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plots as non-disturbed. The right hand tall bar has the water exclusion curtain. The front low bar has the 
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Summary 

Terrestrial ecosystems are currently exposed to climatic and air quality changes with 

increased atmospheric CO2, increased temperature and periodical droughts. At a temperate 

heath site the combined effects of warming, increased atmospheric CO2 and summer drought 

was investigated in a unique full factorial in situ experiment (CLIMAITE). The climate 

change treatments started October 2005 and consisted of increased temperature (T), 

extended summer drought (D), increased atmospheric CO2 and all combinations of these 

treatments (TD, TCO2, DCO2 and TDCO2). 

In this thesis, responses in soil inorganic and microbial nutrient concentration were 

investigated after one year of climate change treatment. Additionally, top soil net 

mineralization, immobilization and leaf litter decomposition was investigated through the 

winter half year separately below Calluna and Deschampsia plants, and acquisition of 

organic nitrogen in plants and soil microorganisms was assessed. 

After one year of treatments, warming increased microbial N, C and P and 

decomposition of leaf litter below Calluna plants. In Deschampsia soil the net nitrification 

rate decreased significantly in response to drought, by contrast, an increase was observed in 

Calluna soil. Drought reduced leaf litter decomposition for both species.  

In warmed plots an early senescence was observed with effects on green Deschampsia 

biomass, on Deschampsia root nitrogen concentration and on acquisition of 15N from 

glycine. 

In this thesis, experiments using the stable isotopes 15N and 13C as tracers of 

ammonium and amino acid acquisition by plants and soil microorganisms suggest directions 

of the short term competition at two dwarf shrub heaths, one with sub-arctic climate and one 

with temperate climate during spring and fall. Soil microorganisms acquired the largest 

amount of the added nitrogen sources compared to plants at both heath types. At both heaths, 

plants preferred the inorganic ammonium, yet all nitrogen forms were acquired by both 

plants and soil microorganisms. At the temperate heath, soil microorganisms acquired the 
15N 13C labeled amino acids (glycine, glutamic acid and phenylalanine) as intact compounds, 

and both dominant plant species showed indications of phenylalanine acquisition as intact 
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compounds. The thesis consists of an introduction collecting the most important findings 

from the four manuscripts. 

Sammenfatning 

Over vore terrestriske økosystemer er der til stadighed klimatiske forandringer med øget 

CO2, forhøjet temperatur, og periodevis forlænget tørke. På tempereret hede I Danmark 

undersøges de kombinerede effekter af opvarmning, forhøjet CO2 og forlænget sommer 

tørke i et unikt fuld faktorielt in situ forsøg (CLIMAITE). Klimabehandlingerne startede I 

oktober 2005 og består I forhøjet temperatur (T), forlænget sommertørke (D), forhøjet CO2 

og alle kombinationer af disse behandlinger (TD, TCO2, DCO2 og TDCO2). 

I dette ph.d arbejde undersøges forandringer i jords uorganiske og organiske 

næringsstofsammensætning og mikrobiel biomasse efter et års kontinuerlig klimaforandring. 

Desuden undersøges gennem vinterhalvåret nedbrydningsprocesser i det øverste jordlag som 

mineralisering, nitrifikation og immobilisering samt nedbrydning af dødt bladmateriale, 

adskilt for de to dominerende plantearter Calluna vulgaris og Deschampsia flexuosa. Optag 

af uorganisk og organisk næring undersøges i planter og jordbunds mikroorganismer.  

Klimaforandringerne forøgede den mikrobielle biomasse (N, C og P) og blad 

nedbrydning under Calluna ved forhøjet temperatur, og Deschampsia udviste prematur 

senescens med mindsket grøn biomasse og øget rod N koncentration.  Effekter af 

opvarmning blev dog ofte modvirket når tørke og CO2 kombineredes med opvarmning. I 

jord under Descampsia faldt netto nitrifikations raten efter øget sommer tørke mens den steg 

I jord under Calluna. Tørke mindskede desuden blad nedbrydningen for begge arter.  

I dette ph.d. arbejde undersøges optag af næringsstofferne ammonium og aminosyrer 

i plante og jordbunds mikroorganismer ved anvendelse af de stabile isotoper 15N og 13C som 

sporstoffer. Dette vægter korttids konkurrecen på to dværgbusk heder, en med subarktisk 

klima og en med tempereret klima tidligt og sent på året. Mikroorgaismer optog den største 

part af det tilførte nitrogen på begge heder. På begge heder foretrak planter ammonium, dog 

optages alle kvælstofformer af bade planter og mikroorganismer. På tempereret hede optog 

mikroorganismerne aminosyrere glycine, glutamin syre og phenylalanine som hele 

molekyler og begge dominerende platearter viste tegn på optag af intakt pheylalanin.  

Afhandlingen består af en itroduktion der samler de fire udarbejdede manuskripter. 
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Nitrogen cycling in heathland ecosystems and effects of 

climate change 

Knowledge of terrestrial ecosystem cycling of nitrogen is building from investigations and 

experiments through decades with curious and laborious exploration of soil and plant 

interactions (Sorensen et al., 2008b; Sorensen et al., 2006; Schmidt et al., 2002; Emmett et 

al., 2004; Jonasson et al., 1993; Aerts & Chapin III, 2000; Paul & Clark, 1996). The 

openness of the heathland ecosystem with nitrogen deposition and nitrous gas emissions 

emphasizes the vulnerability of the mutualism (Sorensen et al., 2006). Nitrogen limitation is 

often announced as controlling plant primary production at the heath (Aerts & Chapin III, 

2000; Riis-Nielsen et al., 2005). Consequently, competition for inorganic and organic 

nitrogen sources between plant species and between plants and soil microorganisms is key to 

the coexistence of these organisms in seasonal and dynamic patterns (Nordin et al., 2004; 

Clemmesen et al., 2008).  

Disregarding nitrogen deposition and emissions, production of the inorganic 

nutrients: nitrate and ammonium and abundance of released amino acids in the soil solution 

sets the frame for biomass production. Amino acids in the soil function both as nitrogen 

sources and as labile carbohydrate substrates for soil microorganisms (Ström & Christensen, 

2007; Vestergård et al., 2008). The ability of the competing organisms to acquire these 

nutrients reflects the strategy and differentiated niches of the organisms. 

Nutrient concentrations in the soil solution does not necessarily represent a 

concomitant high flux of the compound e.g. NO3
-, NH4

+ or amino acids, and a measured low 

concentration of e.g. amino acids may 'hide' a high flux of these compounds (Weintraub & 

Schimel, 2005b; Kielland et al., 2007). Hence, nutrient flux parameters, such as enzyme 

concentration in the soil, nitrification and mineralization rates or use of nutrient labels with 

stable isotopes to trace short-term acquisition, dynamically describe importance of nutrient 

compounds in the ecosystem cycling.  

 

In this thesis, experiments using the stable isotopes 15N and 13C as tracers of ammonium and 

amino acid acquisition by plants and soil microorganisms suggest directions of the short 
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term competition at two dwarf shrub heaths, one with sub-arctic climate and one with 

temperate climate during spring and fall. We expected:  

• That both microorganisms and plants would be able to acquire N in both the added 

inorganic and organic forms. 

• Soil microorganisms would acquire the largest amounts of the added nitrogen 

sources compared to plants at both heath types.  

At the subarctic heath, plants overall preferred the inorganic ammonium while soil 

microorganisms preferred the organic amino acids glycine and glutamic acid, yet all nitrogen 

forms were acquired by both plants and soil microorganisms (manuscript 1). At the 

temperate heath, soil microorganisms showed no preferences of nitrogen form, hence 

ammonium and the amino acids: glycine, glutamic acid and phenylalanine were acquired 

equally (manuscript 2). Soil microorganisms acquired the 15N 13C labeled amino acids as 

intact compounds, and both plant species showed indications of phenylalanine acquisition as 

intact compounds. Both dominant plant species Calluna vulgaris and Deschampsia flexuosa 

showed preference of ammonium over the amino acids (manuscript 2). 

 

Terrestrial ecosystems are currently exposed to climatic and air quality changes with 

increased atmospheric CO2, increased temperature and periodical droughts. According to 

extrapolations and models developed by IPCC, the air temperature may increase by 0.1 ˚C 

for each following decade and the CO2 concentration of the atmosphere will increase with an 

amount depending on stabilization scenario. Furthermore, precipitation will alter with 

expected extended summer drought periods in Denmark (IPCC, 2007); (Danish 

Meteorological Institute, 2008). At the temperate heath site the combined effects of 

warming, increased atmospheric CO2 and summer drought on the soil processes was 

investigated in a unique full factorial in situ experimental set up (CLIMAITE). The climate 

change treatments started October 2005 and consisted of increased temperature (T), 

extended summer drought (D), increased atmospheric CO2 and all combinations of these 

treatments (TD, TCO2, DCO2 and TDCO2) (Mikkelsen et al., 2008). 

In this thesis, responses in soil inorganic and microbial nitrogen concentrations were 

investigated after one year of climate change treatments (manuscript 3). Additionally, top 

soil net mineralization and microbial N immobilization and leaf litter decomposition was 
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investigated through the winter half year separately below Calluna and Deschampsia plants. 

We expected that (manuscript 3):  

• Biological processes would be stimulated by warming (T) leading to increased net 

rates of nitrification, mineralization and decomposition as well as increased microbial 

C, N and P.  

• Decomposing microorganisms would be water limited by the drought treatment (D) 

leading to reduced nitrification, mineralization and decomposition in response to 

drought.  

• Plant presence will induce microbial immobilization and acquire mineralized 

nitrogen.  

Inclusion of live Calluna or Deschampsia plants in the soil incubations revealed 

differentiated responses in mineralization, microbial immobilization and plant mobilization 

of nitrogen. Warming increased microbial N, C and P at 0-5 cm depth and decomposition of 

leaf litter below Calluna plants. The effects of warming were often counteracted when 

combined with both CO2 and drought. Net mineralization of N and P was significantly 

affected by the climate change treatments. In Deschampsia soil the net nitrification rate 

decreased significantly in response to drought, by contrast, an increase was observed in 

Calluna soil. Drought reduced leaf litter decomposition for both species. Plant presence 

increased the microbial immobilization, suggesting a plant root exudation priming of the 

rhizosphere. Warmed plots with lower DOC concentrations had lower mineralization rates, 

also suggesting a carbohydrate limitation of the microbes (manuscript 3). 

Root uptake kinetics are enhanced by warming, and the acquisition may increase by 

changed root transport properties for NH4
+ (Clarkson & Warner, 1979; Pike & Berry, 1980). 

Furthermore, NO3
- uptake capacity is highly modulated by the N status of the roots or the 

whole plant (Bassirirad, 2000). Root biomasses, depth distribution and root morphology 

respond differentially to warming (Björk et al., 2007). Consequently, the acquired N pool of 

the plant roots in response to warming is a combined effect of root biomass, nutrient status 

and root growth responses combined with the acquisition physiology parameters. Responses 

in root nutrient uptake to elevated CO2 is highly variable, reflecting e.g. differential 

responses in plant growth and nutrient status, while plant processes such as water-use 

efficiency, photosynthetic rate (Ehleringer, 2005), tissue N-concentration and labile 
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carbohydrates show consistent responses to elevated CO2 (Bassirirad, 2000). Responses in 

root nutrient uptake to elevated CO2 is highly variable, reflecting e.g. differential responses 

in plant growth and nutrient status, while plant processes such as water-use efficiency, 

photosynthetic rate, tissue N-concentration and labile carbohydrates show consistent 

responses to elevated CO2 (Bassirirad, 2000). Carbohydrate exudation by plant roots may 

respond to climate change in the same direction as photosynthesis and plant production 

(Rinnan et al., 2005; Albert et al., 2005; Ehleringer, 2005). Hence, elevated temperature and 

CO2 may increase soil concentrations of e.g. glycine. In this experiment we investigated the 

acquisition and partitioning of glycine between plants and soil microorganisms. 

In an in situ labeling experiment with 15N 13C glycine in the climate treated plots we 

expected (manuscript 4): 

• warming to promote biological activity, by increasing root 15N uptake 

• elevated CO2 to increase plant biomass 

Furthermore, changes in abundance of plant nutrients (nitrate or ammonium) in the soil 

solution would affect root biomass or N concentration:  

• an increase in nitrate concentration would cause a smaller root biomass and vice 

versa 

 

Nitrogen pools cycling at the subarctic heath 

An investigation of ecosystem nitrogen pools and plant and microbial inorganic and organic 

nitrogen acquisition was investigated in a short term experiment (manuscript 1). 

Furthermore, long-term (11 years) ecosystem retention of nitrogen was assessed.  

At a mesic low productive subarctic heath (Michelsen et al., 1998; Michelsen et al., 1999) 

the vegetation was species diverse and dominated by deciduous (126 g m-2 aboveground) 

and evergreen (170 g m-2) dwarf shrubs with a low cover of graminoids (19 g m-2), other 

herbs (14 g m-2) and cryptogams (21 g m-2) (manuscript 1). The plant species had ericoid-, 

ecto- and arbutoid mycorrhiza or were non-mycorrhizal (Michelsen et al., 1998; Clemmesen 

et al., 2006; Olsrud et al., 2004).  

The distribution of nitrogen between the ecosystem pools at the subarctic heath field 

site from top canopy down to 10 cm depth was (manuscript 1): 
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 gN m-2 
NH4

+-N 0.56 ± 0.05 
Amino acid N ×10-6 296 ± 5 
DON 2.73 ± 0.23 
DTN 3.29 ± 0.27 
MicN 10.93 ± 0.90 
Plant N 29.0 ± 0.6  

 
Table A: Nitrogen pools at the sub arctic heath field site (manuscript 1) NH4

+-N, amino acid nitrogen, 
dissolved organic nitrogen (DON), dissolved total nitrogen (DTN), microbial nitrogen (MicN), plant 
nitrogen. 
 
These pool sizes were in line with another investigation at a near by dry heath site, also with 

NO3
- concentrations below detection limit (Sorensen et al., 2008a; Schmidt et al., 2002; 

Michelsen et al., 1999).  

Acquisition of nitrogen was investigated with fully stable isotope 15N labeled 

compounds injected in situ at the subarctic heath site. 21 days after addition of (each 0.130 

gN m-2) 15N ammonium, glycine or glutamic acid in 1 cm depth, the recovery of the 15N 

label at the subarctic heath was (manuscript 1): 

 
 % 15N recovery 

15N ammonium 
% 15N recovery 
15N glycine 

% 15N recovery 
15N glutamic acid 

DTN 4.2 ± 1.3 3.4 ± 0.3 4.4 ± 0.7 
MicN 23.7 ± 3.3   (B) 38.6 ± 3.5   (AB) 46.6 ± 12.7   (A) 
Total soil  46.3 ± 13.8 57.4 ± 10.3 69.8 ± 16.3 
Plant (green/leaf) 2.0 ± 0.4   A 1.2 ± 0.2   AB 0.5 ± 0.1   B 

 
Table B: 15N recovery of added label in plants and dissolved organic N, microbial N and total soil 21 days 
after labeling at the subarctic heath field site (manuscript 1). 
 
Hence, the microbial acquisition of each of the added labels was larger than the plant 

acquisition. This was in line with what has been found in other investigations using the same 

methodology (Schimel & Chapin, 1996; Hofmockel et al., 2007; Sorensen et al., 2008a; 

Sorensen et al., 2008b; McKane et al., 2002). Furthermore microorganisms by tendency 

preferred glutamic acid, while plants significantly preferred ammonium, se manuscript 1. 

This suggested microbial preference for organic nitrogen may be site specific, however plant 

preference of inorganic nitrogen seems to be more general across ecosystems (Nordin et al., 

2004; Sorensen et al., 2008a; Clemmesen et al., 2008; Kielland et al., 2006; Harrison et al., 

2008) and manuscript 2).  

 
 

11



In a sampling of the 15N labeled plots 11 years after the original 15N labeling, the 

same pools were investigated following the same methodology of the first study in 

manuscript 1. No significant effects of the original labeled N form or of the original depth of 

labeling was found, as was the case after one year in a study using NO3, NH4 and glycine at 

a more dry heath (Sorensen et al., 2008b). After 11 years of natural ecosystem cycling of the 

originally added 15N label the average 15N recovery of the label added in 1 cm depth at the 

subarctic heath was:  

 
 cm depth % 15N recovery 
Plant abovegr  1.4 ± 0.1 
Plant litter  1.8 ± 0.2 
Coarse roots 0-5 1.7 ± 0.3 
 5-10 0.1 ± 0.1 
 10-15 0.0   
Fine roots 0-5 2.4 ± 0.4 
 5-10 0.1 ± 0.0 
 10-15 0.0 
Dissolved Total N 0-5 0.1 ± 0.0 
 5-10 0.0  
 10-15 0.0 
Microbial N 0-5 5.0 ± 0.9 
 5-10 0.8 ± 0.2 
 10-15 0.1 ± 0.1 
Total soil N 0-5 36.8 ± 3.6 
 5-10 4.2 ± 0.8 
 10-15 1.0 ± 0.2 
Total ecosystem   49.5 ± 5.7  

 
Table C: 15N recovery of added label in plants and dissolved organic N, microbial N and total soil 11 
years after labeling at the subarctic heath field site. 
 
This is the first study to investigate long term retention and cycling of added stable isotope 
15N nitrogen. The total ecosystem (total soil plus plant fractions) 15N recovery, reflects a 

leaching of the added 15N of about 50 % through the period. Hence, this rather large long-

term retention of added nitrogen is informative when assessing the ecosystem vulnerability 

to anthropogenic nitrogen deposition. 
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The temperate heath: nitrogen pools and cycling 

The field site of the investigation was at Brandbjerg (55º53'N 11º58'E) just next to the 

climate treated plots a hilly nutrient poor sandy deposit with a dry heath/grassland ecosystem 

dominated by Deschampsia flexuosa (460 g m-2 DW (above plus below ground)) and 

Calluna vulgaris (715 g m-2 DW (above plus below ground)) and with a low cover of other 

herbs and grass species, and an open moss cover beneath the canopy of vascular plants. The 

average precipitation per year was about 600 mm and the average temperature was 8° C. The 

N deposition is around 1.25 gN m-2 year-1 (www.dmi.dk, 2005; Mikkelsen et al., 2008), and 

manuscript 2). The distribution of nitrogen between the ecosystem pools at the temperate 

heath from top canopy down to 5 cm depth was (manuscript 2): 

 
 gN m-2 
NO3

--N 0.001 
NH4

+-N 0.008 
Amino acid N ×10-6 0.001 
DON 0.065 
MicN 0.831 
Plant N 13.4 

 
Table D: Nitrogen pools at the temperate heath field site, May 2005 (manuscript 2) NO3

--N, NH4
+-N, 

amino acid N, dissolved organic N (DON), microbial N (MicN), plant N (above and belowground, all 
species). 
 
Other studies of similar heath ecosystems using the same methodology have shown similar 

pool sizes (Sowerby et al., 2005; Jensen et al., 2003; Schmidt et al., 2004). 

At the temperate heath field site, the dynamics of the nitrogen cycling was 

investigated in soil incubations below the two dominant plant species in buried bags (Eno, 

1960; Jonasson et al., 2006; Schmidt et al., 2002) , yielding net nitrification, net 

mineralization, net dissolved organic N production and net microbial immobilization 

(manuscript 3) incubated through the winter half year (187 days) (manuscript 3): 

Ambient climate treatment Calluna soil Deschampsia soil 
Nitrification (ΔNO3

--N) µg N g-1 SOM day-1 -0.049 ± 0.083 0.224 ± 0.090 
Mineralization (ΔNH4

+-N) µg N g-1 SOM day-1 0.786 ± 0.570 0.454 ± 0.296 
DON production (ΔDON) µg N g-1 SOM day-1 -0.679 ± 0.555 -0.374 ± 0.385 
Immobilization (ΔMicN) µg N g-1 SOM day-1 -0.066 ± 2.888 -0.750 ± 1.621 
 
Table E: Net nitrification, net mineralization, net DON production and net microbial immobilization at 
the temperate heath field site, over winter 2006-2007 (187 days) (manuscript 3). 

 
 

13



 
These ranges were comparable to nitrification and mineralization rates for other studies at 

Calluna - Deschampsia dominated heaths using the same methodology (Emmett et al., 2004; 

Beier et al., 2004). 

The acquisition of ammonium and the amino acids glycine, glutamic acid and 

phenylalanine by plants and soil microorganisms were investigated in situ at the temperate 

heath field site with fully 15N and 13C labeled compounds. One day after labeling with the 

different nitrogen forms at the temperate heath during spring, the recovery of the 15N labels 

were (manuscript 2): 

 
 % 15N recovery 

15N ammonium 
% 15N recovery 
15N 13C2 glycine 

% 15N recovery 
15N 13C5 glutamic acid 

% 15N recovery 
15N 13C9 phenylalanine 

DTN 0.6 ± 0.2 0.8 ± 0.1 1.3 ± 0.4  1.0 ± 0.6 
Microbial N 46.7 ± 15.3 52.0 ± 13.2 37.4 ± 5.1 52.8 ± 12.7 
Total soil  87.1 ± 17.1 76.6 ± 24.2 88.6 ± 20.3 86.3 ± 8.7 
Calluna  3.9 ± 1.1 0.7 ± 0.2 0.6 ± 0.2 0.9 ± 0.3 
Deschampsia  3.9 ± 1.1 1.2 ± 0.4 1.3 ± 0.4 0.8 ± 0.3 

 
Table E: acquisition of 15N from the labels ammonium, glycine, glutamic acid and phenylalanine by 
whole plants of Deschampsia flexuosa and Calluna vulgaris and dissolved total nitrogen (DTN), microbial 
nitrogen and in total soil, one day after labeling at the temperate heath (manuscript 2). 
 
 

The soil microbial acquisition of the amino acids was as intact compounds, as seen from the 
13C to 15N ratios (manuscript 2): 
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B: Enrichment of 13C and 15N in soil microorganisms from the labels: a) 15N-ammonium b) 15N 13C9-
phenylalanine c) 15N 13C2-glycine d) 15N13C5-glutamic acid one day after labeling at the temperate heath 
(manuscript 2). 
 
Plant root acquisition of phenylalanine was also found to be partly of non-mineralized 

compounds, with the enrichment 13C to 15N ratios in Deschampsia roots of 5.6 and in 

Calluna roots of 3.4 compared to 9 as the 13C to 15N ratio of the added phenylalanine 

(manuscript 2). 
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C: Enrichment of 13C and 15N in a) Deschampsia flexuosa fine roots and b) Calluna vulgaris fine roots 
from 15N 13C9-phenylalanine one day after labeling at the temperate heath (manuscript 2). 
 

These results (manuscript 2) of intact acquisition of the large amino acid in an in situ 

experiment are additional evidence of possible plant short circuiting of the soil 

mineralization cycle (Schimel & Bennett, 2004; Kielland et al., 2007; Kielland et al., 2006; 

Nordin et al., 2004; Sorensen et al., 2008a; Mikkelsen et al., 2008; Andresen & Michelsen, 

2005). Furthermore, the large acquired amount of the amino acids contributes to the 

discussion of organic nitrogen as potentially important nutrient pools of ecosystems, in spite 

of the rather low water extractable free amino acid pool at the field site.   

During fall 2006, acquisition of 15N13C-glycine by plants and soil microorganisms at 

the temperate heath field site was investigated in the field plots of the climate manipulation 

experiment, with elevated temperature, elevated CO2 and summer drought, to evaluate 

effects of climate change on organic nitrogen acquisition by the competing heathland 

organisms.  

Following the same methodology as in manuscript 2, one day after glycine addition 

at the temperate heath during fall the 15N recovery of the added label was (manuscript 4):  
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 cm depth A D T TD CO2 DCO2 TCO2 TDCO2 
Deschampsia  1.4 ± 0.4 2.5 ± 1.1 2.5 ± 1.0 2.0 ± 0.6 3.6 ± 0.7 3.4 ± 1.0 2.0 ± 0.4 2.5 ± 0.6 

Calluna  0.8 ± 0.4 1.3 ± 0.5 1.4 ± 0.7 0,7 ± 0.2 0.8 ± 0.2 1.3 ± 0.4 0.6 ± 0.1 0.7 ± 0.3 

Microbial N 0-5 35.7±13.7 54.5±15.3 89.1±49.1 36.9±10.7 62.3±16.0 59.3±4.0 56.5±13.6 110.2±63.6 

 5-10 10.7±5.6 10.7±4.6 8.1±3.2 6.3±2.2 10.9±4.8 5.7±2.8 2.9±1.1 8.9±3.2 

 10-15 3.4±2.2 1.9±1.7 0.1±0.1 0.7±0.4 1.1±1.1 0.6±0.4 0.4±0.3 0.8±0.6 

DTN 0-5 0.13±0.08 0.03±0.02 0.03±0.01 0.38±0.37 0.10±0.05 0.10±0.09 0.05±0.03 0.09±0.05 

 5-10 0.00±0.00 0.01±0.01 0.16±0.13 0.03±0.03 0.02±0.01 0.00±0.00 0.01±0.00 0.03±0.02 

 10-15 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.06±0.04 0.00±0.00 0.00±0.00 0.00±0.00 

 
Table F: acquisition of 15N from glycine by whole plants of Deschampsia flexuosa and Calluna vulgaris 
and dissolved total nitrogen (DTN), microbial nitrogen, one day after labeling at the temperate heath in 
the climate treated plots (fall). A: ambient, D: drought, T: temperature, CO2: elevated CO2 (manuscript 
4). 
 
Hence, both during spring and autumn the soil microorganisms acquire a much larger 

amount of the added nitrogen than do the plants. Also at this late season labeling, plants 

preferred the inorganic nitrogen source (Andresen & Michelsen, 2005). 

Additionally, soil microorganisms acquired the added glycine as intact compounds at 

the autumn labeling, with a 13C to 15N ratio of 1.7 (manuscript 4):  
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D: Enrichment of 13C and 15N in soil microorganisms from 15N 13C2-glycine, one day after labeling at the 
temperate heath (fall) all climate treatments (manuscript 4). 
 
In conclusion from manuscript 1,2 and 4: at both heath types and at the temperate heath at 

two times during the season, soil microorganisms win the short term competition over an 
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added nitrogen pulse; plants prefer to acquire inorganic nitrogen and soil microorganisms 

acquire the amino acids as intact compounds. 

Climate change effects on nitrogen cycling 

At the temperate heath site, the combined effects of warming, increased atmospheric CO2 

and summer drought on the soil processes was investigated in a full factorial in situ 

experimental set up. The climate manipulations started October 2005, and consisted of 

increased temperature (T), extended summer drought (D), increased atmospheric CO2 and all 

combinations of these treatments (TD, TCO2, DCO2 and TDCO2), all with a replication of 6. 

The study plots consisted of 12 octagons each 7 m in diameter, comprising 4 plots in a split 

plot design with the treatments drought or elevated temperature solely or in combination, 

and a non-warmed, non-drought plot.  

 

 

E: Schematic design of climate treatments (CLIMAITE) adapted from Mikkelsen et al. 2008 
 
The temperature was increased by passive nighttime warming by means of low automatic 

curtains that were automatically removed during rain events. The precipitation was altered 

also with automatic curtains that automatically unfolded during rain events. The atmospheric 

CO2 was increased with pipe fumigation as in a regular FACE experiment, and with a feed 

back control system linked to wind speed and wind direction. The temperature increase of 

the soil in 2 cm depth was around 1˚C, the increased CO2 concentration in the air was 510 

ppm. The drought period started in late June 2006 and continued for 5 weeks until early 

August when soil water reached c. 5 vol% water in the top 20 cm of the soil. For further 
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information about the experimental design of the multifactor set up, see Mikkelsen et al 

2008.  

 

 

F: Area photo of the CLIMAITE field site at Brandbjerg the 12 circles represent the 12 Octagons with 

each 4 plots. © Google TM 2007. 

 

Soil N and P mineralization, microbial immobilization and decomposition were investigated 

in order to reveal climate change effects on nutrient cycling. This study was made for the 

two dominant species separately, hence leaf litter from the two species and soil from the two 

species was incubated separately in litter bags and buried bags placed in the climate 
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treatments. The buried bags were additionally also incubated in a version with presence of 

plants (manuscript 3).  

The two soil types below Calluna and below Deschampsia had different patterns of 

nutrient cycling, as expected from other studies investigating mineralization in soil below 

different plant species (van Vuuren et al., 1992; van der Krift & Berendse, 2001; Gill et al., 

2006). In other investigations of temperate heathlands, N mineralization in soil below 

grasses and decomposition of grass litter was faster than for Calluna (van Vuuren et al., 

1992; van Vuuren et al., 1993). Hence, a faster N cycling and a potentially stronger response 

to climate changes in soil below Deschampsia compared to soil below Calluna, may 

potentially control changes of the vegetation cover (van Vuuren et al., 1992; Emmett et al., 

2004; Schmidt et al., 2004; Weintraub & Schimel, 2005a).  

In Deschampsia soil, net nitrification and litter decomposition decrease in response 

to drought, hence, drought works as suppressor of nitrogen cycling in the Deschampsia soil. 

Calluna soil responded to D with decreased nitrification and leaf litter decomposition, 

suggesting an opposite response of the Calluna soil-plant system to D (manuscript 3). 

Pre-incubation differences were observed in the initial microbial biomass C, N and P 

pool increases in response to T, in consistence with other warming manipulations  (Sowerby 

et al., 2005; Schmidt et al., 2002). In addition to this, the microbial N immobilization and 

SOM decomposition decreased and the leaf decomposition increased in response to T. In 

other investigations at temperate heaths, the natural gradient of soil temperature was the best 

predictor of soil respiration and litter decomposition (Emmett et al., 2004). The initially 

smaller amount of DOC (total dissolved organic carbon) in warmed plots occurred together 

with larger microbial biomass, but still, mineralization in the successive incubations 

decreased. Hence, we suggest that the soil mineralization processes require an ongoing 

carbohydrate supply for instance by plant root exudation. The decreased DOC concentration 

it-self and the slower SOM decomposition and mineralization in our warmed plots may be a 

consequence of a shift from labile to recalcitrant carbon sources (Biasi et al., 2005; Bengtson 

& Bengtsson, 2007). 
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G:  Changes in soil nitrogen pools: nitrification rate (ΔNO3
--N, right 2nd axis), mineralization rate 

(ΔNH4
+-N, left 2nd axis) and dissolved organic N production rate (ΔDON, left 2nd axis) and microbial N 

immobilization rate (ΔMicN, left 2nd axis) in units per g soil organic matter (SOM) per day, after 
incubation for a half year. Four variations of incubations: Calluna soil and Deschampsia soil, with no 
plant or with plant. Statistical significant effects from proc mixed model analysis of variances for the 
main effects: D, T and CO2 and the interactions D*T, D*CO2, T*CO2 and D*T*CO2 is indicated as 
follows:  *** indicates P <  0.001; ** indicates P < 0.01; *: P < 0.05; †: P < 0.1 (manuscript 3). 
 

From the glycine labelling experiment increased nitrogen acquisition by 

Deschampsia in warmed and in CO2 treatments was suggested (manuscript 4). Hence, when 

investigated in the autumn, warming resulted in increased Deschampsia root nitrogen 

acquisition and increased microbial biomass in Calluna soil. The possibly earlier 

senescence, seen by a smaller green Deschampsia leaf biomass may also cause the larger N 

concentration and 15N acquisition, also being a phenomena of late season nitrogen 

acquisition and storage (Andresen & Michelsen, 2005).  
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 The climate change factors significantly caused physiological-ecological changes in 

the temperate heathland ecosystem. Soil microorganisms acquired the largest part of the 

added glycine and acquired intact compounds with no significant effects of treatment. 

Deschampsia and Calluna plants also acquired glycine, with no proof of intact acquisition. 

Deschampsia fine root biomass decreased in warmed plots reflected by larger nitrate 

concentration in the sub-soil. Large Deschampsia plant root 15N acquisition in T and in CO2 

plots met our hypothesis of promoted plant N demand, when plant biomass increased, but 

this was a non-additive effect. Deschampsia green leaf biomass decreased in warmed plots 

but not when CO2 was added, and Calluna green to coarse branch increased in warmed plots 

and in elevated CO2 plots, but not when these treatments were combined. Hence, the 

responses to simulated increased root exudation in form of 15N 13C2-glycine were significant 

and non-additive (manuscript 4). This states that to fully investigate climate change effects 

on ecosystem nitrogen cycling, it is important for the reliability of the conclusions to control 

temperature, atmospheric CO2 and precipitation patterns in multifactor in situ experiments. 

 

This thesis completes investigations at two heathlands with subarctic and temperate climate. 

At both heath types amino acid abundance was investigated and acquisition of inorganic 

nitrogen in form of ammonium and organic nitrogen in form of different amino acids was 

investigated in plants and soil microorganisms. At both heath types all forms of nitrogen was 

acquired by plants and microorganisms with the largest acquisition by microbes. Soil 

microorganisms at the temperate heath acquired the amino acids as intact compounds. At the 

temperate heath in situ climate change treatments of elevated temperature, CO2 and drought 

and all combinations in a full factorial design, revealed significant species specific and non-

additive responses of the plant and soil processes. Soil net mineralization decreased below 

Deschampsia plants and tended to increase below Calluna plants in response to drought. 

Microbial biomass N and C increased in soil below Calluna plants in response to warming. 

Plant root nitrogen acquisition from 15N 13C2 labeled glycine increased as effect of increased 

plant biomass in response to warming and elevated CO2, but this was non-additive. Calluna 

leaf tissue nitrogen concentration was diluted by elevated CO2. These short term responses 

with different directions for the two dominant plant species are first from our multifactorial 

climate change in situ experiment ‘CLIMAITE’.
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Abstract 
15N labeled ammonium, glycine or glutamic acid was injected into subarctic heath soil in situ, with the purpose of 

investigating how the nitrogen added in these pulses was subsequently utilized and cycled in the ecosystem. We 

analyzed the uptake of 15N in mycorrhizal and non-mycorrhizal plants and in soil microorganisms in order to reveal 

probable differences in acquisition patterns between the two functional plant types and between plants and soil 

microorganisms. Following the label addition, the 15N-enrichment in the soil water extracts of dissolved and microbial 

fractions and in total soil was analyzed after 21 days, and the 15N-enrichment in leaves of plants species was analyzed 

after three, five and 21 days. 

The soil microorganisms had very high 15N recovery from all the N sources compared to plants. 

Microorganisms incorporated most 15N from the glutamic acid source, intermediate amounts of 15N from the glycine 

source and least 15N from the NH4
+ source. In contrast to microorganisms, all ten investigated plant species generally 

had higher 15N uptake from the NH4
+ source than from the amino acid sources. Non-mycorrhizal plant species had 

higher 15N uptake than mycorrhizal plant species three days after labeling, while 21 days after labeling their uptake of 

amino acids was lower than and the uptake of 15NH4 was similar to the mycorrhizal species. We conclude that the soil 

microorganisms were more efficient than plants in acquiring pulses of nutrients which, under natural conditions, occur 

after e.g. freeze-thaw and dry-rewet events. It also appears, that the mycorrhizal plants initially are less efficient than 

non-mycorrhizal plants in nitrogen acquisition, but in a longer term show larger nitrogen uptake than non-mycorrhizal 

plants. 

 

Keywords: ammonium, amino acid, freeze-thaw cycle, mycorrhiza, 15N, organic nitrogen, plant nitrogen uptake, root 

biomass.  
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Introduction  

Dissolved organic carbon and nitrogen (DOC and DON) and inorganic N are released in pulses after e.g. freeze-thaw 

cycles in the soil (Larsen et al. 2002; Sharma et al. 2006), due to freezing-induced mechanical disruption of soil 

aggregates and lysis of plant root cells, fungal hyphae or bacteria. Like-wise, dry-rewet cycles in the top soil and other 

local disturbances such as rodent activity and trampling, may influence soil biota and organic matter turnover (Paul 

and Clark 1996). These pulses probably are important for the supply of nitrogen to the organisms, because in most 

arctic and subarctic terrestrial ecosystems nitrogen (N) is limiting for plant production, while carbon (C) is limiting the 

soil microbial biomass, (Illeris and Jonasson 1999; Michelsen et al. 1999; Schimel and Bennett 2004). The low 

amount of available nutrients contrasts the large pool of unavailable nutrients built into soil organic matter, resulting 

from temperature-limited litter and organic matter decomposition (Robinson et al. 1997; Rustad et al. 2001). The 

organic soil holds a microbial biomass with a large N pool approaching the pool size in the plants (Sorensen et al. 

2008).  

The DOC and DON pulses contain amino acids which are found in high concentrations in the soil (Kielland 

1995; Michelsen et al. 1999; Schmidt et al. 1999; Sorensen et al. 2008), and are available for microbial uptake. 

Evidence is now accumulating, that also plants are able to acquire amino acids as intact molecules, using membrane 

amino acid transporters (Schimel and Chapin 1996; Näsholm et al. 1998; Williams and Miller 2001; Chalot et al. 

2002; McKane et al. 2002; Bardgett et al. 2003; Nordin et al. 2004; Svennerstam et al. 2007). This implies that plants 

and microbes in these nutrient deficient soils may compete not only for mineralized inorganic N, but also for organic 

N, and plants, hence, may short-circuit the mineralization cycle (Schimel and Bennett 2004).  

The relative importance of inorganic and organic N as sources for plants and microorganisms has become an 

issue in studies of competition between these organisms, which differ in life histories, surface to volume ratios of 

nutrient-absorbing tissue, and uptake and exudation mechanisms. The revealed niche differentiation of plant species in 

temporal (Jaeger et al. 1999; McKane et al. 2002; Grogan and Jonasson 2003; Andresen and Michelsen 2005) and 

spatial (McKane et al. 2002; Sorensen et al. 2008) N uptake patterns is complementary to the differentiated N form 

preference of species or organism groups (Kielland 1994; Lipson et al. 1999; Falkengren-Grerup et al. 2000; Cheng 

and Bledsoe 2004;  Xu et al. 2006). Field studies in natural ecosystems with concomitant measurements of N uptake 

by soil microorganisms and plant species and their relative uptake of N from different sources are few (Schimel and 

Chapin 1996; Grogan and Jonasson 2003; Nordin et al. 2004; Hofmockel et al. 2007; Sorensen et al. 2008). 

Additionally, none of these have taken place in ecosystems with high plant species diversity and high potential for 

resource partitioning between species with different mycorrhizal associations. This makes generalizations regarding N 

acquisition by functional groups across different ecosystems difficult.  

 In this in situ experiment at a subarctic, mesic heath, we examined the plant and microbial acquisition 

patterns of nitrogen. 15N-labelled NH4
+, glycine or glutamic acid was injected into the soil as a pulse at one or two 

depths. Nitrogen derived from these sources was available to potentially competing plant species and microorganisms, 

both in the added form and also after possible transformation of the added N source by microbial immobilization, 

mineralization or adsorption. To reveal probable differences in acquisition patterns by plants and microorganisms, the 
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uptake of N from the added 15N-labelled sources was analyzed by isotope ratio mass spectrometry of plants and 

microorganisms in soil extracts after chloroform fumigation.  

We hypothesized that:  

• nitrogen released in a pulse, which is likely to occur after e.g. freeze-thaw or dry-rewet events, would rapidly 

be acquired by plants and microorganisms; 

• soil microorganisms and plants would differ in 15N uptake from 15NH4
+, 15N glycine and 15N glutamic acid 

sources, with the largest uptake by microorganisms;  

• soil microorganisms would have larger uptake of 15N from the amino acid sources than from NH4
+; 

• the 15N uptake potential would differ among plant species, with higher acquisition from the amino acid 

sources by species with mycorrhizal associations than by non-mycorrhizal species; 

• through time, plants would access an increasing amount of the added and mineralized 15N label after turn-

over in microorganisms;  

• plant 15N acquisition from the label injected at different depths would reflect depth distribution of fine roots. 

 

Materials and methods  

The site for the experiment was a low alpine/subarctic species-rich, mesic heath at the tree limit, about 450 m above 

sea level, near Abisko Scientific Research Station in northern Sweden. The soil has a pH of 7.1 and an organic profile 

depth of 15 - 20 cm (Jonasson et al. 1996; Michelsen et al. 1999). The soil organic matter (SOM) content was 83% of 

the soil DW. 

Each N form was added as 0.1295 g N m-2 dissolved in water and injected into the soil with syringes on June 

26, 1995. With a plot size of 20×20 cm and with 36 injection points, fixed as evenly distributed holes in a plate, each 

plot received 360 ml solution. The design was 8 plots with 15N-ammonium chloride (15NH4Cl, 99 atom %) injected 

just below the soil surface at 1 cm depth, 8 plots with 15N-ammonium chloride injected at 5 cm depth, 8 plots with 
15N-glycine (15NH3CH2COO, 99 atom %) injected at 1 cm depth, 8 plots with 15N-glycine injected at 5 cm depth and 4 

plots with 15N-glutamic acid (15NH3CHCOOCH2CH2COO, 98 atom % 15N-L-glutamic acid) injected at 1 cm depth. 

The imbalance of the design was due to insufficient amount of 15N glutamic acid available for injection at 5 cm depth. 

Soil in the labeled plots (0 - 10 cm depth) was sampled on July 17 (after 21 days). Soil was additionally 

sampled on June 24 from five plots adjacent to the labeled plots for estimation of the natural concentrations of amino 

acids in the soil solution.  

Following the injections, current year leaves (segments for Equisetum) of dominant and subdominant plant 

species were sampled on June 29 (after three days) and on July 17 (after 21 days). For the subsequent analysis, we 

used only current year leaves since they most clearly demonstrate recent N uptake and translocation to the nitrogen 

demanding photosynthesizing tissue. The plant species sampled for analyses were the graminoids Carex vaginata and 

Carex parallela (non-mycorrhizal), the forb Equisetum scirpoides (non-mycorrhizal), the deciduous dwarf shrubs 

Betula nana (with ectomycorrhiza), Vaccinium uliginosum (with ericoid mycorrhiza) and Arctostaphylos alpina (with 

arbutoid mycorrhiza), and the evergreen dwarf shrubs Andromeda polifolia and Empetrum hermaphroditum (both with 
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ericoid mycorrhiza). Also sporadically present were the herb Tofieldia pusilla (non-mycorrhizal), the evergreen dwarf 

shrub Rhododendron lapponicum (ericoid mycorrhiza) and a few other herbs and dwarf shrub species. Three species 

(Carex vaginata, Empetrum hermaphroditum and Vaccinium uliginosum) were additionally sampled after five days. 

Mosses and lichens were not analyzed as they rely mainly on N from deposition and associative N2-fixation.  

Additional samples for analysis of 15N natural abundance in plant leaves and soil were collected in unlabelled 

plots on July 21. The data on 15N natural abundance and details on mycorrhizal status of the plant species are 

published in Michelsen et al. (1998). Total and green aboveground plant biomass (n = 8) was determined by complete 

harvest of 20×20 cm plots. Fine and coarse root biomasses of all species were determined for each 2 cm downwards in 

the soil profile (n = 10). 

All plant samples were dried at 80°C and crushed with a mill or by scissors and mortar. The 15N/14N isotope 

ratio and the N concentration of the samples of each c. 5 mg packed in tin capsules were analyzed in an elemental 

analyzer coupled to an isotope ratio mass spectrometer (EA-IRMS).  

Soil samples from the labeled plots were sifted through a 2 mm sieve and extracted with 0.5 M K2SO4. The 

soil for amino acid analysis was extracted with water added to the intact cores that were not sifted in order to prevent 

N-leakage from roots. These extracts were analyzed for amino acid content at the Department of Physical Geography 

and Ecosystems Analysis in Lund using a high pressure liquid chromatography (HPLC) system from Dionex, 

including electrochemical detection and the AminoPac PA10 analytical column (Jonsson et al. 2007; Ström and 

Christensen 2007).  

The total microbial biomass N (MicN) was estimated by the fumigation-extraction method (Brookes et al. 

1985; Joergensen and Mueller 1996). The fresh soil was vacuum-incubated with chloroform for 24 hrs, and extracted 

with 0.5 M K2SO4. This and non-incubated extracted fresh soil was spectrophotometrically analyzed for NH4
+ 

(indophenol-blue reaction) with a Hitachi U 2000 spectrophotometer. Samples were also analyzed for NO3
- with a 

Tecator Aquatec analyzer. A further chemical digestion with H2SeO3, H2SO4 and H2O2 yielded dissolved total N 

(DTN), with DON (dissolved organic nitrogen) = DTN - NH4
+. Total microbial N (MicN) was calculated as DON in 

the fumigated samples minus DON in the non-fumigated samples, using 0.4 as extractability factor (Jonasson et al. 

1996; Michelsen et al. 1999; Schmidt et al. 1999).  

For the 15N/14N isotope ratio analysis, the NH4
+ of the solutions was concentrated using the steam distillation 

process (Bremner and Keeney 1965) with pH kept at 4-5 by addition of 0.025 M H2SO4. The dried ammonium 

sulphate was re-dissolved with deionized water and mixed with ‘Ultrodex’ (N free; Pharmacia Biotech) in tin capsules 

to form a gel. The EA-IRMS system consisted of a Europa Roboprep Elemental Analyzer coupled to a Europa 

Tracermass Isotope Ratio Mass Spectrometer. The dried soil was analyzed with a Eurovector CN analyzer coupled to 

an Isoprime isotope ratio mass spectrometer. During analysis, the reference gas was calibrated against certified 

standards from the International Atomic Energy Agency, and plant material calibrated against certified standards was 

used as working standard. 

The 15N enrichment of the plant material is the concentration (µmol 15N g-1N) of the added 15N in the nitrogen 

of the dried plant. The 15N natural abundance of each of the plant species was subtracted from the atomic percentage 

(Fry 2006). In calculating 15N enrichment of the soil N pools, the NH4-N-concentration of the fumigated minus the 

non-fumigated digested samples (for microbial 15N, Mic15N) and the NH4-N-concentration of the non-fumigated 
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digested samples (for DT15N) was the N concentration. The recovery in the soil was calculated as the percentage of 

total added 15N label per m2 recovered in the total dissolved N (DTN), total microbial N (MicN) or total soil N pool.  

One-way analysis of variance (ANOVA) and Tukey’s test for comparison of means were used to test for a) 

effects of injection depth, N form and species on the 15N enrichment, b) change in fine root biomass at increasing 

depth, and c) differences in soil N pools in plots injected with different N forms. Additionally two-way ANOVAs 

were applied to test for effects of species and injected N form on plant 15N enrichment. The effect of time on 15N 

enrichment in plants was tested with repeated measures one way ANOVA using Wilks lambda for the repeatedly 

sampled plant material, within subject effects was tested with linear contrast. Data with P < 0.05 were regarded as 

statistically significant, but P < 0.1 was also reported. All statistical analysis were done using SAS (SAS Institute Inc. 

2003).  

Results  
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Plant biomass and soil solution characteristics 

The dominant plant species (Table 1) were associated with mycorrhizal fungi: Vaccinium made up 30% of the total 

aboveground plant biomass, Arctostaphylos 19%, Andromeda 12%, Empetrum 8% and Rhododendron 7%. Less 

abundant were the non-mycorrhizal species: Carex vaginata made up 5%, Carex parallela 0.5%, Equisetum 2% and 

Tofieldia 1%. Mosses made up 11% and lichens 3%. The plants had significantly more fine roots (P = 0.007) and 

coarse roots (P = 0.006) in the top 2 cm soil than in the layers below 4 cm depth (Fig. 1). The total aboveground 

biomass of all vascular plants, mosses and lichens was 618.0 ± 7.2 g DW m-2, i.e. only a third of the total above- plus 

belowground plant biomass, which made up 1706.8 ± 35.7 g DW m-2. Leaf mass made up more than half of the total 

aboveground vascular plant biomass. 

Concentrations of amino acids in the soil solution along with NH4
+-N, and NO3

--N in water extracts of non-

sifted soil are listed in Table 2. The total amino-N pool was 296 ± 4.7 μg N m-2, corresponding to 0.018 μg N g-1 DW 

soil or 2.011 μg amino acid g-1 DW soil.   

Three weeks after addition of the 15N label, K2SO4 extractable sifted soil pools were below the detection limit 

(of 0.001 g N m-2) for NO3
-, 0.56 ± 0.05 g N m-2 for NH4

+, 2.73 ± 0.23 g N m-2 for dissolved organic N (DON), 3.29 ± 

0.27 g N m-2 for dissolved total N (DTN) and 10.93 ± 0.90 g N m-2 for soil microbial N (MicN).  
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Label 15N distribution in ecosystem pools 

Seven to 13 times more 15N was found in the microbial N pool than in the DTN pool three weeks after addition of the 

label. The 15N recovery of the microbial N pool tended to be significantly affected by injected N form (P = 0.0595, 1 

cm injection depth; P = 0.0981, 5 cm depth, one way ANOVAs) but not by depth (Fig. 2b). The 15N recovery in the 

microbial N pool was 87% (1 cm) higher in glutamic acid plots than in NH4
+ plots and 53% (both in 1 cm and 5 cm) 

higher in glycine than in NH4
+ plots. The recovery of 15N in the dissolved nitrogen pool (DT15N) was similar for the 

three N forms at 1 cm depth injection (Fig. 2c). However, with injection at 5 cm depth, there was a significantly (P = 

0.0450, one way ANOVA) higher concentration of DT15N in plots labeled with 15N glycine than with 15NH4
+ (Fig. 2c).  

The recovery of 15N in the total soil (i.e. including microorganisms and dissolved N) was 34 - 70 % of the 

total injected amount (Fig. 2d), and highest in glutamic acid plots. Furthermore, at this time, the effect of N form on 
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total plant leaf 15N recovery was significant (P = 0.0220, 1 cm and P = 0.0012, 5 cm), with the 15N recovery from the 

NH4
+ injection 279% (1 cm) higher than from the glutamic acid injection, and 76% (1 cm) and 187% (5 cm) higher 

than from the glycine injection (Fig. 2a).  
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Nitrogen 15N uptake in plants 

Both three days and 21 days after the injections of label, significant effects of added N form were found in plants (3 

days: P = 0.0001; 1 cm and P = 0.0305; 5 cm and 21 days: P < 0.0001; 1 cm and P = 0.0003; 5 cm one-way ANOVA) 

(Fig. 3a and b). Plants had a higher uptake of 15N from NH4
+ than from the amino acid sources across species at both 

injection depths. After three days Empetrum, Vaccinium and Equisetum had acquired significantly more 15N from the 

added NH4
+ source than from the glutamic acid source, and Andromeda had acquired significantly more 15N from the 

added NH4
+ source than from both the amino acid sources in the plots with label injected at 1 cm (Fig. 3a). With the 

label injected at 5 cm (i.e. with no glutamic acid application), Andromeda and Tofieldia acquired significantly more 
15N from the added NH4

+ source than from the glycine source (data not shown).  

At 21 days after label injection Andromeda and Carex parallela had acquired more N from the NH4
+ source 

than from glutamic acid, and Equisetum and Carex vaginata had acquired significantly more N from the NH4
+ source 

than from both the amino acids, when label was injected in 1 cm depth (Fig. 3b). Andromeda, Carex vaginata and 

Betula had acquired significantly more N from the NH4
+ source than from glycine, when label was injected in 5 cm 

depth (data not shown).  

The effect of plant species on 15N uptake was significant both at three days after injection (P = 0.0379; 1 cm 

and P = 0.0055; 5 cm, one-way ANOVA) and 21 days after injection (P < 0.0001; 1 cm and P = 0.0143; 5cm). The 

significant effects of N form and species after three days (N form: P = 0.0168, species: P < 0.0001 two-way ANOVA) 

and after 21 days (N form: P < 0.0001, species P < 0.0001) at 1 cm depth (Fig 3a and b), persisted throughout all the 

samplings. 

The mycorrhizal status had significant effect on 15N allocation to aboveground plant tissue three days after 

labeling for all N forms at both depths, with more 15N uptake in the non-mycorrhizal species than in the mycorrhizal 

species (1 cm depth injection: P = 0.0098 for 15NH4, P = 0.0008 15N for glycine, P = 0.0360 15N for glutamic acid; 5 

cm depth injection: P = 0.0107 for 15NH4, P = 0.0009 15N for glycine). By contrast, 21 days after injection, the 

mycorrhizal species had significantly larger uptake of 15N in glutamic acid plots (P = 0.0007) and in glycine plots (P = 

0.0051, 1 cm and P = 0.0478, 5 cm), but there was no effect of mycorrhizal status on 15N uptake in 15NH4 plots (P = 

0.6266, 1 cm and P = 0.1801, 5 cm). 

The three species analyzed at all three sampling times after injection in 1 cm depth, increased 15N enrichment 

from the three N form additions significantly through time (Carex vaginata: P < 0.0001 15NH4
+, P = 0.0002 gly; 

Empetrum: P < 0.0016 gly; Vaccinium P = 0.0002 15NH4
+, P < 0.0135 gly, P = 0.0177 glu; analyzed with repeated 

measurements ANOVA) (Fig. 4). 

Three days after label injection, the uptake of 15NH4
+ from the 5 cm depth injection was significantly lower 

than the uptake from 1 cm depth for Andromeda, Empetrum, and Vaccinium (P = 0.0489,  P = 0.0014, and P = 

0.0083), and tended to be so for Equisetum (P = 0.0813) (Fig. 5a). The 15N uptake in plots with glycine injected in 5 

cm depth was slightly lower for Vaccinium (P = 0.0037) and tended to be so for Equisetum (P = 0.0847) (Fig. 5b).  
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Soil solution characteristics 

The measured total amount of free amino acids in the soil water was small. Although the knowledge of pools and turn-

over times of amino acids in different soils is limited (Jones et al. 2005a; Weintraub and Schimel 2005; Kielland et al. 

2007), the concentrations found were low compared to several earlier reports (Abuarghub and Read 1988a; 

Abuarghub and Read 1988b; Kielland 1995; Finzi and Berthrong 2005; Sorensen et al. 2008). The ratio of total amino 

acids to inorganic N was 1:27, and the amino acid concentration was one and two orders of magnitude lower than at a 

nearby heath (Sorensen et al. 2008), and at a non acidic site in Alaska where pH and the vegetation was very similar 

(Nordin et al. 2004). This difference was probably due to the methods of processing the soil samples; water extracts 

were used from non-sifted soil to prevent unwanted N-leak from any damaged ‘sifted’ roots. The difference could also 

be due to the different analytical methods as, e.g., use of water as extractant, or of NH4OAC or KCl (Abuarghub and 

Read 1988a; Finzi and Berthrong 2005) or the use of HPLC (here and Abuarghub & Read 1988b) vs. the ninhydrin-

reaction (Abuarghub and Read 1988a; Finzi and Berthrong 2005; Kielland et al. 2007).  
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Acquisition of organic or inorganic nitrogen 

Soil microorganisms and plants differ in rates of acquisition of the wide range of N-containing inorganic and organic 

compounds available in soil water. As in other in situ studies (Schimel and Chapin 1996; Grogan and Jonasson 2003; 

Nordin et al. 2004) a rapid uptake of 15N by microbes was observed through the first three weeks after labeling with a 

recovery of 24 - 47% of the added amounts. This high recovery supports the hypothesis of higher microbial than plant 

uptake a few weeks after label addition, with the plant leaf 15N recovery being less than 2.5%. Hence, in the short 

term, the microbes are superior to plants in their competition for N, irrespective of added N form. 

Our hypothesis that plants and microorganisms would differ in uptake of the added 15N forms was also 

supported by the study. The plants had consistently higher uptake of 15N from the 15NH4
+ source than from the 15N 

amino acids, while the 15N enrichment in the soil microorganisms and in DTN was lowest in the 15NH4
+ labeled plots. 

The difference in 15N uptake between plants and microorganisms suggests that soil microbes with their large uptake 

also control the partitioning of pulse-released nitrogen between microorganisms and plants: relatively more 15NH4
+, 

and relatively less amino N is left for plant acquisition. The high microbial 15NH4
+ uptake potential in this experiment 

suggests that microbial immobilization of NH4
+ can reduce plant N acquisition (Schmidt et al. 1999), although the 

effect may be more pronounced in pulse releases following dry-rewet or freeze-thaw incidents (occurring during 

shoulder and growing season, (Konestabo et al. 2007), than in a situation with more gradual release of N from 

decaying organic matter. 

In our study, larger plant acquisition of inorganic N than of organic N was generally observed across all ten 

species. This agrees with previous studies demonstrating larger uptake of inorganic nitrogen than of N from amino 

acid sources by plants (Kielland 1994; Lipson et al. 1999; Falkengren-Grerup et al. 2000; Miller and Bowman 2003; 

Bennett and Prescott 2004; Månsson 2005), although there is no proof of intact uptake of the amino acids in our 

experiment. In assays where organisms are given a choice between N forms in a mixed solution, the question of N 
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form preference may be more truly addressed and reveal both preference and lack of preference (Schimel and Chapin 

1996; Bardgett et al. 2003; Nordin et al. 2004; Kielland et al. 2006).  

The higher microbial uptake in this experiment of N from the added glutamic acid (with a C to N ratio of 5) 

than of N from glycine (with a C to N ratio of 2), furthermore agrees with earlier suggestions of microbial preference 

for the amino acids with highest C to N ratio, perhaps due to microbial C limitation (Lipson et al. 1999; Michelsen et 

al. 1999; Schmidt et al. 2000; Nordin et al. 2004). The cellular transmembrane uptake of glutamic acid (glutamate) 

may be facilitated since glutamic acid enters into the glutamine synthetase-glutamate synthase pathway, whereas 

acquired ammonium first must be coupled to α-ketogluterate to form glutamate (Paul and Clark 1996). The further 

metabolic pathway of the carbon from the acquired amino acid compound is not investigated in this study, but in a 14C 

labeling experiment with a mixture of 15 amino acids as much as 25% of the carbon was used for respiration and the 

remainder incorporated in microbial biomass (Jones and Kielland 2002).  

It appears that N form preference differs among ecosystem types, or perhaps that the differences are caused 

by methodological differences such as label concentration, differences in pool dilution or plant species and microbial 

community composition ( Vinolas et al. 2001; Jones et al. 2005b). Comparing pools and fluxes of different nitrogen 

compounds in one experiment has unavoidable difficulties. The 15N label of the investigated N forms was added with 

the same amount of N per m2, but when compared to the ambient pool sizes of NH4
+, glycine and glutamic acid, the 

dilution of the 15N label differed between N forms: The amount of 15NH4
+ label approached a fourth of the NH4

+ in the 

soil solution, while the 15N glycine and glutamic acid label increased the soil solution concentrations more than 

thousand fold. Even so, the soil solution concentrations of amino acids and inorganic N indicate that these compounds 

are naturally available as substrate or nutrients. Furthermore, a high concentration of one compound (e.g. NH4
+) does 

not necessarily represent a concomitant high flux of this compound, and a measured low concentration of amino acids 

may 'hide' a high flux of these compounds (Weintraub and Schimel 2005). Half-lives of amino acids of less than 24 

hrs in sub-arctic and arctic soils have been reported (Jones and Kielland 2002; Finzi and Berthrong 2005), and the 

large uptake of amino acids by microorganisms in our experiment indicates that the flux into microorganisms is 

potentially large. 15N-nitrate was not included in our study, because most of the plant species at the site do not show 

nitrate reductase activity, despite the occasional presence of low NO3
- concentration in the soil (Michelsen et al. 1996). 

The 15N-recovery in the total soil, comprising adsorbed, dissolved and microbially immobilized 15N was high 

(34% -70%), but as plant 15N uptake only comprised a minor part of the recovered 15N, downwards leaching of 15N-

label, like of pulse released N after freeze-thaw or dry-rewet through the soil horizon, is likely. 
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N acquisition patterns in plants 

The 15N enrichment in plants three days after addition of the labeled compounds suggests a significant ability to utilize 

the added compounds, although the extent to which the 15N was acquired in form of the originally added compound or 

on a decomposed/mineralized form (15N-glycine, 15NH4, 15NO3) of the original, can not be quantified. The consistent, 

although not always significantly smaller 15N uptake from 5 than 1 cm depth by all species, agrees with larger fine 

root biomass in the top soil layers. The small difference between species suggests, that all species on this species-rich 

heath mainly exploited the uppermost soil layer for N. However, Empetrum and Vaccinium seemed to rely more 
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strongly on N uptake from the surface soil, irrespective of N form. This emphasizes the relevance of carefully 

choosing depth of injection in labeling experiments when investigating interspecific competition in plant communities.  

An indication (though not significant) of differences in the downwards diffusion of the N forms was also 

demonstrated, with the relatively higher plant uptake from 5 than 1 cm injection depth in glycine than in NH4
+ 

injections. This may indicate that the glycine 15N label percolates faster than the 15NH4
+ label down through the top 

soil but not through the deeper soil, possibly depending on different adsorption potentials in different soil layers. 

Our hypothesis of higher 15N-uptake from the added organic sources by plant species with mycorrhizal 

associations than by non-mycorrhizal plant species was only partially supported by the study. At first, after three days, 

the 15N concentration was largest in non-mycorrhizal species but after 21 days the mycorrhizal species had acquired 

more 15N from the amino acid sources than had the non-mycorrhizals. The delay in the uptake of 15N by the 

mycorrhizal species could perhaps be explained by dependence on transcription induction of membrane amino acid 

transporters in the cell membrane of the mycorrhizal fungi (Chalot et al. 2002), eventually giving a larger 15N amino 

acid uptake. However, as amino acids are constantly available in the soil solution, this seems less likely. The differing 

uptake patterns of the plant functional types agree with earlier observations of high spring-time uptake rate and 

allocation to leaves in graminoids, and slower uptake and allocation in the woody ericoid species (Andresen and 

Michelsen 2005).  

Species of the Ericales (Andromeda, Arctostaphylos, Empetrum, Rhododendron and Vaccinium) have a dense 

network of thin, hair-like roots giving the plant a large surface for N uptake, while the monocotyledonous Carex spp. 

and Tofieldia have thicker roots in patches. Hence, species differences in root form and rooting pattern may also cause 

variation in access to the label (Xu et al. 2006). However, the monocots with presumed lower root surface actually had 

higher uptake potential than dwarf shrubs of Ericales (Empetrum, Rhododendron, Vaccinium) at three but not 21 days 

after labeling. 

The fast N uptake by monocots versus a slower but larger N uptake by stress-tolerant dwarf shrub species 

with lower N demand (Michelsen et al. 1999) suggests that the presence of mycorrhizae, giving the plant extended 

surface for N uptake, is of more value in a longer term acquisition strategy. Furthermore the accumulated 15N recovery 

in the plants 21 days after injection (Fig. 2a) demonstrates that most of the plant acquired 15N on this site is found in 

leaves of the Ericales species, which reflects their  biomass dominance (McKane et al. 2002). 

  

Conclusions 

In accordance with the hypotheses, the soil microbes took up 15N most efficiently and with higher uptake from the 

added amino acid sources than from the NH4
+ source. The 15N uptake by plants was much higher from the NH4

+ 

source than from the amino acid source, controlled by the microbial uptake. The non-mycorrhizal plant species 

showed a fast uptake from the pulse addition of the 15N sources, while the mycorrhizal plant species had delayed but 

eventually larger 15N uptake from the amino acid sources than the non-mycorrhizal plants, and similar uptake from the 
15NH4

+ source. All plant species in this species-diverse heath preferentially exploited the uppermost soil layer, and 

hence competed spatially.  
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Fig. 1 Soil profile coarse root (grey) and fine root (hatched) biomass (g DW m-2) in the soil profile. Bars with the same 

letters are not significantly different with Tukey’s test; P < 0.05. 

 

Fig. 2 15N recovery in a) in leaves of plant species: Cp Carex parallela, Cv Carex vaginata, Eq Equisetum scirpoides, 

An Andromeda polifolia, Em Empetrum hermaphroditum, Va Vaccinium uliginosum, Rh Rhododendron lapponicum, 

Ar Arctostaphylos alpina and Be Betula nana b) in total microbial biomass, c) in dissolved total N and d) in total 

dried soil 21 days after labeling with 15NH4
+, 15N -glycine or 15N -glutamic acid in 1 cm or 5 cm depth (mean ± SE). 

Effect of N form for each depth was analyzed with one-way ANOVA; * P < 0.05. Within injection depth columns 

with the same letters or no letters are not significantly different with Tukey’s test; P < 0.05; letters in parentheses 

when P < 0.1. 

 

Fig. 3 a) 15N enrichment in plants three days after labeling and b) 21 days after labeling in 1 cm depth with 15NH4
+, -

glycine or -glutamic acid (mean ± SE). The species are: Tofieldia pusilla, Carex parallela, Carex vaginata, Equisetum 

scirpoides, Andromeda polifolia, Empetrum hermaphroditum, Vaccinium uliginosum,  and Arctostaphylos alpina. 

Significant effect of species and N form was analyzed with two-way ANOVA; * P < 0.05; *** P < 0.001. Within 

species columns with the same letters or no letters are not significantly different with Tukey’s test; P < 0.05. Tofieldia 

was not tested after three days due to low replication. 

 

Fig. 4 15N-enrichment 3, 5 and 21 days after labeling in a) Carex vaginata, b) Empetrum hermaphroditum, and c) 

Vaccinium uliginosum, (mean ± SE). The effect of time was analyzed with repeated measurements ANOVA. Columns 

with the same letters or without letters are not significantly different as tested with linear contrasts; P < 0.05. 

 

Fig. 5 Percentage 15N uptake in plant leaves three days after labeling, from 5 cm depth injection relative to uptake 

from 1 cm depth injection from a) 15NH4
+ labeled plots and b) 15N-glycine labeled plots. † P < 0.1; * P <  0.05, ** P < 

0.01 for difference in uptake from the two depths, one-way ANOVA. Only five species had enough replicates for all 

combinations of injection depth and N form to allow comparison. 
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Abstract17

In heath soil, free amino acids can serve as substrates for soil microorganisms and are acquired 18

as nutrients directly by plants. Phenolic compounds (tannins) in the soil inhibit microbial 19

activity and complex bind labile nutrients such as amino acids.20

In this experiment we increased the soil tannic acid concentration and investigated the 21

uptake of added amino acids (glycine, glutamic acid and phenylalanine) and ammonium by soil 22

microorganisms and heath plants: Calluna vulgaris and grasses (mainly Deschampsia flexuosa). 23

15N ammonium and fully 15N13C-labeled amino acids and tannic acid were injected into the soil. 24

Uptake of intact amino acids was seen in sample 13C:15N ratios one day after labelling. Uptake 25

of ammonium and all amino acids was highest in the microbial biomass, with a 15N label 26

recovery of 26 - 53% after one day and with no significant preference of nitrogen form. The 27

vascular plant species showed significant preference for ammonium and had a 15N label 28

recovery of only 0.4 - 3.9 %. Translocation of the acquired nitrogen was observed through the 29

plant fractions. Tannic acid addition reduced both dissolved organic N concentration and 15N 30

recovery in the total dissolved soil N pool, and furthermore reduced the 15N recovery of some of 31

the N forms in Calluna.32

Overall, the plant : microbial 15N recovery ratio was 1:12, hence, the soil 33

microorganisms were superior to plants in the short term competition for the added nitrogen 34

pulse. As both plants and microorganisms show capability for uptake of ammonium and amino 35

acids from the same pools, rapid fluxes, high uptake rates and alternating mineralization and 36

immobilization of nutrients in plants and microbes are important elements of nutrient cycling in 37

terrestrial ecosystems.38

39
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Key words: amino acid, competition, nitrogen, translocation, heathland.40

1. Introduction41

Soil microorganisms and plants acquire nitrogen from both inorganic (NO3
- and NH4

+) and 42

organic sources (amino acids), and acquire intact amino acids (Nordin and Näsholm 1997;43

Näsholm et al., 1998; Persson and Näsholm 2001; Hofmockel et al., 2007). The free amino acids 44

in the soil pore water origin partly from rhizo deposition (Lesuffleur et al. 2007; Ström and 45

Christensen 2007) and partly as leachates from decomposing organic matter. In tundra soils 46

protease activity controls protein breakdown and release of amino acids (Weintraub and Schimel47

2005a; Weintraub and Schimel 2005b), and in boreal forest soil the half-life of free amino acids 48

is short (Kielland et al. 2007), due to fast uptake of the mineralized or intact amino acids by 49

competing plants and soil microorganisms. 50

The leaves and roots of plants from the Ericales have high concentrations of phenols 51

(condensed and hydrolysable tannins) (Jalal et al. 1982; Frutos et al. 2002; Hansen et al. 2006). 52

Heathland soil consequently has high concentrations of lignin-derived phenolic compounds53

(Bending and Read 1996; Kraus et al. 2003). In soil, phenols react with amino acids to form 54

humate, followed by complex binding to peptides in the chemical process of humification (Paul 55

and Clark 1996). In forest ecosystems this may control nutrient dynamics through delayed56

decomposition of soil organic matter (Northup et al. 1998; Kraus et al. 2003) through chemical 57

complex-binding of tannins and labile nutrients (Halvorson and Gonzales 2008). Decomposing 58

soil microorganisms may respond to high soil concentrations of tannins with inhibited growth, 59

but in some cases with decomposition of tannic acid (Kraus et al. 2003). For instance, the 60

protease activity of Hymenoscyphus ericae, an ericoid mycorrhizal forming fungi with the 61

heathland dwarf shrub Calluna vulgaris, is unaffected by tannic acid (Bending and Read 1996).62
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In this fashion, plant production of phenolics and subsequently the chemical humification in the 63

soil and protease production by the ericoid mycorrhizal fungi, may control nitrogen cycling at64

heathlands (Bending and Read 1996; Kraus et al. 2003).65

Partitioning of nitrogen from the soil pools between plants and microorganisms has been 66

estimated with biomass and growth measurements in e.g. fertilization experiments (Jonasson et 67

al. 1996; Michelsen et al. 1999; Schmidt et al. 1999) and more recently also with tracer studies 68

using the stable 15N isotope (Nordin et al. 2004; Sorensen et al. 2007; Harrison et al. 2008). 69

Addition of nitrogen to heath ecosystems may result in larger microbial biomass (Schmidt et al.70

1999) and in the long term cause changes in plant species dominance (Aerts 1990; Jonasson et 71

al. 1999). By using 15N to trace the nutrient flow through the pools in the soil-microorganism-72

plant system, competition for very small, non-fertilizing pulses of nitrogen can be investigated.73

In this experiment, a comparison is made of uptake of ammonium-N and amino acid-N 74

in the form of either glycine (aliphatic amino acid, C:N ratio is 2), glutamic acid (acidic amino 75

acid, C:N ratio is 5) or phenylalanine (aromatic amino acid, C:N ratio is 9) by soil 76

microorganisms and heathland plants, viz. grasses (mainly Deschampsia flexuosa), the evergreen 77

dwarf shrub Calluna vulgaris, and mosses. The ammonium was labelled with 15N and the amino 78

acids with 15N and 13C. These were added to the soil in very low concentration to trace the N and 79

C fluxes and to estimate the amount of amino acids acquired in intact form. The effect of tannic 80

acid addition to the soil on nitrogen uptake and soil chemistry was also investigated.81

It was hypothesized:82

 That both microorganisms and plants would be able to absorb N in both the added 83

inorganic and organic forms.84



5

 That the dominant grasses and Calluna vulgaris would take up lower amounts of added85

nitrogen than soil microorganisms following labelling.86

 that the rate of translocation of the absorbed 15N shortly after labelling would be 87

observed as gradually decreasing concentration from fine root to leaf tissue.88

 That addition of tannic acid would reduce the amount of extractable DOC and DON. 89

 That addition of tannic acid would reduce the available and extractable amount of the 90

added, labile, amino acids and lead to smaller uptake of 15N by plants.91

2. Materials and methods92

The experiment took place at the site of the CLIMAITE experiment (Mikkelsen et al. 2007) at 93

Brandbjerg (55º53'N 11º58'E) c. 50 km NW of Copenhagen, Denmark. The site was a managed,94

dry, temperate heath on a hilly nutrient-poor sandy deposit, with an organic layer of c. 5 cm 95

depth and a pH of about 5. The vegetation was dominated by Calluna vulgaris, Deschampsia 96

flexuosa and Festuca ovina accompanied by heathland mosses and herbs. The average 97

precipitation per year was about 600 mm and the average temperature was 8° C.98

99

2.1 In situ injection100

Fifty four plots of 20×20 cm were chosen to contain an equal amount of Calluna vulgaris101

(evergreen dwarf shrub) and grasses (mainly Deschampsia flexuosa but also Festuca ovina). Six 102

of the plots were kept unlabeled for analysis of 15N and 13C natural abundance. On May 18 103

2005, 24 labelled plots were initially amended with tannic acid (C76H52O46; δ
15N -2.13; δ 13C -104

25.04) each plot receiving 1 dl of re-demineralised water with 0.88 g tannic acid equal to 22 g of 105

tannic acid added pr. m2. To each of the 48 plots a nutrient solution was amended, weighed out 106
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with the same amounts of N from ammonium, glycine, glutamic acid and phenylalanine. For 12 107

plots the ammonium was labelled with 15N (99%15N ammonium chloride, NH4Cl) each plot 108

receiving 1 dl of re-demineralised water with 0.007 g NH4Cl. For other 12 plots the glycine was 109

labelled with 15N and 13C (U-13C2, 98%; 15N 98% glycine, H2NCH2COOH) each plot receiving 1 110

dl of re-demineralised water with 0.001 g glycine. For other 12 plots the glutamic acid was 111

labelled with 15N and 13C (U-13C5, 98%; 15N 98% L-glutamic acid112

HOOC(CH2)2CH(NH2)COOH) each plot receiving 1 dl of re-demineralised water with 0.002 g 113

glutamic acid. Finally, for other 12 plots, the phenylalanine was labelled with 15N and 13C (U-114

13C9, 98%; 15N 98% L-phenylalanine C6H5CH2CH(NH2)COOH) each plot receiving 1 dl of re-115

demineralised water with 0.020 g phenylalanine. Hence, the relative amount of added 15N was 116

10 : 1 : 1 : 10 for Phe, Glu, Gly and Amm, and likewise 90 : 5 : 2 : 0 for 13C, in the four different 117

labelling solutions. pH of the solutions was adjusted from 3.7 with NaOH to 4.7 as measured in 118

soil water solution. The total amount of added N was 0.2 gN·m-2. This gave six replicate plots to 119

follow uptake of ammonium from the nutrient solution and 6 replicate plots to follow uptake 120

when tannic acid had been supplied, and likewise for glycine, glutamic acid and phenylalanine.121

The label was injected into the soil just below the soil surface with a syringe at 20 evenly 122

distributed points within the 20×20 cm plots.123

2.2 Sampling from the labelled plots124

One day after labelling, above ground (down to soil surface) vegetation was sampled and sorted125

into shoots of Calluna, Deschampsia (including leaf meristem) and mosses (mixture of species). 126

The samples were kept cold on ice until they were freeze dried and analyzed for 15N and 13C 127

isotopic enrichment. Additionally, one day after labelling, soil cores were sampled from the soil 128

surface (including the litter layer) and down to 5 cm depth. Three soil cores (diam. 4.5 cm) were 129
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taken from each plot, mixed to a composite sample and immediately sorted into roots and soil. 130

All plant material was washed with 0.5 mM CaCl2, frozen and freeze dried. A subsample of the 131

fresh soil from each plot was extracted with re-demineralised water (1:5) on a shaker for 1 hr.132

and another set of subsamples was vacuum-incubated with chloroform for 24 hrs to release 133

microbial C and N (Brookes et al. 1985; Joergensen and Mueller 1996) before extraction with 134

water as above. A third subsample of the sorted and sifted soil was freeze dried and used for 135

estimating soil water content. One and a half year after labelling, additional soil samples for 136

measurements of longer-term distribution of the labels were taken from the plots in three depths 137

of 0-5 cm, 5-10 cm and 10-15 cm.138

One week after labelling, all aboveground plant material was sampled from the plots in 139

order to obtain plant biomass estimates and 15N and 13C natural abundances from the six 140

unlabelled plots. The Calluna material was sorted into green shoots, coarse, non-green branches,141

coarse roots and fine roots (< 0.5 mm) and the grasses were sorted into leaves, coarse and fine 142

roots (< 1 mm). Mosses and aboveground litter of mainly grasses but also Calluna constituted 143

additional fractions.144

Soil samples for analysis of seasonal variation of the masses of amino acids, microbial 145

biomass C and N, soil extractable NH4
+, NO3

-, DON, DOC and fine roots of Calluna and grasses146

were collected under a mixed graminoid and Calluna vegetation in plots adjacent to the labelled147

plots on February 21st, April 4th, May 11th, June 28th, July 27th, August 23rd 2005, and January 148

16th 2006). After washing, the roots were sorted into fine roots (<0.1 mm) of Calluna and grass149

roots smaller than 0.5 mm in diameter. Soil for analysis of microbial biomass C and N, and soil 150

extractable NH4
+, NO3

-, DON, DOC was treated as above. Also, a subsample was used for 151
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analyses of amino acids after extraction with re-demineralised water (1:2) and centrifugation at 152

10000 rpm (11951g) for 15 minutes.153

2.3 Chemical and isotopic analysis154

The soil extracts were spectrophotometrically analyzed for NH4
+ (indophenol-blue reaction) 155

with a Hitachi U 2010 spectrophotometer and for NO3
- with a Tecator FIAstar analyzer. Part of 156

the extract was digested with H2SeO3, H2SO4 and H2O2 and analyzed as above to yield total 157

dissolved N (TDN), with DON (dissolved organic nitrogen) = TDN - NH4
+. Total microbial N 158

(MicN) was calculated as TDN in the fumigated samples minus TDN in the non-fumigated 159

samples, using 0.4 as the extractability factor (Jonasson et al. 1996; Michelsen et al. 1999;160

Schmidt et al. 1999). Another part of the extract was analyzed for organic carbon (DOC) with a 161

Shimadzu TOC 5000A analyzer. Total microbial C (MicC) was calculated as DOC in the 162

fumigated samples minus DOC in the non-fumigated samples, using 0.45 as the extractability 163

factor (Schmidt et al. 2000).164

The centrifuged soil extracts were analyzed for amino acid content on a Dionex HPLC 165

system (column: AminoPac PA10) following the method of Ström and Christensen 2007 166

(Jonsson et al. 2007; Ström and Christensen 2007).167

Milled leaves of Deschampsia and leaves and fine roots of Calluna, collected on August 168

22nd (leaves) and September 9th 2007 (roots), were extracted with methanol and analyzed for 169

condensed tannins by the vanillin method with catechin as standard, using a Hitachi U 2010 170

spectrophotometer (Burns, 1971).171

For the 15N/14N and 13C/12C isotope ratio analysis of the fumigated and non fumigated 172

soil extracts, the extracts were freeze-dried in a small bottle containing a quartz filter (Quartz 173

microfibre filters QMA Whatman) and with a small parafilm lid with a small hole. Filters, dried 174
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crushed soil and plant material were analyzed for 15N and 13C isotopic enrichment with a 175

Eurovector CN analyzer coupled to an Isoprime isotope ratio mass spectrometer. During 176

analysis, the internal reference gas was calibrated against certified standards from the 177

International Atomic Energy Agency, and plant material calibrated against certified standards 178

was used as working standard.179

2.4 Calculations and statistics180

The 15N and 13C enrichments of the plant material and the microbial biomass was assumed to be 181

equal to the concentrations (µmol·g-1 dry weight, DW) of the added 15N or 13C in the material. 182

The atomic percentage was calculated from δ15N values (atom% = (δ15N +1000)/((δ15N 183

+1000+(1000/0-0.0036765))) or 13C values (atom% = (δ13C +1000)/((δ13C +1000+(1000/0-184

0.011180))). The measured 15N or 13C natural abundance of the material was then subtracted and 185

this figure was multiplied by the N or C concentration of each sample, giving the 15N or  13C 186

enrichment (Fry, 2006). The 15N recovery was calculated as the percentage of total added 15N 187

label per m2 recovered in the total dissolved N (TDN), total microbial N (MicN), total soil N 188

pool and in the plant biomass pr m2.189

One-way analysis of variance (ANOVA) and Tukey’s test for comparison of means were 190

used to test for difference in 15N enrichment between species, change in fine root biomass at 191

increasing depth, differences in soil N pools in plots injected with different N forms, and effects 192

of time. Two-way ANOVAs were applied to test for effects of species and injected N form, and 193

injected N form and addition of tannic acid. Interactions between main effects were included 194

and are reported when significant. Homogeneity of variances was tested with Levene's test prior 195

to the analysis of variances. Data with P ≤ 0.05 are regarded as statistically significant, but 196
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effects at P ≤ 0.1 are also reported. All statistical analyses were done using SAS (SAS Institute 197

Inc. 2003)198

3. Results199

3.1 Soil properties and seasonal variations200

Ammonium was the dominant inorganic N form in the soil (Table 1). The concentration of 201

dissolved organic N (DON) was eight-fold higher than the concentration of NH4
+-N and 202

microbial N was 17-fold higher than DON. The total amount of free amino acid N corresponded203

to 0.4 % of the measured dissolved organic N. The microbial C:N ratio was 10, indicating a 204

mixed microbial community of bacteria and fungi (Jensen et al. 2003). Mean organic matter 205

percentage of the soil (SOM) was 11.1 ± 0.6 % (S.E.). The soil pools and concentrations were 206

not significantly affected by the addition of the small amount of isotope label (two-way 207

ANOVA). Addition of tannic acid had a significant effect on extractable DOC (P=0.0166) and a 208

tendency towards an effect on extractable DON (P=0.0666, one way ANOVA), with more DOC 209

and less DON in plots with tannic acid addition (data not shown).210

The seasonal variations of most of the single amino acids, the NH4
+ concentration and 211

the microbial biomass (Figure 1 and 2) were significant. The concentration of amino acids was 212

generally highest in August, intermediate in May and lowest in June (Figure 1). For NH4
+-N213

(Figure 2) the concentration was highest in March, decreased (P<0.0001) to a minimum in 214

August and had increased significantly by January the subsequent year. The microbial N mass215

(Figure 2) increased (P<0.0001) from March to May, decreased from May to August and tended 216

to have increased by January. Nitrate decreased (P=0.0009) from March to May.217
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3.2 Plant biomass and chemistry218

The vegetation was dominated by Calluna with an average total above- plus belowground219

biomass of 715 g·m-2 and by grasses with an average total above- plus belowground biomass of 220

460 g·m-2. The average total plant biomass was 1200 g·m-2 (Table 3, measured in May). The fine 221

root biomass of grasses was three- to 20-fold higher than the fine root mass of Calluna (Figure 222

3) in 0-5 cm depth with a significant four-fold increase from March to September followed by a 223

significant decrease to January, while the fine root biomasses of Calluna did not vary 224

significantly through seasons.225

The largest ecosystem nitrogen pool (Table 2) was in Calluna with 7.0 g · m-2 while the226

grasses and mosses contained 5.2 and 1.2 g N·m-2, respectively, adding up to a total plant pool of 227

13.4 g N·m-2. The microbial biomass contained 0.8 g N·m-2 (Table 3).228

The concentration of condensed tannins in leaves of Deschampsia was below the 229

detection limit, while the concentration in leaves and fine roots of Calluna was 39 ± 3 mg·g-1230

DW and 73 ± 5 mg·g-1 DW, respectively.231

3.3 15N label recovery 232

One day after labelling, 45 - 89 % of the 15N label was recovered in the upper 5 cm soil (Table 233

3) of which labile pools such as the microbial biomass and the TDN pool contained 26 - 53 % 234

and 0.1 - 1.3 % respectively. Hence, the difference of 19 - 35 % of the added label recovered in 235

the total soil and the amount recovered in these labile pools presumably represents 15N adsorbed 236

to the soil particles. After 1.5 yr, less, 9 - 53 %, of the 15N label was recovered in the upper 5 cm237

and 15N recovery decreased with soil depth (data not presented).238
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15N label recovery was much higher in the soil microbial 15N pool than in Calluna and 239

the grasses, with 0.4 - 3.9 % and 1.2 - 3.9 %, respectively. The recovery was very low in mosses 240

(0.03% at most) (Table 3).241

For Calluna, there was a significant effect of N-form and a significant interaction of N-242

form and tannic acid (Table 3), with the highest 15N recovery from the ammonium and the 243

phenylalanine labelling. In the grasses, there was a tendency towards an effect of N-form and a 244

higher 15N recovery from the ammonium labelling (Table 3). N-form had no significant effects 245

on 15N recovery for mosses, microbial N, total dissolved N and total soil N (Table 3).246

There was a significantly (P=0.0292) larger 15N recovery in grasses than in Calluna in247

plots labelled with glycine, and a tendency (P=0.0511) towards this in plots labelled with 248

glutamic acid, despite the higher biomass and unlabeled N pool in Calluna. 249

Addition of tannic acid had no significant effect on 15N label recovery in plants or soil 250

microorganisms (Table 3) and no effect on 15N enrichment of the plant fractions (data not 251

shown), but decreased the total dissolved 15N (Table 3). 252

3.4 15N and 13C enrichments253

One day after labelling, the 15N concentration in the microbial biomass had increased 254

significantly above the natural abundance in plots with added NH4
+. Similarly, both the 15N and 255

the 13C concentrations had increased in plots with added, labelled, amino acids, indicating 256

microbial uptake of all compounds (Table 3 and Figure 5). Both the grasses and Calluna had 257

absorbed significant amounts of 15N from the added 15NH4
+, but, in the amino acid plots, the 258

concomitant increase of both 15N and 13C was significant only in the phenylalanine plots (Table 259

3).260
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The linear relationships of excess 13C and 15N in soil microorganisms in plots with the 261

labelled amino acids were significant at P < 0.0001 in all cases (Figure 4), as was the linear 262

relationship in grasses and Calluna in the labelled phenylalanine plots (Figure 5). In contrast, in 263

the plants, there were no significant linear correlations in plots with labelled glycine and 264

glutamic acid, perhaps due to the fact that the amount of 15N added with these acids only was 265

1/10 of the amount added with phenylalanine.266

4. Discussion267

The soil had low concentrations of free glycine, glutamic acid and phenylalanine (Abuarghub 268

and Read 1988; Kielland et al. 2006; Sorensen et al. 2007) and relatively high concentrations of 269

ammonium (Schmidt et al. 2004; Beier et al. 2004) compared to amounts reported from other 270

temperate and arctic heaths (Raubuch and Joergensen 2002; Bernal et al. 2005; Weintraub and 271

Schimel 2005b). As expected, there was a pronounced seasonal variation, with low 272

concentrations of both ammonium and amino acid in the peak growing season, while in the 273

period from May to August, the plant fine root biomass doubled (Figure 2). The general increase 274

in amino acid concentrations from early to late summer (Figure 1) may be explained by 275

increasing and qualitatively different root exudation of amino acids (Lesuffleur et al. 2007). 276

Also from May to August, the initial decrease followed by increase in the microbial N biomass277

is similar to the changes in both amino acids and ammonium. This may be explained by high 278

plant acquisition of ammonium and amino acids during spring and early summer growth, 279

followed by a period of lower plant demand from August. The decrease in microbial biomass in 280

late summer allows for the observed increase in plant root production and plant nutrient 281

acquisition.282
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As we added a mixture of N forms, the 15N uptake by the plants and microbes is likely to283

reflect preference of specific N forms. Still, the uneven dilution of the added isotope label by the 284

labile N forms already present in the soil leads to an uneven 15N and 13C enrichment of the soils 285

pools of ammonium, glycine, glutamic acid and phenylalanine. This is unavoidable in a field 286

experiment (Andresen and Michelsen 2005; Sorensen et al. 2007; Kielland et al. 2007). 287

However, by a comparison on the scale of 15N recovery (i.e. the proportion 15N found per unit 288

area out of the total amount added 15N per square meter, Table 3) differences in amounts of289

added 15N can be ignored. 290

The major part of the added 15N label was recovered in the top 0-5 cm the soil layer, 291

suggesting small losses by leaching during the first day of label distribution. Hence, the 15N 292

recovery in the different pools after one day is an indication of the N uptake and shows the 293

short-term pattern of N uptake by microbes and plants. Overall, the plant:microbial 15N recovery 294

ratio was 1:12, and the microbes were, consequently, superior to plants in the short term N-295

uptake, in correspondence with our hypothesis. Compared to plants, the microorganisms hold a 296

smaller biomass, N-pool and C-pool, so the different uptake patterns illustrate different 297

acquisition strategies of the these organism groups, with no correspondence of mass or N-pool 298

dominance and acquisition (McKane et al. 2002; Sorensen et al. 2007; Harrison et al. 2008). As 299

both plants and microorganisms show capability for uptake of ammonium and intact amino 300

acids from the same pools, rapid fluxes, high uptake rates and alternating mineralization and 301

immobilization of nutrients in plants and microbes are important elements of nutrient cycling in 302

terrestrial ecosystems. 303

The soil microorganisms took up the added N-forms with no significant preference 304

(Table 3), and showed uptake of both 15N and 13C (Figure 5). The significant linear regression of 305
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15N- and 13C enrichments of the microbial biomass and the stoichiometry show, as hypothesized, 306

that the amino acids were absorbed as intact compounds by the soil microorganisms. This agrees 307

with similar findings in other ecosystem types (Näsholm and Persson 2001; Nordin et al. 2004;308

Harrison et al. 2008).309

Similarly, the linear relationship between 13C and 15N and the high 13C :15N ratio of the 310

grass and Calluna roots in the phenylalanine labelled plots strongly suggest uptake of intact 311

phenylalanine, similar to reported results from other ex-situ studies (Watson and Fowden 1975)312

and field studies in other ecosystem types (Nordin et al. 2004; Hofmockel et al. 2007; Harrison 313

et al. 2008). In Calluna, the amount of carbon from phenylalanine incorporated into the roots 314

corresponded to 0.02‰ and in grasses to 0.04‰ of the root carbon pool on the field site. In 315

contrast, there was no significant15N:13C relationship in grass and Calluna roots from the plots 316

treated with glycine and glutamic acid, suggesting that the amino acids were not acquired as 317

intact compounds (Andresen and Michelsen 2005; Rains and Bledsoe 2007). 318

The 15N concentration in Calluna tissue gradually decreased from fine roots, through319

coarse roots and coarse branches to the lowest concentration in the green shoots, illustrating the 320

advancing translocation of the absorbed nitrogen through the plant (data not shown). Hence, 321

already one day after soil labelling, the absorbed N reached the leaves and could be incorporated 322

in proteins and enzymes essential for e.g. photosynthesis. However, the enrichment in the shoots 323

of 15N from ammonium was higher than the enrichment of 15N from phenylalanine, suggesting324

that the translocation of N from the amino acids acquired in intact form was slower than the N 325

from the ammonium uptake. In grasses, the concentration of 15N from ammonium in roots and 326

shoots was similar. However, the concentration of 15N from phenylalanine was larger in roots 327

than in shoots, suggesting a similar pattern as in Calluna with slower translocation of 328
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phenylalanine than of ammonium. A delayed uptake of organic nitrogen by ericaceous species329

as compared with inorganic N has also been reported from subarctic ecosystems and pygmy 330

forest (Andresen et al. submitted; Rains and Bledsoe 2007). 331

The short-term preference for NH4
+-N rather than N from the amino acid sources by the 332

plants was evident from the higher 15N recovery from ammonium than from the amino acids 333

(Table 3). Similar preference of inorganic nitrogen has also been reported from subarctic 334

(Sorensen et al., 2007) and temperate ecosystems (Hofmockel et al. 2007; Harrison et al., 2008).335

            There was a significant (P=0.0001) overall effect of plant species on 15N recovery. The 336

recovery of 15N label in Calluna and grasses was similar in ammonium and phenylalanine plots, 337

while the grasses took up more glycine and glutamic acid than did Calluna (Table 3). The 15N 338

recovery in mosses was much lower than in vascular plants, presumably because uptake by 339

mosses mostly is from atmospheric N deposition. 340

             Addition of tannic acid to the soil solution had only minor effects on the investigated 341

processes, in contrast to findings by (Holub and Lajtha 2004). The higher DOC, and lower DON342

concentrations and 15N-TDN recovery in the soil extracts from the tannic acid additions may 343

have been caused by complex binding of the tannic acid with specific organic compounds, 344

changing their extractability (Halvorson and Gonzales 2008). In support of this, the tendency 345

towards lower 15N recovery in the total soil at 0-5 cm depth with added tannins suggests that 346

some organic compounds, complexed with tannic acid, to a higher extent had percolated to soil 347

layers below 5 cm depth, similar to processes observed by (Holub and Lajtha 2004).348

The effect of tannic acid on the recovery of 15N was non-significant in soil 349

microorganisms, grasses and mosses. However, in Calluna tannic acid addition reduced the350

recovery of some of the added N forms, shown by the significant tannic acid*N form interaction 351
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(Table 3). For instance, the 15N enrichments in green shoots and coarse branches of Calluna352

were both 62% higher in 15N ammonium plots without than with addition of tannic acid (data 353

not shown). Likewise, in plots with labelled glycine and phenylalanine, Calluna showed higher354

15N enrichment in the fine roots and in plots with phenylalanine also in coarse roots. The more 355

pronounced response to tannic acid in Calluna than in graminoids may be due to the different 356

ammonium and amino acid transporters in root and in mycorrhizal fungi (Fischer et al. 1998;357

Chalot et al. 2002; Svennerstam et al. 2007). 358

The absence of tannins in the leaves of the graminoids together with the 13C and 15N 359

uptake from phenylalanine, suggest that the acquired phenylalanine is utilized for protein and 360

not secondary compound synthesis in the graminoids. By contrast, the high concentration of 361

condensed tannin in Calluna leaves and roots together with the 13C and 15N uptake from362

phenylalanine, suggests that phenylalanine may be utilized for both protein synthesis and for 363

synthesis of secondary compounds in Calluna and, hence, different fate of added phenylalanine 364

for these two heathland plant species, in correspondence with the protein competition model365

(Jones and Hartley 1999; Kraus et al. 2003).366

367
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Figure legends375

Fig 1: Seasonal variation in free amino acids in the heathland soil (μg N g-1 SOM), means 376

shown with standard error. Arg: arginine, Lys: lysine, Gln: glutamine, Asn: aspargine, Ala: 377

alanine, Gly: glycine, Val: valine, Ser: serine, Prol: proline, Ile: isoleucine, Leu: leucine, Met: 378

methionine, His: histidine, Phe: phenylalanine, Glu: glutamic acid, Asp: aspartic acid, Cys: 379

cysteine, Tyr: tyrosine, Trp: tryptophan. Below 1. axis significant effect (one way ANOVA) of 380

sampling time; P < 0.001: ***; P <0.01: **; P<0.05: *; P<0.1: †; P>0.1: ns; nd not determined.381

382

Fig 2: Seasonal variation in microbial nitrogen (MicN) and ammonium NH4
+-N in heathland 383

soil (μg N g-1 SOM), means shown with standard error. Means with different letters are 384

significantly different (one way ANOVA followed by Tukeys test α=0.05). 385

386

Fig 3: Seasonal variation in fine root biomass (g m-2) of Calluna vulgaris and grasses from 0-5 387

cm depth, means shown with standard error. Means with different letters are significantly 388

different (one way ANOVA followed by Tukeys test α=0.05).389

390

Fig 4: 15N enrichment (μmol 15N m-2) versus 13C enrichment (μmol 13C m-2) in plant fine roots 391

from a) graminoids and b) Calluna vulgaris, sampled at 0-5 cm depth one day after labelling392

with 15N13C9-phenylalanine with and without tannic acid. Linear regression forced through zero, 393

n = 12.394

395

Fig 5: 15N enrichment (μmol15N m-2) versus 13C enrichment (μmol13C m-2) in microbial biomass396

sampled at 0-5 cm depth one day after labelling with a) 15N-ammonium with and without tannic 397
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acid, b) 15N13C9-phenylalanine with and without tannic acid, c) 15N13C2-glycine with and without 398

tannic acid and d) 15N13C5-glutamic acid with and without tannic acid. Linear regression forced 399

through zero, n = 12. Data from plots with tannic acid added are indicated with filled symbols. 400

401

402
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Table 1: Soil properties (0-5 cm depth, n = 48) May 18, 2005 at the temperate heathland.38

mean 
μg·g-1SOM se

mean 
g·m-2 se

NO3-N 1.49 0.75 0.001 0.000

NH4-N 8.12 1.37 0.008 0.001

DON 60.12 2.41 0.065 0.004

MicN 764.73 23.73 0.831 0.042

DOC 712.92 35.27 0.808 0.063

MicC 7858.14 231.71 8.508 0.407

Total amino acid-N 0.24 0.04 0.001 0.000

39

40

41

42

43

44

45

Table 2: Plant biomass (n = 48) May 18, 2005 at the temperate heathland. The belowground 46

biomass is for 0-5 cm depth. 47

Aboveground
mean

DW g·m-2 se
mean
gN·m-2 se

mean
gC·m-2 se

Calluna vulgaris green shoots 249.1 22.3 3.6 0.3 113.4 9.2

Calluna vulgaris coarse branches 198.5 21.7 1.6 0.2 88.7 10.8

Graminoid shoots 122.7 12.3 1.3 0.1 54.1 5.3

Mosses 60.7 11.8 1.2 0.2 31.2 6.4

Other 12.4 3.6 n.d. n.d. n.d. n.d.

Total aboveground biomass 643.3 41.9 7.8 0.6 283.9 21.8

Litter all species 135.1 15.3 n.d. n.d. n.d. n.d.

Below ground

Calluna vulgaris coarse roots 234.3 37.5 1.5 0.3 90.5 16.8

Calluna vulgaris  fine roots 34.3 3.9 0.3 0.0 16.7 2.0

Graminoid roots 336.6 34.2 3.4 0.4 145.7 16.5

Total belowground biomass 596.7 38.1 5.2 0.5 250.8 20.0

48

49
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50
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52

53

Table 3: 15N recovery (% of added 15N) in whole plants (Calluna vulgaris, grasses, mosses) and 54

in soil microorganisms, in total dissolved N (TDN) and in total soil in 0-5 cm depth one day 55

after 15N labelling with four different N forms, with or without tannic acid (T) addition. Mean ± 56

standard error (s.e.), n = 6). Results of two-way ANOVA are indicated, n.s. non-significant. 57

58
Treatment / 15N 
recovery

Calluna 
vulgaris Grasses Mosses

Soil 
microbial15N

Total 
dissolved 15N

Total 
soil 15N

mean se mean se mean se mean se mean se mean se
15N ammonium 3.87 1.16 3.93 1.07 0.00 0.00 46.7 15.3 0.60 0.17 87.1 17.1
15N phenylalanine 0.87 0.29 0.81 0.32 0.01 0.01 52.8 12.7 1.01 0.60 86.3 8.7
15N glycine 0.66 0.24 1.21 0.44 0.02 0.01 52.0 13.2 0.75 0.10 76.6 24.2
15N glutamic acid 0.57 0.21 1.26 0.40 0.01 0.00 37.4 5.1 1.34 0.35 88.6 20.3

T + 15N ammonium 1.64 0.57 3.37 1.67 0.00 0.00 40.7 6.1 0.88 0.53 73.4 8.8

T + 15N phenylalanine 2.20 0.44 2.45 0.98 0.00 0.00 41.0 10.9 0.12 0.02 73.7 20.5

T + 15N glycine 0.51 0.15 2.39 0.88 0.00 0.00 26.2 5.1 0.24 0.04 44.8 10.3

T + 15N glutamic acid 0.40 0.39 1.38 0.46 0.03 0.02 45.4 12.7 0.58 0.16 78.1 21.5

ANOVA

Nform                 P-value 0.0014 0.042 n.s. n.s. n.s. n.s.

Taddition            P value n.s. n.s. n.s. n.s. 0.0471 n.s.

Nform*Taddition P-value 0.0478 n.s. n.s. n.s. n.s. n.s.

59

60

61
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• Temperate terrestrial ecosystems are currently exposed to changes in climate with 

increased atmospheric CO2, increased temperature and periodical droughts with 

consequences for natural ecosystems and the potential feedbacks to the climate. 

We here present results from a novel field experiment, where the effects of these 

three climate change factors are investigated solely and in all combinations at a 

temperate heath dominated by Calluna vulgaris and Deschampsia flexuosa.  

• Responses in soil inorganic and microbial nutrient concentration were 

investigated in the second year of treatment. Net mineralization and 

immobilization in the top soil and leaf litter decomposition was investigated 

through the winter season separately below Calluna and Deschampsia plants 

respectively with different responses for the two species.  

• After one year of treatment, warming increased microbial C, N and P at 0-5 cm 

depth and decomposition of leaf litter below Calluna plants. The effects of 

warming were often counteracted when combined with CO2 and drought. 

• Net mineralization of N and P was significantly affected by the climate change 

treatments. In Deschampsia soil the net nitrification rate decreased significantly in 

response to drought, but an increase was observed in Calluna soil. By contrast, 

drought reduced leaf litter decomposition for both species. 

• Soil incubations with plants present showed increased microbial immobilization 

of N relative to incubations without plants, suggesting a plant root exudation 

priming of the rhizosphere. Warmed plots with lower DOC concentrations had 
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lower mineralization rates, also suggesting a carbohydrate limitation of the 

microbes.  

• Plant mobilization of N followed the observed responses in N mineralization due 

to plant acquisition of DIN. Furthermore, Deschampsia plants had larger nitrate 

acquisition than Calluna and Calluna showed preference of ammonium over 

nitrate. 

 

Keywords: Calluna vulgaris, carbon, climate change, Deschampsia flexuosa, 

immobilization, microbial biomass, mineralization, nitrification, nitrogen, warming. 

Introduction 

Natural ecosystems respond to changes in air and soil temperature, atmospheric CO2 

concentration and drought, with consequences for biological processes and functioning. 

According to extrapolations and models developed by IPCC the air temperature may 

increase by 0.1 ˚C for each following decade, the CO2 concentration of the atmosphere 

will increase with an amount depending on stabilization scenario. Furthermore 

precipitation will alter, with expected extended summer drought periods in Denmark 

(IPCC, 2007); (Danish Meteorological Institute, 2008). Investigations of the combined 

effects of increased temperature (T), CO2 and drought (D) are necessary to reveal the 

actual responses (Mikkelsen et al., 2008; Beier et al., 2004a; Finizi et al., 2006).  

The significance of plants and soil microbial biomass as carbon sinks and 

processors of soil organic matter respectively (Rustad et al. 2001; Beier et al. 2004a; 

(Emmett et al., 2004; Beier et al., 2004a) Peñuelas et al., 2004; (Finizi et al., 2006; Norby 

& Iversen, 2006)), relates strongly to the factors limiting the organisms, such as the 
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availability of nitrogen, and phosphorus, labile carbon or water. Changes in nutrient 

cycling in the ecosystem as direct or indirect response to climate alterations may in the 

long term bottom up control the ecosystem carbon sink response, eventually by 

progressive nitrogen limitation (Luo et al., 2004; Norby & Iversen, 2006; Finizi et al., 

2006; Hungate et al., 2006). 

Soil microbial processes evidently respond to climate changes, with ecosystem 

type specific direction of the responses. Generally, net nitrification and mineralization 

rates and leaching of inorganic nitrogen, increased in response to warming and drought 

(Rustad et al., 2001); (Jonasson et al., 2004); (Rinnan et al., 2006). Microbial biomass in 

dry Calluna heathlands decreased in response to drought  (Jensen et al., 2003), while 

microbial immobilization in tundra increased in response to warming (Schmidt et al., 

2002). Furthermore, litter decomposition generally increased in response to warming in 

subarctic ecosystems (Cornelissen et al., 2007). Net N mineralization was significantly 

lower in grassland soil exposed to a gradient CO2 treatment through three years, 

explained by a gradual decreasing substrate quality of the remaining soil organic matter 

(Gill et al., 2002). However, no changes have been found for grass leaf litter 

decomposition in response to increased CO2 (de Graaff et al., 2006; Knops et al., 2007).  

Hence, responses to elevated CO2 may be in opposite directions of responses to warming 

and drought. Furthermore, the responses in field investigations are often small compared 

to the natural seasonal variation, when investigated in temperate heath ecosystems 

(Anderson & Hetherington, 1999); (Schmidt et al., 2004; Emmett et al., 2004); (Beier et 

al., 2004b; Beier et al., 2004a); (Sowerby et al., 2005).  
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The combined effects of warming, increased atmospheric CO2 and summer 

drought on the soil processes of a temperate heathland ecosystem have not previously 

been investigated (Mikkelsen et al., 2008). In the present study soil N and P 

mineralization, microbial immobilization and decomposition was investigated in buried 

bags and litterbags in a temperate heath ecosystem in order to reveal climate change 

effects on nutrient cycling. Furthermore, plants were introduced in the buried bags to 

study the processes with and without the presence of plants. 
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It was hypothesized, that in the short term: 

• Biological processes would be stimulated by increased temperature (T) leading to 

increased net rates of nitrification, mineralization and decomposition as well as 

increased microbial C, N and P.  

• Decomposing microorganisms would be water limited by the drought treatment 

(D) leading to reduced mineralization, nitrification and decomposition in response 

to drought.  

• Plant presence will induce microbial immobilization of N and acquire mineralized 

nitrogen. Furthermore, T and CO2 would increase the plant biomass due to 

increased photosynthesis and increase plant uptake of N. 

• Elevated CO2 will not affect soil mineralization and litter decomposition on the 

short term (< 2 years). 
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The field site 

The field site for the investigation covered an area of about two hectares at Brandbjerg 

(55º53'N 11º58'E) a hilly nutrient poor sandy deposit with a dry heath/grassland 

ecosystem dominated by Deschampsia flexuosa and Calluna vulgaris and with a low 

cover of other herbs and grass species, and an open moss cover beneath the canopy of 

vascular plants. The average precipitation per year was about 600 mm and the average 

temperature was 8° C (www.dmi.dk, 2005). 

The climate change manipulations 

The climate manipulations started October 2005 and consisted of increased temperature 

(T), extended summer drought (D), increased atmospheric CO2 and all combinations of 

these treatments (TD, TCO2, DCO2 and TDCO2), all with a replication of 6. The study 

plots consisted of 12 octagons each 7 m in diameter. Each block comprised 2 octagons, 

one with CO2 and one without CO2. Each octagon comprised 4 plots in a split plot design 

with the treatments drought or elevated temperature solely or in combination, and a non-

warmed, non-drought plot (Mikkelsen et al., 2008). The temperature was increased by 

passive nighttime warming by means of low automatic curtains that rolled over the 

vegetation during night. To avoid changes in precipitation, the curtains were 

automatically removed during rain events. The precipitation in the drought plots was 

altered also with automatic curtains that automatically unfolded during rain events in 

early summer. The atmospheric CO2 was increased with pipe fumigation as in a regular 

FACE experiment, and with a feed back control system linked to wind speed and wind 
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direction. The temperature increase of the soil in 2 cm depth was around 1˚C, the 

increased CO2 concentration in the air was 510 ppm. The drought period started in late 

June 2006 and continued for 5 weeks until early August when soil water reached c. 5 

vol% water in the top 20 cm of the soil. For further information about the experimental 

design of the multifactor set up, see Mikkelsen et al 2008.  

Soil incubation in buried bag 

Soil chemistry and mmineralization was investigated below both Calluna and 

Deschampsia plants in all 48 plots. In November 2006, one year after treatments were 

initiated, two intact block of soil (20×20 cm) one from below Calluna plants and one 

from below Deschampsia plants was cut from each plot. One subsample was directly 

used for analysis of initial soil properties. Other subsamples were carefully cut down to 

sizes of 4×4.5 cm carefully fitting into the plastic pots used for the incubation. The 

incubated soil was from the top of the turf without removal of any litter or roots and 

down to 5 cm depth. It was carefully slipped into the incubation pot with no compression. 

A lid of parafilm closed the pot but had a small slit to allow for plants in those with plant 

and to allow for the same water vapour exchange conditions in those without plant (Eno, 

1960; Schmidt et al., 2002). Each incubated subsample was cut in two vertically. Soil 

sampled below the two dominant plant species, viz. Calluna and Deschampsia, was 

incubated separately. For each plant type one sample was incubated soil alone and two 

similar (for sake of poor plant survival) incubations were made with soil with small 

Calluna vulgaris respectively Deschampsia flexuosa plants. The plants had been pre-

grown from seeds (Deschampsia) and cuttings (Calluna) for a period of 2 and 15 months 

respectively in soil from the site prior to the incubations. Three Deschampsia seedlings 
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(0.08 g FW each) were planted in each pot with Deschampsia plant incubations, and two 

Calluna seedlings and one cutting (0.05 g FW each) were planted in each pot with 

Calluna plant incubation. 
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The incubation pots were placed in holes in the study plots in level with the 

surrounding soil. A 10 cm tall net was tightened around the pots to exclude mice. After 

half a year of incubation in May 2006 after winter, the pots were sampled for analysis. 

The initial soil samples and the sampled buried bag incubations after half a year were 

kept cold until sorted. The small plants were carefully removed, and roots and litter was 

sorted manually from the samples. Water content was measured after drying at 80˚C and 

soil organic matter as loss on ignition after 550˚C for 6 hrs. 

Leaf litter incubation in litter bags 

Ambient leaf litter (standing dead biomass) from Calluna and Deschampsia was 

collected at the area of the field site in February 2006. The Deschampsia leaf litter was 

only current year leaf and straw litter, still attached to the plant. It was dry at collection 

and kept in refrigerator. The Calluna leaf litter was collected by shaking the Calluna 

shrubs, hence it was assumingly current year leaf litter. The litter consisted of 27% (by 

dry weight) flowers, 36% leaves and small branches, 19% branches larger than 5 mm in 

diam. and 18% mixed un-definable material. 

The litter was cut down to lengths no longer than 3 cm. It was then incubated in 

4×4 cm litterbags. Bags with Deschampsia litter had a mesh size of 1×1 mm and Calluna 

litter had a mesh size of only 0.05×0.05 mm to ensure that no small leaves would drop 

out. The Deschampsia litterbags each had 1.0 g FW litter and the Calluna litterbags each 
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had 2.0 g FW litter. The litterbags were placed at the soil surface below the plant species 

of origin, and fixed with a small plastic pin and covered with the litter at the spot.  

The litter incubation started March 20th 2006 and bags were collected after 214 

and 381 days (Calluna) and 214, 381 and 458 days (Deschampsia). The collected bags 

were frozen until sorted for grown-in mosses and plant roots. The litter was then freeze 

dried. The litter massloss was calculated as:  

mass loss % = 100 % * (DWinitial-DWsample)/DWinitial 

Chemical analysis and calculations  

The fresh soil was extracted with 0.1 M K2SO4 (1:5 soil:water) for analysis of nitrate, 

ammonium, dissolved organic carbon (DOC) and dissolved phosphorus (P). Total 

dissolved nitrogen (DON) was analyzed after digestion of the extract with potassium 

peroxide sulphate. A subset of samples were fumigated with chloroform and extracted 

with 0.1 M K2SO4 for subsequent measurement of microbial carbon, phosphorus and, 

after digestion, microbial nitrogen.  

The sorted roots and the incubation plants were washed and dried at 80˚C for 

three days and weighed. Digestion of dead roots and plants was with 1 ml H2O2, 5 ml 

H2SeO3 and 94 ml H2SO4 for 1 hr at 400˚C (Jonasson et al., 2004). 

N and P in extracted and digested samples were measured on Hitachi U 2010 

Spectrophotometer. C was measured on a Shimadzu TOC 5000A analyzer. The microbial 

C, N, and P fractions were calculated assuming extractability factors of 0.40, 0.45 and 

0.40, respectively (Schmidt et al., 2002; Joergensen & Mueller, 1996; Joergensen, 1996; 

Schmidt et al., 2004), and were normalized by sample soil organic matter content (SOM).  
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Net mineralization rates and rate changes in microbial C, N and P and in dead root 

N and plant N were calculated as the difference between the concentration of the 

incubated soil and the initial values (Beier et al., 2004b; Emmett et al., 2004). Hence for 

nitrate, ammonium, dissolved organic N and microbial N the net rate was calculated as:  

 

(sample(μgN g-1 SOM) - initial(μgN g-1 SOM)) / days of incubation(187 days); 

 

A positive rate for nitrate-N is referred to as nitrification, a positive rate for ammonium-N 

is referred to as mineralization. A positive change of microbial N or P is termed microbial 

immobilization.  

Nitrification, mineralization, DON production, microbial immobilization, dead 

root N change, dead root mass change and small plant rate change in N and in biomass 

were also calculated per incubation unit (core) for possible comparisons. 

Treatment responses (e.g. drought, temperature or CO2) for all measured 

parameters was calculated as: 

 

(Mean values all plots with the treatment) / (Mean values all plots without the treatment) 

 

Statistical analysis 

One-way analyses of variance (ANOVA) were used to test differences between plant 

specific soils in ambient plots (Calluna or Deschampsia soil). Correlations of N, C and P 

mineralization rates were tested with Kendall and Pearson product moment correlation. 
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Linear mixed models were applied to analyse the responses in SAS 8.0. Random effects 

terms were block, treatment plot and octagons, respecting the nested structure of the 

design. Main effects terms were the treatment factors: CO2, temperature (T), and drought 

(D). All interaction terms between the factors CO2, D and T were included. The models 

were gradually simplified, starting with the third order interaction, taking out non-

significant terms until only significant (P<0.05) or close to significant (0.05<P<0.10) 

terms remained.  Homogeneity of variances was investigated with residual plots and 

appropriate transformations done if necessary (SAS Institute Inc., 2003). 

Results 

The soil properties of the ambient plots (Table 1) were not significantly different below 

the two species, however, after one full year of climate treatments significant responses 

to the main factors CO2, T and D and interactions were observed (Table 2), and the 

responses differed for the two plant soil types. Consequently, the chemical and microbial 

properties of the incubations with Calluna soil and Deschampsia soil were initially 

different and incubations of the two soils responded differently to the climate change 

factors. No significant correlations were found between net N mineralization and P 

mineralizations. The microbial C to N ratio represent a microbial community composed 

by a mixture of fungi and bacteria (Jensen et al., 2003; Sowerby et al., 2005), and did not 

change significantly in response to the climate treatments. 

Plant survival in the buried bags was 98%. Overall the Deschampsia plants in the 

incubations doubled their biomass while Calluna plants did not gain much mass. When 

plants were present in the incubations the DIN production (NO3 plus NH4 production) 

was significantly reduced both in Calluna (P=0.0065) and Deschampsia soil (P<0.0001) 
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(Figure 2). The overall effect of plant presence was an increase in microbial N 

immobilization rate, by tendency for Deschampsia soil (P=0.0855) and,not significantly, 

for Calluna soil. 

Responses to drought 

The mobilization of soil nitrogen showed strong responses to drought, with opposite 

directions for the two soil types and with significant effects of plant presence. 

Drought reduced Deschampsia leaf decomposition after half a year (D: P=0.0333, 

T*D: P=0.0116) and Calluna leaf decomposition after one year (P = 0.0331, Table 2).  

Also, the net nitrification rate was reduced by drought in Deschampsia soil (no plants P = 

0.0109) (Figure 1), while in contrast, the net nitrification rate (P=0.0925) and production 

of dissolved organic N (DON) (D: P=0.0766; D*CO2: P=0.0340) in Calluna soil tended 

to be stimulated (no plants) (Figure 1).  

Drought tended to reduce Deschampsia root biomass (P=0.0634) and total plant 

biomass (P=0.0774, Table 2) and reduced total plant N (D: P = 0.0106, T*CO2: P= 

0.0999) (Figure 2) while in contrast, drought tended to increase Calluna shoot biomass 

(P=0.0794, Table 2), and total plant N (T: P=0.0001, D: P=0.0004, T*D: P=0.0234, 

T*CO2: P=0.0681, T*D*CO2: P=0.0652) (Figure 2). 

Responses to warming 

The soil processes responded to elevated temperature (T), differently below the two 

species. Warming tended to stimulate Calluna leaf decomposition after one year 

(P=0.0988) (Table 2). Furthermore, warming reduced dissolved organic C (DOC) 
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(P=0.0349, Table 2) and the net mineralization rate (P=0.0190) in Deschampsia soil with 

plants (Figure 2).  

264 

265 

266 

267 

268 

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

The microbes in Calluna soil had significantly higher N content in warmed plots 

(N: T: P=0.0396, T*D*CO2: P=0.0134), and tended to have higher biomass (C) (T: 

P=0.0613, T*D*CO2: P=0.0617) and P content (T: P=0.0750), but this was for MicN and 

MicC counteracted when both D and CO2 were also imposed, in the triple factor 

interaction (Table 2). Warming reduced immobilization of N by microbes in Calluna soil 

after the half year incubation both without (T: P=0.0374, D*CO2: P=0.0943), and with 

plants (T: P=0.0407, Figure 1), while microbial  immobilization of P in Calluna soil with 

plants was stimulated (T: P=0.0114, T*D: P=0.0091, T*D*CO2: P=0.0288, data not 

shown). 

The Calluna root biomass tended to increase in response to T (P=0.0675, Table 

2), and the N in Calluna plants increased in response to T (Figure 2). 

Responses to increased CO2  

Direct main effect responses to increased CO2 were limited, but CO2 in combination with 

D or T often counteracted other responses. 

CO2 tended to stimulate Calluna leaf decomposition after half a year (P=0.0744, 

Table 2), while net phosphorus mineralization in Deschampsia soil without plants was 

reduced (data not shown). Deschampsia shoot biomass tended to increase in response to 

CO2 (P=0.0716, Table 2). 

In addition to the main effect of CO2 microbial biomass C change responded to 

the treatments with P=0.0401 for T*D interaction in Deschampsia soil with no plants 

(data not shown). Furthermore, the net change in DOC responded to the interaction 
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T*D*CO2 in the following three soil types: Calluna soil with plant: P=0.0120, 

Deschampsia soil with no plants: P=0.0432 and Deschampsia soil with plant: P=0.0188 

(data not shown). 
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Discussion 

Drought works as suppressor of nitrogen cycling in Deschampsia 

soil 

The soil below Calluna and below Deschampsia had different patterns of nutrient 

cycling, as expected from other studies investigating mineralization in soil below 

different plant species (van Vuuren et al., 1992; van der Krift & Berendse, 2001; Gill et 

al., 2006). In other investigations in temperate heathlands, N mineralization in soil below 

grasses and decomposition of grass litter was faster than for Calluna (van Vuuren et al., 

1992; van Vuuren et al., 1993). Hence, a faster N cycling and a potentially stronger 

response to climate changes in soil below Deschampsia compared to soil below Calluna, 

may potentially control changes of the vegetation cover (van Vuuren et al., 1992; Emmett 

et al., 2004; Schmidt et al., 2004; Weintraub & Schimel, 2005).  

In Deschampsia soil, the decrease in net nitrification and litter decomposition in 

response to drought was reflected also in a decreased plant N uptake. These responses to 

drought were in accordance with our hypothesis, hence, drought works as suppressor of 

nitrogen cycling in the Deschampsia soil.  

Also in Calluna soil drought reduced leaf litter decomposition. However, the 

trends towards a drought induced increase in net nitrification rate, change of DON 
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production and dead root decomposition, together with stimulated plant N mobilization 

suggest an opposite response of the Calluna soil-plant system to drought. Moisture 

limitation of Calluna leaf and soil organic matter decomposition has previously been 

found (Emmett et al., 2004; van Meeteren et al., 2007), also with a natural climatic 

gradient (of several field sites in Europe) of moisture primarily explaining the variability 

of the net N mineralization and nitrification rates.  

The soil incubations started immediately after the imposed summer drought, 

meaning that the observed drought effects are related to the differences in the pre-

incubation history of the soil. 

Effects of elevated temperature on soil processes 

Pre-incubation differences were observed in the initial microbial biomass C, N and P pool 

increases in response to T, with these initial differences in the incubations, possibly also 

involving microbial community differences (Rinnan et al., 2006), the microbial N 

immobilization decreased and the leaf decomposition increased in response to T. In other 

investigations at temperate heaths soil respiration and litter decomposition have been 

shown strongly controlled by soil temperature (Emmett et al., 2004). The findings in the 

current experiment of warming causing a larger microbial biomass, higher leaf litter 

decomposition and higher microbial release of N in Calluna soil, are in agreement with 

other findings. 

 In our experiment, the initially smaller amount of DOC (total dissolved organic 

carbon) in warmed plots occurred together with larger microbial biomass. This indicates, 

that although the pool size of DOC is lower, the production probably is higher. Increased 

microbial biomass has been related to higher microbial access to labile carbon (Schmidt 
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et al., 1997; 2000). In the warmed plots the 'missing' DOC could be due to a high demand 

and thus the measured DOC concentration showed no relation to the microbial N 

immobilization. Mineralization in the successive incubations decreased. Hence, we 

suggest that the soil mineralization processes require an ongoing carbohydrate supply for 

instance by plant root exudation, which was not available in the buried bags. 

The decrease in mineralization in response to warming, has also been found in 

other mineralization studies of temperate heathland (Emmett et al., 2004). This has most 

often been related to increased microbial immobilization in the bags (Schmidt et al., 

1999; Schmidt et al., 2002) in contrast to the decrease in microbial N in this study.  This, 

and the increase in phosphorus immobilization in response to warming did not support 

our hypothesis of increased mineralizations with elevated temperature. This may be due 

to the limited size of the incubated soil pools. 

Plant uptake and mobilization of nitrogen 

The observed increase in production rates of inorganic nitrogen (DIN) when plants are 

included in ‘buried bag’ studies (Figure 2) is in agreement with previous findings in a 

subarctic ecosystem (Jonasson et al., 2004; Rinnan et al., 2007). Both dominant plant 

species have nitrate reductase activity, with larger activity in Deschampsia compared to 

Calluna (Lee & Stewart, 1978; Högbom et al., 2002; Troelstra et al., 1995). Hence, 

Deschampsia plants have a greater potential for nitrate acquisition than Calluna. 

Furthermore, both species acquire ammonium, as previously found at a similar heath, 

with a larger ammonium acquisition by Calluna than Deschampsia during winter 

(Andresen & Michelsen, 2005). Such species specific plant acquisitions of nitrate and 

ammonium is supported by this study, with smaller nitrification and mineralization rates 
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in soil with plants, evidently due to plant acquisition. Consequently, Deschampsia plants 

had a preference for nitrate, while Calluna showed preference of ammonium over nitrate. 
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The plant biomass and growth controlled the N uptake proportionally, and since 

the soil-incubation study was carried out during winter, absence of growth and loss of 

plant N by the Calluna plants was seen. 

The larger microbial N immobilization in soil with plants compared to soil with 

no plants is counter-intuitive (Rinnan et al., 2007; Jonasson et al., 2004), since plant 

presence could be expected to lower the N availability for soil microbes. However, the 

observations may be a response to increased plant carbohydrate root exudation, priming 

the soil with labile substrate for the immobilizing microorganisms (Vestergård et al., 

2008). In this short term investigation, the plant control on DIN concentrations and 

microbial N immobilization, and the species specific plant N responses to drought and 

warming is a first indication of progressive nutrient mobilization by plants at this FACE 

field site. Long term investigations may eventually show progressive nutrient limitation 

of the natural vegetation (Luo et al., 2004). Such a control pattern has not yet been found 

in other soil mineralization studies (Finizi et al., 2006; Norby & Iversen, 2006), where 

the elevated CO2 increased plant uptake of mobilized nitrogen. Direct effects of CO2 

treatment on the net mineralization in our study may appear in the longer term, as 

suggested by the effects on Calluna leaf decomposition. 

  

Phosphorus may become a limiting factor 

The net mineralization rates of C, N and P were not significantly related, in contrast to 

findings by Franzlubbers (Franzluebbers, 1999). The significant lower net P 

17 
 



mineralization rate in response to CO2 and the altered P immobilization in this 

experiment, could reside from a CO2 inhibition of the P mineralizing soil 

microorganisms, perhaps due to increased CO3
- in the soil water solution in CO2 

fumigated plots. However, no CO2 response in phosphatase in grasslands (Niklaus et al., 

2007; Menge & Field, 2007) has been found. This possible CO2 inhibition of P 

availability, together with the previously observed increase in microbial immobilization 

of P in response to T in the Calluna soil incubated with plants, may eventually cause a P 

limitation of the heathland vegetation, as also found by van Meeteren et al. 2007. 

Phosphorus, hence, becomes a controlling factor of plant biomass carbon sequestration (a 

progressive phosphorus limitation), as has been found after nitrate addition in a similar T, 

precipitation and CO2 manipulation experiment and in other global change experiments 

(Menge & Field, 2007). 
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Conclusions: climate change responses at the temperate heath 

With different responses for Calluna and Deschampsia soil to elevated temperature, 

increased CO2 and summer drought treatments had significant effects on soil C, N and P 

mineralization, microbial C, N and P immobilization, litter decomposition and plant 

growth.  

 Deschampsia soil responded to drought by a decrease in net nitrification and 

litter decomposition as well as reduced plant N uptake, meaning that the drought was a 

suppressor of nitrogen cycling. In Calluna soil these responses tended to be opposite.  

Warming caused larger microbial biomass (C, N and P) and a larger litter 

decomposition and microbial release of N in Calluna soil. Furthermore, warming reduced 
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mineralization in Deschampsia soil and an increase in immobilization of P in Calluna 

soil. 
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Responses of soil mineralization to elevated CO2 after only 1½ years were limited 

to a decrease in P mineralization. Additionally, Deschampsia responded with a larger 

shoot biomass. 

Plants in the incubations mobilized and acquired inorganic N (NO3
- and NH4

+), 

with Calluna showing a preference for ammonium over nitrate and Deschampsia having 

larger nitrate acquisition than Calluna. Furthermore, plant presence increased the 

microbial immobilization, perhaps through priming of the rhizosphere soil. 

In the short term, the investigated ecosystem processes were more responsive to 

drought than to increased temperature and CO2. However, the combined effects of 

elevated temperature, CO2 and drought often counteracted the main effects. Thus, the 

study emphasizes the need to investigate interactions between climate change factors as 

these may be unpredictable based only on single factor studies. 
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Figure 1: Changes in soil nitrogen pools: nitrification rate (ΔNO3
--N, right 2nd axis), 

mineralization rate (ΔNH4
+-N, left 2nd axis) and dissolved organic N production rate 

(ΔDON, left 2nd axis) and microbial N immobilization rate (ΔMicN, left 2nd axis) in units 

per g soil organic matter (SOM) per day, after incubation for a half year. Four variations 

of incubations: Calluna soil and Deschampsia soil, with no plant or with plant. Statistical 

significant effects from proc mixed model analysis of variances for the main effects: D, T 

and CO2 and the interactions D*T, D*CO2, T*CO2 and D*T*CO2 is indicated as 

follows:  *** indicates P <  0.001; ** indicates P < 0.01; *: P < 0.05; †: P < 0.1.

20 
 



Figure 2: 434 
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Figure 2: Changes in soil inorganic N (ΔDIN = ΔNO3
--N plus ΔNH4

+-N) (dark bars) and 

in plant N (open bars) per incubation core per day, through a half year. Four variations of 

incubations: Calluna soil and Deschampsia soil, with no plant or with plant. Statistical 

significant effects from proc mixed model analysis of variances for the main effects: D, T 

and CO2 and the interactions D*T, D*CO2, T*CO2 and D*T*CO2 is indicated as 

follows:  *** indicates P <  0.001; ** indicates P < 0.01; *: P < 0.05; †: P < 0.1.  
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Table 1: Soil properties below Calluna or below Deschampsia vegetation, plant biomass 

of the small incubation Calluna and Deschampsia plants grown for half a year in the 

treatments; and incubated Calluna and Deschampsia plant leaf litter mass loss. Mean 

values and standard error (s.e.) for plots with no climate treatments. 

 
              
Ambient plots              
    Calluna  Deschampsia   
      mean  s.e. mean  s.e. 
Soil properties SOM  % 12.4 1.1 15.5 4.0 
  NO3-N μg*g-1 SOM 29.9 24.9 5.6 2.1 
  NH4-N μg*g-1 SOM 110.9 47.4 58.6 14.3 
  DON μg*g-1 SOM 180.1 122.1 115.5 79.0 
  Microbial N μg*g-1 SOM 1573.9 260.6 1320.8 92.1 
  DOC μg*g-1 SOM 724.5 87.6 904.8 109.5 
  Microbial C μg*g-1 SOM 9802.2 1384.6 7603.3 1776.1 
  Dissolved P μg*g-1 SOM 12.7 2.8 10.7 1.7 
  Microbial P μg*g-1 SOM 323.3 84.3 346.1 72.4 
  Microbial C:N  6.2  4.8  
  Microbial N:P   4.9   3.8   
Plant biomass  shoot  g 0.046 0.005 0.105 0.025 
  root  g 0.012 0.001 0.103 0.030 
  root : shoot   0.260 0.018 0.922 0.212 
  total plant g 0.058 0.006 0.208 0.051 
Leaf litter mass loss  half a year  % loss 25.79 1.31 33.39 1.09 
  one year % loss 34.28 1.42 45.14 4.28 
  one year plus % loss . . 46.05 4.67 
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Table 2: The response effect for soil properties below Calluna or below Deschampsia in 

plots after one year of climate treatments, representing initial incubation soil; response 

effects for plant biomass of the plants incubated for half a year in the treatments; and for 

litterbag incubated plant litter mass loss after ½, 1 and 1¼ years. The response effects are 

for the main treatments drought (D), temperature (T) and CO2 (CO2). Response is 

calculated as: (means of plots with the treatment) / (means of the plots without the 

treatment). Statistical significant effects from proc mixed model analysis of variances for 

the main effects: D, T and CO2 are indicated as follows:  *** indicates P <  0.001; ** 

indicates P < 0.01; *: P < 0.05; †: P < 0.1. Interactions (P < 0.05): D*T, D*CO2, T*CO2 

and D*T*CO2 are indicated when significant. 

 

 
Response           
    D D T T CO2 CO2 Significant interactions 
    Calluna Deschampsia Calluna Deschampsia Calluna Deschampsia Calluna Deschampsia 

Soil properties SOM 0.83 0.89 1.01 0.78 0.90 1.05 . . 
  NO3-N 0.69 1.57 0.93 1.46 0.44 0.54 . . 
  NH4-N 0.58 0.99 0.64 1.38 0.54 1.05 . . 
  DON 0.60 1.20 0.87 0.80 1.84 1.33 . . 
  Microbial N 1.03 0.98 1.23 * 1.04 0.95 1.06 T*D*CO2 . 
  DOC 1.00 1.04 0.95 0.84 * 0.81 1.04 T*D*CO2 . 
  Microbial C 0.91 1.08 1.15 † 1.00 1.14 1.29 . . 
  Dissolved P 0.98 1.00 1.04 1.07 1.02 1.24 . . 
  Microbial P 0.97 0.99 1.29 † 0.97 1.10 1.23 . . 

Plant biomass  Shoot  1.15 † 0.8 1.1 1.0 1.0 1.31 † . . 
  Root  0.93 0.70 † 1.22 † 1.04 1.17 1.09 . . 
  Root : Shoot  0.85 * 0.85 1.08 1.18 1.21 0.82 . . 
  Total plant 1.10 0.79 † 1.14 1.01 1.01 1.21 . . 

Leaf litter mass loss Half a year 0.95 0.89 * 1.03 1.09 1.04 † 0.90 . T*D 
  One year 0.93 * 0.97 1.06 † 1.06 0.98  1.04 . . 
  One year plus . 0.92 . 1.10 . 1.03 . . 
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• Temperate terrestrial ecosystems are currently exposed to climatic and air quality 

changes with increased atmospheric CO2, increased temperature and periodical 

droughts. The responses of natural ecosystems and the potential feedbacks to the 

climate are intensely debated. We here present results from a unique field 

experiment, where the effects of these three climate change factors are 

investigated solely and in all combinations at a temperate heath dominated by 

Calluna vulgaris and Deschampsia flexuosa.  

• In heath soil, free amino acids can serve as substrates for soil microorganisms and 

are acquired as nutrients directly by plants. Furthermore, amino acids are plant 

root exudates. In a future climate, plant productivity and plant root exudation may 

increase due to increased photosynthesis. In this experiment we investigated the 

distribution and uptake of 15N13C2-labeled glycine.  

• Uptake of 15N was 18 timers larger in the microbial biomass than in the plants. 

Hence, the soil microorganisms were superior to plants in the short term 

competition for the added nitrogen pulse. Soil microorganisms acquired glycine 

largely as intact compounds as shown by a 13C to15N ratio of 1.7. Plants showed 

no significant acquisition of intact glycine compounds. 

• The Deschampsia root nitrogen acquisition responded significantly to the climate 

change treatments. Warming and CO2 caused larger 15N acquisition. However, 

this was counter-acted when the treatments were combined and additionally 

combined with drought. Furthermore, Deschampsia showed higher green leaf 

biomass and larger root N concentration in warmed plots with CO2 added. This 

was reflected by lower nitrate concentration. We interpret this as altered 

senescence phenomena. 
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Introduction 

Natural ecosystems respond to changes in air and soil temperature, atmospheric 

CO2 concentration and drought, with consequences for biological processes and 

functioning of individuals and communities. According to extrapolations and models 

developed by IPCC the air temperature may increase by 0.1 ˚C for each following 

decade, and the CO2 concentration of the atmosphere will increase with an amount 

depending on stabilization scenario. Furthermore the precipitation pattern will alter, with 

expected extended summer drought periods in Denmark (IPCC, 2007); (Danish 

Meteorological Institute, 2008). Investigations of the combined effects of increased 

temperature (T), CO2 and drought (D) are necessary to reveal the actual responses 

(Mikkelsen et al., 2008a; Beier et al., 2004; Finizi et al., 2006).  There are few 

experiments in which the combined effects of CO2 and warming have been studied, and 

none which combine these factors with drought. The current study presents data on plant 

N uptake and biogeochemical responses to the factors warming, elevated CO2 and 

drought in a temperate heathland. 

Soil microorganisms and plants acquire nitrogen from both inorganic (NO3
- and 

NH4
+) and organic sources (amino acids), and acquire intact amino acids (Nordin & 

Näsholm, 1997; Näsholm et al., 1998; Persson & Näsholm, 2001; Hofmockel et al., 

2007). The free amino acids in the soil pore water origin partly from rhizo deposition 

(Lesuffleur et al., 2007; Ström & Christensen, 2007) and partly as leachates from 

decomposing organic matter. Hence, amino acids in the soil function both as nitrogen 

sources and as labile carbohydrate substrates for soil microorganisms (Illeris & Jonasson, 

1999; Ström & Christensen, 2007; Vestergård et al., 2008). 

Responses in root nutrient uptake to elevated CO2 is highly variable, reflecting 

e.g. differential responses in plant growth and nutrient status, while plant processes such 

as water-use efficiency, photosynthetic rate (Ehleringer, 2005), tissue N-concentration 

and labile carbohydrates show consistent responses to elevated CO2 (Bassirirad, 2000). 

Various parameters reflecting root uptake kinetics are enhanced by warming, and 

the acquisition may increase by changed root transport properties for NH4
+ (Clarkson & 
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Warner, 1979) though this exact mechanism is not clearly understood, and by changed 

fluidity of the phospholipids in root plasmalemma (Pike & Berry, 1980). Furthermore, 

NO3
- uptake capacity is highly modulated by the N status of the roots or the whole plant 

(Bassirirad, 2000). Root biomasses, depth distribution and root morphology respond 

differentially to warming (Björk et al., 2007). Consequently, the acquired N pool of the 

plant roots in response to warming is a combined effect of root biomass, nutrient status 

and root growth responses combined with physiological parameters affecting the 

acquisition.  

Carbohydrate exudation by plant roots may respond to climate change in the same 

direction as photosynthesis and plant production (Rinnan et al., 2005; Albert et al., 2005; 

Ehleringer, 2005). Hence, elevated temperature and CO2 may increase soil concentrations 

of e.g. glycine. In this experiment we investigated the acquisition and partitioning of 

glycine between plants and soil microorganisms. Glycine was labelled with the stable 

isotopes 15N and 13C2 and injected into the soil. The uptake of 15N and 13C was traced in 

samples of plant material from Calluna vulgaris, Deschampsia flexuosa (all with C3 

photosynthesis) and mosses and in soil microorganisms. Our aim with the investigation 

was to follow the potential organic nitrogen (in form of the amino acid glycine) 

acquisition by plants and soil microorganisms under climate change (Hofmockel et al., 

2007; Sorensen et al., 2008b). Effects of one year of climate change treatments on soil 

mineral and organic N, microbial biomass C and N, and plant N acquisition was 

furthermore investigated. 

In response to the climate change factors we expected: 

• soil microorganisms would acquire the largest amount of the added glycine, with 

treatment responses in microbial 13C and 15N acquisition following the responses 

in microbial biomass  

• warming to increase plant biomass and increase root 15N uptake. 

• elevated CO2 to increase plant biomass and dilute tissue N concentration. 

• nitrate concentration in sub-soils would respond to the climate change factors in 

opposite direction than plant biomass responses caused by plant nitrate acquisition. 

• following this: increases in plant nitrogen demand, caused by the increased plant 

biomasses, would cause increased 15N-glycine uptake. 
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Methods 

The field site 

The experiment took place at the site of the CLIMAITE experiment (Mikkelsen et al., 

2008b) at Brandbjerg (55º53'N 11º58'E) c. 50 km NW of Copenhagen, Denmark. The site 

was a managed, dry, temperate heath on a hilly nutrient-poor sandy deposit, with an 

organic layer of c. 5 cm depth and a pH of about 5. The vegetation was dominated by 

Calluna vulgaris, Deschampsia flexuosa and Festuca ovina accompanied by heathland 

mosses and herbs. The average precipitation per year was about 600 mm and the average 

temperature was 8° C (www.dmi.dk, 2005).  

The climate change manipulations 

The climate manipulations started October 2005 (Mikkelsen et al., 2008b) and consisted 

of eight treatments: plots with increased temperature (T), altered summer drought (D), 

increased CO2 concentration in the air and all combinations of these treatments (TD, 

TCO2, DCO2 and TDCO2), plus control plots (A), all with a replication of 6. The field 

site covered an area of about two hectares and the experimental plots were distributed in 

12 seven meter diameter octagons arranged pair-wise in six blocks, one exposed to 

elevated CO2 and one at ambient CO2 (6 octagons with and 6 without pipes, paired in 

blocks two and two). Each octagon comprised four plots with the treatments drought or 

elevated temperature solely or in combination, and a non-warmed, non-drought plot. The 

temperature was increased by passive nighttime warming, by means of low automatic 

curtains automatically removed during rain events. The precipitation was altered also 
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with automatic curtains that automatically unfold during rain events. The atmospheric 

CO2 was increased with pipe fumigation as in a regular FACE experiment, but with a 

feed back control system linked to wind speed and wind direction. The temperature 

increase in 2 cm soil depth was around 1˚C, and the increased CO2 concentration in the 

air was 510 ppm. The drought period started in late June 2006 and continued for 5 weeks 

until early August when soil water reached c. 0.05 m3m-3 water in the top 20 cm of the 

soil. For further information about the experimental design of the multifactor set up, see 

Mikkelsen et al. 2008. 

Each of the 48 plots of the climate treatment experiment had temperature probes 

installed at 5 cm depth in the soil, at the soil surface, and in the vegetation canopy at 20 

cm height, each recording temperature on an hourly basis. TDR probes were also 

installed at 0-20 cm depth and 0-60 cm depth for registration of soil water content on an 

hourly basis. In addition the water content of the soil samples from the depths 0-5 cm, 5-

10 cm and 10-15 was measured once, by drying the soil for two days at 80 ˚C. Cups for 

collection of precipitation water were installed on two masts at the field site.  

 

In situ injection 

In each of the 48 plots an area of 80×80 cm2 was chosen prior to the start of the climate 

treatments to contain an approximately equal amount of Calluna vulgaris (evergreen 

dwarf shrub) and grasses (mainly Deschampsia flexuosa but also Festuca ovina). Within 

each of these areas, a plot of 20×20 cm was labelled with stable isotope  15N13C-glycine 

on September 26 2006. The labelling solution was re-demineralised water with 15N and 

13C (U-13C2, 98%; 15N 98%) glycine, H2NCH2COOH. Each plot received 1 dl of re-
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demineralised water with 0.027 g glycine, corresponding to 130 mg N m-2. The label was 

injected into the soil just below the soil surface with a syringe at 20 evenly distributed 

points within the 20×20 cm plots.  
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Plant biomass and soil sampling  

One day after labelling, representative shoots from above ground (down to soil surface) 

vegetation was sampled within the 20×20 cm plots, of Calluna, Deschampsia (including 

leaf meristem) and mosses (a mixture of species). Additionally, one day after labelling, 

soil cores were sampled from the soil surface (including the litter layer) and down to 15 

cm depth. Three soil cores were taken from each plot and divided into three soil depths: 

0-5 cm, 5-10 cm and 10-15 cm. The subsamples were mixed to a composite sample from 

each depth and immediately sorted into soil and roots. The samples were kept cold on ice. 

All plant material (roots and shoots) was washed with 0.5 mM CaCl2, frozen and freeze 

dried. Within 48 hours, a subsample of the fresh soil from each plot was extracted with 

re-demineralised water (1:5) on a shaker for 1 hr. and another set of subsamples was 

vacuum-incubated with chloroform for 24 hrs to release microbial C and N (Joergensen 

& Mueller, 1996; Brookes et al., 1985) before extraction with water as above. A third 

subsample of the sorted and sifted soil was freeze dried and used for estimating soil water 

content. Just before the labelling was performed, additional soil samples and plant shoot 

samples were taken in adjacent subplots within the climate treated plots to obtain 15N and 

13C natural abundances from all the investigated fractions. The same procedures as for the 

labelled samples were followed with caution not to inter-contaminate with 13C and 15N 

labelled samples. 
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One week after labelling, all the remaining aboveground plant material was 

sampled from the plots in order to obtain plant biomass estimates. The Calluna material 

was sorted into green shoots with green leaves attached, coarse (non-green) branches, 

coarse roots (> 0.5 mm) and fine roots (< 0.5 mm) and the grasses were sorted into 

leaves, coarse (> 1 mm), and fine roots (< 1 mm). Mosses and aboveground litter (mainly 

of grasses, but also of Calluna) constituted additional fractions. 

Chemical and isotopic analysis 

The soil extracts were spectrophotometrically analyzed for NH4
+ (indophenol-blue 

reaction) with a Hitachi U 2010 spectrophotometer and for NO3
- with a Tecator FIAstar 

analyzer. Part of the extract was digested with H2SeO3, H2SO4 and H2O2 and analyzed as 

above to yield total dissolved N (TDN), with DON (dissolved organic nitrogen) = TDN – 

total mineral N. Total microbial N (MicN) was calculated as TDN in the fumigated 

samples minus TDN in the non-fumigated samples, using 0.4 as the extractability factor 

(Jonasson et al., 1996; Michelsen et al., 1999; Schmidt et al., 1999). Another part of the 

extract was analyzed for organic carbon (DOC) with a Shimadzu TOC 5000A analyzer. 

Total microbial C (MicC) was calculated as DOC in the fumigated samples minus DOC 

in the non-fumigated samples, using 0.45 as the extractability factor (Schmidt et al., 

2000). 

For the 15N/14N and 13C/12C isotope ratio analysis of the fumigated and non 

fumigated soil extracts, the extracts were freeze-dried in a small bottle containing a 

quartz filter (Quartz microfibre filters QMA Whatman) and with a parafilm lid with a 

small hole. Filters, dried crushed soil and plant material were analyzed with a Eurovector 
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CN analyzer coupled to an Isoprime isotope ratio mass spectrometer. Plant material 

calibrated against certified IAEA standards was used as working standards. 

Calculations and statistics 

The 15N enrichment of the plant material is reported as excess mole per gN of the 

material and 15N and 13C enrichments of the microbial biomass is reported as mole per m-

2 in, excess of natural abundance 15N and 13C (Fry, 2006).. In particular the CO2 enriched 

plots exhibited a change in 13C natural abundance, thus for all treatment combinations 

and each plant or soil fraction, the measured 15N or 13C contents were subtracted with 

values for each sample component. The 15N recovery was calculated as the percentage of 

total added 15N label per m2 recovered in the total dissolved N (TDN), total microbial N 

(MicN), total soil N pool and in the plant biomass pr m2. 

Linear mixed models were applied to analyse the responses using SAS 8.0. 

Random effect terms were block, treatment plot and octagons, respecting the nested 

structure of the design. Main effects terms were the treatment factors: CO2, Temperature 

(T), and Drought (D). All interaction terms between the factors CO2, D and T were 

included. The models were gradually simplified, starting with the third order interaction, 

taking out non-significant terms until only significant (P<0.05) or close to significant 

(0.05<P<0.10) terms remained.  Homogeneity of variances was investigated with residual 

plots and appropriate transformations done if necessary (SAS Institute Inc., 2003). 

Results 

A minor part, 2.4 – 4.7 % of added 15N was recovered in plants one day after labelling, 

while 43 – 120 % was recovered in microbes (Table 1). 
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The 13C enrichment (Fig. 1) and recovery of 15N in the microbial biomass (Table 

1) overall decreased significantly (both P<0.0001) with depth, with the largest 13C 

enrichment in the top 0-5 cm depth layer, 30-fold higher than at 10-15 cm depth (Figure 

1). In 0-5cm depth the overall microbial acquisition of 15N and 13C from glycine 

correlated significantly, with 13C = 1.74*15N, R2=0.92175 and P<0.0001) (Figure 2). 

There was a tendency to an interaction effect of the three climate factors at 5-10 cm depth 

for microbial 13C enrichment (T*D*CO2 P=0.0639).  
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The 13C enrichment in the dissolved organic carbon (DO13C) (Figure 3) and 15N 

recovery of DON (Table 1) also decreased significantly (DO13C: P<0.0001, DO15N: 

P=0.0393) with depth (Figure 3). In the top 0-5 cm depth layer, CO2 increased the 13C 

enrichment of DOC (P=0.0463), mainly in the plots with all treatments combined, 

causing the significant interaction (T*D*CO2: P=0.0366). Also, drought seemed to 

decrease 13DOC, but not when combined with warming, causing the highly significant 

T*D interaction. At 5-10 cm depth, CO2 tended to decrease 13C enrichment in DOC while 

warming increased 13C in DOC (CO2: P=0.0627, T*CO2: P=0.0809, T: P=0.0250).  

Plant acquisition of the glycine label was seen as both shoot and root 15N 

enrichment (Table 1 and Figure 4). Only mosses showed an effect of treatment with D: 

P=0.0006 and D*CO2: P=0.0004, with more 15N enrichment in non-drought plots than in 

drought plots perhaps because the mosses were in a stage of post-drought hibernation. 

Some shoot and root samples also showed 13C enrichment, but overall this was non-

significant and the results are not presented.  

For Deschampsia fine roots in 0-5 cm depth the model interactions T*CO2 and 

T*D*CO2 (P=0.0886 and P=0.0486 respectively) was due to a large plant root 15N 
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acquisition in T and in CO2 plots, which was a non-additive effect (Figure 4a). In 5-10 

cm depth the model interaction T*D*CO2 by tendency (P=0.0527) covered a markedly 

larger 15N acquisition in the +CO2 plots alone and in the plots with all three treatments 

combined (Figure 4a). The Deschampsia fine root 15N enrichment showed no overall 

effect of depth. 

The Calluna fine root 15N enrichment overall decreased (P=0.0002) with depth 

(Figure 4b). In 0-5 cm depth the decreased 15N enrichment with both D and T alone was 

counteracted when the two treatments were combined, also in combination with CO2 

(T*D: P=0.0578). In 5-10 cm depth the model interactions T*D*CO2 (P=0.0202) and 

T*D (P=0.0910) covered a decrease in 15N enrichment with warming, except when all 

treatments were combined (Figure 4b). 

The Deschampsia and Calluna root biomasses decreased significantly (both: 

P<0.0001) by depth (Table 2). The Deschampsia fine root biomass at 0-15 cm depth was 

ten-fold larger than Calluna fine root biomass (Figure 5) but the total biomasses of the 

two species were approximately equal (Table 2). Despite this, the aboveground leaf 

biomass of Calluna at this time of the year generally exceeded that of Deschampsia 

(Figure 6). Across treatments, there was an overall negative effect of warming on fine 

root biomass of Deschampsia (P=0.0305), but no effect on Calluna fine root biomass 

(Figure 5).  

Warming had a negative effect on aboveground grass (mainly Deschampsia) leaf 

biomass in non-CO2 plots, while warming promoted grass leaf growth in +CO2 plots, as 

shown by the significant T*CO2 effect (P=0.0247) (Figure 6).  For Calluna leaf biomass 

the T*CO2 interaction tended to have the opposite direction (T*CO2: P=0.0578). The 
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ratio of leaf to branch in Calluna, which presumably is the most response-sensitive 

biomass variable as it normalizes recent plant production relative to pre-treatment 

biomass in harvested plot, also showed this significant T*CO2 interaction (P=0.0038), 

with higher production relative to old biomass in warmed and in +CO2 plots, but lower 

response than expected in the combined T and CO2 treatments (Figure 6).  
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288 

Deschampsia and Calluna fine root N concentration decreased significantly with 

depth (both P< 0.0001). Deschampsia fine root N concentration at 10 -15 cm depth 

increased by warming, (P=0.0139), by contrast, Calluna fine roots decreased (P=0.0392), 

and coarse roots tended to decrease (P=0.0769) by warming in 0-5 cm depth (Table 2). 

The moss and grass shoot N concentration was not significantly affected by treatment 

(Table 2), but Calluna shoots showed significant effects of treatments in the green 

fraction, with less N concentration in all CO2 plots except the one with all treatments 

combined, as shown by the model interactions T*CO2: P=0.0276, D*CO2: P=0.0657 and 

T*D*CO2: P=0.0281 (Table 2).  

Dissolved organic C (DOC) and NH4
+-N (but not NO3

--N) decreased, and 

dissolved organic N (DON) increased with depth (DOC: P=0.0040, NH4
+-N: P<0.0001, 

DON: P<0.0001) (Table 2). DOC had a significant effect of treatment in 0-5 cm depth 

with D*CO2: P=0.0143 and in 5-10 cm depth with: T*CO2: 0.0819 (Table 2). At 5-10 cm 

depth NO3
--N concentration was lower in response to CO2 (CO2: P=0.0106) and higher in 

response to warming (T: P=0.0691) (Table 2).  

Microbial biomass C and microbial N decreased with depth (both P<0.0001) 

(Table 2). Microbial C:N ratio increased with depth (P=0.0038), with no effects of 

treatment (data not shown). Microbial C showed tendencies towards effects of treatment, 
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with D*CO2: P=0.0550 in 0-5 cm depth, and T*CO2: P=0.0620 and T*D: P=0.0824 in 

10-15 cm depth.  

The local climate in the week of the labelling experiment (Sept. 23rd to 27th 2006) 

was stable (Figure 7). The temperature drop from 26th to 27th and the slight increase in 

soil water content was caused by the 5.2 mm rainfall right after the labelling. At the day 

of labelling, warming increased the canopy temperature and the soil temperature at 0 cm 

and 20 cm depth by 0.8, 0.8 and 0.7 ˚C, respectively (all P<0.001). The soil water content 

showed a tendency to an effect of the preceding drought in 0-20 cm depth and 0-60 cm 

depth with slight decreases of 0.011 and 0.008 m3 m-3 respectively (P<0.1). The water 

content in the soil samples taken from 0-5, 5-10 and 10-15 cm depth (Figure 7) was not 

significantly affected by the climate treatments. 

 

Discussion 

The soil humidity was stable over the period, and at the day of the labelling it was even 

over the different treated plots. Hence, it is reasonable to assume that the distribution and 

adsorption of the glycine label was even over all plots. The glycine concentration 

abundant in the soil prior to labelling was presumably close to that previously measured 

one year earlier at the field site: 0.197 μgN g-1 SOM ± 0.052 (Andresen et al., 

submitted). Hence, as in other heathlands (Abuarghub & Read, 1988; Kielland et al., 

2006; Sorensen et al., 2007) glycine was present in the soil solution with a low 

concentration, and our intention of investigating natural glycine acquisition potential by 

plants and soil microorganisms was justified. 
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 The large acquisition of glycine label by the soil microorganisms (36-110 % 15N 

recovery in 0-5 cm depth) compared to the low acquisition by the plants (2.4 to 4.7 % 15N 

recovery) was expected from other investigations (Andresen et al, submitted (Hobbie & 

Chapin III, 1998; Andresen & Michelsen, 2005; Hofmockel et al., 2007; Sorensen et al., 

2008b; Sorensen et al., 2008a). Hence, in this short term investigation the soil 

microorganisms rapidly acquired the large part of the added glycine. There was no 

significant 15N:13C relationship in grass and Calluna roots, suggesting that glycine was 

not acquired as an intact compound by plants, or that 13C was so quickly respired that 

intact uptake could not be proven although uptake in intact form has been shown 

previously (Persson & Näsholm, 2001; Andresen & Michelsen, 2005; Rains & Bledsoe, 

2007).  
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 The decreasing 15N enrichment of plant roots with greater depth was accompanied 

by the decreasing 13C and 15N enrichment of the microbial biomass and of dissolved 

organic C and N, indicating a decreasing concentration of the added label downwards, 

below the surface injection points. Furthermore, the decreasing plant root biomass and 

soil microbial biomass, and the increasing microbial C:N ratio downwards, together with  

increasing dissolved organic compounds and NH4
+-N concentration with greater depth, 

suggest a downwards decrease in live biomass and altered function with decreased 

utilization of the organic substrates. 

 The microbial acquisition of 15N and 13C from glycine with the average ratio of 

1.74, suggest that glycine was acquired by soil microorganisms as intact compounds. A 

similar microbial 15N 13C glycine acquisition ratio (1.62) has been found in a springtime 

investigation at the same field site (Andresen et al., submitted). Hence, we conclude that 
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soil microorganisms at this heath acquire glycine as intact compounds,  similar to 

findings in other ecosystem types (Nordin et al., 2004; Näsholm & Persson, 2001; 

Harrison et al., 2008).  

 The stable microbial acquisition of the glycine label across treatment, suggest that 

microbial glycine acquisition was not affected by the climate change factors. This lack of 

response to warming was also found in microbial uptake of 15N13C glycine at a subarctic 

heath (Sorensen et al., 2008b). However, the tendency to microbial biomass C response 

in this study and significant responses to warming in microbial biomass C and N in a 

study of soils below Calluna separately (manuscript 3),suggest that the soil 

microorganisms did respond to the treatments, confirming previous observations in 

heathland soils exposed to drought and warming (Jensen et al., 2003; Sowerby et al., 

2005), although not with changed potential for acquisition of glycine.  

The treatment and species specific plant biomass and N concentration responses 

may be seen as different stages of seasonal development, altered by the climate 

treatments. In this fashion the green Deschampsia leaf and root biomass decrease in 

response to warming and the deep root N concentration increase in response to warming 

may be an early seasonal development of Deschampsia in response to warming. The 

contrasting increase in Calluna biomass could also reflect an aboveground competition 

component, at this stage with warming in favour of Calluna, and the belowground 

decrease in Calluna root N%, could reflect a belowground competition component, at this 

stage with warming in favour of Deschampsia. In subarctic heath ecosystems parallel 

increases in shrub biomass but not in herb biomass has been found in response to 

warming (Sorensen et al., 2008b) while no such changes were observed in Alaskan 
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tundra or remained stable (Hobbie & Chapin III, 1998). Calluna growth and leaf N 

concentration increased in response to warming at a near by heath (Peñuelas et al., 2004) 

and Calluna shoot length and N% increased in response to warming and in response to 

drought in UK (Gordon et al., 1999), supporting our findings.  

357 

358 

359 

360 

361 

362 

363 

364 

365 

366 

367 

368 

369 

370 

371 

372 

373 

374 

375 

376 

377 

378 

379 

The increased Deschampsia N concentration in response to T may reflect a larger 

N acquisition, as is also suggested by the larger root 15N acquisition (seen with a soil 

depth displacement of the acquired label in direction of xylem flow). With the 15N 

acquisition normalized to g-1N in the root, the larger acquisition truly reflects a positive 

physiological response to warming and to elevated CO2. In an experiment with uptake of 

the amino acid alanine in a pine forest ecosystem under elevated CO2, a suppressing 

effect of CO2 was observed on alanine acquisition  (Hofmockel et al., 2007). However, 

other CO2 experiments show species specific changes in plant root nitrogen acquisition 

(Bassirirad, 2000). Increased soil temperature most often increase plant root nutrient 

uptake, by the mechanism of temperature control of uptake kinetics (Hobbie & Chapin 

III, 1998; Bassirirad, 2000), in line with the response in our experiment. 

We interpret the decreased Calluna leaf N concentration response to CO2 as a 

carbon dilution effect, presumably caused by increased photosynthetic carbon acquisition 

in CO2 plots, as suggested by the increase in Calluna leaf biomass and leaf/branch ratio 

in CO2 plots, and by the Calluna root 15N acquisition being non-responsive to CO2. 

Likewise, the soil NO3
--N decrease in response to CO2 could reflect increased plant 

nitrogen N acquisition. The large Deschampsia 15N root acquisition in CO2 plots could 

reflect an increased plant N acquisition in response to increased growth. However, 

increased green leaf biomass was not seen at the time of sampling, although the dilution 
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of N in Deschampsia leaves seemed to suggest that such an effect was taking place at this 

time of peak plant biomass. Other studies have found species specific increased root 

biomass in response to warming and elevated CO2 (Volder et al., 2007) or no response in 

root biomass but elevated starch concentration in response to elevated CO2 (Handa et al., 

2008). The lack of biomass CO2 effect in our experiment may be caused by the short CO2 

fumigation period and possibly seasonal changes at the time of sampling in line with the 

large variability (Bassirirad, 2000).  

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

396 

397 

398 

399 

400 

401 

402 

 

Conclusions 

The climate change factors significantly caused physiological-ecological changes in the 

temperate heathland ecosystem. Soil microorganisms acquired the largest part of the 

added glycine and acquired intact compounds with no significant effects of treatment. 

Deschampsia and Calluna plants also acquired glycine, with no proof of intact 

acquisition. Deschampsia fine root biomass decreased in warmed plots reflected by larger 

nitrate concentration in the sub-soil. Large Deschampsia plant root 15N acquisition in T 

and in CO2 plots met our hypothesis of promoted plant N demand, when plant biomass 

increased, but this was a non-additive effect. Deschampsia green leaf biomass decreased 

in warmed plots but not when CO2 was added, and Calluna green to coarse branch 

increased in warmed plots and in elevated CO2 plots, but not when these treatments were 

combined. Hence, the responses to simulated increased root exudation in form of 15N 

13C2-glycine were significant and non-additive. 
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Figure 1: Microbial carbon 13C enrichment (mmol 13C m-2) of 15N13C2-glycine labelled 

chloroform fumigated extracted soil samples from 0-5 cm, 5-10 cm and 10-15 cm depth. 

Statistical significant effects from proc mixed model analysis of variances for the main 

effects: D, T and CO2 and the interactions D*T, D*CO2, T*CO2 and D*T*CO2 is 

indicated as follows:  *** indicates P <  0.001; ** indicates P < 0.01; *: P < 0.05; †: P < 

0.1. 
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Figure 2: 15N enrichment (mmol15N m-2) versus 13C enrichment (mmol13C m-2) in 

microbial biomass sampled at 0-5 cm depth one day after labelling with 15N13C2-glycine 

Linear regression forced through zero, all climate treatments (no significant effects), n = 

48.  
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Figure 3: Dissolved organic carbon 13C enrichment (mmol 13C m-2) of 15N13C2-glycine 

labelled extracted soil samples from 0-5 cm, 5-10 cm and 10-15 cm depth. Statistical 

significant effects from proc mixed model analysis of variances for the main effects: D, T 

and CO2 and the interactions D*T, D*CO2, T*CO2 and D*T*CO2 is indicated as 

follows:  *** indicates P <  0.001; ** indicates P < 0.01; *: P < 0.05; †: P < 0.1. 
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Figure 4: a) Deschampsia and Calluna b) fine root 15N enrichment (μmol 15N g-1N). 

Statistical significant effects from proc mixed model analysis of variances for the main 

effects: D, T and CO2 and the interactions D*T, D*CO2, T*CO2 and D*T*CO2 is 

indicated as follows:  *** indicates P <  0.001; ** indicates P < 0.01; *: P < 0.05; †: P < 

0.1. 
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Figure 5: Fine root biomass in g m-2 of grasses (open bars) and Calluna (dark bars) 

summed from 0 to 15 cm depth (mean and standard error). Statistical significant effect 

from proc mixed model analysis of variances for the main effect of T; *: P < 0.05. 
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Figure 6: Aboveground plant biomass at 27th September 2006 harvested in 20×20 cm 

plots. Plant fractions: mosses, graminoid green leaf, Calluna green leaf, Calluna branch, 

and Calluna leaf to branch ratio (right hand scale). Statistical significant effects from 

proc mixed model analysis of variances for the main effects: D, T and CO2 and the 

interactions D*T, D*CO2, T*CO2 and D*T*CO2 is indicated as follows:  *** indicates 

P <  0.001; ** indicates P < 0.01; *: P < 0.05; †: P < 0.1. 
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Figure 7: Field site temperature of air and soil and soil water content in the week up to 

the glycine labelling, mean and standard error over all 48 treatment plots. Air, soil surface 

and soil (5cm depth) temperature (˚C) measured with temperature probes. Soil water 

content (%) in 0-20 and 0-60 cm depth, measured with TDR probes. 0-5 cm, 5-10 cm and 

10-15 cm depth water content, measured in soil samples dried at 80 ˚C. Precipitation 

(mm) during the night 26th to 27th September, mean over two meteorological masts. 
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Table 1: Ecosystem properties after one year of climate treatments. Statistical significant 

effects from proc mixed model analysis of variances for the main effects: D, T and CO2 

and the interactions D*T, D*CO2, T*CO2 and D*T*CO2 are indicated with bold if P < 

0.05; and with bold italics if P < 0.1. 

 

 

 

Table 2: 15N recovery (%) in soil microbial biomass N, dissolved organic N and the 

whole plant (all shoot and root fractions and depths) one day after 15N13C glycine 

labelling. No statistical effects of treatments were found. 
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