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Summary

The main purpose of this Ph.D. project is to further develmprROLDALIGN algorithm. The
algorithm simultaneously predicts a common secondaryctre and an alignment between
RNA sequences.

The structure of an RNA sequence partly defines its funcéoprediction of the secondary
structure can aid the prediction of a sequence’s functitve. Secondary structure is a list of the
base pairs in the structure. Most often it is further limitedhe structure with the most base
pairs where any pseudo knots has been removed.

When sequences can be aligned, it gives a hint that they rbgginélated, and they may
therefore also have the same or similar function.

It is often difficult to align RNA sequences without usingustiural information because
the primary sequence can relatively easy mutate withoutgihg the structure. This is due
to compensatory mutations where one or both nucleotideshbiasa pair is mutated without
breaking the base pair.

Earlier versions ofFOLDALIGN align two or more sequences [Gorodkin et al., 1997b,c,
2001a,b]. A high positive score is given when a base pairmseon/ed, and a negative score is
given when a single stranded nucleotide is substitutedrfotteer, or a gap is inserted. To save
time the structure is limited to non-bifurcated structur@sbifurcated structure is a structure
made up of two smaller independent structures.

The pairwiseFOLDALIGN algorithm has been improved in several ways. In Havgaart et a
[2005b] an energy model somewhat similar to the one usedglessequence folding is added.
More complicated structures can be aligned as bifurcatedtstes are allowed. Allowing
bifurcating structures slows down the algorithm. To spgethe algorithm a constraint is placed
on the bifurcation calculation. Most bifurcated structucan usually be made in more than one
way. The constraint limits this to only one way. To reduce ragmmequirements, while aligning
long sequences, one sequence is split into several smhlleks. Each chunk is aligned to a
window on the other sequence. When all nucleotides in thelovinhas been aligned to the
nucleotides in the chunk, the window is moved one nucleofide new nucleotide is aligned
to those in the chunk, and the process is repeated. Whenddatides in the second sequence
have been aligned to all the nucleotides in a chunk, the psogtarts over with the next chunk.
The alignment can be shorter than the window, but not lorig@vgaard et al. [2005a] describes
a webserver and presents results for global alignment isupplementary material.

Havgaard et al. [2007] describes a method for making algmstlikeFOLDALIGN run very
fast. When two sequences are aligned, a lot of low scoringaighments must be calculated.
The method assumes that these bad sub-alignments cannattlé @ny good alignment, and

Vii



Summary

they are therefore pruned away. This is simply done by reguthat an alignment of a given
length must have a score above a minimum score, or it is pramag. Since the alignments
which are pruned away cannot be part of the longer alignmémgscalculations of the longer
alignments do not have to use time taking the bad alignmatdsaiccount. It is not necessary
to keep all the bad alignments in memory which saves a lot ohamg. To reduce memory
consumption even more the constraint on the bifurcatiocutation is used to limit the amount
of information which must be stored. When this reductionsed) there is not enough infor-
mation for the algorithm to perform the backtracking neettecktrieve the structure and the
alignment. More information must therefore be stored. Iratampt to limit the amount of
extra information which must be stored, a pre-backtrackaslenwhich locates all the bifurca-
tion points. These are then used to split the structure intebranched subsegments. These
subsegments are usually much shorter than the full streeietod can therefore be backtracked
without using extra memory. Unfortunately there is no gotyrdhat this method will use less
memory.

Torarinsson et al. [2007] describes a method for makingalotultiple alignments. It is
based on the PMcomp algorithm [Hofacker et al., 2004]. It claister the sequences based
on their alignment scores and then find a consensus strdctueach cluster. The consensus
structure is found by aligning base pairing probability ntats. These are calculated using
either the McCaskill [McCaskill, 1990] arOLDALIGN algorithms. The constraints used in the
pairwise algorithm are also used in the multiple version.

In Torarinsson et al. [2006]JOLDALIGN is used to align RNA sequences from human and
mouse. The aligned regions are just upstream or downstres@goences which can be aligned
using normal sequence alignment methods. The regionsranentged by either gaps, repeats,
or new alignments. The regions themselves cannot be aligsiad conventional methods. For
details see Figure 1 in Torarinsson et al. [2006] on page @gué&nce pairs were made from
ten different chromosomes. 1297 good alignments were foifrall chromosomes had been
used, an estimated 3600 good alignments would have beed.fdinis is approximately 1800
more than what would have been expected by chance. 32 outtop3&ndidates tested gave a
good positive result when tested with PCR. 12 of those whastegyood results by PCR, were
tested using Northern blots, and four of these gave goodtsesu

The final paper, Gorodkin et al. [2006], is about the familfROFA genes called microRNAs.
In the paper it is shown that there is a difference in sequemzif depended on whether the
mature microRNA is located on the left or right side of thediceed precursor hairpin loop.

viii



Sammendrag @ dansk

Hovedformalet med dette ph.d.-projekt er at videreudvidLDALIGN-algoritmen. Algorit-
men er beregnet til samtidigt at forudsige en feelles, sedarratruktur for RNA-sekvenser og
rette sekvenserne ind efter hinanélen

Strukturen af en RNA-sekvens er med til at bestemme densiumken forudsagt, sekundaer
struktur kan derfor veere med til at forudsige funktionenragekvens. Den sekundaere struktur
af en RNA-sekvens bestar i en liste af de basepar, som ekgielmed denne sekvens danner.
Som oftest begreenses den endvidere til den struktur, soffestibasepar, nar pseudo-knuder
flernes.

Hvis to sekvenser kan alignes godt, sa giver det et vink dndeamuligvis er relaterede.
Hvis en menneskesekvens med kendt funktion kan alignes tifisesekvens, sa er der grund
til at tro, at de to sekvenser har de samme eller relateredeifuner.

RNA-sekvenser kan oftest ikke alignes ordentligt uden lafustruktur, fordi den primaere
sekvens af et RNA-molekyle relativt nemt kan muteres, udastrakturen af molekylet eendres
vaesentligt. Dette skyldes kompenserede mutationer, mvelter begge nukleotider i et basepar
skiftes ud med andre nukleotider, sddan at baseparretdseva

De tidligere versioner &fOLDALIGN aligner to eller flere sekvenser [Gorodkin et al., 1997b,c,
2001a,b]. Der gives en hgj positiv score, nar et baseparbsyog en negativ score nar enkelt-
strengede nucleotider ikke er bevaret, eller der indsastedemrum i sekvensen. For at spare
tid kan strukturen ikke indeholde bifurkationer. En biferkt struktur er en struktur, der bestar
af to mindre, uafhaengige strukturer.

De nye versioner af algoritmen, som er udviklet under delttel.porojekt, er forbedret pa
flere mader. | Havgaard et al. [2005b] tilfgjes der en emecgiel, der minder om den, der
bruges til enkelt sekvens-foldning. Mere kompliceredaldtirer kan findes, fordi bifurkerede
strukturer nu er tilladt. Brugen af bifurkerede struktuger algoritmen langsommere. For
at spare tid er der indfart en begraensning, hvor den bifadeestruktur kun beregnes pa en
af flere mader. For at begreense hukommelsesforbruget nee Isekvenser bliver den ene
sekvens klippet op i mindre stykker, som alignes til et viedta den anden sekvens. Nar
alle nukleotider i vinduet er alignet til stykket fra den $i@ sekvens, sa rykkes vinduet et
nukleotid. Det nye nukleotid alignes til stykket, hvorefténduet rykkes igen. Nar hele den
anden sekvens er blevet alignet til stykket fra den fgrdteeses, sa starter processen forfra med
det naeste stykke fra den fgrste sekvens. En alignment kdivgayd kortere, men ikke laengere

2At rette sekvenser ind efter hinanden kaldes oftalignedem. Resultatet af at aligne to eller flere sekvenser
kaldes eralignment
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end vinduet. Havgaard et al. [2005a] beskriver en ny welesefior programmet. Desuden
beskrives resultater for global alignment i Supplementaayerial.

Havgaard et al. [2007] beskriver en made til at fa progr&amsomrFOLDALIGN til at kare
hurtigt. Metoden udnytter, at mange af de delalignmentan beregnes undervejs, er meget
darlige. Ved at kraeve at alle alignmenter med en vis leengdehave en score over et vist
minimum, begraenses antallet af delalignmenter. De aligeneder ikke lever op til mini-
mumskravet, kan ikke veere en del af laengere alignmentergogkal derfor ikke bruges tid
pa at tage de darlige delalignmenter med i beregninger &kdgere alignmenter. Det er ikke
nagdvendigt at gemme de darlige delalignmenter, og depfares der ogsa meget hukommelse.
For yderligere at spare hukommelse udnyttes begreensnpégdet antal mader, en bifurkteret
struktur udregnes pa til kun at gemme den mest ngdvendigeviation. Denne ekstra bespar-
else betyder, at den del af algoritmen, som gar tilbage gqanaten lagrede information for at
finde alignmenten og dens struktur, ikke har nok informatdar skal altsa lagres mere infor-
mation for at kunne lave denne tilbage-sporing. | et fors@gipbegreense maengden af infor-
mation, der gemmes, bruges der en “del og hersk-strategistfaves en tilbage-sporing, der
fastleegger alle bifurkations-punkter. Disse punkter beutil at splitte strukturen op i mindre
dele, som ikke indeholder bifurkationer. Fordi de mindrieedmm oftest er vaesentligt mindre
end hele strukturen, skal der oftest bruges mindre hukosenahr de tilbage-spores. Der er
dog ingen garanti for, at strategien bruger mindre hukoraenehd en simpel tilbage-sporing.

De farste versioner afOLDALIGN kunne lave alignmenter med flere sekvenser, mens ver-
sion 2 kun kan lave dem parvistFOLDALIGNM [Torarinsson et al., 2007] kan lave glob-
ale alignmenter med flere sekvenser. Sekvenserne blivdesagrupper efter deres score,
og for hver gruppe findes der en feelles struktur. Strukturedef ved at aligne basepar-
sandsynligheds-matricer beregnet med McCaskill [McGa41d90] ellerFOLDALIGN-
algoritmerne.

| Torarinsson et al. [2006] bruge®LDALIGN til at sammenligne RNA-sekvenser fra men-
neske og mus. Sekvensstykkerne er udvalgt sadan, at i deergtle kan nabosekvenserne
alignes, mens nabosekvensen i den anden enden er et meliegtrgentagelseselement eller
en ny alignment. Sekvenserne i selve sekvensstykket kanak@§nes med standardmetoder.
Se figur 1 i Torarinsson et al. [2006] pa side 99. Der blev beekvenser fra ti forskellige
kromosomer. Der blev fundet 1297 signifikante alignmerbat svarer til~3600 kandidater,
hvis alle kromosomer blev brugt. Ca. 1800 af disse kan ikkkldoes ud fra, hvad der ville
forventes ved et tilfeelde. Af 36 topkandidater, der bletaiedaboratoriet med PCR, gav de 32
et positivt resultat. 12 af de kandidater, der gav positi@gRResultater, blev ogsa testet med
Northern blots, og fire af disse blev genfundet.

Den sidste artikel, Gorodkin et al. [2006], handler om denil@ af RNA-gener, der hed-
der microRNAer. | denne vises det, at sekvensmotiver foraRdIA er forskellige, alt efter
om microRNA-sekvensen ligger pa hagjre eller venstre sfdea struktur, som microRNAen
kommer fra.



Chapter 1

Introduction

The main purpose of this Ph.D. project is to develop a bettthod for local structural align-
ment of RNA sequences. The project is based orrthiebALIGN algorithm [Gorodkin et al.,
1997b,c, 2001b,a] which is the first simplified implememaiof the general Sankoff algorithm
[Sankoff, 1985] for structural alignment of RNA.

The first section in this chapter gives a short introductmiRNA sequences. The second
section introduces RNA alignment and the results ofHbeDALIGN papers included in this
thesis [Havgaard et al., 2005a,b, 2007, Torarinsson 2@0.7, 2006]. The final section intro-
duces micro-RNAs (miRNA) and the results of the miRNA paggorfodkin et al., 2006].

The second chapter is focused on the pairnwiseDALIGN algorithm. It starts with a de-
scription of the two new implementations (2.0 and 2.1) amil time & memory requirements.
The second section describes the energy model. The nexirsdescribes the heuristics used in
the algorithm. The fifth section describes the parameteyd.usis followed by a section about
selecting and evaluating the significance of the local atignts. The final section describes the
datasets used to train and test the algorithm.

The third chapter gives a short description of the resutimfeach paper, and some con-
cluding remarks are made.

The appendix describes the recursion useddyDALIGN.

The six papers make up the remaining part of the thesis.

1.1 RNA sequences

An RNA sequence is a polymer of nucleotides linked to eaclero#th the3d’ to 5’ positions.
This leaves thé&’ end free on the first nucleotide and thieend free on the last nucleotide. The
sequence is therefore said to be in $h&o 3’ direction. Each nucleotide consists of a ribose and
phosphate backbone part and a base. Usually the base is andhae, a Cytosine, a Guanine,
or an Uracil. The polymer is flexible and can bend back onfitskbwing the bases of the
nucleotides to interact through hydrogen bonding. The bund further stabilized through
stacking. The canonical base pairs AreU andG - C. The wobble base pa - U is usually
also included among the RNA base pairs.



1.2 RNA alignment Chapter 1. Introduction

The primary structure of an RNA sequence is the list of thelenides in theb' to 3’
direction. The secondary structure is a list of the basesdaund in the three-dimensional
structure of the molecule. Often the secondary structumnited to the list of base pairs when
pseudo knots have been removed. If the nucleotides at@ositandj in a molecule base pair,
and the nucleotides at position andn also base pair and< m < j < n, then one of the
base pairs is part of a pseudo knot. Secondary structurecpogdbased on a single sequence
started with [Tinoco Jr. et al., 1971, Tinoco Jr. et al., ]9 ficient dynamic programming
algorithms were introduced by [Waterman, 1978, WatermahSmith, 1978, Nussinov et al.,
1978, Nussinov and Jacobson, 1980]. Today the most widely pgograms are Mfold [Zuker,
2003] and RNAfold from the Vienna package [Hofacker et 894].

Traditionally there were four different types of RNAs: Meager RNA (mMRNA) which is
the RNA intermediate between a protein and its DNA sequenhe.ribosome RNAs (rRNA)
which are the primary molecules in the translation of the MRNto proteins. The transfer
RNAs (tRNA) catch amino acids and bring them to the right poss in protein sequences
under construction. Finally there was also “a few other $ypeRNAs”. The important RNAs
were the mRNAs because they are directly related to theipstand proteins did everything
except those things done by rRNAs, tRNAs, and “a few otheesypf RNAS”. This view
is being revised. Currently there are still four main typ&@fR0IAs: The mRNAs, the RNA
elements, the non-coding RNAs (ncRNA), and “a few other RNA$Hie mRNAs are still the
RNA intermediate between a protein and its DNA sequence. NA Rlement is an RNA
structure in an RNA molecule which has a function which ispert of the primary function of
the molecule. This can for example be UTR elements affed¢tingranslation rate of a mRNA
[Winkler, 2005], a self splicing intron [Woodson, 2005],@seleno cysteine insertion element
[Walczak et al., 1996]. The ncRNAs are RNA genes like the *oRINA and tRNA. These
RNA molecules have functions in a fashion similar to prageit®ften the function involves
base pair interactions between different molecules. TRNAs are found both as independent
genes or inside the introns of other genes. In the digital RiNgory by Mattick [2004] some
RNA sequences are believed to be adapter molecules betwgalatory complexes and the
sequences being regulated. The “a few other RNAs” categosyill around since the RNA
field is expanding rapidly, and new types of molecules mayibeostered.

The view of the roles of RNA is changed by a combination of higioughput experimental
techniques, bioinformatics, and renewed interest in thé& R&ld. The high throughput exper-
imental techniques including sequencing and arrays haaddogye extend been pioneered by
the RNomics group [Huttenhofer et al., 2002] and the RIKEbugr[Suzuki and Hayashizaki,
2004]. Huttenhofer and Vogel [2006] reviews the experiraktg@chniques. Some of the bioin-
formatic methods will be discussed in the next section.

1.2 RNA alignment

Alignment of sequences has been one of the most useful liilgspn bioinformatics. An align-
ment helps transforming knowledge about one sequencemuwlkdge about other sequences.
Even when there is no knowledge about any of the sequenceas afigmment, the informa-
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tion that sequences can be aligned, can be used to seleenseguor further investigation.
Efficient methods for alignment of sequences by sequenciasity have been around since
dynamic programming was introduced into the field of bioinfatics. For a historical account
see [Sankoff, 2000].

Alignment of non-protein-coding-RNA sequences is congibd by the fact that certain
parts of the primary structure can be mutated without chrantiie structure of the molecule
significantly. It is often only important that the nucleaslat two positions in the sequence
base pair, the types of nucleotides at the positions masst IAG — C base pair can for ex-
ample be replaced by ah — U base pair. Wobble base paits— U make it even easier for a
sequence to change since they allow the nucleotides of goa@s® mutate in separate events
without changes to the structure. Two homologous RNA secggenan therefore have dissim-
ilar primary sequences while retaining similar structuréisis therefore desirable to include
structural information when aligning RNA sequences. Topdity algorithms only secondary
structure information (without pseudo knots) is normakgd.

RNA alignment and structure prediction were combined inShakoff algorithm [Sankoff,
1985] which describes an algorithm for multiple alignmemnt @ommon structure prediction.
The Sankoff algorithm’s time and memory complexity becormgsactable for more than a
few sequences. A simplified version of the Sankoff algorithvas implemented in the first
version ofFOLDALIGN [Gorodkin et al., 1997b,c, 2001a,b]. From pairwise aligntsat uses
greedy algorithms to build the multiple alignment. The p@e alignment maximizes a score
where conserved base pairs are given a positive score evantivd nucleotides have changed.
An extra score can be added when several base pairs are iresteslem. Single stranded
nucleotides are given a positive score when they are coedémtween the two sequences, and
a negative score when the nucleotides are not conserved.

In general there seems to be two main classes of algorithnchvane aimed at making
alignments of RNAs or predicting common folds. The energgeldaalgorithms likecoLD-
ALIGN, Dynalign [Mathews and Turner, 2002], RNAz/RNAalifold [\&faetl et al., 2005b,
Hofacker et al., 2002], Pmcomp [Hofacker et al., 2004], Riigic[Reeder and Giegerich,
2005], and Cofolga [Taneda, 2005] use energy minimizat®tha basis for the algorithm.
The stochastic methods like Cove [Eddy and Durbin, 1994¢rival [Eddy, 2002], Stemloc
[Holmes, 2005], Consan [Dowell and Eddy, 2006], QRNA [Riesl Eddy, 2001], Evofold
[Pedersen etal., 2006], and PFOLD [Knudsen and Hein, 20@3jased on the ideas of stochas-
tic context free grammars, SCFGs, see also [Durbin et 8@81LCMfinder [Yao et al., 2006]
uses expectation maximization in a Bayesian frame work.ré bee several other methods as
the field is growing fast. The Wiki ( http://wikiomics.orgiki/List of_articles#RNA ) started
by Paul Gardner keeps track of the different methods. Moshoaks are currently aimed at
making global multiple alignments or structure predictioMost of the methods are very slow
and use huge amounts of computer memory. To make the metisatitelheuristics and/or
simplifications are used. Popular heuristics include ptdHiig of the sequence which limits
the number of base pairs in the sequence, or similarity amgpaevhich requires that certain
positions in the sequences are aligned. Biological singpliibns like ignoring multibranched
loops or collapsing structures into a stem representati@alao used.

The current version of the pairwis@LDALIGN algorithm is presented in this thesis. It has
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several advantages compared to most of its competitoran iimake both local and global align-
ments. It is fast and has a low memory requirement due to theiiseuristics. The heuristics

used do not remove the comparative information and do nofiregequence similarity. Even

though sequence similarity is not required it can be usedegnt. A weakness of the current
pairwise algorithm is that it cannot align multiple sequencA first step in making a new local

multiple alignment method is the method for making globaltiple alignments presented in

[Torarinsson et al., 2007]. In addition to tReLDALIGN algorithm a script which evaluates the
significance of the local alignments, is also described.

The aim of the Havgaard et al. [2005a,b, 2007] papers are poowe the predictive per-
formance and the time and memory requirements@fDALIGN. Havgaard et al. [2005b]
introduces a light weight energy model and removes the steijnsimplification from the al-
gorithm. The stem-only simplification was replaced by a fsiarwhich limits the number of
ways a given multibranched loop is calculated to one. A scanscheme is also implemented
which lowers the memory requirement at the cost of doublegrun time. While local align-
ment and structure predicting are the main foci of the firgtepathe second, Havgaard et al.
[2005a], introduces a webserver and results for globahalignt. Havgaard et al. [2007] intro-
duces the pruning heuristic which significantly speeds epatgorithm and lowers the memory
consumption. The heuristic which limits the number of waystibranched loop is calcu-
lated, is used to lower the memory requirement further. Wihén heuristic is used, not all
of the cells in the dynamic programming matrix passed by tektrack algorithm contains a
value. It is therefore not possible to do a normal backtrac&ugh the matrix. A “divide and
conquer” strategy is used to do the realignment and badltrgof the structure in an attempt
to try to avoid using too much extra memory. There are alsdlsmprovements to the energy
model.

The first version oFOLDALIGN can make multiple alignments whereas the second version
can only make pairwise alignmentSOLDALIGNM [Torarinsson et al., 2007] is a global multi-
ple alignment algorithm based on the PMcomp algorithm [ldiéa et al., 2004]. It aligns base
pair probability matrices based on the McCaskill [McCaski®90] orFOLDALIGN algorithms.
Clustering is used to group sequences with similar strestwhich are then given a consensus
structure.

Recently three large scale searches for ncRNAs in vereebhatve been published [Washietl
et al., 2005a, Pedersen et al., 2006, Torarinsson et alg]2U0@ashietl et al. [2005a] uses the
RNAz algorithm [Washietl et al., 2005b]. RNAz compares thi@imum free folding energy
of a common fold (with an additional substitution score) nfaignment to the free folding
energies of the individual sequences [Washietl and Hofa@@®4, Hofacker et al., 2002]. A
support vector machine (SVM) is used to calculate a Z-samréhke alignment. Pedersen et al.
[2006] uses the Evofold algorithm to scan multiple aligntseri vertebrates for new ncRNAs in
humans. Evofold uses a SCFG and a phylogenetic model toatediow well the substitutions
in a multiple alignment agree with it being a conserved ncRtiAicture. Torarinsson et al.
[2006] usesOLDALIGN and is part of this thesis, see page 97. Compared to RNAz aod Ev
fold FOLDALIGN has the advantage that it is local, and it can be used on mealigequences.
RNAZz’s and Evofold’s advantage is that they can work with tiplé sequences. The three stud-
ies show that the general bioinformatical tools for findimmyel ncRNAs have reached a point
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1.3 MicroRNA Chapter 1. Introduction

where they are becoming useful not only for benchmark coirspas, but also for generating
new knowledge about biology.

1.3 MicroRNA

The final paper in this thesis is about microRNAs (miRNA). MiRs are~22 nt. long RNA
sequences which inhibit the translation of their RNA tasgd@argets are selected by base pairing
between the miRNA and the target RNAs. Even though the firRN®A gene had already been
discovered by others [Lee et al., 1993], the most importaRINA papers recently are probably
the three miRNA papers published in 2001 by Lagos Quintah ¢€2001], Lau et al. [2001],
and Lee and Ambros [2001], since they brought a huge amowsptatfight on the ncRNA field.

A miRNA is cleaved out of a pre-miRNA which is a stem loop. lampis the stem can be
very long, but in other organisms the stenni80 nucleotides long. The miRNA also known
as the mature miRNA can be located at either side of the lonpGdrodkin et al. [2006] it
is shown that the sequence motif of mature miRNAs which cofres the left side of the
stem, is different from the sequence motif of those which esrtom the right side of the
stem. This indicates that there might be a difference in #llellar machinery used to process
the left and right mature miRNAs. Furthermore the sequenagfsrof the different groups of
organisms varies indicating that there are also differeintéhe processing machinery between
the different species.



Chapter 2

FOLDALIGN

2.1 Implementations

Two new implementations afOLDALIGN have been made as part of this project. The second
version (2.1) replaces the first version (2.0). The mairedéiice between the two versions is
the pruning constraint, see section 2.3.1, and better imgahéation which makes the program
use less memory and run faster. In the followingnd K are the sequences being alignéd.

is the length sequende X is the maximum motif lengthé is the maximum length difference
between two subsequences being alignéd.j are start and end coordinates of a sub alignment
from sequencé, andk & [ are similar coordinates from thi€ sequence.

2.1.1 \ersion 2.0

Version 2.0 ofFOLDALIGN is described in the paper Havgaard et al. [2005b]. The mans ali
for version 2.0 were:

1. Allowing for bifurcated structures

2. Lowering the memory complexity by implementing a scagrsnheme. This allows the
algorithm to locally align long sequences

3. Improving the pairwise alignment performance by usingidn scoring scheme

Many classes of RNA structures contain bifurcations. Qansing the algorithm to non-
bifurcated structures as done in the earlier versions [@arnoet al., 1997b,c, 2001a,b] signi-
ficantly limits its performance [Gardner and Giegerich, £0®llowing bifurcating structures
changes the time complexity of the algorithm frémiZ? L% ) to O(L?L3.) slowing down the
algorithm significantly. To alleviate this a new constrairmts added which limits the number of
times identical structures are calculated to one, seeose2iB.

The scanning scheme splits one sequence into overlappbsgguences and aligns each
of these subsequences to the other sequence. Each sulisequeraps the previous subse-
guence with\ nucleotides and is typical®\ nucleotides long (wherg is the maximum motif
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length possible, see section 2.3). In the other sequengeaonlong section of the dynamic
programming matrix is kept in memory. For details see Haxdjah al. [2005b] page 59 and
Figure 2 on the same page. The scheme lowers the memory catpfitem O(L;Lx\)) to
O()\3§) at the maximum cost of doubling the run time.

Initial tests showed that if the algorithm was to have a goedgsmance, a better scoring
function than the simple substitution scheme used in tHeeeaersions Gorodkin et al. [1997c]
was needed. Therefore an energy model was added to thetlfgorThe energy model uses
five different contexts: Hairpin loops, stems, bulge loapternal loops, and bifurcation loops.
The scoring scheme is described in section 2.2.

2.1.2 \Version2.1

Version 2.1 ofFOLDALIGN is described in Havgaard et al. [2007]. The main improvesarg:
1. Pruning
2. Better memory implementation during:

(&) Scanning - keeping only the necessary information
(b) Non branched alignment - Exploiting the lower requiratseduring scanning

(c) Backtrack - Using a “divide and conquer” algorithm to toykeep memory con-
sumption low during backtrack

3. Better use of thé constraint during global alignment
4. Improving the energy model:

(a) By always scoring single stranded nucleotides exteéoahy base pair in the same
way

(b) By allowing more base pair inserts

The two major problems of the 2.0 versionRLDALIGN are the time and memory needed
to run the program. In the pruning heuristic it is assumed @ng subalignment with a score
below a given cut off will never be part of any biologicalljieeant alignment. The algorithm
saves time by ignoring such subalignments. Pruning alsessaemory space since it is not
necessary to store information about subalignments whagk been pruned away.

An alignment starting at positiaincan, with the exception of bifurcation, only be expanded
into alignments starting at positiaror i — 1, see the recursion in appendix A. In the case of
bifurcation an alignment starting at positiosan become part of an alignment starting further
downstream. The memory is therefore split into two parte 3lort term memory keeps all the
needed information about all alignments starting at pmsitandi — 1. The long term memory
holds the information for alignments with starting pogisan the range fromup to:+ \. Only
information about alignments (stems) which can form thatrgart of a bifurcation, is stored
in the long term memory, see Figure 2.11. The short term mghns a memory complexity of
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O()\?6), and the long term memory’s complexityy \35). While the complexity of the long
term memory is the same as the memory complexity in the 2€laerthe long term memory
matrix is much more sparse.

In the non branched alignment case the information in thg term memory is not needed
which further lowers the memory requirement during the sganpphase. The memory require-
ment is that of the short term memory, nameélgA?s).

During backtrack information about all subalignments viahagll be passed during the back-
track, is necessary. This means that much more informatiost e stored in the long term
memory. To try to avoid raising the memory requirement dybacktrack too much a “divide
and conquer” scheme is used. First step is a pre-backtraickwdaligns the region of interest,
but in addition to the stem alignments also bifurcation ralgnts are kept in the long term
memory. An extra pointer to the last bifurcation point paskg an alignment is also kept for
all alignments. Finally, also a list of all bifurcation ptsnencountered is kept. By using this
information it is possible to find all the bifurcation poimtsthe alignment which is then divided
into non bifurcated stem segments. Each stem segment igrredland backtracked keeping
the full long term memory. This is somewhat similar to thevide and conquer” strategy used
by Eddy [2002]. The memory is saved since each stem segmeallyuss much shorter than
the full alignment. The run time complexity of the pre-baekk realignment is identical to
the realignment needed without this scheme. The run timbestem segment realignments
is relatively short as these are non brancbdd?, . .,0%). In most cases this scheme allows
the backtrack to be performed without using more memory thamg the initial scan. But a
clear example where it does not work, is in the case of nondmethalignments. A cubic space
model, similar to the linear space models used in sequeigra@nt, could be used to ensure
that the memory consumption during backtrack of a stem sagstays below a given cut off
[Myers and Miller, 1988, Hirschberg, 1975].

During backtrack and/or global alignment theonstraint (see section 2.3) can be used to
reduce the run time and memory consumption even furtherd Toastraint combined with the
“end to end” requirement of global alignment constrainsithp@sition to a4é wide band. This
is similar to theM constraint used in Dynalign [Mathews and Turner, 2002].

The energy model used in version 2.0 has no consistent wagradlimg single stranded
nucleotides outside any base pairs. They are scored agawp, internal loop, or bifurcation
loop nucleotides. In the 2.1 version they are always scosdiifarcation loop nucleotides. An
simplified overview of the energy model can be seen in Figuse 2

In Dynalign, [Mathews and Turner, 2002], a base pair can belynserted in a stem when
it is surrounded by two conserved base pairs. Version 2EDebALIGN uses a similar insert
model. In 2.1 this requirement is relaxed so that only th¢ lfiesse pair must be conserved, and
that the stem contains at least two conserved base pairdutara version the requirement for
the first base pair to be conserved will probably be removed.

Dangling ends which are single stranded nucleotides inibratiched loops or external
loops which are located next to a base paired nucleotidepmgelr get a stacking bonus in
version 2.1. The predictive performance gained by usingjlitagn ends is small compared to
the complexity which they add to the algorithm.
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Local BT/Global | No_branch | No_branch

local BT/Global

2.0 Time complexity | O(L;Lx)A?6%) | O(L3Lg6?) | O(LrLgAd) | O(L3Lk0)
2.1 Time complexity | O(L;Lx)?6%) | O(L36%) O(L;Lg)o) | O(L35?)

2.0 Memory complexity O(A\30) O(L2Lkd) | O(N%) O(L3Lk9)
2.1 Memory complexity O(A\39) O(L36?) O(N\?)) O(L36?)

Table 2.1: Time and memory complexity. “Local” is the locligjament scan case. “BT/Global”
is the backtrack and global alignment cases. ‘iNanch” are the non-bifurcated cases.

2.1.3 Time and memory

The time and memory complexities can be seen in Table 2. ur&sg2.1) and (2.2) show the
average time needed to align one of the eight SRP sequente ga¢ section 2.6. The se-
guences are 1000 nucleotides long, and each contains 860 nucleotide long SRP motif.
The runs were made using= 25 andchunk_size = 1000. The machines used have Intel
XEON 2.4 GHz processors, and the source code had been cdnugileg the gcc 3.4.4 com-
piler. The “shuffled data” curve was made with shuffled versiof the same sequences. The
two “2.1, Pruning” curves are the same in the two figures. Frioenfigures it is clear that the
pruning constraint speeds up the calculations signifigafthe “2.1, No pruning” curve was
not extended beyontl = 300 due to time constrain, whereas the pruning curves could $igea
extended. It can also be seen that the 2.1 implementatiastisrfthan the 2.0 implementation.
Figure (2.2) shows that the pruning constraint is slighalsleffective when the sequences being
aligned share a common motif, which is to be expected.

Figure (2.3) shows the average memory used for the samenadigis as in Figures (2.1)
and (2.2). In this figure it can be seen that the memory reogére is a major limitation for
the 2.0 version of the algorithm. It is also clear that thenprg constraint also has a very good
effect on the memory usage. This figure also shows that th@rgonstraint is slightly more
efficient when there is no common motif.

Figure (2.4) shows the average time required to align twdflglliusequences of the same
length using a\ equal to the sequence length £ 25). The machines used have Intel Xeon
5150 Woodcrest 2.66 GHz CPUs, and the source code had begnledmsing the gcc 4.1.0
compiler. Note that the machines used to make this figure ifflexaht from those used to
make the previous figures, and that the figures thereforeardirectly comparable. Without
pruning the time complexity is expected to &é\*6%). For these eight sequences it appears
to be O(A~%452). The run time of the algorithm scales significantly betteewlthe pruning
constraint is used.

For global alignment the time and memory results are less ¢#ata not shown). The
memory usage is greatly influenced by the structure beinmmedl. When the structure is un-
branched, and the sequences are short, the 2.0 and the 2:dniagpversions of the algorithm
require approximately the same amount of memory. The pgucamstraint lowers the require-
ment, but not as much as in the local alignment case, se@s&c8.1. The run time advantage
gained by using pruning as a function of thparameter can be seen in Figure (2.12).

9
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Figure 2.1: Average run time as a function of motif length. -The 1000 nt. long SRP data

set was used) = 25 andchunk_size = 1000. The new implementation is faster than the old
even without pruning. The time needed to align unrelatedeeces was measured by aligning
shuffled SRP sequences. Figure (2.2) shows the pruningurwveore detail.
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Figure 2.2: Average run time as a function of motif length -The run time increases when a
motif is present. The “real data” contains SRP sequencdsanéngth of~ 300. The “shuffled
data” contains the same sequences shuffled.
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Figure 2.3: The average memory requirement as a functiorotif langth - \. The 2.1 imple-
mentation clearly uses a lot less memory than the 2.0 impigatien even without pruning.

600

540 —

480—

W oW A

S o N

S © o
I I I

IN)

IS

o
I

Time (seconds)

1801

1201

60—

‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il
0 100 200 300 400 500 600 700 800 900 1000
Lambda

ol oo

Figure 2.4: Average run time as a function of the lengths efitiput sequences. In these runs
shuffled sequences with lengths equahtevere aligned. Note that the machines used to make
this figure and Figures (2.1) and (2.2) are different fromheatber.
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2.2 Scoring scheme

The scoring scheme has five contexts: Hairpin-loops, steaige-loops, internal-loops, and
bifurcated-loops. An alignment always starts in the haitpop context. [IFOLDALIGN version

2.0 the alignment can end in any context except the bulgeegbrih version 2.1 the alignment
can only end in either the stem or bifurcation context. FegRr5 shows an overview of the
energy model used in version 2.1. The energy model is basdteodescription found on
the Mfold website: http://www.bioinfo.rpi.edwizukerm/rna/energy/node2.html, see also the
Mathews et al. [1999] article. In the following the paramstased in version 2.0 GOLDALIGN

are used.

2.2.1 Hairpin-loops

A hairpin-loop is a stretch of unpaired nucleotides closgd base pair. The base pair is not
part of the loop. In Figure 2.6 the hairpin-loop nucleotides colored blue and black. The
score of an entire hairpin-loop has the following elements:

Single strand substitution Each nucleotide in the loop of the first sequence is alignea to
nucleotide or a gap in the second sequence. In the exampkdhe five single strand
substitutionsG < G, A« —, C— G, U+ U, A< A

Loop lengths The lengths of the unpaired regions also have a cost. In th@gbe the lengths
are 5 and 4. The default minimum length is three nucleotidé length cost for short
loops is read from the loop length table.

End stacking The nucleotides at the ends of the loop (blue color) stacloprof the closing
base pair (red color) if the length of both loops are longantthree nucleotides. The
two stackings areGA < AU andGA < GC. An extra nonGC cost has been added to
the hairpin-loop stacking parameters. This cost is neededalthe way hydrogen bonds
are counted in the nearest neighbor model [Xia et al., 1998je base pair&\U andGC
are not followed by other base pairs, then #i¢andGC base pairs are not considered to
base pair and are treated as part of the loop.

The score of the alignment in Figure 2.6 is:

Shp = Sss—substitutions + Slengths + Shpstacks
= Su(G,G) 4 Sss(A, G) + Sss(C,—) + Sss(U,U) 4+ Sss(A, A)+
Slength(5) + Slength(4) + Shpstack(GA7 AU) + Shpstack(GA7 GC) (21)
= 9-50—-25+4+13+4+19 —56 — 56 + 11 + 22
= —113
2.2.2 Stems

A stem is a series of base pairs stacked onto each other. Thmom length of a stem is two
base pairs. A potential base pair without a neighboring pases not considered a base pair

12
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Start
Hairpin-loop
— Bf. right
7 Stem
Bifurcation TN
YT Stem insert
Bf. left & both
Bulge Right Bulge Left
Internal-loop A
End
1 External

Figure 2.5: A simplified state chart for the 2.1 implememtatf FOLDALIGN. The alignment
always starts in the “Start” state which is a hairpin-loadst The alignment ends in the “End”
state. The “External” state recalculates the scores oftarpin-", “Bulge-", and “Internal-”
loop states to an “External” state score when needed. Usghbawmcleotides in the bifurcation
states are scored in the same way as external states. ThepifiHi@op” state aligns unpaired
nucleotides in the hairpin context. The “Stem” state aligase pairs in both sequences. The
“Stem insert” state aligns a base pair in one of the sequemitie$wo gaps in the other. “Bulge
right” aligns bulges on the right side of a stem. “Bulge lediigns bulges on the left side
of a stem. The “Internal-loop” state aligns two internabps nucleotides. The “Bifurcation”
state joins two substructures. The right structure mushlika “Stem” or “Stem insert” state.
The state of the left structure must be: “Stem”, “Stem irffséRifurcation”, “Bulge right”, or
Bifurcation unpaired right (“Bf. right”). Bifurcation urgired right aligns unpaired nucleotides
on the right side of a branch point. Bifurcation unpaired &both (“Bf. left & both”) aligns
unpaired nucleotides on the left, right, and both sides abadh point.

13



2.2 Scoring scheme Chapter 2. FOLDALIGN

A CWU — G U A = U A = U
G A G A G = C C = G
A = U G = C U = G U =G
Figure 2.6: A hairpin-loop alignment. The Figure 2.7: An alignment of two stems.

base pairs (red) closing the loop are not part
of the loop, but the score still depends on
these nucleotides.

and is treated as part of a loop. Figure 2.7 shows an exampleedlignment of two stem
regions. In the 2.0 version of the algorithm a base pair canderted between two conserved
base pairs. In version 2.1 a base pair can be inserted whetetinds at least one base pair long
(the first base pair must be conserved), and the final stemcooin at least two conserved
base pairs. The score of a stem alignment has two elementghrvérsions:

Base pair substitutions The cost of substituting the nucleotides of a base pair inseqeence
with the nucleotides of the corresponding base pairs in therssequence. Here it is:
AU «— AU, GC «+ CG, andUG < UG.

Stacking The nucleotides of a base pair stack onto the nucleotidés m¢ighboring base pairs.
In the example there are four stackSt < GC andGC < UG in the first sequence.
AU < CG andCG < UG in the second sequence. The stem in the example is not
complete. The red and black base pairs will in most casesstds& with their neighbors
which are not shown in the figure.

The score of the alignment in Figure 2.7 is:

Sstem - pr—substitutions + Sstacks
= Spp(AU, AU) + Spp(GC, CG) + Spp(UG, UG) + Sstack (AU, GC')+
Sstack(GC,UG) + Sspack (AU, CG) + Sstaer(CG,UQG)
= 11+5+8+24+14+21+15=098

(2.2)

2.2.3 Bulge-loops

Bulges are a single strand region on one side of the moleagles=d by base pairs, see Fig-
ure 2.8. The closing base pairs are not part of the bulge. ifilgeesstrand region must be on the
same side of the molecule in both sequences. The length diullge in one of the sequences
may be zero if the length of the bulge in the other sequenceesoo more. The score for a
bulge alignment has these elements:

Single strand substitution The cost of substituting the single stranded nucleotidéis @ach
other. In the example there i<a«— C substitution.

14
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A = U A = U A = U A = U
C C G — C A
U =G G = C A G C G
A G G G

G = U G = U

Figure 2.8: A bulge-loop section of an align- Figure 2.9: An internal-loop section of an
ment. alignment.

Length There is a cost for the length of the bulge. In the example leotgths are one.

Stacking If the lengths of the bulges in both sequences are zero ortbes,the closing base
pairs stack on to each other. This is the case in the exampmeavthe two stackings are:
AU < UG andAU < GC.

Non-GC-end cost This is an extra cost added each time a single stranded ladpssd by a
non-GC base pair. The exception from this rule is the bulges wherelibsing base pair
can stack on to each other i.e. the one or zero length bulgabelexample the cost is
not added. If the bulges had been longer, the cost would hese:® x —5.

The score of the bulge alignment in the figure is:

Sbulge = Sss_substitutions + Slengths + Sstacking + Snon—GC
= Sss<C7 C) + 2 % Slength<1) + Sstack<AU7 UG) + Sstack<AU7 GC) (23)
= 11-2x38+10+24 =-31

2.2.4 Internal-loops

Internal-loops are single strand regions closed by two pass which are not bulge-loops, see

Figure 2.9. This definition includes loops which in singlgwence folding would be considered

bulge-loops, but in the pairwise folding become intermalg because they are on opposite sides

of the surrounding stems. The closing base pairs in the figig@ot part of the internal-loop.
The score of an internal-loop has several elements:

Single strand similarity The substitution cost for the nucleotides in the loops. égkample:
G—CA—=CA=G —-——AG«G, andG < G,

Loop lengths A cost depending on the total length of the loop. In the exantip total length
of the loop in the first sequenceds, = 3 + 2 = 5 and in the second sequentg =
3+3=6.
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G G G G G G G G
C A C A C A C A
A = U A = U A = U A = U
G =C G =C G =C G =C
C =G A = U C =G A = U
A G A A CC uu G G A — CZC C A

Figure 2.10: An alignment with a bifurcated-loop. The loomg together two substructures.
Only the single stranded nucleotides marked with blue aeérgrcolors are part of the loops.
The example shows an open bifurcated-loop. The loop carbalstosed by a stem. A closed
loop is also called a multibranched loop.

Loop asymmetry There is a cost for loops of unequal lengths. The cost istiyrpooportional
to the length difference between the two loops on each sidbeoimolecule. In the
example the differences are one for the left sequence andaehe right sequence. The
asymmetry cost is limited to a maximum value.

End stackings The unpaired nucleotides at the end of the loops stack wélckbsing base
paired nucleotides. The ndBE base pair cost is assumed to have been added to the para-
meters already. In the example the four stackings@@= AU, AG < GU, AC < AU,
andGG < GU.

The score of the internal loop alignment in the figure becomes

- Sss substitutions T Slengths + Sasymmetry + Sll end stackings

= Su(G,0) + Ses(A,C) + Ss(A, G) + Sss(—, A) + Sss(G, G)+
Sss(Ga G) + Slength(5> + Slength<6) + Sasym(l) + Sasym(0>+
Sll end stack:(GGa UA) + Sll end stack:(AG7 GU)+ (24)
Sll end stack:(AC, UA) + Sll end stack:(GGa GU)

= —25—-22-18-50+94+9—-18—-20—-5+0—-74+4—-7—-7

= —157

Slnternal—loop

2.2.5 Bifurcated-loops

Bifurcated-loops are loops of unpaired nucleotides betvaeon the outside of substructures,
see Figure 2.10. In version 2.1 of the algorithm this contealso used as an external nucleotide
context. Any single stranded nucleotide outside any basagacored using the bifurcation
context. For an alignment without any base pair this contexiso used. The score of the
bifurcated-loop has these elements:

Single strand sequence similarityThe cost for substituting the nucleotides in the two se-
guences with each other. In this example:— G, G < G, A~ A A~ — C « C,
C—CU=C U A
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Number of unpaired nucleotides There is a cost added for each unpaired nucleotide in the
loop. Often this cost is set to zero. Setting this cost andsthgle strand similarity
costs to zero can lead to very long alignments since there isost for extending the
bifurcation-loop.

Number of substructures A cost for adding new substructures to the loop. The firsttsubs
ture is not counted. In the example there are two substmesturhe cost is therefore
added once.

Loop closing If there is a stem closing the two ends of the loop, a cost ieddd@his is not the
case in the example, but the structure on the left would heea kblosed if thé\G at the
start of the sequence had base paired witH.theat the end.

Dangling ends (Only in version 2.0 of the algorithm). Unpaired nucleosigext to base paired
nucleotides can stack onto the base pair. If an unpaire@atide can stack on more than
one base pair, it only stacks on to the most favorable. Umédte stackings are ignored.
The stacking cost are different for stackings to ther the3’ side of the base pair. In
the example there are the following stackin@:= CG, C < AU, G < CG, C < AU,
CG&e A AU U,CGe A andAU < C.

Non-GC end base pair The extra cost added when the base pair ending a stem is@at a
pair.

The score of the example is:

Sbifurcated—loop - Sss substitutions 1 Sunpaired nt. T Ssubstructures+

Send stackings + Snon—GC end

= Sss(A,G)+ Sss(G,G) + Ses(A, A) + Sss(A, —)+
Sss(C,C) + S55(C,C) + S5 (U, C) + Ss5(U, A)+
Sunnt(8) + Sunnt(7) + Ssub.str.(l) + Ssub.str.(1)+
2 X S5’ end stack(Gu CG) + 2 X S5’ end stack(Cu AU>+ (25)
2 X S3’ end stack(CG7 A) + 2 X S3’ end stack(AU> U)+
2 % Snon—GC end

= —184+94+19-50+11+11-15-19-8x0—-7x0
—4—44+2x0+2x14+2x11+2%x6—-2x%x5

= 34
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2.3 Constraints

The FOLDALIGN algorithm is computational heavy. Without any constrathesalgorithm has
a time complexity ofD(L3L3;) and a memory complexity ad(L?L?). This means that if the
lengths of the sequences are doubled, it will take roughlyrods longer to make the alignment,
and it will require 16 times as much memory. Using a twice as ¢amputer will only allow
the alignmenti2% longer sequences in the same amount of time.

To make the algorithm more useful constraints are used. idugvVmplementations of
FOLDALIGN use three types of constraints [Gorodkin et al., 1997b, BP01

The maximum motif length — A The maximum motif length was limited tonucleotides.

The maximum length difference —§ The maximum length difference between two subse-
guences being aligned was limiteditaucleotides.

Stem-loop Structures were limited to stem-loop structures, no b#tions were allowed.

Using these constraints the time complexity was reducéd fo L 5 A\d) and the memory com-
plexity to O(L; Lk ). In the newer versions acfOLDALIGN the A and¢ constraints are still
used while the stem-loop constraint is available as an nptio

The X\ constraint is now further exploited to lower the memory cterity to O(A\36), at
the cost of doubling the run time. This is done by splitting #hortest of the sequences into
smaller (usually2 x X\ nucleotides) chunks. These are then aligned foraicleotides long
window which is scanned along the other sequence. The me&exglained in Havgaard et al.
[2005b], in the section named "Mutual scan of two sequennéddfze algorithmic complexity”
on page 59. Figure 2 on the same page illustrates the concept.

The stem-loop constraint is very effectively lowering th@e complexity with a factor
of O(\9), but it also severely limits the biological problems for winithe algorithm can be
used. The constraint is therefore no longer used by defaultspeed up the calculation of
the bifurcations the context in which a bifurcation can acdtas been limited. A structure
consisting of two substructures can usually be made fromde wange of substructures, see
Figure 2.11. The bifurcated structure can be assembledtinansubstructures at all the points
marked by lines. All ten possible combinations of substres result in the same structure.
Calculating only one of the combinations significantly spgeap the alignment. Exactly which
combination that is used, depends on the implementatioa.2Zllversion oFOLDALIGN uses
the combination indicated by the red line. The bifurcaticars is only calculated when the
left substructure ends with a base pair, and the right strads either stem, bifurcation, or
bulge on the left side of the molecule. The 2.1 version usestimbination marked in blue.
Here the bifurcation is only calculated when the start mtadie of the left structure is base
paired downstream, and the right side is a stem. The reasaidomethod change is that
the 2.1 method exploits the constraint to also save largeuata@f memory by only storing
subalignments which end with base pairs for downstreantipasiin the/ sequence.

When non-branched alignments are wanted, the memory eqeitt is onlyO(\2§) during
the scan phase since it is not necessary to use the long temomypéversion 2.1 only). A linear
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G G G G
C A C A
A = U A = U
G =2C G =2C

C =G A = U
Jalelc| o] o al A al e\

Figure 2.11: Bifurcation constraints. When two substrtetuare joined, there are usually
many exactly similar ways to do it (The figure shows a singtpisace example for clarity). In
the figure ten slightly different pairs of substructures alibe joined into the same structure.
FOLDALIGN therefore only calculates this structure once. In versi@ntl2e pair of substruc-
tures separated by a red line is used. In 2.1 the substrystirseparated by the blue line is
used. Limiting the bifurcation to the blue pair instead of tied pair allows the memory re-
quirement to be lowered since it is only necessary to stdsalggnments which end with a base
pair for the positions upstream of the current position.

space implementation is required before the backtraclestag exploit this [Myers and Miller,
1988, Hirschberg, 1975].

2.3.1 Pruning

The dynamical pruning constraint added in version 2.1 meguhat an alignment must have a
minimum score depending on the length of the alignment. dfalignment score is below the
minimum, then the alignment is not stored in the dynamic @ogning matrix. The recursion
used in the algorithm has been rewritten so that it takesignrakbnt and expands it into new
alignments. An empty cell cannot be expanded, and the #tgoican therefore move quickly
to the next cell. This saves a lot of time and memory esp@gcialthe case where there is no
motif in the sequences being aligned. The average time deedaign two 1000 nucleotide
sequences using different values\odan be seen in Figure (2.1).

Since gaps have relatively large negative scores, the yseing removes alignments with
many gaps. While this is normally not a problem for local afigent where alignments with
many gaps usually is not what is wanted, it is a problem fobgl@alignment. For some global
alignment casesOLDALIGN does not report an alignment since all subalignments hage be
pruned away. To limit the number of these cases the prunihgme is slightly adjusted for
global alignment. Since the global alignment must reacimfend to end of both sequences, the
minimum number of gaps needed to make the alignment equalsigth difference between
the two sequences. The pruning score is made dependent Igadrothe length of the sub-
alignment, but also on the length difference between thestbsequences. The global pruning
score becomes:

@global = @local(lla lK) — min{abs(ll — ZK), abS(L[ — LK)} X GE (26)
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Figure 2.12: The curve shows the average speed gained by pigining as a function of the
length difference between the input sequences for gloaimlent. SRP sequences were used
as input sequences. The maximum length differenrevés25.

WhereO ., and O, are the pruning scores in the global and local pruning scares-
j—i+1,lg =1—k+1,andGg is the gap elongation cost. In this way sequences of widely
different lengths can usually be globally aligned, but at¢bst of slowing down the algorithm.
Figure 2.12 shows the speed gain as a function of lengthrdiftee between the input sequences.
At length difference 25 the speed gain has dropped to angeefd.2. Further work is needed

to make pruning work efficiently for large length differesce
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2.4 Parameters

The most commonly used method for RNA folding is that of egengnimization [Zuker, 2003,
Hofacker, 2003]. The parameters used in energy minimiaaie based on thermodynamical
studies of small oligoes [Mathews et al., 2004, 1999, Tindcoet al., 1973]. In sequence
alignment the most commonly used parameters are log-odnessfHenikoff and Henikoff,
1992, Altschul, 1991, Altschul et al., 199 OLDALIGN uses a combination of the two types
of parameters. The substitution matrices are log-oddsscand the structural parameters are
taken from energy minimization.

2.4.1 Energy

The minimum free energy of an RNA structure is calculatedgigihhe nearest neighbor model.
This builds on the assumption that the main contributiom&ftee energy of an RNA structure
is the stacking of neighboring base pairs on to each othev§@eand Tinoco Jr., 1962]. The
simple model has been expanded into a complex model baseeé stacking of nucleotides, the
lengths of unpaired loops, and ad-hoc rules [Mathews e1889, 2004]. The parameters are
determined by experiments which study the thermodynanfiesedting and folding of small
oligos, and by fitting parameters estimated from multiplgrahents to experimental results.
The energy parameters usedADLDALIGN were taken from the Mfold package [Mathews
et al., 1999] (with a few minor changes in Havgaard et al. J2D0

2.4.2 Ribosum-Like

The different parts of an RNA molecule can evolve at diffésgeeds. The nucleotides at some
positions are essential for the function of the molecule ardly change. The nucleotides
at other positions are parts of stems and just need to basevphithe nucleotides at other
specific positions. These nucleotides can change morednglglby compensating mutations.
Nucleotides at other positions might serve as spacers,hensipecific type of nucleotide is of
little importance which allows for frequent changes.

The substitution matrices used are based on the RIBOSUMiaestfKlein and Eddy,
2003]. The RIBOSUM matrices are based on the ideas behinBltESUM matrices used
in protein alignment [Henikoff and Henikoff, 1992], but leagseparate sub-matrices for single
strand regions and base paired regions.

Some substitutions are more likely to be seen between RNA&cut#s than between random

sequences, and vise versa. A substitution cost is therefdoellated as the log-odds ratio
between the probability of the substitution between RNAeuales ') and the probability
of the substitution between random sequendé&s[Altschul, 1991]. The substitution cost for
substituting the nucleotides andn, with each other is:
P'(n;,ng) P'(n;,ng)
S(nu nk) - lOgQ P(?’LZ, nk) = 10g, P(nl)P(nk)
In the second step the nucleotides at positioasd k£ in the random RNA are assumed to be
independent of each other and of any other nucleotide. Tihgisution probability is therefore

2.7)
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estimated to be the product of the background probabiliti&s:,;) and P(ny), for the two
nucleotides. For base paired nucleotides this becomes:

P'(n; i) P'(n; ,7
S(ning, niny) = log, P(n s ) _ log (nan, )

(ninj, ngny) ooz P(n;)P(n;)P(ng)P(m) (2.8)

wheren; & n; base pair, and;, & n; base pair. The probabilities are estimated with frequencie
counted in multiple alignments.

The substitution matrices can be optimized to different@mnary distances. In the BLO-
SUM based RIBOSUM-Like scheme this is done by clusteringsétguences of the multiple
alignment according to sequence identities before thaiéeges are counted. For the cluster-
ing a sequence identity cutoff is selected. If a sequenceoi® mdentical to any one sequence
already in a cluster than the cutoff, then the sequence isiputhat cluster. For each cluster
substitutions between the sequences in the cluster anédfuesces in all the other clusters are
counted. This is similar to what is done for the BLOSUM masicbut unlike the RIBOSUM
matrices where substitutions between sequences in theddaster also are counted [Klein and
Eddy, 2003]. Each count is weighted by the geometric meahetluster sizes.

The RIBOSUM-Like matrices are made from a multiple aligninainthe 1995 version of
the ribosomal Small Subunit (SSU) database [Van de Peer, @884]. The cleaned alignment
was supplied by Robert J. Klein [Klein and Eddy, 2003 and qass communication]. The
alignment had been cleaned by removing sequences with imemeésg6 ambiguous nucleotides,
or sequences where more than 50% of the base paired posit@esmissing. The resulting
alignment has 2492 sequences.

Figure 2.13 shows the number of clusters as a function ofltleering cutoff. The number
of sequences per cluster for some of the cutoffs can be se&able 2.2. Figure 2.14 shows
the number of sequence pairs being compared. In HenikoftHerdkoff [1992] substitutions
are counted in blocks of ungapped multiple alignments. & Ribosum-Like matrices the
sequences have gaps. The gaps are counted as mismatcigstdercalculation of sequence
identities. This changes the clustering slightly. In Fegdrl3 and 2.14 two curves are shown.
One where gaps are counted as mismatches, and one wherergag aounted. From the
Figures and the numbers in Table 2.2 it is clear that usingerfammilies is likely to improve the
matrices, especially for low identities as the numbers e$ters are very low.

The “Gaps not counted” curve and the numbers in Table 2.2 shatvhere is little data
below the 80% cutoff and very little data below the 70% cuttfsing multiple alignments of
other RNA families would be the best way to improve these nensib

2.4.3 Combining energy and substitution parameters

The energy and substitution parameters have to be combit@dmne score-matrix. This was
done using a simple trial and error approach. In Havgaartl £@05b] the two RIBOSUM-

Like matrices are scaled independently. The performanoseisured for different values of
the weights, and the optimal weights are selected. Togetitleithe clustering percentage this
gives the score-matrix three parameters which have to beniged. It was found that the
single strand substitution matrix should have a larger tteilgan the base pairing matrix. It
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Figure 2.13: The number of clusters as a function of the efusg cutoff. A sequence is put
into a cluster if the sequence similarity between the secgiand any sequence in the cluster is

above the cutoff.
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Figure 2.14: The number of sequences compared as a fundtibie clustering cutoff. The
sequences from one cluster are compared to all the sequienaeether cluster. The counts
from each cluster/cluster comparison are normalized to one
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50% 60% 70% 80%
Size| # || Size| # | Size| # | Size| #
3|1 111 117 1119
2489 | 1 3|2 2|6 21 9
2485 1 313 3| 5

6|2 4| 4

11|11 5] 1

221 6| 2

874 1 8| 1

1545| 1 11| 4

17| 1

21| 1

44| 1

50| 1

51| 1

782 | 1

1390 1

Table 2.2: The size is the number of sequences in a clusteeif@aps not counted” case, see
Figures (2.13) and (2.14). # is the number of clusters withglze. The numbers 50% — 80%
are the clustering percentages. If the sequences arereldstéh 60% identity, then there will
be four clusters: One with one sequence, two with three semse and the final cluster will
have 2485 sequences.
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has been reported that even though this set of parametessrgakd sequence alignments it
has a low base pair sensitivity when the aligned sequenceshaderate or high sequence
identities [Dowell and Eddy, 2006]. A reasonable explamafor this is that the high single
strand substitution cost makes it very favorable for a mutde to be single stranded when the
sequence similarity is high. To avoid this problem the stttstn matrices were scaled using
equal weights in Havgaard et al. [2007].

In addition to the clustering percentage and the matrix ftsigap penalties are also needed.
Affine gaps are used. There are two gap penalties: One featingg a new gap and one for
elongating an already opened gap. In general the elonggéipmpenalty was fixed to half the
gap initiation penalty. The algorithm’s performance foigeg set of gap penalties is dependent
on the problem for which it is used. Separating biologicadlievant alignments from spurious
alignments demand one set of penalties. Predicting thedostructure of a given RNA family
another set. For this reaseoLDALIGN has two build-in score matrices: one for local alignment
and one for global alignment. The optimal gap penalties &sndlifferent for different RNA
families, see Havgaard et al. [2005a] supplementary nateigure S1 on page 74, Havgaard
et al. [2005b], and Mathews and Turner [2002].
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2.5 Alignment selection

The main use fOFOLDALIGN 2 is to scan a pair of sequences of locally conserved stiestéds
the alignments are local, there might be more than one ceedéiologically relevant structure
in the input sequences. Therefore a script, named locaeMitich can locate non-overlapping
alignments and evaluate their significance, has been iaedlirdthe software package.

The input into the scriptis a list of alignment coordinated acores. This listis produced by
FOLDALIGN when optionplot_scoreis used. In version 2.0 the program outputs the coordinates
and the score of the highest scoring alignment startingl gtadis of the(:, k) coordinates in
the two sequences. Version 2.1 only outputs the informatioan the alignment is a structural
alignment. Such an alignment must have at least two base Jdie score of random alignment
is expected to grow linearly with the logarithm of the aligemhlength [Chvatal and Sankoff,
1975]. For the pair of coordinatés, k) the best scoring alignmen$, s(i, k), is therefore in
version 2.1 defined as the one with the highest score compartée logarithm of the longest
of the two subsequences, i.e.

o S(i, 4, k. 1)
Srs(is k) = i <log2(max(j —i+LIl-k+ 1))) &9

2.5.1 Non-overlapping alignments

One reasonable choice of alignments is the highest scormgvdo not overlap each other in
both sequences. Havgaard et al. [2005b] describes an thlgoaimed at finding these align-
ments (page 60, section “Selection of a hit region”). Step divithe algorithm is incorrectly
described. The correct algorithm is:

1. Find the best scoring alignmeht; ;.

2. Remove all alignment®,; ;. for which
i’ < jandjy >i
and
K <landl’ > k.

3. Repeat until all alignments have been removed, or a pradated threshold is reached.

The form described here is the one used to produce the résulte paper and implemented
in the locateHits script. If the incorrect algorithm had besed, an alignmen®;; ;» with
Dy jr g < Dyjig Whered' <, j' > 5 k' < k,I' > [ would not have been removed.

An algorithm like the “declumbing” algorithm [Waterman aithgron, 1994] which re-
moves all alignments which share common aligned nuclestidandn,, could also be used
in theory, but in reality it would be computationally too kgaince it requires backtracking of
the entire dynamic programming matrix. The “island” al¢fom would also be computational
infeasible if at all possible [Olsen et al., 1999]. For saweesimilarity based methods like
BLAST and FASTA a speedy implementation of algorithms like¢lumbing” and "island” is
important because they have the same time complexity asiffeddorithm. The long runtime
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for FOLDALIGN makes it less important how fast the hit location algoritsmas long as it is
much smaller than that GfOLDALIGN.

Figure 2.15 shows the ten first alignments from the locageRi0 script used on a real
sequence pair. Shuffled sequences were used to make FigarelBe coordinates are in the
J,» k, andl columns. The alignment score is in tBeorecolumn.Z is the Z-score. Th® column
will be discussed in the next sectiodRankis the position in the list sorted by scores. TRank
is used in theV-best alignments selection scheme in Havgaard et al. [J0053te first three
lines from the real alignment figure show the location of ¢hti@NA genes. The alignments
overlap in theAC069454sequence, but not in thé00158sequence.

2.5.2 Significance of an alignment

The second part of the problem of finding the correct aligrimeamely determining which
alignments are due to conserved sequence/structure, and are just random alignments, is
addressed in this section.

It has been shown that for scoring algorithms IR@_DALIGN it is reasonable to expect the
alignment scores for alignment of random sequences to lvene&tvalue distributed [Karlin
and Altschul, 1990, Heyer, 2000, Gumbel, 1958]. If the disttion is known, it is possible
to calculate the probability that an alignment with a giveors or better would be found by
chance.

For fast sequence similarity alignment methods like BLASIO &ASTA it is possible to
align many random sequences to estimate the parametere @xtleme value distribution
[Altschul et al., 1990, Pearson and Lipman, 1988]. For atikedly slow method likeFoLD-
ALIGN aligning a comparable number of random sequences will talehrfonger. One way to
circumvent this problem is to use the observation by Watararal Vingron [1994] and Olsen
et al. [1999] that a single alignment of two sequences catagomultiple independent local
alignments.

The extreme value distribution has two parametarsand «, which are depended on the
parameters of the scoring scheme and the sequences bgingdali andx are estimated using
the method described in Altschul et al. [2001]. The main {soame repeated here: The number
of subalignments in a random alignment that will have a sbetter than a score, is taken to
be Poisson distributed. The probability that an alignmattt & scoreS’ > x will be produced
by chance, is estimated by:

P(S">z)~1—exp(—rL;Lg eXp_A:”) (2.10)

The estimate is expected to be better for higher alignmemesc The parameters are therefore
estimated using only scores above a thresholthe maximum likelihood estimate far is:

1
A=In|[1 2.11
( IS0 - c>> (1)

1A is usually named in other texts, but has been renamed here to avoid confusibmaximum motif length

A
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Name [ j  Name k | Score Z P Rank
V00158 173 245 AC069454 297 367 632 8.64 0.001
V00158 12 82 AC069454 297 367 602 8.28 0.002
V00158 89 159 AC069454 297 367 561 7.78 0.004
V00158 113 131 AC069454 183 203 192 3.35 0.981
V00158 202 245 AC069454 183 226 175 3.15 0.996
V00158 431 445 AC069454 324 338 158 2.95 0.999
V00158 33 62 AC069454 418 447 126 2.56 1.000
V00158 366 384 AC069454 184 202 125 2.55 1.000
V00158 464 480 AC069454 184 202 124 2.54 1.000
V00158 434 499 AC069454 405 469 116 2.44 1.000 10

©OCoOoNoOUDWNPR

Figure 2.15: The ten best local alignments between two 500nt sequences. The first six
columns are sequence names and start and end positionscdreecslumn is th&OLDALIGN
score, Z is the Z-score, P the P-value, and Rank is the positithe list. The parameters for
the Z-value distribution arg = —87.4, ¢ = 83.3. The parameters for the P-score extreme
value distribution are\ = 0.0189, x = 0.000604. The cutoff score was 10, 125 alignments
were used, and the sum of the scores was 7792.

Name [ j  Name k | Score Z P Rank
V00158 206 336 AC069454 137 261 176 8.93 0.313
V00158 370 404 AC069454 432 467 138 7.73 0.793
V00158 323 421 AC069454 266 355 131 7.51 0.871
V00158 120 170 AC069454 433 485 130 7.47 0.881
V00158 190 201 AC069454 36 47 123 7.25 0.937
V00158 170 200 AC069454 320 349 114 6.97 0.980
V00158 52 132 AC069454 283 368 112 6.91 0.985
V00158 80 113 AC069454 424 459 102 6.59 0.998
V00158 426 466 AC069454 186 226 99 6.50 0.999
V00158 4 16 AC069454 301 313 93 6.31 1.000 10

©Woo~NoOUNNWwNBE

Figure 2.16: The ten best local alignments between the teyoesees shuffled. The parameters
for the Z-value distribution arg = —107.0, o = 31.7. The parameters for the P-score extreme
value distribution is\ = 0.0377, K = 0.00115. The cutoff score was 150, one alignment score
was used, and the score was 176. Clearly this estimate ofgtréodtion parameters makes no
sense.
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Here S(:) is the score of a non-overlapping random alignment with aesbetter than, and
the sum is taken over these alignmentsis the number of alignments with scores better than
c. Fork the maximum likelihood estimate is:
N exph¢
K= Tile (2.12)

Altschul et al. [2001] does not specify a method for selertime cutoff valuec. Version
2.0 of the locateHits script is supposed to calculate sévafaes of A and select the smallest
¢ for which A is smaller than the\ for the nextc value. This choice was inspired by Figure
3 in Altschul et al. [2001] where the value dfdecreases until it has almost reached the best
estimate after which it starts to fluctuate. Unfortunatélgre is a bug in the script, and the
value chosen is the smallesfor which A is larger than the\ for the nextc value. The script
therefore usually picks a value lower than it should, but this is not a big problem siace
low ¢ value usually yields good results. A problem with the “tryeel values ot” method
is that it often picks a value for which there is only one alignment with a better scdgee
Figures (2.16) and (2.17).

In version 2.1 of the locateHits script the problem of onerealistribution estimates is fixed
by always using: = 0. This cutoff was selected since a scoré)a$ not negative and usually
requires some structure in the alignment. The distributicthe number of hits used to find the
parameters can be seen in Figure (2.18).

With a relatively slow method likeoLDALIGN making a large number of random align-
ments is not always possible. One solution to this probleto isse the non-overlapping local
alignments from a non-random alignment. When two long secgeare aligned, then most of
the non-overlapping local alignments will usually be spus alignments. From these align-
ments a very rough estimate of the parameters can be madeeK®)19) shows the distribu-
tions of P-values for real and shuffled data. The small peéhke®.3 to 0.4 range of the P-value
distribution for the shuffled sequences is due to the digiions estimated from one value.

The biggest problem with this approach is that any non-remalignment will bias the esti-
mate. In the 2.0 version of the locateHits script all aligniseare used. But using a fixed cutoff
in version 2.1 makes it possible to use an iterative methagnmove significant alignments
from the estimate. The iterative scheme is:

1. Estimate\ andx using the available scores.

2. Calculate the significance of each of the alignments. khlggnment is found to have a
significant score, remove it.

3. If a significant alignment was found in step 2, go to step 1.

Using this method the estimate dfandx is no longer biased by any real alignments found
(those not found will still bias the estimate). Unforturgtthis method introduces another
bias by removing the high scoring spurious alignments. Témtive method cannot be used
together with the method for selecting the cutofas the combination of the two methods
very often leads to the one value distribution estimateblpm. An example of the effect of
removing the significant alignments from the estimate casdas in Figure (2.20).
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Figure 2.17: The extreme value distribution parametersevestimated for each of 99 500
nt. against 500 nt. alignments. The x-axis shows the numbscares used to estimate the
parameters. The y-axis shows the number of alignments fahvehgiven number of scores was
used. Version 2.0 of the locateHits script was used. Fortaauthirds of the real alignments
the method uses the scores of more then 50 non-overlappgmgregnts. For shuffled sequences
the method is less useful with more than half of the alignmbaving less than 50 useful scores.
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Figure 2.18: The “Number of scores” is the number of scoresluse estimate the extreme
value distribution. The “Number of alignments” is the numbé alignments for which the

extreme value distribution parameters were estimatedyusie@ number of scores. See also
Figure (2.17). Version 2.1 of the locateHits script was us&te number of scores used to

estimate the parameters is less critical.
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Figure 2.19: The p-value distribution for real and shuffleduences (V. 2.0). Only p-values
less than one were included. For the real sequences therddargoeak at the small p-value.
It is clear that the real sequences contain many more higimgcalignments than the shuffled
alignments. For the alignment of shuffled sequences thergesy small peak betweéns3 and
0.4. This peak is most likely due to the high number of alignmédatsvhich only one score
was used to estimate the distribution parameters, seed=Rjliv.
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Figure 2.20: An example of the effect of the correct aligntaemn the estimates of the p-

values. The curves show the p-value estimates as functiswore. The x’s are the alignment

scores and their estimated p-values. Including the coakghment scores in the estimate
leads to significantly different p-values for three of thigiainents. In this case the bias gives a
better separation between annotated and unannotatetustsicln other cases it leads to false
negatives.
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While the method rapidly provides an estimate of the prdiigltihe estimate can be biased
in a number of ways:

True alignments The alignments used are not random alignments. Assumirngctireect
alignments score better than a random alignment, any d¢oafigmment will bias the
estimate. This will raise the estimate for a given score &edeby raise the number of
false negatives, see Figure 2.20. This is a bigger problewefsion 2.0 of the script than
for the 2.1 version.

Missing high scoring spurious alignmentsin 2.1 the alignments found to be significant are
removed. This will also remove any high scoring spuriougratients.

Cutoff The methods used to find the cutoff (try several or fixed 0) are not likely to be the
correct/optimal methods.

Number of alignments In some cases the parameters are estimated from an extréomely
number of alignments. In the worst case the distributiorstgveated from the score of
one alignment. This is mainly a problem for the 2.0 version.

Edge effects The estimated P-value is biased by the finite length of theesates. This effect
could be removed by using only alignments which are more thauacleotides from the
end of the sequences. This is not done since the effect ic®@® be small compared
to some of the other biases.

Short alignment effects For short alignments it is impossible for the alignment tatem bi-
furcations. Also the low number of gaps bias described isckul et al. [2001] takes
effect here.

Using parameters estimated from shuffled sequences rentlowdsue alignments and
Missing high scoring spurious alignmentshias’ and is highly recommended.

32



2.6 Data Chapter 2. FOLDALIGN

2.6 Data

2.6.1 Local alignment

The data used to tune and tesiLDALIGN version 2.0 should test the new features of this
version. At the same time it should also demonstrate #laaDALIGN can be used to find
biologically relevant results which cannot be found by otiesting methods. The following
three main criteria for selecting structures/sequences weed:

Structure The new version can align bifurcated structures. The RNAcstires used should
therefore be bifurcated structures.

Low similarity Sequence identity is the most commonly used tool to locate@®NA genes.
Using sequence pairs with pairwise identity below 40% sHmatROLDALIGN can align
sequences with low similarity.

Energetically indistinguishable Some RNA sequences have folding energies which are sig-
nificantly lower than that of the surrounding sequence. Tigerahm should work in
cases where this is not true. To ensure this any sequence/ipaie at least one of the
sequences has a free folding energy significantly lower tharsurrounding sequence,
were discarded.

Due the high memory complexity of version 2.0 the length ef RNA structures were limited
to a maximum of 150 nucleotides. To keep any one sequence dmominating the dataset,
the number of pairs a sequence could be a part of, was linotédarée pairs, except for tRNA
sequences which were only allowed to be in one pair. All rpldtalignments were redundancy
reduced to a maximum of 90% similarity before use. See Hadgetaal. [2005b] page 61 for
details.

The local dataset contains 99 sequence pairs: 2 5S rRNA pdngrine pairs, 21 THI pairs,
65 tRNA pairs, and 6 U1 pairs [Szymanski et al., 2002, Spetal., 1998, Zwieb, 1996, Grif-
fiths Jones et al., 2003]. There are two versions of the data’ ke structure version contains
just the sequence where the structure is. The localizatosion contains 500 nucleotide long
sequences where the sequence of the structure is locatedrad@m position. The surround-
ing contexts were taken from GenBank [Benson et al., 2004k dontext sequence contains
other RNA genes in some cases. The localization versioneofi#itaset therefore contains 295
complete RNA genes. Partial genes are not annotated.

In addition to the local dataset a local SRP dataset was adstemThis dataset contains
eight sequence pairs. The sequences in the localizatigionesire 1000 nucleotides long. The
SRP genes are 300 nucleotides long. For details see Havgaard et al. [20054p 164..

2.6.2 Global alignment 2.0

In relation to the web server a score matrix optimized fotbglaalignment was needed. For
a global dataset there is no need for a surrounding conteequeices which do not have a
context, can therefore be used. Therefore a global alighaleiaset was made. It contains
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sequences from the 5S rRNA, tRNA, and U1 databases [Szymeingk, 2002, Sprinzl et al.,
1998, Zwieb, 1996]. The dataset is described in the suppltanematerial of the web server
[Havgaard et al., 2005a], see page 72 for details. This e#dso comes in flavors: One where
all pairs are less than 40% similar, and one where the maxisoniharity is 70%.

An extra SRP dataset was also made for the global set. Datsilst this data set are also
in the web server supplementary material [Havgaard et@053], see page 72.

2.6.3 Global alignment 2.1

The pruning constraint and better memory utilization altbe newest version GfOLDALIGN
to align more and longer sequences than previous. A new gitaibaset was therefore made.
Sequences were taken from the 5S rRNA, RNaseP, and tRNAadssfSzymanski et al., 2002,
Brown, 1999, Harris et al., 2001, Sprinzl and Vassilenkd®3]0 Sequence pairs of up to 90%
identity were included. The 5S rRNA and tRNA parts of the datavere used to select the
score matrix parameters. The RNaseP and SRP parts of treetiatare used to evaluate the
performance. The dataset is further described in the soyigary material of Havgaard et al.
[2007], see page 86.

The dataset made by Dowell and Eddy [2006] is also used inupglsmentary material of
Havgaard et al. [2007]. This dataset contains sequencestfre seed alignments of 5S rRNA
and tRNA from RFAM [Griffiths Jones et al., 2005].
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Chapter 3

Results and conclusion

3.1 Results

The following six papers are the main results of this Ph.Djqut:

Havgaard et al. [2005b] This paper introduces version 2 of tReLDALIGN algorithm. The
new version uses a minimum free energy model in combinatitim substitution scores
to locally align the sequences. The other major changetaftethe biological properties
of the alignment is the addition of the possibility for biated loops. The main algorith-
mic improvements are the use of th@arameter to limit the memory consumption from
O(L;Lx)d) to O(N36). Allowing for bifurcated structures makes the algorithrgrsfi-
cantly slower. To lower the run time the number of times theeifurcated structure is
calculated, is limited to one.

Havgaard et al. [2005a] The main resultin this paper is tR&LDALIGN web-server —ht t p:
/I fol dal i gn. ku. dk. In the supplementary material results for global alignteea
presented.

Havgaard et al. [2007] This paper introduces the pruning constraint which effityelimits
the time and memory requirements of the algorithm withouatiBeing the comparative
information. The limit on the number of times a given bifughstructure is calculated,
is used to reduce the memory usage. A “divide and conquedriéfgn is introduced
to try to keep the memory usage low during global alignmetot laacktrack. The two
major changes to the energy model are that external unpaireddotides are now always
treated in the same way as unpaired nucleotides in multthiethloops, and that more
insert base pairs are allowed. Global alignment is treat¢da supplementary material.
Dowell and Eddy [2006] shows that whif®LDALIGN 2.0 makes good global alignments
the base pair sensitivity is below that of comparable methétre it is shown using the
same dataset that the new energy model fixes this problemnigrevement most likely
stems from the better handling of external unpaired nuiclest

Torarinsson et al. [2007] This paper describesOLDALIGNM. It is a reimplementation and
improvement of the PMcomp algorithm [Hofacker et al., 2004je algorithm makes one
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or more multiple alignments. To make the multiple alignmieatigns base pairing prob-
ability matrices. These can either be made using the McCQadgorithm [McCaskill,
1990] orFOLDALIGN. To make more than one multiple alignment from a collectibn o
sequences the sequences are first clustered by their paROA®ALIGN score. Then a
multiple alignment is made for each cluster.

Torarinsson et al. [2006] In this paper sequences from 10 human chromosomes werealign
to corresponding mouse sequences. The sequences thatligeetiaare not part of
the alignments made using traditional sequence alignmbuatdhe sequences adjacent
to them in one end were. In the other end there were gaps,trepgaences, or a new
alignment. Of the 73940 sequence pairs aligned 1297 padtedea significant alignment.
The false positive rate was estimated to be50%. Approximately 3600 significant
alignments would have been found if all chromosomes had bsed. 36 top candidates
were selected for testing in the laboratory. These weredestmouse tissue using PCR,
and 32 were found to be expressed. Twelve of these 32 candidare selected for
further testing using Northern blots. Expression was cordd for four of them. A
database containing the significant candidates is availatit t p: / / genone. ku.
dk/ r esour ces/ hmncr na_scan.

Gorodkin et al. [2006] In the paper sequence logos [Schneider and Stephens, 188K
et al., 1997a] and Average Log Likelihood Ratios (ALLR) ssofWang and Stormo,
2003] are used to show that the sequence motif of microRN&s tihe left side of the
precursor stem is different from the motif of those from tigt side of the precursor.

3.2 Conclusion

FOLDALIGN is a tool for aligning RNA sequences using their structureé sequence similari-
ties. It can make both local and global alignment. A tool fealaating the significance of local
alignments is included. The papers Havgaard et al. [2000520] introduces several improve-
ments to the core algorithm. The improvements include a rbmi@gically relevant energy
model, including bifurcated structures. Time and memoguieements have been significantly
lowered by the use of dynamic pruning. The scanning schemiehvgplits the sequences into
smaller chunks, limits the memory requirements even furttias now possible to align 500
nucleotides long sequences on ordinary hardware in rebbotiae both globally and locally.
This is significant because many ncRNAs have lengths beldvrib@leotides [Huttenhofer
et al., 2005].FOLDALIGN is a user friendly program which combines good performanite w
low resource requirements (for a Sankoff algorithm).

According to Gardner et al. [2005] (Figure 3BPLDALIGN 2.0 is the best available algo-
rithm for pairwise global alignment of tRNA sequences. Divard Eddy [2006] also finds that
FOLDALIGN 2.0 is very good at making global alignments. But they also firat the method is
not very sensitive for detecting base pairs compared ta atle¢hods. Figure S2 in the supple-
mentary material of Havgaard et al. [2007] on page 87 shouatsthie improved energy model
in version 2.1 improves the base pair sensitivity enougtetodmparable with other methods.
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There are other tools for making local alignments of RNAse ifost promising are Stemloc
[Holmes, 2005] and CMfinder [Yao et al., 2006]. Stemloc is &&Mased method. In principle
it should perform well, but in reality it does not, (data nbbog/n). While there has been no tests
of the local alignment methods, the global tests by Gardnak. €005] and Dowell and Eddy
[2006] also show this. CMfinder uses a Bayesian approach ke iloaal multiple alignment. It
performs well, but requires multiple sequences.

The Torarinsson et al. [2006] study shows that there adenséihy new RNA structures to
be found, and thatOLDALIGN is one of the tools which can be used to find them. A future step
will be to try to predict the functions of the newly found sttures.

The ideas for future improvements to the algorithm include:

e The originalFOLDALIGN algorithm was used in a multiple alignment context. Theeuirr
algorithm is used to make global multiple alignment in Tarsson et al. [2007]. 1t would
be desirable with a method which can make local multiplenalignts.

¢ Allowing insert base pairs at the beginning of stems. Ther®ibiological arguments for
not allowing inserts at the beginning of stems, and it woh&té¢fore be desirable to allow
these. In some structural families there are stems whichatrpresent in all structures.
It would be relevant to include these insert stems.

e It is reasonable to assume that a good long alignment canrhake gaps inserted than
a good short alignment. A length dependémiarameter similar to the length dependent
M parameter used in Uzilov et al. [2006] could be used to imgtbe time and memory
requirements.

e Limiting the number of stems which can be part of a multibrapoint by requiring that
such stems must have a score above a cutoff. If no similaciiyes are used, a natural
cutoff would be zero. Using this cutoff the folding energytioé stem would be zero or
less which indicates a stable stem.

e In the current model an insert base pair is scored as two naaps. A better model
would probably have one set of gap penalties for single dtgaps and one set for base
pair inserts.

e The current file format is not as easy to read for a human asildibe. The future file
format will probably be similar to that of the web-server.

e Better estimates of the extreme value parameters. Withutrerdt model a single shuf-
fling of two 500 nucleotide long sequences yield240 scores for estimating the distribu-
tion. When aligning one pair of sequences, it is therefosstbe to do enough shufflings
to get a reasonable estimate. But for large scale searchdstprmining the distribution
is desirable. This could for example be done by using eithmarttion function [Klein
and Eddy, 2003] or a support vector machine [Washietl eR@D5b].
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e Two types of heuristics are currently very popular. Anchgriusing sequence similarity,
and structural constraint using pre-folding of the seqaencThe performance of pre-
folding algorithms may be improved by also using pruning. éNIpruning is used, the
pre-folding can allow for more low scoring base pairs while pruning makes sure that
poor structures do not slow down the algorithm too much.

38



Appendix A

The recursion

This chapter describes the recursion of the 2.1 versiorooDALIGN. To make it easier to
read it is written in the form usually used to describe dyraprogramming recursions rather
than the expansion form used in the article and the source [¢davgaard et al., 2007]. The
recursion as showed here is simplified in two ways. Affine gapafties are not included, and
one base pair long stems are allowed. Otherwise the reouisstbbe same as the one used in
version 2.1. The notation used in the recursion can be se&able (A.1). Figure (2.5) on
page 13 shows an overview of the energy modgl.; ;. ;) is the alignment scorey; ; 1. is the
alignment statey ;. j ki), fa(i,j,k0)r 13,5,k @NALa 5 k) are the lengths of the single stranded
regions external to the last base pair.

( D1 j-1k410-1)  +S0p(0(i41,j-1,k41,-1)) (a)
Div1,j-1,k0) +Spir (O (i41,j-1,k,0)) (b)
D jkt1,-1) +Stpirc (0 (i j,k41,1-1)) (c)
Diti,j k1) +Sau (01,5 k+10) (d)
D j—1-1) +Sar(0(ij-1,k1-1) (e)

D jrny = max S Div1jk +Sgu1(0(i41,5,k,0)) )] (A.1)
D jv1,) +Sgk (06,5 k+1,0)) 9
D j—1,k) +Sgr1(0G,j-1,k,1)) (h)
D1y +8gr i (i, 1-1)) (i)
irfji{j{DEi,m,km) + DEm—i—Lj,n—i—lJ) + Smni(01,0,)} ()

\ k<n<l

The calculation is initialized by aligning two nucleotideghe hairpin state.
D(i,z’,kz,k) = Rss(ni, nk) -+ th(l, 1) (AZ)

When the scoréd); ; 1.;) is calculated, the score of single stranded nucleotidesmaito the last
base pair and the score of the last base pair may not be cdtrisatorrect by this calculation:

Di; iy = Diigway + 5'(0) (A.3)
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Cmblend
Crnblhelic
C(mblnuc

Chac
D

D/
I sequence
K sequence

Sil

The cost of closing a multibranched loop

The cost of adding a stem to the multibranch loop (not inelgdhe first stem)

The cost of adding a single stranded nucleotide to a muitidrad loop

The non-GC stem end cost

The score of an alignment. Not corrected for external sistfended nucleotide

The alignment score. Corrected for external single strdmdeleotides
One of the two sequences. Usually the longest
The other sequence. Usually the shortest

Bulge length cost

Internal loop length cost. Includes the asymmetry cost.

Hairpin length cost

Length of the single stranded region upstream of the lat pas in the

I sequence

Length of the single stranded region downstream of the kst Ipair in the

I sequence

Length of the single stranded region upstream of the lagt pas in the

K sequence

Length of the single stranded region downstream of the kst Ipair in the

K sequence

Base pair substitution score

Single strand substitution score

Stacking score

Hairpin end stacking score

Internal loop end stacking score

[72)

The state of an alignment

Table A.1: Notation
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Chapter A. The recursion

A.1 Contexts

A.1.1 Base pair

Add a base pair to both structures. T$ig score is only calculated if both; andn; base pair,

andn; andn; base pair. The; ; ;) lengths are set to zero if this case has the highest score in

equation (A.1).

pr(a(i+1,j—1,k+1,l—1)) =

( Rup(ni, nj, g, )

+ Shp(Nig1, -1, M, 15, )
+ Shp (M1, -1, s, )

Ry (1, nj, e, )
+ S5(Nis1, Mj—1, My 1)
+ (N1, 1, N, 1)

Ry (ni, iy, g, my)
+ S(ni+ul+1, nj—h ng, nJ)
-+ S(nk’-i-ua-i-la Np—1, N, ’)’L[)

R (i, mj, mg, my)
+ Chae(ni, nj) + Crae (g, m)
+ Crao(Migpy+1,1j-1)
+ Crao (Mips+1, Ni-1)

Rbp(ni, N, N,y )
—+ S(TZZ’+1, Nj—ps—1, n;, nJ)
+ S(nk+1, Ny —pg—15 Nk nl)

Rbp(nia ng, Nk, nl)
+ Chac(ni, nj) + Crao(ng, ny)
+ Crao(Nig1, Mj—pp—1)
+ Crao (Mgt Mi—pg—1)

Ry (1, nj, g, my)
+ Sil(ni—i-lanj—lani»nj)

+ Sil(ni-i-m y Mj—pgy it pa +15 ”j—uz—l)

Ry (13, 5, e, ) + Crnprend
+ Chae(ni, nj) + Crae (g, m)

41

if o is a hairpin state.
0,5k, DECOMES a stem
state.

if o is a stem or an
insert base pair state,

0,5k, DECOMES a stem
state.

if o is a bulge left state
andu; < landus <1,

0k, DECOMES a stem
state.

if o is a bulge left state
andp; > 1orus > 1,

05,01 DECOMES @ stem
state.

if o is a bulge right state
andu, < landu, <1,

0,5,k DECOMES @ stem
state.

if o is a bulge right state
andpus > 1 0rpuy > 1,

0,5k, DECOMES a stem
state.

if o is an internal loop
state,

0,5k, DECOMES a stem
state.

if o is aleft or right
multibranch loop state,

0,k DECOMES a stem
state.
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A.1.2 Insert base pair

Insert a base pair in a stem from theequence. Th#g,,;; score is only calculated when and
n; base pair, and the state is stem or insert base pair ih seguence. The; ; . lengths are
all set to zero if this case has the highest score in equatidr).(

Sepir (T(it1,j-1,60)) = 2 X Rgs(gap) + s(nip1,nj-1,n4,n5) 06 k) DECOMES @n insert base
pair in the/ sequence state.

Insert a base pair in a stem from thesequence. Thé,,;x score is only calculated when
ni, andn, base pair, and the state is stem or insert base pair iftsequence. The ;.
lengths are all set to zero if this case has the highest sca@guation (A.1).

Stpir (O(ijk+10-1)) = 2 X Res(gap) + s(ng41, -1, ne, ) 0 k) DECOMES @n insert base
pair in the X' sequence state.

A.1.3 Align left

Align two single stranded nucleotides on the left side of ignanent.

( Rgs(ni, ny) if o is a hairpin state,
— Lpp(p1) — Lpp(pes) ok, DECOMES @
+ Ly (g1 + 1) + Ly, (3 + 1) hairpin state.

Rys(ng, ny) if o is a stem state or an
+2 % Ly(1) insert base pair state,
0.5k, DECOMES @
bulge left state.
Rss(ni,ng) if o is a bulge left state,
— Li(p1) — L (p3) 0.k bECOMES 8
+ Lp(p1 + 1) + Ly (us + 1) bulge left state.

Sat(Otr1k+1,) = & Ros(nis ) if o is a bulge right state,

— Ly (p2) — L (pa) ok, DECOMES an
+ Ly (1, o) + Liy(1, pg) internal loop state.

Rgs(ni, ng) if o is an internal loop state,
— Lu(p, pt2) — Lu(ps, pta) — 0(i5,1) beComes an
+ Lyg(p + 1, o) internal loop state.
+ L (ps 4 1, j1g)

Rss(niyng) + 2 X Crupinue if o is a left or right

multibranch loop state,
ok DECOmMes a
L left multibranch loop state.
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If this case wins in equation (A.1), the lengths are updatexithis:

MG kD) = H1(i1,5,k+1,0) + 1
H2(i,5,k,0) = H2(i4-1,5,k+1,1)
M3 gk, 0) = M3(i4+1,5,k+1,0) + 1
Hoa(igk,l) = Ha(i+1,5,k+1,0)

A.1.4 Alignright

Align two single stranded nucleotides on the right side cakgnment.

( Rss(nj,ny) if o is a hairpin state,
- th(:ul) - th(,u?:) O (i,5,k,0) becomes a
+ Lip(pa +1) + Liy(ps +1)  hairpin state.

Rys(nj,m) if o is a stem state
+2 x Ly(1) or an insert base pair state,
o5k, DEcomes a bulge right state.
Rgs(nj,ny) if o is a bulge left state,
— Ly (1) — Ly (p3) o(i.;k,1) DECOMES an internal loop state.

+ Ly(p, 1) + Li(ps, 1)

Rgs(nj,ny) if o is a bulge right state,
S (G0t ki) = — Ly (p2) — L (pa) o5k, DEcomes a bulge right state.
ar\Z (i —Lk1—1) + Lbl(/JQ + 1) + Ly (/J4 + 1)
Rgs(nj,ny) if o is aninternal loop state,
— Ly(p1, p2) — Lu(pzs pa) - 0(i51,1) bECOMES AN
+ Ly(pq, o+ 1) internal loop state.
+ Li(p3, pra + 1)

Rys(nj, i) + 2 X Crpinuc if o is a left multibranch loop state,
ok Decomes a left
multibranch loop state.
Rys(nj, i) + 2 X Crpinuc if o is a right multibranch loop state,
05k, DECOMES a right
multibranch loop state.

\

If this case wins in equation (A.1), the lengths are updatexithis:

Hi(ingkl) = H1(ij—1,k1—-1)
H2(i G k) = H2(ij—1,k1—1) T 1
H3(i,5.k,0) = H3(i,5—1,k1—1)
Hai gkl = Magij—1,ki-1) T 1
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A.1l.5 Gapleftl

Extend an alignment with one single stranded nucleotidénerelft side of the sequence.

Sar(0G+1,5k1) =

(R, (gap)

Ry (gap)

Ry (gap)

Ry (gap)

R, (9 ap )

\

— Lup(p11) + (1 + 1)

—+ Lbl(l) + Lbl(O)

— Lyy(p1) — Ly (pa + 1)

— Ly (p2) — Lii(pta)
+ Li(1, p2) + Li(0, pq)

— Ly (p, po)
+ Li(p + 1, p2)

Rss (Qap) + Cmblnuc

if o is a hairpin state,
0,5k, DECOMES a hairpin state.

if o Is a stem state

or an insert base pair state,
o5k, Decomes a bulge left state.
if o is a bulge left state,
o5k DECOMES a bulge left state.

if o is a bulge right state,
o5k, Decomes an internal loop state.

if o is an internal loop state,
ok, Decomes an internal loop state.

if o is a left or right multibranch
loop state,

ok becomes a left
multibranch loop state.

If this case wins in equation (A.1), the lengths are updatexithis:

H1(igkt) = Hi(i+1,5k0 + 1
H2(i,5,k,0) = H2(i41,5,k,1)
H3(i,5,k,0) = H3(i41,5,k,0)
(i gk, 0) = Ha(i+1,5,k,0)
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A.1l.6 GapleftK

Extend an alignment with one single stranded nucleotidénerelft side of thei sequence.

( R.s(gap) if o is a hairpin state,
— Lnp(p3) + Lpp(ps + 1) 05,0 becomes a hairpin state.

Rys(gap) if o is a stem state
+ Ly (0) + Ly (1) or an insert base pair state,
0.5k, Decomes a bulge left state.
Rss(gap) if o is a bulge left state,

— Ly(p3) + Lu(ps +1) o050 becomes a bulge left state.

Rss(gap) if o is a bulge right state,
Sar (06, k1,0) = — Ly (p2) — L (pa) o5k, becomes an internal loop state.
+ Liy(0, p2) + Li (1, p4)

Rss(gap) if o is an internal loop state,
— Ly (us, pra) ok, becomes an internal loop state.

+ Li(ps + 1, pa)

Rss(gap) + Crupinuc if o is a left or right multibranch
loop state,
ok, becomes a left multibranch
loop state.

\

If this case wins in equation (A.1), the lengths are updatexithis:

H1(i,5,k,0) = H1(i,5,k+1,0)
H2(i,5,k,01) = H2(i,5,k4+1,1)
H3(ig,k,0) = H3(igk+1,0) T 1
Heagi,gk,0) = Ha(i,j,k+1,0)
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A.1.7 Gapright I

Extend an alignment with one single stranded nucleotidénemight side of thed sequence.

( Rss(gap) if o is a hairpin state,
— Lpp(p1) + Lpp(pa + 1) 0(i,5,%,1) becomes a hairpin state.

Rss(gap) if o is a stem state
+ Ly (1) + Ly (0) or an insert base pair state,
o5k, DEcomes a bulge right state.
Rss(gap) if o is a bulge left state,
— Ly(p1) — L (p3) o,k DECOMes an internal loop state.

+ Li(p1,1) + Li(ps,0)

Rss(gap) if o is a bulge right state,
Seri(0(ij-1,k0)) = — Li(pa2) + Lu(p2 + 1) 0(5%,0) becomes a bulge right state.
Rss(gap) if o is an internal loop state,
— Ly (e, po) ok, becomes an internal loop state.

+ Li(pa, po + 1)

Rss(gap) + Crupinuc if o is a left multibranch loop state,
o(i.;,k1) DECOMES a left multibranch
loop state.
Rss(gap) 4+ Crupinue if o is a right multibranch loop state,
0.5k, DECOmMes a right multibranch
L loop state.

If this case wins in equation (A.1), the lengths are updatexithis:

H1(i,g,k,0) = H1(3,5—1,k,0)
H2(ijkl) = H2(ij—1k0) T 1
H3(i,5,k,0) = H3(i,5—1,k,1)
Haa,g,k,l) = Hd(i,5—1,k,0)
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Chapter A. The recursion

A.1.8 Gapright K

Extend an alignment with one single stranded nucleotidéemight side of the< sequence.

Sng(U(i,j,k,l—l)) =

[ Rs (gap)
" Laplis5) + Ingls + 1)

+ Ly (0) + Li(1)

Rss(gap) - Lbl(:uh ,u3>
- Lbl(,ul) — Ly (M3)
+ Lig(p11,0) + Lig (3, 1)

— Lpt(pta) + Lyg(pra + 1)
— L (s, poa)
+ Li(ps, pa + 1)

Rss (gap) + Cmblnuc

Rss (ga'p) + C(mblnuc

if o is a hairpin state,
0.5k, DECOMES a hairpin state.

if o IS a stem state
or an insert base pair state,
o5k, DEcomes a bulge right state.
if o is a bulge left state,
0.5k, DECOMES an internal loop state.

if o is a bulge right state,
o5k, DEComes a bulge right state.

if o is an internal loop state,
ok, becomes an internal loop state.

if o is a left multibranch loop state,

o5,k DECOMEs a left multibranch
loop state.

if o is a right multibranch loop state,

0,5k, DECOMES a right multibranch
loop state.

If this case wins in equation (A.1), the lengths are updatexithis:

= H1(i,jk,l—1
Jikl—1
Gikl—1
= [4(ijki—1) + 1

NN NS N

)
)
)
)



A.1 Contexts Chapter A. The recursion

A.1.9 Multibranched loops

Join two alignments to get a multibranched structure. Iraéiqn A.1 case (j) is only calculated
wheno; is a stem, base pair insert, bulge right, or a right multibhaloop state, and, is a
stem or a base pair insert state, see Chapter 2.3 and FidureThey; ; ., lengths are set to
zero if this case has the highest alignment score. RemeiméethieD,; ;; is not used directly
in this calculation. It is always the external loop versibf) ,, which is used, see the External
nucleotides section below.

Smvi (01, 0r) = Cropinetiz  0(i,j,k,) @lWays becomes a
right multibranch loop state.

A.1.10 External nucleotides

Single stranded nucleotides external to all base pairs bristored like single stranded nu-
cleotides in multibranched loops. The score must therdfeneecalculated when the alignment
state is one of the hairpin, bulge, or internal loop statesthiermore the cost for non-GC base
pairs must also be added in cases where the alignment state f the base pair states. This
calculation does not affect the state or thengths of the alignment.

(

(pe1 + 113) X Crpinue — Linp(p1) — Lip(13) if o is a hairpin state.

Chao(ni,ng) + Chae(ng, ny) if o is a stem or
a base pair insert state.
Crce(Migpr, 15) + Crao (Mgt s, ) if o is a bulge left state.

+ (1 + p3) X Crpinue — Lni(p1) — Ly (pe3)

S0 inn) = Crao(ni,nj—u,) + Crao (g, ni—p,) if o is a bulge right state.
(@:540) + (2 + f14) X Cropinue — Lit(p12) — Lpg(114)
Crnce(Migprs Mi—ps) + Crnco (Mt g, M—pa) if o is an internal loop state.
+ (,ul + H2 + M3 + ,u4) X C1mblnuc
- Lil(,ula ,uz) - Lil(,u?w M4)

0 if o is aright or left
\ multibranch state
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Figure S2: Performance as a function of sequence identitye dptimal gap penalties for
5S rRNA and U1 were: Gap openirgB0 and gap elongatior15. For tRNA they were: Gap
opening—60 and gap elongatior-30. For the stem-loop SRPs the gap opening costwi
and the gap elongation cost wa&5. The fluctuations in performance for 5S rRNA, SRP, and
U1 are likely to be due to the limited amount of data at thesetities. This is also true for the
low and high similarity parts of the tRNA curve.
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Global alignment

Initial tests of FOLDALIGN’s global alignment per-
formance while using pruning showed that the sim-
ple pruning used during local alignment cuts away
to much during global alignment. The problem
is that the global alignment must insert a mini-
mum number of gaps equal to the length differ-
ence between the two sequences. When the length
difference is large, the cost of inserting the mini-
mum number of gaps is enough to make the algo-
rithm prune away all alignments. To circumvent
this problem a global alignment pruning scheme is
used:
Dij 11 < Ogiobal
_ - (1)
Ogiobal = Otocal — Gpxmin{abs(l; — Ik ),
abs(L I — L K)}

D;j 11 is the subalignment score. O gjopq; is the prun-
ing score used during global alignment. G4 is the
local alignment pruning score. G g is the gap elon-
gation cost. I; and [k are the lengths of the sub-
sequences being aligned, and L; and Lg are the
lengths of the sequences being aligned. Using this
pruning scheme most global alignments between re-
lated sequences produce an alignment. Unfortu-
nately, this also lowers the efficiency of the pruning
significantly. Figure S1 shows the time needed to
do an alignment without pruning divided by the
time needed to do the same alignment using prun-
ing as a function of the length difference between
the two sequences. When the length difference is
small, it is significantly faster to use pruning. When
the length difference is large, there is only a small
speed advantage. At a length difference of 25 the
use of pruning is only ~20% faster than not using
pruning.

The new implementation of the FOLDALIGN al-
gorithm has a lower time and memory complexity
than the old implementation during global align-
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ment. Since a global alignment must include both
ends of both sequences, the § parameter can be
used to also limit the start coordinate of a subalign-
ment from the second sequence. In this way the
¢ parameter becomes similar to the M parameter
used in [1]. The new time complexity is O(L3,,, 5°)
and the memory complexity is O(L2,. 6%), where
Lumin, = min Ly, Lg. The old implementation has
a time complexity of O(L3Lkd¢?) and a memory
complexity of O(L2Lkd) since it used the local
alignment algorithm with A equal to the sequence
lengths.

To train and test FOLDALIGN’s global alignment
performance a new dataset has been made. The
sequence pairs of the dataset were selected from
the 5S rRNA, RNaseP, SRP, and tRNA databases
[2, 3, 4, 5]. Any sequences containing nucleotides
other than A, C, G or U were removed from the
databases. A few sequences which obviously did not
fit into the databases, were removed. Then the se-
quences in each database were redundancy reduced
t0 90% similarity using the Hobohm 2 algorithm [6].
Sequence pairs were selected from the remaining se-
quences by sorting the pairs by their identity and
selecting the pairs with the lowest identity. Each se-
quence can only be part of one sequence pair. The
structures were cleaned by annotating any non A -
U, G- C,or G - U base pair as single stranded.
Nucleotides annotated to base pair with gaps were
also reannotated to be single stranded.

The 5S rRNA database is split into three sec-
tions. Each section was treated separately before
the final datasets were joined. This part of the data
contains 215 sequence pairs. From the RNaseP
database only the sequences in the bacterial type
A alignment [7] were used as this alignment seems
to have the most sequences and the best annota-
tion. This dataset has 101 sequence pairs. The SRP
dataset contains 121 sequence pairs. The pseudo
knot base pairs were removed from the structures.



The tRNA dataset contains 1810 sequence pairs.
The 5S rRNA and tRNA datasets were used
to select the parameters of the score matrix (gap
penalties, substitution vs. energy weight, and
Ribosum clustering percentage). The SRP and
RNaseP datasets were used as validation datasets.
As performance measure the Matthews correlation
coefficient (MCC) of the base pair prediction was
used [8]. Correctly predicted base pairs are counted
as true positives, predicted base pairs which are not
found in the annotation, are counted as false pos-
itives. Annotated base pairs not found in the pre-
diction are counted as a false negative. Positions
not predicted to base pair which are not annotated
to base pair, are counted as true negatives. The
average MMCs are: 5S rRNA 0.81, tRNA 0.86,
RNaseP 0.50, and SRP 0.49. The results for the
RNaseP and SRP datasets indicate that the good
performances reported for 5S rRNA and tRNA may
be due to over fitting. If this were the case, then it
should also be possible to over fit on the RNaseP
and SRP datasets. These datasets were therefore
used to find alternative sets of parameters. The
best MCC found for both datasets were 0.56. The
poor performance therefore does not seem to be
due to over fitting. Some of the performance differ-
ence is likely to be due to structural inserts in the
structures. Some of the sequence pairs in both the
RNaseP and the SRP datasets contain stem inserts
which FOLDALIGN currently can not handle. The
5S rRNA and tRNA datasets contain fewer large
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Gain (time without pruning / time with pruning)

Figure S1: The alignment time without pruning divided by the alignment time with
of the length difference between the input sequences. The SRP dataset and § = 25
shows the average gain. The points are the individual measurements

0.2

0.1

‘ Average
Individual

+

Length difference

25

pruning as a function
was used. The curve

0.1

0.2

0.3

0.4

0.5 0.6

0.7

0.8 0.9

Figure S2: The base pair sensitivity as a function of sequence identity. For description of the data and

method see [9].

Note that the scale of the sensitivity axis has been changed compared to Figure 7B in

[9]. “2.1” is the new implementation with the new default parameters for global alignment. “2.1 Clean”
also uses the new implementation but any non A — U,G — C, or G — U base pairs have been removed
from the annotation before measuring the sensitivity. The “2.0” curve is shows the results using the old
2.0 implementation with its global parameters. This curve is the same as the one in [9]
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Figure S3: Average run time as a function of A\. The curves in this figure are the same as the “2.1,
Pruning” curves in Figure 1. See Figure 1 for details
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Erratum

Genome Research 16: 885-889 (2006)

Thousands of corresponding human and mouse genomic regions unalignable in primary
sequence contain common RNA structure
Elfar Torarinsson, Milena Sawera, Jakob H. Havgaard, Merete Fredholm, and Jan Gorodkin

The authors misunderstood the notation used by MultiZ alignments, which unlike BLAST and many others,
does not represent all positions relative to the leading strand. Therefore, they did not scan pairs adjacent to
+/+ and +/— alignments; instead, the positions of alignments are relative to the 5’ end of the strand in
question. This misunderstanding led them to missing unalignable regions in the vicinity of +/ — alignments.
The authors note that all the analyses are still correct, and that they’re only analyzing the 36,970 pairs
adjacent to +/+ alignments, and not the additional 18,956 pairs that are adjacent to a +/ — alignment. Also,
there are not ~100,000 pairs but ~185,000 pairs altogether between the two genomes. The authors are now
in the process of scanning these regions along with the rest of the chromosomes.

16:1439 ©2006 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/06; www.genome.org Genome Research 1439
104 Www.genome.org
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1 Sequence profiles of 5" and 3’ arms

Figure S1 The sequence profiles various organisms. Left column sepite5’ arm motifs. Right column

represent 3’ arm motifs. The scales are arbitray.
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