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Summary

The main purpose of this Ph.D. project is to further develop the FOLDALIGN algorithm. The
algorithm simultaneously predicts a common secondary structure and an alignment between
RNA sequences.

The structure of an RNA sequence partly defines its function.A prediction of the secondary
structure can aid the prediction of a sequence’s function. The secondary structure is a list of the
base pairs in the structure. Most often it is further limitedto the structure with the most base
pairs where any pseudo knots has been removed.

When sequences can be aligned, it gives a hint that they mightbe related, and they may
therefore also have the same or similar function.

It is often difficult to align RNA sequences without using structural information because
the primary sequence can relatively easy mutate without changing the structure. This is due
to compensatory mutations where one or both nucleotides in abase pair is mutated without
breaking the base pair.

Earlier versions ofFOLDALIGN align two or more sequences [Gorodkin et al., 1997b,c,
2001a,b]. A high positive score is given when a base pair is conserved, and a negative score is
given when a single stranded nucleotide is substituted for another, or a gap is inserted. To save
time the structure is limited to non-bifurcated structures. A bifurcated structure is a structure
made up of two smaller independent structures.

The pairwiseFOLDALIGN algorithm has been improved in several ways. In Havgaard et al.
[2005b] an energy model somewhat similar to the one used in single sequence folding is added.
More complicated structures can be aligned as bifurcated structures are allowed. Allowing
bifurcating structures slows down the algorithm. To speed up the algorithm a constraint is placed
on the bifurcation calculation. Most bifurcated structures can usually be made in more than one
way. The constraint limits this to only one way. To reduce memory requirements, while aligning
long sequences, one sequence is split into several smaller chunks. Each chunk is aligned to a
window on the other sequence. When all nucleotides in the window has been aligned to the
nucleotides in the chunk, the window is moved one nucleotide. The new nucleotide is aligned
to those in the chunk, and the process is repeated. When all nucleotides in the second sequence
have been aligned to all the nucleotides in a chunk, the process starts over with the next chunk.
The alignment can be shorter than the window, but not longer.Havgaard et al. [2005a] describes
a webserver and presents results for global alignment in thesupplementary material.

Havgaard et al. [2007] describes a method for making algorithms likeFOLDALIGN run very
fast. When two sequences are aligned, a lot of low scoring sub-alignments must be calculated.
The method assumes that these bad sub-alignments cannot be part of any good alignment, and
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Summary

they are therefore pruned away. This is simply done by requiring that an alignment of a given
length must have a score above a minimum score, or it is prunedaway. Since the alignments
which are pruned away cannot be part of the longer alignments, the calculations of the longer
alignments do not have to use time taking the bad alignments into account. It is not necessary
to keep all the bad alignments in memory which saves a lot of memory. To reduce memory
consumption even more the constraint on the bifurcation calculation is used to limit the amount
of information which must be stored. When this reduction is used, there is not enough infor-
mation for the algorithm to perform the backtracking neededto retrieve the structure and the
alignment. More information must therefore be stored. In anattempt to limit the amount of
extra information which must be stored, a pre-backtrack is made which locates all the bifurca-
tion points. These are then used to split the structure into non-branched subsegments. These
subsegments are usually much shorter than the full structure and can therefore be backtracked
without using extra memory. Unfortunately there is no guaranty that this method will use less
memory.

Torarinsson et al. [2007] describes a method for making global multiple alignments. It is
based on the PMcomp algorithm [Hofacker et al., 2004]. It cancluster the sequences based
on their alignment scores and then find a consensus structurefor each cluster. The consensus
structure is found by aligning base pairing probability matrices. These are calculated using
either the McCaskill [McCaskill, 1990] orFOLDALIGN algorithms. The constraints used in the
pairwise algorithm are also used in the multiple version.

In Torarinsson et al. [2006]FOLDALIGN is used to align RNA sequences from human and
mouse. The aligned regions are just upstream or downstream of sequences which can be aligned
using normal sequence alignment methods. The regions are terminated by either gaps, repeats,
or new alignments. The regions themselves cannot be alignedusing conventional methods. For
details see Figure 1 in Torarinsson et al. [2006] on page 99. Sequence pairs were made from
ten different chromosomes. 1297 good alignments were found. If all chromosomes had been
used, an estimated 3600 good alignments would have been found. This is approximately 1800
more than what would have been expected by chance. 32 out of 36top candidates tested gave a
good positive result when tested with PCR. 12 of those which gave good results by PCR, were
tested using Northern blots, and four of these gave good results.

The final paper, Gorodkin et al. [2006], is about the family ofRNA genes called microRNAs.
In the paper it is shown that there is a difference in sequencemotif depended on whether the
mature microRNA is located on the left or right side of the predicted precursor hairpin loop.

viii



Sammendrag p̊a dansk

Hovedformålet med dette ph.d.-projekt er at videreudvikle FOLDALIGN-algoritmen. Algorit-
men er beregnet til samtidigt at forudsige en fælles, sekundær struktur for RNA-sekvenser og
rette sekvenserne ind efter hinanden2.

Strukturen af en RNA-sekvens er med til at bestemme dens funktion. En forudsagt, sekundær
struktur kan derfor være med til at forudsige funktionen af en sekvens. Den sekundære struktur
af en RNA-sekvens består i en liste af de basepar, som et molekyle med denne sekvens danner.
Som oftest begrænses den endvidere til den struktur, som harflest basepar, når pseudo-knuder
fjernes.

Hvis to sekvenser kan alignes godt, så giver det et vink om, at de muligvis er relaterede.
Hvis en menneskesekvens med kendt funktion kan alignes til en grisesekvens, så er der grund
til at tro, at de to sekvenser har de samme eller relaterede funktioner.

RNA-sekvenser kan oftest ikke alignes ordentligt uden brugaf struktur, fordi den primære
sekvens af et RNA-molekyle relativt nemt kan muteres, uden at strukturen af molekylet ændres
væsentligt. Dette skyldes kompenserede mutationer, hvor en eller begge nukleotider i et basepar
skiftes ud med andre nukleotider, sådan at baseparret bevares.

De tidligere versioner afFOLDALIGN aligner to eller flere sekvenser [Gorodkin et al., 1997b,c,
2001a,b]. Der gives en høj positiv score, når et basepar bevares, og en negativ score når enkelt-
strengede nucleotider ikke er bevaret, eller der indsættesmellemrum i sekvensen. For at spare
tid kan strukturen ikke indeholde bifurkationer. En bifurkeret struktur er en struktur, der består
af to mindre, uafhængige strukturer.

De nye versioner af algoritmen, som er udviklet under dette ph.d.-projekt, er forbedret på
flere måder. I Havgaard et al. [2005b] tilføjes der en energimodel, der minder om den, der
bruges til enkelt sekvens-foldning. Mere komplicerede strukturer kan findes, fordi bifurkerede
strukturer nu er tilladt. Brugen af bifurkerede strukturergør algoritmen langsommere. For
at spare tid er der indført en begrænsning, hvor den bifurkerede struktur kun beregnes på en
af flere måder. For at begrænse hukommelsesforbruget ved lange sekvenser bliver den ene
sekvens klippet op i mindre stykker, som alignes til et vindue fra den anden sekvens. Når
alle nukleotider i vinduet er alignet til stykket fra den første sekvens, så rykkes vinduet et
nukleotid. Det nye nukleotid alignes til stykket, hvorefter vinduet rykkes igen. Når hele den
anden sekvens er blevet alignet til stykket fra den første sekvens, så starter processen forfra med
det næste stykke fra den første sekvens. En alignment kan godt være kortere, men ikke længere

2At rette sekvenser ind efter hinanden kaldes ofte atalignedem. Resultatet af at aligne to eller flere sekvenser
kaldes enalignment.
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Sammendrag p̊a dansk

end vinduet. Havgaard et al. [2005a] beskriver en ny webserver for programmet. Desuden
beskrives resultater for global alignment i Supplementarymaterial.

Havgaard et al. [2007] beskriver en måde til at få programmer somFOLDALIGN til at køre
hurtigt. Metoden udnytter, at mange af de delalignmenter, som beregnes undervejs, er meget
dårlige. Ved at kræve at alle alignmenter med en vis længde skal have en score over et vist
minimum, begrænses antallet af delalignmenter. De alignmenter, der ikke lever op til mini-
mumskravet, kan ikke være en del af længere alignmenter, og der skal derfor ikke bruges tid
på at tage de dårlige delalignmenter med i beregningen af de længere alignmenter. Det er ikke
nødvendigt at gemme de dårlige delalignmenter, og derfor spares der også meget hukommelse.
For yderligere at spare hukommelse udnyttes begrænsningenpå det antal måder, en bifurkteret
struktur udregnes på til kun at gemme den mest nødvendige information. Denne ekstra bespar-
else betyder, at den del af algoritmen, som går tilbage gennem den lagrede information for at
finde alignmenten og dens struktur, ikke har nok information. Der skal altså lagres mere infor-
mation for at kunne lave denne tilbage-sporing. I et forsøg på at begrænse mængden af infor-
mation, der gemmes, bruges der en “del og hersk-strategi”. Først laves en tilbage-sporing, der
fastlægger alle bifurkations-punkter. Disse punkter bruges til at splitte strukturen op i mindre
dele, som ikke indeholder bifurkationer. Fordi de mindre dele som oftest er væsentligt mindre
end hele strukturen, skal der oftest bruges mindre hukommelse, når de tilbage-spores. Der er
dog ingen garanti for, at strategien bruger mindre hukommelse end en simpel tilbage-sporing.

De første versioner afFOLDALIGN kunne lave alignmenter med flere sekvenser, mens ver-
sion 2 kun kan lave dem parvist.FOLDALIGNM [Torarinsson et al., 2007] kan lave glob-
ale alignmenter med flere sekvenser. Sekvenserne bliver samlet i grupper efter deres score,
og for hver gruppe findes der en fælles struktur. Strukturen findes ved at aligne basepar-
sandsynligheds-matricer beregnet med McCaskill [McCaskill, 1990] ellerFOLDALIGN-
algoritmerne.

I Torarinsson et al. [2006] brugesFOLDALIGN til at sammenligne RNA-sekvenser fra men-
neske og mus. Sekvensstykkerne er udvalgt sådan, at i den ene ende kan nabosekvenserne
alignes, mens nabosekvensen i den anden enden er et mellemrum, et gentagelseselement eller
en ny alignment. Sekvenserne i selve sekvensstykket kan ikke alignes med standardmetoder.
Se figur 1 i Torarinsson et al. [2006] på side 99. Der blev brugt sekvenser fra ti forskellige
kromosomer. Der blev fundet 1297 signifikante alignmenter.Det svarer til∼3600 kandidater,
hvis alle kromosomer blev brugt. Ca. 1800 af disse kan ikke forklares ud fra, hvad der ville
forventes ved et tilfælde. Af 36 topkandidater, der blev testet i laboratoriet med PCR, gav de 32
et positivt resultat. 12 af de kandidater, der gav positive PCR-resultater, blev også testet med
Northern blots, og fire af disse blev genfundet.

Den sidste artikel, Gorodkin et al. [2006], handler om den familie af RNA-gener, der hed-
der microRNAer. I denne vises det, at sekvensmotiver for microRNA er forskellige, alt efter
om microRNA-sekvensen ligger på højre eller venstre side af den struktur, som microRNAen
kommer fra.

x



Chapter 1

Introduction

The main purpose of this Ph.D. project is to develop a better method for local structural align-
ment of RNA sequences. The project is based on theFOLDALIGN algorithm [Gorodkin et al.,
1997b,c, 2001b,a] which is the first simplified implementation of the general Sankoff algorithm
[Sankoff, 1985] for structural alignment of RNA.

The first section in this chapter gives a short introduction to RNA sequences. The second
section introduces RNA alignment and the results of theFOLDALIGN papers included in this
thesis [Havgaard et al., 2005a,b, 2007, Torarinsson et al.,2007, 2006]. The final section intro-
duces micro-RNAs (miRNA) and the results of the miRNA paper [Gorodkin et al., 2006].

The second chapter is focused on the pairwiseFOLDALIGN algorithm. It starts with a de-
scription of the two new implementations (2.0 and 2.1) and their time & memory requirements.
The second section describes the energy model. The next section describes the heuristics used in
the algorithm. The fifth section describes the parameters used. It is followed by a section about
selecting and evaluating the significance of the local alignments. The final section describes the
datasets used to train and test the algorithm.

The third chapter gives a short description of the results from each paper, and some con-
cluding remarks are made.

The appendix describes the recursion used byFOLDALIGN.
The six papers make up the remaining part of the thesis.

1.1 RNA sequences

An RNA sequence is a polymer of nucleotides linked to each other at the3′ to 5′ positions.
This leaves the5′ end free on the first nucleotide and the3′ end free on the last nucleotide. The
sequence is therefore said to be in the5′ to 3′ direction. Each nucleotide consists of a ribose and
phosphate backbone part and a base. Usually the base is an Adenosine, a Cytosine, a Guanine,
or an Uracil. The polymer is flexible and can bend back on itself allowing the bases of the
nucleotides to interact through hydrogen bonding. The bonding is further stabilized through
stacking. The canonical base pairs areA - U andG - C. The wobble base pairG - U is usually
also included among the RNA base pairs.

1



1.2 RNA alignment Chapter 1. Introduction

The primary structure of an RNA sequence is the list of the nucleotides in the5′ to 3′

direction. The secondary structure is a list of the base pairs found in the three-dimensional
structure of the molecule. Often the secondary structure islimited to the list of base pairs when
pseudo knots have been removed. If the nucleotides at positionsi andj in a molecule base pair,
and the nucleotides at positionm andn also base pair andi < m < j < n, then one of the
base pairs is part of a pseudo knot. Secondary structure prediction based on a single sequence
started with [Tinoco Jr. et al., 1971, Tinoco Jr. et al., 1973]. Efficient dynamic programming
algorithms were introduced by [Waterman, 1978, Waterman and Smith, 1978, Nussinov et al.,
1978, Nussinov and Jacobson, 1980]. Today the most widely used programs are Mfold [Zuker,
2003] and RNAfold from the Vienna package [Hofacker et al., 1994].

Traditionally there were four different types of RNAs: Messenger RNA (mRNA) which is
the RNA intermediate between a protein and its DNA sequence.The ribosome RNAs (rRNA)
which are the primary molecules in the translation of the mRNAs into proteins. The transfer
RNAs (tRNA) catch amino acids and bring them to the right positions in protein sequences
under construction. Finally there was also “a few other types of RNAs”. The important RNAs
were the mRNAs because they are directly related to the proteins, and proteins did everything
except those things done by rRNAs, tRNAs, and “a few other types of RNAs”. This view
is being revised. Currently there are still four main types of RNAs: The mRNAs, the RNA
elements, the non-coding RNAs (ncRNA), and “a few other RNAs”. The mRNAs are still the
RNA intermediate between a protein and its DNA sequence. An RNA element is an RNA
structure in an RNA molecule which has a function which is notpart of the primary function of
the molecule. This can for example be UTR elements affectingthe translation rate of a mRNA
[Winkler, 2005], a self splicing intron [Woodson, 2005], ora seleno cysteine insertion element
[Walczak et al., 1996]. The ncRNAs are RNA genes like the “old” rRNA and tRNA. These
RNA molecules have functions in a fashion similar to proteins. Often the function involves
base pair interactions between different molecules. The ncRNAs are found both as independent
genes or inside the introns of other genes. In the digital RNAtheory by Mattick [2004] some
RNA sequences are believed to be adapter molecules between regulatory complexes and the
sequences being regulated. The “a few other RNAs” category is still around since the RNA
field is expanding rapidly, and new types of molecules may be discovered.

The view of the roles of RNA is changed by a combination of highthroughput experimental
techniques, bioinformatics, and renewed interest in the RNA field. The high throughput exper-
imental techniques including sequencing and arrays have toa large extend been pioneered by
the RNomics group [Huttenhofer et al., 2002] and the RIKEN group [Suzuki and Hayashizaki,
2004]. Huttenhofer and Vogel [2006] reviews the experimental techniques. Some of the bioin-
formatic methods will be discussed in the next section.

1.2 RNA alignment

Alignment of sequences has been one of the most useful disciplines in bioinformatics. An align-
ment helps transforming knowledge about one sequence into knowledge about other sequences.
Even when there is no knowledge about any of the sequences in an alignment, the informa-

2



1.2 RNA alignment Chapter 1. Introduction

tion that sequences can be aligned, can be used to select sequences for further investigation.
Efficient methods for alignment of sequences by sequence similarity have been around since
dynamic programming was introduced into the field of bioinformatics. For a historical account
see [Sankoff, 2000].

Alignment of non-protein-coding-RNA sequences is complicated by the fact that certain
parts of the primary structure can be mutated without changing the structure of the molecule
significantly. It is often only important that the nucleotides at two positions in the sequence
base pair, the types of nucleotides at the positions matter less. AG − C base pair can for ex-
ample be replaced by anA − U base pair. Wobble base pairsG − U make it even easier for a
sequence to change since they allow the nucleotides of a basepair to mutate in separate events
without changes to the structure. Two homologous RNA sequences can therefore have dissim-
ilar primary sequences while retaining similar structures. It is therefore desirable to include
structural information when aligning RNA sequences. To simplify algorithms only secondary
structure information (without pseudo knots) is normally used.

RNA alignment and structure prediction were combined in theSankoff algorithm [Sankoff,
1985] which describes an algorithm for multiple alignment and common structure prediction.
The Sankoff algorithm’s time and memory complexity becomesintractable for more than a
few sequences. A simplified version of the Sankoff algorithmwas implemented in the first
version ofFOLDALIGN [Gorodkin et al., 1997b,c, 2001a,b]. From pairwise alignments it uses
greedy algorithms to build the multiple alignment. The pairwise alignment maximizes a score
where conserved base pairs are given a positive score even when the nucleotides have changed.
An extra score can be added when several base pairs are nestedin a stem. Single stranded
nucleotides are given a positive score when they are conserved between the two sequences, and
a negative score when the nucleotides are not conserved.

In general there seems to be two main classes of algorithms which are aimed at making
alignments of RNAs or predicting common folds. The energy based algorithms likeFOLD-
ALIGN, Dynalign [Mathews and Turner, 2002], RNAz/RNAalifold [Washietl et al., 2005b,
Hofacker et al., 2002], Pmcomp [Hofacker et al., 2004], RNAcast [Reeder and Giegerich,
2005], and Cofolga [Taneda, 2005] use energy minimization as the basis for the algorithm.
The stochastic methods like Cove [Eddy and Durbin, 1994], Infernal [Eddy, 2002], Stemloc
[Holmes, 2005], Consan [Dowell and Eddy, 2006], QRNA [Rivasand Eddy, 2001], Evofold
[Pedersen et al., 2006], and PFOLD [Knudsen and Hein, 2003] are based on the ideas of stochas-
tic context free grammars, SCFGs, see also [Durbin et al., 1998]. CMfinder [Yao et al., 2006]
uses expectation maximization in a Bayesian frame work. There are several other methods as
the field is growing fast. The Wiki ( http://wikiomics.org/wiki/List of articles#RNA ) started
by Paul Gardner keeps track of the different methods. Most methods are currently aimed at
making global multiple alignments or structure predictions. Most of the methods are very slow
and use huge amounts of computer memory. To make the methods usable heuristics and/or
simplifications are used. Popular heuristics include pre-folding of the sequence which limits
the number of base pairs in the sequence, or similarity anchoring which requires that certain
positions in the sequences are aligned. Biological simplifications like ignoring multibranched
loops or collapsing structures into a stem representation are also used.

The current version of the pairwiseFOLDALIGN algorithm is presented in this thesis. It has
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several advantages compared to most of its competitors. It can make both local and global align-
ments. It is fast and has a low memory requirement due to the use of heuristics. The heuristics
used do not remove the comparative information and do not require sequence similarity. Even
though sequence similarity is not required it can be used if present. A weakness of the current
pairwise algorithm is that it cannot align multiple sequences. A first step in making a new local
multiple alignment method is the method for making global multiple alignments presented in
[Torarinsson et al., 2007]. In addition to theFOLDALIGN algorithm a script which evaluates the
significance of the local alignments, is also described.

The aim of the Havgaard et al. [2005a,b, 2007] papers are to improve the predictive per-
formance and the time and memory requirements ofFOLDALIGN. Havgaard et al. [2005b]
introduces a light weight energy model and removes the stem-only simplification from the al-
gorithm. The stem-only simplification was replaced by a heuristic which limits the number of
ways a given multibranched loop is calculated to one. A scanning scheme is also implemented
which lowers the memory requirement at the cost of doubling the run time. While local align-
ment and structure predicting are the main foci of the first paper, the second, Havgaard et al.
[2005a], introduces a webserver and results for global alignment. Havgaard et al. [2007] intro-
duces the pruning heuristic which significantly speeds up the algorithm and lowers the memory
consumption. The heuristic which limits the number of ways amultibranched loop is calcu-
lated, is used to lower the memory requirement further. Whenthis heuristic is used, not all
of the cells in the dynamic programming matrix passed by the backtrack algorithm contains a
value. It is therefore not possible to do a normal backtrack through the matrix. A “divide and
conquer” strategy is used to do the realignment and backtracking of the structure in an attempt
to try to avoid using too much extra memory. There are also small improvements to the energy
model.

The first version ofFOLDALIGN can make multiple alignments whereas the second version
can only make pairwise alignments.FOLDALIGNM [Torarinsson et al., 2007] is a global multi-
ple alignment algorithm based on the PMcomp algorithm [Hofacker et al., 2004]. It aligns base
pair probability matrices based on the McCaskill [McCaskill, 1990] orFOLDALIGN algorithms.
Clustering is used to group sequences with similar structures which are then given a consensus
structure.

Recently three large scale searches for ncRNAs in vertebrates have been published [Washietl
et al., 2005a, Pedersen et al., 2006, Torarinsson et al., 2006]. Washietl et al. [2005a] uses the
RNAz algorithm [Washietl et al., 2005b]. RNAz compares the minimum free folding energy
of a common fold (with an additional substitution score) of an alignment to the free folding
energies of the individual sequences [Washietl and Hofacker, 2004, Hofacker et al., 2002]. A
support vector machine (SVM) is used to calculate a Z-score for the alignment. Pedersen et al.
[2006] uses the Evofold algorithm to scan multiple alignments of vertebrates for new ncRNAs in
humans. Evofold uses a SCFG and a phylogenetic model to evaluate how well the substitutions
in a multiple alignment agree with it being a conserved ncRNAstructure. Torarinsson et al.
[2006] usesFOLDALIGN and is part of this thesis, see page 97. Compared to RNAz and Evo-
fold FOLDALIGN has the advantage that it is local, and it can be used on unaligned sequences.
RNAz’s and Evofold’s advantage is that they can work with multiple sequences. The three stud-
ies show that the general bioinformatical tools for finding novel ncRNAs have reached a point
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where they are becoming useful not only for benchmark comparisons, but also for generating
new knowledge about biology.

1.3 MicroRNA

The final paper in this thesis is about microRNAs (miRNA). MiRNAs are∼22 nt. long RNA
sequences which inhibit the translation of their RNA targets. Targets are selected by base pairing
between the miRNA and the target RNAs. Even though the first miRNA gene had already been
discovered by others [Lee et al., 1993], the most important ncRNA papers recently are probably
the three miRNA papers published in 2001 by Lagos Quintana etal. [2001], Lau et al. [2001],
and Lee and Ambros [2001], since they brought a huge amount ofspotlight on the ncRNA field.

A miRNA is cleaved out of a pre-miRNA which is a stem loop. In plants the stem can be
very long, but in other organisms the stem is∼80 nucleotides long. The miRNA also known
as the mature miRNA can be located at either side of the loop. In Gorodkin et al. [2006] it
is shown that the sequence motif of mature miRNAs which comesfrom the left side of the
stem, is different from the sequence motif of those which comes from the right side of the
stem. This indicates that there might be a difference in the cellular machinery used to process
the left and right mature miRNAs. Furthermore the sequence motifs of the different groups of
organisms varies indicating that there are also differences in the processing machinery between
the different species.
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Chapter 2

FOLDALIGN

2.1 Implementations

Two new implementations ofFOLDALIGN have been made as part of this project. The second
version (2.1) replaces the first version (2.0). The main difference between the two versions is
the pruning constraint, see section 2.3.1, and better implementation which makes the program
use less memory and run faster. In the followingI andK are the sequences being aligned.LI

is the length sequenceI. λ is the maximum motif length.δ is the maximum length difference
between two subsequences being aligned.i & j are start and end coordinates of a sub alignment
from sequenceI, andk & l are similar coordinates from theK sequence.

2.1.1 Version 2.0

Version 2.0 ofFOLDALIGN is described in the paper Havgaard et al. [2005b]. The main aims
for version 2.0 were:

1. Allowing for bifurcated structures

2. Lowering the memory complexity by implementing a scanning scheme. This allows the
algorithm to locally align long sequences

3. Improving the pairwise alignment performance by using a better scoring scheme

Many classes of RNA structures contain bifurcations. Constraining the algorithm to non-
bifurcated structures as done in the earlier versions [Gorodkin et al., 1997b,c, 2001a,b] signi-
ficantly limits its performance [Gardner and Giegerich, 2004]. Allowing bifurcating structures
changes the time complexity of the algorithm fromO(L2

IL
2
K) to O(L3

IL
3
K) slowing down the

algorithm significantly. To alleviate this a new constraintwas added which limits the number of
times identical structures are calculated to one, see section 2.3.

The scanning scheme splits one sequence into overlapping subsequences and aligns each
of these subsequences to the other sequence. Each subsequence overlaps the previous subse-
quence withλ nucleotides and is typically2λ nucleotides long (whereλ is the maximum motif
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length possible, see section 2.3). In the other sequence only a λ long section of the dynamic
programming matrix is kept in memory. For details see Havgaard et al. [2005b] page 59 and
Figure 2 on the same page. The scheme lowers the memory complexity from O(LILKλδ) to
O(λ3δ) at the maximum cost of doubling the run time.

Initial tests showed that if the algorithm was to have a good performance, a better scoring
function than the simple substitution scheme used in the earlier versions Gorodkin et al. [1997c]
was needed. Therefore an energy model was added to the algorithm. The energy model uses
five different contexts: Hairpin loops, stems, bulge loops,internal loops, and bifurcation loops.
The scoring scheme is described in section 2.2.

2.1.2 Version 2.1

Version 2.1 ofFOLDALIGN is described in Havgaard et al. [2007]. The main improvements are:

1. Pruning

2. Better memory implementation during:

(a) Scanning - keeping only the necessary information

(b) Non branched alignment - Exploiting the lower requirements during scanning

(c) Backtrack - Using a “divide and conquer” algorithm to tryto keep memory con-
sumption low during backtrack

3. Better use of theδ constraint during global alignment

4. Improving the energy model:

(a) By always scoring single stranded nucleotides externalto any base pair in the same
way

(b) By allowing more base pair inserts

The two major problems of the 2.0 version ofFOLDALIGN are the time and memory needed
to run the program. In the pruning heuristic it is assumed that any subalignment with a score
below a given cut off will never be part of any biologically relevant alignment. The algorithm
saves time by ignoring such subalignments. Pruning also saves memory space since it is not
necessary to store information about subalignments which have been pruned away.

An alignment starting at positioni can, with the exception of bifurcation, only be expanded
into alignments starting at positioni or i − 1, see the recursion in appendix A. In the case of
bifurcation an alignment starting at positioni can become part of an alignment starting further
downstream. The memory is therefore split into two parts. The short term memory keeps all the
needed information about all alignments starting at position i andi− 1. The long term memory
holds the information for alignments with starting positions in the range fromi up toi+λ. Only
information about alignments (stems) which can form the right part of a bifurcation, is stored
in the long term memory, see Figure 2.11. The short term memory has a memory complexity of
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O(λ2δ), and the long term memory’s complexity isO(λ3δ). While the complexity of the long
term memory is the same as the memory complexity in the 2.0 version, the long term memory
matrix is much more sparse.

In the non branched alignment case the information in the long term memory is not needed
which further lowers the memory requirement during the scanning phase. The memory require-
ment is that of the short term memory, namelyO(λ2δ).

During backtrack information about all subalignments which will be passed during the back-
track, is necessary. This means that much more information must be stored in the long term
memory. To try to avoid raising the memory requirement during backtrack too much a “divide
and conquer” scheme is used. First step is a pre-backtrack which realigns the region of interest,
but in addition to the stem alignments also bifurcation alignments are kept in the long term
memory. An extra pointer to the last bifurcation point passed by an alignment is also kept for
all alignments. Finally, also a list of all bifurcation points encountered is kept. By using this
information it is possible to find all the bifurcation pointsin the alignment which is then divided
into non bifurcated stem segments. Each stem segment is realigned and backtracked keeping
the full long term memory. This is somewhat similar to the “divide and conquer” strategy used
by Eddy [2002]. The memory is saved since each stem segment usually is much shorter than
the full alignment. The run time complexity of the pre-backtrack realignment is identical to
the realignment needed without this scheme. The run time of the stem segment realignments
is relatively short as these are non branchedO(L2

segmentδ
2). In most cases this scheme allows

the backtrack to be performed without using more memory thanduring the initial scan. But a
clear example where it does not work, is in the case of non branched alignments. A cubic space
model, similar to the linear space models used in sequence alignment, could be used to ensure
that the memory consumption during backtrack of a stem segment stays below a given cut off
[Myers and Miller, 1988, Hirschberg, 1975].

During backtrack and/or global alignment theδ constraint (see section 2.3) can be used to
reduce the run time and memory consumption even further. Theδ constraint combined with the
“end to end” requirement of global alignment constrains thek position to a4δ wide band. This
is similar to theM constraint used in Dynalign [Mathews and Turner, 2002].

The energy model used in version 2.0 has no consistent way of handling single stranded
nucleotides outside any base pairs. They are scored as hairpin loop, internal loop, or bifurcation
loop nucleotides. In the 2.1 version they are always scored as bifurcation loop nucleotides. An
simplified overview of the energy model can be seen in Figure 2.5.

In Dynalign, [Mathews and Turner, 2002], a base pair can onlybe inserted in a stem when
it is surrounded by two conserved base pairs. Version 2.0 ofFOLDALIGN uses a similar insert
model. In 2.1 this requirement is relaxed so that only the first base pair must be conserved, and
that the stem contains at least two conserved base pairs. In afuture version the requirement for
the first base pair to be conserved will probably be removed.

Dangling ends which are single stranded nucleotides in multibranched loops or external
loops which are located next to a base paired nucleotide, no longer get a stacking bonus in
version 2.1. The predictive performance gained by using dangling ends is small compared to
the complexity which they add to the algorithm.
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Local BT/Global No branch No branch
local BT/Global

2.0 Time complexity O(LILKλ2δ2) O(L3
ILKδ2) O(LILKλδ) O(L2

ILKδ)
2.1 Time complexity O(LILKλ2δ2) O(L3

Iδ
3) O(LILKλδ) O(L2

Iδ
2)

2.0 Memory complexity O(λ3δ) O(L2
ILKδ) O(λ3δ) O(L2

ILKδ)
2.1 Memory complexity O(λ3δ) O(L2

Iδ
2) O(λ2δ) O(L2

Iδ
2)

Table 2.1: Time and memory complexity. “Local” is the local alignment scan case. “BT/Global”
is the backtrack and global alignment cases. “Nobranch” are the non-bifurcated cases.

2.1.3 Time and memory

The time and memory complexities can be seen in Table 2.1. Figures (2.1) and (2.2) show the
average time needed to align one of the eight SRP sequence pairs, see section 2.6. The se-
quences are 1000 nucleotides long, and each contains one∼300 nucleotide long SRP motif.
The runs were made usingδ = 25 andchunk size = 1000. The machines used have Intel
XEON 2.4 GHz processors, and the source code had been compiled using the gcc 3.4.4 com-
piler. The “shuffled data” curve was made with shuffled versions of the same sequences. The
two “2.1, Pruning” curves are the same in the two figures. Fromthe figures it is clear that the
pruning constraint speeds up the calculations significantly. The “2.1, No pruning” curve was
not extended beyondλ = 300 due to time constrain, whereas the pruning curves could be easily
extended. It can also be seen that the 2.1 implementation is faster than the 2.0 implementation.
Figure (2.2) shows that the pruning constraint is slightly less effective when the sequences being
aligned share a common motif, which is to be expected.

Figure (2.3) shows the average memory used for the same alignments as in Figures (2.1)
and (2.2). In this figure it can be seen that the memory requirement is a major limitation for
the 2.0 version of the algorithm. It is also clear that the pruning constraint also has a very good
effect on the memory usage. This figure also shows that the pruning constraint is slightly more
efficient when there is no common motif.

Figure (2.4) shows the average time required to align two shuffled sequences of the same
length using aλ equal to the sequence length (δ = 25). The machines used have Intel Xeon
5150 Woodcrest 2.66 GHz CPUs, and the source code had been compiled using the gcc 4.1.0
compiler. Note that the machines used to make this figure are different from those used to
make the previous figures, and that the figures therefore are not directly comparable. Without
pruning the time complexity is expected to beO(λ4δ2). For these eight sequences it appears
to beO(λ∼2.4δ2). The run time of the algorithm scales significantly better when the pruning
constraint is used.

For global alignment the time and memory results are less clear (data not shown). The
memory usage is greatly influenced by the structure being aligned. When the structure is un-
branched, and the sequences are short, the 2.0 and the 2.1 no pruning versions of the algorithm
require approximately the same amount of memory. The pruning constraint lowers the require-
ment, but not as much as in the local alignment case, see section 2.3.1. The run time advantage
gained by using pruning as a function of theδ parameter can be seen in Figure (2.12).
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Figure 2.1: Average run time as a function of motif length -λ. The 1000 nt. long SRP data
set was used.δ = 25 andchunk size = 1000. The new implementation is faster than the old
even without pruning. The time needed to align unrelated sequences was measured by aligning
shuffled SRP sequences. Figure (2.2) shows the pruning curves in more detail.
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Figure 2.2: Average run time as a function of motif length -λ. The run time increases when a
motif is present. The “real data” contains SRP sequences with a length of∼ 300. The “shuffled
data” contains the same sequences shuffled.
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Figure 2.3: The average memory requirement as a function of motif length -λ. The 2.1 imple-
mentation clearly uses a lot less memory than the 2.0 implementation even without pruning.
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Figure 2.4: Average run time as a function of the lengths of the input sequences. In these runs
shuffled sequences with lengths equal toλ were aligned. Note that the machines used to make
this figure and Figures (2.1) and (2.2) are different from each other.
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2.2 Scoring scheme

The scoring scheme has five contexts: Hairpin-loops, stems,bulge-loops, internal-loops, and
bifurcated-loops. An alignment always starts in the hairpin loop context. InFOLDALIGN version
2.0 the alignment can end in any context except the bulge context. In version 2.1 the alignment
can only end in either the stem or bifurcation context. Figure 2.5 shows an overview of the
energy model used in version 2.1. The energy model is based onthe description found on
the Mfold website: http://www.bioinfo.rpi.edu/∼zukerm/rna/energy/node2.html, see also the
Mathews et al. [1999] article. In the following the parameters used in version 2.0 ofFOLDALIGN

are used.

2.2.1 Hairpin-loops

A hairpin-loop is a stretch of unpaired nucleotides closed by a base pair. The base pair is not
part of the loop. In Figure 2.6 the hairpin-loop nucleotidesare colored blue and black. The
score of an entire hairpin-loop has the following elements:

Single strand substitution Each nucleotide in the loop of the first sequence is aligned toa
nucleotide or a gap in the second sequence. In the example there are five single strand
substitutions:G ↔ G, A↔ –, C↔ G, U↔ U, A ↔ A.

Loop lengths The lengths of the unpaired regions also have a cost. In the example the lengths
are 5 and 4. The default minimum length is three nucleotides.The length cost for short
loops is read from the loop length table.

End stacking The nucleotides at the ends of the loop (blue color) stack on top of the closing
base pair (red color) if the length of both loops are longer than three nucleotides. The
two stackings are:GA ⇔ AU andGA⇔ GC. An extra non-GC cost has been added to
the hairpin-loop stacking parameters. This cost is needed due to the way hydrogen bonds
are counted in the nearest neighbor model [Xia et al., 1998].If the base pairsAU andGC
are not followed by other base pairs, then theAU andGCbase pairs are not considered to
base pair and are treated as part of the loop.

The score of the alignment in Figure 2.6 is:

Shp = Sss−substitutions + Slengths + Shpstacks

= Sss(G, G) + Sss(A, G) + Sss(C,−) + Sss(U, U) + Sss(A, A)+
Slength(5) + Slength(4) + Shpstack(GA, AU) + Shpstack(GA, GC)

= 9 − 50 − 25 + 13 + 19 − 56 − 56 + 11 + 22
= −113

(2.1)

2.2.2 Stems

A stem is a series of base pairs stacked onto each other. The minimum length of a stem is two
base pairs. A potential base pair without a neighboring basepair is not considered a base pair
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Start

Hairpin-loop

Stem

Stem insert

Bf. left & both

Bulge Right Bulge Left

Internal-loop

External

End

Bifurcation

Bf. right

Figure 2.5: A simplified state chart for the 2.1 implementation of FOLDALIGN. The alignment
always starts in the “Start” state which is a hairpin-loop state. The alignment ends in the “End”
state. The “External” state recalculates the scores of the “Hairpin-”, “Bulge-”, and “Internal-”
loop states to an “External” state score when needed. Unpaired nucleotides in the bifurcation
states are scored in the same way as external states. The “Hairpin-loop” state aligns unpaired
nucleotides in the hairpin context. The “Stem” state alignsbase pairs in both sequences. The
“Stem insert” state aligns a base pair in one of the sequenceswith two gaps in the other. “Bulge
right” aligns bulges on the right side of a stem. “Bulge left”aligns bulges on the left side
of a stem. The “Internal-loop” state aligns two internal-loops nucleotides. The “Bifurcation”
state joins two substructures. The right structure must be in the “Stem” or “Stem insert” state.
The state of the left structure must be: “Stem”, “Stem insert”, “Bifurcation”, “Bulge right”, or
Bifurcation unpaired right (“Bf. right”). Bifurcation unpaired right aligns unpaired nucleotides
on the right side of a branch point. Bifurcation unpaired left & both (“Bf. left & both”) aligns
unpaired nucleotides on the left, right, and both sides of a branch point.
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Figure 2.6: A hairpin-loop alignment. The
base pairs (red) closing the loop are not part
of the loop, but the score still depends on
these nucleotides.
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Figure 2.7: An alignment of two stems.

and is treated as part of a loop. Figure 2.7 shows an example ofthe alignment of two stem
regions. In the 2.0 version of the algorithm a base pair can beinserted between two conserved
base pairs. In version 2.1 a base pair can be inserted when thestem is at least one base pair long
(the first base pair must be conserved), and the final stem mustcontain at least two conserved
base pairs. The score of a stem alignment has two elements in both versions:

Base pair substitutions The cost of substituting the nucleotides of a base pair in onesequence
with the nucleotides of the corresponding base pairs in the other sequence. Here it is:
AU ↔ AU, GC↔ CG, andUG ↔ UG.

Stacking The nucleotides of a base pair stack onto the nucleotides of its neighboring base pairs.
In the example there are four stacks:AU ⇔ GC andGC ⇔ UG in the first sequence.
AU ⇔ CG and CG ⇔ UG in the second sequence. The stem in the example is not
complete. The red and black base pairs will in most cases alsostack with their neighbors
which are not shown in the figure.

The score of the alignment in Figure 2.7 is:

Sstem = Sbp−substitutions + Sstacks

= Sbp(AU, AU) + Sbp(GC, CG) + Sbp(UG, UG) + Sstack(AU, GC)+
Sstack(GC, UG) + Sstack(AU, CG) + Sstack(CG, UG)

= 11 + 5 + 8 + 24 + 14 + 21 + 15 = 98

(2.2)

2.2.3 Bulge-loops

Bulges are a single strand region on one side of the molecule enclosed by base pairs, see Fig-
ure 2.8. The closing base pairs are not part of the bulge. The single strand region must be on the
same side of the molecule in both sequences. The length of thebulge in one of the sequences
may be zero if the length of the bulge in the other sequence is one or more. The score for a
bulge alignment has these elements:

Single strand substitution The cost of substituting the single stranded nucleotides with each
other. In the example there is aC ↔ C substitution.
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Figure 2.8: A bulge-loop section of an align-
ment.

Figure 2.9: An internal-loop section of an
alignment.

Length There is a cost for the length of the bulge. In the example bothlengths are one.

Stacking If the lengths of the bulges in both sequences are zero or one,then the closing base
pairs stack on to each other. This is the case in the example where the two stackings are:
AU ⇔ UG andAU ⇔ GC.

Non-GC-end cost This is an extra cost added each time a single stranded loop isclosed by a
non-GC base pair. The exception from this rule is the bulges where the closing base pair
can stack on to each other i.e. the one or zero length bulges. In the example the cost is
not added. If the bulges had been longer, the cost would have been:3 ×−5.

The score of the bulge alignment in the figure is:

Sbulge = Sss substitutions + Slengths + Sstacking + Snon−GC

= Sss(C, C) + 2 × Slength(1) + Sstack(AU, UG) + Sstack(AU, GC)
= 11 − 2 × 38 + 10 + 24 = −31

(2.3)

2.2.4 Internal-loops

Internal-loops are single strand regions closed by two basepairs which are not bulge-loops, see
Figure 2.9. This definition includes loops which in single sequence folding would be considered
bulge-loops, but in the pairwise folding become internal-loop because they are on opposite sides
of the surrounding stems. The closing base pairs in the figureare not part of the internal-loop.

The score of an internal-loop has several elements:

Single strand similarity The substitution cost for the nucleotides in the loops. In the example:
G ↔ C, A ↔ C, A↔ G, –↔ A, G↔ G, andG ↔ G,

Loop lengths A cost depending on the total length of the loop. In the example the total length
of the loop in the first sequence is∆1 = 3 + 2 = 5 and in the second sequence∆2 =
3 + 3 = 6.
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Figure 2.10: An alignment with a bifurcated-loop. The loop joins together two substructures.
Only the single stranded nucleotides marked with blue and green colors are part of the loops.
The example shows an open bifurcated-loop. The loop can alsobe closed by a stem. A closed
loop is also called a multibranched loop.

Loop asymmetry There is a cost for loops of unequal lengths. The cost is directly proportional
to the length difference between the two loops on each side ofthe molecule. In the
example the differences are one for the left sequence and zero for the right sequence. The
asymmetry cost is limited to a maximum value.

End stackings The unpaired nucleotides at the end of the loops stack with the closing base
paired nucleotides. The non-GCbase pair cost is assumed to have been added to the para-
meters already. In the example the four stackings are:GG⇔ AU, AG⇔ GU, AC⇔ AU,
andGG⇔ GU.

The score of the internal loop alignment in the figure becomes:

SInternal−loop = Sss substitutions + Slengths + Sasymmetry + SIl end stackings

= Sss(G, C) + Sss(A, C) + Sss(A, G) + Sss(−, A) + Sss(G, G)+
Sss(G, G) + Slength(5) + Slength(6) + Sasym(1) + Sasym(0)+
SIl end stack(GG, UA) + SIl end stack(AG, GU)+
SIl end stack(AC, UA) + SIl end stack(GG, GU)

= −25 − 22 − 18 − 50 + 9 + 9 − 18 − 20 − 5 + 0 − 7 + 4 − 7 − 7
= −157

(2.4)

2.2.5 Bifurcated-loops

Bifurcated-loops are loops of unpaired nucleotides between or on the outside of substructures,
see Figure 2.10. In version 2.1 of the algorithm this contextis also used as an external nucleotide
context. Any single stranded nucleotide outside any base pair is scored using the bifurcation
context. For an alignment without any base pair this contextis also used. The score of the
bifurcated-loop has these elements:

Single strand sequence similarityThe cost for substituting the nucleotides in the two se-
quences with each other. In this example:A ↔ G, G ↔ G, A ↔ A, A ↔ –, C ↔ C,
C ↔ C, U ↔ C, U ↔ A,
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Number of unpaired nucleotides There is a cost added for each unpaired nucleotide in the
loop. Often this cost is set to zero. Setting this cost and thesingle strand similarity
costs to zero can lead to very long alignments since there is no cost for extending the
bifurcation-loop.

Number of substructures A cost for adding new substructures to the loop. The first substruc-
ture is not counted. In the example there are two substructures. The cost is therefore
added once.

Loop closing If there is a stem closing the two ends of the loop, a cost is added. This is not the
case in the example, but the structure on the left would have been closed if theAG at the
start of the sequence had base paired with theUU at the end.

Dangling ends (Only in version 2.0 of the algorithm). Unpaired nucleotides next to base paired
nucleotides can stack onto the base pair. If an unpaired nucleotide can stack on more than
one base pair, it only stacks on to the most favorable. Unfavorable stackings are ignored.
The stacking cost are different for stackings to the5′ or the3′ side of the base pair. In
the example there are the following stackings:G ⇔ CG, C ⇔ AU, G ⇔ CG, C ⇔ AU,
CG⇔ A, AU ⇔ U, CG⇔ A, andAU ⇔ C.

Non-GC end base pair The extra cost added when the base pair ending a stem is not aGC
pair.

The score of the example is:

Sbifurcated−loop = Sss substitutions + Sunpaired nt. + Ssubstructures+
Send stackings + Snon−GC end

= Sss(A, G) + Sss(G, G) + Sss(A, A) + Sss(A,−)+
Sss(C, C) + Sss(C, C) + Sss(U, C) + Sss(U, A)+
Sun.nt.(8) + Sun.nt.(7) + Ssub.str.(1) + Ssub.str.(1)+
2 × S5′ end stack(G, CG) + 2 × S5′ end stack(C, AU)+
2 × S3′ end stack(CG, A) + 2 × S3′ end stack(AU, U)+
2 × Snon−GC end

= −18 + 9 + 19 − 50 + 11 + 11 − 15 − 19 − 8 × 0 − 7 × 0
−4 − 4 + 2 × 0 + 2 × 1 + 2 × 11 + 2 × 6 − 2 × 5

= −34

(2.5)
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2.3 Constraints

The FOLDALIGN algorithm is computational heavy. Without any constraintsthe algorithm has
a time complexity ofO(L3

IL
3
K) and a memory complexity ofO(L2

IL
2
K). This means that if the

lengths of the sequences are doubled, it will take roughly 64times longer to make the alignment,
and it will require 16 times as much memory. Using a twice as fast computer will only allow
the alignment12% longer sequences in the same amount of time.

To make the algorithm more useful constraints are used. Previous implementations of
FOLDALIGN use three types of constraints [Gorodkin et al., 1997b, 2001b]:

The maximum motif length — λ The maximum motif length was limited toλ nucleotides.

The maximum length difference —δ The maximum length difference between two subse-
quences being aligned was limited toδ nucleotides.

Stem-loop Structures were limited to stem-loop structures, no bifurcations were allowed.

Using these constraints the time complexity was reduced toO(LILKλδ) and the memory com-
plexity to O(LILKλδ). In the newer versions ofFOLDALIGN theλ andδ constraints are still
used while the stem-loop constraint is available as an option.

The λ constraint is now further exploited to lower the memory complexity to O(λ3δ), at
the cost of doubling the run time. This is done by splitting the shortest of the sequences into
smaller (usually2 × λ nucleotides) chunks. These are then aligned to aλ nucleotides long
window which is scanned along the other sequence. The methodis explained in Havgaard et al.
[2005b], in the section named ”Mutual scan of two sequences and the algorithmic complexity”
on page 59. Figure 2 on the same page illustrates the concept.

The stem-loop constraint is very effectively lowering the time complexity with a factor
of O(λδ), but it also severely limits the biological problems for which the algorithm can be
used. The constraint is therefore no longer used by default.To speed up the calculation of
the bifurcations the context in which a bifurcation can occur, has been limited. A structure
consisting of two substructures can usually be made from a wide range of substructures, see
Figure 2.11. The bifurcated structure can be assembled fromtwo substructures at all the points
marked by lines. All ten possible combinations of substructures result in the same structure.
Calculating only one of the combinations significantly speeds up the alignment. Exactly which
combination that is used, depends on the implementation. The 2.0 version ofFOLDALIGN uses
the combination indicated by the red line. The bifurcation score is only calculated when the
left substructure ends with a base pair, and the right structure is either stem, bifurcation, or
bulge on the left side of the molecule. The 2.1 version uses the combination marked in blue.
Here the bifurcation is only calculated when the start nucleotide of the left structure is base
paired downstream, and the right side is a stem. The reason for the method change is that
the 2.1 method exploits the constraint to also save large amounts of memory by only storing
subalignments which end with base pairs for downstream positions in theI sequence.

When non-branched alignments are wanted, the memory requirement is onlyO(λ2δ) during
the scan phase since it is not necessary to use the long term memory (version 2.1 only). A linear
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Figure 2.11: Bifurcation constraints. When two substructures are joined, there are usually
many exactly similar ways to do it (The figure shows a single sequence example for clarity). In
the figure ten slightly different pairs of substructures canall be joined into the same structure.
FOLDALIGN therefore only calculates this structure once. In version 2.0 the pair of substruc-
tures separated by a red line is used. In 2.1 the substructurepair separated by the blue line is
used. Limiting the bifurcation to the blue pair instead of the red pair allows the memory re-
quirement to be lowered since it is only necessary to store subalignments which end with a base
pair for the positions upstream of the current position.

space implementation is required before the backtrack stage can exploit this [Myers and Miller,
1988, Hirschberg, 1975].

2.3.1 Pruning

The dynamical pruning constraint added in version 2.1 requires that an alignment must have a
minimum score depending on the length of the alignment. If the alignment score is below the
minimum, then the alignment is not stored in the dynamic programming matrix. The recursion
used in the algorithm has been rewritten so that it takes an alignment and expands it into new
alignments. An empty cell cannot be expanded, and the algorithm can therefore move quickly
to the next cell. This saves a lot of time and memory especially in the case where there is no
motif in the sequences being aligned. The average time needed to align two 1000 nucleotide
sequences using different values ofλ can be seen in Figure (2.1).

Since gaps have relatively large negative scores, the use ofpruning removes alignments with
many gaps. While this is normally not a problem for local alignment where alignments with
many gaps usually is not what is wanted, it is a problem for global alignment. For some global
alignment casesFOLDALIGN does not report an alignment since all subalignments have been
pruned away. To limit the number of these cases the pruning scheme is slightly adjusted for
global alignment. Since the global alignment must reach from end to end of both sequences, the
minimum number of gaps needed to make the alignment equals the length difference between
the two sequences. The pruning score is made dependent not only on the length of the sub-
alignment, but also on the length difference between the twosubsequences. The global pruning
score becomes:

Θglobal = Θlocal(lI , lK) − min{abs(lI − lK), abs(LI − LK)} × GE (2.6)
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Figure 2.12: The curve shows the average speed gained by using pruning as a function of the
length difference between the input sequences for global alignment. SRP sequences were used
as input sequences. The maximum length difference (δ) was25.

WhereΘglobal andΘlocal are the pruning scores in the global and local pruning scores. lI =
j − i + 1, lK = l − k + 1, andGE is the gap elongation cost. In this way sequences of widely
different lengths can usually be globally aligned, but at the cost of slowing down the algorithm.
Figure 2.12 shows the speed gain as a function of length difference between the input sequences.
At length difference 25 the speed gain has dropped to an average of1.2. Further work is needed
to make pruning work efficiently for large length differences.
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2.4 Parameters

The most commonly used method for RNA folding is that of energy minimization [Zuker, 2003,
Hofacker, 2003]. The parameters used in energy minimization are based on thermodynamical
studies of small oligoes [Mathews et al., 2004, 1999, TinocoJr. et al., 1973]. In sequence
alignment the most commonly used parameters are log-odds scores [Henikoff and Henikoff,
1992, Altschul, 1991, Altschul et al., 1997].FOLDALIGN uses a combination of the two types
of parameters. The substitution matrices are log-odds scores, and the structural parameters are
taken from energy minimization.

2.4.1 Energy

The minimum free energy of an RNA structure is calculated using the nearest neighbor model.
This builds on the assumption that the main contribution to the free energy of an RNA structure
is the stacking of neighboring base pairs on to each other [DeVoe and Tinoco Jr., 1962]. The
simple model has been expanded into a complex model based on the stacking of nucleotides, the
lengths of unpaired loops, and ad-hoc rules [Mathews et al.,1999, 2004]. The parameters are
determined by experiments which study the thermodynamics of melting and folding of small
oligos, and by fitting parameters estimated from multiple alignments to experimental results.
The energy parameters used inFOLDALIGN were taken from the Mfold package [Mathews
et al., 1999] (with a few minor changes in Havgaard et al. [2007]).

2.4.2 Ribosum-Like

The different parts of an RNA molecule can evolve at different speeds. The nucleotides at some
positions are essential for the function of the molecule andrarely change. The nucleotides
at other positions are parts of stems and just need to base pair with the nucleotides at other
specific positions. These nucleotides can change more frequently by compensating mutations.
Nucleotides at other positions might serve as spacers, and the specific type of nucleotide is of
little importance which allows for frequent changes.

The substitution matrices used are based on the RIBOSUM matrices [Klein and Eddy,
2003]. The RIBOSUM matrices are based on the ideas behind theBLOSUM matrices used
in protein alignment [Henikoff and Henikoff, 1992], but have separate sub-matrices for single
strand regions and base paired regions.

Some substitutions are more likely to be seen between RNA molecules than between random
sequences, and vise versa. A substitution cost is thereforecalculated as the log-odds ratio
between the probability of the substitution between RNA molecules (P ′) and the probability
of the substitution between random sequences (P ) [Altschul, 1991]. The substitution cost for
substituting the nucleotidesni andnk with each other is:

S(ni, nk) = log2

P ′(ni, nk)

P (ni, nk)
= log2

P ′(ni, nk)

P (ni)P (nk)
(2.7)

In the second step the nucleotides at positionsi andk in the random RNA are assumed to be
independent of each other and of any other nucleotide. The substitution probability is therefore
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estimated to be the product of the background probabilities, P (ni) and P (nk), for the two
nucleotides. For base paired nucleotides this becomes:

S(ninj , nknl) = log2

P ′(ninj, nknl)

P (ninj , nknl)
= log2

P ′(ninj , nknl)

P (ni)P (nj)P (nk)P (nl)
(2.8)

whereni & nj base pair, andnk & nl base pair. The probabilities are estimated with frequencies
counted in multiple alignments.

The substitution matrices can be optimized to different evolutionary distances. In the BLO-
SUM based RIBOSUM-Like scheme this is done by clustering thesequences of the multiple
alignment according to sequence identities before the frequencies are counted. For the cluster-
ing a sequence identity cutoff is selected. If a sequence is more identical to any one sequence
already in a cluster than the cutoff, then the sequence is putinto that cluster. For each cluster
substitutions between the sequences in the cluster and the sequences in all the other clusters are
counted. This is similar to what is done for the BLOSUM matrices, but unlike the RIBOSUM
matrices where substitutions between sequences in the samecluster also are counted [Klein and
Eddy, 2003]. Each count is weighted by the geometric mean of the cluster sizes.

The RIBOSUM-Like matrices are made from a multiple alignment of the 1995 version of
the ribosomal Small Subunit (SSU) database [Van de Peer et al., 1994]. The cleaned alignment
was supplied by Robert J. Klein [Klein and Eddy, 2003 and personal communication]. The
alignment had been cleaned by removing sequences with more than 5% ambiguous nucleotides,
or sequences where more than 50% of the base paired positionswere missing. The resulting
alignment has 2492 sequences.

Figure 2.13 shows the number of clusters as a function of the clustering cutoff. The number
of sequences per cluster for some of the cutoffs can be seen inTable 2.2. Figure 2.14 shows
the number of sequence pairs being compared. In Henikoff andHenikoff [1992] substitutions
are counted in blocks of ungapped multiple alignments. In the Ribosum-Like matrices the
sequences have gaps. The gaps are counted as mismatches during the calculation of sequence
identities. This changes the clustering slightly. In Figure 2.13 and 2.14 two curves are shown.
One where gaps are counted as mismatches, and one where gaps are not counted. From the
Figures and the numbers in Table 2.2 it is clear that using more families is likely to improve the
matrices, especially for low identities as the numbers of clusters are very low.

The “Gaps not counted” curve and the numbers in Table 2.2 showthat there is little data
below the 80% cutoff and very little data below the 70% cutoff. Using multiple alignments of
other RNA families would be the best way to improve these numbers.

2.4.3 Combining energy and substitution parameters

The energy and substitution parameters have to be combined into one score-matrix. This was
done using a simple trial and error approach. In Havgaard et al. [2005b] the two RIBOSUM-
Like matrices are scaled independently. The performance ismeasured for different values of
the weights, and the optimal weights are selected. Togetherwith the clustering percentage this
gives the score-matrix three parameters which have to be optimized. It was found that the
single strand substitution matrix should have a larger weight than the base pairing matrix. It
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Figure 2.13: The number of clusters as a function of the clustering cutoff. A sequence is put
into a cluster if the sequence similarity between the sequence and any sequence in the cluster is
above the cutoff.
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Figure 2.14: The number of sequences compared as a function of the clustering cutoff. The
sequences from one cluster are compared to all the sequencesin another cluster. The counts
from each cluster/cluster comparison are normalized to one.
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50% 60% 70% 80%
Size # Size # Size # Size #

3 1 1 1 1 7 1 19
2489 1 3 2 2 6 2 9

2485 1 3 3 3 5
6 2 4 4

11 1 5 1
22 1 6 2

874 1 8 1
1545 1 11 4

17 1
21 1
44 1
50 1
51 1

782 1
1390 1

Table 2.2: The size is the number of sequences in a cluster in the “Gaps not counted” case, see
Figures (2.13) and (2.14). # is the number of clusters with this size. The numbers 50% – 80%
are the clustering percentages. If the sequences are clustered with 60% identity, then there will
be four clusters: One with one sequence, two with three sequences, and the final cluster will
have 2485 sequences.
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has been reported that even though this set of parameters makes good sequence alignments it
has a low base pair sensitivity when the aligned sequences have moderate or high sequence
identities [Dowell and Eddy, 2006]. A reasonable explanation for this is that the high single
strand substitution cost makes it very favorable for a nucleotide to be single stranded when the
sequence similarity is high. To avoid this problem the substitution matrices were scaled using
equal weights in Havgaard et al. [2007].

In addition to the clustering percentage and the matrix weights gap penalties are also needed.
Affine gaps are used. There are two gap penalties: One for initiating a new gap and one for
elongating an already opened gap. In general the elongationgap penalty was fixed to half the
gap initiation penalty. The algorithm’s performance for a given set of gap penalties is dependent
on the problem for which it is used. Separating biologicallyrelevant alignments from spurious
alignments demand one set of penalties. Predicting the correct structure of a given RNA family
another set. For this reasonFOLDALIGN has two build-in score matrices: one for local alignment
and one for global alignment. The optimal gap penalties are often different for different RNA
families, see Havgaard et al. [2005a] supplementary material Figure S1 on page 74, Havgaard
et al. [2005b], and Mathews and Turner [2002].
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2.5 Alignment selection

The main use forFOLDALIGN 2 is to scan a pair of sequences of locally conserved structures. As
the alignments are local, there might be more than one conserved biologically relevant structure
in the input sequences. Therefore a script, named locateHits, which can locate non-overlapping
alignments and evaluate their significance, has been included in the software package.

The input into the script is a list of alignment coordinates and scores. This list is produced by
FOLDALIGN when option-plot scoreis used. In version 2.0 the program outputs the coordinates
and the score of the highest scoring alignment starting at all pairs of the(i, k) coordinates in
the two sequences. Version 2.1 only outputs the informationwhen the alignment is a structural
alignment. Such an alignment must have at least two base pairs. The score of random alignment
is expected to grow linearly with the logarithm of the alignment length [Chvátal and Sankoff,
1975]. For the pair of coordinates(i, k) the best scoring alignment,SLS(i, k), is therefore in
version 2.1 defined as the one with the highest score comparedto the logarithm of the longest
of the two subsequences, i.e.

SLS(i, k) = max
j,l

(

S(i, j, k, l)

log2(max(j − i + 1, l − k + 1))

)

(2.9)

2.5.1 Non-overlapping alignments

One reasonable choice of alignments is the highest scoring which do not overlap each other in
both sequences. Havgaard et al. [2005b] describes an algorithm aimed at finding these align-
ments (page 60, section “Selection of a hit region”). Step two of the algorithm is incorrectly
described. The correct algorithm is:

1. Find the best scoring alignmentDij,kl.

2. Remove all alignmentsDi′j′,k′l′ for which
i′ ≤ j andj′ ≥ i

and
k′ ≤ l andl′ ≥ k.

3. Repeat until all alignments have been removed, or a predetermined threshold is reached.

The form described here is the one used to produce the resultsin the paper and implemented
in the locateHits script. If the incorrect algorithm had been used, an alignmentDi′j′,k′l′ with
Di′j′,k′l′ < Dij,kl wherei′ < i, j′ > j, k′ < k, l′ > l would not have been removed.

An algorithm like the “declumbing” algorithm [Waterman andVingron, 1994] which re-
moves all alignments which share common aligned nucleotides ni andnk, could also be used
in theory, but in reality it would be computationally too heavy since it requires backtracking of
the entire dynamic programming matrix. The “island” algorithm would also be computational
infeasible if at all possible [Olsen et al., 1999]. For sequence similarity based methods like
BLAST and FASTA a speedy implementation of algorithms like “declumbing” and ”island” is
important because they have the same time complexity as the full algorithm. The long runtime
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for FOLDALIGN makes it less important how fast the hit location algorithm is as long as it is
much smaller than that ofFOLDALIGN.

Figure 2.15 shows the ten first alignments from the locateHits 2.0 script used on a real
sequence pair. Shuffled sequences were used to make Figure 2.16. The coordinates are in thei,
j, k, andl columns. The alignment score is in theScorecolumn.Z is the Z-score. TheP column
will be discussed in the next section.Rankis the position in the list sorted by scores. TheRank
is used in theN-best alignments selection scheme in Havgaard et al. [2005b]. The first three
lines from the real alignment figure show the location of three tRNA genes. The alignments
overlap in theAC069454sequence, but not in theV00158sequence.

2.5.2 Significance of an alignment

The second part of the problem of finding the correct alignment, namely determining which
alignments are due to conserved sequence/structure, and which are just random alignments, is
addressed in this section.

It has been shown that for scoring algorithms likeFOLDALIGN it is reasonable to expect the
alignment scores for alignment of random sequences to be extreme value distributed [Karlin
and Altschul, 1990, Heyer, 2000, Gumbel, 1958]. If the distribution is known, it is possible
to calculate the probability that an alignment with a given score or better would be found by
chance.

For fast sequence similarity alignment methods like BLAST and FASTA it is possible to
align many random sequences to estimate the parameters of the extreme value distribution
[Altschul et al., 1990, Pearson and Lipman, 1988]. For a relatively slow method likeFOLD-
ALIGN aligning a comparable number of random sequences will take much longer. One way to
circumvent this problem is to use the observation by Waterman and Vingron [1994] and Olsen
et al. [1999] that a single alignment of two sequences can contain multiple independent local
alignments.

The extreme value distribution has two parameters,Λ1 andκ, which are depended on the
parameters of the scoring scheme and the sequences being aligned.Λ andκ are estimated using
the method described in Altschul et al. [2001]. The main points are repeated here: The number
of subalignments in a random alignment that will have a scorebetter than a scorex, is taken to
be Poisson distributed. The probability that an alignment with a scoreS ′ ≥ x will be produced
by chance, is estimated by:

P (S ′ ≥ x) ≈ 1 − exp(−κLILK exp−Λx) (2.10)

The estimate is expected to be better for higher alignment scores. The parameters are therefore
estimated using only scores above a thresholdc. The maximum likelihood estimate forΛ is:

Λ = ln

(

1 +
1

1
N

∑N

i=1(S(i) − c)

)

(2.11)

1
Λ is usually namedλ in other texts, but has been renamed here to avoid confusion with maximum motif length

λ

27



2.5 Alignment selection Chapter 2. FOLDALIGN

Name i j Name k l Score Z P Rank
V00158 173 245 AC069454 297 367 632 8.64 0.001 1
V00158 12 82 AC069454 297 367 602 8.28 0.002 2
V00158 89 159 AC069454 297 367 561 7.78 0.004 3
V00158 113 131 AC069454 183 203 192 3.35 0.981 4
V00158 202 245 AC069454 183 226 175 3.15 0.996 5
V00158 431 445 AC069454 324 338 158 2.95 0.999 6
V00158 33 62 AC069454 418 447 126 2.56 1.000 7
V00158 366 384 AC069454 184 202 125 2.55 1.000 8
V00158 464 480 AC069454 184 202 124 2.54 1.000 9
V00158 434 499 AC069454 405 469 116 2.44 1.000 10

Figure 2.15: The ten best local alignments between two 500 nt. long sequences. The first six
columns are sequence names and start and end positions. The score column is theFOLDALIGN

score, Z is the Z-score, P the P-value, and Rank is the position in the list. The parameters for
the Z-value distribution areµ = −87.4, σ = 83.3. The parameters for the P-score extreme
value distribution areΛ = 0.0189, κ = 0.000604. The cutoff score was 10, 125 alignments
were used, and the sum of the scores was 7792.

Name i j Name k l Score Z P Rank
V00158 206 336 AC069454 137 261 176 8.93 0.313 1
V00158 370 404 AC069454 432 467 138 7.73 0.793 2
V00158 323 421 AC069454 266 355 131 7.51 0.871 3
V00158 120 170 AC069454 433 485 130 7.47 0.881 4
V00158 190 201 AC069454 36 47 123 7.25 0.937 5
V00158 170 200 AC069454 320 349 114 6.97 0.980 6
V00158 52 132 AC069454 283 368 112 6.91 0.985 7
V00158 80 113 AC069454 424 459 102 6.59 0.998 8
V00158 426 466 AC069454 186 226 99 6.50 0.999 9
V00158 4 16 AC069454 301 313 93 6.31 1.000 10

Figure 2.16: The ten best local alignments between the two sequences shuffled. The parameters
for the Z-value distribution areµ = −107.0, σ = 31.7. The parameters for the P-score extreme
value distribution isΛ = 0.0377, K = 0.00115. The cutoff score was 150, one alignment score
was used, and the score was 176. Clearly this estimate of the distribution parameters makes no
sense.

28



2.5 Alignment selection Chapter 2. FOLDALIGN

HereS(i) is the score of a non-overlapping random alignment with a score better thanc, and
the sum is taken over these alignments.N is the number of alignments with scores better than
c. Forκ the maximum likelihood estimate is:

κ =
N expΛc

LILK

(2.12)

Altschul et al. [2001] does not specify a method for selecting the cutoff valuec. Version
2.0 of the locateHits script is supposed to calculate several values ofΛ and select the smallest
c for which Λ is smaller than theΛ for the nextc value. This choice was inspired by Figure
3 in Altschul et al. [2001] where the value ofΛ decreases until it has almost reached the best
estimate after which it starts to fluctuate. Unfortunately there is a bug in the script, and thec

value chosen is the smallestc for which Λ is larger than theΛ for the nextc value. The script
therefore usually picks ac value lower than it should, but this is not a big problem sincea
low c value usually yields good results. A problem with the “try several values ofc” method
is that it often picks ac value for which there is only one alignment with a better score. See
Figures (2.16) and (2.17).

In version 2.1 of the locateHits script the problem of one value distribution estimates is fixed
by always usingc = 0. This cutoff was selected since a score of0 is not negative and usually
requires some structure in the alignment. The distributionof the number of hits used to find the
parameters can be seen in Figure (2.18).

With a relatively slow method likeFOLDALIGN making a large number of random align-
ments is not always possible. One solution to this problem isto use the non-overlapping local
alignments from a non-random alignment. When two long sequences are aligned, then most of
the non-overlapping local alignments will usually be spurious alignments. From these align-
ments a very rough estimate of the parameters can be made. Figure (2.19) shows the distribu-
tions of P-values for real and shuffled data. The small peak inthe 0.3 to 0.4 range of the P-value
distribution for the shuffled sequences is due to the distributions estimated from one value.

The biggest problem with this approach is that any non-random alignment will bias the esti-
mate. In the 2.0 version of the locateHits script all alignments are used. But using a fixed cutoff
in version 2.1 makes it possible to use an iterative method toremove significant alignments
from the estimate. The iterative scheme is:

1. EstimateΛ andκ using the available scores.

2. Calculate the significance of each of the alignments. If analignment is found to have a
significant score, remove it.

3. If a significant alignment was found in step 2, go to step 1.

Using this method the estimate ofΛ andκ is no longer biased by any real alignments found
(those not found will still bias the estimate). Unfortunately this method introduces another
bias by removing the high scoring spurious alignments. The iterative method cannot be used
together with the method for selecting the cutoffc as the combination of the two methods
very often leads to the one value distribution estimates problem. An example of the effect of
removing the significant alignments from the estimate can beseen in Figure (2.20).
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Figure 2.17: The extreme value distribution parameters were estimated for each of 99 500
nt. against 500 nt. alignments. The x-axis shows the number of scores used to estimate the
parameters. The y-axis shows the number of alignments for which a given number of scores was
used. Version 2.0 of the locateHits script was used. For about two thirds of the real alignments
the method uses the scores of more then 50 non-overlapping alignments. For shuffled sequences
the method is less useful with more than half of the alignments having less than 50 useful scores.
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Figure 2.18: The “Number of scores” is the number of scores used to estimate the extreme
value distribution. The “Number of alignments” is the number of alignments for which the
extreme value distribution parameters were estimated using the number of scores. See also
Figure (2.17). Version 2.1 of the locateHits script was used. The number of scores used to
estimate the parameters is less critical.
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Figure 2.19: The p-value distribution for real and shuffled sequences (V. 2.0). Only p-values
less than one were included. For the real sequences there is aclear peak at the small p-value.
It is clear that the real sequences contain many more high scoring alignments than the shuffled
alignments. For the alignment of shuffled sequences there isa very small peak between0.3 and
0.4. This peak is most likely due to the high number of alignmentsfor which only one score
was used to estimate the distribution parameters, see Figure 2.17.
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Figure 2.20: An example of the effect of the correct alignments on the estimates of the p-
values. The curves show the p-value estimates as functions of score. The x’s are the alignment
scores and their estimated p-values. Including the correctalignment scores in the estimate
leads to significantly different p-values for three of the alignments. In this case the bias gives a
better separation between annotated and unannotated structures. In other cases it leads to false
negatives.
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While the method rapidly provides an estimate of the probability, the estimate can be biased
in a number of ways:

True alignments The alignments used are not random alignments. Assuming that correct
alignments score better than a random alignment, any correct alignment will bias the
estimate. This will raise the estimate for a given score and thereby raise the number of
false negatives, see Figure 2.20. This is a bigger problem for version 2.0 of the script than
for the 2.1 version.

Missing high scoring spurious alignmentsIn 2.1 the alignments found to be significant are
removed. This will also remove any high scoring spurious alignments.

Cutoff The methods used to find the cutoff (try several or fixedc = 0) are not likely to be the
correct/optimal methods.

Number of alignments In some cases the parameters are estimated from an extremelylow
number of alignments. In the worst case the distribution is estimated from the score of
one alignment. This is mainly a problem for the 2.0 version.

Edge effectsThe estimated P-value is biased by the finite length of the sequences. This effect
could be removed by using only alignments which are more thanλ nucleotides from the
end of the sequences. This is not done since the effect is expected to be small compared
to some of the other biases.

Short alignment effects For short alignments it is impossible for the alignment to contain bi-
furcations. Also the low number of gaps bias described in Altschul et al. [2001] takes
effect here.

Using parameters estimated from shuffled sequences removesthe True alignments and
Missing high scoring spurious alignmentsbias’ and is highly recommended.
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2.6 Data

2.6.1 Local alignment

The data used to tune and testFOLDALIGN version 2.0 should test the new features of this
version. At the same time it should also demonstrate thatFOLDALIGN can be used to find
biologically relevant results which cannot be found by other existing methods. The following
three main criteria for selecting structures/sequences were used:

Structure The new version can align bifurcated structures. The RNA structures used should
therefore be bifurcated structures.

Low similarity Sequence identity is the most commonly used tool to locate new ncRNA genes.
Using sequence pairs with pairwise identity below 40% show thatFOLDALIGN can align
sequences with low similarity.

Energetically indistinguishable Some RNA sequences have folding energies which are sig-
nificantly lower than that of the surrounding sequence. The algorithm should work in
cases where this is not true. To ensure this any sequence pairwhere at least one of the
sequences has a free folding energy significantly lower thanthe surrounding sequence,
were discarded.

Due the high memory complexity of version 2.0 the length of the RNA structures were limited
to a maximum of 150 nucleotides. To keep any one sequence fromdominating the dataset,
the number of pairs a sequence could be a part of, was limited to three pairs, except for tRNA
sequences which were only allowed to be in one pair. All multiple alignments were redundancy
reduced to a maximum of 90% similarity before use. See Havgaard et al. [2005b] page 61 for
details.

The local dataset contains 99 sequence pairs: 2 5S rRNA pairs, 5 Purine pairs, 21 THI pairs,
65 tRNA pairs, and 6 U1 pairs [Szymanski et al., 2002, Sprinzlet al., 1998, Zwieb, 1996, Grif-
fiths Jones et al., 2003]. There are two versions of the data set: The structure version contains
just the sequence where the structure is. The localization version contains 500 nucleotide long
sequences where the sequence of the structure is located at arandom position. The surround-
ing contexts were taken from GenBank [Benson et al., 2004]. The context sequence contains
other RNA genes in some cases. The localization version of the dataset therefore contains 295
complete RNA genes. Partial genes are not annotated.

In addition to the local dataset a local SRP dataset was also made. This dataset contains
eight sequence pairs. The sequences in the localization version are 1000 nucleotides long. The
SRP genes are∼ 300 nucleotides long. For details see Havgaard et al. [2005b] page 61.

2.6.2 Global alignment 2.0

In relation to the web server a score matrix optimized for global alignment was needed. For
a global dataset there is no need for a surrounding context. Sequences which do not have a
context, can therefore be used. Therefore a global alignment dataset was made. It contains
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sequences from the 5S rRNA, tRNA, and U1 databases [Szymanski et al., 2002, Sprinzl et al.,
1998, Zwieb, 1996]. The dataset is described in the supplementary material of the web server
[Havgaard et al., 2005a], see page 72 for details. This dataset also comes in flavors: One where
all pairs are less than 40% similar, and one where the maximumsimilarity is 70%.

An extra SRP dataset was also made for the global set. Detailsabout this data set are also
in the web server supplementary material [Havgaard et al., 2005a], see page 72.

2.6.3 Global alignment 2.1

The pruning constraint and better memory utilization allowthe newest version ofFOLDALIGN

to align more and longer sequences than previous. A new global dataset was therefore made.
Sequences were taken from the 5S rRNA, RNaseP, and tRNA databases [Szymanski et al., 2002,
Brown, 1999, Harris et al., 2001, Sprinzl and Vassilenko, 2005]. Sequence pairs of up to 90%
identity were included. The 5S rRNA and tRNA parts of the dataset were used to select the
score matrix parameters. The RNaseP and SRP parts of the dataset were used to evaluate the
performance. The dataset is further described in the supplementary material of Havgaard et al.
[2007], see page 86.

The dataset made by Dowell and Eddy [2006] is also used in the supplementary material of
Havgaard et al. [2007]. This dataset contains sequences from the seed alignments of 5S rRNA
and tRNA from RFAM [Griffiths Jones et al., 2005].
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Chapter 3

Results and conclusion

3.1 Results

The following six papers are the main results of this Ph.D. project:

Havgaard et al. [2005b] This paper introduces version 2 of theFOLDALIGN algorithm. The
new version uses a minimum free energy model in combination with substitution scores
to locally align the sequences. The other major change affecting the biological properties
of the alignment is the addition of the possibility for bifurcated loops. The main algorith-
mic improvements are the use of theλ parameter to limit the memory consumption from
O(LILKλδ) to O(λ3δ). Allowing for bifurcated structures makes the algorithm signifi-
cantly slower. To lower the run time the number of times the same bifurcated structure is
calculated, is limited to one.

Havgaard et al. [2005a] The main result in this paper is theFOLDALIGN web-server —http:
//foldalign.ku.dk. In the supplementary material results for global alignment are
presented.

Havgaard et al. [2007] This paper introduces the pruning constraint which efficiently limits
the time and memory requirements of the algorithm without sacrificing the comparative
information. The limit on the number of times a given bifurcated structure is calculated,
is used to reduce the memory usage. A “divide and conquer” algorithm is introduced
to try to keep the memory usage low during global alignment and backtrack. The two
major changes to the energy model are that external unpairednucleotides are now always
treated in the same way as unpaired nucleotides in multibranched loops, and that more
insert base pairs are allowed. Global alignment is treated in the supplementary material.
Dowell and Eddy [2006] shows that whileFOLDALIGN 2.0 makes good global alignments
the base pair sensitivity is below that of comparable methods. Here it is shown using the
same dataset that the new energy model fixes this problem. Theimprovement most likely
stems from the better handling of external unpaired nucleotides.

Torarinsson et al. [2007] This paper describesFOLDALIGNM. It is a reimplementation and
improvement of the PMcomp algorithm [Hofacker et al., 2004]. The algorithm makes one
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or more multiple alignments. To make the multiple alignmentit aligns base pairing prob-
ability matrices. These can either be made using the McCaskill algorithm [McCaskill,
1990] orFOLDALIGN. To make more than one multiple alignment from a collection of
sequences the sequences are first clustered by their pairwise FOLDALIGN score. Then a
multiple alignment is made for each cluster.

Torarinsson et al. [2006] In this paper sequences from 10 human chromosomes were aligned
to corresponding mouse sequences. The sequences that were aligned, are not part of
the alignments made using traditional sequence alignments, but the sequences adjacent
to them in one end were. In the other end there were gaps, repeat sequences, or a new
alignment. Of the 73940 sequence pairs aligned 1297 pair yielded a significant alignment.
The false positive rate was estimated to be∼ 50%. Approximately 3600 significant
alignments would have been found if all chromosomes had beenused. 36 top candidates
were selected for testing in the laboratory. These were tested in mouse tissue using PCR,
and 32 were found to be expressed. Twelve of these 32 candidates were selected for
further testing using Northern blots. Expression was confirmed for four of them. A
database containing the significant candidates is available athttp://genome.ku.
dk/resources/hm ncrna scan.

Gorodkin et al. [2006] In the paper sequence logos [Schneider and Stephens, 1990, Gorodkin
et al., 1997a] and Average Log Likelihood Ratios (ALLR) scores [Wang and Stormo,
2003] are used to show that the sequence motif of microRNAs from the left side of the
precursor stem is different from the motif of those from the right side of the precursor.

3.2 Conclusion

FOLDALIGN is a tool for aligning RNA sequences using their structure and sequence similari-
ties. It can make both local and global alignment. A tool for evaluating the significance of local
alignments is included. The papers Havgaard et al. [2007, 2005a,b] introduces several improve-
ments to the core algorithm. The improvements include a morebiologically relevant energy
model, including bifurcated structures. Time and memory requirements have been significantly
lowered by the use of dynamic pruning. The scanning scheme, which splits the sequences into
smaller chunks, limits the memory requirements even further. It is now possible to align 500
nucleotides long sequences on ordinary hardware in reasonable time both globally and locally.
This is significant because many ncRNAs have lengths below 500 nucleotides [Huttenhofer
et al., 2005].FOLDALIGN is a user friendly program which combines good performance with
low resource requirements (for a Sankoff algorithm).

According to Gardner et al. [2005] (Figure 3B)FOLDALIGN 2.0 is the best available algo-
rithm for pairwise global alignment of tRNA sequences. Dowell and Eddy [2006] also finds that
FOLDALIGN 2.0 is very good at making global alignments. But they also find that the method is
not very sensitive for detecting base pairs compared to other methods. Figure S2 in the supple-
mentary material of Havgaard et al. [2007] on page 87 shows that the improved energy model
in version 2.1 improves the base pair sensitivity enough to be comparable with other methods.
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There are other tools for making local alignments of RNAs. The most promising are Stemloc
[Holmes, 2005] and CMfinder [Yao et al., 2006]. Stemloc is a SCFG based method. In principle
it should perform well, but in reality it does not, (data not shown). While there has been no tests
of the local alignment methods, the global tests by Gardner et al. [2005] and Dowell and Eddy
[2006] also show this. CMfinder uses a Bayesian approach to make local multiple alignment. It
performs well, but requires multiple sequences.

The Torarinsson et al. [2006] study shows that there are still many new RNA structures to
be found, and thatFOLDALIGN is one of the tools which can be used to find them. A future step
will be to try to predict the functions of the newly found structures.

The ideas for future improvements to the algorithm include:

• The originalFOLDALIGN algorithm was used in a multiple alignment context. The current
algorithm is used to make global multiple alignment in Torarinsson et al. [2007]. It would
be desirable with a method which can make local multiple alignments.

• Allowing insert base pairs at the beginning of stems. There is no biological arguments for
not allowing inserts at the beginning of stems, and it would therefore be desirable to allow
these. In some structural families there are stems which arenot present in all structures.
It would be relevant to include these insert stems.

• It is reasonable to assume that a good long alignment can havemore gaps inserted than
a good short alignment. A length dependentδ parameter similar to the length dependent
M parameter used in Uzilov et al. [2006] could be used to improve the time and memory
requirements.

• Limiting the number of stems which can be part of a multibranch point by requiring that
such stems must have a score above a cutoff. If no similarity scores are used, a natural
cutoff would be zero. Using this cutoff the folding energy ofthe stem would be zero or
less which indicates a stable stem.

• In the current model an insert base pair is scored as two normal gaps. A better model
would probably have one set of gap penalties for single strand gaps and one set for base
pair inserts.

• The current file format is not as easy to read for a human as it should be. The future file
format will probably be similar to that of the web-server.

• Better estimates of the extreme value parameters. With the current model a single shuf-
fling of two 500 nucleotide long sequences yields∼ 240 scores for estimating the distribu-
tion. When aligning one pair of sequences, it is therefore possible to do enough shufflings
to get a reasonable estimate. But for large scale searches predetermining the distribution
is desirable. This could for example be done by using either apartition function [Klein
and Eddy, 2003] or a support vector machine [Washietl et al.,2005b].
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• Two types of heuristics are currently very popular. Anchoring using sequence similarity,
and structural constraint using pre-folding of the sequences. The performance of pre-
folding algorithms may be improved by also using pruning. When pruning is used, the
pre-folding can allow for more low scoring base pairs while the pruning makes sure that
poor structures do not slow down the algorithm too much.
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Appendix A

The recursion

This chapter describes the recursion of the 2.1 version ofFOLDALIGN. To make it easier to
read it is written in the form usually used to describe dynamic programming recursions rather
than the expansion form used in the article and the source code [Havgaard et al., 2007]. The
recursion as showed here is simplified in two ways. Affine gap penalties are not included, and
one base pair long stems are allowed. Otherwise the recursion is the same as the one used in
version 2.1. The notation used in the recursion can be seen inTable (A.1). Figure (2.5) on
page 13 shows an overview of the energy model.D(i,j,k,l) is the alignment score,σ(i,j,k,l) is the
alignment state,µ1(i,j,k,l), µ2(i,j,k,l), µ3(i,j,k,l), andµ4(i,j,k,l) are the lengths of the single stranded
regions external to the last base pair.

D(i,j,k,l) = max
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D(i+1,j−1,k+1,l−1) +Sbp(σ(i+1,j−1,k+1,l−1)) (a)
D(i+1,j−1,k,l) +SbpiI(σ(i+1,j−1,k,l)) (b)
D(i,j,k+1,l−1) +SbpiK(σ(i,j,k+1,l−1)) (c)
D(i+1,j,k+1,l) +Sal(σ(i+1,j,k+1,l)) (d)
D(i,j−1,k,l−1) +Sar(σ(i,j−1,k,l−1)) (e)
D(i+1,j,k,l) +SglI(σ(i+1,j,k,l)) (f)
D(i,j,k+1,l) +SglK(σ(i,j,k+1,l)) (g)
D(i,j−1,k,l) +SgrI(σ(i,j−1,k,l)) (h)
D(i,j,k,l−1) +SgrK(σ(i,j,k,l−1)) (i)
max {D′

(i,m,k,n) + D′

(m+1,j,n+1,l) + Smbl(σl, σr)} (j)
i<m<j
k<n<l

(A.1)

The calculation is initialized by aligning two nucleotidesin the hairpin state.

D(i,i,k,k) = Rss(ni, nk) + Lhp(1, 1) (A.2)

When the scoreD(i,j,k,l) is calculated, the score of single stranded nucleotides external to the last
base pair and the score of the last base pair may not be correct. It is correct by this calculation:

D′

(i,j,k,l) = D(i,j,k,l) + S ′(σ) (A.3)
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Cmblend The cost of closing a multibranched loop
Cmblhelix The cost of adding a stem to the multibranch loop (not including the first stem)
Cmblnuc The cost of adding a single stranded nucleotide to a multibranched loop
CnGC The non-GC stem end cost
D The score of an alignment. Not corrected for external singlestranded nucleotides
D′ The alignment score. Corrected for external single stranded nucleotides
I sequence One of the two sequences. Usually the longest
K sequence The other sequence. Usually the shortest
Lbl Bulge length cost
Lil Internal loop length cost. Includes the asymmetry cost.
Lhp Hairpin length cost
µ1 Length of the single stranded region upstream of the last base pair in the

I sequence
µ2 Length of the single stranded region downstream of the last base pair in the

I sequence
µ3 Length of the single stranded region upstream of the last base pair in the

K sequence
µ4 Length of the single stranded region downstream of the last base pair in the

K sequence
Rbp Base pair substitution score
Rss Single strand substitution score
s Stacking score
shp Hairpin end stacking score
sil Internal loop end stacking score
σ The state of an alignment

Table A.1: Notation
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A.1 Contexts

A.1.1 Base pair

Add a base pair to both structures. TheSbp score is only calculated if bothni andnj base pair,
andnk andnl base pair. Theµ(i,j,k,l) lengths are set to zero if this case has the highest score in
equation (A.1).

Sbp(σ(i+1,j−1,k+1,l−1)) =
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Rbp(ni, nj, nk, nl) if σ is a hairpin state.
+ shp(ni+1, nj−1, ni, nj, ) σ(i,j,k,l) becomes a stem
+ shp(nk+1, nl−1, nk, nl) state.

Rbp(ni, nj, nk, nl) if σ is a stem or an
+ s(ni+1, nj−1, ni, nj) insert base pair state,
+ s(nk+1, nl−1, nk, nl) σ(i,j,k,l) becomes a stem

state.
Rbp(ni, nj, nk, nl) if σ is a bulge left state

+ s(ni+µ1+1, nj−1, ni, nj) andµ1 ≤ 1 andµ3 ≤ 1,
+ s(nk+µ3+1, nl−1, nk, nl) σ(i,j,k,l) becomes a stem

state.
Rbp(ni, nj, nk, nl) if σ is a bulge left state

+ CnGC(ni, nj) + CnGC(nk, nl) andµ1 > 1 or µ3 > 1,
+ CnGC(ni+µ1+1, nj−1) σ(i,j,k,l) becomes a stem
+ CnGC(nk+µ3+1, nl−1) state.

Rbp(ni, nj, nk, nl) if σ is a bulge right state
+ s(ni+1, nj−µ2−1, ni, nj) andµ2 ≤ 1 andµ4 ≤ 1,
+ s(nk+1, nl−µ4−1, nk, nl) σ(i,j,k,l) becomes a stem

state.
Rbp(ni, nj, nk, nl) if σ is a bulge right state

+ CnGC(ni, nj) + CnGC(nk, nl) andµ2 > 1 or µ4 > 1,
+ CnGC(ni+1, nj−µ2−1) σ(i,j,k,l) becomes a stem
+ CnGC(nk+1, nl−µ4−1) state.

Rbp(ni, nj, nk, nl) if σ is an internal loop
+ sil(ni+1, nj−1, ni, nj) state,
+ sil(ni+µ1

, nj−µ2
, ni+µ1+1, nj−µ2−1) σ(i,j,k,l) becomes a stem

state.
Rbp(ni, nj, nk, nl) + Cmblend if σ is a left or right

+ CnGC(ni, nj) + CnGC(nk, nl) multibranch loop state,
σ(i,j,k,l) becomes a stem

state.
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A.1.2 Insert base pair

Insert a base pair in a stem from theI sequence. TheSbpiI score is only calculated whenni and
nj base pair, and the state is stem or insert base pair in theI sequence. Theµ(i,j,k,l) lengths are
all set to zero if this case has the highest score in equation (A.1).

SbpiI(σ(i+1,j−1,k,l)) = 2 × Rss(gap) + s(ni+1, nj−1, ni, nj) σ(i,j,k,l) becomes an insert base
pair in theI sequence state.

Insert a base pair in a stem from theK sequence. TheSbpiK score is only calculated when
nk andnl base pair, and the state is stem or insert base pair in theK sequence. Theµ(i,j,k,l)

lengths are all set to zero if this case has the highest score in equation (A.1).

SbpiK(σ(i,j,k+1,l−1)) = 2 × Rss(gap) + s(nk+1, nl−1, nk, nl) σ(i,j,k,l) becomes an insert base
pair in theK sequence state.

A.1.3 Align left

Align two single stranded nucleotides on the left side of an alignment.

Sal(σ(i+1,j,k+1,l)) =
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Rss(ni, nk) if σ is a hairpin state,
− Lhp(µ1) − Lhp(µ3) σ(i,j,k,l) becomes a
+ Lhp(µ1 + 1) + Lhp(µ3 + 1) hairpin state.

Rss(ni, nk) if σ is a stem state or an
+ 2 × Lbl(1) insert base pair state,

σ(i,j,k,l) becomes a
bulge left state.

Rss(ni, nk) if σ is a bulge left state,
− Lbl(µ1) − Lbl(µ3) σ(i,j,k,l) becomes a
+ Lbl(µ1 + 1) + Lbl(µ3 + 1) bulge left state.

Rss(ni, nk) if σ is a bulge right state,
− Lbl(µ2) − Lbl(µ4) σ(i,j,k,l) becomes an
+ Lil(1, µ2) + Lil(1, µ4) internal loop state.

Rss(ni, nk) if σ is an internal loop state,
− Lil(µ1, µ2) − Lil(µ3, µ4) σ(i,j,k,l) becomes an
+ Lil(µ1 + 1, µ2) internal loop state.
+ Lil(µ3 + 1, µ4)

Rss(ni, nk) + 2 × Cmblnuc if σ is a left or right
multibranch loop state,

σ(i,j,k,l) becomes a
left multibranch loop state.
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If this case wins in equation (A.1), the lengths are updated like this:

µ1(i,j,k,l) = µ1(i+1,j,k+1,l) + 1
µ2(i,j,k,l) = µ2(i+1,j,k+1,l)

µ3(i,j,k,l) = µ3(i+1,j,k+1,l) + 1
µ4(i,j,k,l) = µ4(i+1,j,k+1,l)

A.1.4 Align right

Align two single stranded nucleotides on the right side of analignment.

Sar(σ(i,j−1,k,l−1)) =
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Rss(nj , nl) if σ is a hairpin state,
− Lhp(µ1) − Lhp(µ3) σ(i,j,k,l) becomes a
+ Lhp(µ1 + 1) + Lhp(µ3 + 1) hairpin state.

Rss(nj , nl) if σ is a stem state
+ 2 × Lbl(1) or an insert base pair state,

σ(i,j,k,l) becomes a bulge right state.
Rss(nj , nl) if σ is a bulge left state,
− Lbl(µ1) − Lbl(µ3) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ1, 1) + Lil(µ3, 1)

Rss(nj , nl) if σ is a bulge right state,
− Lbl(µ2) − Lbl(µ4) σ(i,j,k,l) becomes a bulge right state.
+ Lbl(µ2 + 1) + Lbl(µ4 + 1)

Rss(nj , nl) if σ is an internal loop state,
− Lil(µ1, µ2) − Lil(µ3, µ4) σ(i,j,k,l) becomes an
+ Lil(µ1, µ2 + 1) internal loop state.
+ Lil(µ3, µ4 + 1)

Rss(nj , nl) + 2 × Cmblnuc if σ is a left multibranch loop state,
σ(i,j,k,l) becomes a left

multibranch loop state.
Rss(nj , nl) + 2 × Cmblnuc if σ is a right multibranch loop state,

σ(i,j,k,l) becomes a right
multibranch loop state.

If this case wins in equation (A.1), the lengths are updated like this:

µ1(i,j,k,l) = µ1(i,j−1,k,l−1)

µ2(i,j,k,l) = µ2(i,j−1,k,l−1) + 1
µ3(i,j,k,l) = µ3(i,j−1,k,l−1)

µ4(i,j,k,l) = µ4(i,j−1,k,l−1) + 1
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A.1.5 Gap left I

Extend an alignment with one single stranded nucleotide on the left side of theI sequence.

SglI(σ(i+1,j,k,l)) =
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Rss(gap) if σ is a hairpin state,
− Lhp(µ1) + Lhp(µ1 + 1) σ(i,j,k,l) becomes a hairpin state.

Rss(gap) if σ is a stem state
+ Lbl(1) + Lbl(0) or an insert base pair state,

σ(i,j,k,l) becomes a bulge left state.
Rss(gap) if σ is a bulge left state,
− Lbl(µ1) − Lbl(µ1 + 1) σ(i,j,k,l) becomes a bulge left state.

Rss(gap) if σ is a bulge right state,
− Lbl(µ2) − Lbl(µ4) σ(i,j,k,l) becomes an internal loop state.
+ Lil(1, µ2) + Lil(0, µ4)

Rss(gap) if σ is an internal loop state,
− Lil(µ1, µ2) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ1 + 1, µ2)

Rss(gap) + Cmblnuc if σ is a left or right multibranch
loop state,

σ(i,j,k,l) becomes a left
multibranch loop state.

If this case wins in equation (A.1), the lengths are updated like this:

µ1(i,j,k,l) = µ1(i+1,j,k,l) + 1
µ2(i,j,k,l) = µ2(i+1,j,k,l)

µ3(i,j,k,l) = µ3(i+1,j,k,l)

µ4(i,j,k,l) = µ4(i+1,j,k,l)
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A.1.6 Gap leftK

Extend an alignment with one single stranded nucleotide on the left side of theK sequence.

SglK(σ(i,j,k+1,l)) =
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Rss(gap) if σ is a hairpin state,
− Lhp(µ3) + Lhp(µ3 + 1) σ(i,j,k,l) becomes a hairpin state.

Rss(gap) if σ is a stem state
+ Lbl(0) + Lbl(1) or an insert base pair state,

σ(i,j,k,l) becomes a bulge left state.
Rss(gap) if σ is a bulge left state,
− Lbl(µ3) + Lbl(µ3 + 1) σ(i,j,k,l) becomes a bulge left state.

Rss(gap) if σ is a bulge right state,
− Lbl(µ2) − Lbl(µ4) σ(i,j,k,l) becomes an internal loop state.
+ Lil(0, µ2) + Lil(1, µ4)

Rss(gap) if σ is an internal loop state,
− Lil(µ3, µ4) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ3 + 1, µ4)

Rss(gap) + Cmblnuc if σ is a left or right multibranch
loop state,

σ(i,j,k,l) becomes a left multibranch
loop state.

If this case wins in equation (A.1), the lengths are updated like this:

µ1(i,j,k,l) = µ1(i,j,k+1,l)

µ2(i,j,k,l) = µ2(i,j,k+1,l)

µ3(i,j,k,l) = µ3(i,j,k+1,l) + 1
µ4(i,j,k,l) = µ4(i,j,k+1,l)
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A.1.7 Gap right I

Extend an alignment with one single stranded nucleotide on the right side of theI sequence.

SgrI(σ(i,j−1,k,l)) =
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Rss(gap) if σ is a hairpin state,
− Lhp(µ1) + Lhp(µ1 + 1) σ(i,j,k,l) becomes a hairpin state.

Rss(gap) if σ is a stem state
+ Lbl(1) + Lbl(0) or an insert base pair state,

σ(i,j,k,l) becomes a bulge right state.
Rss(gap) if σ is a bulge left state,
− Lbl(µ1) − Lbl(µ3) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ1, 1) + Lil(µ3, 0)

Rss(gap) if σ is a bulge right state,
− Lbl(µ2) + Lbl(µ2 + 1) σ(i,j,k,l) becomes a bulge right state.

Rss(gap) if σ is an internal loop state,
− Lil(µ1, µ2) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ1, µ2 + 1)

Rss(gap) + Cmblnuc if σ is a left multibranch loop state,
σ(i,j,k,l) becomes a left multibranch

loop state.
Rss(gap) + Cmblnuc if σ is a right multibranch loop state,

σ(i,j,k,l) becomes a right multibranch
loop state.

If this case wins in equation (A.1), the lengths are updated like this:

µ1(i,j,k,l) = µ1(i,j−1,k,l)

µ2(i,j,k,l) = µ2(i,j−1,k,l) + 1
µ3(i,j,k,l) = µ3(i,j−1,k,l)

µ4(i,j,k,l) = µ4(i,j−1,k,l)
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A.1.8 Gap right K

Extend an alignment with one single stranded nucleotide on the right side of theK sequence.

SgrK(σ(i,j,k,l−1)) =
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Rss(gap) if σ is a hairpin state,
− Lhp(µ3) + Lhp(µ3 + 1) σ(i,j,k,l) becomes a hairpin state.

Rss(gap) if σ is a stem state
+ Lbl(0) + Lbl(1) or an insert base pair state,

σ(i,j,k,l) becomes a bulge right state.
Rss(gap) − Lbl(µ1, µ3) if σ is a bulge left state,
− Lbl(µ1) − Lbl(µ3) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ1, 0) + Lil(µ3, 1)

Rss(gap) if σ is a bulge right state,
− Lbl(µ4) + Lbl(µ4 + 1) σ(i,j,k,l) becomes a bulge right state.

Rss(gap) if σ is an internal loop state,
− Lil(µ3, µ4) σ(i,j,k,l) becomes an internal loop state.
+ Lil(µ3, µ4 + 1)

Rss(gap) + Cmblnuc if σ is a left multibranch loop state,
σ(i,j,k,l) becomes a left multibranch

loop state.
Rss(gap) + Cmblnuc if σ is a right multibranch loop state,

σ(i,j,k,l) becomes a right multibranch
loop state.

If this case wins in equation (A.1), the lengths are updated like this:

µ1(i,j,k,l) = µ1(i,j,k,l−1)

µ2(i,j,k,l) = µ2(i,j,k,l−1)

µ3(i,j,k,l) = µ3(i,j,k,l−1)

µ4(i,j,k,l) = µ4(i,j,k,l−1) + 1
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A.1.9 Multibranched loops

Join two alignments to get a multibranched structure. In equation A.1 case (j) is only calculated
whenσl is a stem, base pair insert, bulge right, or a right multibranch loop state, andσr is a
stem or a base pair insert state, see Chapter 2.3 and Figure 2.11. Theµi,j,k,l lengths are set to
zero if this case has the highest alignment score. Remember that theDij,kl is not used directly
in this calculation. It is always the external loop versionD′

ij,kl which is used, see the External
nucleotides section below.

Smbl(σl, σr) = Cmblhelix σ(i,j,k,l) always becomes a
right multibranch loop state.

A.1.10 External nucleotides

Single stranded nucleotides external to all base pairs mustbe scored like single stranded nu-
cleotides in multibranched loops. The score must thereforebe recalculated when the alignment
state is one of the hairpin, bulge, or internal loop states. Furthermore the cost for non-GC base
pairs must also be added in cases where the alignment state isone of the base pair states. This
calculation does not affect the state or theµ lengths of the alignment.

S ′(σ(i,j,k,l)) =
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(µ1 + µ3) × Cmblnuc − Lhp(µ1) − Lhp(µ3) if σ is a hairpin state.

CnGC(ni, nj) + CnGC(nk, nl) if σ is a stem or
a base pair insert state.

CnGC(ni+µ1
, nj) + CnGC(nk+µ3

, nl) if σ is a bulge left state.
+ (µ1 + µ3) × Cmblnuc − Lbl(µ1) − Lbl(µ3)

CnGC(ni, nj−µ2
) + CnGC(nk, nl−µ4

) if σ is a bulge right state.
+ (µ2 + µ4) × Cmblnuc − Lbl(µ2) − Lbl(µ4)

CnGC(ni+µ1
, nj−µ2

) + CnGC(nk+µ3
, nl−µ4

) if σ is an internal loop state.
+ (µ1 + µ2 + µ3 + µ4) × Cmblnuc

− Lil(µ1, µ2) − Lil(µ3, µ4)

0 if σ is a right or left
multibranch state
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Figure S1: The average performance as function of the gap opening cost. In addition to the
performance for low similarity 5S rRNA, tRNA, and U1 data the performance for the stem-loop
SRP data is also shown.
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Figure S2: Performance as a function of sequence identity. The optimal gap penalties for
5S rRNA and U1 were: Gap opening��� � and gap elongation����� . For tRNA they were: Gap
opening� �
� and gap elongation� � � . For the stem-loop SRPs the gap opening cost was� � � ,
and the gap elongation cost was� �
� . The fluctuations in performance for 5S rRNA, SRP, and
U1 are likely to be due to the limited amount of data at these identities. This is also true for the
low and high similarity parts of the tRNA curve.
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Global alignment

Initial tests of foldalign’s global alignment per-

formance while using pruning showed that the sim-

ple pruning used during local alignment cuts away

to much during global alignment. The problem

is that the global alignment must insert a mini-

mum number of gaps equal to the length differ-

ence between the two sequences. When the length

difference is large, the cost of inserting the mini-

mum number of gaps is enough to make the algo-

rithm prune away all alignments. To circumvent

this problem a global alignment pruning scheme is

used:

Dij,kl < Θglobal

Θglobal = Θlocal − GE×min{abs(lI − lK),

abs(LI − LK)}

(1)

Dij,kl is the subalignment score. Θglobal is the prun-

ing score used during global alignment. Θlocal is the

local alignment pruning score. GE is the gap elon-

gation cost. lI and lK are the lengths of the sub-

sequences being aligned, and LI and LK are the

lengths of the sequences being aligned. Using this

pruning scheme most global alignments between re-

lated sequences produce an alignment. Unfortu-

nately, this also lowers the efficiency of the pruning

significantly. Figure S1 shows the time needed to

do an alignment without pruning divided by the

time needed to do the same alignment using prun-

ing as a function of the length difference between

the two sequences. When the length difference is

small, it is significantly faster to use pruning. When

the length difference is large, there is only a small

speed advantage. At a length difference of 25 the

use of pruning is only ∼20% faster than not using

pruning.

The new implementation of the foldalign al-

gorithm has a lower time and memory complexity

than the old implementation during global align-

ment. Since a global alignment must include both

ends of both sequences, the δ parameter can be

used to also limit the start coordinate of a subalign-

ment from the second sequence. In this way the

δ parameter becomes similar to the M parameter

used in [1]. The new time complexity is O(L3

minδ3
)

and the memory complexity is O(L2

minδ2
), where

Lmin = min LI , LK . The old implementation has

a time complexity of O(L3

ILKδ2
) and a memory

complexity of O(L2

ILKδ) since it used the local

alignment algorithm with λ equal to the sequence

lengths.

To train and test foldalign’s global alignment

performance a new dataset has been made. The

sequence pairs of the dataset were selected from

the 5S rRNA, RNaseP, SRP, and tRNA databases

[2, 3, 4, 5]. Any sequences containing nucleotides

other than A, C, G or U were removed from the

databases. A few sequences which obviously did not

fit into the databases, were removed. Then the se-

quences in each database were redundancy reduced

to 90% similarity using the Hobohm 2 algorithm [6].

Sequence pairs were selected from the remaining se-

quences by sorting the pairs by their identity and

selecting the pairs with the lowest identity. Each se-

quence can only be part of one sequence pair. The

structures were cleaned by annotating any non A -

U, G - C, or G - U base pair as single stranded.

Nucleotides annotated to base pair with gaps were

also reannotated to be single stranded.

The 5S rRNA database is split into three sec-

tions. Each section was treated separately before

the final datasets were joined. This part of the data

contains 215 sequence pairs. From the RNaseP

database only the sequences in the bacterial type

A alignment [7] were used as this alignment seems

to have the most sequences and the best annota-

tion. This dataset has 101 sequence pairs. The SRP

dataset contains 121 sequence pairs. The pseudo

knot base pairs were removed from the structures.
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The tRNA dataset contains 1810 sequence pairs.

The 5S rRNA and tRNA datasets were used

to select the parameters of the score matrix (gap

penalties, substitution vs. energy weight, and

Ribosum clustering percentage). The SRP and

RNaseP datasets were used as validation datasets.

As performance measure the Matthews correlation

coefficient (MCC) of the base pair prediction was

used [8]. Correctly predicted base pairs are counted

as true positives, predicted base pairs which are not

found in the annotation, are counted as false pos-

itives. Annotated base pairs not found in the pre-

diction are counted as a false negative. Positions

not predicted to base pair which are not annotated

to base pair, are counted as true negatives. The

average MMCs are: 5S rRNA 0.81, tRNA 0.86,

RNaseP 0.50, and SRP 0.49. The results for the

RNaseP and SRP datasets indicate that the good

performances reported for 5S rRNA and tRNA may

be due to over fitting. If this were the case, then it

should also be possible to over fit on the RNaseP

and SRP datasets. These datasets were therefore

used to find alternative sets of parameters. The

best MCC found for both datasets were 0.56. The

poor performance therefore does not seem to be

due to over fitting. Some of the performance differ-

ence is likely to be due to structural inserts in the

structures. Some of the sequence pairs in both the

RNaseP and the SRP datasets contain stem inserts

which foldalign currently can not handle. The

5S rRNA and tRNA datasets contain fewer large

stem inserts.

Recently a paper was published [9] which

showed that while foldalign makes good align-

ments its base pair prediction sensitivity is lower

than that of other methods for folding and aligning

RNA sequences. Figure S2 shows the performance

of the old and new versions of foldalign using the

data set from [9]. Comparing Figure S2 and Fig-

ure 7B in [9] shows that the new version is as good

as that of other methods. The “2.1. Clean” curve

shows the base pair sensitivity when any non A - U,

G - C, or G - U base pairs have been removed from

the structure annotation. Whether these extra base

pairs are correct base pairs or artifacts from the use

of predicted alignments in RFAM [10] remains to be

clarified.

In [9] the time and memory needed to align

two sequence pairs for several different methods are

compared. The two examples are: tRNA (RD0260

vs. RE6781, 77 nt. vs. 76 nt.), and 5S rRNA

(M16172 vs. X02128, 117 nt. vs. 116 nt.). Using

foldalign version 2.0 it takes 19 and 102 seconds

to align the two pairs. The alignments need 82

mb and 282 mb of memory. Using the new ver-

sion of the algorithm aligning the examples takes

2 and 6 seconds. The maximum amounts of mem-

ory needed are 8 and 11 mb. The machine used to

make these tests runs Linux (kernel 2.6) on two 2.4

GHz 32 bits Intel Xeon CPUs. The machine has 4

gigabytes of memory.
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Genome Research 16: 885–889 (2006)

Thousands of corresponding human and mouse genomic regions unalignable in primary
sequence contain common RNA structure
Elfar Torarinsson, Milena Sawera, Jakob H. Havgaard, Merete Fredholm, and Jan Gorodkin

The authors misunderstood the notation used by MultiZ alignments, which unlike BLAST and many others,
does not represent all positions relative to the leading strand. Therefore, they did not scan pairs adjacent to
+/+ and +/� alignments; instead, the positions of alignments are relative to the 5� end of the strand in
question. This misunderstanding led them to missing unalignable regions in the vicinity of +/� alignments.
The authors note that all the analyses are still correct, and that they’re only analyzing the 36,970 pairs
adjacent to +/+ alignments, and not the additional 18,956 pairs that are adjacent to a +/� alignment. Also,
there are not ∼100,000 pairs but ∼185,000 pairs altogether between the two genomes. The authors are now
in the process of scanning these regions along with the rest of the chromosomes.

Erratum

16:1439 ©2006 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/06; www.genome.org Genome Research 1439
www.genome.org104
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1 Sequence profiles of 5’ and 3’ arms

Figure S1: The sequence profiles various organisms. Left column represent 5’ arm motifs. Right column
represent 3’ arm motifs. The scales are arbitray.
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