemented to prevent divergence in the singular cases though,
and not an inherent property of the method. Without these fail safes the
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Figure 9: number of iterations as a function of chainlength

method shows properties similar to the BFGS method, with a sligthly higher
iteration count. Unfortunately because of the risk of divergence it has not
been possible to show the results of the unaugmented JI. Having measured
both the time per iteration and the iteration count for different chains it is
now easy to give an estimate on the scaling of the methods with regard to
convergence time.

As it should be obvious from figure 10 it is the iteration count that dom-
inates the convergence time. Again the JI seems to fall in the time it takes
it to converge with 6 joints.

3.3.3 Precision

The precision has been tested by placing the end effector out of reach of the
chain and measuring which method came closest to the optimal solution.
The test case used for this test is similar to the one decribed in section 3.3.1
and an example is shown in figure 5. Several tests where run with different
configurations and placement of the end effector. For simplicity I have only
included one example. It is however a result which is general for the tests I
have done.
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Figure 10: The convergence of the three methods measured in ms

method: distance to goal
JI 5.853667

CCD 3.368891
BFGS 2.534875

These results are in fact the same as can be read from figure 6, but I have
repeated them here for convenience since it may be difficult to read from
the figure. As it can be seen, the BFGS method comes closest to reaching
the goal. In fact it is very near to the optimal possible solution which lies at
approximately 2. The Jacobian inverse obtains the worst result in this test,
mainly because the method has a relative stopping criteria to prevent it from
diverging near singular configurations. The CCD method could be expected
to get closest given enough time, but tests have shown that more than 1000
iterations would be needed to obtain this solution, making it intractable in
this context.
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4 CONCLUSION

4 Conclusion

The main purpose of this project was to obtain knowledge of and compare
a number of methods used in IK today. i have chosen three methods and
implemented/improved them. I have compared the methods with regard to
precision, convergence, and scaling, and found strength and weaknesses in
them all.

CCD is simple to implement, has low per iteration cost, and is intuitive
to understand. It suffers from several drawbacks though. First and fore-
most is the fact that it is a local method, and like most local methods, it
oscillates its way to a solution. This means that the method does not have
a monotously decreasing objective function, which may well disqualify it in
the face of a ceiling on the iteration count. For practical purposes CCD
seems to work fine and many implementations use it.
The JI method seems to have excellent convergence properties, acceptable
iteration time and tolerable precision. The main drawback is the problems
with singularities, which have led to me having to implement, certain fail-
safes to prevent divergence. Since methods exist that can cope with these
problems e.g. singular value decomposition, coupled with , the method is a
sound candidate for an IK solver.
BFGS seems to be the allround most effective algorithm. It is somewhat
expensive per iteration, but has great convergence and no problems with
divergence near singularities. It is also the method best suited for incorpo-
rating constraints, as described in [11, 15, 4].
All of the methods are at a proof of concept stage which means they have
not been optimized. much performance can be gained from trimming the
implementations. This has been beyond the scope of this project though.
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5 FUTURE WORK

5 Future Work

Having worked with IK intensively for 3 month now, I have found that the
subject is both very interesting and very large. I therefore have numerous
ideas for future projects and one of them I have already started work on.
The most obvious candidate is the incorporation of ”real” constraints in the
developed system. Allthough the simple constraints implemented seems to
work fine, there are both performance and precision issues that would imply
that a more theoretically sound system should be developed.
The interaction with the system could be improved considerably. For exam-
ple by adding visualisation of the reach cones of the joints, and even more
interesting, by implementing reach cones like the ones mentioned in [14].
Next is the robustness of the Jacobian inverse, which have nothing that
handles the possibly singular inverted Jacobian matrix. Several solutions
exist, the most obvious of which is to do a Singular Value Decomposition of
the matrix to test for singularity. Other faster ways exist though, and will
have to be adressed in the future.
The last possibility but by far not the least, is the comparison of performance
between quaternion implementations and matrix implementation. This is a
project which I not only wish to do, but in fact have already begun prelim-
inary work on.
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