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INTRODUCTION 
 
It can no longer come as a surprise that the ecological impact of human 
beings is having a significantly adverse effect on the global environment. 
Depletion of fossil fuels has increased the carbon dioxide content of the 
atmosphere, causing a steady increase in global temperatures [1]. Combined 
with a dependency on increasingly scarce fossil fuels, this has sparked a 
tremendous interest in alternative renewable fuel sources. Consequently, 
there has been an emphasis on plant biomass as a source of fermentable 
sugars. Often being touted as the world’s most abundant polymers, cellulose 
and other plant carbohydrates are believed to be the renewable energy source 
that can provide liquid fuels and chemicals on a sustainable basis, in turn 
displacing fossil fuels and decreasing carbon dioxide emissions [2]. 

One of the liquid biofuels receiving the most interest is bioethanol. 
Although attractive due to its simplicity, so-called first-generation bioethanol 
made from starch and sugar is now considered less desirable due to its 
alleged influence on food prices. Cellulosic bioethanol, also known as 
second-generation bioethanol, is seen as a more attractive alternative. It can 
be produced from all kinds of plant materials, ranging from corn stover and 
wheat straw to forest residues. Furthermore, cellulosic ethanol has the 
potential to produce large quantities of fuel with more significant reductions 
in greenhouse gas emissions [3]. The carbohydrates from plant biomass can 
also be utilised for a range of chemicals, thus providing a platform for 
biorefineries [4]. The main process steps involved in producing cellulosic 
bioethanol are illustrated in Fig. 1. 

 
 

Lignocellulosic 
biomass

Enzymatic
hydrolysis

Bioethanol

Pretreatment Fermentation Distillation
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Figure 1: Simplified flow sheet for ethanol production from lignocellulosic biomass. 
The pretreatment step prepares the biomass for the second step; enzymatic 
hydrolysis. After hydrolysis, sugars are fermented into ethanol. The two steps of 
enzymatic hydrolysis and fermentation may be combined into a single processing 
step known as simultaneous saccharification and fermentation (SSF). Lastly, the 
generated ethanol must be isolated through distillation. 
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Despite intensive research over the last decades and investments in 
bioenergy-related biotechnology having sky-rocketed in recent years [5], no 
full-scale, commercial cellulosic ethanol plants exist today. Although several 
plants are planned or are under construction in a number of countries, several 
technical challenges remain. Plant cell walls are highly recalcitrant to 
degradation, both microbially and mechanically, and one of the main 
challenges is concerned with enzymatic conversion of cellulosic plant 
biomass into fermentable sugars [6,7].  

To address this challenge of efficiently hydrolysing cell walls into 
fermentable sugars - also known as saccharification - two key aspects of 
cellulosic bioethanol production have been improved upon: Pretreatment and 
enzyme optimisation. Pretreatment is a balancing act that involves unlocking 
the cell wall structure without forming inhibitors, which affect hydrolysis 
and/or fermentation [8]. Being an insoluble and highly heterogeneous 
substrate, cellulosic materials pose several challenges in enzymatic 
conversion. However, recent years have shown important advances in 
understanding, improving and producing synergistic cellulases [9,10]. 
Although both enzyme systems and the understanding of cell walls are still 
subject to improvement [11], it is believed that an improved understanding 
of the mechanisms where the two areas come together is needed in order to 
further increase the viability of bioethanol production. This view was 
recently reinforced in a paper on focus areas vital to advancing cellulosic 
bioethanol where the author stated: “A better understanding of the factors 
that control the interactions of substrates and enzymes would be invaluable 
in identifying pathways to better systems” [12]. 

 
Objective and outline of thesis 

 
The main objective of the work presented in this thesis has been to gain a 
better understanding of enzyme-substrate interactions in the enzymatic 
hydrolysis of pretreated biomass. An efficient conversion of lignocellulose 
into fermentable sugars is a key step in producing bioethanol in a cost-
effective and environmentally friendly way.  

Microscopic and spectroscopic work was performed on hydrothermally 
pretreated wheat straw in order to understand how pretreatments increase 
enzyme digestibility. The results of these investigations are presented in 
Paper II. The work has also included investigating the effect of surface 
active additives, or surfactants, in enzymatic hydrolysis, as seen in Paper 
III. The ability to work at high solids concentrations has been thoroughly 
investigated and is a vital component in the viability of ethanol production. 
In Paper IV, the challenges of determining yields in high-solids enzymatic 
hydrolysis are presented. Paper V deals with the factors responsible for 
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decreasing yields when hydrolysing lignocellulose at increasing solids 
concentrations. 

Together with the review of Paper I, the first four chapters of this thesis 
provide background information and put the work in perspective. These 
chapters include an introduction to cellulosic biomass and how its 
composition and structure influence the recalcitrance to hydrolysis, 
pretreatment methods, enzymatic hydrolysis and surfactants. Some of the 
results presented in the published papers are included and discussed. The 
final chapter provides a more detailed discussion on enzyme-substrate 
interactions in high solids enzymatic hydrolysis. There is some overlap 
between Paper V  and the final chapter of this thesis. However, the results 
are more extensively discussed and elaborated on in the thesis. 
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LIGNOCELLULOSIC BIOMASS 
 
A defining feature of terrestrial plants is the highly developed cell walls. It is 
indeed these cellulosic cell walls that are the target of our bioconversion, 
whether for the purpose of production of liquid fuels or chemicals. The plant 
cell wall is described as a dynamic structure and is a complex composite of 
polysaccharides, aromatic compounds and proteins. In general, the three 
major constituents of secondary cell walls are cellulose, hemicelluloses and 
lignin; from which the generic term lignocellulose is coined. In order to 
efficiently convert the carbohydrate polymers into the desired products, it is 
important to understand the composition, nature, structure and interactions of 
these cell wall components and how they affect the degradability of 
lignocellulosic biomass  
 
Composition, structure and recalcitrance 
 
The resistance to deconstruction of plant biomass is often referred to as 
“biomass recalcitrance”, a term that has become well-known in the field of 
liquid biofuels [7]. This recalcitrance is a result of the way terrestrial plants 
have evolved over time, in part turning the plant cell wall into an efficient 
barrier against intrusion and degradation. Not only does the structural 
arrangement prevent decomposition but some components of the cell wall 
are able to retard enzymatic hydrolysis themselves. 

The load-bearing framework of the cell wall is the cellulose fibrils. Being 
the most abundant polymer and entirely made up of fermentable glucose 
units, cellulose is the main target for bioconversion. The D-glucose units of 
cellulose are linked by β-1,4-glucosidic bonds into a linear structure with a 
high degree of polymerisation. This structure results in the formation of 
intra- and intermolecular hydrogen bonds, creating para-crystalline cellulose 
fibrils [13], see Fig. 2. The 3-5 nm wide elementary fibrils adhere together to 
form micro- and macrofibrils up to 200 nm wide, that spool around the cell, 
often in a parallel manner [14]. In addition to being chemically stable and 
resistant to microbial degradation, the cellulose fibrils are responsible for the 
great tensile strength of the cell wall [15]. This structural and inherent 
integrity of cellulose is believed to play an important role in the recalcitrance 
of lignocellulosic biomass [16]. It is generally accepted that cellulose can be 
crystalline, para-crystalline and even amorphous. However, the detailed 
crystal and allomorphic structure of native cellulose and how it influences 
degradability is still a matter of investigation and debate [14,17,18]. 

Cellulose fibrils are often coated with complex, heterogeneous polymers 
collectively known as stereo-irregular polysaccharides or hemicelluloses. 
The specific structure and composition of hemicellulose largely depends on 
plant genus and cell type. For example, in grasses (Poales), the most 
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common hemicellulose is the branched polymer glucuronoarabinoxylan 
(GAX) [19]. The main function of hemicellulose as a constituent of the cell 
wall is two-sided. Through cross-linking it creates distance between 
cellulose fibrils, maintaining a certain degree of flexibility in the cell wall by 
avoiding cellulose fibrils to adhere to each other. However, at the same time 
the cross-linking helps anchor the cell wall matrix together [19]. Apart from 
hexose sugars (C-6 sugars; D-glucose, D-mannose, D-galactose and D-
glucuronic acid) hemicelluloses also consist of pentose sugars (C-5 sugars; 
primarily D-xylose and L-arabinose), that are not readily fermentable by 
yeast. In general, agricultural products such as wheat straw and corn stover, 
as well as hardwoods, have higher contents of C-5 sugars than softwoods.  
 

 
 
Figure 2: Atomic force microscopy (AFM) tapping mode images of wheat straw 
parenchyma cell walls. A: The interwoven cellulose microfibrils that constitute the 
load-bearing structure of the primary cell wall are often cross-linked to 
hemicelluloses through covalent bonds. B: In secondary cell walls, the fibril 
orientation is highly parallel and fibrils coalesce into macrofibrils or cellulose 
aggregates that are encrusted in a matrix of hemicelluloses and lignin. For 
visualisation purposes the cell wall in B was partially de-lignified. Lignin deposits 
are seen as spherical shapes (white arrows) on top of the macrofibrils. 
 
After cell expansion, some cell walls are reinforced with thickenings to 
stabilise their structure. These secondary cell walls are deposited on the 
inside of the primary wall and on a weight basis, cells with secondary walls 
make up the majority of plant biomass. A significant difference between 
primary and secondary cell walls is that the polysaccharides of secondary 
walls are embedded in an aromatic polymer that is highly resistant to 
chemical and microbial attacks. This highly complex network of phenyl 
propane units is known as lignin. The addition of lignin to the cell wall 
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drastically increases mechanical strength, being responsible for terrestrial 
plants having evolved so successfully. However, from a bioconversion 
viewpoint lignin and low molecular phenolics are highly problematic; degree 
of lignification is often a limiting factor in degradability. This is not only due 
to lignin not being a carbohydrate and therefore not reducible to fermentable 
sugars, but also its ability to covalently bond to and mask carbohydrates, 
hindering enzyme accessibility and hydrolysis [20,21]. The phenolic groups 
of lignin may also be involved in inhibition [22]. Also, lignin may prevent 
the cell wall from swelling significantly, thus restricting enzyme 
accessibility [23]. As will be discussed in subsequent chapters, lignin has 
been shown to negatively influence enzymatic hydrolysis by adsorption of 
cellulose degrading enzymes [24,25]. 

In both grasses and woody plant species, the secondary cell wall of 
cellulose fibrils and hemicellulosic polysaccharides that are bound to the 
encrusting lignin can be described as a composite matrix. The ultrastructure 
of this complex matrix can be compared to that of fibreglass, where the glass 
fibres with their high tensile strength are embedded in a hard crust of epoxy.  
The spatial distribution as well as extent and nature of cross-linking are 
import factors in the accessibility and degradability of cell walls. However, 
knowledge about the dynamics and specificity of interactions between 
carbohydrates, lignin and proteins in the cell wall is relatively small [26]. 

The composition, micro-structural heterogeneity and complexity of the 
cell wall are often significantly determined by the cell type. Thus, the 
degradability of the lignocellulose is also governed by these factors. 
Although often ignored, the macro-structural characteristics of tissue type 
must be considered when investigating recalcitrance [27]. The diversity and 
number of plant tissues and cell types is enormous but can be separated into 
three general categories of dermal, vascular and fundamental tissues [16]. 
The epidermis cell surface layer is the first barrier of the plant and protects 
the cell from intrusion. It varies from being a thick bark layer in woody 
species to a wax-covered cuticle in grasses. Phloem, xylem and their 
associated cell types make up the vascular tissues. These highly specialised 
cells are responsible for transport of water and nutrients in the plants and can 
be heavily lignified and therefore difficult to break down [21,28]. From a 
processing point of view, the most interesting categories of cells are the 
fundamental tissues, as these generally make up the bulk of the mass of the 
lignocellulosic material. This is particularly the case for the supportive tissue 
of sclerenchyma, composed of sclereids and fibres. Not to be confused with 
fibrils, fibres are long, slender cells that make up the principal supportive 
tissue. When fully mature, the dead cells of sclerenchymatous tissue have 
thick secondary walls that are lignified to various extents depending on 
species [29]. For an example of the distribution and occurrence of various 
cell types found in grass species, see Fig. 3. 
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Figure 3: Scanning electron microscopy (SEM) image showing a number of 
different cell types in a cross section of a wheat straw stem. White arrows indicate 
the location of three vascular bundles made up by phloem, xylem and surrounding 
thick-walled sclerenchyma cells (fibres). Between the vascular bundles, easily-
digestible large parenchymatic cells with thin walls can be seen. Towards the outer 
edge of the straw stem (left side of image) there is a layer of small diameter fibres 
with thick secondary walls. On the inside of the stem towards the pith is a thin, 
smooth layer of rudimentary parenchyma cells. This layer of unlignified cells has 
proven beneficial in studying the ultrastructure of primary cell wall microfibrils 
(Paper II). 
 
Recently, microscopic investigations have indicated that the secondary cell 
wall of sclerenchymatous tissue is not a homogeneous matrix but rather 
constructed of concentric lamellae of cellulose aggregates [30,31]. As 
secondary cell wall architecture affects lignin distribution and in particular 
enzyme accessibility - two factors that play a key role in cell wall 
degradability - a better understanding of the macro-structural characteristics 
of the secondary cell wall is likely to increase our ability to degrade it. As 
discussed in Chapter 3, enzyme accessibility of the cell wall substrate is 
most often determined by the pretreatment that the biomass undergoes 
before enzymatic hydrolysis. 

Most agricultural crops have been optimised for producing starch (rather 
than biomass) over many centuries and as already touched upon; plants have 
evolved to successfully resist microbial degradation. Reducing production 
and especially conversion costs through plant genetic engineering is believed 
to be able to significantly improve the potential for plant biofuel production 
[7,32]. Traits that may be improved upon include cellulose or biomass yield 
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and compositional characteristics such as reduced or altered lignin and 
hemicellulose contents, and even plants that produce cell wall degrading 
enzymes themselves [33,34]. 
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EFFECT OF BIOMASS PRETREATMENT 
 
In order to efficiently hydrolyse hemicellulose and cellulose to fermentable 
monomeric sugars, a form of pretreatment is necessary. The chemical, 
physical and morphological characteristics of lignocellulose are important to 
the digestibility of the substrate. Pretreatment changes these characteristics 
and in particular makes the material more accessible for the saccharifying 
enzymes. Thus, pretreatment is considered one of the most crucial steps in 
bioethanol production since it has a large impact on all other steps in the 
conversion process. Also, pretreatment is usually an energy-intensive 
process step, significantly affecting the cost of the process. 

Over the last decades, much research has gone into a range of 
pretreatment technologies but as of yet, no single technology has proven 
ideal or superior for all substrates. The optimal pretreatment technology 
should have a number of features. The digestibility and recovery of both 
cellulose and hemicellulose should be high and at the same time, no or little 
lignin and hemicellulose-derived inhibitors should be generated. Also, water, 
chemical and energy usage should be minimised and the method must be 
scalable to industrial size. Finally, the downstream process method must be 
considered when evaluating the best pretreatment method. Often, 
pretreatment is a balancing act of improving digestibility while keeping 
hemicellulose loss and inhibitor formation at a minimum. 

Pretreatment methods utilise the following methods of modification: 
Physical (e.g. milling, grinding), chemical (e.g. alkali, dilute acid), thermal 
(e.g. steam treatment) and biological methods (e.g. wood degrading fungi). 
Often, technologies will be comprised of a combination of the above. 
Pretreatments such as steam pretreatment, acid-catalysed pretreatment and 
various treatments under alkaline conditions are among the most widely 
reported and most promising technologies (Paper I). A detailed description 
and comparison of the various technologies is beyond the scope of this thesis 
and the reader is referred to a number of reviews [8,35-37]. Instead, focus 
will be on the effect of pretreatment in terms of how it improves the 
enzymatic degradability through a modification of the lignocellulosic 
substrate. This modification has a large influence on the interaction between 
substrate and enzymes and is therefore an important aspect to consider in 
substrate-enzyme interactions. 

Different pretreatment technologies rely on different mechanisms or 
principles for lowering the recalcitrance of the substrate. For example, dilute 
acid and steam explosion methods partially hydrolyse and solubilise 
hemicelluloses where other methods aim at removing lignin from the 
material. Both approaches have been proven to be effective in increasing 
cellulose hydrolysis [38-41]. The general idea of pretreatment is to increase 
surface area and enzyme accessibility through changes in porosity and 
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particle size, and to a lesser degree decrease cellulose crystallinity. As 
visualised in Fig. 4, the current model of pretreatment explains that it results 
in partial removal of lignin and hemicellulose and decomposition of the cell 
wall matrix.  

 
Figure 4: Simplified representation of pretreatment. This model has previously been 
used to explain to effects or results of pretreatment. Lignin and hemicellulose is seen 
to be released while a decomposition of the structural network of the plant cell wall 
takes place. It has later been found that a structural decomposition is not 
necessarily a requirement for making the substrate digestible. Schematic figure 
adapted from [36] who adapted it from [42]. 
 

When developing and comparing pretreatment methods a severity factor 
based on temperature, duration of treatment and pH can be calculated [8]. 
However, this rather empirical way of assessing a certain method does not 
tell anything about the actual effect on the cell wall structure and chemistry. 
In Paper II , we investigated the structural changes from hydrothermal 
pretreatment of wheat straw. The reasoning behind the investigation was that 
a better understanding of the effect or mechanism of the pretreatment would 
allow us to optimise the energy-intensive pretreatment process. The 
hydrothermal pretreatment is a form of steam pretreatment and is described 
in detail elsewhere [43-45]. Atomic force microscopy (AFM), scanning 
electron microscopy (SEM) and attenuated total reflectance Fourier 
transform infrared spectroscopy (ATR-FTIR) was used for the investigation. 
AFM in particular has over the last decade been shown to be an effective 
tool in studying the ultrastructure of plant cell wall [46,47].       

We found that neither the overall cell wall nor the fibrillar structure of the 
cell wall was ruptured or decomposed (Fig. 2D-2I, Paper II). This was not 
in accordance with the general perception that pretreatments must disrupt the 
skeletal cell wall structure (Fig. 4). Similarly, no signs of cell wall rupture in 
steam explosion pretreated wheat straw were identified (Fig. 2J-L, Paper  
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II). This reinforces the view that the “explosive” action of a quick pressure 
release is not necessary to render the material more suitable for enzymatic 
hydrolysis [8]. Interestingly, more than 90% of the surface of the 
hydrothermally pretreated fibres was covered with lignin. Although the 
pretreatment likely increases accessibility and porosity through solubilising a 
significant portion of the hemicelluloses, this re-localisation of lignin is 
believed to be important for the digestibility of the material. With such a 
large percentage of the surface masked by lignin, it may seem surprising that 
the digestibility of the substrate has been significantly increased. However, 
the lignin re-deposited on the surface likely exposes cellulose fibril surfaces 
inside the cell wall matrix. It is also possible that the re-deposited lignin is 
not as strongly attached to polysaccharides as in the native material and can 
be removed by shear forces during mixing. In conclusion, hemicellulose and 
lignin modification or re-localisation appears to be more important for 
enzymes accessibility and digestibility than actually disrupting the cell wall.  

The need to examine the spatial or structural arrangement of the 
components and not just the overall composition when investigating the 
effect of pretreatment was recently reinforced when looking at samples 
pretreated at different temperatures (Paper VII, manuscript in Appendix). It 
was found that the lack of changes in overall chemical composition does not 
necessarily correspond to a lack of effect on conversion.  
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CELLULASES AND ENZYMATIC HYDROLYSIS 
  
Cellulose in nature is mostly decomposed by a range of cellulolytic fungi 
and bacteria. It is the cellulases of these microorganisms that are being used 
for a number of industrial purposes, e.g. cotton processing, detergent 
enzymes and paper recycling. If (or when!) cellulosic biofuel becomes a 
major transportation fuel, cellulases will become the most produced 
industrial enzyme [48]. In this thesis, only the well-characterised enzyme 
system of the aerobic fungus Trichoderma reesei (an asexual, clonal 
derivative of the ascomycete Hypocrea jecorina [49]) will be considered. 
For information on bacterial and thermostable cellulase systems, see [50,51] 
and [52,53] respectively. 
 
The cellulase enzyme system 
 
Although cellulose is a homopolymer, a number of enzymes are needed to 
degrade it. These can be divided into the following three types: 
Endoglucanases (EG) (EC 3.2.1.4), which hydrolyse internal β-1,4-D-
glucosidic linkages randomly in the cellulose chain; Cellobiohydrolases 
(CBH, also known as exoglucanases) (EC 3.2.1.91), which progress along 
the cellulose line and cleave off cellobiose units from the ends; β-
glucosidases (BG) (EC 3.2.1.21), which hydrolyse cellobiose to glucose and 
also cleave off glucose units from cello-oligosaccharides. These three groups 
of enzymes work synergistically to degrade cellulose by creating new sites 
for each other and preventing product inhibition [54,55]. The concerted 
action of cellulases ensures an efficient hydrolysis and diminishes product 
inhibition. A simplified diagram of enzymatic hydrolysis can be seen in Fig. 
5. 

In total, T. reesei produces two CBHs, five EGs and two BGs. Several of 
these apparently redundant enzymes have been shown to exhibit synergy by 
either hydrolysing different ends of the cellulose chain or exhibiting 
different affinities for different sites of attack [56,57]. Cellulases are 
classified in glycosyl hydrolase families based on their sequence homology 
and hydrophobic cluster analysis according to the CAZy classification 
system (carbohydrate active enzymes). An updated list of these families is 
kept in the CAZy-database [58]. T. reesei also produces a range of 
hemicellulases. Being a diverse group of heterogeneous polymers with 
various side groups, the hemicellulosic system is more complex and involves 
for example xylanases, mannanases, arabinanases and various esterases. 
Depending on substrate and pretreatment, hemicellulases can be crucial for 
efficient hydrolysis of the cell wall. Hemicellulases are not the focus of the 
thesis but are reviewed elsewhere [59]. 
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Enzymatic hydrolysis 
 
Cellulases distinguish themselves from most other classes of enzymes by 
being able to hydrolyse an insoluble substrate. To facilitate sufficient contact 
and orientation between the catalytic domain (CD) and the substrate, CBHs 
and EGs have a cellulose-binding domain (CBD - or the broader term 
carbohydrate-binding module, CBM). The CBD is connected to the catalytic 
domain with a glycosylated flexible linker. This modular feature of 
cellulases is critical to their ability to dock with and degrade crystalline 
cellulose. CBDs have little impact on the activity of cellulases on a soluble 
substrate (such as carboxymethyl cellulose), but removal of the CBD from 
the enzyme significantly impairs the hydrolysis of crystalline cellulose, 
demonstrating the importance of CBDs [60]. CBDs of cellobiohydrolases are 
able to move laterally along the cellulose chain while the CD cleaves off 
cellobiose units [61]. Interestingly, CBDs appear to have a disruptive effect 
on cellulose fibrils, an ability that is still being discussed [62-64]. 
Furthermore, different CBDs appear to promote hydrolysis at different sites 
on cellulose [65]. However, despite extensive research on the mechanisms of 
CBDs, such as how the aromatic residues of the CBD are able to interact 
with the cellulose crystal structure [66], little is known about their ability to 
desorb from the substrate and re-attach.  

Due to the insoluble nature of native cellulose and anchoring of CBDs, 
cellulases primarily work in a two-dimensional environment involving the 
uni-directional movement of cellobiohydrolases along the cellulose chain. 
Thus, with this lack of parameters normally used for evaluating enzyme 
kinetics (substrate concentration, freely diffusing enzymes) it is not 
surprising that the synergistic degradation of lignocellulose does not follow 
classic Michaelis-Menten kinetics. The understanding of mechanisms 
involved in the interfacial solid-liquid hydrolysis system is further 
complicated by a number of factors that include the heterogeneous nature of 
lignocellulose. Even when working with model substrates (e.g. filter paper), 
the interaction between enzyme system and substrate creates innumerable 
factors, which influence the rate and extent of the hydrolysis. These factors 
often cannot be fully isolated, even under lab conditions. Much research has 
gone into cellulase kinetics, resulting in various models [55,67,68]. 
Unfortunately, few have been able to extensively predict limiting factors or 
process design optima through kinetic models. 
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Figure 5: Simplified diagram of lignocellulose hydrolysis showing synergism and 
limiting factors. Cellulose is symbolised by straight lines. 1: Released glucose and 
cellobiose cause product inhibition of β-glucosidase (BG) and cellobiohydrolase 
(CBH). 2: CBH hydrolysing from the end of a cellulose chain. Due to the 
processivity of CBH and the binding of the cellulose chain in their catalytic core, 
obstacles are thought to be able to halt the enzymes or cause them to become 
unproductively bound. Endoglucanases (EG) hydrolyse internal linkages in 
cellulose strands, thereby creating new sites for CBH hydrolysis. 3 and 4: 
Depending on pretreatment type and efficiency (and type of substrate), lignin and 
hemicelluloses can mask cellulose surfaces and prevent cellulases from reaching the 
substrate. 5: Both cellulases and hemicellulases can unproductively adsorb onto 
lignin particles or surfaces. 6: Mechanical shear, proteolytic activity or low 
thermostability can cause denaturation or loss of enzyme activity. Figure from 
Paper I. 
 
With the advent of SEM and in particular AFM, it has become possible to 
directly follow or see the effects of cellulases on cellulosic substrate. For 
example, Lee and co-workers found that endoglucanase has a smoothing 
effect on cellulose surfaces whereas cellobiohydrolase caused grooves or 
tracks along the macrofibril [62]. Our initial investigations have shown that 
unlignified cell walls (e.g. pith parenchyma cells) are easily hydrolysed and 
that the degradation generally appears to occur on the cell surfaces, 
essentially making the cell walls gradually thinner and thinner 
(unpublished). This is in accordance with the findings of Wang and co-
workers [69]. As methods continue to improve, ultramicroscopy is likely to 
give more insight into the mechanisms of enzymatic hydrolysis. 
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SURFACTANTS 
 
Enzymatic hydrolysis of lignocellulose into fermentable sugars is one of the 
most costly steps in bioethanol production, mainly due to the price of 
cellulases and the high dosages needed. Being able to reduce enzyme 
loading is thus very desirable. It has been shown that certain additives, in 
particular surfactants, have a positive effect on enzymatic hydrolysis of 
lignocellulose. Surfactants (surface acting agents) are amphiphilic 
compounds that usually contain a hydrophilic head and a hydrophobic tail. 
Surfactants are able to self-assemble into micelles and will adsorb onto 
surfaces. The assembly and degree of adsorption depends on the surfactant 
structure and the polarity of the surface. The linear polymer poly(ethylene 
glycol) (PEG) is an example of a non-ionic surfactant with numerous 
medical and industrial applications. 

The effects of non-ionic surfactants and non-catalytic protein in 
enzymatic hydrolysis have been investigated for more than two decades. It 
has been shown that such surfactants increase hydrolysis efficiency 
significantly, allowing for either a faster hydrolysis rate or lower enzyme 
dosage [70-75]. Addition of surfactants also allows for better recycling of 
cellulases [76,77]. The positive effect of surfactants has been observed in 
enzymatic hydrolysis of both cellulose [73] and lignocellulose, as well as in 
simultaneous saccharification and fermentation (SSF) [78] and even 
pretreatment [79]. 

Only recently have the mechanisms of surfactant additives in enzymatic 
hydrolysis been investigated more intensively [25,80]. If surfactants are to 
be used commercially in the hydrolysis of lignocellulose, then it is important 
to fully understand how they work in order to optimise process designs and 
enzymes. The mechanisms that have been proposed responsible for the 
effects can be categorised in the following three groups: 1) Surfactants may 
act as enzyme stabilisers and prevent denaturation. 2) Surfactants may have 
an effect on substrate structure, i.e. a surface structure modification or 
disruption that increases enzyme accessibility. 3) Surfactants may affect 
enzyme-substrate interactions, in particular by preventing non-productive 
adsorption of enzymes.  

Results indicate that surfactants do act as stabilisers, in particular at 
elevated temperatures [81-83]. Likewise, there have been indications that 
surfactants could promote the number of reaction sites through surface 
disruption, in turn increasing the hydrolysis rate [81]. However, more recent 
research has not supported this theory [25]. Some experiments have shown 
little or no effect on the hydrolysis of pure cellulose substrates [25,80,83]. 
This is in contrast to lignin-containing substrates where the effect of 
surfactant addition is significant, in some specific cases resulting in almost 
doubling of the yield [83]. Lignin thus appears to be involved in the primary 
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mechanism behind the surfactant effect. As already touched upon, lignin is 
known to have adverse effects on cellulases and their performance, in 
particular due to its ability to adsorb enzymes [84].  

More specifically, there is general consensus that the primary mechanism 
behind the increased hydrolysis efficiency is due to the hydrophobic 
interaction between lignin surfaces and surfactants [80]. The hydrophilic 
portions of the bound surfactant protrude into the aqueous solution and 
sterically hinder the non-productive adsorption of cellulases, and in this way 
helps increase cellulose conversion. In accordance with this theory, adding 
non-catalytic protein such as bovine serum albumin (BSA) has a similar 
effect to the addition of non-ionic surfactants [25,85]. BSA is known to 
adsorb to surfaces, reducing unspecific binding by “filling up” adsorption 
sites on lignin surfaces [86]. The CBDs of cellobiohydrolases have been 
shown to be the major contributing factor responsible for lignin adsorption 
[87], but both the structure and properties of the CBD as well as the catalytic 
domain are involved in the binding affinity [80]. 

In Paper III, we investigated the use of surfactants in enzymatic 
hydrolysis of pretreated wheat straw, and in particular the relationship 
between the type of pretreatment and the increase in hydrolysis caused by 
the surfactant. We found that despite a lower content of hemicelluloses in 
straw compared to softwoods, the additives generally had a positive effect on 
both glucose and xylan conversion, of up to a 70% increase. Interestingly, 
the various surfactants had the most pronounced effect on straw that had 
been pretreated with sulfuric acid. Without surfactant, the acid-treated straw 
showed the lowest conversion (Fig. 1, Paper III). This shows that although 
lignin is known to be a limiting factor in lignocellulose conversion, the 
content of lignin is not directly proportional to the effect of surfactants on 
the hydrolysis of the material. In our experiments, the lignin content of the 
differently pretreated wheat straw varied from 19.6% to 24%. It is possible 
that sulfuric acid-treated wheat straw has a high capacity for (non-
productive) enzyme adsorption, which would be in agreement with recent 
studies on corn stover [85]. These results indicate that the acid pretreatment 
renders the lignin more receptive to cellulase adsorption, possibly through a 
change of surface properties such as hydrophobicity. It is also possible that 
the increased solution of hemicelluloses by acid exposes more lignin, 
increasing accessibility and adsorption. Comparison of the different 
surfactants revealed that no individual surfactant appeared to be optimal for 
all types of pretreatment. However, PEG 6000 generally performed well 
with all pretreatments. Also, our results showed an increase in enzyme 
activity in solution due to addition of surfactants, which was comparable to 
the increase in cellulose conversion (Figs. 1A and 4, Paper III). The finding 
of this relationship between bound enzyme and hydrolysis yield supports the 
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current theory that the main mechanism behind the surfactant effect is 
prevention of unproductive enzyme adsorption to lignin. 

Although the surfactant-lignin mechanisms are still being investigated, it 
is important to also consider the enzyme-lignin relationship. In the light of 
the significance of non-productive adsorption of cellulases on lignin, Berlin 
and co-workers introduced the concept of weak lignin-binding enzymes [88]. 
Through protein engineering it may be possible to develop low lignin-
affinity enzyme systems. 

An extractive pretreatment where lignin is removed may appear to be the 
solution to the non-productive adsorption problem. However, such as 
pretreatment is usually chemical-intensive and involved the generation of 
hemicellulose-derived inhibitors [89]. The Canadian company Iogen has 
successfully tested an organosolv process with softwoods at pilot plant scale 
[90,91]. 

Whether surfactants are going to be used in full-scale industrial 
enzymatic hydrolysis of lignocellulose will depend on the price of enzymes 
and surfactants. Since cellulosic bioethanol is still in its infancy on an 
industrial scale, many of the factors involved are difficult to determine. For 
the possible implementation of surfactants it is however important to 
consider the process design. For example, the addition of surfactants is likely 
to facilitate efficient enzyme recycling, a process step that ideally needs to 
be considered before the construction of the plant. 
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HIGH SOLIDS ENZYMATIC HYDROLYSIS 
 
Maintaining high solids concentrations throughout the conversion process 
from biomass to ethanol is important from an energy and economic viability 
viewpoint for several reasons. By increasing the solids loading, the resulting 
sugar concentration and consequently ethanol concentration increase, with 
significant effects on processing steps and costs, particularly distillation 
[92,93]. If the fermentation broth contains a minimum of 4% (w/w) ethanol, 
the energy required for the distillation is significantly reduced [94]. To reach 
this ethanol level, a sugar concentration of at least 8% (w/w) is required. 
Depending on the type of lignocellulosic substrate, this in turn requires a 
minimum initial solids (dry matter) content of approximately 20% (all solids 
concentrations are given as total solids on a w/w basis) [45].  

Lower water content also allows for a larger system capacity, less energy 
demand for heating and cooling of the slurry as well as less waste water [95]. 
Model-based estimations have shown significant reductions in operating 
costs of simultaneous saccharification and fermentation (SSF) of pretreated 
softwood when the initial solids concentration was increased [93]. High-
solids enzymatic hydrolysis has been defined as taking place at solids levels 
where initially there are no significant amounts of free liquid water present 
[96]. 

Unfortunately, there are also disadvantages by increasing the substrate 
concentration. Concentrations of end products and of inhibitors will increase, 
causing enzymes and the fermenting organism to function less optimally. 
High-solids loadings can also cause insufficient mixing or excessive energy 
consumption in conventional stirred-tank reactors as the viscosity of slurries 
increases abruptly at increased solids loadings [97,98].  

High solids concentrations also present new challenges in measuring and 
determining the degree of hydrolysis (conversion yield). During the complex 
hydrolysis reaction where insoluble biomass is subjected to a liquefaction 
process, the solids level decreases while the density and volume of the liquid 
phase increases, although not at the same rate. Due to the water retention 
properties of lignocellulosic biomass, the initial cellulose concentration is 
often measured as weight per weight (e.g. g/kg), whereas the products are 
mostly measured as weight per volume (e.g. g/L). As shown in Paper IV, if 
these factors are not taken into consideration when calculating the percent-
of-theoretical yield, the result is often a significant overestimation. To 
overcome this problem, we demonstrated a non-laborious method for 
approximating yields in high solids hydrolysis (Paper IV). 

Water content in the hydrolysis slurry is directly correlated to rheology, 
i.e. viscosity and shear rate during mixing [99], which is important for the 
interaction between lignocellulose and cell wall degrading enzymes. Thus, 
water content is not only critical in enzymatic hydrolysis  acting as a 
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substrate and a prerequisite for enzyme function, but is also important for 
enzyme transport mechanisms throughout the hydrolysis reaction as well as 
mass transfer of intermediates and end products [100]. In situ native 
cellulase systems have been reported to function at solids levels as high as 
76% [101]. However, at both lab and industrial scale, 12-20% total solids is 
often considered the upper limit at which pretreated biomass can be mixed 
and hydrolysed in conventional stirred tank reactors [96,102,103]. Using 
other reactor designs, enzymatic hydrolysis at laboratory scale has been 
reported at up to 32% total solids [97,104]. A number of studies have utilised 
fed-batch operations in order to increase the final solids loading 
[96,98,105,106]. Jørgensen and co-workers have previously described a 
gravimetric mixing reactor design that allows batch enzymatic liquefaction 
and hydrolysis of pretreated wheat straw at up to 40% solids concentration 
[95].  
 

 
 
Figure 6: Results collected from several publications indicate that decreasing 
conversion at increasing solids content is a general effect. Results are for different 
kinds of biomass and for both enzymatic hydrolysis and simultaneous 
saccharification and fermentation (SSF). Added trend lines show that for each 
experiment there is a near-linear relationships between initial solids content and 
yield. Data taken from the following publications: ○: Softwood, enzymatic 
hydrolysis [107], ●: Hardwood, enzymatic hydrolysis [104], □: Softwood, enzymatic 
hydrolysis [108], ■:  Corn stover, SSF [106], ▼: Wheat straw, enzymatic hydrolysis 
[95],  X: Wheat straw,  SSF[95], ◊: Wheat straw, SSF [97] and ▲: Whatman no 1 
filter paper, enzymatic hydrolysis, (own results, not published). 
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This is a large increase from what has previously been possible, and thus 
significantly increases the techno-economic potential of the whole process. 
The gravimetric mixing principle has been up-scaled and used in a pilot 
plant for several years [43,45]. 

During the work with high solids loadings it was found that the 
enzymatic conversion (percent of theoretical) linearly decreased with 
increasing solids concentration despite using a constant enzyme-to-substrate 
ratio [95]. This decrease partly off-sets the advantages of working at high 
solids concentrations. As seen in Fig. 6, the effect has been observed in both 
enzymatic hydrolysis and SSF by several groups working with various kinds 
of biomass [97,104-110]. Although several of these studies were conducted 
at less than 10% initial solids content, the phenomenon appears to be an 
intrinsic effect of enzymatic hydrolysis at increasing solids levels. In this 
thesis, the decrease in yield at high solids concentrations is referred to as the 
solids effect. 

Some groups have suggested that the mechanism responsible for the 
decreasing conversion is product inhibition [97,104,111] or inhibition by 
other compounds such as hemicellulose-derived inhibitors (furfural and 
hydroxymethylfurfural (HMF)) [112] and lignin [22]. Others have suggested 
it may be explained by mass transfer limitations or other effects related to 
the increased content of insoluble solids, such as non-productive adsorption 
of enzymes [103,113]. However, the specific mechanism(s) responsible for 
the decreasing hydrolytic efficiency are still uncertain [95,114]. In this 
thesis, the possible mechanisms have been divided into the following four 
categories:  

 Compositional and substrate effects  
 Product inhibition  
 Water concentration 
 Cellulase adsorption 
Each topic has been investigated through experiments and studying the 

literature in order to identify the nature of this apparently intrinsic property 
of high-solids conversions of lignocellulose. Also, it is discussed how the 
decrease in yield can be alleviated in an effort to maximise bioethanol yield.  
 
Compositional and substrate effects  
 
As discussed, the heterogeneity and structure of lignocellulosic biomass 
means that high viscosity prevents efficient mixing at high solids 
concentrations [103,113,115]. The viscosity of lignocellulosic slurries 
increases sharply over a certain threshold (typically around 15-20% solids), 
where the mixture is better described as being in a semi-solid state than an 
actual slurry. However, despite the extreme difference in viscosity observed 
between 5% and 40% solids loading, the conversion of lignocellulosics as a 
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function of solids content appears to be near-linear (Fig. 6). Although mixing 
of substrate and enzymes is crucial for efficient liquefaction, the change in 
viscosity (and thus mixing) does not correspond to the decreasing 
conversion. Also, an increase of the relatively slow mixing speed of the 
liquefaction reactor does not significantly affect the cellulose conversion 
[95]. Hence, lack of mixing does not appear to be the cause of the falling 
yield, at least not at the solids levels documented. This is partly in 
accordance with the recent findings of Hodge and co-workers who 
concluded that possible mass transfer limitations caused by insoluble solids 
were not apparent at up to 20% insoluble solids content [111]. Hodge and 
co-workers did show a drop-off in conversion at 25% insoluble solids. This 
drop-off is however not apparent at below 40% total solids when using the 
gravimetric mixing described above. Furthermore, the linearity of the solids 
effect over a range of conditions with a number of substrates (wheat and 
barley straw [95,97,103], corn stover [106], softwood [107,110], hardwood 
[104,108] and an industrial ethanol fermentation residue (vinasse) [113]) 
indicates that a single factor may be responsible for the effect. 

We initially wanted to establish that the solids effect is not caused by 
lignin adsorption or lignin-derived inhibitors (phenolics). It was thus decided 
to carry out the experiments with filter paper. This substrate has the 
advantage of containing no lignin yet still retains the secondary cell wall 
structure as opposed to Sigmacell or Avicel. The hydrolysis experiments 
with filter paper all displayed the characteristic profiles with a very high 
initial rate of conversion that decreases considerably after only six to eight 
hours (Fig. 2A, Paper V). When the conversion was displayed as a function 
of initial solids content, the characteristic downward curve was obvious (Fig. 
2B, Paper V). Again, the relationship is near-linear with a decrease from 
56.5% conversion at 5% initial solids content to 22.8% conversion at 25% 
initial solids content, both after 24h of hydrolysis. This shows that lignin or 
other phenolics are not involved in the solids effect.  

The filter paper used in the experiments contained approximately 15% 
hemicellulose in the form of 14% mannan and 1% arabinan. However, our 
experiments with hydrolysis of Whatman filter paper (98% cellulose) (see 
Fig. 6) also displayed the same trend at increasing solids loadings. The same 
has been observed with hydrolysis of α-cellulose [109]. This clearly 
indicates that hemicellulose-derived sugars/inhibitors are not the cause of the 
solids effect. 
 
Product inhibition 
 
Numerous kinetic models have been developed for the enzymatic hydrolysis 
of lignocellulose [24,38,116-118]. The motivation of such models is usually 
two-fold. The first objective is to demonstrate a mechanistic understanding 
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of the process through fitting experimental data to a model. Another 
objective is to develop an application-based model that can be used to design 
and optimise various process parameters [96]. In enzymatic saccharification, 
a complex system of synergistic enzymes is applied to an insoluble and 
heterogeneous matrix of plant cell wall polymers. Furthermore, the substrate 
has been pretreated, modifying its structure and chemistry in various ways 
[37]. As already discussed, the interaction between enzyme system and 
substrate creates a range of factors influencing the rate and extent of the 
hydrolysis. Due to this complexity of the process, few investigators have 
been able to predict limiting factors or process design optima through kinetic 
models, or the characteristic decrease of enzymatic rate of hydrolysis over 
time [119]. 

End-product inhibition has been shown to play an important role in 
enzymatic hydrolysis as glucose, cellobiose and ethanol have been 
demonstrated to significantly inhibit endoglucanases, cellobiohydrolases and 
β-glucosidase [120,121]. However, when working with a insoluble substrate 
and kinetics that do not follow the Michaelis-Menten model, the exact type 
of inhibition can be difficult to determine [122]. The decrease in hydrolysis 
rate over time has been attributed to inhibition by the accumulated end-
products [123]. Others conclude that when hydrolysing natural, lingocellu-
losic substrates, cellulases are more resistant to product inhibition than with 
amorphous reference materials and that the early stage decrease in hydro-
lysis rate is not caused by product inhibition [55,124]. In high-solids enzy-
matic hydrolysis of pretreated corn stover, Hodge and co-workers recently 
found that increased sugar concentrations were the primary cause of perfor-
mance inhibition [111]. 

Based on the above, we wanted to investigate the inhibitory effect of 
increased sugar concentrations at high solids concentrations. To do this we 
added various amounts of sugar to a hydrolysis reaction of filter paper. An 
example of such an experiment is seen in Fig. 3, Paper V. With 50 g/L 
glucose added, the rate of hydrolysis during the first few hours was 
significantly reduced compared to the reference, in particular for the 5% 
solids hydrolysis where the initial phase of fast conversion was completely 
absent. As there is a constant enzyme dosage per gram of solids in the 
experiments, the ratio between glucose and enzyme is much higher at 5% 
than 20% solids (for hydrolyses with 50 g/L glucose added) and the stronger 
inhibition is therefore not surprising. Although eight hours often make up a 
small part of the whole hydrolysis time, the fast rate of hydrolysis in the first 
phase is responsible for conversion of a major part of the substrate. 
Interestingly, after approximately eight hours, the rate of hydrolysis (at each 
solids content) is nearly identical despite the significant difference in glucose 
level. This indicates that one of two things is happening. Either there are 
other and stronger factors inhibiting the hydrolysis after the first phase, 
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thereby “masking” the product inhibition, or there is a certain glucose level 
threshold, above which the enzymes are inhibited to a similar extent, thus 
resulting in a similar conversion rate. However, if the latter is the case and 
product inhibition is the major factor responsible for the solids effect, then 
one would not expect a linear relationship between solids level and 
conversion. 

It is worth noticing that it is not only the concentration of the inhibitor 
that is important but that the inhibitor-to-enzyme ratio is equally so. This 
means that when running a hydrolysis reaction at different solids contents 
but with constant enzyme-to-substrate levels, the degrees of inhibition 
should theoretically be identical. Xiao and co-workers showed that in the 
hydrolysis of a cellobiose solution, addition of 20, 50 and 100 g/L of glucose 
to 2, 5 and 10% cellobiose (w/v) resulted in β-glucosidase inhibition of 53, 
51 and 48%, respectively. The almost identical degree of inhibition at 
different concentrations proves that the inhibitor-to-enzyme ratio is essential 
in product inhibition [120]. As this is not the case in the experiments with 
increasing solids concentrations, it shows that inhibition of β-glucosidase 
(alone) is not the main cause of the solids effect. However, indirectly the 
cellulose-binding cellobiohydrolases are even stronger inhibited by glucose. 
The high glucose concentration leads to an accumulation of cellobiose, 
which acts as a particularly strong inhibitor on cellobiohydrolases [122].  

Surprisingly, cellobiose concentrations in our experiments have generally 
been low. Normally, less than 10% of the converted material (glucose + 
cellobiose) is found as cellobiose, even at high solids concentrations (not 
shown). For comparison, during experiments with lower proportions of β-
glucosidase, inhibition caused cellobiose proportions of over 35% of the 
converted material while still retaining a certain degree of hydrolysis (not 
shown). 

SSF is normally used to offset the well-known effects of glucose and 
cellobiose inhibition but interestingly the solids effect has also been 
observed under those conditions [97,106]. Ethanol is also known to act as an 
inhibitor on cellulases (although less severe than cellobiose) [121,125], 
indicating that other factors may influence the conversion under these 
conditions. 

To test if product inhibition was the sole cause of the solids effect, a new 
experiment was carried out. Filter paper was hydrolysed to approximately 
45% but at three different enzyme loadings and lengths of time: 20 FPU per 
g dry matter (DM) for 22 hours, 10 FPU per g DM for 48 hours and 5 FPU 
per g DM for 84 hours. Interestingly, the slopes of the three curves are 
nearly identical (Fig. 4, Paper V ). If product inhibition alone was the cause 
of the solids effect, one would expect the hydrolysis with the lowest enzyme-
to-substrate ratio to display the strongest degree of inhibition and thus a 
steeper curve. In other words, it is not possible to bypass the solids effect by 
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using higher enzyme dosages, at least not within the normal range of 
dosages. This is an important consideration when trying to alleviate the 
solids effect. 

Related to product inhibition at increased substrate concentration is the 
phenomenon of transglycosylation, where enzymes display not only 
hydrolytic activities but also transglucosidic activities [126]. Examples 
include the β-glucosidase-catalysed transglycosylation of cellobiose to form 
a trisaccharide [127], and transglycosylation by endoglucanase and 
cellobiohydrolase of T. reesei. [126,128]. It is well-known that the substrate 
concentration, and thus acceptor concentration, is one of the most important 
factors determining the degree of an oligomerization reaction. It is thus not 
unlikely that an increasing portion of cellulose is being converted into 
cellotriose, cellotetraose and other oligomers (with both α and β-linkages) at 
high solids concentrations, resulting in compounds that are not necessarily 
detected by HPLC and thus not included when determining the yield. 
However, results by Gruno and co-workers indicate that transglycosylation 
by cellobiohydrolase plays a minor role compared to product inhibition 
[122]. More research is needed to elucidate the extent of transglycosylation 
in high solids enzymatic hydrolysis. 

In conclusion, product inhibition at increased solids concentrations was 
found to be a significant and potentially determining factor for the solids 
effect. However, the linearity over a large range of solids contents does not 
fit with the current model for product inhibition. Likewise, 
transglycosylation is likely to become more pronounced at high solids levels 
but is not thought to contribute significantly to the solids effect. 
 
Water concentration 
 
Low water content may directly affect enzyme performance. Not only is 
water a substrate for the hydrolysis but it is also the solvent that allows the 
enzymes to function [129]. Water also facilitates contact between enzymes 
and substrate and is important for the transfer of products. We have 
previously investigated the role of water in enzymatic hydrolysis [100] 
(Paper VI  in Appendix). In the present study, it was investigated if the 
solids effect was related to a lower concentration of water in relation to 
solids. As mentioned, hydrolysis is possible even at very high solids 
concentrations, but the rate of reaction may be impaired under such 
conditions [101]. In order to investigate this, various amounts of the water 
was replaced with oleyl alcohol, an inert oil that does not directly affect the 
function of the enzymes [130,131]. The rationale behind these experiments 
is that by substituting part of the water, it is possible to run a hydrolysis 
reaction with an altered water-to-enzyme ratio but with a more or less 
constant viscosity of the slurry. If it is a lack of water that is causing the 
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solids effect, then the hydrolysis conversion where a certain amount of the 
water has been replaced should be lower, presumably at the level of the 
corresponding solids level (taking only the aqueous phase into 
consideration).  

In the experiment shown in Fig. 5, Paper V, a quarter of the water 
(buffer) in an enzymatic hydrolysis of 20% solids filter paper was substituted 
with oleyl alcohol. At this level of substitution, the actual solids 
concentration in relation to water was therefore increased by 25%; from 20 
to 25%. After 40 hours of hydrolysis, 5.6% less glucose was released 
compared to the reference (without oleyl alcohol addition). However, a 20% 
increase in solids usually leads to a decrease in conversion of over 12%. 
Thus, the decrease in conversion did not correspond directly to the lowered 
water content. However, the sugar concentration is not the only parameter 
that has been changed. Oleyl alcohol may act as a mixing agent, fully or 
partially replacing the effect of water in assisting mass transfer, even when 
neither cellulose nor enzymes are solubilised in the oleyl alcohol. As 
previously discussed, the interconnection of factors affecting the yield is 
very characteristic of lignocellulose hydrolysis, complicating the 
identification of limiting factors.  

There is no doubt that water plays a number of important roles in 
enzymatic hydrolysis, and that these roles become even more crucial in 
systems with no free water. As cellulases can only break down cellulose 
when adsorbed onto the material, efficient mass transfer of enzymes is likely 
to increase conversion. It is important to note that mass transfer takes places 
at several different levels, e.g. in “bulk” around the cell wall surface, in cell 
wall pores and inside the cell wall matrix itself. In transfer of enzymes in the 
cell wall, the total solids content may not be the most important parameter. 
Similarly, diffusion of released sugars away from the catalytic sites will 
theoretically prevent local product inhibition. As discussed, water content 
also affects mechanical stirring, which in turn may directly change the size 
distribution of larger particles. Unfortunately, our understanding of these 
mechanistic interactions is limited and also depends on the cell wall structure 
of the substrate. It is likely that such factors affect the degree of conversion 
at very high solids loadings, essentially causing a decrease in yield when 
over a certain solids loading. However, as the observed solids effect is also 
seen at loadings as low as 2-5% solids, mass transfer at neither the 
macroscopic nor molecular level can be responsible for the solids effect.  

Related to the diffusion of enzymes is the phenomenon of substrate 
inhibition, which has previously been described in connection with 
hydrolysis of cellulose [132]. At increased substrate concentrations, with a 
fixed enzyme loading, the lateral (two-dimensional) diffusion of bound 
enzymes is believed to be restricted, thus inhibiting the synergy between exo 
and endo-enzymes [133]. However, this form of synergistic inhibition relates 
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to a fixed enzyme load where the amount of substrate is increased, i.e. a 
decreasing enzyme-substrate ratio as opposed to a constant ratio used in our 
and other’s experiments. Therefore, this phenomenon is not likely to be 
involved in the solids effect. Traditionally, substrate inhibition is explained 
as a situation where two molecules of substrate bind to the enzyme 
simultaneously, thereby blocking activity. However, this mechanism is not 
likely to be applicable to the hydrolysis of an insoluble substrate such as 
cellulose [134]. 

In conclusion, water itself as a substrate or diffusing agent in enzymatic 
hydrolysis does not appear to be the limiting factor responsible for the solids 
effect, nor is substrate inhibition involved. 
 
 

 
 
Figure 7: Upper graph shows the decreasing conversion in enzymatic conversion of 
filter paper at increasing solids loading (20 FPU per gram dry matter (DM), 24 
hours hydrolysis at small laboratory scale). Points are averages of three 
observations. The lower graph shows the adsorption of enzyme on the solid fraction 
based on total nitrogen content, also as a function of initial solids content. Values 
are averages of three observations and have been corrected for varying amounts of 
remaining solids. 
 
Cellulase adsorption 
 
The degree of adsorption of cellulases is known to be a controlling or 
determining factor for conversion rates and yields [135,136]. It is also well-
established that certain hydrolysis products are able to inhibit cellulase 
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adsorption [137]. Interestingly, it has recently been shown that glucose and 
especially cellobiose strongly inhibit cellulase adsorption in a near-linear 
fashion [138].  

In order to investigate whether adsorption (or lack thereof) could possibly 
be involved in the observed solids effect, the adsorption of enzyme was 
measured in hydrolysis of filter paper at different solids contents. As seen in 
Fig. 7, there is a near-linear correlation between initial solids content and the 
amount of adsorbed enzyme (percentage of nitrogen adsorbed on solids of 
total nitrogen added). After 24 hours of hydrolysis of 5% solids filter paper, 
approximately 40% of the added enzyme was adsorbed onto the remaining 
solids. The adsorption decreases with increasing solids content and at 25% 
solids content, only approximately 17% of the added enzyme is adsorbed, 
even when at this point there is more solids remaining than at lower solids 
loadings. Even more interestingly, there is a statistically significant 
correlation between the decrease in conversion and the decrease in enzyme 
adsorption. In other words, it appears that the increasing concentrations of 
glucose and cellobiose in high-solids hydrolysis result in inhibition of 
adsorption of the enzymes. As adsorption is a requirement for hydrolysis of 
the insoluble substrate, this in return results in lower conversion at 
increasing solids concentrations.  

Based on an experiment with a fixed cellobiose concentration, Kumar and 
Wyman argue that binding inhibition can be reversed using high substrate 
concentrations [138]. However, working with a fixed inhibitor concentration 
over a range of solids concentrations does not reflect the actual conditions 
since high solids loadings will invariably lead to higher product 
concentrations. At any degree of conversion, the ratio between substrate and 
inhibitor (product) in hydrolysis will be constant no matter the initial solids 
concentration. Xiao and co-workers also observed reduced impact of 
products on inhibition at higher solids loadings but again it was measured 
against a constant inhibitor concentration [120]. Based on our experiments 
we do not believe that increased solids concentrations can reverse binding 
inhibition, rather the opposite. 

It can be argued that the adsorption inhibition phenomenon described 
above is a variant of product inhibition. However, in both competitive and 
non-competitive inhibition the catalytic site is affected, which is not 
necessarily the case with inhibition of adsorption. β-glucosidase does not 
bind to the substrate and is therefore not affected in this way. The 
combination of binding inhibition of endoglucanases and cellobiohydrolases 
and β-glucosidase being inhibited to a smaller extent may explain the 
relatively low cellobiose-levels under conditions where the hydrolysis is 
obviously affected. 

It is not yet known to what extent inhibition of adsorption is responsible 
for the solids effect or if it can be partially avoided through SSF. It has been 
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shown previously that adsorption inhibition could not explain the decrease in 
cellulase activity [139]. In an attempt to learn more about the nature of the 
inhibition, we used the data from the experiment in Fig. 2, Paper V to 
investigate the relationship between the rate of reaction and glucose 
concentration. We found no direct relationship (not shown) - possibly due to 
the fact that different proportions of the substrate remained, i.e. when 60% of 
the substrate has been converted, the remainder is more difficult to hydrolyse 
than if only 40% has been converted. 

It is likely that the binding inhibition is caused by the cellulose binding 
domains (CBDs) of the cellulases being affected by glucose and/or 
cellobiose but this issue remains to be much more extensively investigated. 
As previously described, binding of cellulases and clarification of the role of 
CBDs is an important topic in cellulosic biomass conversion, and has been 
the topic of numerous studies [64,140]. Unfortunately, very little information 
on inhibition and desorption of CBDs/CBMs appears to be available. 
Experiments with isolated CBDs are likely to reveal important information 
on this topic. Also, an improved understanding of the structural basis by 
which the CBDs bind to the target carbohydrate may be crucial in 
elucidating the underlying mechanisms and determining which products are 
causing the inhibition as well as the manner of the inhibition. It also remains 
to be investigated how adsorption inhibition functions over time. Differences 
in ability to desorb from the substrate have been shown for two 
cellobiohydrolases [86]. Based on this, it is possible that certain CBDs are 
more or less susceptible to binding inhibition. Being able to alter or change 
the CBD of cellulases to make them less susceptible to high concentrations 
of products could contribute to making high yields at high solids 
concentrations a reality.  
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SUMMARY 
 
The increased interest in using cellulosic substrates as feedstocks for the 
production of ethanol has resulted in intensive research in enzymatic 
hydrolysis of lignocellulose. Despite important advances in substrate 
pretreatment and cellulase production in recent years, a better understanding 
of the factors and mechanisms involved in the interactions of substrate and 
enzymes is important for further developments in making bioethanol (and 
chemicals) a cost-effective and sustainable alternative.  

This thesis has dealt with enzyme-substrate interactions in enzymatic 
hydrolysis of pretreated biomass. The required pretreatment step is crucial in 
preparing lignocellulosic substrate for hydrolysis. In Paper II, hydrother-
mally pretreated wheat straw was investigated. Contrary to common belief, it 
was found that the fibrillar structure of the cell wall was relatively intact, 
showing that a partial decomposition of the cell wall structure is not needed 
in order to render the material less recalcitrant. Significant re-localisation of 
lignin to the fibre surface was observed. Together with hemicellulose 
removal, this re-localisation is thought to increase enzyme accessibility, an 
important factor in substrate degradability.  

Experiments with surfactants showed a significant positive effect on 
hydrolysis, resulting in either a reduced hydrolysis time or lower enzyme 
dosage requirement (Paper III). The results supported the current theory 
that surfactants function by preventing unproductive enzyme adsorption to 
lignin. Although lignin is a limiting factor in lignocellulose conversion, the 
surfactant effect was found to not directly correlate with the lignin content of 
the material but rather the pretreatment method. The effect was most 
pronounced with straw that had been pretreated with sulfuric acid. 

Working at high solids loading is important for the efficiency of 
enzymatic conversion of lignocellulose. The work of this thesis has in 
particular focused on the issues and challenges related to high solids 
conversions (Paper IV and V). The extent of hydrolysis of cellulosic 
biomass was investigated at varying solids concentrations up to 40%. The 
conversion decreased at increasing solids concentration in a linear fashion, 
an effect that appears to be an intrinsic feature of lignocellulose conversion. 
This decrease is highly problematic as it partially off-sets the significant 
advantages of working at high solids concentrations. It was found that the 
solids effect was not caused by lignin content or hemicellulose-derived 
inhibitors. Insufficient mixing of the insoluble substrate was not causing the 
effect either. Rather, the increased concentrations of products (glucose and 
cellobiose) at high solids concentration are likely causing product inhibition, 
even when the enzyme-to-inhibitor ratio is constant. However, the solids 
effect has also been observed in SSF where much less sugar is present, 
although additional parameters are introduced when including fermentation. 
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Also, the linearity of the effect over a large range of solids contents did not 
fit with the current model for product inhibition. 

Interestingly, it was found that at increasing solids concentrations, the 
proportion of adsorbed cellulase decreased. There was a statistically 
significant correlation between this adsorption inhibition and the decreasing 
yields at increasing substrate concentrations. Thus, the solids effect can be 
explained by inhibition of the binding of the cellulases. The exact extent and 
mechanism of the adsorption inhibition remain unknown. 
 
Future perspectives 
 
One of the defining aspects of scientific research is the generation of 
seemingly never-ending questions. Not surprisingly, the work and results 
this thesis is based on has generated many questions, some of which may be 
important for further increasing the conversion of cellulosic biomass into 
fermentable sugars. 

A better understanding of how enzymes and lignocellulose interact is still 
needed. A prerequisite for the decomposition is the pretreatment step. 
Further investigations on the spatial or structural arrangement of the cell wall 
components of the pretreated material and how it is being hydrolysed is 
likely to provide insight, that can improve both pretreatment and enzymatic 
hydrolysis 

In future studies it is important to look further into the mechanisms 
responsible for the performance of cellulase CBDs under conditions with a 
high concentration of solids and products. Precisely how is the adsorption 
inhibited and by which products? A key step may be a better understanding 
of the structural basis of CBDs. Engineering enzymes to be more resistant to 
high sugar concentrations would result in higher conversions at high solids 
concentrations, in turn significantly improving the viability of lignocellulosic 
biomass conversion and bioethanol production.  
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DANSK SAMMENFATNING 
 
Den øgede interesse i at bruge cellulose-holdigt biomasse til produktion af 
bioethanol har resulteret i intensiv forskning i enzymatisk hydrolyse af lig-
nocellulose. På trods af vigtige fremskridt i forbehandling af biomasse samt 
enzymproduktion er en forbedret forståelse af de faktorer og mekanismer, 
der er afgørende for interaktionen mellem substrat og enzymer, et vigtig 
skridt mod at gøre bioethanol et økonomisk og bæredygtigt alternativ til 
fossile brændstoffer. 

Denne afhandling omhandler enzym-substrat-interaktioner i enzymatisk 
hydrolyse af forbehandlet lignocellulose. Forbehandling er et nødvendigt trin 
i processen og er afgørende for den enzymatiske nedbrydning. I Paper II 
blev det undersøgt, hvordan en hydrotermisk forbehandling ændrer substra-
tet. Normalt beskrives effekten af forbehandling som en delvis nedbrydning 
af cellevæggen. Det viste sig dog at fibrilstrukturen i cellevæggen var stort 
set uændret, hvilket indikerede at en energi-intensiv, partiel nedbrydning af 
cellevæggen ikke er nødvendig for at gøre biomasse enzymatisk nedbryde-
lig. Det blev endvidere vist, at en stor mængde af halmens lignin var blevet 
transporteret til overfladen af fibrene. Sammen med den delvise opløsning af 
hemicellulose menes denne relokalisering at være afgørende for enzymernes 
adgang til cellulosen, en vigtig faktor i nedbrydningsprocessen. 

Eksperimenter med overflade-aktive stoffer, såkaldte surfactanter, viste 
en signifikant positiv effekt på enzymatisk hydrolyse, hvilket resulterede i en 
enten reduceret hydrolysetid eller lavere enzymdosis (Paper III). Resulta-
terne underbyggede desuden teorien om at surfactanter fungerer ved at for-
hindre uproduktiv adsorption af enzymer på ligninoverflader. Selvom lignin 
er en begrænsende faktor i konvertering af lignocellulose og at effekten af 
surfactants er relateret af lignin, så viste resultaterne, at effekten af surfactan-
ter ikke er direkte proportional med ligninindholdet, men i højere grad af-
hænger af forbehandlings-metoden.  

Højt tørstofindhold under den enzymatisk hydrolyse er en yderst vigtig 
parameter for effektiviteten og rentabiliteten af konverteringsprocessen fra 
biomasse til ethanol. Arbejdet i denne afhandling har i høj grad fokuseret på 
dette emne samt de udfordringer, der er tilknyttet (Paper IV og V). Graden 
af hydrolyse ved varierende tørstofindhold op til 40% blev undersøgt. Kon-
verteringen faldt lineært proportionelt med et stigende tørstofindhold, et 
forhold som ser ud til at være et naturligt forhold ved enzymatisk hydrolyse. 
Dette fald er problematisk, da det modvirker fordelene ved at arbejde ved 
højt tørstofindhold. Det blev vist, at den øgede koncentration af sukkerpro-
dukter resulterer i produktinhibering, selv når forholdet mellem enzym og 
inhibitor var konstant. Lineariteten af fænomenet passede dog ikke med den 
nuværende model for produktinhibering. Derimod blev det konstateret at 
andelen af adsorberet enzym faldt ved stigende tørstof- og sukkerindhold. 
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Den lineære sammenhæng var statistisk signifikant og kan forklares ved 
adsorptionsinhibering af sukkerprodukter. Mekanismen bag denne adsorp-
tionsinhibering er endnu ukendt. 
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Abstract: The economic dependency on fossil fuels and the resulting effects on climate and environment have put 

tremendous focus on utilizing fermentable sugars from lignocellulose, the largest known renewable carbohydrate 

source. The fermentable sugars in lignocellulose are derived from cellulose and hemicelluloses but these are not 

readily accessible to enzymatic hydrolysis and require a pretreatment, which causes an extensive modifi cation of the 

lignocellulosic structure. A number of pretreatment technologies are under development and being tested in pilot 

scale. Hydrolysis of lignocellulose carbohydrates into fermentable sugars requires a number of different cellulases 

and hemicellulases. The hydrolysis of cellulose is a sequential breakdown of the linear glucose chains, whereas 

hemicellulases must be capable of hydrolysing branched chains containing different sugars and functional groups. 

The technology for pretreatment and hydrolysis has been developed to an extent that is close to a commercially 

viable level. It has become possible to process lignocellulose at high substrate levels and the enzyme performance 

has been improved. Also the cost of enzymes has been reduced. Still a number of technical and scientifi c issues 

within pretreatment and hydrolysis remain to be solved. However, signifi cant improvements in yield and cost 

reductions are expected, thus making large-scale fermentation of lignocellulosic substrates possible. © 2007 Society 

of Chemical Industry and John Wiley & Sons, Ltd

Keywords: cellulases; hemicellulases; pretreatment; biorefi nery

Introduction

 T he current dependence on oil for energy and produc-
tion of numerous chemicals and products together 
with the climate changes caused by fossil fuels has put 

tremendous focus on fi nding alternative renewable sources 
for the production of fuels and chemicals. In this respect, 
biomass will be a major contributor in the future supply of 
energy, chemicals and materials.1,2 At present, large quanti-
ties of bioethanol are produced from sugar cane and cereals 

Correspondence to: Henning Jørgensen, Danish Centre for Forest, Landscape and Planning, University 

of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark. E-mail:hnj@life.ku.dk

Review 

 © 2007 Society of Chemical Industry and John Wiley & Sons, Ltd  

5353



120 © 2007 Society of Chemical Industry and John Wiley & Sons, Ltd  |  Biofuels, Bioprod. Bioref. 1:119–134 (2007); DOI: 10.1002/bbb

H Jørgensen, JB Kristensen, C Felby Review: Conversion of lignocellulose into fermentable sugars

like corn or grain; in 2006 this production was approxi-
mately 46 million m3. In order to expand this production 
signifi cantly and be able to produce other products and 
chemicals, the whole plant, including stalk and leaves 
(the lignocellulosic part), from both herbaceous and woody 
plants has to be effi  ciently utilized. 

Lignocellulose is composed of up to 75% carbohydrates, 
and in the near future it will become an essential source for 
fermentable carbohydrates. Th ese may form the basis for 
production of liquid biofuel for the transport sector as well 
as a large variety of commodity chemicals and biodegrad-
able materials. It is expected that the present fossil-based 
petro-chemical industry will gradually be replaced by biore-
fi neries, which produce a number of valuable products from 
lignocellulosic materials, including energy in the form of 
fuels, heat and electricity (Fig. 1). Th e use of carbohydrates 
will, in the future, provide a viable route to products such 
as alcohols, esters and carboxylic acids, which are expensive 
to produce in the petroleum industry.2 A key issue for the 
biorefi neries is the conversion of carbohydrates from ligno-
cellulosic feedstocks into fermentable sugars – the so-called 
‘sugar platform’. Effi  cient and cost-eff ective hydrolysis of the 
carbohydrates cellulose and hemicellulose into monosac-
charides is a challenge for their use and attention should be 
focused on this step.2,3 

Several schemes for the conversion of lignocellulosics 
into sugars have been demonstrated in laboratory and pilot 
scale.4–6 Th e general concept involves a pretreatment step 
that increases the digestibility of the material followed 
by enzymatic hydrolysis to liberate the monosaccharides. 
Improvement of pretreatment technologies and enzymatic 

hydrolysis gives scope for numerous ongoing research 
projects. Lignocellulose is a complex matrix of polymers, 
and effi  cient hydrolysis of the carbohydrates to monosaccha-
rides requires not only effi  cient pretreatment and enzymes 
but also optimization of both steps in relation to each other. 

Th is review will give an overview of the various chal-
lenges and opportunities that exists. Diff erent approaches to 
optimize both process steps and improve their interactions 
are presented and discussed.

Characteristics of lignocellulosic materials

Plant biomass is composed primarily of cellulose, 
hemicelluloses and lignin and smaller amounts of pectin, 
protein, extractives and ash. Cellulose, hemicelluloses and 
lignin are present in varying amounts in the diff erent parts 
of the plant and they are intimately associated to form the 
structural framework of the plant cell wall.7,8 Th e composi-
tion of lignocellulose depends on plant species, age and 
growth conditions. Distribution of cellulose, hemicelluloses 
and lignin as well as the content of the diff erent sugars of the 
hemicelluloses varies signifi cantly between diff erent plants 
(Table 1).

Cellulose, the most abundant constituent of the plant cell 
wall, is a homo-polysaccharide composed entirely of 
d-glucose linked together by β-1,4-glucosidic bonds and 
with a degree of polymerization of up to 10 000 or higher. 
Th e linear structure of the cellulose chain enables the forma-
tion of both intra- and intermolecular hydrogen bonds 
resulting in the aggregation of chains into elementary 
crystalline fi brils of 36 cellulose chains. Th e structure of 

Pretreatment
and

enzymatic
hydrolysis

Sugars Fermentation

Wood

Ethanol(Fuel)

Chemicals
(Carboxylicacids,
alcohols,ethers)

Lignin and residues

Chemicals, Feed

Combustion for
generation of
heat and power

Agricultural 
residues

Energy crops

Municipal waste

Wood residues

Figure 1. Overview of an integrated biorefi nery producing fuel, chemicals and energy from a variety of 

lignocellulosic materials. 
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the elementary fi bril is crystalline; however, some sources 
claim that the surface could be viewed as amorphous.9 
Th e structure of cellulose along with the intermolecular 
hydrogen bonds gives cellulose high tensile strength, makes 
it insoluble in most solvents and is partly responsible for the 
resistance of cellulose against microbial degradation.10 Th e 
hydrophobic surface of cellulose results in formation of a 
dense layer of water that may hinder diff usion of enzymes 
and degradation products near the cellulose surface.11 

Hemicelluloses are complex heterogeneous polysaccha-
rides composed of monomeric residues: d-glucose, d-galac-
tose, d-mannose, d-xylose, l-arabinose, d-glucuronic acid 
and 4-O-methyl-d-glucuronic acid. Hemicelluloses have a 
degree of polymerization below 200, side chains and can be 
acetylated.8 Hemicelluloses are classifi ed according to the 
main sugar in the backbone of the polymer, e.g. xylan 
(β-1,4-linked xylose) or mannan (β-1,4-linked mannose). 
Plants belonging to the grass family (Poaceae), e.g. rice, 
wheat, oat and switch grass have hemicelluloses that are 
composed of mainly glucuronoarabinoxylans.12 In soft woods 
such as fi r, pine and spruce, galactoglucomannans are the 
principal hemicelluloses, while arabinoglucuronoxylans are 
the second most abundant.13 In hardwood species, such as 

birch, poplar, aspen or oak, 4-O-methyl-glucuronoxylans 
are the most abundant hemicelluloses with glucomannans 
being the second most abundant.14 Due to these diff erences 
in hemicellulose composition, agricultural waste products 
like straw and corn stover as well as hardwood materials are 
rich in the pentose sugar xylose, whereas soft woods are rich 
in the hexose sugar mannose (Table 1).

Lignin is a complex network formed by polymerization 
of phenyl propane units and constitutes the most abundant 
non-polysaccharide fraction in lignocellulose. Th e three 
monomers in lignin are p-coumaryl alcohol, coniferyl 
alcohol and sinapyl alcohol and are joined through alkyl–
aryl, alkyl–alkyl and aryl–aryl ether bonds. Lignin embeds 
the cellulose thereby off ering protection against microbial 
and chemical degradation. Furthermore, lignin is able to 
form covalent bonds to some hemicelluloses, e.g. benzyl ester 
bonds with the carboxyl group of 4-O-methyl-d-glucuronic 
acid in xylan. More stable ether bonds, also known as lignin 
carbohydrate complexes (LCC), can be formed between 
lignin and arabinose or galactose side groups in xylans and 
mannans.8 In general, herbaceous plants, such as grasses, 
have the lowest content of lignin, whereas soft woods have the 
highest lignin content (Table 1). 

Table 1. Composition of different lignocellulosic materials.

Material

Glucosea Xyloseb Arabinoseb Mannoseb Lignin

Reference[% of total dry weight]

Hardwood

Birch 38.2 18.5 – c 1.2 22.8 136

Willow 43.0 24.9 1.2 3.2 24.2 31

Softwood

Spruce 43.4 4.9 1.1 12.0 28.1 34

Pine 46.4 8.8 2.4 11.7 29.4 137

Grasses (Poaceae)

Wheat straw 38.2 21.2 2.5 0.3 23.4 137

Rice straw 34.2 24.5 n.d.d n.d.d 11.9 137

Corn stover 35.6 18.9 2.9 0.3 12.3 136
aGlucose is mainly coming from cellulose. 
bXylose, arabinose and mannose make up hemicelluloses.
cBelow detection limit.
dNot determined.
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Pretreatment technologies

Due to the robust structure of lignocellulosic biomass, 
pretreatment is a prerequisite for enzymatic hydrolysis into 
fermentable sugars to be completed within an industrially 
acceptable time frame. Over the years a number of diff erent 
technologies have been developed for pretreatment of ligno-
cellulose (Table 2). Th ere is an overall consensus that the 
successful pretreatment should:15

• maximize the enzymatic convertibility
• minimize loss of sugars
• maximize the production of other valuable 

by-products, e.g. lignin
• not require the addition of chemicals toxic to the 

enzymes or the fermenting microorganisms
• minimize the use of energy, chemicals and capital equip-

ment
• be scalable to industrial size.

In reality it is diffi  cult to fully accomplish all the above-
mentioned issues in any process. However, the last two 
points are important for economical and practical viability 
of a given industrial process.

Various technologies use diff erent strategies to increase 
the enzymatic convertibility. Th e general ideas are to alter or 
remove hemicelluloses and/or lignin, increase surface area 
and decrease the crystallinity of cellulose.6,16 Removal of 
lignin, and to a less extent hemicelluloses, has been proven 
to be eff ective in increasing the cellulose hydrolysis.17–19 
Th e main principles in the various technologies are listed 
in Table 2, but a comprehensive review of all technologies 

is beyond the scope of this article. Th e reader is referred 
to other review articles.6,16,20,21 Th e following section will 
concentrate on the most widely reported pretreatment tech-
nologies along with those tested in pilot scale and potential 
technologies for industrial scale. 

Steam pretreatment and acid-catalysed 

pretreatment technologies

For many years steam pretreatment/explosion technologies 
have been used for fractionation of wood or straw for the 
production of fi bre boards and paper. Facilities for batch or 
continuous operation have been operated in both pilot and 
commercial scale, proving the reliability of the technolo-
gies.22 Examples are the batch digester developed for the 
Masonite process23 or the continuous Stake tech digester 
from SunOpta (http://sunopta.com).22 

In steam pretreatment, the material is heated rapidly 
with steam to 180–210 °C for typically 1–10 min. Oft en the 
steam pretreatment is combined with an explosive discharge 
of the material aft er the pretreatment – steam explosion.21,24 

During the steam pretreatment, hemicellulose acetyl 
groups are cleaved off  and the acids will catalyse partial 
hydrolysis of the hemicelluloses to mono- and oligosaccha-
rides.25 Removal of hemicelluloses from the microfi brils is 
believed to expose the cellulose surface and increase enzyme 
accessibility to the cellulose microfi brils.26 Lignin is only 
to a limited extent removed from the material during the 
pretreatment but rather redistributed on the fi bre surfaces 
due to melting and depolymerization/repolymerization reac-
tions.27,28 Th e removal and redistribution of hemicellulose 
and lignin increases the pore volume of the pretreated mate-
rial. Rapid fl ashing to atmospheric pressure and turbulent 

Table 2. List of pretreatment methods and main mechanisms involved.

Pretreatment method Main principle
Dilute acid
Steam explosion (auto hydrolysis)
Acid-catalysed steam explosion

Partial hydrolysis and solubilization of hemicelluloses, redistribution of lignin on fi bre surfaces, 
fractionation of fi bres

Hot water fl ow through Removal of hemicelluloses and some lignin

Lime Removal of lignin

Wet oxidation
Wet explosion

Removal and partial degradation of lignin, solubilization and oxidation of some
hemicelluloses

AFEX Cleavage of lignin and partially depolymerization of hemicelluloses and cellulose

Organosolv/Alcell Removal of lignin and some hemicelluloses
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fl ow of the material work to fragment the material, thereby 
increasing the accessible surface area.21 Th e microfi brils do 
not seem to be aff ected signifi cantly by the pretreatment.27 
Th e fragmentation itself is believed to be of less importance 
to the digestibility of the material.16 Depending on the 
severity of the pretreatment, some degradation of the cellu-
lose to glucose will also take place.

Steam (explosion) pretreatment without addition of 
acid as a catalyst has been used for pretreatment of agricul-
tural materials like straw and corn stover and hardwoods. 
In general it is found that addition or impregnation of the 
material with H2SO4 or SO2 (typically 0.3 to 3% (w/w)) prior 
to pretreatment can decrease time and temperature and at 
the same time increase the recovery, reduce formation of 
inhibitors and improve the enzymatic hydrolysis.29–31 For 
pretreatment of soft woods, the addition of an acid catalyst 
(H2SO4or SO2) is a prerequisite to make the substrate acces-
sible for enzymes.21,32–34 Impregnation with gaseous SO2 has 
the advantage that it can quickly penetrate into the material. 
Corrosion problems are also less using SO2 compared to 
H2SO4.24

Steam pretreatment with addition of a catalyst is the 
technology that has been claimed to be closest to commer-
cialization. It has been tested extensively for pretreatment 
of a large number of diff erent lignocellulosic feedstocks. In 
relation to bioethanol production, the technology has been 
up-scaled and operated at pilot scale at the Iogen demonstra-
tion plant in Canada. Th e technology is also being imple-
mented in a plant operated by the company Abengoa in 
Salamanca in Spain. 

Another acid-catalysed pretreatment technology is dilute 
acid pretreatment. In dilute acid pretreatment, the lignocel-
lulosic material is mixed with dilute acid (typically H2SO4) 
and water to form a slurry, heated by steam to the desired 
temperature, and aft er a given residence time fl ashed to 
atmospheric pressure. Th is is in essence very similar to the 
steam pretreatment and in the literature there is not always 
a clear distinction between the two methods. Generally, the 
material used in steam pretreatment is only moist whereas a 
slurry with a lower dry matter content down to 5% is applied 
in dilute acid pretreatment. Another diff erence is that oft en 
the particle size is smaller in dilute acid pretreatment. 
Usually, acid concentration, pretreatment temperature and 

residence time in the reactor are rather similar to acid-cata-
lysed steam pretreatment, although lower temperatures and 
longer residence times are sometimes employed.21,35 

Th e dilute acid pretreatment can be performed in 
plug-fl ow reactors, but other reactor designs have been 
used.21,36 Counter-current or continuous counter-current 
shrinking-bed reactors have been tested in laboratory and 
bench scale.37 Th e National Renewable Research Laboratory 
in the USA (NREL) has been operating continuous dilute 
acid pretreatment of corn stover in a pilot scale process 
development unit (1 ton per day) for up to 15 days.36 In 
Örnsköldsvik in Sweden, the company SEKAB is operating a 
pilot plant using dilute acid hydrolysis for complete hydrol-
ysis of wood residues but they will also run the process 
as a pretreatment combined with enzymatic hydrolysis 
(http://sekab.com). Since 2005, the company DONG Energy 
in Denmark has operated a 100–1000 kg h−1 pilot plant for 
semi-continuous counter-current pretreatment (http://
bioethanol.info). Th e plant is designed for testing various 
pretreatment methods, to operate with large particles and at 
dry matter concentrations up to 50% in the reactor. Pretreat-
ment of wheat straw has been performed with water only 
(hydrothermal pretreatment), with addition of dilute H2SO4 
or alkaline (see methods below).5 

Pretreatment under alkaline conditions

A number of methods for pretreatment under alkaline 
conditions have also been successfully tested: Lime pretreat-
ment, wet oxidation and ammonia fi bre/freeze explosion 
(AFEX). As opposed to the acid-catalysed methods, the 
general principle behind alkaline pretreatment methods is 
the removal of lignin whereas cellulose and a major part of 
the hemicelluloses remain in the solid material. 

Lime pretreatment with calcium carbonate or sodium 
hydroxide is usually employed at low temperatures 
(85–150°C) but at rather long residence times, from 1 h and 
up to several days.6,16 From a processing perspective such 
long residence times are less attractive and lime pretreat-
ment has not been implemented in large scale.

Wet oxidation has been used as a pretreatment method 
for a number of lignocellulosic materials; straw, corn stover, 
bagasse and soft wood.38–41 Wet oxidation is a thermal 
pretreatment at 180–200°C for 5–15 min with addition of 
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an oxidative agent such as H2O2 or over-pressure of oxygen. 
Th e pretreatment is performed at 5–20% dry matter, and 
oft en the initial pH is increased by the addition of alkali 
such as sodium carbonate. Performing wet oxidation under 
acidic conditions has not proven benefi cial.39,41 In wet oxida-
tion, some of the lignin but also hemicelluloses are partially 
oxidized to low molecular weight carboxylic acids, CO2 and 
water. Th e degradation products from lignin (phenolics) and 
sugars (furans), which are inhibitory to microorganisms, can 
be oxidized to carboxylic acid.42 

A modifi cation of the wet oxidation capable of handling 
large particles and a dry matter up to 30% has recently 
been developed, termed wet explosion. In wet explosion the 
oxidizing agent is introduced during pretreatment aft er a 
certain residence time. Th e pretreatment is then terminated 
by fl ashing to atmospheric pressure.43 A pilot scale facility 
for using this technology was build at the Technical Univer-
sity of Denmark in 2006.

Ammonia fi bre explosion (AFEX) has shown good 
results on pretreatment of corn stover, rice straw and switch-
grass.44–46 In AFEX the lignocellulosic material is treated 
with liquid ammonia at moderate temperatures (90–100°C) 
and high pressure (17–20 bar) for 5–10 min. A unique feature 
of AFEX is the possibility to effi  ciently process material 
with a dry matter content of up to 60%.47 Th e ammonia can 
be recovered aft er the pretreatment and unlike most other 
methods no liquid fraction with dissolved products is gener-
ated by the AFEX pretreatment as ammonia is evaporated. 
Consequently, no lignin or other substances are removed 
from the material but lignin–carbohydrate complexes are 
cleaved and deposition of lignin on the surface of the mate-
rial is observed. Furthermore, AFEX results in depolymeri-
zation of the cellulose and partially hydrolysis of the hemi-
celluloses.45 Only little degradation of sugars occurs and 
therefore low concentrations of inhibitors are formed.47 Th e 
AFEX method enables operating the process at high solids 
concentrations. However, so far no large-scale or pilot plant 
operation with AFEX has been reported.

Extractive pretreatment

Organosolv pretreatment or the Alcell® pulping process is a 
technology in which the lignocellulosic material is deligni-
fi ed by an extraction process involving the use of aqueous 

ethanol (40–60% ethanol) at 160–200°C for 30–60 min with 
a wood-to-liquid ratio of 1:7–10 (w/v).18,48 Sulphuric acid is 
usually added as a catalyst. Th e majority of the hemicellu-
loses are removed and to some extent degraded, for example 
to furfural.48 Sodium hydroxide has also been used as a cata-
lyst.15 From the organosolv process lignin of high quality can 
be isolated, and therefore potentially add extra income to 
the biorefi nery.18 Th e Canadian company Lignol has a pilot 
plant based on the organosolv process and it has been tested 
successfully with soft woods.18,49 

Challenges for the development of pretreatment 

technologies

One of the challenges for pretreatment technologies is 
energy effi  ciency. With respect to utilization of biomass 
for bioethanol production a lot of attention has been on 
the energy balance of the process.50 All of the pretreatment 
technologies presented above in general rely on the prin-
ciple of heating the material to temperatures in the area of 
100 to 200°C. Pretreatment is therefore energy intensive. 
Furthermore, some technologies require or have only been 
tested with small particle sizes but grinding or milling is 
also an energy-intensive unit operation.51 A variety of tech-
nologies is on the market or has been described but most 
research has so far been on optimizing the technologies 
towards optimum convertibility of the material and reduced 
formation of degradation products. To make biorefi neries 
cost eff ective more focus has to be on energy effi  ciency of 
the processes and minimized water usage. Th is means that 
the processes have to: (1) operate with large particle sizes to 
reduce the energy used for size reduction; (2) operate at high 
solids concentrations to reduce water and energy usage; (3) 
be integrated to use surplus heat/steam from other proc-
esses in the pretreatment. In our opinion this also means 
that pretreament technologies relying on extensive usage of 
electricity, e.g. heating by microwaves,52 are not viable, as 
electricity generation oft en result in waste heat production 
that cannot be effi  ciently or practically utilized.

Pretreatment technologies must be developed with 
robust reactor systems capable of operating at high solids 
concentration with large particles and harsh biomass types 
such as straw and rice straw, which contain high amounts 
of silica, introducing severe wear and tear on moving parts. 
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Even steam explosion technologies that have been used 
in the pulp and paper industry for many years need to be 
validated with other types of lignocellulosic materials than 
wood. 

Enzymes for hydrolysis of lignocellulose

Cellulose comprises the largest fraction of the sugars in 
lignocellulose (Table 1) and glucose is for many microorgan-
isms the preferred carbon source. However, development of 
microorganisms fermenting hemicellulose sugars effi  ciently 
is rapidly progressing.4, 53 Many of the pretreatment methods 
also partially remove and degrade the hemicelluloses. Most 
focus has therefore traditionally been put on improving 
cellulases and decreasing the costs associated with the enzy-
matic hydrolysis of cellulose.26,54,55 However, some pretreat-
ment methods leave the hemicelluloses in the material and 
effi  cient hydrolysis of these materials therefore also requires 
the use of hemicellulases. As hemicelluloses vary between 
diff erent plant species, the optimal enzyme mixture is most 
likely to be tailor made or adjusted to each diff erent kind of 
material. 

The enzyme system

Effi  cient hydrolysis of cellulose requires a number of 
enzymes. According to the traditional enzyme classifi ca-
tion system the cellulolytic enzymes are divided into three 
classes; exo-1,4-β-d-glucanases or cellobiohydrolases (CBH) 
(EC 3.2.1.91), which move processively along the cellulose 
chain and cleave off  cellobiose units from the ends; endo-1,
4-β-d-glucanases (EG) (EC 3.2.1.4), which hydrolyse internal 
β-1,4-glucosidic bonds randomly in the cellulose chain; 1,4-
β-d-glucosidases (EC 3.2.1.21), which hydrolyse cellobiose to 
glucose and also cleave of glucose units from cellooligosac-
charides. All these enzymes work synergistically to hydro-
lyse cellulose by creating new accessible sites for each other, 
removing obstacles and relieving product inhibition.56,57

Hemicelluloses are heterogeneous with various side 
groups and as such the hemicellulolytic system is more 
complex. Th e hemicellulase system includes among others 
endo-1,4-β-d-xylanases (EC 3.2.1.8), which hydrolyse 
internal bonds in the xylan chain; 1,4-β-d-xylosidases (EC 
3.2.1.37), which attack xylooligosaccharides from the 

non-reducing end and liberate xylose; endo-1,4-β-d-
mannanases (EC 3.2.1.78), which cleave internal bonds in 
mannan and 1,4-β-d-mannosidases (EC 3.2.1.25), which 
cleave mannooligosaccharides to mannose. Th e side groups 
are removed by a number of enzymes; α-d-galactosidases 
(EC 3.2.1.22), α-l-arabinofuranosidases (EC 3.2.1.55), 
α-glucuronidases (EC 3.2.1.139), acetyl xylan esterases 
(EC 3.1.1.72) and feruloyl and p-cumaric acid esterases 
(EC 3.1.1.73).58,59

Although cellulose per se is a simple polysaccharide most 
cellulose-degrading fungi produce multiple enzymes that 
are apparently functionally redundant.60 In Trichoderma 
reesei, the most well characterized cellulase producer, two 
cellobiohydrolases, fi ve endoglucanases and two β-glucosi-
dases have been characterized and in addition three putative 
endoglucanases and fi ve β-glucosidases have been identifi ed 
based on similarity of gene sequence to known enzymes.61 
Among the hemicellulases there are also several enzymes 
with similar enzymatic properties within each class, e.g. 
four endoxylanases are produced by T. reesei.61 Due to this 
a detailed classifi cation system with enzyme families based 
on sequence homology and hydrophobic cluster analysis was 
developed and is now accepted for grouping cellulases and 
hemicellulases.62,63 An updated list of the glycosyl hydrolase 
families (GHF) is maintained at the web address www.cazy.
org/fam/acc_GH.htlm (the CAZy database).64 

Most carbohydrate hydrolases are modular proteins 
with a catalytic and a carbohydrate-binding module (CBM). 
CBMs are divided into families similarly to the enzymes as 
mentioned above. At present there are 49 families (www.
cazy.org/fam/acc_CBM.html).64 CBMs were fi rst discovered 
on cellulases but it is now evident that many carbohydrate 
hydrolases acting on insoluble but also soluble polysac-
charides, e.g. xylan, mannan and starch, have CBMs. Th e 
function of the CBM is to bring the catalytic module in 
close contact with the substrate and ensure correct orienta-
tion. Furthermore, for some CBMs a disruptive eff ect on the 
cellulose fi bres has also been shown.65,66 As cellulose is an 
insoluble substrate, the adsorption of the cellulases onto the 
cellulose surface is the fi rst step in the initiation of hydrol-
ysis. Th erefore, the presence of CBMs is essential for fast and 
correct docking of the cellulases on the cellulose. Removal of 
CBMs signifi cantly lowers the hydrolysis rate on cellulose.67
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Factors affecting the enzymatic hydrolysis

Enzymatic hydrolysis of lignocellulose is confronted by a 
number of obstacles that diminish the enzyme performance 
(Fig. 2). Although enzyme price has decreased due to inten-
sive research by, for example, Novozymes and Genencor,55 
enzyme loading should be minimized in order to reduce 
production costs. Th is, however, increases the time needed 
to complete hydrolysis. Th e use of high substrate concentra-
tions increases the problem of product inhibition, which 
results in lower performance of the enzymes. Th e presence 
of lignin, which shields the cellulose chains and adsorbs the 
enzymes, is also a major obstacle for effi  cient hydrolysis. 
Furthermore, the activity of some enzymes might be lost 
due to denaturation or degradation. Other factors are closely 
linked to the substrate composition and thus the pretreat-
ment method employed. 

Operating hydrolysis at high substrate 

concentrations

For almost any application, high sugar concentrations aft er 
the hydrolysis are preferable for the fermentation process. 
Th is will increase the product concentration and facilitate 
the downstream processing and product recovery. Operating 
hydrolysis with high initial substrate concentrations has 
been faced by the problem of product inhibition of especially 
the cellulolytic enzyme system (Fig. 2). Th e β-glucosidases 
from typical cellulase-producing microorganisms are to 
some extent inhibited by glucose (Ki of most β-glucosidases 
is 1–14 mmol L–1 glucose).68,69 Th is results in accumulation 
of cellobiose, which is a potent inhibitor of the cellobio-
hydrolases.70,71 Inhibition of the cellulases by hemicellu-
lose-derived sugars has also been shown.72 Th e competitive 
product inhibition of the β-glucosidases can to some extent 
be overcome by addition of a surplus of β-glucosidase 
activity. Another strategy is to screen for β-glucosidases with 
high glucose tolerance. β-glucosidases with Ki up to 1400 
mmol L–1 have been reported,69,73 and these could be cloned 
into the cellulase-producing microorganisms to produce a 
more effi  cient enzyme mixture. 

Other compounds have also been shown to inhibit the 
enzymes. Among these are degradation products formed 
during the pretreatment. It has been shown that washing the 

pretreated material results in faster conversion of cellulose 
due to removal of inhibitors.74 Th e eff ect of typical degrada-
tion products formed during pretreatment has been tested 
on the activity of cellulases and hemicellulases. Cellulases 
were only signifi cantly inhibited by formic acid, whereas 
compounds like vanillic acid, syringic acid and syringylal-
dehyde in addition to formic acid caused signifi cant inhibi-
tion of xylanases.75,76

Removal of end product (glucose) is also one possi-
bility. Operating the lignocellulose to bioethanol process 
as simultaneous saccharifi cation and fermentation (SSF) is 
frequently employed.77,78 In this way glucose is fermented 
into ethanol thereby alleviating the inhibition by glucose. 
However, the optimum conditions for enzymes and 
fermenting microorganism are usually not the same. Cellu-
lases have an optimum around 50°C whereas yeast and 

Figure 2. Simplistic overview of factors limiting effi cient hydrolysis of 

cellulose (symbolised by the straight lines). 1: Product inhibition of 

β–glucosidases and cellobiohydrolases by glucose and cellobiose, 

respectively. 2: Unproductive binding of cellobiohydrolases onto a 

cellulose chain. Due to the processivity of cellobiohydrolases and 

their strong binding of the cellulose chain in their catalytic core, 

obstacles can make the enzymes halt and become unproductively 

bound. 3 and 4: Hemicelluloses and lignin associated with or 

covering the microfi brils prevent the cellulases from accessing the 

cellulose surface. 5: Enzymes (both cellulases and hemicellulases) 

can be unspecifi cally adsorbed onto lignin particles or surfaces. 6: 

Denaturation or loss of enzyme activity due to mechanical shear, 

proteolytic activity or low thermostability. 
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bacteria have growth optima around 32–37°C. Th e operation 
of SSF is therefore at suboptimal conditions for enzymatic 
hydrolysis. Inhibition by fermentation products should also 
be taken into account. Ethanol is inhibitory to cellulases, 
although less compared to glucose.70,79 In a biorefi nery other 
products, such as organic acids, could be the end product. 
Lactic acid is also inhibitory to cellulases.80 Consequently, 
the eff ect of end product(s) on the enzymes has to be 
evaluated before selecting the hydrolysis and fermentation 
strategy.

Th e fermentable sugars can also be separated by 
employing membrane reactors using ultra fi ltration with a 
cut off  of 50 KDa or less. Th is way, product inhibition from 
glucose and cellobiose can be reduced and the service life of 
the enzymes increased. Membrane reactors can be built with 
separated or combined reaction and separation zones.81 Th e 
technology works well using pure cellulose substrates but 
once lignocellulosic substrates are used, membrane fouling 
is increased. Vigorous stirring may be used to prevent 
fouling but is energy intensive and the shear forces may 
cause inactivation of the enzymes.82 Conversion of cellulose 
in the range 50–90% has been reported, but none on solid 
levels above 15%,83 although higher substrate concentrations 
in the reaction zone can be obtained.84

Operating hydrolysis at initial substrate concentrations 
above 10–15% (w/w) has also been technically diffi  cult, 
especially at laboratory scale. Th e initial viscosity of the 
material at these concentrations is very high, which makes 
mixing diffi  cult and inadequate and the power consump-
tion in stirred tank reactors becomes high.85,86,87 In pilot 
scale plants, 15–20% dry matter has oft en been reported as 
maximum that can be handled.88 During the initial phase of 
hydrolysis, the material is liquefi ed and the viscosity drops 
signifi cantly.86,87,89 Operating the hydrolysis or SSF in batch-
fed mode by adding fresh substrate when the viscosity has 
decreased has been used to increase fi nal substrate concen-
trations added.40, 90 A special reactor designed for operating 
the liquefaction and hydrolysis of lignocellulosic material 
with up to 40% (w/w) initial dry matter have also been inves-
tigated.89 Th e reactor has been up-scaled to 11 m3 at the pilot 
plant of DONG Energy in Denmark. Although it is possible 
to perform hydrolysis and also SSF with initial substrate 
concentrations up to 40% (w/w) it was shown that enzyme 

performance gradually decreased as substrate concentration 
increased. Th is was attributed to inhibition of the enzymes 
by end-products, other inhibitors, presence of high concen-
trations of lignin and mass transfer limitations.89 

Optimizing enzyme composition

Extensive research is being done on improving the perform-
ance of the enzymes. Th is involves screening for new 
enzyme-producing microorganisms, random mutagenesis 
of fungal strains and genetic engineering of individual 
enzymes. Th e development is on increasing specifi c activity, 
modifying CBMs to alter interaction with cellulose, 
increasing tolerance towards end products, improving 
thermal stability to enable operation at higher temperatures 
and in some cases modifying pH optima.55

It has been argued that although companies like 
Novozymes and Genencor have reported substantial 
progress in developing more effi  cient and cheaper enzymes 
for cellulose hydrolysis, these have only been optimized for 
one specifi c substrate and cannot necessarily be applied 
to other substrates successfully.55 Besides β-glucosidase 
activity, which is of uttermost importance to avoid accu-
mulation of cellobiose and thus severe inhibition of the 
cellulases, other auxiliary enzyme activities can improve 
the performance of the enzyme preparation even when not 
directly involved in hydrolysis of cellulose.91,92 Production of 
enzymes on the target lignocellulosic material for hydrolysis 
has shown that these enzyme preparations perform better 
than standard commercial enzyme preparations produced 
on substrates such as purifi ed cellulose.93–95 Th is could 
benefi cially be employed in biorefi neries to produce enzymes 
on-site. Moreover, on-site enzyme production could reduce 
enzyme costs due to less needs for purifi cation and stabi-
lization of enzyme preparations.96 Another possibility is 
Consolidated BioProcessing (CBP) where the fermenting 
microorganism  produces the enzymes necessary to hydro-
lyse cellulose and hemicelluloses.97 Besides simplifying the 
process by performing everything in one step, synergism 
between enzyme and microbe have been observed.98 CBP has 
been mostly developed towards ethanol production but not 
yet tested in industrial scale. So far no effi  cient microorgan-
isms for CBP are available. A challenge is therefore to select 
suitable microorganisms, modifi cation for effi  cient ethanol 
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production and simultaneous enzyme production as well as 
proving the concept and stability in various lignocellulosic 
materials.

Th e presence of hemicelluloses has long been neglected 
when considering the performance of enzyme mixtures for 
hydrolysis of cellulose. Hemicelluloses are found in close 
association with the cellulose fi brils as well as lignin and do 
to some extent cover the fi bre surfaces, thereby limiting the 
access of the cellulases to the cellulose surface (Fig. 2).9,26 
Even aft er acid-catalysed pretreatment some hemicellulose 
remains left  in the material. It has been shown that addi-
tion of xylanases and pectinases signifi cantly improves the 
performance of cellulases and increases cellulose conversion 
of pretreated corn stover, hardwoods and soft woods.91,92,99 
Material pretreated by methods such as AFEX, wet oxidation 
and organosolv has a relatively high hemicellulose content, 
and in these cases the supplementation with xylanases will 
probably have an even more pronounced eff ect.

Due to the complex structure of hemicelluloses a number 
of enzymes are needed. In wheat, arabinoxylan represents 
the largest fraction of the hemicelluloses. Th e arabino-
furanosyls can be both (1→2) and (1→3) linked to xyloses 
and also to doubly substituted xyloses. Th ese side groups 
have to be removed in order for the xylanases to hydrolyse 
the xylan backbone. In addition to xylanases, a number of 
α-l-arabinofuranosidases of various origin are needed in 
order to obtain effi  cient hydrolysis of wheat arabinoxylan.100 
Hydrolysis of xylan from hot-water pretreated corn fi bre was 
improved by addition of feruloyl esterases, which removes 
side groups that limits the access of xylanases to the xylan 
backbone.101 

Recently, non-catalytic proteins, the so-called expansins 
and swollenins, have attracted some attention. Th ese 
proteins do not catalyse hydrolysis of cellulose but have been 
shown to disrupt the crystalline structure of cellulose, thus 
making it more accessible to enzymes. Expansins were fi rst 
isolated from plants where they participate in weakening 
the non-covalent binding between cell wall polysaccharides 
during growth of the cell wall.102 A protein termed swol-
lenin with sequence similarity to the plant expansins has 
been isolated from T. reesei.103 Similarly to the expansins this 
protein exhibits disruption activity on cellulosic materials. 
Some CBMs have also been shown to have a disruptive eff ect 

on cellulose fi bres.65 Th e applicability and feasibility of using 
these proteins to improve hydrolysis of lignocellulosic mate-
rials still remains to be demonstrated.

Enzyme adsorption and recycling

Th e presence of lignin in the lignocellulosic material is one of 
the major obstacles in enzymatic hydrolysis. Lignin forms a 
barrier that prevents the cellulases from accessing the cellu-
lose104 and moreover, the lignin is also capable of binding a 
large part of the enzymes (Fig. 2). Th e adsorption of cellu-
lases and hemicellulases onto lignin is believed to be due to 
hydrophobic interaction but ionic-type lignin–enzyme inter-
action is also possible.105–107 Aft er almost complete hydrolysis 
of the cellulose fraction in lignocellulosic material, up 
to 60–70% of the total enzyme added can be bound to 
lignin.93,108,109 Although CBMs participate in binding of cellu-
lases onto cellulose, cellulases without CBM also adsorbs 
onto lignin. Degree of adsorption of various cellulases and 
their catalytic core is very diff erent and some cellulases 
appear to have less affi  nity for lignin93,109,110 Th is could be 
exploited in the development of new enzyme preparations.

Th e large fraction of cellulases and hemicellulases 
unproductively bound to lignin emphasizes that pretreat-
ment methods that remove the majority of the lignin can 
be advantageous. Removal of 80% of the lignin in steam 
exploded soft wood by an alkaline peroxide treatment has 
been shown to improve the digestibility of the substrate 
signifi cantly. Furthermore, due to the lower lignin content 
a six-fold lower enzyme loading was needed to obtain the 
same degree of conversion.111 However, extensive lignin 
removal and addition of extra steps aft er steam pretreat-
ment add to the costs of conversion of lignocellulose into 
fermentable sugars. Furthermore, there is a risk of loss of 
sugars or degradation of sugars in these subsequent steps. 
Th e value of lignin for other applications including as fuel 
for combustion should also be taken into account before 
performing an oxidative removal of the lignin. Th e benefi t of 
lignin removal should therefore be carefully evaluated.

Th e addition of various compounds to the material 
before hydrolysis has been shown to improve enzyme 
performance by reducing unproductive adsorption of 
enzymes onto lignin. Addition of other proteins or peptides 
will bind to the lignin and reduce the binding potential 
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of enzymes by occupying the binding sites.112 Addition of 
non-ionic surfactants like Tween 20 or Tween 80 can also 
reduce unspecifi c binding of enzymes, thereby improving 
the hydrolysis rate so that the same degree of conversion 
can be obtained at lower enzyme loadings.106 Ethylene oxide 
polymers like poly(ethylene glycol) (PEG) show a similar 
eff ect.113, 114 PEG is proposed to bind to lignin by hydrophobic 
and hydrogen bonding and thereby prevent the lignin from 
binding of enzymes. A stabilizing eff ect of PEG at elevated 
temperatures has been shown, supposedly due to reduced 
deactivation through exclusion of enzymes from the lignin 
surface.115 Unlike Tween 20 or other non-ionic surfactants 
previously shown to reduce enzyme adsorption and improve 
hydrolysis, PEG is a low cost commodity product. Addi-
tion of 2.5–5 g PEG per kg of pretreated material increases 
the hydrolysis performance with 20–50% for both steam 
pretreated spruce and pretreated wheat straw.113,114 Th e 
benefi t achieved by the reduction of the enzyme loading 
should be compared to the costs of adding surfactants.

Recycling of the enzymes has also appeared to be an 
attractive way of reducing costs for enzymatic hydrol-
ysis.116–119 Th e recovery of enzymes is largely infl uenced by 
adsorption of the enzymes onto the substrate, especially 
the binding to lignin. Another constraint in the recycling 
of the enzymes is inactivation of the enzymes. Cellulases 
are stable around pH 5 and at a temperature of 50°C for 
up to 48 h or longer.120,121 Th e presence of substrate can 
increase the stability even further.71 However, presence of 
proteases and shear stress caused by pumps and stirring in 
the reactor might slowly degrade or denaturate the enzymes. 
Th e stability of the enzymes in the presence of substrate 
is, however,  diffi  cult to estimate due to adsorption of the 
enzymes.122

Th ere are several strategies to recover and reuse the 
cellulases. Th e fi ltrate obtained aft er complete hydrolysis of 
the cellulose fraction can be concentrated by ultra-fi ltra-
tion to remove sugars and other small compounds that may 
inhibit the action of the enzymes. Depending on the lignin 
content of the substrate, only up to 50% of the cellulases can 
be recycled using this approach.116,122 Th e saving is there-
fore low, taking costs of the recovery into account. Another 
approach takes advantages of the ability of cellulases to 
adsorb onto the material. By addition of fresh material aft er 

hydrolysis, enzymes in solution were readsorbed onto the 
new material. Th e new material retaining up to 85% of the 
enzyme activity free solution could then be separated and 
hydrolysed in fresh media eventually with supplementation 
of more enzyme.123 Another method for recycling enzymes is 
by immobilization, which enables separation of the enzymes 
from the process fl ow. Th e principle of immobilization is 
to fi xate the carbohydrolytic enzymes onto a solid matrix 
either by adsorption or graft ing.124 Apart from extending 
the service life of a given enzyme, immobilization will 
also aff ect activity and stability with regard to temperature 
and pH optima. Typically broader optima of both pH and 
temperature are observed.125,126 Th e stability can be signifi -
cantly increased but Km levels are generally higher, thus 
the specifi c activity is lower.127,128 Reported work shows that 
immobilization does not hinder access to insoluble cellulose, 
nor the hydrolysis of it. However, few studies use industri-
ally relevant substrates and none are done under high solids 
loading with, for example, high lignin levels.129, 130 Th e use 
of immobilized enzymes for lignocellulose is a technically 
diffi  cult task, in part because a multitude of enzymes are 
required for breakdown of the carbohydrates. An opportu-
nity could be the combination of membrane separation and 
immobilized enzymes.131 

All of these techniques for recycling and reducing 
enzyme adsorption have so far only been tested at laboratory 
scale. Furthermore, most of the studies do not include cost 
calculations to evaluate the feasibility of addition of diff erent 
compounds to reduce enzyme binding or the costs of recy-
cling. Th erefore, the ability to scale up the techniques, the 
robustness and feasibility still needs to be demonstrated. 

Opportunities for conversion of 
lignocellulose into fermentable sugars

Th e focus on biofuels from lignocellulose has attracted a lot 
of research, development and optimization in a number of 
fi elds related to conversion of lignocellulose into fermentable 
sugars. More and more pilot-scale facilities for pretreatment 
are being constructed, facilitating much better evaluation 
of the technologies, their constraint and opportunities. 
As outlined above, many technologies are available and 
an evaluation of a number of pretreatment technologies 
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revealed that they all performed very similarly and at almost 
identical costs, on corn stover.132, 133 Th e ideal pretreatment 
therefore depends on local conditions like type and costs of 
raw material and the need for extraction of by-products such 
as lignin as well as costs of enzymes. Future research needs 
to focus on development and validation of large-scale reactor 
systems. In particular handling of biomass at high solids 
concentrations, large particle sizes and with high amounts of 
silica from agricultural residues has to be tested and verifi ed 
to ensure long-term stability of a future biorefi nery plant. Of 
course this should not exclude evaluation of radically new 
concepts such as the use of supercritical water for pretreat-
ment and hydrolysis of cellulose and biomass.134, 135 

Development of more effi  cient enzymes is also the 
subject of extensive research. Many opportunities exist for 
improving the enzyme mixtures, the stability and specifi c 
activity of the enzymes but also to reduce their costs and 
cost of application. Depending on raw material and pretreat-
ment technology, the enzyme mixture must be designed to 
the specifi c substrate, e.g. through addition of substrate-
specifi c auxiliary enzymes. Finally, there are a number of 
other possibilities to not only improve the enzyme proteins 
but to also improve the enzyme/substrate interaction. Signif-
icant improvements in yield and cost reduction can therefore 
be expected, thus making large-scale hydrolysis and fermen-
tation of lignocellulosic substrates possible.
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Abstract
Background: Pretreatment is an essential step in the enzymatic hydrolysis of biomass and
subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is
necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System
hydrothermal pretreatment process has previously been shown to be effective in preparing wheat
straw for these processes without the application of additional chemicals. In the current work, the
effect of the pretreatment on the straw cell-wall matrix and its components are characterised
microscopically (atomic force microscopy and scanning electron microscopy) and spectroscopically
(attenuated total reflectance Fourier transform infrared spectroscopy) in order to understand this
increase in digestibility.

Results: The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but
causes profound lignin re-localisation. Results from the current work indicate that wax has been
removed and hemicellulose has been partially removed. Similar changes were found in wheat straw
pretreated by steam explosion.

Conclusion: Results indicate that hydrothermal pretreatment increases the digestibility by
increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal
of hemicellulose, rather than by disruption of the cell wall.

Background
Research in bioethanol production from lignocellulosic
plant materials has grown significantly over the last few
decades as the depletion of non-renewable fuels and
increasing greenhouse gas emissions continue to create an
increasing need for an alternative non-fossil transporta-
tion fuel. Enzymatic hydrolysis of lignocellulosic bio-
mass, such as agricultural residues, with subsequent

fermentation of sugars into ethanol has long been recog-
nised as an alternative to the existing starch and sucrose-
based ethanol production, especially considering recent
improvements in yields and enzyme prices [1-3]. Further-
more, lignocellulose may be used as a feedstock for biore-
fineries, and full-scale plants for cellulosic bioethanol
production are planned or under construction in several
countries.
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Two process steps are involved in the conversion of ligno-
cellulose into bioethanol: (1) enzymatic hydrolysis of the
cell-wall carbohydrates, cellulose and in some cases hemi-
cellulose, into monomers; and (2) fermentation of the
monomers into ethanol. Often the two processes are inte-
grated into simultaneous saccharification and fermenta-
tion (SSF). A common feature of the enzymatic hydrolysis
step is the need for pretreatment of the lignocellulosic
material resulting in a more efficient reaction despite the
recalcitrant nature of the plant cell wall [4].

While a costly step in production, optimal pretreatment is
important from an economic viewpoint, as it has an
impact on product yields and concentration, the rate of
hydrolysis and fermentation, enzyme loading, waste
products and fermentation toxicity [5]. The effect of the
pretreatment has been described as a disruption of the
cell-wall matrix including the connection between carbo-
hydrates and lignin, as well as depolymerising and solubi-
lising hemicellulose polymers [6]. This improves access
for the saccharifying enzymes and alleviates mass-trans-
port limitations [5]. Pretreatment is also able to change
the degree of cellulose crystallinity [7].

There are several different ways of pretreating biomass,
depending on the type, composition and subsequent
processing technology that will be applied. The most
widely investigated pretreatment technologies are ther-
mochemical treatments such as dilute acid treatment
(with or without rapid steam decompression (explosion))
[8-10] and ammonia pretreatment [11,12]. Hydrothermal
pretreatment without the use of chemicals has also proven
to be effective [13,14]. For a review of the most important
pretreatment methods, see [5,15].

Recently, an EU-funded project on the co-production of
bioethanol and electricity (Integrated Biomass Utilization
System - IBUS) has resulted in a hydrothermal pretreat-
ment process for wheat straw that has proven to be effec-
tive at preparing straw for enzymatic hydrolysis [16]. The
process is designed to handle large particles (pieces of
straw over 5 cm in length) and run at high dry-matter lev-
els (exceeding 30% w/w) [16]. In the process, the straw is
treated with water while being moved through a counter-
current reactor at a temperature of 190-200°C. The wash

water can be recycled and salt and solubilised hemicellu-
lose sugars can be isolated [16]. A pretreatment pilot plant
with a capacity of up to 1000 kg/hour has been working
since 2006. As described in [16] and [17], the pretreated
straw can be enzymatically liquefied, saccharified and
subsequently fermented into ethanol at initial dry-matter
levels of up to 40% w/w. Recent SSF experiments with an
initial dry-matter content of 27% (w/w) have produced
ethanol levels of over 60 g/kg slurry [18]

Atomic force microscopy (AFM) has proven to be a pow-
erful tool for visualising the surface of plant cell walls [19-
22] including modification of plant fibres and pulp [23-
25]. In the present study, AFM and scanning electron
microscopy (SEM) investigations of the effects of hydro-
thermal treatment on straw cell wall disruption, composi-
tion, ultrastructure and surface properties were carried out
in order to better understand the increased susceptibility
to enzymatic hydrolysis. Chemical decomposition into
constituent polymer classes was carried out for all sample
types. Attenuated total reflectance Fourier transform infra-
red (ATR-FTIR) spectroscopy was used as an analytical
tool to qualitatively determine the chemical changes in
the lignocellulosic material upon pretreatment. For com-
parison, analyses were also carried out on SO2-impreg-
nated steam-explosion pretreated wheat straw. Steam
explosion is a widely recognised pretreatment [8].

Results and discussion
Straw composition
As seen in Table 1, the main effect of the hydrothermal
pretreatment on the composition of the biomass is the
partial but substantial removal of hemicelluloses. All
measurable arabinan is removed and the xylan content is
reduced from 24.5% to 5.2%. Consequently, the overall
cellulose content increases. After delignification of the
pretreated material, no Klason lignin can be detected. The
composition of the straw that has undergone SO2-impreg-
nated steam explosion is similar to that of the hydrother-
mally pretreated straw except for a slightly higher xylan
content at 7.8%.

ATR-FTIR spectroscopic analysis
ATR-FTIR spectroscopy was used as an analytical tool to
qualitatively determine the chemical changes in the sur-

Table 1: Compositions

Cellulose Xylan Arabinan Klason lignin Ash

Straw, untreated 39.8 24.5 2.8 22.6 4.2
Pretreated straw 59.0 5.2 0.0 25.5 5.6
Delignified, pretreated straw 75.1 9.8 0.0 0.0 8.8
Steam-exploded straw 56.7 7.8 0.7 23.6 6.3

Contents expressed as percentages, based on dry matter.
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face of pretreated straw to complement and understand
the microscopic investigations. The FTIR spectra of
untreated, hydrothermally pretreated, delignified hydro-
thermally pretreated and steam-exploded straw samples
are shown in Fig. 1A. Excerpts of the four spectra are pre-
sented in Fig. 1B.

One of the effects of the pretreatment is the removal of
wax from the straw: Fig. 1A shows that the CH2- stretching
bands at approximately 2850 and 2920 cm-1 (see [26]) are
reduced for the pretreated straw sample, signifying a
reduction in the amount of the aliphatic fractions of
waxes.

Two interesting features are shown in Fig. 1B. First, it can
be seen that the carbonyl band at 1735 cm-1, which has
been ascribed to hemicelluloses [27-29] is reduced for the
pretreated straw. This is expected as the pretreatment is
known to remove a large portion of the hemicelluloses as
shown in Table 1 and in Thomsen et al. [16]. Second,
lignin bands at approximately 1595 and, in particular,
1510 cm-1 (aromatic ring stretch) [30] are strongly
enhanced in the hydrothermally pretreated sample com-
pared with both untreated wheat straw and delignified
hydrothermally pretreated straw, where these peaks are
reduced (Fig. 1B). One explanation for this could be a rel-
ative increase in the amount of lignin due to the removal
of hemicelluloses. Another reason could be that lignin is

SpectroscopyFigure 1
Spectroscopy. ATR-FTIR spectra of untreated, hydrothermally pretreated, delignified hydrothermally pretreated and steam-
exploded wheat straw. (A) Complete spectra of all treatments. (B) Excerpt of spectra. All spectra are separated to ease com-
parison. The arrow in A points to the bands at 2850 and 2920 cm-1 (CH2- stretching bands ascribed to wax). The vertical lines 
in B mark the positions of the bands at 1735 (carbonyl, ascribed to hemicellulose), 1595 and 1510 cm-1 (aromatic ring stretch, 
ascribed to lignin).
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released and re-deposited on the surface (ATR-FTIR spec-
troscopy is a surface technique; according to [26,31] the
penetration depth in straw is approximately 0.5-3 �m
with the signal intensity exponentially decreasing with
penetration depth). The increase in lignin is believed to be
too significant to be only due to the hemicellulose
removal.

One of the strategies employed in increasing enzymatic
convertibility is to decrease cellulose crystallinity [15].
Differences between samples with regard to the relative
amounts of amorphous and crystalline cellulose have ear-
lier been described through infrared peak ratios. At least
four different peak pairs have been proposed [32,33]. Of
these, only the peak pair 1429 cm-1 (crystalline) and 893
cm-1 (amorphous) is seen for the samples of the present
study. The peak ratio for the untreated straw was 0.56,
while it was 0.52 for the pretreated straw. In the study by
Wistara et al. [33], values from 0.46 to 0.56 were reported,
and from this and other results the authors claimed that
there was no difference in crystallinity between their sam-
ples. When comparing their results with ours, it appears
that the pretreatment does not adversely affect the degree
of cellulose crystallinity. More precise measurements of
cellulose crystallinity are needed to confirm this result.

SEM and AFM images
Based on the results from ATR-FTIR spectroscopy, SEM
and AFM were used to gather information on the effect of
the hydrothermal pretreatment on the ultrastructure and
possible disruption of the cell wall.

When untreated, the anatomy of the harvested, chopped
wheat straw is easily recognisable, with sheath leaves sur-
rounding the straw itself (Fig. 2A). The various cell types
of the straw wall can be seen, including epidermis cells,
parenchyma cells, vascular bundles (phloem and xylem)
as well as thick-walled fibre cells, as seen in the SEM
micrograph presented in Fig. 2B. Imaging by AFM of
parenchyma cells lining the straw cavity reveals the
appearance of interwoven cellulose microfibrils of the pri-
mary wall (Fig. 2C). These particular cells are largely
unlignified [34] but microfibrils are partially embedded
in what is believed to be hemicellulosic polymers (left-
hand side of Fig. 2C).

Initially, the most apparent effect of the hydrothermal
pretreatment apart from a colour change from yellow into
dark brown is the partial defibration, or separation of
individual fibres and cell types of the wheat straw.
Although the pretreated material is quite heterogeneous
and contains larger pieces (up to about 1 cm) that are eas-
ily recognised as straw, a significant fraction consists of
cells that are either completely or partially separated from
each other (Fig. 2D).

All individual fibres (and most other cell types) seem to
be intact despite the hydrothermal treatment, rather than
being broken or otherwise disrupted (Fig. 2D and 2E).
When looking more closely at the pretreated fibres it
becomes apparent that the surface is covered with 'debris'
and a thin layer of deposits that seems to be covering the
whole surface (Fig. 2E). This debris could be fractions of
middle lamellae. When further investigating the pre-
treated fibre surfaces through AFM, it was not possible to
identify any primary or secondary wall cellulose microfi-
brils (such as seen in untreated fibre cell walls; Fig. 2C).
Instead, an uneven surface of spherical and globular
shapes was seen (Fig. 2F). These globular shapes (diame-
ter approximately 20-100 nm) are characteristic of lignin
deposits as reported in the literature [22,25,35], and this
interpretation is in accordance with the spectroscopic
findings of higher surface lignin concentrations.

Initially, delignification did not have a great effect on the
overall structure of the pretreated material apart from a
change in colour; the straw was still only partially defi-
brated (Fig. 2G), presumably due to the hemicellulose
content of the middle lamella [34]. However, upon closer
observation, the surface of the individual fibres had
changed drastically. The uneven surface now appeared
smooth and cellulose aggregates (macrofibrils) running in
the direction of the fibre could be seen, as in the SEM
image in Fig. 2H. When investigating the delignified fibre
surfaces with AFM, the globular shapes of deposited lignin
were not seen. Instead, intact surfaces believed to be pri-
mary and secondary wall lamellae were observed. Due to
the mixing of fibres and other cell types during the pre-
treatment it was not possible to investigate the same straw
cavity parenchyma cells as with the untreated straw. How-
ever, numerous scans of different cells revealed several
surfaces with similar primary walls to the parenchyma
cells. The microfibrils of these primary walls displayed the
same interwoven structure as previously seen and were
partially embedded in non-cellulosic polymers (Fig. 2I). It
should be added, that with AFM only relatively smooth
surfaces are successfully imaged.

Surprisingly, neither the overall or fibrillar structure of the
individual fibres seems to show large structural changes
such as the rupture of fibres or a visible increase of poros-
ity, which are believed to be associated with thermal pre-
treatments. No holes or cracks were seen in the fibres and
AFM did not indicate that the accessibility of the internal
parts of the cell wall matrix had been improved due to
structural dislocations. Rather, the primary and secondary
cell walls appeared to be fully intact, except for the pits
and simple perforations that already exist in certain cell
types [36]. Despite these observations of a substrate where
the skeletal structure is intact and the crystallinity of the
cellulose does not appear to have been lowered, the
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Microscopy imagesFigure 2
Microscopy images. SEM and AFM images of untreated (A)-(C), hydrothermally pretreated (D)-(F), delignified hydrother-
mally pretreated (G)-(I) and steam-exploded wheat straw (J)-(L). In untreated wheat straw, the straw itself is surrounded by 
a sheath leaf (A, SEM image) and at slightly higher magnification the individual cells of the straw wall can be identified (B, SEM 
image). A high-resolution AFM scan (amplitude image) of a primary cell wall lining the straw cavity shows interwoven cellulose 
microfibrils, partially imbedded in non-cellulosic polymers (left-hand side of C). In hydrothermally pretreated wheat straw, the 
defibrating effect of the pretreatment causes the individual fibres to partially separate, as can be seen in D (SEM image). The 
pretreatment leaves a surface layer of debris and re-deposited cell-wall polymers on the individual fibres (E, SEM image). An 
AFM scan (amplitude image) of fibre surface shows the 'globular' deposits characteristic of lignin (F). No microfibrils are visible. 
Delignification of pretreated fibres causes no further separation of fibres (G and H, SEM images) but removes most of the sur-
face layer/deposits seen in (E). Cellulose lamellae/agglomerates are now visible (H). An AFM scan (amplitude image) shows that 
delignification exposes intact, interwoven cellulose microfibrils (I). Steam explosion causes partially separated fibres with 90° 
compression bends (J, SEM image) and a surface layer with debris and droplets (K, SEM image). Droplets are indicated with 
arrows. High-resolution imaging of AFM shows globular surface deposits (L, amplitude image), similar to those seen on hydro-
thermally pretreated straw (F).
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hydrothermally pretreated straw has been shown to be
easily digestible by enzymes [16,17]. Consequently, the
effectiveness of the pretreatment must be related to hemi-
cellulose removal and lignin re-localisation. This is in
spite of the fact that lignin is not removed by the pretreat-
ment and that lignin is known to be responsible for
unproductive adsorption of cellulases [37,38]. It is well
known that lignin encases the cellulose in the cell-wall
matrix, hindering cellulases from reaching cellulose
fibrils. We hypothesise that the migration of lignin to the
outer surface exposes internal cellulose surfaces. More
investigations are needed in order to confirm this. Selig et
al. [39] have also observed the formation and migration
of spherical lignin deposits onto the surface of fibres as a
result of pretreatment. They also suggest that the depos-
ited lignin can have a negative impact on the enzymatic
cellulose hydrolysis. It is possible, however, that the sur-
face lignin layer is easily removed by simple mechanical
forces through mixing, due to lignin being less strongly
bound to carbohydrate polymers compared with its native
linkages. Furthermore, we theorise that the re-located
lignin has exposed cellulose inside the cell wall, thus
increasing the enzyme accessibility.

Based on these observations, we therefore propose that
the re-localisation of lignin as well as partial hemicellu-
lose removal are likely to be important factors in increas-
ing the enzymatic digestibility of wheat straw through
hydrothermal pretreatment. It seems that exposing cellu-
lose through manipulation of hemicelluloses and lignin
are equally as important as altering the crystallinity and
rupture of the skeletal structure of the cell wall.

Comparison with conventional steam explosion
In order to understand whether the factors affecting bio-
mass digestibility through hydrothermal pretreatment are
of a more general nature, steam-exploded straw was also
investigated microscopically and spectroscopically. Steam
explosion is considered one of the most promising pre-
treatment technologies and is often combined with the
addition of chemicals [5,6]. In our case the straw was
impregnated with SO2 prior to steam explosion. In princi-
ple, steam explosion is not unlike hydrothermal pretreat-
ment. As such, the effect on compositional changes is also
similar (Table 1).

As seen in Fig. 1 the FTIR spectra of the steam-exploded
straw are similar to those of hydrothermally treated straw,
both in general and in spectral ranges related to wax,
hemicellulose and lignin. SEM investigations (Fig. 2J and
2K) showed that steam-exploded straw was more hetero-
geneous than hydrothermally pretreated straw, contain-
ing larger pieces of almost intact straw but also a larger
fraction of individual fibres that had been compacted
together. Some SEM images also showed droplets on the

surface of the fibres (see the arrows in Fig. 2K). These
droplets are also believed to be lignin, possibly formed
through coalescence of smaller sized lignin deposits dur-
ing the pretreatment as described in [39]. The difference
in amount of larger lignin droplets between the different
pretreatments may be due to varying water contents and
pH during the treatment. AFM showed globular deposits
similar to, but larger than those seen on hydrothermally
pretreated straw (Fig. 2L).

Conclusion
Hydrothermal pretreatment has proven to be an effective
way of increasing the enzymatic digestibility of wheat
straw for conversion into fermentable sugars for bioetha-
nol production. However, it has been unclear how the
pretreatment affects the ultrastructure and molecular
organisation of the biomass.

It was found that the hydrothermal pretreatment had a
partial defibrating effect on wheat straw, producing a het-
erogeneous substrate of semi-separated fibres. Interest-
ingly, in contrast to what might be expected, individual
fibres were intact with no evidence of disruption. It was
found that the vast majority of all fibre surfaces (more
than 90%) were covered with a layer of globular deposits.
The deposits were established to be re-localised lignin.
Upon delignification of pretreated fibres, the cellulose
fibrillar structure of the cell walls was found to be intact.
The conservation of the skeletal structure of the cell wall
through pretreatment is not in accordance with the gen-
eral perception that pretreatments must disrupt the struc-
ture of the cell wall in order to increase its accessibility to
enzymes.

Partial hemicellulose removal and lignin re-localisation
are important factors in increasing the digestibility of
hydrothermally pretreated wheat straw, possibly more
important than rupture of the skeletal cell-wall structure
and modification of cellulose crystallinity. Results show
that it is possible to pretreat wheat straw sufficiently with-
out disrupting the cell wall. Thus, only a modest pretreat-
ment is necessary in order to enzymatically digest the
carbohydrates, provided that mixing is efficient [17].

Although much is known about the chemical changes
caused by pretreatments of lignocellulose, little seems to
be known of the physical changes. We believe that
research and development of technologies must be
accompanied by structural and molecular investigations
of the biomass in order to achieve substantial progress.

Methods
Pretreatments
The hydrothermal pretreatment was carried out at the
IBUS pilot plant at Fynsværket in Odense, Denmark [16].
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Pretreatment was performed at a feed rate of 75 kg of
chopped wheat straw (0-5 cm long pieces) per hour (or
approximately 67.5 kg dry matter per hour), which is pre-
soaked in water at 80°C for 6 minutes prior to being trans-
ported into the reactor. Residence time in the reactor aver-
aged 6 minutes with the reactor temperature maintained
at 195°C by injection of steam, and a counter-current
flow of water of 250 litres per hour. No chemicals were
added to the water or the steam. The dry-matter content of
the pretreated straw out of the reactor was between 25%
and 32% (w/w). The pretreated straw was collected in
plastic bags containing 30-50 kg of material and stored at
4°C for up to 5 months. The pretreated straw is used for
hydrolysis and fermentation into bioethanol without any
further treatment such as washing. For more information
on this particular pretreatment technology as well as
hydrolysis and fermentation studies with the pretreated
material, see [16] and [17].

The steam-exploded straw was a gift from the Center for
Chemistry and Chemical Engineering, Lund University,
Sweden. The straw was pretreated as described in [38].

Compositional analysis of straw
The typical compositions of straw, pretreated straw, delig-
nified pretreated straw and conventionally steam-
exploded straw were analysed using two-step acid hydrol-
ysis according to the procedure published by NREL [40].
Before hydrolysis, the samples were dried at 45°C for 1
day. The dried samples were milled in a Braun coffee
grinder. Dry matter was determined using a Sartorius MA
30 moisture analyser at 105°C. The content of monosac-
charides in the hydrolysed samples (D-glucose, D-xylose
and L-arabinose) was quantified on a Dionex Summit
high-performance liquid chromatography (HPLC) system
equipped with a Shimadzu RI-detector. The separation
was performed in a Phenomenex Rezex RHM column at
80°C with 5 mM H2SO4 as an eluent at a flow rate of 0.6
ml min-1. Samples were filtered through a 0.45 �m filter
and diluted with eluent before analysis on HPLC.

Straw sample preparation for analyses
The straw samples analysed in this study consisted of an
untreated control, hydrothermally pretreated material
and steam-exploded straw, all of which were oven dried at
50°C for 24 hours. The hydrothermally pretreated straw
was subsequently delignified by mixing approximately 25
g of dried straw with 800 ml MilliQ water, 40 ml of 98%
glacial acetic acid and 20 g of sodium chlorite (NaClO2).
The mixture was placed in a water bath at 80°C for 1 hour.
The sodium chlorite and acetic acid additions were
repeated twice, the second time with the addition of gla-
cial acetic acid only. The reaction was terminated by cool-
ing to 10°C. The holocellulose was isolated by filtration
through a glass filter and rinsing with ice-cold MilliQ

water, followed by oven-drying at 50°C for 24 hours. For
SEM, the straw was lyophilised without prior oven-drying.

ATR-FTIR spectroscopic analysis
ATR-FTIR spectra (4000-700 cm-1) were obtained using an
ABB Bomem FTIR spectrometer equipped with a SensIR/
Durascope diamond. An ATR accessory was used to qual-
itatively identify chemical changes in the pretreated wheat
straw. Spectra were obtained with 4 cm-1 resolution, and
128 scans for the background spectrum and 64 scans for
each sample spectrum were performed. After drying, the
straw sample was pressed against the diamond surface
using a spring-loaded anvil to obtain the same pressure
for each sample. To ensure that the surfaces measured
were similar to those investigated by microscopy, the sam-
ples were not homogenised prior to spectral analysis. The
risk taken when selecting this procedure was that the sur-
face cells of the untreated straw were not representative for
the bulk material. In order to check whether this was the
case, some untreated material was ground to a fine pow-
der, and ATR-FTIR spectra were obtained from the homog-
enised material. No significant differences were found
between these spectra and those from the non-homoge-
nised samples.

Spectra were recorded from three different sub-samples
per sample type, and all spectra were corrected according
to the standard normal variate (SNV) method [41]. The
mean spectrum of the three corrected spectra is presented
for each sample type.

SEM analysis
SEM analysis was performed with a FEI Quanta 200 (FEI
Company, Eindhoven, The Netherlands) operated at 20
kV. The samples were coated (gold/palladium) with a
SC7640 Suto/Manual High Resolution Sputter Coater
(Quorum Technologies, Newhaven, UK).

AFM analysis
All AFM measurements were made with a MultiMode
scanning probe microscope with a Nanoscope IIIa con-
troller (Veeco Instruments Inc, Santa Barbara, CA). Images
were acquired in TappingMode with an etched silicon
probe (MPP-12100, Veeco NanoProbe, Santa Barbara,
CA). An auto-tuning resonance frequency range of
approximately 150-300 kHz with a scan rate of 0.5-3 Hz
(usually around 2 Hz) was used. The drive amplitude and
amplitude set-point were adjusted during measurements
to minimise scanning artefacts. Height, amplitude and
phase images were captured simultaneously. Scan size var-
ied from 500 nm to 5.0 �m but was usually 1 �m.

Samples were fixed on metal discs with double-sided
adhesive tape. All images were measured in air. Images
were collected from a minimum of 20 different fibres for

7777



Biotechnology for Biofuels 2008, 1:5 http://www.biotechnologyforbiofuels.com/1754-6834/1/5

Page 8 of 9
(page number not for citation purposes)

each treatment with representative images displayed in
the present paper. To eliminate external vibration noise,
the microscope was placed on an active vibration-damp-
ing table. All AFM images were recorded in a 512 × 512
pixel format and analysed and processed (contrast, illumi-
nation and plane fitting) by the accompanying Veeco
Nanoscope software.
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Abstract

Monocot residues such as corn stover and straw are often not fully exploited and constitute a potential substrate for bioethanol production.
However, a number of factors such as high enzyme loadings make large-scale utilization economically difficult. Addition of non-ionic surfactants
and poly(ethylene glycol) to enzymatic hydrolysis of various lignocellulosic substrates has been found to increase the conversion of cellulose into
soluble, fermentable sugars. We have shown that surfactants are able to increase cellulose conversion with up to 70%. This provides an opportunity
of decreasing enzyme loading while retaining the same degree of hydrolysis. Investigations of five wheat straw substrates produced with different
pretreatment methods revealed that surfactants have a more pronounced effect on acid and steam treated straw than, e.g. ammonia and hydrogen
peroxide treated straw. Thus, lignin content is not directly proportional with the potential surfactant effect. Studies of adsorption of cellulases
support the theory that the main mechanism behind the surfactant effect is prevention of unspecific adsorption of enzyme on the substrate lignin.
This is believed to be due to hydrophobic interaction between lignin and the surfactant, causing steric repulsion of enzyme from the lignin surface.
More research is needed to reveal which factors influence enzyme and surfactant adsorption.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Cellulose; Cellulase; Hemicellulose; Surfactant; Adsorption; PEG

1. Introduction

Formore than a decade lignocellulose has been recognized as
a potential substrate for ethanol production [1].Despite intensive
research, several factors still prevent a large-scale utilization of
lignocellulose for liquid fuel production. The main obstacle is
the need of high enzyme concentrations in order to obtain a high
rate of cellulose conversion into glucose alongwith long process
times due to rapid decrease of the hydrolysis rate [1,2]. In addi-
tion, enzyme recycling is difficult as enzymes adsorb to residual
lignocellulosic material. In order to make cellulose hydrolysis
for ethanol production economically feasible it is important to
identify methods to increase enzyme effectiveness.
It has been shown that addition of surfactants such as non-

ionic detergents and protein significantly increases the enzy-

∗ Corresponding author. Tel.: +45 3528 1687; fax: +45 3528 1520.
E-mail address: jbk@kvl.dk (J.B. Kristensen).

matic conversion of cellulose into soluble sugars [3–7]. Various
mechanisms have been proposed and investigated for the posi-
tive effect of surfactant addition on the enzymatic hydrolysis of
lignocellulose. Recent studies on steam-treated softwood sub-
strate propose that the dominating mechanism responsible is the
influence of surfactants on cellulase interaction with lignin sur-
faces [7]. Surfactant adsorption to lignin is believed to prevent
unproductive binding of enzymes to lignin, thereby producing
higher yields and better recycling of enzymes. This is in accor-
dance with other results showing less adsorption of enzymes to
lignocellulose during hydrolysis in the presence of a surfactant
[3,6]. Added protein such as BSA is also believed to bind to
lignin, preventing unproductive binding of cellulases [7,8].
Othermechanisms proposed include the surfactant being able

to change the nature of the substrate, thereby increasing the
available cellulose surface; in turn promoting reaction sites for
cellulases to adsorb onto [6,9]. Surfactants may also have a sta-
bilizing effect on the enzymes, effectively preventing enzyme
denaturation during the hydrolysis. This possible binding of the

0141-0229/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.enzmictec.2006.07.014
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surfactants to the tertiary structure of the enzyme-proteins is
known from other enzymes [10].
The first step in the enzymatic hydrolysiswhere soluble cellu-

lases convert solid cellulose into soluble sugars is the adsorption
of the enzymes onto the cellulosic surface. It has been shown that
the rate of adsorption is rapid compared to the actual hydrolytic
activity of the enzymes, thus making the amount of adsorbed
cellulase an important factor in the effectiveness of the reaction
[11]. The pretreatment or processing of the lignocellulosic sub-
strate has a significant effect on the rate and extent of cellulase
adsorption [12].
Previous studies have focused on wood materials and espe-

cially softwood lignocellulose due to the regional abundance
of it. However, corn stover and straw are agricultural residues,
which are today not fully exploited and therefore interesting
as raw material for bioethanol production. The lignin content of
herbaceousmaterials is in general lower and has a different com-
position. These differences are likely to influence the interaction
between substrate and enzymes and therefore also the effect of
the surfactants.
The main focus of this study is to investigate if the conver-

sion of straw cellulose into sugar can be increased with various
surface active additives as effectively as is the case with, e.g.
steam-treated spruce lignocellulose [7]. Furthermore, the rela-
tionship between the type of pretreatment process applied and
the increase of hydrolysis caused by the surfactant is investi-
gated. This was carried out by hydrolyzing five different types
of pretreated wheat straw, using a commercial enzyme mixture.
Hydrolysis was performed with various non-ionic surfactants
added and with protein (BSA) for comparison. To our knowl-
edge, this is the first time the relationship between the pre-
treatment type and the effect of various non-ionic surfactants
on cellulose hydrolysis has been investigated. This relationship
has helped shed more light on the mechanism of the surfactant
effect. In order to clarify this mechanism and the important role
of lignin further, the endoglucanase activity in the hydrolysis
solutions was measured.
Another limiting factor in converting lignocellulose into

bioethanol is the lack of pentose-fermenting microorganism.
Themain sugar ofmonocot hemicelluloses is the pentose xylose,
which often makes up a substantial part of the total sugar con-
tent of the cell wall. However, industrial yeast strains for this
purpose are currently being produced [13]. Therefore, the effect
of surfactants on xylan conversion was also investigated in the
hydrolysis experiments.

2. Materials and methods

2.1. Substrates

Wheat (Triticum aestivum) was grown and harvested in Denmark in 2003.
The straw was left to dry on the field and then pressed into big bales. The
bales were stored dry at ambient temperature. Before use, the straw was cut
into pieces up to 6–8 cm long by a forage harvester and stored in containers
at ambient temperature. The dry matter (DM) content was approximately 90%
(w/w).
Fresh, chipped spruce (Picea abies) free of bark was provided by a saw mill

in southern Sweden. The chip size was 2–10mm.

Table 1
Chemical composition of surface active additives

Surfactant/polymer Composition

Berol (alcohol ethoxylate) Berol ox 91-8:
CH3–(CH2)8–10–O–(CH2–CH2–O)8;
Berol 08:
CH3–(CH2)15–17–O–(CH2–CH2–O)80

Poly(ethylene glycol) (PEG)
(molecular masses: 2000, 4000
and 6000)

HO–(CH2–CH2–O)n–H (n= 45, 91
and 136)

Tween 80 Polyoxyethylene sorbitan monooleat
Bovine serum albumine (BSA)

2.2. Surface active additives

The tested additives were: bovine serum albumine (BSA, Sigma–Aldrich,
St. Louis, USA), poly(ethylene glycol): PEG 2000, PEG 4000 and PEG 6000
(Merck & Co., St. Paul, USA), Berol 08 and Berol ox 91-8 (Akzo Nobel, Ste-
nungsund, Sweden). All surface active additives will be referred to as surfactants
for the sake of convenience. Names and chemical compositions of the surface
active additives used are listed in Table 1.

2.3. Pretreatment methods

Four different batches of pretreated straw were produced on the IBUS pilot
plant at Fynsværket in Odense, Denmark [14]. In addition, one batch of pre-
treated straw and one batch of spruce were pretreated by steam explosion at
Center for Chemistry and Chemical Engineering, Lund University, Sweden.
The pretreatment conditions are summarized in Table 3.

Pretreatment on IBUS pilot plant. The straw was pretreated according to
[14] using a feeding rate of 50 kg straw per h (= 45 kgDMh−1), 250 l h−1 of
counter-current water flow and a residence time of 6min in the reactor. The
reactor temperature was maintained at 190 or 195 ◦C (Table 3) by injection of
steam. The pretreatment was performed using water or water with the addition
of ammonia, sulfuric acid or hydrogen peroxide (Table 3). Pretreated straw had
23–26% DM. The pretreated straw was collected in plastic bags and stored at
−20 ◦C until use.

Steam explosion pretreatment. The straw was treated with steam to reach a
DM content of 59%. The straw was impregnated with SO2 (2.7% (w/w)) for
1.5 h at room temperature in plastic bags. The amount of SO2 absorbed was
determined by weighing the plastic bags before and after impregnation. The
impregnatedmaterial (750 g) was steam pretreated at 215 ◦C for 5min in a steam
pretreatment unit equipped with a 10 l reactor [15]. The material was stored at
4 ◦C. Before use the material was washed with two volumes of water to remove
soluble sugars. The spruce was pretreated by similar means, but impregnated
with 3% (w/w) SO2 for 20min.

2.4. Straw composition analysis

Dry matter (total dry matter including soluble and insoluble solids) was
determined using a Sartorius MA 30 moisture analyzer at 105 ◦C (Sartorius AG,
Goettingen, Germany). Samples were dried at 35 ◦C for 1–2 days and then cut
and strained through a 1.5mm sieve on a Retsch SM 2000 cutting mill (Retsch,
Inc., Newtown, USA).
The composition of the straw was analyzed using two-step acid hydrolysis

according to the procedure published by the National Renewable Energy Labo-
ratory (NREL) [16]. The dried samples were treated with 3ml of 72% H2SO4
and placed in awater bath with a temperature of 30 ◦C. The samples were diluted
with 84ml ofMilli-Qwater to give aH2SO4 concentration of 2.5%. The samples
were autoclaved for 1 h at 121 ◦C. After cooling, 20ml of the sample was neu-
tralised with CaCO3 to pH 5–6. Monosaccharide concentration was analyzed
by HPLC.
Results are given as glucan (nearly all d-glucose originates from cellulose)

and hemicellulose: d-arabinose and d-xylose in straw (mainly arabinoxylan) and
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Table 2
Pretreatment conditions

Type Temperature [◦C] Additive concentration
[g (kg straw)−1]

Residence time [min]

Watera 190 – 6
Alkalinea 195 NH3, 25 6
Acida 190 H2SO4, 35 6
Hydrogen peroxidea 190 H2O2, 25 6
Steam explosionb 215 SO2, 18 5
Steam explosion spruceb 215 SO2, 20 5

a Pretreated on the IBUS pilot plant.
b Pretreated at Lund University.

d-arabinose, d-xylose, d-mannose, d-galactose in spruce (mainly galactogluco-
mannan).

2.5. Hydrolysis experiments

The pretreated strawwas dried at 35 ◦C for 1–2 days and then cut and strained
through a 1.5mm sieve on a Retsch SM 2000 cutting mill. The hydrolysis was
performedusing an enzymemixture ofCelluclast 1.5 l andNovozym188 (weight
ratio 5:1, fromNovozymesA/S, Bagsvaerd, Denmark)with a filter paper activity
of 74 FPUg−1, as measured by the filter paper assay [17].
The hydrolysis was performed in 50ml Falcon tubes (total reaction volume

40 g), at 5% DM (w/w) in a 50mM sodium citrate buffer pH 4.80 and using
an enzyme loading of 5 FPU (gDM)−1. In the screening studies, the surfactant
concentration was 0.05 g (gDM)−1. In the concentration effect study, Berol 08
was tested at 0.005, 0.025, 0.05 and 0.10 g (gDM)−1, andPEG6000was tested at
0.005, 0.01, 0.025 and 0.05 g (gDM)−1. The test tubes where placed in a heated
(50 ◦C), shaking water bath (80 rpm) for 24 h. All experiments were performed
in triplicate. Samples for sugar analysis were boiled for 10min to terminate
the reaction and stored at −20 ◦C until analysis. Samples for determination of
enzyme adsorption were frozen immediately after hydrolysis.

2.6. Sugar analysis by HPLC

Samples were filtered through a 0.45�m filter and diluted appropriately by
eluent (5mM H2SO4). The content of monosaccharides (d-glucose, d-xylose
and l-arabinose) was quantified on a Dionex Summit HPLC system (Dionex
Corporation, Sunnyvale,USA) equippedwith aShimadzu refractive index detec-
tor (Shimadzu, Kyoto, Japan). The separation was performed in a Phenomenex
Rezex RHM column (Torrance, USA) at 80 ◦C with 5mM H2SO4 as eluent at
a flow rate of 0.6mlmin−1.

2.7. Determination of enzyme adsorption

Adsorption of enzyme onto the remaining solid material was determined
by measuring residual endoglucanase activity in the liquid phase. Solids were
removed by centrifugation for 10min at 15,000× g. Endoglucanase activity was
measured using azo-carboxymethyl cellulose (Megazyme, Wicklow, Ireland)
as substrate. The measurement was performed as described by [18]; except
absorbance was measured at 590 nm. Standard curves were prepared using the
same enzyme mixture of Celluclast and Novozym 188 as used in the hydrolysis
experiments. Adsorption was calculated as the measured endoglucanase activity
subtracted from the initial endoglucanase added.

2.8. Stabilization effect of surfactants

The direct effect of surfactants on enzyme stability was determined by
preparing mixtures containing the same enzyme activity (250 FPU l−1) and ratio
between surfactant and FPU (0.01 g FPU−1). The activity of the solutions (with
and without surfactant) were measured by the filter paper assay [17] and by azo-
carboxymethyl cellulose at t= 0 and 24 h. The solution was incubated at 50 ◦C
for both the azo-carboxymethyl cellulose assay and the filter paper assay.

3. Results

3.1. Substrate composition

The lignin fraction of lignocellulose has been proved to be
responsible for unspecific adsorption of cellulases [7]. How-
ever, the influence of the pretreatment method and conditions
on this adsorption is less clear. To investigate this, five differ-
ent types of pretreated wheat straw was produced. Four types
were produced using a pilot scale pretreatment reactor [14] and
one type using SO2-catalyzed steam explosion [15]. In addition,
sprucewas pretreated usingSO2-catalyzed steamexplosion. The
conditions are summarized in Table 2. The composition of the
resulting materials is shown in Table 3. The hemicellulose con-
tent in straw is based on content of xylose, arabinose, and in
spruce on xylose, arabinose, mannose and galactose. The lignin
content in the wheat straw pretreated in the pilot scale reactor
varied only little, irrespective of the conditions applied. On aver-
age the lignin content inwheat strawwas 22.6%.Steamexploded
spruce contained significantly more lignin than pretreated straw
(50.9%, see Table 3). Acid catalyzed pretreatment methods sig-
nificantly lowered the xylan content and therefore also the total
hemicellulose content.

3.2. Effect of pretreatment and surfactant on hydrolysis

The surfactants and pretreatments were compared by
hydrolyzing a 5% substrate solution containing 0.05 g (gDM)−1
of surfactant for 24 h using an enzyme loading of 5 FPU

Table 3
Composition of materials used in hydrolysis experiments

Pre-treatment Klason lignin Ash Glucan Hemicellulosea

Untreated straw 17.7 7.0 34.8 25.2
Water, straw 19.6 2.5 54.3 18.8
H2O2, straw 24.0 2.6 54.0 19.2
H2SO4, straw 22.7 5.8 56.8 8.2
NH3, straw 23.0 1.8 50.6 20.0
Steam explosion, straw 23.6 6.3 56.7 8.5
Untreated spruce 27.0 0.1 43.0 19.7
Steam explosion, spruce 45.0 0.1 48.0 ∼0
All values are in percent of total content on a dry matter basis.
a The hemicellulose fraction includes a number of polymers. In straw the
main hemicellulose polymer is arabinoxylan. In spruce the main hemicellulose
polymer is galactoglucomannan.
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(gDM)−1. The cellulose and xylan conversion was measured by
quantifying the amount of released glucose and xylose, respec-
tively, by HPLC. Although the hemicellulose in straw is present
as arabinoxylan, only xylose was used as an estimate of the
hydrolysis of the hemicellulose as the arabinose content was
only 1–2%. Thus, in the following, xylan conversion refers to
the release of xylose from arabinoxylan. Seven different surfac-
tants were initially tested for their ability to enhance enzymatic
hydrolysis of the pretreated wheat straw. Three types of PEG
with an average molecular mass of 2000, 4000 and 6000Da
were tested. The results revealed a trend of slightly higher
cellulose conversion with increasing molecular weight, which
has also been observed when used with spruce lignocellulose
[19]. Therefore, PEG 6000 was chosen for further studies. The
results of Berol ox-91-8 and Berol 08 were not statistically
different (not shown), and Berol 08 was selected for further
studies.
Hydrolysis without the addition of surfactant resulted in glu-

cose concentrations ranging between 5.0 and 15.7 g/l, depending
on pretreatment. The acid pretreatment resulted in the lowest
conversion of cellulose whereas the highest conversion was
obtained using the steam-exploded straw. The degree of cel-
lulose conversion or hydrolysis, defined as amount of glucose
released relative to the maximum theoretical, was 36% for the
water pretreated wheat straw but only 16% for the acid pre-
treated wheat straw (Fig. 1A). For the steam-exploded straw the
cellulose conversion was 51%.
With surfactants added, the glucose concentration increased

in all experiments, although not all of them being a statistically
significant increase. Interestingly, the increase in cellulose con-
version of acid treated straw was substantially higher than any
of the other pretreatments, ranging from 58% (BSA) to 70%
(Berol 08) (Fig. 1B). This increase brings the cellulose hydrol-
ysis of the acid treated straw to the same level as for the other
pretreatments. For the other types of substrate, the effect was in
the range of 3–23% improvement in cellulose hydrolysis.
The xylan conversion varied between 36 and 60% of the the-

oretically possible, depending mainly on pretreatment method
(Fig. 2A). Interestingly, the xylan conversion of the steam
exploded and acid pretreated straw was comparable to the other
pretreatment methods despite containing less than half the xylan
(Table 3). The effect of surfactants on the hydrolysis of the xylan
was not as pronounced as seen with glucose with improvements
in the order of 0–10%, except for steam exploded straw where
the increase in xylan conversion was 11–17% (Fig. 2B).

3.3. Surfactant concentration

The correlation between amount of surfactant added and
effect on hydrolysis was investigated for Berol 08 and PEG
6000 on water and acid pretreated wheat straw (Fig. 3). For
both substrates and both surfactants, the effect of increasing the
surfactant concentration on the cellulose hydrolysis leveled off
above 0.025 g (gDM)−1. The optimum ratio between surfactant
and substrate was approximately 0.05 g (gDM)−1. Although
the effect of Berol 08 on cellulose hydrolysis was higher on
acid pretreated wheat straw compared to water pretreated straw

Fig. 1. (A) Cellulose conversion of straw after 24 h of hydrolysis in percent-
age of theoretical maximum as a function of pretreatment method. Substrate
concentration was 5% (w/w). Reference was without addition of 0.05 g/g DM
surfactant. Results are averages of triplicates. (B) Results from (A) calculated
as percent increase in cellulose conversion compared to the reference. Results
are averages of triplicates.

(Fig. 1B), the optimum concentration for both substrates (Fig. 3)
was 0.025–0.05 g (gDM)−1.At lower concentrations, PEG6000
had a slightly higher effect on hydrolysis of water pretreated
straw compared to Berol 08, but above 0.025 g (gDM)−1 the
difference was negligible.
No significant effect of surfactant concentration was seen on

xylan hydrolysis (data not shown).

3.4. Enzyme activity in solution

It has been suggested that the surfactant effect is due to
hydrophobic interaction between the surfactant and lignin on
the lignocellulose, thereby either releasing unspecifically bound
enzyme or preventing unproductive enzyme adsorption [4,7].
The effect of substrate and surfactants on the adsorption of
enzyme was studied by measuring the endoglucanase activity
remaining free in solution after the hydrolysis. Endoglucanases
maybecomedeactivated duringhydrolysis for other reasons than
adsorption.However, due to the stability of the enzymes, remain-
ing endoglucanase activity is used as a measure of adsorption of
cellulases.
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Fig. 2. (A) Xylan conversion of straw after 24 h of hydrolysis in percentage of
theoretical maximum as a function of pretreatmentmethod. Substrate concentra-
tion was 5% (w/w). Reference was without addition of 0.05 g/g DM surfactant.
Results are averages of triplicates. (B) Results from (A) calculated as percent
increase in xylan conversion compared to the reference.

Fig. 3. Effect of surfactant concentration (Berol 08 and PEG 6000) on cellulose
conversion of water and acid pretreated wheat straw. (�) Sulfuric acid treated
straw and Berol 08; (©) water treated straw, PEG 6000; (�) water treated straw,
Berol 08. Results are averages of triplicates.

Fig. 4. Endoglucanase activity free in solution after 24 h hydrolysis of wheat
straw (5%, w/w) depending on pretreatment and surfactant type, respectively.
The enzyme activity was calculated as percentage of initially added activity.
Reference was without addition of 0.05 g/g DM surfactant. Results are averages
of triplicates.

The endoglucanase activity in the solution after hydrolysis
of straw pretreated by water, ammonia, hydrogen peroxide and
steam explosion without addition of surfactants were all around
15% of the activity initially added, except for the solution of
the acid pretreated straw without surfactant which was only 6%
(Fig. 4). Assuming that the endoglucanase activity can be used to
estimate adsorption of cellulases, the results reveal that 85–94%
of the cellulase enzymes are adsorbed onto the substrate after
24 h of hydrolysis.
The addition of surfactant increased the endoglucanase activ-

ity in solution by a minimum of 25% with the exception of
BSA, which was less efficient (endoglucanase activity between
20 and 26% for all substrates, Fig. 4). The increase in endoglu-
canase activity by addition of surfactants correlatedwellwith the
concurrent improvement observed in the hydrolysis of cellulose
(Fig. 1A and B). Interestingly, the addition of all surfactants,
including BSA, increased the low enzyme activity measured in
the acid pretreated straw solution to a point where the activity
was equal to that of the other pretreatment types with surfactant
added (Fig. 4). The endoglucanase activity in the solution of the
acid treated straw was between 2.7 and 3.4 times higher than the
reference without surfactant.

3.5. Spruce hydrolysis

Surfactants have previously been reported to improve the
cellulose hydrolysis of steam pretreated spruce significantly
[7]. In order to compare the effect of surfactants on materials
from different origins, hydrolysis studies were performed on
spruce pretreated by steam explosion under similar conditions as
used with wheat straw (Fig. 5A). Conversion of steam exploded
spruce cellulose was close to 80%with surfactant addition. This
is equivalent to an improvement of the conversion from 59%
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Fig. 5. (A) Effect of surfactants (0.05 g/g DM) on hydrolysis of wheat straw
and spruce, respectively (substrate concentration 5% (w/w), 24 h hydrolysis).
Both raw materials were pretreated by SO2-catalyzed steam explosion. Results
are averages of triplicates. (B) Percentage of added endoglucanase found free in
solution of the hydrolyzed substrates in (A).

(Tween 80) to 72% (Berol 08). In contrast, hydrolysis of cel-
lulose was only improved by 8–17% using the steam exploded
wheat straw as substrate (cellulose conversion approximately
60%, see Fig. 5A).

3.6. Stabilizing effect of surfactants

As poly(ethylene glycols) and other surfactants have been
reported to have a stabilizing effect on some enzymes [10],
it was investigated if this was also the case with the tested
surfactants and cellulases. The endoglucanase activity was
measured on azo-carboxymethyl before and after 24 h incu-
bation using the same enzyme mixture as used previously
for the hydrolysis. Activity was measured on solutions con-
taining no surfactant, PEG 6000, BSA and Berol 08, respec-
tively. The decrease in enzyme activity in solutions with
surfactant added was found to be slightly less (1.7–5.2%,
data not shown) than the reference (5.4% decrease). How-
ever, the difference was not statistically significant. The FPU
assay (measuring the overall cellulase activity) did not con-
firm the possible stabilizing effect as it showed no difference
between the solutions with and without surfactant (data not
shown).

4. Discussion

4.1. Combined effect of surfactants and pretreatment

Lignocellulose is a highly complex structure with a whole
range of characteristics that influence and limit the hydrolysis of
carbohydrate polymers into fermentable sugars [20]. As lignin is
generally believed to be one of the most limiting factors of enzy-
matic hydrolysis of lignocellulose [7,21,22], it was interesting
to investigate the relationship between lignin and convertibility
of the pretreated materials.
Even though only the lignin content of the water pretreated

wheat straw was slightly lower (19.6%) than that of the other
pretreated wheat straw (22.7–24.0%, see Table 3), the cellulose
conversion varied from 16 to 51%. This strongly suggests that
although lignin content has been proven to be an important factor
for degradability [7,21], other factors are perhaps equally impor-
tant. The various pretreatments had a more differentiated effect
on the xylan content, ranging from 7.8 to 18.4%. This is likely
due to hemicelluloses being dissolved in some pretreatments,
such as acid catalyzed pretreatment.
Surfactants were found to increase the cellulose hydroly-

sis significantly. Interestingly, the added surfactants had the
most pronounced effect on the straw treated with sulfuric acid
(increase in cellulose conversion more than 60%). Without sur-
factant, the acid treated straw showed lowest conversion. It
is possible that the acid pretreatment makes the lignin more
receptive to cellulose adsorption through a change of surface
properties, e.g. increased hydrophobicity or hydrogen bonding
capacity. It is also possible that the treatment dissolves hemi-
celluloses associated with or covering lignin, thereby increasing
the accessibility of lignin and hence the adsorption. The low
xylan content (7.5%) supports the last theory. However, the
steam explosion pretreated straw has similarly low xylan content
(7.8%) yet the increase is more modest. This could be due to the
cellulose hydrolysis of the steam exploded straw already being
closer to the theoretical maximum. More research is needed in
order to establish a clear relationship between effect of surfac-
tants and substrate characteristics.
Unlike previous studies, which have focused on materials

with little hemicellulose content [7,23], the effect of surfac-
tants on xylan hydrolysis was also studied. Xylan conversion
was determined as xylose released from arabinoxylan, the main
hemicelluloses in straw. Steam exploded and acid pretreated
straw had low xylan content, yet the xylan conversion was still
more than30%.Additionof surfactant also had an effect onxylan
hydrolysis, although not as pronounced as seen with cellulose.
It is not known if this is due to the properties of the xylanases
(lower tendency to unspecific adsorption) or perhaps the smaller
content of xylan in the material compared to cellulose. When
pentose-sugar-fermenting microorganisms become industrially
available, the utilization of xylan will be an important fac-
tor in lignocellulose hydrolysis and add to the effectiveness of
bioethanol production.
Comparison of the five tested surfactants revealed that no

individual surfactant seems to be particularly well suited to a
certain type of pretreatment. Regarding cellulose conversion,
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Berol 08 and PEG 6000 have a tendency to perform the best,
whereas all the used surfactants performed equallywell on xylan
hydrolysis. PEG 6000 had a tendency to outperform PEG 2000
and PEG 4000 with shorter chain lengths.

4.2. Mechanism of surfactant effect

The positive effect of surfactants on enzymatic hydrolysis has
been reported a number of times.Various explanations to the sur-
factant effect have been proposed including increase of enzyme
stability and increasing accessibility of the substrate. However,
the most recent research suggests that prevention of unproduc-
tive enzyme adsorption to lignin is the major mechanism behind
the surfactant effect [7]. The mechanism has been explained by
hydrophobic sites on lignin being occupied by surfactant. The
hydrophilic portions of the surfactant will in turn protrude into
the aqueous solution and cause steric repulsion of enzyme from
the lignin surface. It has also been shown that surfactant is able
to displace already adsorbed enzyme [7].
The endoglucanase activities measured in the substrate solu-

tions have been used to calculate adsorption of the enzyme
mixtures, assuming that non-adsorbed enzyme is still active in
the solution. The enzyme mixtures used for the hydrolysis have
been found to be highly resistant to degradation and inactivation
over a period of several days. Hence, the enzyme activity mea-
sured in solution can be correlated to the degree of adsorption.
Although not identical, there is a clear connection between

the cellulose conversion of pretreated straw (Fig. 1A) and the
endoglucanase activity in solution (Fig. 4). In both cases the acid
pretreated substrate is below that of the other substrates. Simi-
larly, with surfactants added, both the cellulose conversion and
the free endoglucanase activity of the acid treated straw exper-
iment increase significantly. Although the variation is higher,
the increase in enzyme activity due to addition of surfactants is
also comparable to the increase in cellulose conversion with sur-
factants. Likewise, the measured enzyme adsorption on spruce
corresponds well with the improvement in cellulose conversion
when surfactants were added. Consequently, there seems to be
a clear relationship between cellulose conversion of pretreated
straw lignocellulose and enzyme adsorption. Furthermore, the
higher surfactant effect on spruce substrate compared to straw
may be explained by the higher lignin content of spruce (51%
compared to 20–24%, Table 3). These relationships strongly
support the current theory on the dominating effect of surfac-
tants being due to steric hindrance of enzyme interaction with
lignin surfaces.
The correlation between surfactant concentration and

increase in cellulose conversion showed that the effect leveled
off at concentrations above approximately 0.025 g (gDM)−1.
An explanation as to why the leveling off and optimum con-
centration were equal for different substrates may be that all
possible binding sites on lignin are occupied by surfactant when
it reaches a certain concentration, irrespective of the ability of
the substrate to unspecifically bind enzymes. Thus, there may be
a number of potential sites on the lignocellulose that may either
adsorb enzyme or surfactant. When these sites are all associated
with surfactant, further addition will not increase hydrolysis.

However, this does not explain why the optimum surfactant
concentration is equal for the two substrates tested, irrespec-
tive of the varying increase in cellulose conversion. In other
words, it seems that the type of material or pretreatment does
not have any influence on the amount of adsorption sites, yet the
lignin content and adsorption can be correlated to the degree of
conversion.
It is possible that the lignin interaction discussed above is

not the only mechanism responsible for the positive surfactant
effect. It has been suggested that surfactants have a stabilizing
effect on some enzymes [10]. The experiments performed indi-
cated that this mechanism was not responsible for the increased
enzyme performance. However, the experiments were carried
out without addition of substrate. It is possible that surfac-
tants may have a stabilizing effect on an enzyme/substrate
complex.

5. Conclusions

We have shown that addition of surface active additives, such
as non-ionic surfactants and PEG, increased enzymatic conver-
sion of pretreated straw lignocellulose for bioethanol purposes.
The degree of surfactant effect varied depending on type of pre-
treatment. Although the surfactant effect was not as high as seen
with spruce lignocellulose, it is most likely possible to lower the
enzyme loading by adding, e.g. PEG 6000, while retaining the
same degree of cellulose conversion. However, due to the lack of
industrial scale prices of surfactants and enzyme, it has not been
possible to perform economic calculations on the feasibility of
surfactant addition.
Surfactants were also found to increase xylan conversion

moderately.
Enzyme adsorption was measured and could be correlated

to cellulose conversion of pretreated straw substrates with and
without surfactant added. The results strongly support the preva-
lent theory that the mainmechanism of the surfactants is preven-
tion of unproductive enzyme adsorption with lignin surfaces.
The optimum surfactant concentration was found to be sim-

ilar, irrespective of pretreatment type. Furthermore, as seen
with the acid pretreated wheat straw substrate where surfac-
tant addition improved conversion dramatically, lignin content
and surfactant effect is not always directly proportional. Further
research is needed to fully understand the factors influencing
surfactant and enzyme adsorption.
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Abstract As technologies for utilizing biomass for fuel and chemical production continue to
improve, enzymatic hydrolysis can be run at still higher solids concentrations. For hydrolyses
that initially contain little or no free water (10–40% total solids, w/w), the saccharification of
insoluble polymers into soluble sugars involves changes of volume, density, and proportion of
insoluble solids. This poses a new challenge when determining the degree of hydrolysis
(conversion yield). Experiments have shown that calculating the yield from the resulting
sugar concentration in the supernatant of the slurry and using the assumed initial volume
leads to significant overestimations of the yield. By measuring the proportion of insoluble
solids in the slurry as well as the sugar concentration and specific gravity of the aqueous
phase, it is possible to precisely calculate the degree of conversion. The discrepancies
between the different ways of calculating yields are demonstrated along with a nonlaborious
method for approximating yields in high solids hydrolysis.
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Introduction

The enzymatic saccharification of biomass to fermentable sugars is a well-known bottleneck in
the production of bioethanol in an economically viable manner [1]. An important process
parameter in enzymatic hydrolysis is the ability to work at high solids concentrations. A high
substrate concentration allows for the production of a concentrated sugar solution, which in
turn is beneficial for the subsequent fermentation and, in particular, distillation. The energy
requirement for distillation is significantly reduced if the solution contains more than 4%
(w/w) ethanol [2]. Furthermore, working at high solids concentrations lowers heating
requirements and increases the volumetric productivity of the plant.
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To reach an ethanol concentration of more than 4% (w/w), a sugar level of at least 8%
(w/w) is needed. For most types of lignocellulosic biomass, this requires an initial solids
content above 20% [3]. Recently, much research has gone into being able to perform and
handle enzymatic hydrolyses at high substrate concentrations [4–7]. High solids content
could be defined as initial concentrations where little or no free water is present. One
solution to increase solids levels has been to replace conventional stirred-tank reactors with
so-called gravimetric mixing, enabling liquefaction, saccharification, and fermentation of
pretreated biomass at up to 40% initial solids content [3, 7].

Lignocellulosic bioethanol is on the verge of commercial reality [8], and as processes
improve and the solids content in enzymatic hydrolysis increase, so does the need to
consider the most accurate way of determining the yield in order to compare various
enzyme systems, processes, and technologies. Hydrolysis of biomass is a complex reaction
where multiple, insoluble polymers are broken down and their constituents dissolved in the
liquid phase. During the reaction, the content of insoluble solids decreases, the density of
the liquid phase increases as does the volume of the liquid phase. When working at high
solids concentrations, it is practical to measure the initial biomass or cellulose concentration
in weight per weight (e.g., 25% w/w). However, usually, sugars are measured by high
performance liquid chromatography (HPLC) and only in the aqueous phase, free of
insoluble components, and are reported in weight per volume (e.g., 70 g/L).

Often, the above-mentioned factors (including the solids content) are not taken into
consideration when calculating the percent-of-theoretical yield. In the following, it is shown
how high solids hydrolysis yields are overestimated, when based on the initial volume.
Also, we suggest a nonlaborious method for approximating the correct yield.

Materials and Methods

Compositional Analysis

The compositions of hydrothermally pretreated straw (pretreated at 195 °C for approximately
6 min as described in [3]) and filter paper (AGF 725, 140 g/m2 from Frisenette ApS, Knebel,
Denmark) were analyzed using two-step acid hydrolysis according to the procedure published
by the National Renewable Energy Laboratory (NREL) [9]. Before hydrolysis, the samples
were dried at 45 °C for 1 day. The dried samples were milled in a Braun coffee grinder. Dry
matter was determined using a Sartorius MA 30 moisture analyzer at 105 °C. The released
sugars were quantified with HPLC as described below.

Enzymatic Hydrolysis

Hydrolysis was performed using an enzyme mixture of Celluclast 1.5 L and Novozyme 188
(weight ratio 5:1, from Novozymes A/S, Bagsværd, Denmark) with a filter paper activity of
75 FPU g−1, as measured by the filter paper assay [10].

The hydrolyses were performed in 100 mL plastic bottles (total reaction mass 50 g), at
5–30% solids content (w/w) in a 50-mM sodium citrate (pH 4.80) buffer and using an
enzyme loading of 5–20 FPU g DM−1. The bottles were placed in a heated (50 °C),
horizontally placed drum, rotating at 60 rpm for 24 h. The 80-cm diameter drum was
equipped with two inside paddles that lifted and dropped the plastic bottles during rotation,
mimicking the gravimetric mixing described in [3, 7]. All experiments were performed in
duplicate. Samples for sugar analysis were boiled for 10 min to terminate the reaction.
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Samples were spun down in 50 mL falcon tubes (4,223×g for 10 min) and the density of the
supernatant was measured. The remaining solids were washed with MilliQ water five times
to remove any water-soluble material. The solids were then dried at 105 °C and weighed in
order to calculate the amount of insoluble solids.

Sugar Analysis

The content of monosaccharides and disaccharides in the hydrolyzed samples (D-glucose,
D-xylose, L-arabinose, and D-cellobiose) was quantified on a Dionex Summit HPLC system
equipped with a Shimadzu RI-detector. The separation was performed in a Phenomenex Rezex
RHM column at 80 °C with 5 mM H2SO4 as eluent at a flow rate of 0.6 mL min−1. Samples
were filtered through a 0.45-μm filter and diluted with eluent before analysis on HPLC.

Results and Discussion

In the standard for enzymatic saccharification of lignocellulosic biomass proposed by the
NREL [11], it is assumed that the specific gravity of all components of the hydrolysis is
1.000 g/mL. The equation for determining the yield can be written as:

Percent hydrolysis ¼ Glc½ � þ 1:0526� Cel½ �
1:111� Fcellulose � Ini: sol½ � � 100% ð1Þ

where [Glc] is the glucose concentration in the supernatant of the slurry (in grams per
liter), [Cel] is the cellobiose concentration in the supernatant of the slurry (in grams per
liter), Fcellulose is the fraction of cellulose in the substrate, and [Ini. sol] is the initial solids
concentration (in grams per liter) with the assumption that all solutions and biomass have a
specific gravity of 1.000 g/mL. The volume of the reaction is assumed not to change during
the hydrolysis and is thus omitted from the equation.

When working with a fixed mass reaction (e.g., 50 or 100 g assays) above a certain
solids content, the assumption that all components are of the same specific gravity becomes
invalid. Furthermore, calculating the yield by using the “initial” volume of the reaction
(assuming that a 50-g assay equals 50 mL) to find the amount of cellulose digested (using
the sugar concentration), usually leads to an overestimation of the yield. The reason is that
the released sugar is dissolved in less than the “initial” volume, i.e., part of the fixed mass
of the reaction is solid matter and thus, the liquid volume is significantly less than assumed.

Although the mass of the reaction is constant during the hydrolysis, there are significant
changes to the volume of the reaction. As solids are hydrolyzed, the mass and density of the
aqueous phase increases, although not at the same rate. This makes it difficult to calculate
the precise amount of cellulose consumed, based purely on the resulting sugar
concentrations. However, it is possible to measure the amount of insoluble solids remaining
after hydrolysis as well as the specific gravity of the aqueous phase. As the mass is
constant, the exact volume of the aqueous phase can be calculated, and based on the
concentration of sugars, the exact amount of cellulose that has been converted. The
equation for determining the yield then becomes:

Percent hydrolysis ¼
mreac�mins: sol
SGaq: phase

� Glc½ � þ 1:0526� Cel½ �ð Þ
1:111� msub � Fcellulose � DM

� 100% ð2Þ
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where mreac is the mass of the whole reaction (in grams), mins. sol is the mass of insoluble
solids after hydrolysis (in grams), SGaq. phase is the specific gravity of the aqueous phase (in
grams per liter), [Glc] is the glucose concentration in the supernatant of the slurry (in grams
per liter), [Cel] is the cellobiose concentration in the supernatant of the slurry (in grams per
liter), msub is the mass of the substrate (in grams), Fcellulose is the fraction of cellulose in the
substrate, and DM is the initial dry matter content (w/w).

We used this rather laborious method of measuring the fraction of insoluble solids and
aqueous phase density to establish the exact yield at various time points/enzyme dosages
for hydrothermally pretreated wheat straw at 5%, 10%, 15%, 20%, and 30% initial solids
content. The yields were also calculated using Eq. 1 and compared with the exact yields. To
illustrate the difference in yield between the two equations, the values for hydrolysis of
hydrothermally pretreated straw at 30% initial solids content (50 g assay) are: [Glc]=
136.22 g/L, [Cel]=20.31 g/L, Fcellulose=0.532, and [Ini. sol]=300 g/L.

Using Eq. 1, this gives a yield (percent hydrolysis) of 88.9%. The additional values
needed for Eq. 2 are: mreac=50.00 g, mins. sol=10.32 g, SGaq. phase=1085.7, msub=39.28 g,
and DM=0.3819.

With Eq. 2, this equals a yield (percent hydrolysis) of 65.0%. This means that at 30%
initial solids content, the proposed standard (Eq. 1) gives a yield that is more than 36% too
high. This is a considerable and unwanted overestimation, in particular when comparing
new technologies for bioethanol production and biorefineries.

As seen in Fig. 1, for every initial solids content, there is a near linear relationship
between the actual yield and the yield based on initial volume/supernatant sugar
concentration. This means that the error of the noncorrected yield (Eq. 1) is not dependent
on the degree of hydrolysis but rather on the initial solids content. As expected, the degree
of error increases with solids content. When the ratio between the actual (Eq. 2) and
noncorrected (Eq. 1) yields is plotted as a function of initial solids content (Fig. 2), the
relationship is also near linear. Thus, the slope of this graph can be used to calculate the
actual yield from the noncorrected yield at each initial solids content.

The correction factor is substrate-dependent as it correlates to the composition of the
biomass used, mainly the cellulose content. The experiment was repeated with filter paper
containing a higher proportion of cellulose (for the composition of pretreated wheat straw

Fig. 1 Relationship between
actual yield and yield calculated
without taking solids content into
account, when hydrolyzing pre-
treated straw at various initial
solids contents (w/w). Each point
is average of duplicates
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and filter paper, see Table 1) and it was found that the correction curve for filter paper was
slightly steeper. Thus, a correction factor must ideally be established for each substrate.

The errors seen for high solids enzymatic hydrolysis also apply for simultaneous
saccharification and fermentation. Since the specific gravity of the aqueous phase starts
decreasing when the released and dissolved sugars are converted to ethanol, the situation is
more complex. The error of the yield is less than for enzymatic hydrolysis only, at least
when a certain amount of the released sugar has been converted. Experiments with
hydrothermally pretreated straw show that at 30% initial solids content, the yield was
overestimated by 23% (results not shown).

Due to the inconsistency of pretreatments and natural substrates, calculating correction
factors can be a laborious task. An alternative is to use the following approximation
method: A representative slurry sample is weighed, e.g., 1.000 g, and diluted to 10.000 g
(ten times dilution). It is then spun down and the amount of sugars in the supernatant is
measured by HPLC. By knowing how large a fraction of the whole slurry is sampled, it can
be calculated how much of the cellulose that has been hydrolyzed, as per Eq. 1. As the
slurry was diluted ten times, the error caused by the solids content has been significantly
reduced. Experiments have shown that the error (overestimate) for hydrolyses at up to 30%
initial solids was reduced to a maximum of 3–5% (see Fig. 2).

Although it can be difficult to collect a representative slurry sample, especially early in
the hydrolysis, we believe that this approximation method is more practical than measuring
the fraction of insoluble solids and the density of the aqueous phase. Most importantly, it is
better for calculating high solids yields rather than simply measuring the sugar
concentration in the aqueous phase of the slurry and using the “assumed” initial volume,
as prescribed by, e.g., NREL.

Table 1 Composition of pretreated straw and filter paper.

Cellulose Xylan Arabinan Klason lignin Ash Mannan

Pretreated straw 59.0 5.2 0.0 25.5 5.6 0.00
Filter paper 80.63 0.00 0.97 0.42 0.27 14.43

Contents expressed in percent, based on solids

Fig. 2 Correction factor (for
correcting yield overestimation)
is the ratio between actual yield
and yield calculated without
taking solids content into
account. The correction factor is
shown as a function of initial
solids content for pretreated straw
and filter paper, respectively. The
upper graph depicts the correc-
tion factor for pretreated straw
when calculated from whole
slurry sampling, thereby approxi-
mating the actual yield. Each
point is the average of duplicates
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Conclusions

It was found that, when working at high solids concentration (10–40% w/w), it is necessary
to reconsider the way the yield is calculated in order to avoid significant overestimation in
the order of up to 36%. As enzymatic saccharification of biomass is a complex and dynamic
process, it is difficult to theoretically calculate the yield purely based on an assumed initial
volume and sugar concentration in the aqueous phase.

By measuring the amount of insoluble solids, aqueous phase density, and sugar
concentration, it is possible to precisely calculate the yield. This is, however, a laborious
process and an alternative would be to dilute a representative portion of the slurry prior to
measurement.
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Abstract 

Background  
Working at high solids (substrate) concentrations is advantageous in enzymatic conversion of lignocellulosic 
biomass as it increases product concentrations and plant productivity while lowering energy and water input. 
However, for a number of lignocellulosic substrates it has been shown that at increasing substrate concentration, the 
corresponding yield decreases in a fashion which can not be explained by current models and knowledge on 
enzyme-substrate interactions. This decrease in yield is undesirable as it off-sets the advantages of working at high 
solids levels. The cause of the “solids effect” has so far remained unknown. 
Results 
The decreasing conversion at increasing solids concentrations was found to be a generic or intrinsic effect, 
describing a linear correlation from 5-30% initial total solids content (w/w). Hydrolysis experiments with filter 
paper showed that neither insufficient mixing, lignin content nor hemicellulose-derived inhibitors caused the 
decrease in yields. Product inhibition by glucose and in particular cellobiose (and ethanol in SSF) at the increased 
concentrations at high solids loading plays a role but could not completely account for the decreasing conversion. 
Adsorption of cellulases was found to decrease at increasing solids concentrations. There was a strong correlation 
between the decreasing adsorption and conversion, indicating that the inhibition of cellulase adsorption to cellulose 
is causing the decrease in yield.  
Conclusion  
Inhibition of enzyme adsorption by hydrolysis products was found to be the main cause of the decreasing yields at 
increasing substrate concentrations in the enzymatic decomposition of cellulosic biomass. In order to facilitate high 
conversions at high solids concentrations, the understanding of the mechanisms involved in high-solids product 
inhibition and adsorption inhibition must be improved. 

Keywords: Enzymatic hydrolysis; biomass; bioethanol; high solids; high dry matter; yield 
_____________________________________________________________________________ 

Background1

Climate changes and shortage of fossil fuels have 
sparked a growing demand of liquid biofuels which in 
turn has increased the research in production of 
lignocellulose-derived bioethanol [1,2]. However, 
being an insoluble and highly heterogeneous substrate, 
lignocellulosic materials pose several challenges in 
conversion to fermentable sugars. In addition to 
understanding complex enzyme system kinetics, these 
biomass-related challenges include recalcitrance to 
hydrolysis [3] and mixing difficulties [4]. Water 

                                                
* Corresponding author: Tel.: (+45) 3533 1704. E-mail 
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content in the hydrolysis slurry is directly correlated to 
rheology, i.e. viscosity and shear rate during mixing 
[5], important for the interaction between 
lignocellulose and cell wall degrading enzymes. Thus, 
water is not only critical in hydrolysis being a substrate 
and a prerequisite for enzyme function, but is obviously 
also important for enzyme transport mechanisms 
throughout the hydrolysis as well as mass transfer of 
intermediates and end-products [6]. 
Maintaining high concentrations of solids throughout 
the conversion process from biomass to ethanol is 
important for the energy balance and economic 
viability of bioethanol production. High solids 
enzymatic hydrolysis can be defined as taking place at 
solids levels where initially there are no significant 
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amounts of free liquid water present [7]. By increasing 
the solids loading, the resulting sugar concentration and 
consequently ethanol concentration increase; having 
significant effects on processing costs, in particular 
distillation [8-10]. Furthermore, lower water content 
allows for a larger system capacity, less energy for 
heating and cooling of the slurry as well as less waste 
water [4]. Model-based estimations have shown 
significant reductions of operating costs of 
simultaneous saccharification and fermentation (SSF) 
of pretreated softwood when the initial solids 
concentration was increased [8]. Unfortunately, there 
are also disadvantages by increasing the substrate 
concentration. Concentrations of end products and 
inhibitors will increase, causing enzymes and 
fermenting organism to not function optimally. Also, 
high-solids loadings can cause insufficient mixing or 
mixing can be too energy-consuming in conventional 
stirred-tank reactors as the viscosity of slurries 
increases abruptly at increasing solids loadings, in 
particular over 20% solids [11,12].  
In situ native cellulase systems have been reported to 
function at solids levels as high as 76% (all 
concentrations are given as total solids on a w/w basis) 
[13], indicating that enzymatic hydrolysis may be 
limited by the laboratory or industrial process set-up. 
12-20% total solids is often considered the upper limit 
at which pretreated biomass can be mixed and 
hydrolysed in conventional stirred tank reactors 
[7,14,15]. However, at laboratory scale, enzymatic 
hydrolysis at up to 32% total solids has been reported 
[12,16]. A number of studies have utilised fed-batch 
operations in order to increase the solids loading 
[7,11,17,18]. We have previously described a 
gravimetric mixing reactor design that allows batch 
enzymatic liquefaction and hydrolysis of pretreated 
wheat straw at up to 40% solids concentration [4]. This 
is a significant increase from what has previously been 
possible, and thus significantly increases the techno-
economic potential of the whole process. The 
gravimetric mixing principle has been up-scaled and 
used in a pilot plant for several years [19,20]. 
During the work with high solids concentrations we 
found that the enzymatic conversion (percent of 
theoretical) linearly decreased with increasing solids 
concentration (constant enzyme to substrate ratio) [4]. 
This decrease partly off-sets the advantages of running 
at high solids concentrations. As seen in Fig. 1, the 
effect has been observed in both enzymatic hydrolysis 
and SSF by several groups working with various kinds 
of biomass [12,16-18,21-24]. Although several of these 
studies were conducted at less than 10% initial solids 
content, the phenomenon appears to be an intrinsic or 

generic effect of enzymatic hydrolysis at increasing 
solids levels. In this paper, the decrease in yield at high 
solids concentrations is referred to as the solids effect. 
Some groups have suggested that the mechanism 
behind the decreasing conversion is product inhibition 
[12,16,25] or inhibition by other compounds such as 
hemicellulose-derived inhibitors (furfural and 
hydroxymethylfurfural (HMF)) [26] and lignin [27]. 
Others have suggested it may be explained by mass 
transfer limitations or other effects related to the 
increased content of insoluble solids, such as non-
productive adsorption of enzymes [14,28]. However, 
the specific mechanism(s) responsible for the 
decreasing hydrolytic efficiency are still uncertain 
[4,29]. 
In this paper the possible mechanisms behind the solids 
effect have been divided into the following four 
categories: Compositional and substrate effects; 
product inhibition; water concentration; and cellulase 
adsorption. These four topics will be introduced below. 

Fig. 1. Results collected from several publications indicate 
that decreasing conversion at increasing solids content is a 
general effect. Results are for different kinds of biomass and 
for both enzymatic hydrolysis and simultaneous 
saccharification and fermentation (SSF). Added trend lines 
show that for each experiment there is a near-linear 
relationships between initial solids content and yield. Data 
taken from [24] (enzymatic hydrolysis), [16] (enzymatic 
hydrolysis), [23] (enzymatic hydrolysis), [17] (SSF), [4] 
(enzymatic hydrolysis and SSF) and [12] (SSF). 

Compositional and substrate effects 
The heterogeneity and structure of lignocellulosic 
biomass means that high viscosity prevents efficient 
mixing at high solids concentrations when performed in 
conventional stirred-tank reactors [14,28,30]. The 
viscosity of lignocellulosic slurries increases sharply 
over a certain threshold (typically around 20% solids) 
but despite the extreme difference in viscosity between 
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e.g. 5% and 40% solids loading, the conversion of 
lignocellulosics as a function of solids content has 
previously appeared to be near-linear (Fig. 1). 
Although mixing of substrate and enzymes is crucial 
for an efficient liquefaction, it does not appear that lack 
of mixing is the cause of the decreasing conversion, at 
least not at the solids levels documented [4]. This is in 
accordance with the recent findings of Hodge and co-
workers who concluded that possible mass transfer 
limitations caused by insoluble solids were not 
apparent at below 20% insoluble solids content [25]. 
Also, the linearity of the solids effect over a range of 
conditions with a number of substrates (wheat and 
barley straw [4,12,14], corn stover [17], softwood 
[22,24], hardwood [16,23] and an industrial ethanol 
fermentation residue (vinasse) [28]) indicates that a 
single factor may be responsible for the effect. 
For this paper, experiments with filter paper were 
carried out in order to be able to establish that the 
solids effect is not caused by lignin adsorption or 
lignin-derived inhibitors (phenolics). Filter paper has 
the advantage of containing no lignin yet still retains 
the secondary cell wall structure as opposed to e.g. 
Sigmacell and Avicel.  

Product inhibition 
End-product inhibition plays an important role in 
enzymatic hydrolysis as glucose, cellobiose and ethanol 
have demonstrated their ability to significantly inhibit 
endoglucanases, cellobiohydrolases and �-glucosidase 
[31,32]. However, working with an insoluble substrate 
and kinetics that do not follow the Michaelis-Menten 
model, the exact type of inhibition is difficult to 
determine [33]. The decrease in hydrolysis rate over 
time has been attributed to inhibition by the 
accumulated end-products [34]. Others conclude that 
when hydrolysing natural, lignocellulosic substrates, 
cellulases are more resistant to product inhibition than 
with amorphous reference materials and that the early 
stage decrease in hydrolysis rate is not caused by 
product inhibition [35,36]. In high-solids enzymatic 
hydrolysis of pretreated corn stover, Hodge and co-
workers recently found that increased sugar 
concentrations were the primary cause of performance 
inhibition [25].  
Based on the above, we have investigated the inhibitory 
effect of increased sugar concentration in connection 
with high solids enzymatic hydrolysis.  

Water concentration 
Working with a system with low water content may 
directly affect enzyme performance. Not only is water 
substrate for the hydrolysis but it is also the solvent that 

allows function of enzymes, contact between enzymes 
and substrate as well as transport of products [37]. We 
have previously investigated the role of water in 
enzymatic hydrolysis [6]. In this study, we wanted to 
investigate if the solids effect was related to a lower 
concentration of water in relation to solids. As 
mentioned, hydrolysis is possible at very high solids 
concentrations but the rate of reaction may be impaired 
under such conditions [13].  
We have investigated the role of water concentration by 
replacing various amounts of the water in enzymatic 
hydrolysis with oleyl alcohol, an inert oil that does not 
directly affect the function of the enzymes [38,39].  

Cellulase adsorption 
Cellulose accessibility and degree of adsorption of 
cellulases are well-known as controlling factors for 
conversion rates and yields [40,41]. It has long been 
known that certain hydrolysis products are able to 
inhibit cellulase adsorption [42]. It has, however, 
recently been shown that glucose and especially 
cellobiose strongly inhibit cellulase adsorption in a 
near-linear fashion [43].  
In order to investigate whether adsorption (or lack 
thereof) could possibly be involved in the observed 
solids effect, the adsorption of enzyme was measured 
in hydrolysis of filter paper at different solids contents. 

Methods 

Compositional analysis 
The composition of filter paper (AGF 725, 140 g/m2 
from Frisenette ApS, Knebel, Denmark) was analyzed 
using two-step acid hydrolysis according to the 
procedure published by NREL [49]. Dry matter content 
was determined using a Sartorius MA 30 moisture 
analyzer at 105°C. The released sugars were quantified 
by HPLC as described below. The filter paper was 
found to consist of 80.6% glucan, 0.42% Klason lignin, 
14.4% mannan, 1.0% arabinan, and 0.24% ash. 

Enzymatic hydrolysis 
The hydrolyses were performed using an enzyme 
mixture of Celluclast 1.5 L and Novozym 188 (weight 
ratio 5:1, both from Novozymes A/S, Bagsværd, 
Denmark) with a filter paper activity of 75 FPU per 
gram of dry matter (DM), as measured by the filter 
paper assay [50]. Enzyme loadings of 5-20 FPU per 
gram of DM and a hydrolysis times from 24 to 84 
hours were used. Hydrolysis temperature was 50 ± 1ºC. 
Initial total solids content ranged from 5% to 35% 
(w/w) and pH was kept constant by adding sodium 
citrate buffer (pH 4.80, 50mM final concentration).
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Hydrolysis experiments were performed at one of two 
scales. The ‘large’ scale hydrolyses were done in a 
horizontal, five-chambered liquefaction reactor where 
each chamber is 20 cm wide and 60 cm in diameter as 
described in [4]. In this reactor, a total reaction mass 
(solids and liquids) of 5 kg was used. The rotational 
speed was approximately 6 rpm. 
The ‘small’ scale hydrolysis was performed in 100 mL 
plastic bottles (total reaction mass 50 g), also at 5-25% 
solids content (w/w); buffer concentration and enzyme 
loadings as described above. The bottles were placed in 
a heated, horizontally placed drum, rotating at 60 rpm. 
The 80 cm diameter drum was equipped with two 
inside paddles that lifted and dropped the plastic bottles 
during rotation, mimicking the gravimetric mixing 
described in [4,20]. All small scale experiments were 
performed in either duplicate or triplicate.  
Samples for HPLC sugar analysis were boiled for 10 
min to terminate the reaction. Whole-slurry was 
sampled after vigorous shaking to ensure a 
representable mixture of solids and liquid. Samples 
were then diluted five to ten-fold with eluent before 
insoluble material was removed by centrifugation at 
4,200x g for 10 min. The dilution factor was 
determined by measuring the weight of the sample 
before and after dilution. When working at high 
insoluble solids concentrations there is an increasing 
difference between the concentration in the liquid 
phase and the overall concentration of a component [7] 
The dilution step minimises the measurement error 
introduced by the content of insoluble material, which 
would otherwise result in an overestimation when 
calculating the conversion, as discussed in [44].  

Sugar analysis 
The content of monosaccharides in the hydrolyzed 
samples (D-glucose, D-xylose, L-arabinose and D-
cellobiose) was quantified on a Dionex Summit HPLC 
system equipped with a Shimadzu RI-detector. The 
separation was performed in a Phenomenex Rezex 
RHM column at 80°C with 5 mM H2SO4 as eluent at a 
flow rate of 0.6 ml min-1. Samples were filtered 
through a 0.45 µm filter and diluted with eluent before 
analysis on HPLC. 

Inhibition experiments 
Before hydrolysis, various amounts of D-glucose 
(Sigma-Aldrich, Brøndby, Denmark) were added to the 
substrate. Conditions were as described above. 

Water replacement experiments 
Hydrolysis was run at ‘large’ scale, as described above, 
with 20% solids content (w/w) and an enzyme loading 

of 10 FPU (g DM)-1. 25% (w/w) of the initial aqueous 
phase was substituted with oleyl alcohol. It was found 
that neither the enzyme nor the released sugars was 
present in the oleyl alcohol. Sugar concentration was 
measured in the aqueous phase only. 

Adsorption experiments 
For cellulase adsorption studies, samples were kept on 
ice after hydrolysis instead of boiling, in order to 
prevent any desorption of enzyme from the solids. 
Rather than estimating the adsorption indirectly with a 
colorimetric method, total nitrogen content of the 
biomass was determined on an elemental analyser 
coupled to an isotope ratio mass spectrometer (ANCA 
SL & 20-20, Europa Scientific, Crewe, UK). This 
method of measuring enzyme adsorption has recently 
been described by Kumar and Wyman [43]. As the 
cellulase mixture of Celluclast 1.5 L and Novozym 188 
contains a proportion of non-binding enzymes, enzyme 
adsorption will never reach 100% of the added amount. 
To be able to subtract the nitrogen content of the liquid 
of the spun-down samples, the nitrogen content of the 
aqueous phase was measured with the Kjeldahl method. 

Results and discussion 

Compositional and substrate effects  
Filter paper was used as a model substrate. As seen in 
Fig. 2A, filter paper hydrolysis displayed the 
characteristic profiles with a very high initial rate of 
conversion that decreases considerably after only six to 
eight hours. When the conversion was displayed as a 
function of initial solids content, the characteristic 
downward curve was obvious (Fig. 2B). Again, the 
relationship is near-linear with a decrease from 56.5% 
conversion at 5% initial solids content to 22.8% 
conversion at 25% initial solids content, both after 24h 
of hydrolysis at large laboratory scale (see explanation 
of “small” and “large” laboratory scale in the Methods 
section). The 5% solids conversions shown in Fig. 2B 
are slightly higher than the linear curve. This 
observation is not in accordance with previous results 
or hydrolysis at different scales and is possibly a 
measurement artefact [4,44]. Thus, the results show 
that lignin or other phenolics are not involved in the 
solids effect. 
The filter paper used in the experiments for the present 
paper contained approximately 15% hemicellulose in 
the form of 14% mannan and 1% arabinan. However, 
experiments with hydrolysis of Whatman filter paper 
(98% cellulose) (not shown) and hydrolysis of �-
cellulose also displayed the same trend at increasing 
solids loadings [21]. This clearly indicates that 
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hemicellulose-derived sugars/inhibitors are not the 
cause of the solids effect, either. 

Fig. 2. Hydrolysis of filter paper at large laboratory scale with 
5, 10, 15, 20 and 35% initial solids content (w/w) and an 
enzyme dosage of 10 FPU per gram dry matter (DM). A: 
Hydrolysis profiles for 5, 10, 15 and 20% DM as a function 
of time. B: Cellulose conversion as a function of initial solids 
concentration. 

Product inhibition 
To investigate the role of product inhibition in high 
solids enzymatic hydrolysis, various amounts of sugar 
was added to a hydrolysis of filter paper. An example 
of such an experiment (at large laboratory scale) is seen 
in Fig. 3. With 50 g/L glucose added, the rate of 
hydrolysis during the first few hours was significantly 
reduced compared to the reference, in particular for the 
5% solids hydrolysis where the initial phase of fast 
conversion was completely absent. As there is a 
constant enzyme dosage per gram of solids in the 
experiments, the ratio between glucose and enzyme is 
much higher at 5% than 20% solids (for the hydrolyses 
with 50 g/L glucose added) and the stronger inhibition 
is thus not surprising. Although eight hours often 

makes up a small part of the whole hydrolysis time, the 
fast rate of hydrolysis in the first phase is responsible 
for conversion of a major part of the substrate. 
Interestingly, after approximately eight hours, the rate 
of hydrolysis (at each solids content) is nearly identical 
despite the significant difference in glucose level. This 
indicates that one of two things is happening. Either 
there are others and stronger factors inhibiting the 
hydrolysis after the first phase, thereby “masking” the 
product inhibition – or there is a certain glucose level 
threshold, above which the enzymes are inhibited to a 
similar extent and thus resulting in a similar conversion 
rate. However, if the latter is the case and product 
inhibition is the major factor responsible for the solids 
effect, then one would not expect a linear relationship 
between solids level and conversion. 

Fig. 3. Hydrolysis of filter paper at large laboratory scale with 
5% (punctuated line) and 20% (solid line) initial solids 
content (w/w) and an enzyme dosage of 10 FPU per gram dry 
matter (DM). Before addition of enzyme, 50 g/L glucose was 
added to the substrate (open symbols). The references with no 
sugar addition are depicted with solid symbols. After eight 
hours the rate of the conversions (slope of curve) for each 
solids content is almost identical. 

It is worth noticing; that it is not only the concentration 
of the inhibitor that is important but that the inhibitor-
to-enzyme ratio is equally so. This means that when 
running hydrolysis at different solids contents but with 
constant enzyme to substrate levels, the degrees of 
inhibition should theoretically be identical. Xiao and 
co-workers showed that in hydrolysis of a cellobiose 
solution, addition of 20, 50 and 100 g/L of glucose to 2, 
5 and 10% cellobiose (w/v) resulted in �-glucosidase 
inhibition of 53, 51 and 48%, respectively. The almost 
identical degree of inhibition at different sugar 
concentrations proves that the inhibitor-to-enzyme ratio 
is essential in product inhibition [32]. This shows that 
inhibition of �-glucosidase is not the main cause of the 
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solids effect. However, indirectly the cellulose-binding 
cellobiohydrolases are even stronger inhibited by 
glucose. The high glucose concentration leads to an 
accumulation of cellobiose, which acts as a particularly 
strong inhibitor of cellobiohydrolases [33].  
Surprisingly, cellobiose concentrations in our 
experiments have generally been low. Normally, even 
at high solids concentrations and 80% conversion, less 
than 10% of the converted material is found as 
cellobiose (not shown). For comparison, during 
experiments with lower proportions of �-glucosidase, 
inhibition caused cellobiose proportions of over 35% of 
the converted material while still retaining a certain 
degree of hydrolysis (not shown). 
SSF is normally used to offset the well-known effects 
of glucose and cellobiose inhibition but interestingly 
the solids effect has also been observed under those 
conditions [12,17,19]. Ethanol is also known to act as 
an inhibitor on cellulases (although less severe an 
inhibitor than cellobiose) [31,45], indicating that other 
factors may influence the conversion under these 
conditions. 

Fig. 4. Filter paper was hydrolysed at small laboratory scale 
to approximately the same extent by using three different 
enzyme loadings and lengths of hydrolysis time: 20 FPU per 
gram dry matter (DM), for 22 hours, 10 FPU per gram dry 
matter, for 48 hours and 5 FPU per gram dry matter for 84 
hours. Points are averages of three observations. No 
significant difference in slope of the curves at the different 
enzyme loadings was observed. 

To test if product inhibition was the sole cause of the 
solids effect a new experiment was carried out. Filter 
paper was hydrolysed to an extent of approximately 
45% but at three different enzyme loadings and lengths 
of time: 20 FPU (g DM)-1 for 22 hours, 10 FPU (g 
DM)-1 for 48 hours and 5 FPU (g DM)-1 for 84 hours. 
As seen in Fig. 4, the slopes of the three curves are near 
identical. If product inhibition alone was the cause, one 

would expect the hydrolysis with the lowest enzyme-
to-substrate ratio to display the strongest degree of 
inhibition and thus a steeper curve. In other words, it is 
not possible to by-pass the solids effect by using higher 
enzyme dosages, at least not within the normal range of 
dosages. This is an important consideration when trying 
to alleviate the solids effect. 

In conclusion, product inhibition at increased solids 
concentrations was found to be a significant and 
potentially determining factor for the solids effect. 
However, the linearity over a large range of solids 
contents of our experiments does not fit with the 
current models for product inhibition. 

Water concentration 
Oleyl alcohol was used to replace water in order to 
investigate the water to enzyme/solids ratio while 
keeping the viscosity rather similar. The reasoning 
behind these experiments is that by substituting part of 
the water, it is possible to run a hydrolysis with an 
altered water-to-enzyme ratio but with a more or less 
constant viscosity of the slurry.  If it is a lack of water 
that is causing the solids effect, then the hydrolysis 
conversion where a certain amount of the water has 
been replaced should be lower, presumably at the level 
of the corresponding solids level (taking only the 
aqueous phase in consideration).  
In Fig. 5, a quarter of the water (buffer) in an 
enzymatic hydrolysis of 20% solids filter paper has 
been substituted. At this level of substitution, the actual 
solids concentration in relation to water has therefore 
been increased from 20 to 25%. After 40 hours of 
hydrolysis, 5.6% less glucose compared to the 
reference (without oleyl alcohol addition) was released. 
However, the increase from 20% to 25% solids usually 
leads a decrease in conversion of over 12%. Thus, the 
decrease in conversion did not correspond directly to 
the lowered water content.  
However, the sugar concentration is not the only 
parameter that has been changed. Oleyl alcohol may act 
as a mixing agent, fully or partially replacing the effect 
of water in assisting mass transfer, even if neither 
enzymes nor sugars can be solubilised in oleyl alcohol. 
As previously discussed, the interconnection of factors 
affecting the yield is very characteristic of 
lignocellulose hydrolysis, complicating the 
identification of limiting factors.  
There is no doubt that water plays a number of 
important roles in enzymatic hydrolysis, and that these 
roles become even more crucial in systems with no free 
water. As cellulases can only break down cellulose 
when adsorbed onto the material, efficient mass 
transfer of enzymes is likely to increase conversion. 
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Fig. 5. Hydrolysis of filter paper at large laboratory scale with 
20% initial solids content (w/w) and an enzyme dosage of 10 
FPU per gram dry matter (DM). where 25% of the water was 
replaced with the inert oil, oleyl alcohol. This corresponds to 
an increase of biomass to water ratio of 25%. The yield was 
found to be less than the reference, but not as low as a 25% 
increase in solids normally results in. Points are averages of 
two experiments. 

Also, diffusion of released sugars away from the 
catalytic sites will theoretically prevent local product 
inhibition. Mechanical stirring may also directly 
change the size distribution or larger particles. 
Unfortunately, our understanding of these mechanistic 
interactions is limited and also depends on the cell wall 
structure of the substrate. It is likely that such factors 
affect the degree of conversion at very high solids 
loadings, essentially causing a drop-off in yield over a 
certain solids loading. However, as already discussed 
the observed solids effect is also seen at loadings as 
low as 2-5% solids and thus, mass transfer at neither 
the macroscopic nor the molecular level can be 
responsible for the solids effect.  
In conclusion, water itself as a substrate or diffusing 
agent in enzymatic hydrolysis does not appear to be the 
limiting factor responsible for the solids effect, nor is 
substrate inhibition involved. 

Cellulase adsorption 
Based on previous reports on inhibition of enzyme 
adsorption, it was investigated if the increased sugar 
concentration at high solids concentration could cause 
the solids effect in this manner. As seen in Fig. 6, there 
is a near-linear correlation between initial solids 
content and amount of adsorbed enzyme (percentage of 
nitrogen adsorbed on solids of total nitrogen added). 
After 24 hours of hydrolysis of 5% solids filter paper, 
approximately 40% of the added enzyme was adsorbed 
onto the remaining solids. The adsorption decreases 

with increasing solids content and at 30% solids 
content, only approximately 17% of the added enzyme 
is adsorbed, despite significantly more solids remaining 
than at lower solids contents. Even more interesting, 
there is a statistically significant correlation between 
the decrease in conversion and the decrease in enzyme 
adsorption. In other words, it appears that the 
increasing concentrations of glucose and cellobiose in 
high-solids hydrolysis result in inhibition of adsorption 
of the enzymes. As adsorption is a requirement for 
hydrolysis of the insoluble substrate, this in return 
results in lower conversion at increasing solids 
concentrations.  

Fig. 6. Upper graph shows the decreasing conversion in 
enzymatic conversion of filter paper at increasing solids 
loading (20 FPU per gram dry matter (DM), 24 hours 
hydrolysis at small laboratory scale). Points are averages of 
three observations. The lower graph shows the adsorption of 
enzyme on the solid fraction based on total nitrogen content, 
also as a function of initial solids content. Values are 
averages of three observations and have been corrected for 
varying amounts of remaining solids. 

Based on an experiment with a fixed cellobiose 
concentration, Kumar and Wyman argue that binding 
inhibition can be reversed using high substrate 
concentrations [43]. However, working with a fixed 
inhibitor concentration over a range of solids 
concentrations does not reflect the actual conditions 
since high solids loadings will invariably lead to higher 
product concentrations. At any degree of conversion, 
the ratio between substrate and inhibitor (product) in 
hydrolysis will be constant no matter the initial solids 
concentration. Xiao and co-workers also observed 
reduced impact of products on inhibition at higher 
solids loadings but again it was measured against a 
constant inhibitor concentration [32]. Based on our 
experiments we do not believe that increased solids 
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concentrations can reverse binding inhibition, rather the 
opposite. 
It can be argued that the phenomenon described above 
is a variant of product inhibition. In both competitive 
and non-competitive inhibition the catalytic site is 
affected, which is not necessarily the case with 
inhibition of adsorption. Although �-glucosidase does 
not bind to the substrate and thus is not affected in this 
way, the binding inhibition of endoglucanases and 
cellobiohydrolases can possibly explain the low 
cellobiose-levels under conditions where the hydrolysis 
is obviously inhibited.  
It is not known to what extent inhibition of adsorption 
is responsible for the solids effect or if it can be 
partially avoided through SSF. It has previously been 
shown that adsorption inhibition could not explain the 
decrease in cellulase activity [48]. In attempt to learn 
more about the nature of the inhibition, we used the 
data of the experiment in Fig. 2 to investigate the 
relation between the rate of reaction and glucose 
concentration. We found no direct relationship (not 
shown) - possibly due to the fact that different 
proportions of the substrate remained, i.e. when 50% of 
the substrate has been converted, the remainder is more 
difficult to hydrolyse.  
It is likely that the cellulose binding domains (CBD) of 
the cellulases are affected by glucose and cellobiose. 
Binding of cellulases and clarification of the role of 
CBDs is an important topic in cellulosic biomass 
conversion, and has been the topic of numerous studies. 
Being able to alter the CBD to make it less susceptible 
to high concentration of products may contribute to 
making high yields at high solids concentrations a 
reality.  

Conclusion 

The extent of enzymatic conversion of cellulosic 
biomass was investigated at varying solids 
concentrations. The conversion decreased at increasing 
solids concentration in a linear fashion, an effect that 
appears to be a generic or intrinsic feature of 
lignocellulose conversion. This decrease partially off-
sets the significant advantages of working at high solids 
concentrations. It was found that the solids effect was 
not caused by lignin content or hemicellulose-derived 
inhibitors. Mixing of the insoluble substrate did not 
appear to be causing the effect either.  
The increased concentration of glucose and cellobiose 
at high solids concentration are likely to cause product 
inhibition even when the enzyme-to-inhibitor ratio is 
constant. However, the solids effect has also been 
observed in SSF where much less sugar is present.  

It was found that at increasing solids concentrations, 
the proportion of adsorbed cellulase decreased. There 
was a statistically significant correlation between this 
adsorption inhibition and the decreasing yields at 
increasing substrate concentrations. Thus, the solids 
effect can be explained by inhibition of the binding of 
the cellulases. The exact extent and mechanism of the 
adsorption inhibition is still unknown. It is possible that 
improvement of cellulase CBDs can lead to enzymes 
that are more resistant to high sugar concentrations and 
thus higher conversions at high solids concentrations, 
significantly improving the viability of lignocellulosic 
biomass conversion.  
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Abstract The different states and locations of water

within the cellulose matrix can be studied by the use

of time domain low field NMR. In this work we show

how the state and location of water associated with

cellulose in filter paper fibers are affected by

enzymatic hydrolysis. Three locations of water were

identified in the filter paper; (1) bound water asso-

ciated with the microfibril surfaces and (2) water in

the cell wall or cellulose matrix and (3) capillary

water in the lumens and between fibers. The different

mechanisms of cellulase enzymes can be seen in their

effect on the cellulose–water interactions and the

synergistic effects between endo- and exo enzymes

can be easily detected by time domain NMR. An

interesting observation is that it is possible to link the

state and location of water within the cellulose fiber

with structural changes upon enzymatic hydrolysis.

Keywords Cellulose � Hydrolysis �
Enzymes � Time domain NMR

Introduction

Enzymatic hydrolysis of cellulose has become an

important research area due to the potential use of

cellulosic biomass as feedstock for fermentation into

ethanol.

The enzymatic breakdown of cellulose to ferment-

able sugars is done by enzymatic hydrolysis of the

glucosidic bonds. The reaction is thus a two-substrate

reaction involving both cellulose and water. While

there has been considerable interest in the cellulose–

enzyme interactions as well as on the cellulose

composition, limited attention has been paid to the

role of water in the process.

When water is sorbed to cellulose in a plant cell it

has properties which are highly different from the

properties of bulk water (Kollmann and Côté 1968).

Within the plant cell wall matrix, water is

subjected to a number of interactions caused by the

chemical and physical composition of the cell wall.

Thus the structure and composition of the cell wall

produce different states and locations of water, all of

which may be important for our understanding of the

interactions between cellulose and enzymes.

In the following a general and somewhat simpli-

fied description of the state and location of water in

lignocellulose is given.

In the range from molecular to micro-scale, the

lignocellulosic matrix has several structures that

affect the state of water. On a molecular scale the

prime source of interaction is the polar groups,
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dominated by the hydroxyl groups, which readily

form hydrogen bonds with water. At the structural

nano-scale level on the surface of the cellulose

microfibrils, water is packed in ordered layers or

clusters reflecting the crystalline structure of the

cellulose. This packed water is here denoted primary

bound water, and the density of this water may be as

high as 2.5 g/cm3 (Matthews et al. 2006).

At the cell wall level, sorbed water is located in a

porous structure with confined spaces where the water

is bound. The mechanisms of bonding are either by

capillary forces, by hydrogen bonds to hydroxyl groups

on hemicellulose and lignin or by hydrogen bonds to

other water molecules already bound to cellulose,

hemicellulose and lignin. This type of water is

commonly classified as secondary bound water. One

also encounters the classification freezing and non-

freezing water for the secondary and primary bound

water, respectively (Hartley et al. 1992).

Below the fiber saturation point of approximately

25–30% moisture, the major part of the water will be

present as primary or secondary bound water within

the cell wall Combining the primary and secondary

pools of water gives an average density of water in

the cell wall of approximately 1.2 g/cm3. Above the

fiber saturation point water fills the cell lumens until

full saturation in the area of 60–70% moisture

content.

Since water exists in several different states within

the cell wall matrix, several issues may be raised in

relation to enzymatic hydrolysis.

What is the importance of primary bound water

with a density of 2.5 g/cm3 on top of the cellulose

fibrils where the enzymes are active? Do the enzymes

affect the primary bound water? Furthermore, the

enzyme action may change the state and location of

secondary bound water within the cell wall matrix. If

so, will it be possible to monitor the effect of

enzymatic breakdown on the cell wall matrix struc-

ture through the state and location of water?

To answer these questions, time-domain nuclear

magnetic resonance (TD-NMR) is a promising tech-

nique, in which the relaxation times of the hydrogen

nuclei can be used to asses the different states of

water in lignocellulose. Two different types of

relaxation times can be obtained; spin–lattice (T1)

and spin–spin (T2). For practical reasons, and because

this approach has given useful information, studies of

water within solid substrates such as wood, pulp and

paper have mostly relied on spin–spin relaxation, and

the present work is no exception. The T2 relaxation

time of hydrogen nuclei depends both on how free the

hydrogen nuclei is to move, i.e. which molecular

environment it is part of and the physical state of that

solid or liquid environment. Generally, tight bonding

and small compartments shorten the spin–spin relax-

ation time of hydrogen nuclei.

In some of the earliest work reported on the use of

TD-NMR to study cellulose–water interactions, Froix

and Nelson (1975), measured both T1 and T2 relaxation

times for cotton linters in a range of 0–25% moisture

content. Four different states of water were identified:

Primary bound water on the cellulose crystal, and two

types of secondary bound water associated with the

cellulose structure as well as bulk water.

Menon et al. (1987) did a comprehensive study on

water in wood, finding three pools of water which

they assigned to the cell wall, the ray and tracheid

lumens and the earlywood tracheid lumens. Also by

choosing different tree species, they found that

species had an effect on the T2 values. Species with

smaller cell lumens had shorter T2 values for the

lumen water.

Araujo et al. (1993) examined the location of

water in white spruce softwood by TD-NMR iden-

tifying bound water, lumen water in late wood cells

and lumen water in early wood cells. The latter

having the largest lumens and thus the longest

relaxation time.

Antique paper was examined by Blümich et al.

(2003). They assessed paper as a bi-component

material made from cellulose and water, and found

that T2 values were correlated to the condition i.e.

level of breakdown of the paper.

Elder et al. (2006) used TD-NMR to study water in

hardwood chars. They found different distributions

between bound and free water as a function of

moisture content as well as effects of changing

temperatures and pore sizes. In addition, a clear effect

of species on T2 relaxation time as well as an effect of

moisture and temperature was observed.

In a study of fungal attack on commercial paper,

Capitani et al. (1998) described that by adding a

cellulase extract from Aspergillus niger, a fast

response in the T2 relaxation times upon addition of

the enzymes was found. This response was assigned

to changing water pools in what was labeled as

amorphous regions of cellulose.
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The bulk of the cited work was done at low

moisture contents as compared to the conditions that

would be applied in a commercial process for

conversion of cellulose to fermentable sugars. Such

moisture levels will be in the area of 60–80%, thus

significantly above the fiber saturation point and

presumably with most lumens water-filled.

In the present workwe applied TDNMR to examine

the states and locations of water in a cellulose–water

system subjected to hydrolysis by endo and exo-

cellulases as well as a complete cellulase system. Filter

paper was chosen as the model substrate as it consists

almost of pure cellulose, but still has an intact cellulose

matrix and cell wall structure.

Materials

Whatman No. 1 filter paper. Enzymes; purified

Tricoderma longibrachiatum endoglucanase (EG)

EC 3.2.1.4 and cellubiohydrolase (CBHI) EC

3.2.1.91 both from Megazyme, Ireland. Cellulase

mixture: commercial product Celluclast 1.5 L from

Novozymes A/S, Denmark. The EG and CBH

preparations were formulated with 3.2 M ammonium

sulphate. The exact formulation of the cellulase

mixture is not accessible, but a main component is

glycerol.

Experimental

Cellulase treatment

About 0.9 g of filter paper was cut in pieces of

approximately 4 9 4 mm2. The filter paper was

placed in the NMR sample tube and 1.8 ml deionized

water with or without enzyme added. The enzyme

was mixed with water on a weight basis of 1 mg of

protein for each treatment. Mixing of filter paper and

water with or without enzyme was done by adsorp-

tion only. Temperature during the treatment was

identical to the NMR operating temperature 40 �C.
The pH of the filter paper–water mixture was 4.9.

HPLC of released sugars

For verification of enzyme activity the content of

cellobiose, and glucose was quantified on a Dionex

Summit HPLC system equipped with a Shimadzu RI-

detector. The separation was performed in a Phe-

nomenex Rezex RHM column at 80 �C with 5 mM

H2SO4 as eluent at a flow rate of 0.6 ml min-1.

Samples were filtered through a 0.45 lm filter and

diluted with eluent before analysis on the HPLC.

NMR measurement

NMR analyses were done using a Bruker mq20-

Minispec, with a 0.47 Tesla permanent magnet

(20 MHz proton resonance frequency), operating at

40 �C. The transverse (T2) relaxation times were

determined using the Carr–Purcell–Meiboom–Gill

(CPMG) sequence. About 3,000 echoes were col-

lected with a pulse separation of 0.05 ms, the

acquisition of 32 scans and a 5 s recycle delay. The

magnetization decay curves were analyzed using

mono-exponential and bi-exponential fitting routines

to determine discreet values for T2. The Laplace

transformation method CONTIN, as described by

Provencher (1982) was used to determine relaxation

time distributions. This method is only one of a

number of different ways to assess CPMG relaxation

curves, and one should keep in mind that different

models might fit a relaxation curve equally well from

a mathematical point of view (Whittall and Mackay

1989). Here, we have chosen to use CONTIN and

discrete exponential fitting, and to focus on differ-

ences between sample types.

The NMR measurement started 15 min after

addition of water with or without enzymes to the

filter paper (t = 0). Measurements were done at 0,

15, 30, 45, 60, 90, 120 and 360 min. All NMR

measurements were repeated on three set of enzyme

treatments.

Conditioning of filter paper

For assignment of water pools, samples of filter paper

with different moisture contents (5%, 25% and 66%)

were prepared. Air dry 5% moisture content was

measured as received. Samples at the fiber saturation

point (approximately 25% moisture) were prepared

by conditioning the filter paper in a dessicator over

deionized water for 10 days. Saturated samples (66%

moisture) were prepared by adding 2 g of deionized

water to 1 g of filter paper. All samples were placed
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in NMR tubes and measured according to the

description above.

Results and discussion

Prior to assessing the effect of enzymatic hydrolysis,

the effect of different moisture levels upon the state

and location of water in the filter paper was studied.

The fibers in filter paper are derived from kraft

pulped softwoods and though they are composed

almost purely of cellulose, the overall cell structure

(cell wall and lumen) remains intact. In comparison

to non-pulped lignocellulosic fibers, however, the

filter paper will have a higher porosity and lack of

pore-structures due to the breakdown of lignin and

pectin components during the pulping process.

The assignments of the observed peaks are based

on the observations shown in Fig. 1. All measure-

ments were done in triplicate, and the observed peaks

and changes were consistently seen in all measure-

ments. It can be seen that at 5% moisture, water with

a short relaxation time of less than 1 ms dominates

and only trace amounts of water with longer relax-

ation times can be seen. At 5% moisture level it is

generally recognized that only bound water is present

on the cellulose, thus the 1 ms peak is assigned to

primary bound water.

At 25% moisture two peaks at 0.7 and 3 ms,

respectively, can be seen. This moisture level is just

below the fiber saturation point, i.e. no or little water

is present in the lumens. Therefore the peak at 3 ms is

assigned to less tightly associated secondary bound

water situated in the cell wall structure. At the highest

level of 66% moisture content, the peaks assigned to

bound and cell wall water are clearly visible, but also

to be seen is a large peak at 110 ms due to lumen and

inter-fiber water bound by capillary forces. While this

water pool could be assigned to bulk water, pure

water exhibits a T2 as high as 3 s (results not shown).

As a consequence, the 110 ms peak is identified as

water bound by capillary forces in the lumen of the

cellulose fibers and denoted lumen water. Unbound

bulk water as such is not present in the system even at

66% moisture content. Note that the relaxation times

for the cell wall and lumen pools are increased as the

water is adsorbed and swells the cellulose structure.

Our assignments of water to three different

locations are different to the assignment done by

Araujo et al. (1993) on water in white spruce. They

state that only bound- and lumen water can be seen,

attributing peaks around 10 and 100 ms to water in

differently sized cell lumens.

In this work there is a reasonably good agreement

with the relaxation times found by Araujo et al.

However, we show that up to the fiber saturation

point where no or little lumen water is present, there

are two distinct peaks; one is bound water and the

other around 3 ms must be from water in the porous

cell wall. When the moisture content is increased to

66%, the cell wall swells and the relaxation times

increase, but we still observe a distinct intermediate

peak between the primary bound water and lumen

water. Similar observations at different moisture

levels on early- and late wood cells from softwoods

confirm our assignments. The distinction between

primary bound water, cell wall secondary bound

water and lumen water in plant cells detected by TD-

NMR, therefore appears to be generic (Thygesen

et al. under preparation).

We therefore conclude that three different pools

and two different states of water can be seen in the

filter paper at 66% moisture content; primary bound

water tightly associated with the cellulose fibrils, cell

wall water—secondary bound by capillary forces or

hydrogen bonds in the cell wall, and lumen water—

secondary bound capillary water in the cell lumen or

between fibers.

With these assignments in mind, we now turn to

the measurements on filter paper. For the control

samples (water only) it can be seen that the fiber
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lumen water peak becomes narrower with time as the

cellulose adsorbs the water. This is interpreted as an

increase in porosity, when the sorbed water swells the

cellulose structure and increases the capillary bond-

ing of the lumen water, see Fig. 2.

To ensure the enzymes where active, glucose

production was checked by HPLC confirming an

increase in glucose throughout the test period. For all

three enzymes 0.4–0.7% of the cellulose was hydro-

lyzed to glucose or cellobiose. At such a low level of

enzymatic breakdown it can be assumed that the fiber

structure is fully intact. For all enzymes tested, controls

with heat inactivated enzyme were performed. The

inactivated controls containing the full enzyme prep-

arations were identical to the water only control

(results not shown), and we conclude that under the

applied conditions, there is no effect of the enzyme

formulations or the protein itself on the T2 values.

Upon the addition of endoglucanase to the filter

paper, the T2 distributions are changed compared to

those of the controls (Fig. 3a). The main effect can be

seen on the T2 for the lumen water which when

displayed on a linear scale (Fig. 3b) has a more

narrow distribution i.e. a stronger adsorption of

capillary bound water in the lumen region. This

observation can be explained by the mechanism of

the enzyme, randomly cleaving the cellulose chains

inside the fibrils. This introduces cavities and

micropores inside the cellulose structure, increasing

the ability of the water to interact with the cellulose

as seen on Fig. 3a. This interpretation is also

confirmed by observations of Dourado et al. (1999)

who found that cellulase treatment of cellulose

increased the water holding capacity.

It can also be seen how the EG increases the

relaxation time of the water associated with the cell

wall (Fig. 4). The longer relaxation time can be

interpreted as a loosening or opening up of the

structure at the earliest point of cellulose breakdown.

Thus, the initial action of the EG not only splits the

cellulose chains, but may also introduce water into

the cellulose structure by the formation of cavities

and micro pores.

Contrary to the EG, the cellobiohydrolase (CBH)

has no detectable effects on the water pools under the

applied conditions. Both the T2 distributions and the

relaxation times found from the peak values are

identical to the control (Fig. 5). The activity of the

enzyme was confirmed by the release of glucose, but

the exo mechanism which cleaves the cellulose from

the ends does not cause any structural changes that

would affect the state or location of the water.

The final enzyme tested was the commercial

Celluclast 1.5 L enzyme preparation from

Novozymes. This enzyme mixture is derived from
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more strongly adsorbed as the enzyme reaction proceeds
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Trichoderma reesei and contains a number of endo-

and exo-acting cellulases. Celluclast does not have

any significant beta-glucosidase activity, which may

cause product inhibition from a build up of

cellobiose. However, this was not considered to be

relevant for the current study since only the initial

phase of the cellulose breakdown was the focus of the

work.

The addition of Celluclast has by far the most

pronounced effect on the state and location of water

(Fig. 6a). The lumen water peak is even narrower

compared to the endoglucanase from T. longibrachi-

atum, the cell wall water peak is apparently split into

two peaks, and a magnified view (Fig. 6b) of the

primary bound water peak shows that it is also

narrowed, similar to the lumen water peak. The

reason for the change in the primary bound water

peak is not known.

The increased relaxation time for the main part of

the cell wall water associated with the 25 ms peak

indicates a significant loosening or fragmentation of

the whole cell wall matrix. Interestingly, this is only

associated with a limited release of glucose and

cellobiose, and what we observe may be described as

enzymatic ‘‘drilling’’ as proposed by Dourado et al.

(1999). Thus enzymatic drilling is associated with a
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loosening of the cellulose matrix structure creating

cavities and micropores, but still maintaining the

overall structural characteristics. The remaining cell

wall water peak at 9 ms can be interpreted as

belonging to non-accessible or recalcitrant structures

in the cell wall structure, however, more studies on

the time development is necessary in order to

elucidate this.

Based on the time dependant development of the

cellulose–water interactions and the lack of effect

using heat inactivated enzyme preparations i.e. con-

taining both enzymes and stabilizers, we have

assigned the observations to the catalytic effect of

the enzyme. However, it must be considered whether

the changes in the cellulose–water interactions can be

caused by the adsorption of cellulose binding

domains (CBD) onto the cellulose structure rather

than the hydrolytic breakdown. Both the EG and

CBH are isolated from Tricoderma longibrachiatum

and both enzymes have catalytic cores with an CBD

attached. The fact that the EG has an time dependant

effect upon the cellulose–water interaction and the

CBH has none, excludes major effects from the

adsorption of the CBD’s. The changes in the cellu-

lose–water interactions must be assigned to the

catalytic activity of the enzymes. This does not rule

out a possible role of CBD’s and accessory proteins

in the interactions of cellulose and water, but the

interpretation of the results in this work should be

assigned to the enzymatic hydrolysis.

Considering the development of the relaxation

times from 0 to 360 min for all three enzyme

preparations (Fig. 4), little or no effect can be seen

on the primary bound water. Most likely, higher

enzyme protein loadings than the applied approxi-

mately 0.1% are required to reveal possible effects on

primary bound water. For cell wall water, a clear

effect of increasing relaxation times i.e. a degradation

and thereby looser cellulose matrix structure can be

seen both for Celluclast 1.5 L and EG.

The lumen water shows similar behavior for the

control, EG and CBH with slightly increasing relax-

ation times caused by the swelling of the cellulose

cell wall structure, whereas Celluclast 1.5 L stays

constant. The latter can be explained by that even

though Celluclast 1.5 L causes the most pronounced

changes on the cellulose matrix and the cellulose–

water interactions, it also increases the porosity and

water bonding capacity of the cell wall, which

counteracts the effect of swelling and loosening of

the cell wall.

The relaxation time behavior found in this work

are different from that reported by Capitani et al.

(1998), who reported a shortening of T2 relaxation

times upon cellulase addition. Shorter relaxation time

does not appear logical, as the breakdown of cellulose

should result in a less organized structure and thus

longer relaxation times. This discrepancy to the

present work is most likely caused by the fact that

Capitani et al. (1998) used commercial office paper

with a high content of clays such as kaolin.

The results from this TD-NMR study of water

during enzymatic hydrolysis are interpreted in terms

of its effect on the cellulose matrix structure as

illustrated in Fig. 7. What is surprising to the authors

are not the observed mechanisms or structures, but

the fact that under the applied conditions with no

stirring and a relatively low enzyme dosage, the

combined action of an endo- and exo-glucanase

system caused substantial changes in the cell wall

matrix, as observed on the cellulose–water interac-

tions. These changes most likely occur at the

molecular level and are at best only marginally

detectable by chromatographic or microscopic meth-

ods, but their effect on cellulose structure and the

cellulose–water interactions are clearly seen by time

TD-NMR. The term ‘‘enzymatic drilling’’ is thus a

good description of the initial cellulase action, and we

believe that it is of prime importance for the overall

performance of industrial enzyme preparations for

cellulose hydrolysis.

In this work we have used filter paper for

simplicity. This substrate is of course not identical

to the lignocellulosic substrates to be used in e.g. a

commercial cellulose to ethanol process. However,

our previous experience on thermally pretreated

Fig. 7 Illustration of the enzyme action upon the structure of

the cellulose matrix for endoglucanase (EG), cellubiohydrolase

(CBH) and the cellulase mixture Celluclast 1.5 L
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wheat straw (Kristensen et al. 2006; Jorgensen et al.

2007), show that the basic factors regulating the

enzyme hydrolysis are quite identical to a pure

cellulose substrate. The results presented in this work

may with some caution be extrapolated to lignocel-

lulosic substrates as well.

Conclusions

The results show that TD NMR can provide detailed

information on cellulose–water interactions during

enzymatic hydrolysis. During the initial enzymatic

hydrolysis of cellulose, the action of the enzyme

system is a breakdown and loosening of the cellulose

introducing more water into the structure and

providing better access for the enzymes. In particular,

the cell wall matrix is affected by a combined

cellulase system, even under conditions where no

stirring is applied. The use of TD-NMR is a

promising technique for further elucidation and

understanding of the enzyme–cellulose–water system

and its interactions.
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_____________________________________________________________________________ 

Abstract 

Wheat straw samples were pretreated in the IBUS (Integrated Biomass Utilization System) process at temperatures 
of 160, 175, 185 and 195°C. With increasing temperature the xylan percentage decreased rapidly, with concomitant 
increases in cellulose and lignin percentages. The release of simple sugars upon enzymatic hydrolysis also increased 
with pretreatment temperature. Attenuated-total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) 
analyses were consistent with the wet chemical assays. Atomic force microscopy revealed changes between the 
untreated control and pretreated samples, and low field-time domain-nuclear magnetic resonance spectroscopy 
results indicated changes in relaxation time of bound water, even at the lowest pretreatment temperature. 

Keywords: AFM, ATR-FTIR, IBUS, LF-TD-NMR, pretreatment, wheat straw 
_____________________________________________________________________________ 

Introduction 1

In the conversion of lignocellulosic biomass to ethanol, 
the polysaccharides in the substrate are first hydrolyzed 
to simple sugars which are subsequently fermented by 
yeasts to ethanol.  The hydrolysis process is enhanced 
by a pre-treatment step, making the polysaccharides 
more accessible to the enzymes currently used for their 
depolymerization.  A recent review (Wyman et al., 
2005) examined a number of pre-treatment methods 
including ammonia explosion, aqueous ammonia 
recycle, controlled pH, dilute acid and lime-based 
methods.  Other techniques that have been proposed are 
wet-oxidation (Lissens et al., 2004) and hydrothermal 
treatment without the addition of chemicals (Laser et 
al., 2002, Negro et al., 2003).   
In the current work, wheat straw has been pre-treated 
using the IBUS (Integrated Biomass Utilization 
System) pilot plant, a hydrothermal pre-treatment that 
has proven to be effective at preparing straw for 
enzymatic hydrolysis (Thomsen et al., 2006, Larsen et 
al., 2008).  This method is designed to handle large 
particles (pieces of straw over 5 cm in length) and run 
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address: elder@fs.fed.us (T. Elder) 

at high dry matter levels (exceeding 30% w/w) 
(Thomsen et al., 2006).  After the initial chopping, the 
straw is soaked in water, transported to the 
pretreatment reactor and heated by steam to 190-200˚C. 
Integrated with the pretreatment reactor is a washing 
and pressing step which produces a solid fraction of 30-
40% dry matter.  The liquid fraction, rich in salts and 
hemicellulose derived sugars, can be concentrated to 
produce feed molasses (Larsen et al., 2008).  A pilot 
plant with a capacity of up to 1000 kg/h has been 
working since 2006, and it has been reported that the 
pre-treated straw can be enzymatically liquefied, 
saccharified and subsequently fermented into ethanol at 
initial dry matter levels of up to 40% w/w with 
resulting ethanol concentrations of up to 48 g/kg 
(Thomsen et al., 2006, Jørgensen et al., 2007).   
This paper reports on the impact of the IBUS process 
over a temperature range from 160 to 195°C.  Using the 
lowest temperature possible, while maintaining 
acceptable levels of conversion, will contribute to the 
energy efficiency of the pretreatment process.  The 
resultant material, compared to an untreated control 
was assayed for composition and conversion efficiency, 
along with examinations by attenuated total 
reflectance-Fourier transform infrared spectroscopy 
(ATR-FTIR), atomic force microscopy (AFM) and 
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2

low-field, time-domain-nuclear magnetic resonance 
spectroscopy (LF-TD-NMR).  Previous work, using 
scanning electron microscopy and atomic force 
microscopy has found that IBUS pretreated (195°C for 
12 minutes), exhibits minimal structural changes in the 
cell wall, from which it is proposed that lignin 
redeposition onto the surfaces of the fibers is occurring 
(Kristensen et al., 2008).  It was also reported from 
ATR-FTIR results that waxes and hemicelluloses were 
removed, and surface lignin was increased.    
Fourier-transform infrared spectroscopy has been 
specifically used in the analysis of wheat straw pre-
treated by wet alkaline oxidation (Schmidt et al., 2002) 
and steam explosion (Sun and Chen, 2008, Zhang et al., 
2008).  The results are consistent between pre-
treatment methods, all indicating a decrease in the 
presence of ester linkages that occur between 
hemicelluloses and lignin.   
The application of atomic force microscopy to the 
examination of straw has been reported in the literature 
by Yan et al. (2004) and Yu et al. (2005, 2008).  
Observations indicate a waxy layer on the outer surface 
of the straw, the removal of which reveals the presence 
of lignin (Yan et al., 2004).  Other work (Yu et al., 
2005;  2008) shows that the vessels within the vascular 
bundles and epidermal cells possess highly ordered 
cellulose microfibrils, while the microfibrils of 
parenchyma cells are randomly oriented.   
The NMR methods reported in the current work, 
working in the time, rather than frequency, domain 
have been applied as a quality control tool in various 
manufacturing applications such as foods and 
cosmetics, textiles, and well-logging in oil exploration.  
In earlier work reported in the literature, this method 
has been used in the examination of wood, paper, and 
cellulose to elucidate the nature of water present 
(Flibotte et al., 1990, Araujo et al., 1992;  1994) in the 
material and how processing will alter the behavior of 
the water (Elder et al., 2006, Labbé et al., 2002, Felby 
et al., 2008, Thygesen and Elder, 2008).  The 
experiments that are typically performed measure the 
spin-lattice (or longitudinal) relaxation time (T1) and 
the spin–spin (or transverse) relaxation time (T2). The 
former is a measure of the rate at which energy is 
transferred from the hydrogen nuclei to other types of 
energy in the surrounding atoms (the lattice), while the 
latter is concerned with the dissipation of spin energy 
to other magnetic nuclei. 

Methods 

Wheat straw was subjected to the IBUS process in a 
pilot-plant at Inbicon A/S, Skærbæk, Denmark.  The 

straw was chopped into lengths of up to 5cm and 
pretreated at 160, 175, 185 and 195°C, for 
approximately 10 minutes at a water:straw ratio of 5:1, 
followed by pressing to a dry matter content of 
approximately 30% (Larsen et al., 2008).  In addition, 
an untreated control sample was collected. 
The composition of the straw produced at each 
temperature was determined using a two-step acid 
hydrolysis according to the procedure published by the 
National Renewable Energy Laboratory (NREL) 
(Sluiter, 2008).  Before acid hydrolysis, the samples 
were dried at 45°C for one day and then ground.  The 
dried samples (~300mg) were treated with 3ml of 72% 
H2SO4 and placed in a water bath at a temperature of 
30° C for 60 minutes.  The samples were then diluted 
with 84 ml of Milli-Q water to give a H2SO4

concentration of 2.5%. The samples were autoclaved 
for 1 h at 121°C. After cooling, the hydrolyzate was 
subsequently filtered, with collection of the insoluble 
residue.  The residues were heated to 500°C to 
determine volatiles, and the remaining material is 
reported as Klason lignin.  The filtrates were 
neutralised with CaCO3 to pH 5.6, filtered through a 
0.45 µm filter and diluted with eluent, followed by 
HPLC analyses.  The monosaccharides (D-glucose, D-
xylose and L-arabinose) released were quantified with 
a Dionex Summit HPLC system equipped with a 
Shimadzu RI-detector. The separation was performed 
with a Phenomenex Rezex RHM column at 80°C, with 
5 mM H2SO4 as the eluent, at a flow rate of 0.6 ml min-

1.  Monosaccharide levels were anhydro-corrected to 
determine the amounts of glucan, xylan and arabinan.  
Ash content of each straw sample was determined by 
heat treatment at 500°C for three hours.   
  
To determine the affect of pretreatment temperature on 
conversion of the polysaccharides, pretreated straw was 
hydrolyzed using and enzyme loading of 5FPU/g dry 
matter of Celluclast and Novozyme 188 in a 5:1 ratio.  
Pretreated straw corresponding to 2.5 g dry matter was 
added to 50mM sodium-citrate buffer, pH 5.0, and 
enzyme to yield a total of 50g.  The samples were 
hydrolyzed for 72 hours at 50°C, with shaking at 200 
rpm and analyzed for monosaccharides as before.  
Conversion was calculated as the percentage of glucose 
released relative to the theoretically possible value, 
based on the compositional analysis. 

ATR-FTIR spectra were collected using a Thermo-
Nicolet Nexus 670 FTIR with a Golden Gate MKII 
single reflection ATR system.  Spectra were collected 
in absorbance mode from 4000 to 650 cm-1, at 4 cm-1

resolution, with 32 scans per spectrum.  Spectra were 
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collected in triplicate and averaged.  Background 
spectra were collected in air. 
    
Atomic force microscopy was performed using a 
Veeco-Dimension 3100 scanning probe microscope 
with a Nanoscope IIIa controller.  Images were 
acquired in tapping mode using a 1-10 ohm-cm 
phosporus (n) doped silicon tip with a nominal 
frequency of 150 kHz.  Roughness calculations were 
performed on the height images in an attempt to 
quantify structural differences resulting from the 
thermal treatments.   
Given the range of treatments to which the original 
straw was subjected, the samples were found to be 
variable in structure which can have a marked effect on 
the NMR results.  In order to isolate this effect a second 
set of samples was ground on a Wiley mill fitted with a 
20 mesh screen.  The moisture content of all samples 
was adjusted by equilibration in a dessicator over 
deionized water for 10 days.  The moisture content of 
each sample was determined in duplicate by oven 
drying sub-samples at 105°C. 
   
The NMR experiments were performed with a Bruker-
minispec mq20, with a 0.47 tesla permanent magnet, 
20MHz proton resonance frequency, operating at 40° 
C. The transverse (T2) relaxation times were 
determined using the Carr–Purcell–Meiboom–Gill 
(CPMG) sequence with a 0.04 ms pulse separation, the 
collection of 1000 echoes, 32 scans and a 5 second 
recycle delay.  CONTIN (Provencher, 1982), an inverse 
Laplace transform method, was used to determine 
distributions of T2 relaxation times from the decay 
curves.    

Results 

The composition and conversion levels of the straw are 
as shown in Table 1 and Figure 1, respectively.   

Table 1. Compositional analysis of wheat straw 

It can be seen that there is an increase in the content of 
cellulose and lignin, coupled with a decrease in 
hemicellulose, as the pretreatment temperature 
increases.  The convertibility of the material increases 
sharply as the pretreatment temperature is increased.  It 
is also interesting to note that while relatively small 
changes in composition are observed at 160° C, in 

comparison to the untreated control, the conversion 
process exhibits considerable progress.  These results 
indicate a marked increase in accessibility of the 
polysaccharides, even under the least severe conditions.    

Figure 1. Conversion percentages of cellulose and xylan into 
simple sugars with temperature. Error bars show two times 
the standard deviation. 

Figure 2. ATR-FTIR results for pretreated wheat straw. 
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Figure 3. Atomic force microscopy, amplitude images, of pretreated straw. 
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Figure 4. LF-TD-NMR relaxation time distributions of pretreated straw. 
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ATR-FTIR results are presented in Figure 2.  Peaks at 
2850 and 2920 cm-1 (Figure 0.6a) assigned to CH2

stretches have been attributed to wax in the straw.  It 
can be seen that these peaks gradually diminish with 
treatment temperature, indicating wax removal.  Figure 
0.6b, ranging from  1800 to 1450 cm-1, contains peaks 
assigned to carbonyls in the hemicelluloses (1735 cm-1) 
and to ring structures in lignin (1510 and 1595 cm-1).  
The intensity of the peak at 1735 cm-1 increases from 
the control to 160°C, but the amount of hemicelluloses 
exhibits only minimal changes (Table 1).  At 
temperatures above 160°C, the intensity of this peak 
decreases in concert with the reduction in 
hemicellulose percentage.  Given the sensitivity of 
ATR-FTIR to surface composition, these observations 
could be due to relocalization of hemicelluloses to the 
surface.  During the pretreatment, hemicelluloses are 
partially degraded into oligomers, which migrate from 
the cell wall and into solution.  Larger oligomers of 
hemicellulose, or modified oligomers with decreased 
arabinosyl and O-acetyl substitution have higher 
affinity for adsorption to cellulose and will redeposit on 
the cell wall surface upon cooling, whereas small 
oligomers will remain in solution (Kabel et al., 2007). 
The amplitude of the lignin peak at 1510cm-1 also 
changes systematically, increasing sharply with 
increased processing temperature, while the lignin 
percentage (Table 1) of the straw increases only 
slightly (22.6 for the control and 28.7% at 195°C).  
Again, these data may be interpreted as evidence of 
surface redeposition of lignin.   
Amplitude images from atomic force microscopy are as 
shown in Figure 3.  As previously reported (Kristensen 
et al., 2008), fibrils are readily apparent in untreated 
straw.  With thermal treatment the surfaces take on a 
granular or nodular appearance, interpreted as 
redeposition of lignin.  Especially at the temperatures 
of 185 and 195°C which contain only about 4-8% 
xylan, and since no fibrils are apparent, it is logical, as 
before, to conclude that that lignin is coating the 
surface of the material.  Roughness determinations 
revealed no consistent differences between temperature 
treatments, indicating that the mobility of lignin occurs 
even at 160°C, consistent with the ATR-FTIR results
The T2 distributions from LF-TD-NMR are shown in 
Figure 4.  These distributions are typical of other 
lignocellulosic material at the fiber saturation point, 
exhibiting a major peak at 1-3 ms and a minor peak at 
about 0.3 ms.  For the current samples these peaks are 
generally well-resolved.  The exceptions to this 
observation are the untreated samples, for which the 
ground samples are less well-resolved, perhaps 
indicative of an increase in the uniformity of the bound 

water environment due to grinding.  Figure 5 shows the 
changes in relaxation time, taken at the maximum of 
the major peak, vs the dry basis moisture content.  It 
can be seen that the moisture content varies 
considerably and systematically with temperature, such 
that the higher the treatment temperature the lower the 
moisture content.  This is consistent with the 
compositional results which report a decrease in 
hemicellulose percentage (the most hygroscopic of the 
polymers) and an increase in the lignin percentage (the 
most hydrophobic of the polymers).  In addition, this is 
in accord with the literature, which indicates a 
shortening of the main T2 relaxation time peak (1-3ms) 
as the moisture content decreases below fiber saturation 
point (Almeida et al., 2007).  The relaxation times 
decrease sharply from the untreated controls to the pre-
treated samples, the latter of which although relatively 
constant exhibit a general decrease with temperature.  It 
can also be readily seen (Figure 4) that there is a 
difference in the relaxation time of the untreated whole 
vs. ground straw, while this difference is much smaller 
for the IBUS treated samples.  Additionally, the T2 of 
the untreated, ground material is similar to the IBUS 
treated straw.  Given that IBUS treatment causes partial 
disintegration of the material, this similarity in 
relaxation time may be due to physical 
compartmentalization of the water, resulting in reduced 
mobility in both samples.   

Figure 5. T2 vs. moisture content for pretreated straw. 

The large reduction in both T2 and moisture content 
between the control and the sample treated at 160° C 
are in contrast to the summative analyses in which only 
slight changes were found.  This may be interpreted in 
terms of changes in physical structure of the straw that 
would restrict mobility of the water, chemical 
modifications of the polymers that are not reflected in 
the total composition or, as proposed previously, a 
rearrangement of the polymers that would alter their 
accessibility towards water.  The latter may be 
supported by the abrupt decrease in moisture content 
upon treatment.  Furthermore, the decrease in 
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relaxation time as the temperature of treatment 
increases from 160 to 195° C may be related to either 
the decrease in moisture content, the more severe 
disintegration at higher temperatures, or indirectly to 
the removal of hemicellulose or redeposition of lignin.  

Discussion 

It is apparent from these observations that the pre-
treatment of straw, prior to enzymatic hydrolysis is a 
complex process controlled by a number of interacting 
factors.  It has been found that the level of conversion 
of the polymers to simple sugars is enhanced even at 
the mildest of the pre-treatment conditions examined.  
Under these conditions, however, there are minimal 
changes in overall chemical composition.  These results 
would indicate the occurrence of structural changes or 
chemical modifications to the polymers that are not 
detected by summative analyses.  This interpretation is 
supported by the ATR-FTIR results that show an 
increase in surface hemicelluloses, coupled with 
decreases in both moisture content and relaxation time 
as measured by LF-TD-NMR.  Furthermore, the 
surface morphology of the pre-treated straw, as seen by 
atomic force microscopy, is markedly different from 
the control.  Taken together these methods show 
changes in both location and chemistry of the cell wall 
constituents, but also illustrate the limitations of bulk 
analysis in studying the effects of pretreatments of 
biomaterials such as straw.  
As the pre-treatment temperature increases, the 
conversion level increases in concert with slight 
increases in the cellulose and lignin percentages and a 
large decrease in the xylan percentage.  The decrease in 
xylan is consistent with its thermal sensitivity, 
hygroscopicity, as reflected in the lowered moisture 
content of the straw, and ATR-FTIR results.   
Across all hydrothermal treatments the total lignin 
content does not change markedly, while results from 
atomic force microscopy and ATR-FTIR indicate the 
presence of surface lignin with pre-treatment.  This 
would indicate that lignin removal is not a pre-requisite 
for effective pre-treatment, but that modification is an 
important factor.  Such modification may also be 
related to the observed loss of xylans, which have been 
shown to be covalently bonded to lignin.  Xylan 
removal may therefore contribute to structural and 
chemical changes to the lignin, thus enhancing 
conversion of polysaccharides to fermentable sugars.   
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Enzymatic Hydrolysis of Lignocellulose
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Climate change and depletion of fossil fuels has caused a tremendous 
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