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Laplace approximation of transition densities posed

as Brownian expectations

Bo Markussen∗(email: bomar@life.ku.dk)

Department of Basic Sciences and Environment,
Faculty of Life Sciences, University of Copenhagen

Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark

Abstract

We construct the Laplace approximation of the Lebesgue density
for a discrete partial observation of a multidimensional stochas-
tic differential equation. This approximation may be computed
integrating systems of ordinary differential equations. The con-
struction of the Laplace approximation begins with the defini-
tion of the point of minimum energy. We show how such a point
can be defined in the Cameron-Martin space as a maximum a
posteriori estimator of the underlying Brownian motion given
an observation of a finite dimensional functional. The defini-
tion of the MAP estimator is possible via a renormalization of
the densities of piecewise linear approximations of the Brownian
motion. Using the renormalized Brownian density the Laplace
approximation of the integral over all Brownian paths can be de-
fined. The developed theory provides a method for performing
approximate maximum likelihood estimation.

Key words: Stochastic differential equation, maximum a posteriori estima-
tion, maximum likelihood estimation, discrete partial observation, renormal-
ized Brownian density, white noise, path integral, Laplace approximation
1991 MSC: 60H10, 60H35, 60H40, 47N30

1 Introduction

Functionals of Brownian motion play a role in many branches of science, no-
tably biology, chemistry, physics and mathematical finance, and applications

∗Supported by the Danish Research Agency project “Computing Natural Shape”, iden-
tification number 56-00-0106.
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are emerging in new areas such as computer vision and image analysis. An
often investigated model is the class of q-dimensional diffusion processes X
solving a stochastic differential equation driven by a d-dimensional Brownian
motion B with Itô drift ξ : Rq → Rq and diffusion coefficient σ : Rq → Rq×d,

dX(t) = ξ
(
X(t)

)
dt+ σ

(
X(t)

)
dB(t), X(0) = x0. (1)

In parametric models a family of coefficients (ξ, σ) = (ξθ, σθ) indexed by
θ ∈ Θ is available, and the process X is assumed to satisfy eq. (1) for some
θ0 ∈ Θ. Estimation of the true parameter θ0 given the observation of X at
prefixed discrete time points has received much attention in the last decade.
Since the transition densities for the solution to SDEs rarely are explicitly
known various alternatives to a closed form likelihood approach have been
developed. Among such procedures are martingale methods [6], simulation
techniques [5], numerical solution of the forward Kolmogorov equation [19],
and series expansions of the forward Kolmogorov equation [1, 2]. In this
paper we provide a new approximation of the Lebesgue density of an M -
dimensional functional of the Brownian motion given on the form

{
PjX(tj)

}
j=1,...,J

∈ RM , M =
J∑

j=1

qj , (2)

where t1 < · · · < tJ and Pj ∈ Rqj×q are given full rank matrices with qj ≤ q.
The matrices Pj can be used to pick out the observed components of partially
observed multivariate SDEs, e.g. stochastic volatility models [11].

The Itô equation (1) can be written on Stratonovich form replacing ξ(x)
with the Stratonovich drift b(x) = ξ(x)− 1

2∇σ(x) · σ(x). If φs,t
x (Z) denotes

the flow of diffeomorphisms generated by a d-dimensional semimartingale Z
via the Stratonovich equation

φs,t
x (Z) = x+

∫ t

s
b
(
φs,u

x (Z)
)
du+

∫ t

s
σ
(
φs,u

x (Z)
)
◦dZ(u), (3)

then X(t) = φ0,t
x0 (B) solves eq. (1). For fixed T > 0 the solution X(T ) varies

continuously with the initial position x0, i.e. the mapping x 7→ φ0,T
x (B) is a

stochastic diffeomorphism of Rq. Such mappings are known as warps in the
image analysis literature and are e.g. used to align different image modalities
[23]. Markussen [14, 15] introduced a renormalization technique to define
the maximum a posteriori alignment. In this paper the renormalization is
used to derive the Laplace approximation of the Lebesgue density introduced
above. Invoking the dependence on the parameter θ this provides an ap-
proximation of the likelihood function given the discrete partial observation
defined in eq. (2).

The idea behind our construction is to rewrite the Lebesgue density in
question as an expectation w.r.t. the Brownian motion, and to derive the
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Laplace approximation of this expectation. The idea may be illustrated
for the observation of X at time T > 0: If R is a standard q-dimensional
Gaussian random variable independent of B, then X(T ) + εR converges
in probability to X(T ) as ε → 0 and the transition density p(xT ) from
X(0) = x0 to X(T ) = xT satisfies

p(xT ) = lim
ε→0

E
[

1
(2πε2)q/2

exp
(
− |X(T )− xT |2

2ε2

)]
. (4)

Since X(T ) is a functional of the Brownian motion, the transition density is
written as an exponential integral over the path space C([0, T ]; Rd) w.r.t. the
Brownian measure. To define the Laplace approximation we consider the
analogy with the exponential integral

∫
RN exp(−E(x))dx of an energy func-

tion E ∈ C2(RN ; R) on the N -dimensional Euclidean space. The Laplace
approximation is found approximating E(x) by its second order Taylor ex-
pansion around the point of minimum energy, i.e.

E(x) ≈ E(x̂) +
1
2
(x− x̂)>Â(x− x̂), x̂ = arg min

x∈RN

E(x),

where Â is the matrix D2E(x) of second order partial derivatives evaluated
at x = x̂. This leads to the approximation given by a Gaussian integral∫

RN

e−E(x)dx ≈
∫

RN

e−E(bx)− 1
2
(x−bx)> bA(x−bx)dx = (2π)N/2e−E(bx)(det Â)−1/2.

This analogy identifies the steps needed to define the Laplace approximation
of eq. (4): We must define a Brownian energy functional, find the minimum
energy path B̂ given X(T ) = xT , and compute the determinant of the
second order variational derivative of the energy functional at the point of
minimum energy. Below we elaborate further on these issues and describe
the organization of the paper.

Seemingly the construction of the Laplace approximation of eq. (4) is
prohibited by the non-differentiability of the Brownian paths. To circumvent
this obstacle we approximate the Brownian paths by smooth functions. Our
construction is done in the Cameron-Martin space H of continuous functions
f with f(0) = 0 and weak derivatives ∂f ∈ K = L2([0, T ]; Rd),

H =
{
f ∈ C

(
[0, T ]; Rd

) ∣∣∣ f(t) =
∫ t

0
∂sf(s)ds, ∂f ∈ K

}
. (5)

In Section 3 a Brownian energy functional is defined as a renormalization
of minus the log probability density for a piecewise linear approximation
of the Brownian motion. We demonstrate how the minimum energy path
B̂ can be conceived as the maximum a posteriori (MAP) estimator in a
Bayesian framework [4], and the Stratonovich representation eq. (3) turns
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out to be appropriate in this context. The interpretation of B̂ is the most
likely path of the Brownian motion given the observation X(T ) = xT . This
path is in unique correspondence with the minimum energy path X̂ from
X(0) = x0 to X(T ) = xT , and the specialization of Theorem 5 to the
univariate case q = d = 1 gives that X̂ solves the second order non-linear
ordinary differential equation

∂2
t X̂(t) =

∂xσ
(
X̂(t)

)
σ
(
X̂(t)

) ((∂tX̂(t)
)2 − b

(
X̂(t)

)2)+ b
(
X̂(t)

)
∂xb
(
X̂(t)

)
.

In Section 4 we describe the second order variational derivative of the energy
functional in the exponential integral eq. (4). This variational derivative
measures the curvature of the energy surface around the energy minimum
and will be referred to as the curvature operator. We show that the curvature
operator belongs to a class of kernel operators with a lattice structure. In
Section 5 we derive the Laplace approximation of the Lebesgue density for
the discrete partial observation Y = {PjX(tj)} described in eq. (2). The
main result of the paper stated in Theorem 6 is the approximation

p(y) ≈
exp

(
− 1

2‖∂B̂‖
2
K −

1
2 trK log(IK + Q̂ÂQ̂)

)
(2π)M/2

√
det
( ∫ T

0 γ bB(t)>γ bB(t) dt
) .

Here the function γ bB(t) is defined in Proposition 2, Q̂ is the projection of
K on the orthogonal complement of the subspace spanned by γ bB, and Â is
the non-degenerate part of the curvature operator. The logarithmic trace
term can be computed via inversion of the operators IK + zÂ, z ∈ [0, 1],
and an inversion formula for such operators is stated. These formulae allow
the Laplace approximation to be computed integrating systems of ordinary
differential equations. In the appendix we explicitly state the systems to be
solved in the univariate case q = d = 1. Similar systems of ODEs apply
to multivariate SDEs. Finally, in Section 6 we discuss the developed theory
and provide some examples.

2 Function spaces and regularity conditions

In this section we provide a set of regularity conditions ensuring the validity
of our analysis. But first we list the used function spaces, operators and
seminorms. All these quantities are defined relative to a fixed time horizon
T > 0 and fixed dimensions q, d ∈ N.

The elements in the spaces K and H are paired via ∂f ∈ K and f ∈ H,
or emphasizing the argument as ∂tf(t) and f(t), cf. eq. (5). The spaces K
and H are Hilbert spaces equipped with the norms

‖f‖H = ‖∂f‖K =
(∫ T

0
|∂tf(t)|2dt

)1/2
, f ∈ H, ∂f ∈ K.
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For each N ∈ N let HN = LN (Rd×N ) be the subspace of functions f ∈ H
that are piecewise linear on the intervals ( (n−1)T

N , nT
N ), and let the operators

LN : Rd×N → H and PLN : C([0, T ]; Rd) → H be defined by

LN

(
{un}n=1,...,N

)
(t) =

((
n− tN

T

)
un−1 +

(
tN
T − n+ 1

)
un

)∣∣∣
n=d tN

T
e,u0=0

,

PLN (f)(t) =
((
n− tN

T

)
f
( (n−1)T

N

)
+
(

tN
T − n+ 1

)
f
(

nT
N

))∣∣∣
n=d tN

T
e
.

For α = (α1, . . . , αq) ∈ Nq
0 the differential operators Dα are defined by

Dα f(x) =
∂|α|f(x)

(∂x1)α1 · · · (∂xq)αq
, |α| = α1 + . . .+ αq.

For k ∈ N and 0 < η ≤ 1 let Ck,η
b (Rq; Rq) be the vector space of k-times

differentiable functions f : Rq → Rq with ‖f‖k+η <∞, where

‖f‖k+η = sup
x∈Rq

|f(x)|
1 + |x|

+
∑

α∈Nq
0:

1≤|α|≤k

sup
x∈Rq

|Dα f(x)|+
∑

α∈Nq
0:

|α|=k

sup
x,y∈Rq :

x 6=y

|Dα f(x)−Dα f(y)|
|x− y|η

.

Let Dk be the space of continuous functions f : Rq × [0, T ] → Rq such that
f(·, t) : Rq → Rq is a Ck-diffeomorphism for every t ∈ [0, T ]. The inverse
mapping f← ∈ Dk is defined separately for each t, i.e. f(·, t) ◦ f←(·, t) is
the identity mapping on Rq. The space Dk is equipped with the topology
induced by the seminorms ‖·‖k:r and ‖·←‖k:r for r ∈ N, where

‖f‖k:r =
∑

α∈Nq
0:|α|≤k

sup
t∈[0,T ]

sup
x∈Rq :|x|≤r

|Dα f(x, t)|.

We now state the regularity conditions on the Stratonovich drift b : Rq →
Rq and the diffusion coefficient σ = {σi}i=1,...,d with σi : Rq → Rq.

(A1) There exists k ≥ 2 and 0 < η ≤ 1 such that b ∈ Ck,η
b (Rq; Rq) and

σi ∈ Ck+1,η
b (Rq; Rq) for every i = 1, . . . , d.

(A2) The matrix σ(x)σ(x)> ∈ Rq×q is invertible for every x ∈ Rq.

(A3) We have supx∈Rq |b(x)| <∞, and there exists a positive definite matrix
Γ ∈ Rq×q such that σ(x)σ(x)> ≥ Γ for every x ∈ Rq.

Finally, we state theorems from stochastic calculus underlying our con-
struction. The first part of Theorem 2 follows from [13, Theorem 4.6.5]
using the relationship between Itô and Stratonovich stochastic differential
equations [13, Theorem 3.4.7]. The second part is known as the Wong-Zakai
theorem, and is stated as [13, Theorem 5.7.3 and Example 5.7.4]. Theo-
rem 1 is a consequence of the proof of the Wong-Zakai theorem. Theorem 3
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follows by [17, Remark 2, page 123]. In the statement of these theorems the
operator Φ is defined via the solution to eq. (3), i.e.

Φ(Z)(x, t) = φ0,t
x (Z), Z semimartingale, (x, t) ∈ Rq × [0, T ].

Theorem 1. The elements in the Cameron-Martin space have finite varia-
tion and are semimartingales. If (A1) holds true, then the solution operator
Φ: H → Dk−1 is uniquely defined and continuous.

Theorem 2. If (A1) holds true, then there exists a unique solution Φ(B)
to eq. (3) with Z = B being the Brownian motion. This solution constitutes
a flow of Ck-diffeomorphisms. If BN = PLN (B) denotes the N ’th piecewise
linear approximation of the Brownian motion, then Φ(BN ) converge to Φ(B)
as elements of Dk−1 as N →∞ in Lp for every p > 1, i.e.

E
(
‖Φ(B)− Φ(BN )‖p

k−1:r + ‖Φ(B)← − Φ(BN )←‖p
k−1:r

)
−−−−→
N→∞

0, r ∈ N.

Theorem 3. If (A1) and (A2) hold true, then the transition probabilities
for the diffusion process X(t) = φ0,t

x (B) have continuous Lebesgue densities.

3 Renormalized Brownian density and MAP esti-
mation

Suppose that a bounded continuous functional Υ: Dk−1 → RM of the flow
of diffeomorphisms Φ(B) is observed. Let BN = PLN (B) ∈ HN be the
N ’th piecewise linear approximation of the Brownian motion, and let R be
a standard M -dimensional Gaussian random variable independent of B. For
N ∈ N and ε > 0 we define

Y = (Υ ◦ Φ)(B), Y (ε) = (Υ ◦ Φ)(B) + εR, Y
(ε)
N = (Υ ◦ Φ)(BN ) + εR.

The random variable R is a technical device serving two purposes. Firstly,
the MAP estimator B̂(ε)

N for BN given the observation of Y (ε)
N can be defined

maximizing over Rd×N . Secondly, the Lebesgue density of the functional Y
can be written similarly as in eq. (4).

Proposition 1. The pair (Y (ε)
N , BN ) = (y, f) ∈ RM × HN has a density

w.r.t. Leb(RM )⊗ LN (Leb(Rd×N )), namely p(ε)(y|f) pN (f) with

p(ε)(y|f) =
(
2πε2

)−M/2 exp
(
− |y − (Υ ◦ Φ)(f)|2

2ε2

)
, (y, f) ∈ RM ×H,

pN (f) =
N∏

n=1

(
N

2πT

)d/2

exp

(
−
N |f(nT

N )− f( (n−1)T
N )|2

2T

)
, f ∈ HN .

(6)
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Furthermore, there exists a MAP estimator B̂(ε)
N ∈ HN for BN ∈ HN given

the observation of Y (ε)
N ∈ RM , i.e.

p(ε)
(
Y

(ε)
N

∣∣B̂(ε)
N

)
pN

(
B̂

(ε)
N

)
= sup

f∈Rd×N

p(ε)
(
Y

(ε)
N

∣∣LN (f)
)
pN

(
LN (f)

)
. (7)

Proof. The form of the densities in eq. (6) is evident. To show the existence
of B̂(ε)

N we choose a sequence {fk}k∈N with fk ∈ Rd×N , which attains the right
hand side of eq. (7) as k → ∞. It is clear that the points fk are contained
in a bounded ball of Rd×N . By compactness there exists f̂ ∈ Rd×N and
a subsequence k′n such that limn→∞ fk′n = f̂ , and we may choose B̂

(ε)
N =

LN (f̂). 2

The density pN (f) for BN = f ∈ HN satisfies

pN (f) =
N∏

n=1

(
N

2πT

)d/2

exp

(
−
N |f(nT

N )− f( (n−1)T
N )|2

2T

)

=
(

N

2πT

)Nd/2

exp
(
−
‖f‖2

H
2

)
.

(8)

Since the factor pN (0) = (N/2πT )Nd/2 is immaterial for the purpose of MAP
estimation, we define the renormalized Brownian density by

prenorm(f) =
pN (f)
pN (0)

= exp
(
−
‖f‖2

H
2

)
, f ∈ HN ⊂ H.

This definition is independent of N , and prenorm extends continuously to the
entire Cameron-Martin space. Using the renormalized Brownian density we
define the MAP estimators B̂, B̂(ε) ∈ H given the observation of Y, Y (ε) ∈
RM , respectively, by

B̂(ε) = arg max
f∈H

p(ε)(Y (ε)|f) prenorm(f), B̂ = arg max
f∈H : (Υ◦Φ)(f)=Y

prenorm(f).

Existence and uniqueness of B̂ and B̂(ε) is discussed in Section 3.1 assuming
a particular form of the functional Υ. We remark, that since P (B ∈ H) = 0
the a priori and the a posteriori distributions are mutually singular. Never-
theless, the validity of B̂ as a MAP estimator for B given the observation
Y can be established via the relationships displayed below:

BN
� //

a.s.N→∞
��

Y
(ε)
N

� MAP //

LpN→∞
��

B̂
(ε)
N

� //

probN→∞
��

Φ(B̂(ε)
N )

probN→∞
��

B
� // Y (ε) � //

a.s.ε→0

��

B̂(ε) � //

a.s.ε→0

��

Φ(B̂(ε))

a.s.ε→0
��

B
� // Y

� // B̂
� // Φ(B̂)

(9)
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The only non-trivial convergence result in the first two columns of dia-
gram (9) is Y (ε)

N → Y (ε) in Lp as N → ∞, which follows by Theorem 2
and the properties of the functional Υ. Suppose that the convergence re-
sults displayed in the last two columns of diagram (9) have been proven.
Then the mapping Y 7→ B̂ qualifies as a MAP estimator. We may namely
from an arbitrarily good approximation Y

(ε)
N of the observation Y find a

standard MAP estimator B̂(ε)
N of the arbitrarily good approximation BN of

B, and this MAP estimator is an arbitrarily good approximation of the es-
timator B̂. The same argument qualifies the mapping Y 7→ Φ(B̂) as a MAP
estimator for the flow of diffeomorphisms Φ(B) given the observation Y .

Theorem 4. Assume condition (A1) and let ε > 0 be given. If the estimator
B̂(ε) is uniquely defined and well-separated, i.e. for every δ > 0 we have

p(ε)
(
Y (ε)|B̂(ε)

)
prenorm

(
B̂(ε)

)
> sup

f∈H : ‖f− bB(ε)‖H>δ

p(ε)
(
Y (ε)|f

)
prenorm(f),

then ‖B̂(ε)
N −B̂(ε)‖H, ‖Φ(B̂(ε)

N )−Φ(B̂(ε))‖k−1:r and ‖Φ(B̂(ε)
N )←−Φ(B̂(ε))←‖k−1:r

for r ∈ N vanish in probability as N →∞.

Proof. Let the random variables U (ε)
N be defined by

U
(ε)
N = sup

f∈H

∣∣p(ε)(Y (ε)
N |f)− p(ε)(Y (ε)|f)

∣∣.
Theorem 2 and equicontinuity of the functions p(ε)(·|f) over f ∈ H, i.e.

sup
f∈H

∣∣p(ε)(x|f)− p(ε)(y|f)
∣∣ ≤ (2πε2)−M/2 sup

z∈RM

{
e−

|x−z|2

2ε2 − e−
|y−z|2

2ε2

}
= (2πε2)−M/2 sup

u∈R

{
e−

(u−|x−y|)2

2ε2 − e−
u2

2ε2

}
−−−−−→
|x−y|→0

0,

imply that U (ε)
N vanish in probability as N →∞. Thus, for any subsequence

N ′n of the natural numbers there exists a further subsequence N ′′n such that
U

(ε)
N ′′

n
vanish almost surely as n→∞. Employing this together with the bound
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prenorm(f) ≤ 1 and the properties of the MAP estimators we have

p(ε)
(
Y (ε)|B̂(ε)

)
prenorm

(
B̂(ε)

)
= lim

n→∞
p(ε)
(
Y (ε)|PLN ′′

n
(B̂(ε))

)
prenorm

(
PLN ′′

n
(B̂(ε))

)
≤ lim inf

n→∞

(
p(ε)
(
Y

(ε)
N ′′

n
|PLN ′′

n
(B̂(ε))

)
+ U

(ε)
N ′′

n

)
prenorm

(
PLN ′′

n
(B̂(ε))

)
= lim inf

n→∞
p(ε)
(
Y

(ε)
N ′′

n
|PLN ′′

n
(B̂(ε))

)
prenorm

(
PLN ′′

n
(B̂(ε))

)
≤ lim inf

n→∞
p(ε)
(
Y

(ε)
N ′′

n
|B̂(ε)

N ′′
n

)
prenorm

(
B̂

(ε)
N ′′

n

)
≤ lim inf

n→∞

(
p(ε)
(
Y (ε)|B̂(ε)

N ′′
n

)
+ U

(ε)
N ′′

n

)
prenorm

(
B̂

(ε)
N ′′

n

)
= lim inf

n→∞
p(ε)
(
Y (ε)|B̂(ε)

N ′′
n

)
prenorm

(
B̂

(ε)
N ′′

n

)
≤ lim sup

n→∞
p(ε)
(
Y (ε)|B̂(ε)

N ′′
n

)
prenorm

(
B̂

(ε)
N ′′

n

)
≤ p(ε)

(
Y (ε)|B̂(ε)

)
prenorm

(
B̂(ε)

)
almost surely. Thus, we have

p(ε)
(
Y (ε)|B̂(ε)

N ′′
n

)
prenorm

(
B̂

(ε)
N ′′

n

) a.s.−−−→
n→∞

p(ε)
(
Y (ε)|B̂(ε)

)
prenorm

(
B̂(ε)

)
.

Since B̂(ε) is assumed to be well-separated this implies ‖B̂(ε)
N ′′

n
− B̂(ε)‖H

a.s−−−→
n→∞

0, whereby ‖Φ(B̂(ε)
N ′′

n
)−Φ(B̂(ε))‖k−1:r +‖Φ(B̂(ε)

N ′′
n
)←−Φ(B̂(ε))←‖k−1:r

a.s−−−→
n→∞

0

follows by Theorem 1. Since this holds for any subsequence N ′n we have
demonstrated convergence in probability as desired. 2

3.1 Discretely observed stochastic differential equations

In this section we study the MAP estimators B̂, B̂(ε) given the discrete
partial observation introduced in Section 1. This analysis will complete the
lower right corner of the diagram (9). Let x0 ∈ Rq, 0 = t0 < t1 < · · · < tJ =
T , and full rank matrices Pj ∈ Rqj×q with qj ≤ q be fixed, and consider the
bounded linear functional Υ: Dk−1 → RM defined by

Υ(f) =
{
Pjf(x0, tj)

}
j=1,...,J

∈ RM , M =
J∑

j=1

qj . (10)

This functional corresponds to the discrete partial observations Pj X(tj) of
the diffusion process X(t) = φ0,t

x0 (B). To invoke the calculus of variations
we state the estimation problem in terms of X̂(t) = φ0,t

x0 (B̂) and X̂(ε)(t) =
φ0,t

x0 (B̂(ε)).
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Lemma 1. Assume condition (A2). If B̂ exists, then

∂tB̂(t) = σ(u)>
(
σ(u)σ(u)>

)−1(
∂tX̂(t)− b(u)

)∣∣
u= bX(t)

. (11)

If B̂(ε) exists, then the similar relation holds true between B̂(ε) and X̂(ε).

Proof. Let f ∈ H be given. The orthogonal projection

g(t) =
∫ t

0
σ(u)>

(
σ(u)σ(u)>

)−1
σ(u)

∣∣
u=φ0,s

x0
(f)

df(s)

satisfies ‖g‖H ≤ ‖f‖H and φ0,t
x0 (g) = φ0,t

x0 (f). Thus,

∂tB̂
(ε)(t) = σ(u)>

(
σ(u)σ(u)>

)−1
σ(u)

∣∣
u=φ0,t

x0
( bB(ε))

∂tB̂
(ε)(t),

whereby the lemma follows. 2

Theorem 5. Assume conditions (A1), (A2) and (A3), and let the La-
grangian F : Rq × Rq → R be defined by

F (u, p) =
1
2
(
p− b(u)

)>(
σ(u)σ(u)>

)−1(
p− b(u)

)
.

If the functional Υ is given by eq. (10), then the estimators X̂(t) = φ0,t
x0 (B̂)

and X̂(ε)(t) = φ0,t
x0 (B̂(ε)) exist and are of class C2 separately on the intervals

(tj−1, tj), where they satisfy the Euler-Lagrange equation

d
dt

Dp F
(
X̂(ε)(t), ∂tX̂

(ε)(t)
)

= Du F
(
X̂(ε)(t), ∂tX̂

(ε)(t)
)
. (12)

Using the convention ∂tB̂(t+) = ∂tB̂
(ε)(t+) = 0 for t = T we have

ε−2P>j
(
PjX̂

(ε)(tj)− PjX(tj)
)

=
(
σ(z)σ(z)>

)−1
σ(z)

(
∂tB̂

(ε)(t+)− ∂tB̂
(ε)(t−)

)∣∣
t=tj ,z= bX(ε)(tj)

.
(13)

If the estimator B̂ is uniquely defined, then B̂(ε) → B̂ as elements of H as
ε→ 0. In particular, the limit of eq. (13) exists as ε→ 0.

Proof. In this proof we write B̂(0), X̂(0) for B̂, X̂ when convenient. Let HX

be the space of functions f ∈ C([0, T ]; Rq) with f(0) = x0 and derivatives
∂f ∈ L2([0, T ]; Rq), and let the energy functional EX : HX → R be defined
by

EX(f) =
∫ T

0
F
(
f(t), ∂tf(t)

)
dt, f ∈ HX .

If the estimators B̂(ε) exist and we define x(ε)
j = φ

0,tj
x0 (B̂(ε)), then Lemma 1

implies ‖B̂(ε)‖2
H = EX(X̂(ε)) and that X̂(ε) minimize EX(f) over f ∈ HX

10



with boundary conditions f(tj) = x
(ε)
j . Conversely, suppose there exists min-

imizers X̂(ε) for EX(f) over f ∈ HX with boundary conditions f(tj) = x
(ε)
j .

Choosing the points x(ε)
j via an optimization over the finite dimensional space

Rq×J we may define the estimators B̂(ε) by eq. (11). Thus, the optimization
problem for B̂(ε) can be recast in terms of X̂(ε), ε ≥ 0. To show the existence
of the minimizers X̂(ε) we appeal to the so-called direct method in the calcu-
lus of variations. This technique was devised by Tonelli [22] and rely on the
demonstration of lower semi-continuity of EX . Let X̂(ε)

k ∈ HX be a sequence
of approximate minimizers, i.e. PjX̂

(ε)
k (tj) = PjX(tj) for j = 1, . . . , J and

lim
k→∞

EX(X̂(ε)
k ) = inf

f∈HX : Pjf(tj)=PjX(tj)
EX(f).

The assumptions (A1), (A2) and (A3) imply that the Lagrangian F (u, p)
is autonomous, coersive, convex, and of class C2 on the intervals (tj−1, tj),
and that D2

p F (u, p) is positive definite. Hence the Tonelli theorems [7, The-

orem 1, Theorem 2] imply that the limit X̂(ε) = limk→∞ X̂
(ε)
k exists and is

a solution of the minimization problem. Moreover, X̂(ε) is of class C2 and
satisfies eq. (12) separately on the intervals (tj−1, tj). This allows us to ap-
ply integration by parts on the second term in first variation δfEX(f) of the
functional EX ,

δfEX(f) · g =
∫ T

0
Du F

(
f(t), ∂tf(t)

)
g(t)dt+

∫ T

0
Dp F

(
f(t), ∂tf(t)

)
∂tg(t)dt.

Thus, for every g ∈ H we have g(0) = 0 and

0 = δf

( 1
2ε2

J∑
j=1

∣∣Pjf(tj)− PjX(tj)
∣∣2 + EX(f)

)∣∣∣
f= bX(ε)

· g

= ε−2
J∑

j=1

(
PjX̂

(ε)(tj)− PjX(tj)
)>
Pj g(tj)

+
J−1∑
j=1

(
∂tX̂

(ε)(tj−)− ∂tX̂
(ε)(tj+)

)> (
σ(u)σ(u)>

)−1∣∣
u= bX(ε)(tj)

g(tj)

+
(
∂tX̂

(ε)(T )− b(u)
)>(

σ(u)σ(u)>
)−1∣∣

u= bX(ε)(T )
g(T ),

whereby eq. (13) follows. Finally, we consider the relation between X̂(ε) and
X̂. Clearly, we have PjX̂

(ε)(tj) → PjX̂(tj) = PjX(tj) and EX(X̂(ε)) →
EX(X̂) as ε → 0. Thus, if X̂(t) = φ0,t

x0 (B̂) is uniquely defined, then the
lower semi-continuity of EX implies X̂(ε) → X̂ and B̂(ε) → B̂ as ε→ 0. 2

The statements of Theorem 4 and 5 assume uniqueness of the MAP es-
timators B̂(ε) and B̂. It is, however, easy to construct examples where these
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estimators are non-unique. The prototypical examples of non-uniqueness in-
volve set-ups with identical energies for going “left” or “right” around some
center point. To remedy the defect arising from non-uniqueness of the esti-
mators and retain the validity of the diagram (9) we could define B̂(ε)

N and
B̂(ε) in a neighborhood of one particular B̂. But to keep the presentation as
clear as possible we have omitted these technicalities.

4 Structure of the curvature operator

In Section 5 we find the Laplace approximation of the Lebesgue density for
the random variable Y = (Υ ◦ Φ)(B) as in eq. (10). The program is to
integrate over ∂f in the equations (6), see eq. (18) below. To prepare this
analysis we study the functional E : K → R for fixed y = {yj}j=1,...,J ∈ RM

defined by

E(∂f) = −ε2 log p(ε)(y|f) =
1
2

J∑
j=1

∣∣Pjφ
0,tj
x0 (f)− yj

∣∣2. (14)

To describe the variational derivatives of E we invoke product integrals [10]
and some tensor notation. For a function f = {fj}j=1,...,q ∈ C2(Rq; Rq) of
the argument z = {zi}i=1,...,q ∈ Rq the tensors ∇zf(z),∇>z f(z) ∈ Rq×q and
∇z∇>z f(z) ∈ Rq×q×q are defined by

∇zf(z) =
{
∂zifj(z)

}
ji
, ∇>z f(z) =

{
∂zifj(z)

}
ij
, ∇z∇>z f(z) =

{
∂zk

∂zifj(z)
}

ijk
.

Standard matrix notion is used for left and right multiplication. Further-
more, for x = {xj}j=1,...,q ∈ R1×q and z = {zijk}i,j,k=1,...,q ∈ Rq×q×q we
write

x ?2 z =
{ q∑

j=1

xj zijk

}
i,k=1,...,q

∈ Rq×q.

Proposition 2. The second variation of E(∂f) w.r.t. ∂f ∈ K in the direc-
tions g, h ∈ K is given by

δ2∂fE(∂f) · (g, h) =
∫ T

0

∫ T

0
g(t)>βf (t)αf (t ∨ s)βf (s)>h(s) ds dt

+
∫ T

0

∫ T

0
g(t)>γf (t)γf (s)>h(s) ds dt,

where αf (t) ∈ Rq×q, βf (t) ∈ Rd×q, γf (t) ∈ Rd×M for t ∈ [0, T ) are defined

12



by

αf (t) =
∑

j:tj≥t

((
Pjφ

0,tj
x0 (f)− yj

)>
Pjκf (tj)>

)
?2

(
ξf (t) + λf (tj)− λf (t)

)
,

βf (t) = σ
(
φ0,t

x0
(f)
)>
κf (t)−1,

γf (t) =
{

1t≤tjσ
(
φ0,t

x0
(f)
)>
κf (t)−1κf (tj)P>j

}
j=1,...,J

with κf (t) ∈ Rq×q, ξf (t) ∈ Rq×q×q, λf (t) ∈ Rq×q×q for t ∈ [0, T ] defined by

κf (t) =
∏

s∈(0,t]

(
IRq +∇>z

(
b(z) + σ(z) ∂sf(s)

)∣∣
z=φ0,s

x0
(f)

ds
)
,

ξf (t) = κf (t)∇z

(
κf (t)−1,> σ(z)σ(w)>

(
σ(w)σ(w)>

)−1
)∣∣∣

z=w=φ0,t
x0

(f)
κf (t)>,

λf (t) =
∫ t

0
κf (s)∇z∇>z

(
κf (s)−1,>(b(z) + σ(z)∂sf(s)

))∣∣∣
z=φ0,s

x0
(f)
κf (s)>ds.

Moreover, we define αf (T ) = 0.

Proof. First we find representations for the first and second variation of
φ0,t

x0 (f) w.r.t. ∂f ∈ K. Concerning the first variation we have

∂tφ
0,t
x0

(f) = b
(
φ0,t

x0
(f)
)

+ σ
(
φ0,t

x0
(f)
)
∂tf(t),

and hence ∂tδ∂fφ
0,t
x0 (f) · g with g ∈ K equals

σ
(
φ0,t

x0
(f)
)
g(t) +∇z

(
b(z) + σ(z) ∂tf(t)

)∣∣
z=φ0,t

x0
(f)
δ∂fφ

0,t
x0

(f) · g.

This linear ODE is solved via the product integral [10, Theorem 10] by

δ∂fφ
0,t
x0

(f) · g =
∫ t

0
κf (t)>κf (s)−1,> σ

(
φ0,s

x0
(f)
)
g(s) ds.

The second variation δ2∂fφ
0,t
x0 (f) · (g, h) with g, h ∈ K equals∫ t

0
κf (t)>κf (s)−1,> δ∂f

(
σ
(
φ0,s

x0
(f)
)
g(s)

)
· h ds

+
∫ t

0

(
δ∂f

(
κf (s)−1κf (t)

)
· h
)>

σ
(
φ0,s

x0
(f)
)
g(s)ds.

(15)

The first term in eq. (15) equals∫ t

0

∫ s

0
κf (t)>∇z

(
κf (s)−1,>σ(z) g(s)

)∣∣∣
z=φ0,s

x0
(f)
κf (s)>κf (u)−1,>σ

(
φ0,u

x0
(f)
)
h(u)du ds.

(16)
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The Duhamel equation [10, Theorem 4] gives that δ∂f

(
κs(t)−1κf (t)

)
·h equals

δ∂f

{ ∏
u∈(s,t]

(
I +∇>z

(
b(z) + σ(z) ∂uf(u)

)∣∣
z=φ0,u

x0
(f)

du
)}

· h

=
∫ t

s
κf (s)−1κf (u)

{
δ∂f∇>z

(
b(z) + σ(z) ∂uf(u)

)
· h
}
κf (u)−1κf (t)

∣∣∣
z=φ0,u

x0
(f)

du

=
∫ t

s
κf (s)−1κf (u)∇>z

(
σ(z)h(u)

)∣∣∣
z=φ0,u

x0
(f)
κf (u)−1κf (t)du

+
∫ t

s

∫ u

0
κf (s)−1κf (u)

(
∇z∇>z

(
b(z) + σ(z) ∂uf(u)

)∣∣
z=φ0,u

x0
(f)

κf (u)>κf (v)−1,>σ
(
φ0,v

x0
(f)
)
h(v)

)
κf (u)−1κf (t) dv du,

and hence the second term in eq. (15) equals∫ t

0

∫ t

s
κf (t)>∇z

(
κf (u)−1,>σ(z)h(u)

)∣∣
z=φ0,u

x0
(f)
κf (u)> κf (s)−1,>σ

(
φ0,s

x0
(f)
)
g(s)du ds

+κf (t)>
∫ t

0

∫ t

s

∫ u

0
h(v)>σ

(
φ0,v

x0
(f)
)>
κf (v)−1κf (u)∇z∇>z

(
κf (u)−1,>

(
b(z) + σ(z) ∂uf(u)

))∣∣∣
z=φ0,u

x0
(f)
κf (u)> κf (s)−1,>σ

(
φ0,s

x0
(f)
)
g(s)dv du ds.

(17)
If the orthogonal projection πf : K → K is defined by

(πfg)(t) = σ(z)>
(
σ(z)σ(z)>

)−1
σ(z)

∣∣
z=φ0,t

x0
(f)
g(t),

then δ2∂fφ
0,t
x0 (f) · (g, h) = δ2∂fφ

0,t
x0 (f) · (πfg, πfh). Employing this identity and

combining eq. (16) and eq. (17) we have that δ2∂fφ
0,t
x0 (f) · (g, h) equals

κf (t)>
∫ t

0

∫ t

0
g(s)>σ

(
φ0,s

x0
(f)
)>
κf (s)−1

(
ξf (s ∨ u) + λf (t)− λf (s ∨ u)

)
κf (u)−1,>σ

(
φ0,s

x0
(f)
)
h(u) du ds.

Since the second variation δ2∂fE(∂f) · (g, h) equals

J∑
j=1

(
Pjφ

0,tj
x0 (f)− yj

)>
Pj δ

2
∂fφ

0,tj
x0 (f) · (g, h)

+
J∑

j=1

(
Pj δ∂fφ

0,tj
x0 (f) · g

)>(
Pj δ∂fφ

0,tj
x0 (f) · h

)
,

the proposition follows inserting the above formulae. 2

14



5 Path integrals

In this section we find the Laplace approximation of the Lebesgue density of
the discrete partial observation described via eq. (10). The random variables

Y
(ε)
N = (Υ ◦ Φ)(BN ) + εR, Y (ε) = (Υ ◦ Φ)(B) + εR

satisfy limε→0 limN→∞ Y
(ε)
N = (Υ ◦ Φ)(B) in probability. Thus, the limit of

the Laplace approximation of the Lebesgue density p(ε)
N (y) for Y (ε)

N = y ∈ RM

provides an approximation of the Lebesgue density for (Υ ◦ Φ)(B) = y. In
the limit as N → ∞ we essentially compute the integral over all Brownian
paths. Since the Brownian motion has independent increments this limit is
more naturally described as an integral over K than over H. To approximate
the space K by Rd×N we introduce the operators WN : Rd×N → K defined
by

WN (u)(t) = N
T ud tN

T
e, u = {un}n=1,...,N ∈ Rd×N , N ∈ N.

Observe that T
N W>N WN is the identity operator on Rd×N and that T

N WN W>N
is the projection of K on the subspace WN (Rd×N ) of functions that are
piecewise constant on the intervals ( (n−1)T

N , nT
N ). Invoking the functional

E : K → R from eq. (14) and the density of ∂BN w.r.t. WN (Leb(Rd×N )) we
have that the Lebesgue density for Y (ε)

N = y is given by

p
(ε)
N (y) = (2πε2)−M/2

( N

2πT

)−Nd/2
∫

Rd×N

e−
1
2
‖WN (u)‖2K−ε−2E(WN (u))du.

(18)
The Laplace approximation of this integral is defined via the second or-
der Taylor approximation of the negative exponent around its minimizer.
Proposition 2 provides the second variation ε−2δ2∂fE(∂B̂(ε)

N ) = Â
(ε)
N + Ĉ

(ε)
N

with

Â
(ε)
N g(t) = ε−2

∫ T

0
βf (t)αf (t ∨ s)βf (s)>g(s) ds

∣∣∣
f= bB(ε)

N

,

Ĉ
(ε)
N g(t) = ε−2

∫ T

0
γf (t)γf (s)>g(s) ds

∣∣∣
f= bB(ε)

N

.

The estimator ∂B̂(ε)
N ∈ K is an approximate minimizer for 1

2‖∂f‖
2
K+ε−2E(∂f)

over ∂f ∈ WN (Rd×N ). Thus, T
N W>N (∂B̂(ε)

N ) ∈ Rd×N is an approximate min-
imizer for the negative exponent of the integrand in eq. (18). The associated
second order Taylor approximation is given by

1
2‖WN (u)‖2

K + ε−2E(WN (u)) ≈ 1
2‖∂B̂

(ε)
N ‖2
K + ε−2E(∂B̂(ε)

N )

+1
2(u− û)>

(
W>N WN +W>N (Â(ε)

N + Ĉ
(ε)
N ) WN

)
(u− û)

∣∣bu=
T
N W>

N (∂ bB(ε)
N )
,
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and the associated Laplace approximation of the integral eq. (18) is given
by

p̂
(ε)
N (y) = (2πε2)−M/2

( N

2πT

)−Nd/2
exp

(
−
‖∂B̂(ε)

N ‖2
K

2
− ε−2E(∂B̂(ε)

N )
)

∫
Rd×N

exp
(
−
u>
(
W>N WN +W>N (Â(ε)

N + Ĉ
(ε)
N ) WN

)
u

2

)
du

= (2π)−M/2 exp
(
−
‖∂B̂(ε)

N ‖2
K

2
− ε−2E(∂B̂(ε)

N )
)

{
ε2M det

(
IRd×N + T

N W>N
(
Â

(ε)
N + Ĉ

(ε)
N

)
WN

)}−1/2
.

Let Â(ε) and Ĉ(ε) be defined similarly as Â(ε)
N and Ĉ(ε)

N . Eq. (13) implies that
limε→0 ε

−2α bB(ε)(t) and Â = limε→0 Â
(ε) exist. Let Q̂ be the projection of K

on the orthogonal complement of the subspace spanned by γf with f = B̂,
i.e.

Q̂g(t) = g(t)−γf (t)
(∫ T

0
γf (s)>γf (s) ds

)−1
∫ T

0
γf (s)>g(s) ds

∣∣∣
f= bB, g ∈ K,

and let Q̂(ε) be defined similarly using γf with f = B̂(ε).

Theorem 6. Assume conditions (A1) and (A2). If B̂, B̂(ε) ∈ H exist and
B̂(ε) → B̂ as ε→ 0, then limε→0 limN→∞

(
− 2 log p̂(ε)

N (y)
)

exists and equals

M log(2π) + ‖∂B̂‖2
K

+ log det
(∫ T

0
γf (s)>γf (s) ds

∣∣
f= bB

)
+ trK

[
log
(
IK + Q̂ÂQ̂

)]
.

(19)

Furthermore, if the operators Ĝ : K → RM and Ĝ> : RM → K are defined by

Ĝg =
∫ T

0
γf (s)>g(s) ds

∣∣∣
f= bB,

(
Ĝ>u

)
(t) = γf (t)u

∣∣∣
f= bB,

then trK[log(IK + Q̂ÂQ̂)] equals∫ 1

0

(
trK[Ĥz Â]− trRM [(Ĝ Ĥz Ĝ

>)−1Ĝ Ĥz ÂĤz Ĝ
>]
)∣∣ bHz=(IK+z bA)−1dz. (20)

Proof. We have that −2 log p̂(ε)
N (y) equals

M log(2π) + ‖∂B̂(ε)
N ‖2
K + 2ε−2E(∂B̂(ε)

N )

+ log
(
ε2M det

(
IRd×N + T

N W>N
(
Â

(ε)
N + Ĉ

(ε)
N

)
WN

))
.
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Theorem 4, Theorem 5 and eq. (13) imply

lim
ε→0

lim
N→∞

‖∂B̂(ε)
N ‖2
K = ‖∂B̂‖2

K, lim
ε→0

lim
N→∞

ε−2E(∂B̂(ε)
N ) = 0.

Regularity condition (A2) implies that the matrix

T
N W>N Ĉ

(ε)
N WN = ε−2 T

N (W>N γf )(W>N γf )>
∣∣
f= bB(ε)

N

∈ R(d×N)×(d×N)

has rank M for N sufficiently large. If the operator Û (ε)
N on K is defined by

Û
(ε)
N g(t) = γf (t)

(
T
N (W>N γf )(W>N γf )>

)−3/2
∫ T

0
γf (s)>g(s) ds

∣∣∣
f= bB(ε)

N

and Q̂
(ε)
N is the projection of K on the orthogonal complement of the M -

dimensional subspace spanned by T
N WN W>N γf for f = B̂

(ε)
N , then(

T
N W>N (Ĉ(ε)

N + Q̂
(ε)
N ) WN

)−1/2 = T
N W>N (εÛ (ε)

N + Q̂
(ε)
N ) WN .

Thus, since T
N W>N Ĉ

(ε)
N WN has rank M we have that

ε2M det
(
IRd×N + T

N W>N
(
Â

(ε)
N + Ĉ

(ε)
N

)
WN

)
equals the determinant of(

T
N W>N (ε2Ĉ(ε)

N + Q̂
(ε)
N ) WN

)(
T
N W>N (εÛ (ε)

N + Q̂
(ε)
N ) WN

)(
IRd×N + T

N W>N
(
Â

(ε)
N + Ĉ

(ε)
N

)
WN

)(
T
N W>N (εÛ (ε)

N + Q̂
(ε)
N ) WN

)
.

(21)

For positive definite matrices Ξ ∈ R(d×N)×(d×N) we have the identity

det Ξ =
(
exp ◦ trRd×N ◦ log

)
(Ξ)

=
(
exp ◦ trK ◦ log

)(
IK + T

N WN (Ξ− IRd×N ) W>N
)
,

where the operator logarithm is defined via spectral calculus [18, Chapter 4].
This formula allows us to compute the determinant of eq. (21) over the
same space for all N ∈ N, namely K. Operator multiplication is sequentially
continuous [18, Section 4.6.1] and T

N WN W>N → IK, Ĉ(ε)
N → Ĉ(ε), Q̂(ε)

N →
Q̂(ε) as N →∞. Thus, the determinant of the first factor in eq. (21) equals

exp
(

trK
[
log
(
IK + T 2

N2 WN W>N (ε2Ĉ(ε)
N + Q̂

(ε)
N − IRd×N ) WN W>N

)])
−−−−→
N→∞

exp
(

trK
[
log
(
ε2Ĉ(ε) + Q̂(ε)

)])
= det

(∫ T

0
γf (t)>γf (t) dt

∣∣∣
f= bB(ε)

)
−−→
ε→0

det
(∫ T

0
γf (t)>γf (t) dt

∣∣∣
f= bB

)
.
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The product of the three last factors in eq. (21) equals

IRd×N + ε2 T 2

N2 W>N Û
(ε)
N WN W>N Û

(ε)
N WN

+ε T 2

N2 W>N Û
(ε)
N WN W>N Â

(ε)
N WN +ε T 2

N2 W>N Â
(ε)
N WN W>N Û

(ε)
N WN

+ T 3

N3 W>N Q̂
(ε)
N WN W>N Â

(ε)
N WN W>N Q̂

(ε)
N WN .

Invoking the operators Û (ε) = limN→∞ Û
(ε)
N and continuity of the logarithm

[18, Exercise 4.6.5] we have that the logarithm of the determinant of the
three last factors in eq. (21) equals

trK
[
log
(
IK + ε2 T 3

N3 WN W>N Û
(ε)
N WN W>N Û

(ε)
N WN W>N

+ ε T 3

N3 WN W>N Û
(ε)
N WN W>N Â

(ε)
N WN W>N

+ ε T 3

N3 WN W>N Â
(ε)
N WN W>N Û

(ε)
N WN W>N

+ T 4

N4 WN W>N Q̂
(ε)
N WN W>N Â

(ε)
N WN W>N Q̂

(ε)
N WN W>N

)]
−−−−→
N→∞

trK
[
log
(
IK + ε2Û (ε)Û (ε) + εÛ (ε)Â(ε) + εÂ(ε)Û (ε) + Q̂(ε)Â(ε)Q̂(ε)

)]
−−→
ε→0

trK
[
log
(
IK + Q̂ÂQ̂

)]
.

This completes the proof of eq. (19). To prove eq. (20) we use

trK
[
log
(
IK + Q̂ÂQ̂

)]
=
∫ 1

0
trK

[
∂z log

(
IK + zQ̂ÂQ̂

)]
dz

=
∫ 1

0
trK

[(
IK + zQ̂ÂQ̂

)−1
Q̂ÂQ̂

]
dz.

We have IK − Q̂ = Ĝ>(
∫ T
0 γf (s)>γf (s) ds)−1Ĝ with f = B̂, and elementary

matrix algebra gives that the trace of (IK + zQ̂ÂQ̂)−1Q̂ÂQ̂ equals(
trK

[
Ĥz Â

]
− trRM

[
(Ĝ Ĥz Ĝ

>)−1Ĝ Ĥz ÂĤz Ĝ
>])∣∣ bHz=(IK+z bA)−1 ,

whereby eq. (20) follows. 2

Theorem 7 stated below solves the Fredholm equation of the second kind
(IK +A)f = g for a class of operators A on K given on the form

Af(t) =
∫ T

0
β(t)α(t ∨ s)β(s)>f(s)ds, f ∈ K. (22)

Necessary and sufficient conditions for IK+A to be invertible are given, and
an accompanying inversion formula shows that the inverse operator also
is given on the form eq. (22). The inversion formula can be invoked for
the computation of the trace term eq. (20), where the operators IK + zÂ
are to be inverted. Proposition 2 implies that zÂ is given on the form
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eq. (22) with α(t) ∈ Rq×q and β(t) ∈ Rd×q. Combining these elements the
Laplace approximation can be computed integrating systems of differential
equations. In the appendix we explicitly state the systems to be solved in
the univariate case q = d = 1.

To conclude this section we state the specialization of the results from
[16] to symmetric operators.

Theorem 7. Suppose that the operator A is given on the form eq. (22) with
cadlag functions α(t) ∈ RK×K and β(t) ∈ Rd×K for some K ∈ N, and where
α(t) also is continuous differentiable from the right with α(T ) = 0. For each
t ∈ [0, T ] let ht(u) ∈ RK×K be the unique solution to the Volterra integral
equation of the second kind given by

ht(u) = 1u<tβ(u)>β(u)
(
α(t)− α(u) +

∫ t

u

(
α(s)− α(u)

)
ht(s) ds

)
.

Then IK+A is invertible if and only if the matrix IRK−
∫ T
0 hT (s)ds ∈ RK×K

is invertible. Furthermore, if the matrices IRK −
∫ t
0 ht(s)ds are invertible for

t ∈ [0, T ], then (IK +A)−1 = IK +B with

Bf(t) =
∫ T

0
β(t)ψ(t)−1 ρ(t ∨ s)χ(s)−1,> β(s)>f(s) ds.

Here the cadlag functions ψ(t), χ(t), ρ(t) ∈ RK×K are given by

ψ(t) =
∏

s∈(0,t]

(
IRK +

(
dα(s)

)
ϕ(s)

)
, χ(t) =

∏
s∈(0,t]

(
IRK +

(
dα(s)>

)
ϕ(s)>

)
and ρ(t) =

∫
(t,T ] ψ(s−) (dα(s))χ(s)>. The cadlag function ϕ(t) ∈ RK×K

solves the Riccati type jump-differential equation given by ϕ(0) = 0 and

ϕ(t) =
(
IRK − ϕ(t−) ∆tα(t)

)−1
ϕ(t−), ∂tϕ(t) = β(t)>β(t) + ϕ(t) ∂tα(t)ϕ(t),

where ∆tα(t) = α(t) − α(t−) and ∂tα(t) = limη→0
α(t+η)−α(t)

η denote the
jumps and right hand side derivatives of the function α.

6 Discussion

In this section we discuss various aspects of the developed theory. Before
proceeding to the statistical aspects in the following subsections we comment
on the relation to classical white noise theory. Here white noise is a stochas-
tic Schwartz distribution defined as the generalized derivative of Brownian
motion [12]. Streit & Hida [21] applied this theory for the analysis of the
Feynman path integral and also suggested the Laplace approximation. Fur-
ther investigations in this direction were made by Falco & Khandekar [9].
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Albeit mathematically elegant, classical white noise theory is non-amenable
for numerical computations. The advantage of our analysis in the Cameron-
Martin space is that standard techniques from calculus of variations and for
ordinary differential equations can be invoked. In particular, the Laplace ap-
proximation and the inversion formula stated in Theorem 6 and Theorem 7
are amenable for numerical computations.

6.1 Invariance of MAP paths and the Laplace approximation

We have studied MAP paths and the Laplace approximation of the density
of a finite dimensional functional Y = (Υ ◦ Φ)(B) of the Brownian motion.
The MAP paths are invariant under non-linear transformations in the sense
that the estimators do not depend on whether the transformation is used
before or after the maximization. This invariance property is intuitively clear
since the underlying MAP Brownian path remains unchanged. The Laplace
approximation satisfies a similar invariance property: The Lebesgue density
of Y is given by

pY (y) = lim
ε→0

E
[

1
(2πε2)M/2

exp
(
− |Y − y|2

2ε2

)]
.

If Ψ: RM → RM is a smooth diffeomorphism of the range space for Y , then
the Lebesgue density of the transformed variable Z = Ψ(Y ) is given by

pZ

(
Ψ(y)

)
= lim

ε→0
E
[

1
(2πε2)M/2

exp
(
− |Ψ(Y )−Ψ(y)|2

2ε2

)]
= lim

ε→0
E
[

1
(2πε2)M/2

exp
(
− |∇Ψ(y) · (Y − y)|2

2ε2

)]
= det

(
∇Ψ(y)>∇Ψ(y)

)−1/2
pY (y).

This restatement of the transformation rule for Lebesgue densities remains
true when the expectations over the Brownian motion are replaced by their
Laplace approximations. Thus, if p̂Y (y) and p̂Z(z) denote the Laplace ap-
proximation of the densities for Y and Z, respectively, then

p̂Y (y) =
√

det
(
∇Ψ(y)>∇Ψ(y)

)
p̂Z

(
Ψ(y)

)
. (23)

As illustrated in Example 1 below the system of differential equations to be
solved for the computation of p̂Y (y) and p̂Z(z) may be very different.

6.2 Comparison with conditioned stochastic differential equa-
tions

The MAP path of a stochastic differential equation X given its endpoints
over the interval [0, T ] can be compared to the conditional diffusion bridge
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investigated by Baudoin [3]. Consider the univariate case q = d = 1 and let
the function ψ(t, x) be defined by the equation

∂tX̂(t) = b
(
X̂(t)

)
+ σ

(
X̂(t)

)2
ψ
(
t, X̂(t)

)
.

Then ψ(t, x) satisfies the PDE ∂tψ + ∂x(b ψ) + 1
2∂x(σ2 ψ2) = 0. It is known

[3, Proposition 37] that the diffusion bridge Z for X given the conditioning
X(T ) = xT satisfies the conditioned SDE

dZ(t) =
(
ξ
(
Z(t)

)
+ σ

(
Z(t)

)2
ψ0

(
t, Z(t)

))
dt+ σ

(
Z(t)

)
dW (t),

where ξ(x) = b(x)+ 1
2σ(x) ∂xσ(x) is the Itô drift, W is a standard Brownian

motion in the filtration enlarged by X(T ), and ψ0(t, x) satisfies the PDE

∂tψ0 + ∂x

(
ξ ψ0

)
+ 1

2∂x

(
σ2 ψ2

0

)
+ 1

2∂x

(
σ2 ∂xψ0

)
= 0.

The PDEs for ψ(t, x) and ψ0(t, x) exhibit similarities and can coincide for
some instances of the coefficients b and σ. In particular, for linear functionals
of the Brownian motion the MAP path coincides with the drift coefficient of
the conditional diffusion bridge. Nevertheless, in general ψ(t, x) and ψ0(t, x)
differ in accordance with the distinctiveness of the maximum mode and
the mean. The invariance property for the MAP path under non-linear
transformations is not shared by the conditional diffusion bridge.

6.3 MAP and ML estimation

The developed theory can be applied for both MAP estimation of diffusion
paths and for approximate maximum likelihood estimation of the parameter
θ ∈ Θ. Below we present three simple examples in the univariate case
q = d = M = 1. For univariate SDEs there exists other alternatives to
exact MLE as reviewed by Sørensen [20]. Beskos et al. [5] compute the
transition densities by simulation methods, and Aı̈t-Sahalia [1, 2] provides
series expansions of the transition densities. These approaches require the
so-called reducibility condition [2, Definition 1] in the multivariate setting.
Moreover, the number of terms needed in both simulation methods and
series expansions to achieve a desired accuracy grows exponentially in the
dimension of the SDE. As opposed to this we expect the computation of
the Laplace approximation to be feasible for high dimensional SDEs. This
postulate remains to be studied in future work.

Example 1. The Brownian motion X with diffusion coefficient θ is de-
scribed by the flow φ0,t

x (f) = x + θf(t). The Euler-Lagrange equation reads
∂2

t X̂(t) = 0. Thus, the MAP path from X̂(0) = x0 to X̂(T ) = xT is a
straight line and

∂tB̂(t) =
xT − x0

θT
, ‖∂B̂‖2

K =
1
2

∫ T

0

(xT − x0)2

θ2T 2
dt =

(xT − x0)2

2Tθ2
.
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We have αf (t) = 0 and γf (t) = θ, and the Laplace approximation stated in
Theorem 6 provides the exact transition density

p(xT ) =
exp

(
−1

2‖∂B̂‖
2
K

)
√

2π
∫ T
0 γf (t)>γf (t) dt

=
1√

2πTθ2
exp

(
− (xT − x0)2

2Tθ2

)
.

The invariance property of the Laplace approximation may be illustrated con-
sidering the geometric Brownian motion exp

(
X(t)− θ2

2 t
)
. For the geometric

Brownian motion we have αf (t) 6= 0, and the calculation of the Laplace ap-
proximation is more involved. However, the invariance property eq. (23) can
be verified by numerical computations.

Example 2. The Ornstein-Uhlenbeck process dX(t) = −θX(t) dt + dB(t)
with initial value X(0) = x0 and parameter θ > 0 is given by the flow

φ0,t
x0

(f) = e−θtx0 +
∫ t

0
e−θ(t−s)df(s).

The Euler-Lagrange equation reads ∂2
t X̂(t) = θ2X̂t. Thus, the MAP Ornstein-

Uhlenbeck path from X̂(0) = x0 to X̂(T ) = xT is

X̂(t) =
(eθ(T−t) − e−θ(T−t))x0 + (eθt − e−θt)xT

eθT − e−θT
.

The relationship ∂tB̂(t) = ∂tX̂(t) + θX̂(t) gives

‖∂B̂‖2
K =

(
2θ(xT − e−θTx0)

eθT − e−θT

)2 ∫ T

0
e2θtdt =

2θ(xT − e−θTx0)2

1− e−2θT
.

We have αf (t) = 0 and γf (t) = e−θ(T−t), and the Laplace approximation
stated in Theorem 6 provides the exact transition density

p(xT ) =
exp

(
−1

2‖∂B̂‖
2
K

)
√

2π
∫ T
0 γf (t)>γf (t) dt

=

√
θ

π(1− e−2θT )
exp

(
−θ(xT − e−θTx0)2

1− e−2θT

)
.

Example 3. The squared Bessel process X(t) of dimension θ > 1 and the
Euler-Lagrange equation for the associated MAP path X̂(t) are given by

dX(t) = (θ − 1) dt+ 2
√
X(t) ◦dB(t), 2X̂(t) ∂2

t X̂(t) = X̂(t)2 − (θ − 1)2.

Strictly speaking the squared Bessel process is not covered by the developed
theory: Assumption (A1) is violated since the diffusion coefficient σ(x) =
2
√
x lies in Ck+1,η and not in Ck+1,η

b [13, p. 334]. This is due to the behavior
at x = 0. But since the neighborhood of x = 0 is not entered by the MAP
path we can still use the Laplace approximation. The squared Bessel process
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has been chosen as an example for two reasons. Firstly, the Euler-Lagrange
equation for the MAP path can be explicitly solved. We have X̂(t) = c2t

2 +
c1t+ c0. The coefficients c0, c1, c2 are found solving a quadratic equation in
the boundary conditions and the MAP path from X(0) = x0 to X(T ) = xT

is given by

X̂(t) =
T 2 − t2

T 2
x0 +

t2

T 2
xT +

t(T − t)
T

c1, c1 =
−2x0

T
+

√
4x0xT

T 2
+ (θ − 1)2.

Secondly, the transition densities and the optimal martingale estimator stud-
ied by Bibby & Sørensen [8] are explicitly known. This allow us to compare
the approximate ML estimator based on the Laplace approximation with the
exact ML estimator and the optimal martingale estimator. To do this we
have minimized Ex0

θ0
[− log p̂x0

θ (X(1))] over θ > 1. Here the expectation is
taken over the squared Bessel process at time T = 1 in dimension θ0 = 4
conditioned on X(0) = x0, and p̂x0

θ denotes the Laplace approximations of
the transition densities in dimension θ > 1. Since the diffusion coefficient
2
√
x is more linear for larger values of x we expect the quality of the Laplace

approximation to improve with larger values of x0.
The approximate ML estimator as a function of x0 ∈ (0, 25] is shown in

the first panel in Figure 1. The approximate MLE is biased, but the bias is
much smaller than the standard deviation expected from the Fisher informa-
tion displayed in the upper right panel. Moreover, the Fisher information
for the approximate and the exact ML estimators are almost identical and
distinctively larger than the information of the optimal martingale estimator.
The lower left panel in Figure 1 shows the entropy minθ>1 Ex0

θ0
[− log p̂x0

θ (X(1))]
as a function of x0 ∈ (0, 25]. The difference between the approximate and the
exact entropy can be decomposed in two parts. The first part, − log

∫
p̂x0

θ (y)dy,
arises since the Laplace approximation not necessarily provides a probabil-
ity density. The second part is the Kullback-Leibler divergence between the
normalized Laplace approximation and the exact transition density. In this
case, the approximate and the exact entropy are almost identical. The last
panel of Figure 1 displays the Laplace approximation of the transition den-
sity for x0 = 1. Although this initial value resulted in a biased estimator,
the approximation of the transition density is quite good. Furthermore, we
see that − log

∫
p̂1bθ(y)dy > 0.

A ODEs for the Laplace approximation

In this appendix we present the system of ordinary differential equations to
be solved in the special case q = d = J = 1. Suppose we are given the data

x0, ẋ0, b(x), ∂xb(x), ∂2
xb(x), σ(x), ∂xσ(x), ∂2

xσ(x)

and a z ∈ [0, 1]. To find the energy and the trace terms needed in Theorem 6
we successively solve three subsystems S1, S2, S3 of the system of ODEs
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Figure 1: Comparison of the exact MLE, the approximate MLE and the
optimal martingale estimator for the squared Bessel process. The first three
panels show the estimates, their Fisher information and the entropy as a
function of the initial position X(0) = x0. The last panel shows the Laplace
approximation of the transition density for x0 = 1.

given by the initial values X(0) = x0, ∂tX(t) = ẋ0 for t = 0, κ(0) = 1,
λ(0) = 0, ϕ(0) = 0, ψ(0) = 1, ρ0(0) = 0 or ρ(0) = −ρ0(T ),

α(0) = − ∂TB(T )
σ(X(T ))

κ(T )

(
λ(T ) +

∂xσ(x)
σ(x)

∣∣∣∣
x=X(0)

)
,
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and derivatives

∂tX(t) = ∂tX(t),

∂2
tX(t) =

∂xσ(x)
σ(x)

((
∂tX(t)

)2 − b(x)2
)

+ b(x)∂xb(x)
∣∣∣
x=X(t)

,

∂tκ(t) = κ(t)
(
∂xb(x) + ∂xσ(x) ∂tB(t)

)∣∣∣
x=X(t)

,

∂tλ(t) = κ(t)
(
∂2

xb(x) + ∂2
xσ(x) ∂tB(t)

)∣∣∣
x=X(t)

,

∂tα(t) = − ∂TB(T )
σ(X(T ))

κ(T )
(
∂tξt − ∂tλ(t)

)
,

∂tϕ(t) = σ
(
X(t)

)2
κ(t)−2 + z ϕ(t) ∂tα(t)ϕ(t),

∂tψ(t) = z ϕ(t) ∂tα(t)ψ(t),
∂tρ0(t) = ∂tρ(t) = −z ψ(t) ∂tα(t)ψ(t).

Here ∂tB(t) = ∂tX(t)−b(x)
σ(x)

∣∣
x=X(t)

and

∂tξ(t) =
(
∂tκ(t)

∂xσ(x)
σ(x)

+κ(t)
∂2

xσ(x)
σ(x)

∂tX(t)−κ(t)(∂xσ(x))2

σ(x)2
∂tX(t)

)∣∣∣∣
x=X(t)

.

Furthermore, we define ∆Tα(T ) = −∂TB(T )κ(T )2 ∂xσ(X(T ))σ(X(T ))−2

and

ϕ(T ) =
(
1− z ϕ(T−) ∆Tα(T )

)−1
ϕ(T−),

ψ(T ) =
(
1 + z∆Tα(T )ϕ(T )

)
ψ(T−),

ρ0(T ) = ρ0(T−)− z ψ(T−) ∆Tα(T )ψ(T )

The energy and the trace terms are given by ‖∂B‖2
K = Int1(T) and∫ T

0
γ(s)>γ(s) ds = κ(T ) Int2(T )κ(T ), tr[HA] = Int5(T) + Int6(T),

GHG> = κ(T ) Int7(T), GHAHG> = Int8(T),

25



where the integrals Int1,. . . ,Int8 are found in the systems S1, S2, S3 as
follows:

S1 : Int1(t) =
∫ t

0
∂sB(s)>∂sB(s) ds,

S1 : Int2(t) =
∫ t

0
β(s)>β(s) ds,

S2, S3 : Int3(t) =
∫ t

0
ψ(s)−1,>β(s)>β(s) ds,

S2, S3 : Int4(t) =
∫ t

0
ρ0(s)ψ(s)−1,>β(s)>β(s) ds− ρ0(T ) Int3(t),

S3 : Int5(t) =
∫ t

0
α(s)β(s)>β(s) ds,

S3 : Int6(t) = 2
∫ t

0
α(s)β(s)> β(s)ψ(s)−1 ρ(s) Int3(s) ds,

S3 : Int7(t) =
∫ t

0
β(s)>Hγ(s) ds,

S3 : Int8(t) = 2
∫ t

0
Hγ(s)> β(s)α(s) Int7(s) ds.

Here β(t) = σ
(
X(t)

)
κ(t)−1, ρ(t) = ρ0(t)− ρ0(T ) and

Hγ(t) = β(t)κ(T ) + β(t)ψ(t)−1ρ(t) Int3(t)κ(T )

+ β(t)ψ(t)−1 Int4(T)κ(T )− β(t)ψ(t)−1 Int4(t)κ(T ).
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