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Abstract 

 
The dairy industry is in need of rationally mastering the development of 

low-calorie products in order to meet present and future demand from 

the market. So far the industry has employed two approaches to achieve 
the desired reduction of fat and carbohydrate: 1) using fat replacers, i.e. 

ingredients with a lower caloric density, but mimicking the sensory and 

functional properties of those they substitute, and 2) technological modi-
fications, i.e. adapting manufacturing processes such that the products 

acquire the desired properties, but without adding special ingredients. 

The objective of the present project has been to elucidate relationships 
between the microstructure of a set of low-fat, semi-solid dairy products 

and their sensory properties. The product range comprised stirred yog-

hurt, cream cheese and acidified milk drinks, covering a continuum from 
highly structured materials without defined fracture properties to almost 

Newtonian fluids. The products were submitted to descriptive sensory 

analysis, generating sensory maps suitable for multivariate data 
analysis, as well as to several instrumental analyses, e.g. confocal laser 

scanning microscopy (with appropriate extraction of image features), 

rheological (conventional as well as novel techniques) and sprectroscopic 
methods (fluorescence, NIR and NMR). Using descriptive analysis we 

have generated sensory vocabularies pertaining to each product group 

studied, and comprising both descriptors related to flavour and aroma as 
well as texture-related descriptor (oral, tactile and visual). In particular 

we have emphasized the compound descriptor creaminess, due to its 

special relevance to low-fat products, which are expected by consumers 
to match corresponding full-fat products in terms of creaminess.  
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Dansk sammendrag (abstract in Danish) 

 
Mejeriindustrien har et behov for på rationel vis at beherske udviklingen 

af produkter med at lavt energiindhold for at imødegå både nutidige og 

fremtidige markedskrav. Industrien har hidtil benyttet sig af to for-
skellige måder til at opnå den ønskede reduktion af fedt: 1) brug af 

fedterstattere, dvs. ingredienser med lavere energitæthed, men med 

sensoriske og funktionelle egenskaber lig dem de erstatter, og 2) mo-
difikation af fremstillingsteknologien, dvs. en ændring af forarbejdningen 

således at produkterne opnår de ønskede egenskaber, men uden at 

tilsætte specielle ingredienser. Målet med nærværende projekt har været 
at undersøge sammenhænge mellem mikrostrukturen i en række halv-

faste lavfedt-mejeriprodukter og disses sensoriske egenskaber. De un-

dersøgte produkter var røreyoghurt, flødeost og syrnede mælkedrikke, 
som til sammen dækker spændet fra højt strukturerede materialer uden 

egentlige brudegenskaber til næsten-Newtonske væsker. Produkterne 

blev undersøgt ved deskriptiv sensorisk analyse, hvilket frembragte sen-
soriske "kort" egnet til multivariat dataanalyse, såvel som ved en række 

instrumentelle metoder, bl.a. confokal mikroskopi (med tilhørende fea-

ture extraction), diverse reologiske  (både konventionelle og nyere tek-
nikker) og spektroskopiske metoder (fluorescens, NIR og NMR). Ved 

hjælp af den deskriptive analyse har vi frembragt sensoriske vokabularer 

til hver produktgruppe, omfattende både lugt- og smagsrelaterede des-
kriptorer og deskriptorer relateret til tekstur (oral, taktil og visuel). Vi 

har lagt særlig vægt på at at afdække betydningen af den sammensatte 

deskriptor cremethed, da det betragtes som særligt vigtigt for lavfedt-
produkter at opnå en cremethed der matcher den som fuldfedtprodukter 

har.  
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Resumen en castellano (abstract in Spanish) 

 
La industría lácteo necesita dominar el desarrollo racional de productos 

con baja densidad calórica para poder responder a los requisitos pre-

sentes y futuros del mercado. Hasta ahora, la industría se ha apro-
vechado de dos maneras distintas de lograr la reducción deseada de 

grasa: 1) la utilización de sustitutos, o sea ingredientes de menor den-

sidad calórica, pero de una empeno sensorial y funcional a los compo-
nentes que sustituye, y 2) la modificación tecnológica, o sea adaptar el 

procesamiento de manera que los productos obtengan las caracteristicas 

deseadas, pero sin agregar ingredientes especiales.  El objeto del pre-
sente proyecto ha sido estudiar las relaciones entre la microestructura 

de un conjunto de productos lácteos ligeros y semi-sólidos, y sus pro-

priedades sensoriales. Los productos estudiados fueron yogur batido, 
queso crema y bebidas lácteas acidificadas, formando un continuo desde 

materiales altamente estructurados, mas sin propiedades de fractura de-

finidas, hasta lo quasi-Newtoniano. Los productos fueron sometidos a 
análisis descriptivo (sensorial), lo cual generó mapas sensoriales aptos 

para analisis multivariado, asi como también a una serie de métodos in-

strumentales, incluyendo la microscopía confocal (CLSM, con la extrac-
ción correspondiente de features), varios métodos reológicos (tanto los 

más convencionales como algunos novedosos) y espectroscópicos (flou-

rescencia, NIR y NMR). Mediante el análisis descriptivo se logró generar 
vocabularios sensoriales pertinenetes a cada categoría de productos, in-

cluyendo tanto términos de sabor y aroma como términos relacionados a 

la textura (oral, de tacto y visual). Hemos puesto especial énfasis en la 
semántica del término cremosidad, ya que es considerado esencial para 

productos ligeros lograr una cremosidad comparable con la de productos 

convencionales.  
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1 Introduction 

 
While low-fat dairy products may appear to be a relatively contemporary 

phenomenon, the dairy industry (especially in Denmark) actually has a 

long history of manufacturing these; for example, all cheese produced in 
Denmark pre-1920 was low-fat as milk fat was reserved for butter pro-

duction. But low-fat products have only taken off commercially in the 

past two decades, in response to an increasingly health-conscious public. 
Innovation in this field has been on the rise for the same period of time. 

A reflection of this is the number of hits for the term "low-fat" in the bib-

liometric database Web of Science, as well as the patent database 
Derwent: 
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Figure 1 Hits per year on the search term low-fat in the bibliometric database Web of Science (●), and the patent 
database Derwent Innovations Index (∆). 

 

Even if we take into account the general increase in publication activity 

in food science in the period considered, it is evident that something 

very significant happened around 1990; it is also clear that there is no 
sign of abatement. For patents the development has been more steady. 

 

As many as 75 to 90% of all new food products launched fail in the mar-
ket (Buisson, 1995). Sensorially, many of the first reduced-fat products 

to enter the market have left much to be desired, and low-fat products 

in general have suffered from a bad image among consumers. They are 
commonly perceived as bland, and to have ‘something missing’. In one 

study, low-fat yoghurt and fluid milk were evaluated more favourably 

than low-fat cheese and low-fat spreads (Knox et al., 2001). Thus, tech-
nological challenges abound for the dairy industry, especially in mimick-

ing the flavour and texture profiles of full-fat products. The problems en-

countered by product development staff have been studied using qua-
litative methods (Parr et al., 2001). Problems with mouthfeel/texture, 

flavour, changes to production process, shelf life as well as confusion 

with regards to which ingredients to use were mentioned as barriers to 
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the development of low-fat spreads and yoghurts. For cheese, the fla-

vour and the change of production process was perceived as less of a 
problem; low sales volume, and consequently inefficient production, in 

addition to moutfeel/texture as well as fat functionality were deemed 

more problematic. Attitudes and technological competence of product 
development staff towards low-fat products was also mentioned as a 

barrier.  

 
The present project has been exploratory in nature, which is why the 

present dissertation appears to have a more meandering course than 

most; as such, it has had a less clear-cut objective than the majority of 
PhD projects. For the sake of convenience, we have often resorted to 

marketing our efforts as ‘The Creaminess Project’, but our purpose have 

in fact been somewhat wider, namely to gather knowledge of low-fat 
dairy products, from the microscopic level through human perception to 

consumer attitutes to product quality. Still, perceived creaminess has 

been found to be positively correlated to consumer liking for a wide 
range of dairy products, e.g. in fresh and reconstituted milks and creams 

(Richardson-Harman et al., 2000), in vanilla puddings (Elmore et al., 

1999), in yoghurts (Folkenberg and Martens, 2003; Ward et al., 1999) 
and ice cream (Lähteenmäki and Tuorila, 1994); this warrants closer 

scrutiny of the concept. Largely following the same approach, the project 

can be seen as a successor to the work of (2001), which dealt with 
fattiness perception in fluid milk. Both projects have been centered 

around sensory descriptive analyses of dairy products, complemented 

with an assortment of instrumental methods: rheological, spectroscopic, 
imaging, and others. Not accounted for here is a series of consumer 

perception studies on the same products1.  

 
Texture researchers seem to be largely divided in two groups. One group 

studies texture from a general perspective, while the other group tends 

to focus on the sensory perception of one particular food category. The 
line of thought of the first group is clearly deductive, whereas the other 

is more abductive.  

 

                                                 
1 The results of these studies will appear in a series of papers by M.B. Frøst. 
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To paraphrase Alina Szczesniak2, the present work is best described as 

‘commodity work’, i.e. it clearly belongs to the latter group. We do not 
take that as a slight but rather tend take the view that serious texture 

research can be performed on actual foods, and studying just one food 

category at a time.  
 

The present work has been centered around a series of trials on low-fat 

dairy products: yoghurt, cream cheese and acidified milk drinks. For the 
sake of brevity, these trials will henceforward be referred to as Trial Y, 

Trial CC and Trial AMD. The relationship between these trials is 

illustrated below: 

 

Table 1 Relationships between sensory trials and papers. 

Topic Trial Y Trial CC Trial AMD 

Sensory-

instrumental 

relationships 

 

Paper II 

 

Paper IV 

 

Paper VIII 

Spectroscopy  Paper IV Paper VIII 

Confocal 

microscopy 

Paper VII Paper VII Not covered 

Surface imaging Paper VI Paper VI Not covered 

Individual 

differences 

Paper I Not covered Not covered 

 

Paper III and Paper V do not relate directly to the sensory trials. 
These papers address techological, non-sensory issues: the effect of mi-

croparticulated whey protein particles on the properties of acid milk gels 

and the factors influencing the formation of graininess in stirred yoghurt. 

                                                 
2 »Following the breakthrough in the 1960s and 1970s in surfacing the multi-parameter nature 
of texture and in defining the general principles of texture acceptability, the field has 
essentially reverted to commodity work« 
(Szczesniak, 2002). 
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2 Range of products studied 

 
Textural properties of low-fat cheese have been reviewed in the litera-

ture (Banks, 2004; Drake and Swanson, 1995). In the present study we 

have been concerned with an intermediate range of dairy textures up-
wards limited by, and not including, natural cheese (a solid with defined 

fracture properties), and downwards by, and not including, liquid milk (a 

Newtonian fluid), the latter being the subject of the of Frøst (2002). Ba-
sically, dairy products (or at least a majority of them) can loosely be 

characterized structurally as follows: 
 

Table 2 Some properties of main categories of dairy products 

Fluid milks Semi-solid 

products 

Cheese 

O/W emulsions Acid milk gels 

(mostly) 

Aged (rennet) gels 

Newtonian Non-Newtonian 

fluids 

Solids which may or 

may not fracture 

 

 

2.1 Stirred yoghurt (Trial Y) 

 

Stirred yoghurt is commonly made from a heat-treated and homo-
genized milk base, inoculated with a starter culture, and, after the fer-

mentation, submitted to mechanical treatment. The sensory properties 

of the stirred yoghurt depends on a variety of techonological factors: fat 
and protein level (the latter can be increased by concentration of addi-

tion of milk protein, either bulk ingredients such as skimmed milk pow-

der, whey protein concentrate, or more specialized ingredients such as 
microparticulated whey protein), type of starter culture, heat-treatment 

temperature and time, homogenization pressure, fermentation tempera-

ture, among others (Sodini et al., 2002). Structurally, stirred yoghurt is 
a concentrated suspension of acid milk gel particles in serum, forming a 
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weak gel with or without a defined yield stress. Compared to other dairy 

products, the scientific literature on yoghurt and other fermented milk 
products is quite extensive. The reference product, to which all low-fat 

products are compared, is the full-fat variety (with 3.5% fat in Den-

mark). Fat replacement is often achieved by increasing the protein level. 
Several milk protein ingredients have been employed in this study.  

 

2.2 Cream cheese (Trial CC) 

 

The starting material for cream cheese manufacture is cream or a mix-

ture of milk and cream. This mix is pasteurized and homogenized, and 
inoculated with a starter culture (Kosikowski and Mistry, 1997; Pha-

dungath, 2005). Cream cheese is made by concentration of an acid 

cheese curd, traditionally by straining in nylon bags, or more recently by 
centrifugal separation at an elevated temperature. It is thus a spread-

able (i.e. with a considerable yield stress), concentrated suspension of 

acid milk gel particles, stabilized by hydrocolloids. It is mostly used as a 
sandwich spread, in salads/dips and in cheesecake. There is little in the 

way of scientific publications for the technology this category of dairy 

products, with most techological know-how being kept in-house by ma-
nufacturers. In the United States, cream cheese must contain at least 

33% fat; a low-fat variety, Neufchatel, contains 20-33% fat. In this stu-

dy (where the fat levels have been much lower: 0-9%) we have varied 
the chemical composition (fat, salt, pH) rather than adding fat replacers.  

 

2.3 Acidified milk drinks (Trial AMD)  

 

Acidified milk drinks is a diverse group of fluid drinks comprising drinking 

yoghurts (made by dilution of a fermented yoghurt base) and milk-juice 
drinks (fruit juices with added milk powder). A sine qua non for these 

products is stabilization, mostly with pectins. Structurally they are dilute, 

quasi-Newtonian, suspensions of milk solids in an acidified (either by fer-
mentation or chemically) milk medium, stabilized and thickened by hy-

drocolloids, the type and addition levels of which are varied in this study. 

These products are inherently low-fat. Being a recent addition to the pa-
lette of dairy products, there is little published so far. Because of the low 
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viscosity, turbulence is likely predominant during oral processing of the-

se products.  
 
Table 3. Colloidal properties of dairy product categories included in this work. 

Stirred yoghurt Cream  

cheese 

Acidified milk 

drinks 

Meta-stable 

suspension of acid 

milk gel particles 

 

pH 4.3 

Concentrated, 

stabilized 

suspension of acid 

milk gel particles 

pH 4.4 to 5.0 

Dilute, stabilized 

suspension of acid 

milk gel particles 

 

pH 4.0 
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3 Milk gel systems: microstructure and sensory properties 

 

3.1 Microstructure and rheological properties of milk gels 

 

Over the past 15 years, milk gels (acid milk gels as well as thermally set 
whey protein gels) have been studied extensively as models of  solid and 

semi-solid dairy products. Almost all milk gel studies make use of rhe-

ological methods, a few involve microscopy (successively migrating from 
electron microscopy to confocal laser scanning microscopy); recently a 

handful of studies involving sensory properties of milk gels have ap-

peared (Gwartney et al., 2004; Pereira et al., 2003). For the sake of re-
producibility, most of the acid milk gel studies are on reconstituted low-

heat skimmed milk powder, with glucono-δ-lactone (GDL) as an acidu-

lant, even though the kinetics of acidification is different from that of 
starter cultures (Lucey et al., 1998). Some studies have dealt with the 

effect of fat on the microstructure of acid milk gels. 

 

3.1.1 Filled milk gels 

 

A subset of milk gels studies have been concerned with filled gels (van 
Vliet, 1988), and have introduced the concept of active vs. inactive fil-

lers, a subject of particular pertinence to low-fat dairy technology. Active 

fillers, e.g. recombined milk fat globules (i.e., containing casein at the 
o/w interface) interact with the gel matrix; increasing the volume frac-

tion φ of the filler phase will generally strenghten the gel, i.e. increase 

the elastic modulus G'. Inactive fillers, by contrast, e.g. washed natural 
milk fat globules, do not interact with the gel matrix, and consequently 

weaken the resultant gel: the elastic modulus decrease with increasing 

volume of filler phase. These concepts originate in the polymer field; fil-
led milk gels have been studied since the late 1980s, again mostly by 

rheological methods, and predominantly on thermally set whey protein 

gels, which are more well-defined than casein gels, and furthermore can 
be altered structurally in several ways. The elastic modulus G′ has fur-

thermore been found to depend on the mean particle size d32 of the dis-

persed phase, with ln G′ being a linear function of  d32 (Dickinson and 
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Chen, 1999). The higher the elastic modulus of the gel matrix (i.e., the 

continous phase), the less the effect of the active filler and vice versa. 
Computer simulations, which fortunately corroborate experimental fin-

dings, have shown that small active filler particles have a bigger effect 

on gel strength than larger ones (Wijmans and Dickinson, 1998). By 
contrast, among inactive filler particles, only very large ones influence 

the gelation process. The mechanical properties of the filler particles 

have also been found to be of importance. For rigid glass particles 
suspended in aqueous gellan solutions G' exhibited a minimum at φ = 

0.20, hinting at interaction between the particles, whereas for suspen-

sions of deformable gellan bead G' was found to decrease linearly with 
φ, which might be due to compliance of the deformable particles under 

stress (Jampen et al., 2001). Employing fractionated milk fat (from very 

low-melt to very high-melt) is thus an alternative way of modulating the 
rheological properties of thermally set filled whey protein gels (Mor et 

al., 1999; Mor-Rosenberg et al., 2004; Rosenberg, 2000). 

 
These results are fundamental in e.g. yoghurt manufacture, where the 

milk base is commonly submitted to a pre-heat treatment (in which 

whey proteins denature and combine with casein micelles) and subse-
quently homogenized, resulting in an integration of the milk fat and milk 

protein phases. The end result is a firmer yoghurt, more resistant to sy-

neresis.  
 

3.2 Sensory studies on milk gel model systems 

 
Only a handful of milk gel studies so far have taken to evaluating milk 

gel models sensorially. One problem with GDL-gels is the long acidifi-

cation time at a relatively high temperature; gels from non-heat treated, 
reconstituted low-heat skimmed milk powder are probably not fit for 

human consumption. Indeed, the reconstituted milk is commonly preser-

ved with potent preservatives such as sodium azide prior to acidification. 
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3.2.1 Sensory properties of acid milk gels 

 
In one study on GDL-acidified acid milk gels with (10-20 % total solids 

(TS), heat treated at 90ºC, 30 min./non-heat treated) eleven non-oral 

descriptors including firmness, smoothness and cohesiveness were eva-
luated (Pereira et al., 2003). Instrumental measurements comprised a 

back extrusion test, syneresis evaluation and confocal laser scanning mi-

croscopy (CLSM). Heat treatment turned out to the main factor in pro-
viding the textural difference between the samples. Smoothness could 

not be discerned among samples from non-heat treated milk. Confocal 

micrographs could be related qualitatively to sensory and functional pro-
perties; the density of the gel network increased considerably with TS, 

with a more pronounced interconnectivity between protein clusters in 

gels made from heat treated milk. In another study, milk gels (10-20% 
TS, 0-4% fat) were produced by fermentation of aheat treated, recon-

stituted milk using a yoghurt starter culture (Pereira et al., 2006); one 

could argue that this is not properly a model milk gel, since a starter cul-
ture was used. Oral descriptors were included in the descriptive analysis 

(but no flavour or aroma descriptors), and five parameters were quanti-

fied from the confocal micrographs (mean cluster size, mean cluster 
numbers, mean end point numbers, mean pore size and mean pore 

numbers). To the rheological tests were added dynamic oscillation (fre-

quency sweep). Increasing the fat content was found to cause a decrea-
se in mean pore size, and an increase in mean cluster size. Sensorially 

the fat caused the gels to become firmer, creamier and more cohesive 

and sticky. The 1st principal component of the sensory data (spanning 
93.8% of the variation in the sensory data) was regressed on the 1st, 2nd 

and 3rd principal component of the instrumental data and image para-

meters (R2=96.3%; not a very standard data analytical procedure). 
Using only image parameters gave a considerably poorer model 

(R2=47.2%) than a model based on only instrumental data (R2=86.9%). 

The lower R2 for the image parameters was ascribed by the authors to 
the heterogeneity of the confocal micrographs. (An alternative expla-

nation could be that the rheological methods capture the dynamics of the 

structure breakdown during oral processing whereas the image parame-
ters only express the static microstructure of the milk gels). 
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3.2.2 Sensory studies of whey protein gels 

 
Whey protein gels are of particular interest because their microstructure 

can be manipulated precisely by altering pH and salt addition. The sen-

sory properties of whey protein gels (12% protein) filled with sunflower 
oil (0-20%), and either with a stranded or particulate microstructure, ha-

ve been studied (Gwartney et al., 2004). Gelation was induced by hea-

ting at 80ºC/30 min. Apart from a descriptive analysis, again limited to 
texture descriptors, water holding capacity (WHC) and fracture proper-

ties (determined by torsion gelometry) were determined. The main sen-

sory effect of increasing lipid level was an increase in number of chews 
required to (chew-down properties) due to increased fracture stress. The 

remaining descriptors, related to prefracture and first bite and including 

smoothness, firmness, and crumbliness, were related to gel type (stran-
ded/particulate).  
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4 Fat replacement in dairy products 

 
Two fundamental strategies exist for fat replacement: 1) ingredient solu-

tions (utilization of fat replacers) and 2) optimization of processing para-

meters (of particular relevance to cream cheese and other cheeses). A 
brief rundown of the issue of fat replacement using different ingredients 

will be given here. 

  

4.1 Fat replacers and mimetics 

 

Fat replacers are required to emulate the sensory qualities of fats: ap-
pearance, flavour, aroma and texture (Jones, 1996; Lucca and Tepper, 

1994; Sandrou and Arvanitoyannis, 2000). Fat has a considerable impact 

on flavour release, causing a retardation of the release of flavour com-
pounds from the food matrix; in low-fat products flavour release tends to 

be faster. Apart from that, fat, and especially milk fat, imparts a flavour 

of its own. Texturally, fat plays a role depending on whether it acts as an 
active filler or not. Fat replacing ingredients can be fat-like (e.g. Olestra, 

a sugar polyester), carbohydrate- or protein-based. Carbohydrate- and 

protein-based fat replacers are more properly termed fat mimetics be-
cause of their more limited range of applications (essentially because 

they can't be used as cooking or frying oils). 

 

4.1.1 Microparticulated proteins as fat mimetics 

 

Simplesse® was the first microparticulated protein to be approved as a 
fat mimetic. The microparticles are produced by a controlled denatura-

tion of protein at high-shear conditions. The kinetics of microparticle for-

mation from whey proteins has been studied extensively (Spiegel, 
1999a; Spiegel, 1999b; Spiegel and Huss, 2002). The current Sim-

plesse® is whey protein based; earlier versions included egg white pro-

tein (Singer and Moser, 1993). The functionality of microparticulated 
proteins such as Simplesse® is to behave like a creamy fluid by virtue of 

their uniform spherical shape and small particle size (~ 0.1-3.0 µm 

(Singer, 1990); smaller particles lack ‘substantialness’ whereas larger 
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particles are perceived as gritty (Singer, 1996)). In addition, in the right 

concentration it ostensibly plays a role as a structure breaker, in much 
the same manner as fat globules do in gelled systems. In a different 

interpretation of the functionality of fat mimetics (principally carbohy-

drate-based), the fat mimetic gel particles rotate relative to each other 
under shearing conditions, providing a fluidity of the mass of particles 

whose lubricating, ‘ball-bearing’ effect could be thought of mimicking the 

rheological and surface properties of fat globules (Tolstoguzov, 2003). 
Among the cited dairy applications of Simplesse® are natural and proces-

sed cheeses, cream cheese, ice cream, acidified milk drinks, sour cream, 

cottage cheese dressing and fluid milk. The patent covering the invention 
of Simplesse® (Singer et al., 1988) expired in 2005, and much activity in 

this field is expected in the coming years (Oestergaard, 2005). 

 
A number of studies (referenced in Paper III) have dealt with the effect 

of microparticulated protein on the microstructure and texture of dairy 

products. In Paper II we have documented that microparticulated milk 
protein is capable of producing a significantly higher creaminess in a 

0.3% fat stirred yoghurt than a full-fat yoghurt reference sample. In Pa-

per III he have investigated the mechanism of functional parameters 
such as firmness and water holding capacity in an acid milk gel model 

system. The microparticulated whey protein was added to the milk base 

before or after heat treatment at 90ºC/min. We found no discernible dif-
ference in neither firmness nor water holding capacity, leading to the 

conclusion that the microparticulated whey protein does not act as an 

active filler in an acid milk gel. This is in marked contrast to homoge-
nized, heat treated milk fat globules in fermented milk products; it is 

thus evident that the microparticulated proteins actually work sensori-

ally, but in a different manner that the milk fat globules they replace.       
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5 Studying food texture 

 

Without getting into a lenghty discussion over the meaning of the term 

texture, a brief clarification is appropriate here. By texture we mean the 

sensory manifestation of food structure; it is thus a strictly sensory term 
(Szczesniak, 2002). This definition lumps oral, tactile, visual and audi-

tory terms together, and is merely what is left over from taste and aro-

ma (the chemical and trigeminal senses). In a stricter sense, visual and 
auditory properties are excluded, but, in any case, texture perception 

does not originate from a single tactile sense. Etymologically, texture is 

derived from he Latin verb texo, to weave, from which is also derived 
the noun textile. An alternative meaning of the term is used in the field 

of image texture, which will be dealt with later.  

 

5.1 Sensory analysis of food texture 

 

5.1.1 Descriptive analysis 

 

Descriptive analysis has been termed ‘the most sophisticated tools avai-

lable in the arsenal of the sensory scientist’ (Lawless and Heymann, 
1998). It comes in a variety of shapes, including the competing trade-

marked methods Quantitative Descriptive Analysis™ (QDA) and Spec-

trum™. A special adaptation for texture characterization is the so-called 
Texture Profile Method (TPM), dating from the early 1960s. In practise, 

generic descriptive analysis developed ad hoc for a specific task, and in-

corporating elements of the above methods, are used (Murray et al., 
2001). Common to these methods is the use of trained panellists, the 

application of a randomized serving order (to remedy biases), and the 

evaluation (scaling) of descriptors in the sensorially correct order, start-
ing with visual appearance and ending with after-mouthfeel.  

 

In Quantitative Descriptive Analysis™ the relative differences between 
products are quantitated. As the attributes are not scored in absolute 

terms, it is unwise to compare results between different panels, or over 

time. By contrast, the Spectrum™ method pretends to produce absolute 
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scores, which enables comparisons between panels, or over time. For 

this reason, Spectrum™ panellist need appreciably more training. To 
calibrate the intensities, reference products are used. This is problematic 

because these reference products are not globally available and are re-

formulated more or less frequently. The Spectrum™ is developed from 
the Texture Profile Method, which, as the name indicates, only deals with 

texture characterization. The problem with this restriction is that the 

results may be biased by the dumping effect (Lawless and Heymann, 
1998). Omitting descriptors (in the case of TPM: all non-texture de-

scriptors) from the ballot may bias one or more of the  remaining de-

scriptors. For this reason we have taken to characterize our trial pro-
ducts exhaustively, instead of restricting ourselves to characterizing tex-

ture properties.  

 
Another salient feature of TPM is the use of fixed vocabulary lists. How-

ever, rather than relying on a fixed vocabulary we have developed sen-

sory descriptors for each of the three trials in this project. Still, reference 
materials were used whenever feasible. 



 17 



 18 

 
Table 4. Sensory descriptors used.  Descriptors marked by an asterisk are dynamic in nature, i.e. require movement to be evaluated. 

 Trial Y Trial CC Trial AMD 

Appearance 

Whiteness Glossy Glass coating 

Green Grain concentration Curtains 

Grey Grain size Transparency 

Yellowness White Visual viscosity 

Glossy Grey 

 

Grainy surface Blue 

Colour 

Aroma (smell) 

Tomato Cream Buttermilk 

Lamb Butter Raspberry 

Creamy Acidic 

Buttermilk Old milk 

 

Flour Goat 

Boiled milk 

Flavour 

Lamb Cream Sweet 

Butter Butter Buttermilk 

Cream Goat Raspberry 

Buttermilk Salt Cream 

Floury Sour Citrus 

Sour 

 

Sweet 

Sweet Boiled milk 
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Texture/mouthfeel 

Oral viscosity* Oral firmness* Straw resistance* 

Smoothness* Meltdown rate* Oral viscosity* 

Meltdown rate* Smoothness Smoothness* 

Astringent* Grainy* Floury 

Fatty after-mouthfeel Floury Astringent* 

Chalky 

Sticky* 

After-mouthfeel 

 

Dry after-mouthfeel 

Astringent* 

Fatty after-mouthfeel 

Non-oral manipulation 

Non-oral viscosity* 

Grainy on lid 

Viscosity by spoon 

 

Flow from spoon 

Tactile resistance  

Meta-descriptor 

 Creaminess Creaminess Creaminess 
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It should be noticed that the sensory descriptors in Table 4 are actually 

translated from Danish3. 
 

It is noticeable that several descriptors such as Astringent, Sweet are re-

peated in each trial, forming a base vocabulary. Other descriptors are 
more product-specific; Salt appears only in Trial CC, as neither yoghurt 

nor the acidified milk drinks contain any salt. On the texture side we no-

tice that yoghurts and acified milk drinks can be characterized in terms 
of Oral viscosity, while Oral firmess is more appropriate for cream chee-

se. 

 
The descriptor Creaminess was used differently from the others:  

 

1. The very use of the descriptor was imposed by the panel leader. 
2. No consensus on the use of the term Creaminess was sought bet-

ween the panellists. Indeed, the panellists were instructed to use 

their own concept of Creaminess. 
3. No reference material was provided for Creaminess.  

 

All three items violate the principles of descriptive analysis to varying de-
grees. Moreover, the very concept of asking a panellist to assign a score 

of a complex descriptor such as Creaminess is actually a violation of the 

simple psychophysical model underlying all sensory science (Lawless and 
Heymann, 1998). 

    

The rationale behind these choices was that we were interested in identi-
fying the sensory dimensions underpinning the concept of Creaminess; it 

would thus be less useful to impose an a priori definition of the term. 

 
One fundamental limitation of descriptive analysis methods in texture re-

search is their lack of ability to account for the dynamics of texture per-

ception, i.e. changes over time (Wilkinson et al., 2000).  A general tex-
ture dynamics model with the three dimensions degree of structure, de-

gree of lubrication and time has been developed with the objective of 

                                                 
3 Translating sensory descriptors is a perilous undertaking. An amusing example of this is 
found in a well-known multilingual texture word list (Drake, 1989). The English term creamy is 
translated into Danish flødeagtig, which literally means cream-like. The Danish informant thus 
manages to misinterpret the English term completely, even though he must have been 
conscious of the context in which the word is used in a texture lexicon. 
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providing a starting point for a general theoretical framework for the 

psychophysics of mastication (Hutchings and Lillford, 1988). Each food is 
thus thought of having a unique breakdown path. Time intensity me-

thods, where one single descriptor is recorded as a function of time, or 

progressive profiling, where a small set descriptors are scored success-
ively over time, are, in theory, more suitable for this purpose. However, 

several key sensory descriptors  in this study (marked by an asterisk in 

Table 4) are dynamic in nature, i.e. they require movement to be asses-
sed.  

 

5.1.2 Analysis of descriptive analysis data 

 

Descriptive analysis lends itself marvellously to multivariate data ana-

lysis (Dijksterhuis, 1995). This can actually be seen as a problem as it is 
all too easy to gather data and even easier to misinterpret it 

(Dijksterhuis and Byrne, 2005). These methods are capable on reducing 

the dimensionalty of data tables, and displaying the relationship between 
several variables at a time, but at the expense of resorting to latent vari-

ables, which may or may not be easy to interpret.  

 
One of the best remedies to ensure model consistency is replication; ide-

ally, sensory trials should be performed on material produced in, say, 

three replicates. This will give a clear estimate of the consistency of the 
manufacture of the materials. In Trial Y we have produced stirred yog-

hurt in triplicate - this was necessary because of the inherent instable 

character of stirred yoghurt (no gelatin or other stabilizer was added), 
and because of the fact that all testing had to be performed on exactly 

seven day old samples. In Trial CC and Trial AMD we have not re-

plicated the samples (or just a few, in the case of Trial CC), but we did 
perform the sensory and instrumental measurements in triplicate. This 

enabled us to quantitate the measurement uncertainty precisely. Ano-

ther important means of ensuring the validity of descriptive analysis data 
is cross-validation, which is particularly useful in guarding against over-

fitting, which is always a danger in latent variables modelling (Martens 

and Martens, 2001). 
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Regardless of which data analytical strategy is followed, elucidation of 

the causal relationships between sensory descriptors can be difficult; and 
even more difficult for sensory-instrumental relationships. 

  

5.1.3 Trial Y  

 

The sensory analysis of Trial Y on stirred yoghurt is presented in Paper 

II.  Three descriptors were found to be ineffective in separating between 
the samples, namely Tomato aroma, Buttermilk aroma and Grey colour. 

These were consequently omitted from the subsequent Principal 

Component Analysis:  
 

 

Figure 2 PCA loadings plot of two first PC, Trial Y. 

 

A three-PC model accounted for 63+21+4=88 per cent explained 

variance. Interestingly, Creaminess turned out to be the most important 
variable. From the scatter plot of Creaminess vs. Oral viscosity we see 
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that initially the two are linearly related, but eventually a plateau is rea-

ched. A the highest levels of Oral viscosity the Creaminess even seems 
to decrease. 
 

 

Figure 3. Scatter plot of Creaminess vs. Oral viscosity, Trial Y. 

 

 
However, one should be cautious when interpreting this relationship. It is 

clear that there is a positive correlation between Oral viscosity and Crea-

miness, but the subsequent fall could be due to underlying (lurking) 
variable. For instance, Oral viscosity increases with the design variable 

Protein level, which also tends to increase graininess. The increased grai-

niness could be the cause of the decreasing Creaminess at high Oral vis-
cosity. 
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5.1.4 Trial CC 

 
The sensory analysis of this trial is documented in Paper IV. Two des-

criptors, Grain concentration and After-mouthfeel could not discriminate 

the products in an ANOVA and were thus omitted. 
 

 

Figure 4.  PCA loadings plot of first two PC, Trial CC. 

  

We notice that Creaminess appears close to, and is thus postively cor-
related to, Oral smoothness, Butter flavour, and opposite to/negatively 

correlated to Oral graininess, Oral flouriness and Oral stickiness. The ac-

tual correlations are not always immediately evident from the loadings 
plot. For instance, we find the following correlation coefficients between 

Creaminess and Hand resistance: -0.94; Oral firmness: -0.91; Oral 

smoothness: 0.98; Oral graininess: -0.98 
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The loadings plot present the relationship between the descriptors, but 

elucidating the actual causal relationship between them is fraught with 
pitfalls, a good example of which is found in the scatter plot of Creami-

ness vs. Oral firmness.  
 

 

Figure 5. Scatter plot of Creaminess vs. Oral firmness, Trial CC. 

 

Surprisingly we find Oral firmness and Creaminess to be negatively cor-

related, which is the very opposite of the result found in Trial Y. This 
leads us to look for a lurking variable (Weisberg, 2005), i.e. we surmise 

that the correlation between Oral firmness and Creaminess is spurious or 

non-causal. An important clue is provided in by the location of two sam-
ples the plot of Creaminess vs. Oral firmness, namely 1) the sample with 

0% fat, pH 5.00 and 0.9% salt and 2) the sample with 6% fat, pH 4.40 

and 0.4% salt. The samples do not follow the general trend of a de-
crease in Oral firmness with fat level. Instrumental particle size data 

(Paper VI) confirm that the former had a considerably smaller mean 
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particle size than the latter. Indeed, if we plot Creaminess vs. Oral grain-

iness we find: 
 

 

Figure 6. Scatter plot of Creaminess vs. Oral graininess, Trial CC. 

 

What seems to be at play here is the electrostatic aggregation of acid 
milk gel particles in the cream cheese. Cheeses with low pH (close to iso-

electric pH) and low salt are evidently grainier than cheeses with high pH 

and high salt, which makes perfect sense; fat inhibits the aggregation of 
cheese particles, for reasons that are not entirely clear. In Paper V the 

effect of fat protein and mechanical treatment has been studied, using 

stirred yoghurt as a model. Post-aggregation of acid milk gel particles 
was found to correlate positively to protein level and negatively fat level 

to mechanical treatment. The effect of pH on texture of cream cheese 

and Neufchâtel cheese (retail brands adjusted with NH3) has been stu-
died (Aliste and Kindstedt, 2005). It was found that firmness decreases 
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with increasing pH. Because of the lurking variable Oral graininess, this 

effect is difficult to discern in our system. 
 

The conclusion of this part is that Creaminess is completely governed by 

the particle size and its sensory manifestation Oral graininess. This o-
pens several avenues for product development in the low-fat cream 

cheese area, further optimizing pH, salt and, of course, fat. 

 

5.1.5 Trial AMD  

 

The sensory analysis of this trial is documented in Paper VIII. One 
descriptor, Curtains could not discriminate the products in an ANOVA and 

was thus omitted.  
 

 

Figure 7.  PCA loadings plot of two first PC, Trial AMD. 
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Closer scrutiny of the data shows that Creaminess depends on Smooth-

ness in a complex manner, depending on the milk solids level. The corre-
lation is positive in milk drinks with 3% milk solds non fat (MSNF), but 

negative in drinks with 8% MSNF. The relationship with Oral viscosity is 

more straightforward, with a very high positive correlation (r = 0.97). 

 

5.1.6 Individual differences 

 
Since the location of products (scores) and variables (loadings) are often 

of more interest in descriptive analysis than the relationships between 

the way the individual panellists use the scales, the data are commonly 
averaged over panellists prior to multivariate data analysis, e.g. PCA. 

One way to analyze the differences between panellists is to use three-

way decomposition or regression methods, of which PARAFAC and NPLS 
are examples. In Paper I we have used these methods to explore how 

the panellists differ in perception of the descriptors. Alternatively, each 

panellist can be modelled individually by PCA and PLS. However, with 
multiway methods a common underlying model for all panellists is as-

sumed. 

 

5.2 Studying food texture instrumentally 

 

5.2.1 Psychorheology: the sensory relevance of rheology 

 

It took less than a decade from the coining of the term rheology until 

psychorheology came about, by the joint forces of an applied rheologist, 
G.W. Scott Blair, and a psychologist, David Katz (Scott Blair, 1949). Psy-

chorheology was meant to be the link between rheology and sensory 

perception. Katz had been active in the dough field already in the 1930s, 
and Scott Blair was working on the sensory perception of curd firmness. 

In the 1970s there were high hopes that psychorheology eventually 

would provide a grand unified theory linking rheology and sensory per-
ception (Drake, 1979). It is telling that the Journal of Texture Studies 

carries the subtitle An International Journal of Rheology, Psy-

chorheology, Physical and Sensory Testing of Foods, even though the 
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term psychorheology is little used today (five hits on the bibliographical 

database Web of Science since 1980 hardly makes it a red-hot research 
area). 

 

There has been much debate about which shear rate is prevalent in the 
mouth, not least because of the practical relevance (predictive purposes) 

of the issue. One of the most important results in this area has been the 

so-called ideal curve (Shama and Sherman, 1973). According to this, the 
characteristic shear rate of a given food depends on its flow charac-

teristics.  

 

Figure 8. The Ideal curve (schematic). The most relevant shear rate is found at the intersection between the flow 
curve and the universal curve. 

 

For yoghurt, the relevant shear rate should be around 50 s-1. This is 
merely an abstraction, as it is inconceivable that one single shear rate 

should predominate throughout the oral cavity. The flow pattern in the 

mouth has recently been modelled numerically (Mathmann et al., 2006), 
but so far only for Newtonian materials. 
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5.2.2 Imitative methods: TPA 

 
Out of the 1960s came the still widely used instrumental Texture Profile 

Analysis, in which the sample is submitted to a cyclical movement 

(Friedman et al., 1963). The TPA is the prototypical imitative texture 
measurement technique as it attempts to imitate the the mehanical pro-

cessing in the mouth. The force is recorded continuosly, and several tex-

ture parameters are derived from the force curve, including hardness, 
cohesiveness, elasticity, adhesiveness, brittleness, chewiness, gummi-

ness and viscosity. As such, the method claims to deliver sensorially re-

levant data on all imaginable food types - a prime example of deductive 
scientific reasoning. TPA has been severely criticized for being methodo-

logically inconsistent (Peleg, 1983); the results depend greatly on samp-

le size and the testing conditions (e.g. per cent deformation), and all the 
postulated texture parameters are given in force units. For these rea-

sons, the use of TPA in cheese has been discouraged (Walstra and Peleg, 

1991), and it has not been used in this work. Given the pervasive tech-
nological optimism of the 1960s, the notion of assessing the texture of 

foods by means of a single measurement on an instrument is perhaps 

not so far-fetched, but it is telling that Dr. Malcolm Bourne as late as in 
the mid-1970s felt the need to emphasize the limited scope of rheology 

in explaining the sensory perception of texture (Bourne, 1977).  

 

5.2.3 Shear viscometry. 

 

Shear viscometry, using a rotational viscometer, is the reference large-
strain rheological method for semi-solid foods. Three different measure-

ment geometries have been used to record flow curves in this study: a 

cup-and-bob system (Trial Y), a parallel plate system (Trial CC) and a 
double gap system (Trial AMD). For Trial CC, shear viscometry proved 

untenable for non-fat samples. The raw data, shear stress/apparent vis-

cosity, is used directly to model sensory data. 
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5.2.4 Dynamic oscillation 

 
In dynamic oscillation, the same equipment as in shear viscometry is 

used to measure elastic and viscous moduli in the linear visco-elastic 

region, i.e. at small deformations. The moduli characterize the gel net-
work; their relation to sensory properties are thus more indirect than 

viscometry data. There have some claims in the literature that small-

deformation data correlate better to sensory viscosity (Skriver et al., 
1999; Stanley and Taylor, 1993), but as mentioned in Paper II, moduli 

and shear viscosities are often correlated, and difficult to separate cau-

sally. Dynamic oscillation proved untenable for the very weakly struc-
tured acidified milk drinks in Trial AMD4. 

 

5.2.5 Elongational viscometry 

 

A couple of relatively novel rheological techniques have been used in the 

present study, namely squeezing flow viscometry (Trial Y; Paper II and 
IV) and contraction flow viscometry (Trial CC; Paper IV). Ideally, both 

methods measure elongational properties (and are, as such, fundamen-

tal rheological methods), which might be more relevant sensorially than 
shear (van Vliet, 2002), since mastication resembles a squeezing flow 

between parallel plates; however, this has yet to be validated by sensory 

data. The fundamental problem with elongational viscometry is the diffi-
culty of producing a purely elongational flow field, without shear flow. 

Other sensory situations where elongational flow might be more relevant 

are sucking a fluid through a straw and speading a semi-solid material 
with a knife. 

 

Squeezing flow viscometry originates in the polymer field (Chatraei et 
al., 1981), and has more recently been introduced to food rheology by 

Peleg and co-workers (Campanella and Peleg, 2002). Normally an In-

stron Universal Testing Machine is used; the force is recorded as the 
sample is compressed between the parallel plates. In squeezing flow vis-

cometry there must be a perfect slip between the tested material and 

                                                 
4 An interesting method based on the oscillation of a capillary was tried (www.vilastic.com). 
However, due to time constraints the measurements were not concluded. 
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the plates, which is contrary to conventional shear viscometry. To make 

sure that the slip-condition is met, lubrication is used. Intact samples 
can be tested, whereas in shear viscometry with a cup-and-bob mea-

suring geometry the sample is inevitably destroyed as the bob is lowered 

into the sample. However, it is not possible to vary the strain rate to the 
same extent; in any case, this  is several orders of magnitude lower than 

that encountered in oral processing. One novelty is the use of Teflon pla-

tes instead of lubricated plates, and the introduction of the imperfect 
squeezing flow setup, in which the lower plate is replaced by a shallow 

container; this was devised to allow for the testing of semi-solid foods 

such as stirred yoghurt (Suwonsichon and Peleg, 1999). Results are 
given as a vector of elongational viscosties or stresses, one for each 

height measured.  

 
Contraction flow viscometry is another novel method (Stading and 

Bohlin, 2004). A parabolic nozzle with a defined Hencky strain is used, 

again in combination with an Instron UTM. Contrary to squeezing flow 
viscometry only one single elongational viscosity is derived. The effect of 

shear flow can be taken into account in the calculation of elongational 

viscosity, but only for Power Law materials for which Power Law parame-
ters can be provided (we did not have these and could not perform this 

compensation in Paper IV). Temperature control is also more straight-

forward than for squeezing flow viscometry.     
 

However, comparing predictions of sensory viscosities from measured 

shear and elongational stresses and viscosities (Paper II and Paper 
IV), we find no support for the claim that elongational flow is more sen-

sorially important than shear flow, at least in the systems studied here. 

 

5.2.6 Empirical methods 

 

Empirical methods are mostly useful for quality control purposes, 
correlations between these and sensory data are of limited scientific 

interest (Peleg, 2006); some extremists even claim that correlations bet-

ween fundamental rheological parameters and sensory data are irrele-
vant (Engmann et al., 2006). Empirical methods often outperform funda-

mental methods in terms of predictive ability. In Paper II we have 
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shown that the empirical Posthumus funnel method, modified in such a 

way that the material leaving the funnel is weighed continously, can 
yield surprisingly good predictions of sensory viscosity (R2=0.98), using 

multivariate prediction models. This is far better than merely determi-

ning the efflux time. Interestingly, the flow pattern in the Posthumus 
funnel is mixed shear/elongation, which may be the reason why it pre-

dicts sensory data so well. 

 

5.2.7 Regression models linking sensory and instrumental data. 

 

An assortment of data analytical techniques are available to link sensory 
and rheological data. This is a core area of sensometrics, the data ana-

lytical branch of sensory science. We have used it to treat relationships 

of the form: 
 

Y = aX+b 

 
where Y is the dependent variable (normally the sensory data) and X the 

independent variable (normally the instrumental data). This is simply the 

linear model, which can be dealt with using different methods. In the 
simplest case, where the dependent variable Y is merely a vector of one 

single sensory descriptor, and the independent variable is a univariate, 

instrumental variable, the equation represents a simple, univariate linear 
regression, which can be solved by the method of least squares.  

 

The first dairy application of multivariate data analysis appears to be 
from the 1940s (Harper and Baron, 1948); however, these methods 

have only become commonplace in the last decade or so. For multi-

variate X we can use multiple linear regression (MLR), but for computa-
tional reasons we normally prefer partial least squares regression 

(PLSR). Our problem is that the columns in the X matrix are often close 

to being linearly dependent, leading the equation to be ill-conditioned. 
For instance, if we regress a matrix of flow curve data on a sensory Y 

using MLR, we will find the the individual points of the flow curves to be 

highly correlated (otherwise the flow curve would appear jagged and 
chaotic); consequently, the matrix equation will be ill-conditioned.  
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PLSR solves that, but at the expense of resorting to latent variables, 

which may be difficult to interpret.  Another advantage of PLSR is that 
non-linearities can be dealt with, by adding another latent variable if ne-

cessary (Martens and Martens, 2001). But PLSR is basically the most 

liberal linear regression method. Our contribution to this area has been 
the use of raw data from Posthumus funnel (see 5.2.6 Empirical 

methods) as well as other rheological methods. 

 

A recent development in psychorheology has been the introduction of 

multivariate regression techniques, of which PLS regression is particular-

ly suited to deal with the multicollinearity of the rheological data, to pro-
duce prediction models directly from raw data, a concept termed Spec-

tral Stress-Strain Analysis by some (Carson et al., 2002; Meullenet et 

al., 1999). The strain rates with the highest explanatory power is directly 
evident from the regression vector; this procedure is more satifactory 

than merely calculating the correlation coefficients between the instru-

mental and sensory data at each strain rate. PLS models using raw data 
have been found to give better predictions of sensory properties than 

extracted features, e.g. from uniaxial compression curves (Thybo and 

van den Berg, 2002). 
 

The fact that PLS models of Oral viscosity largely outperform univariate 

models seems to indicate that stress values corresponding to a range of 
strain rates contribute to the sensorially perceived Oral viscosity, which 

runs counter to the notion that one single strain rate value represent the 

prevalent strain rate in the mouth, but concurs with the dynamic nature 
of texture perception.  

 

5.2.3 Measurement uncertainty in sensory-instrumental 

relationships 

 

Another source of information that is normally neglected in sensory-
instrumental studies is contained in the replicates of both sensory and 

instrumental measurents. There is no logical link between these (sensory 

replicate number 1 does not relate to instrumental replicate number 1, 
and so forth). In Figure 9 and Figure 10 the relationship between exten-

sional viscosity (a physical property) and tactile resistance (a sensory 
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property) is depicted for two different viscometry methods, squeezing 

flow and contraction flow (data from Paper IV).  

 

 

Figure 9. Hand resistance vs. elongational (squeezing flow) viscosity, Trial CC.  

 
 

 

Figure 10. Hand resistance vs. elongational (contraction flow) viscosity. 
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It should be noted that only averages of replicates can be displayed 

meaningfully in a scatter plot. Sensory as well as instrumental measure-

ments were performed in triplicate. Introducing replicate as a random 
factor in a mixed model ANOVA and combining with Measurement Error 

Methodology has been suggested as a means of separating the true 

correlation (related to an underlying structure) from error (Brockhoff, 
2001). Using this approach we find that the maximal correlation, i.e. free 

from measurement error/uncertainty between viscosity and tactile firm-

ness is 0.98 for squeezing flow 0.97 for contraction flow viscometry, 
which at first glance may seem surprising, given the level of scatter in 

the respective plots. 
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Table 5. Maximal and corrected correlations between key descriptors and elongational viscosities. 

Maximal correlation Corrected correlation Descriptor 

Squeezing flow 

viscosity 

Contraction 

flow viscosity 

Squeezing flow 

viscosity 

Contraction 

flow viscosity 

Hand resistance 0.98 0.97 0.92 0.84 

Oral firmness 0.98 0.97 0.88 0.86 

Creaminess 0.99 0.98 -0.80 -0.80 

 

5.2.4 Imaging and image regression 

 

One reason behind the the popularity of rheological methods in food tex-
ture research is the ready numerical output. Relating rhelogical and sen-

sory data is thus mostly trivial. Images, by contrast, do not permit this 

right away. We would like to deal with models of the form: Y=aX+b, 
where Y is an array of sensory data, and X is an image, or, rather, some 

relevant properties derived from an image. In other words: ‘image 

regression’. Image analysis is normally preceded by image pre-proces-
sing operations including filtering and thresholding/segmentation (Du 

and Sun, 2004; Gonzalez et al., 2004).  

 
Confocal micrographs of dairy products are largely isotropic and feature-

less to the naked eye (in contrast to meat and other foods). One way to 

deal objectively with this type of images is to measure individual fea-
tures characteristic of the structure elements of the images. Main fea-

tures are related to size and shape, e.g. of aggregated structures in the 

CLSM images. As previously mentioned, this has been applied to acid 
milk gels studies with a wiev to relating microstructure to sensory pro-

perties (Pereira et al., 2006). Features such as mean cluster size and 

mean pore size are univariate properties, and as such straight-forward to 
relate to sensory data.    

 

In image analysis, an entirely different meaning is given to the term 
‘texture’, although a consistent definition has yet to be coined. A some-

what unprecise definition of image texture is: ‘a texture is region (...) 

that can be perceived as being spatially homogeneous in some sense’ 
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(Carstensen, 2002). This definition includes a totally uniform region, 

which would not normally be said to have any texture. Image texture 
has important and diverse applications in the food area (Zheng et al., 

2006), predominantly in computer vision applications, e.g. in tenderness 

classification of meat (Li et al., 2001). Texture feature categories com-
prise statistical, structural, model-based and transform-based textures 

(Bharati et al., 2004). The much-used grey-level co-occurrence matrices 

(GLCM) belong to the first group, whereas the Angle Measure Technique 
(AMT; employed in Paper VI and Paper VII) as well as the Fourier 

Transform magnitude spectra (FFT; used in Paper VII) belong to the 

transform-based texture methods. The features extracted by these me-
thods are multivariate, and can be related to sensory data by appro-

priate methods, e.g. PLSR. 

 
The Angle Measure Technique is performed on unfolded images, i.e. the 

2D image is first converted to a 1D vector (sevaral options are available 

- the most simple is to place the rows of the image after each other). 
The AMT algorithm (here in one of its incarnations (Esbensen et al., 

1996)) now samples the image vector at a large number of positions.  
 

 

Figure 11. The Angle Measure Technique: computation of angle θ and difference in Y. 
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With A being the randomly sampled point of the image vector, a circle of 

radius S with center at A is generated. The points B and C are at the in-
tersection of the image vector with the circle; from this is calculated an 

angle as well as the projected distances between B and C (Difference X 

and Difference Y). The angles and differences in Y are then averaged 
over all the sampled points along the image vector, and the whole pro-

cess is repeated for several circle radii, S, generating the AMT spectrum 

in MA and MDY vs. S. The multivariate AMT spectrum characterizes the 
directional change, expressed as a geometric angle summed in MA, as 

well as quasi-periodic phenomena, expressed in MDY. 

  
The Fourier transform is widely used in image processing and analysis. 

Applying the Fourier transform to an image, that is, applying the trans-

form on each pixel value row-wise and then column-wise; in practise a 
2D Fast Fourier Transform (FFT) algorithm is used. The transformed 

image is composed om complex numbers; it can be displayed visually by 

computing its magnitude spectrum, i.e. the absolute value of the trans-
form. 
  

 

Figure 12.  Radial average and angular average of Fourier power spectrum. 

 
 

The radial average (averaging the polar coordinates) of this magnitude 
spectrum has been used as a multivariate image feature in this work 

(Paper VII). 

 
Comparisons of the predictive ability of several image features indicate 

that the Fourier-based and similar feature extraction methods are prefe-

rable for images containing periodic phenomena, whereas the AMT spec-
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tra seemed to contain more information in the case of more irregular 

structures (Indahl and Naes, 1998; Kvaal et al., 1998).  
 

CLSM images were pre-processed by equalization of local brightness and 

subsequently submitted to AMT (Trial Y) or  FFT (Trial CC). Creaminess 
was found to be very well predicted in Trial CC, which is not surprising 

given its unequivocal dependence on Oral graininess. Predictions of 

Creaminess were poorer in the case of Trial Y (R2=0.34). This could 
mean that the sensorially relevant, structural variation could neither be 

captured by CLSM nor by the employed feature extraction procedure. It 

could also imply that Creaminess is not entirely determined by structure 
in the case of low-fat stirred yoghurt.   

 

Visual texture is an important first sensory cue to several oral descrip-
tors, including creaminess (de Wijk et al., 2004; Imran, 1999). By con-

trast, fluids, as in Trial AMD, are largely devoid of surface texture. In 

Paper VI we have described how surface texture can be related to 
sensory descriptors (Trial Y and Trial CC) using AMT and PLSR. Using a 

digital camera, images of plane surfaces of products were captured, and 

subjected to filtering, elimination of uniform regions and finally feature 
extraction by AMT. Creaminess could be predicted well for Trial CC but 

not for Trial Y, which indicates that creaminess is derived more directly 

from structure in cream cheese than in yoghurt.  
 

5.2.5 Spectroscopic measurements 

 
Spectroscopic methods, in particular near infrared spectroscopy (NIR), 

have a long history in the dairy field where they have proven useful in 

quantitative chemical analysis (Karoui et al., 2003). By contrast, the no-
tion of predicting sensory properties from spectroscopic data is quite re-

cent. Again, most work has been done on NIR, e.g. on processed cheese 

(Blazquez et al., 2006) and Danbo cheese over the course of ripening 
(Sorensen and Jepsen, 1998). Fluorescence spectroscopy distinguishes 

itself by its oustanding sensitivity (100-1000 times more sensitive than 

other spectroscopic methods). In addition, fluorescent molecules are 
very sensitive to their environment. Front-face fluorescence spectro-

scopy, where the surface of the sample is probed, has been used to dis-



 41 

criminate sensory and rheological properties in soft cheese (Dufour et 

al., 2001; Kulmyrzaev et al., 2005).  
 

Using our cream cheese samples (Trial CC), we have evaluated both 

NIR and fluorescence, as well as low-field nuclear magnetic resonance 
(NMR) spectroscopy (Paper IV). For NIR data, the prediction models are 

built directly from the raw spectra using PLSR. For fluorescensce spectro-

scopy data, which are presented in the form of emission-excitation land-
scapes, PARAFAC (a latent variable decomposition method for higher-

order data (Bro, 1997)) was used to decompose the emission-excitation 

landscapes. The sensory descriptors were subsequently regressed on the 
resulting PARAFAC scores using multiple linear regression. Reasonable 

predictions of rheological parameters (Paper IV) as well as sensory de-

scriptors (not detailed) were obtained. 
 

The above results are certainly not without interest, but one has to be 

careful in interpretating them. Because of the proven ability of these 
spectroscopic methods (in particular NIR) in predicting the concentra-

tions of several chemical constituents of foods, we may have issues of 

lurking design variables (fat, protein etc.). Whether additional informa-
tion is present is an important issue; for low-field NMR data on raw po-

tatoes this has indeed been found to be the case (Thygesen et al., 

2001). For validation purposes it would be interesting to try out several 
spectroscopic methods on a set of products (or model systems) with a 

constant chemical composition, but varying processing conditions (ho-

mogenization pressure, heat treatment etc.)5. 
 

                                                 
5 We actually did this, but didn't find time to evaluate the results properly. 
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6 Beyond psychorheology: creaminess 

 

6.1 Modelling creaminess 

 

The difficulty of describing Creaminess in purely rheological terms has 
long been acknowledged (Wood, 1974). A certain level of viscosity com-

bined with a smooth mouthfeel is considered a sine qua non condition for 

obtaining a creamy texture. Several other properties have been claimed 
to influence Creaminess. In concentrated o/w emulsions such as creams, 

it has been suggested that a high density of evenly sized fat globules 

contribute to Smoothness perception, somewhat along the line of the 
previously mentioned ‘ball-bearing’ hypothesis. However, later studies 

have not been able to demonstrate an effect of oil droplet size on Crea-

miness, Thickness or taste (Akhtar et al., 2005). Emulsifier type has 
been shown to influence creaminess of o/w emulsions (Moore et al., 

1998).  

 
An early attempt at quantitating Creaminess is condensed in the formula 

(Kokini et al., 1984): 

 
Creaminess = Thickness0.54 Smoothness0.84 

 

This is really beyond the scope of psychorheology, since Creaminess is 
modelled by two sensory variables, namely Thickness and Smoothness. 

There is no direct mention of rheological methods, but is is suggested 

that Creaminess can be predicted from rheological and frictional proper-
ties, since Thickness and Smoothness can be predicted from these physi-

cal properties. The derivation of this expression is interesting, and says a 

great deal about the way sensory studies were performed the 1970s and 
80s. The first part of the study was to generate vocabularies of texture 

terms for a series of fluid and semi-solid ranging from apple juice to but-

ter, then eliminate redundant terms and finally use magnitude esti-
mation to quantitate the selected varibles and fit the model. Sensory 

terms were collated by the untrained panellists individually, as they were 

told to list as many words as possible which described the texture of the 
samples. Subsequently the 15 most mentioned words were applied as 
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descriptors in magnitude estimation. In magnitude estimation the panel-

lists are told to score the intensities of a given attribute relative to that 
of a standard, i.e. a ratio scale is used. Averaged attribute scores were 

then regressed one by one on the remaining descriptors using multiple 

linear regression, yielding a correlation matrix, from which redundant 
terms were identified.  

 

As has been pointed out, this approach would not have been used today 
(Elmore et al., 1999), where descriptive analysis (and the corresponding 

multivariate data analysis) is considered state of the art (Lawless and 

Heymann, 1998). In fact, the very validity of magnitude estimation is 
considered doubtful by some sensory scientists. And, by culling redun-

dant descriptors, we risk bias by the dumping effect. 
 

Table 6. Outline of differences between the sensory work of Kokini et al. and the present work. 

 Approach of Kokini et al. Contemporary approach 

Sensory methodology Magnitude estimation Descriptive analysis 

Sensory vocabulary used Fixed vocabulary 

previously generated from 

most used terms 

mentioned individually by 

panellists 

Vocabulary specific to 

range of product studied, 

generated by consensus in 

panel  

Panellists Untrained panellists Trained (and paid) 

panellists 

Conditions of test Room temperature Temperature in accordance 

with IDF Standard 

Data analysis Univariate data analysis Multivariate data analysis 

 

Using a considerably different approach we have found (Paper II) for 

low-fat stirred yoghurt (Trial Y): 

 
Creaminess = 0.573 Oral viscosity + 0.650 Smoothness -2.640 

 

The coefficient of determination is only R2 = 0.42, but this is largely be-
cause we have used data from individual assessments, whereas Kokini 
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and Cussler used averaged data. (Using averaged data we obtain R2 = 

0.81). 
 

In Trial CC we found Creaminess to be largely depending on Oral graini-

ness, whereas in Trial AMD we found Creaminess to be very highly cor-
related to Oral viscosity. 

 

6.2 Sensory basis of creaminess 

 

While the relationship between physical and sensory viscosity is well-

established, it is less clear what is behind the concept of Smoothness. In 
engineering terms is makes sense to relate it to friction forces. Sensorily 

speaking, Smoothness can be defined as an absence of Oral graininess. 

At least in some systems, this could imply that Smoothness is actually a 
derived property, with particle properties such as particle size, shape and 

concentration being the fundamental concept. In fact, neurophysiological 

studies on macaque monkeys have shown that particle size elicits a 
response in the brain, as do viscosity stimuli (Rolls et al., 2003; Ver-

hagen et al., 2004). This could mean that there is an evolutionary ad-

vantage in being able to discern Oral viscosity and Oral graininess in 
foods, both responses integrating into a Creaminess response. From a 

product technological point of view, Oral graininess is more straight-

forward to operationalize than Smoothness (if defined as ‘the reciprocal 
of the frictional force between the tongue and the mouth’ (Kokini et al., 

1977) or as a ‘geometrical property’ (Peleg, 1983)), in the context of 

low-fat dairy products. In Paper V the effect of fat and protein levels on 
graininess in low-fat yoghurt has been explored using Response Surface 

Methodology (RSM). 

 

6.3 A very recent model of creaminess perception in semi-solid 

foods. 

 
In the Netherlands, de Wijk and co-workers have worked on the subject 

of Creaminess since 1999, mainly using the Dutch vanilla custard pro-

duct vla as a model (de Wijk et al., 2006b). Vla is a semi-solid product, 
essentially consisting of milk gelled with starch. Fat levels have been va-
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ried between 0-15%. Added SiO2 particles (indeed, not a common food 

ingredient) in the size range 2-80 µm were found to be detrimental to 
creaminess6 (Engelen et al., 2005a). Softer polystyrene particles had to 

be larger to give the same response (Engelen et al., 2005b), which could 

explain why commercial microparticulated whey protein at least are not 
detrimental to Creaminess, despite having particle sizes in the range 

~0.1-3.0 µm. Another finding was that product and oral temperature did 

not affect Creaminess ratings, even though the sensory viscosity decrea-
sed. The decrease in viscosity was hypothesized to be compensated by 

other descriptors (Engelen et al., 2003). Creaminess was found to de-

crease somewhat with temperature in high-fat custards, and increase a 
little in low-fat custards. By using noseclips and flavours, the effect ol-

factory cues and intranasal sensations on creamy mouthfeel was confir-

med (Weenen et al., 2005).  
 

Based on these findings a qualitative model for Creaminess perception 

was proposed. The model partitions the contributions to creaminess in 
two: bulk properties (rheological properties of the bolus) and surface 

properties (lubrication and flavour release provided by fat migrating to 

the surface of the bolus). The lower creaminess in low-fat custards was 
thus ascribed to a lack of lubrication, due to the lower fat content (de 

Wijk et al., 2003; de Wijk and Prinz, 2005). Based on PLS models of 

Creaminess as a function of other sensory descriptors, the model was 
tentatively found to be generalizable to other semi-solids such as ma-

yonnaises, sauces and yoghurts, even if some of the descriptors varied. 

One could argue that the proposed model disregards the microstucture 
of the products altogether; in particular the way that fat interacts with 

other components. In addition, it seems to fail to account for the functio-

nality of fat mimetics such as microparticulated whey protein, unless the 
lubrication properties of these would be found to match those of fat, as 

has been suggested by others (Tolstoguzov, 2003). Evanescent wave 

spectroscopy has been suggested as a method to study deposition-
/lubrication phenomena of relevance to Creaminess (Malone et al., 

2003). 

 

                                                 
6 Creaminess was evaluated according to a consensual definition: ‘Range of sensations 
typically associated with fat content, such as full and sweet taste, compact, smooth, not rough, 
not dry, with a velvety (not oily) coating. Food desintegrates at a moderate rate’. 



 47 

In predicting Creaminess, rheological data alone (dynamic oscillation, 

shear viscometry, critical stress) could only account for at limited 
amount of information, with  cross-validated correlation coefficient 

Q2
CV=0.48 (Jellema et al., 2005); this was deemed reasonably well for 

high-throughput screening purposes. The idea would be to measure the 
rheological properties for a large number of samples, and predict Crea-

miness from these. Indeed, it would be interesting to see what the 

products would look like end after completing several cycles of Creami-
ness optimization using this methodology. Using more ingenious sensory 

methods (de Wijk et al., 2006a), including friction as well as IR reflec-

tance, turbidity and image edge detection on spat out bolus, much better 
predictions could be achieved (r=0.96 between actual and predicted 

Creaminess), but these methods are hardly useful for high-throughput 

screening.  
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7 Conclusions and perspectives 
 
It has been shown convincingly that Creaminess in low-fat semi-solid 

dairy products can be manipulated effectively by both process techologi-

cal means and by the addition of fat mimetics. We have made the case 
that Creaminess, a key acceptance driver, is largely determined by 

microstructure along two dimensions: one related to viscosity, another 

related to particles and graininess. The relative importance of these 
differs from product to product. 

 

Mastering the fundamentals of the formation and control of Oral graini-
ness in low-fat acid milk gel products will enable the dairy industry to 

develop products with a higher acceptability for the consumer. In the 

fresh cheese segment in particular there are several process parameters 
to play around with (pH, salt etc.). Another lead could be to explore the 

use of pre-concentration of the milk by membrane processes; in 

concentrated milk, gelation can be induced at a higher pH, which, per-
haps in combination with a slightly higher salt level, could be a way to 

avoid excessive post-aggregation of acid milk gel particles.  

 
With regards to microparticulated protein, there will no doubt be much 

activity in both fundamental research and more application oriented 

work in the time to come. There is ample room for developing micro-
particles with properties (particle size distribution, surface reactivity) tai-

lored to specific applications. 

 
The area of employing image texture methods, to confocal images in 

particular, is still in need of considerable refinement. One avenue that 

needs to be followed is that of studying the properties of simulated, 
isotropic images as models of real confocal micrographs. The ultimate 

goal would be to use the methods in product R&D. To this end it will be 

of utmost importance to be able to interpret the loadings in the multi-
variate image regression models physically, since black box models are 

of limited use. 

 
In vitro, imitative methods would be of great use to the dairy industry as 

a means of screening product formulation, but a much higher degree of 



 50 

sophistication than that of the old instrumental TPA method is necessary, 

both on the hardware side and the data analytical side.  
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Abstract 

 

A descriptive analysis of I=25 different plain yoghurts (varying in fat content, protein content 

and type of added protein) was carried out. A total of J=29 sensory descriptors pertaining to 

appearance, aroma, flavor, texture and some non-oral manipulation parameters were 

evaluated by K=12 trained panelists. During the training each panelist was allowed to develop 

and use their own definitions of the key descriptor Creaminess; the remaining 28 descriptors 

were defined by consensus, and exemplified by reference standards, where feasible. The 

experiment was carried out in three complete replicates. Data were analyzed by two- and 

three-way decomposition methods (PARAFAC, unfold-PCA). Subsequently, Creaminess was 

modeled by two- and three-way PLS and PARAFAC regression with the remaining 28 

descriptors as predictors. The results both from bi-linear and multi-linear methods all indicate 

some degree of individual differences among panelists in their evaluation of Creaminess. 

Permutation tests, in which individual panelists scores of Creaminess were scrambled randomly 

with those of other panelists, indicated a high significance of the considered regression models 

(α = 10-4). Furthermore, Creaminess has the highest leverage of the different descriptors; it is 

clear that it that carries most information about the products. It appears that although the 

major contribution to creaminess is related to texture and mouth-feel descriptors, a number of 

flavor descriptors are also involved. 
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1. Introduction 

Within the research field of sensory science ‘creaminess’ is a highly interesting and much 

debated topic. It is generally accepted that creaminess has an intrinsic positive hedonic 

component. It has been demonstrated repeatedly in dairy products that consumers’ hedonic 

response is strongly positively correlated to creaminess. This has been shown to be the case 

for both strawberry yoghurts (Ward, Koeferli, Schwegler, Schaeppi, & Plemmons, 1999) and 

plain yoghurts (Folkenberg & Martens, 2003). Furthermore it has been found that consumers’ 

rated perception of creaminess is strongly positively correlated to the same consumers overall 

liking of the products (Richardson-Harman, Stevens, Walker, Gamble, Miller, Wong, & 

McPherson, 2000). Thus, naturally there is a high interest in understanding human perception 

of creaminess. 

 

In some of our previous research on the perception of fat in milk we suggested the use of a so-

called meta-descriptor, named ‘total fattiness’ to describe the overall sensory properties of fat 

in milk (Frøst, Dijksterhuis, & Martens, 2001). A meta-descriptor in its nature is an overall 

descriptor that consists of a specific combination of a number of other descriptors1. Results 

from the study of (Frøst et al., 2001) suggest that the use of the meta-descriptor ‘total 

fattiness’ is appropriate, as it is the descriptor that alone best preserve the data structure from 

the full set of descriptors (Dijksterhuis, Byrne, & Frøst, 2002), i.e. it is the descriptor carrying 

the highest amount of information, and best separates the different products under 

examination. We suggest that creaminess should be considered a meta-descriptor as well.  

 

The scope of the present work is to evaluate a range of three-way and other multivariate data 

analysis methods for investigating individual differences in perception of creaminess among 

panelists in a sensory panel.  Part of the analysis will be on the individual differences between 

sensory panelists in their perception of creaminess and the other descriptors as a whole. The 

purpose is to investigate if the panelists possess the same underlying concept of creaminess, 

or if there are distinct differences between panelists. The statistical relationship (the 

correlations) between creaminess and the remaining descriptors will be used to investigate 

which combination of other sensory properties is important for prediction of creaminess.  

 

Multi-way methods are higher-order generalizations of two-way Principal Component Analysis 

(PCA) and Partial Least Squares Regression (PLS-R) models. In connection with sensory 

descriptive analysis, data can be compiled in three-mode array with samples (products) in first 

mode, sensory descriptors in second mode and panelists in the third mode (Brockhoff, Hirst, & 

Næs, 1996), as illustrated in figure 1.  

                                          
1 Naming the phenomenon a meta-descriptor should be credited to Garmt Dijksterhuis.  
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Figure 1: Presently applied and typical arrangement of data array for three-way analysis of 
data from sensory descriptive analysis. 
 

 

If the products stem from an experimental design, or other information about the products are 

available (origin, storage etc.) the array can be extended to higher than three order arrays 

(Bro, 1996; 1997). In the present work, the differences in sensory properties among individual 

products, and the overall effects of the experimental design will not be treated thoroughly. 

This allows us the simplicity of having exactly three-way arrays, and not higher order arrays.  

 

Where two-way methods generally require averaging over one mode, panelists, multi-way 

methods can be employed to model individual differences between panelists (Bro, 1996; 1997; 

Brockhoff et al., 1996). Parallel Factor Analysis (PARAFAC, Harshman 1970) or Canonical 

Decomposition (CANDECOMP, Carroll & Chang 1970) is one such generalization of PCA to 

higher order arrays. PARAFAC can provide adequate, robust and interpretable models, the 

most attractive feature being the uniqueness of the solution (Bro, 1997). Similarly, multi-way 

partial least squares (or N-PLS) regression models is a straight-forward extension of two-way 

PLS regression to multi-way arrays (Bro, 1996). Equivalent to Principal Component Regression 

(PCR), the independent variables array X can be decomposed using PARAFAC, and the 

extracted scores regressed on the dependent variable Y (PARAFAC regression). As an 

First mode 
I = products (25) 

Second mode 
J = descriptors (29) 

Third mode 
K = panelists (12) 

    . 

 .   

    . 

 .   
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alternative to three-way methods, the descriptive data can be matrixized, or unfolded2, into 

individual matrices and submitted to two-way PCA or PLS-R, which is routinely performed in 

multivariate software packages like the Unscrambler®. Still, PARAFAC and N-PLS compare 

favorably to unfolded models, partly because unfolded models can be more difficult to interpret 

graphically. More importantly, in bilinear unfolding each panelist is presumed to have his own 

idiosyncratic perceptive model, whereas in the tri-linear PARAFAC model all panelists have a 

common underlying model, but use it in different proportions.  The N-PLS algorithm has been 

shown to give better predictions than unfold-PLS, the latter being more flexible and 

consequently more prone to over-fitting (Bro, 1996; 1998).  

 

The issue of preprocessing of data is central to multivariate data analysis. (Bro & Smilde, 

2003) have thoroughly discussed the purpose and use of centering and scaling in two-way bi-

linear analysis (PCA), but show that they can easily be generalized to higher-order data arrays 

(PARAFAC). When the data in question stems from sensory descriptive analysis, centering over 

products (often set as the first mode in three-way arrays) is almost default. Centering the data 

across the first mode can be seen as a projection onto certain well-defined spaces (the mean 

in this mode). Often the sensory scientists are not interested in the absolute values of the 

rating, but rather the variations around the mean, so centering is routinely and almost without 

exception performed (Brockhoff et al., 1996). Scaling of sensory descriptive analysis data is 

not strictly necessary, since often all descriptors are assessed with the same scale. In addition, 

it is assumed and hoped that the panelists use the scale with due reference to the training 

sessions, i.e. we might surmise that the well-trained panelists inadvertently auto-scale their 

results. Finally, we could argue that our data should not be scaled to equal variance because of 

some implied (yet unknown), true difference between descriptor variance, in the set of 

products under investigation. Still, often the descriptors are different structurally: some are 

essentially assessments of a perceived intensity, relating to a concentration of some 

constituents of the sample, e.g. “tomato”, “lamb”, while others probe material properties such 

as viscosity. There is no such thing as a zero-viscosity yoghurt, but certainly yoghurts devoid 

of tomato flavor. During the PARAFAC analysis for this particular study we will explore the 

effects of scaling within the different modes on the models.  

 

While PARAFAC so far has been little applied on data from descriptive analysis, possibly 

because of not being available in mainstream statistical packages, the algorithmically 

equivalent INDSCAL procedure from multidimensional scaling has found some use in the 

context of studying individual differences (Popper & Heymann, 1996), despite requiring a 

                                          
2 Kiers (2000), in an attempt to standardize notation and terminology in multi-way analysis, uses the term 
matrixization for cutting up multi-way data array into two-way matrices. However, matrixization is more often 
called undfolding in chemometrics. The term ”unfolding” thus has a different meaning here than used in 
multidimensional scaling, where unfolding is a model for preferential choice (Borg and Groenen, 1997).  
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transformation of raw scores into a dissimilarity matrix of distances (e.g. Euclidean) between 

products. In some standard statistical software packages this transformation is done 

automatically (e.g. SPSS). Chauhan & Harper (1986) and Barcenas, Elortondo, Salmeron, & 

Albisu (2002) employed INDSCAL on descriptive analysis data, with a particular view to 

individual differences as well as to comparing the indirect similarity measures derived from 

descriptive analysis with direct similarity assessments. One disadvantage of the resultant 

models from INDSCAL is that they are ill-defined with respect to the raw data (Bro, Quannari, 

& Kiers, 1998). In addition, preprocessing of the raw data, in the form of mean centering and 

scaling, is largely irrelevant to multidimensional scaling, since only distances are modeled; in a 

sense, in applying INDSCAL to descriptive analysis data, we are deprived of the option of 

preprocessing. The differences in results and interpretations of data from sensory descriptive 

analysis between those two types of algorithms have not been explored much in the literature, 

and we encourage other scientists to explore this field more. 

 

Many different strategies can be used to assess the magnitude of differences among panelists’ 

ratings of products properties. In the present context the purpose of the study is of a more 

explorative character, rather than a formal statistical testing situation of a hypothesis. 

(Dijksterhuis & Heiser, 1995) suggest the use of permutation tests for exploratory multivariate 

types of data analysis on sensory and consumer data, as a good alternative to more formal 

tests. We set out to apply one such type of alternative permutation strategy to investigate 

panelist differences in creaminess perception.  

 

Panelists’ individual differences in this study can be of multiple types, it can be differences in 

rating of Creaminess as such, or it can be differences in the relationships between the other 

sensory descriptors and the meta-descriptor Creaminess. A way to explore both these types of 

differences is by unfold-PLS. First the three-way data array is unfolded along the ‘slabs’ (the 

third mode – in this case the sensory panelists), and the relationship between the independent 

unfolded X-matrix (sensory descriptors) and the unfolded Y-vector (Creaminess) is modeled. 

Many different types of cross-validation segments can be used, ranging from leaving on 

sample out at a time to splitting the data into half. The discussion of appropriate cross 

validation segments is on-going issue, and will always depend on the purpose (confer for 

instance: Esbensen, Schönkopf, and Midtgaard, 1994; Martens and Næs, 1989; Martens and 

Martens, 2001). The obvious choice in the context of exploring differences between panelists is 

to base segmentation on the panelists, such that all data from one panelist is left out for each 

calibration, and the model is validated against the data from this panelist. This will provide a 

model that is based on the commonness of the panelists.  

 



 6 

Step 1: Calculate RMSECV 
for relevant number of 
latent variables for true 

solution  
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Step 3: Compare RMSECVs for true solution with 
block-wise scrambled solutions for assessment of 

significance 

The uniqueness of the relationship between the other sensory descriptors of one individual 

panelist and this panelists’ Creaminess rating can be evaluated by subsequently ‘scrambling’ or 

block-wise permuting the Creaminess ratings from with each other, panelist-wise. Should any 

of the permuted models turn out to have predictive ability, in terms of root mean square error 

of cross-validation (RMSECV), equal to or better than the unpermuted model (Baumann, 

2003), then the differences in creaminess perception is not significant. Contrary to that, if the 

RMSECV for the permuted results are much higher, it then indicates that the differences are 

substantial, and creaminess is idiosyncratic.The three steps in analysis of individual differences 

with unfold-PLS, and illustration of panellist block-wise scrambling of creaminess rating is 

given in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The three steps in analysis of individual differences with unfold-PLS, and illustration 
of panellist block-wise scrambling of creaminess rating. 
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2. Materials and Methods 

 

2.1 Products 

A total of 25 different types of plain stirred yoghurts were manufactured according to the 

design briefly listed in Table 1. The table also lists the product abbreviations subsequently used 

in all plots. In some plots replicates will also be indicated, and will then be specified.  

The basic philosophy of the experimental design was to achieve a broad, yet commercially 

relevant stirred yoghurt sensory property space.  

 

Table 1: The 25 different plain yoghurt types analyzed. Product abbreviations and composition. 
In plots the first character is a unique code for each product, the second refers to fat level (0, 
1, 3), the third refers to protein type (N, L, C, V, M), and the fourth character refers to total 
protein level (0-4). A fifth character (not shown in this table) refers to sensory replicate (1-3). 
 

Product  
abbreviations 

 

Fat content 
(%) 

 (0    1    3) 

Type protein added 
 

(N  S  C  V  M) 

Total protein level 
(w/w%) 

 (0      1       2       3       4) 
A-0-N-0 
B-1-N-0 
C-3-N-0 

 0.3 
      1.5 
           3.5 

 
None (N) 

 3.3 
 3.3 
 3.3 

D-0-S-2 
E-0-S-3 
F-1-S-2 
G-1-S-3 

 0.3 
 0.3 
      1.5 
      1.5 

 
Low protein concentrate 
- Skim milk powder (S)  

                 4.8 
                         5.4 
                 4.8 
                         5.4 

H-0-C-1 
1-4-0-C-2* 

I-0-C-3 
J-1-C-1 
K-1-C-2 
L-1-C-3 

 0.3 
 0.3 
 0.3 
      1.5 
      1.5 
      1.5 

 
Commercially 
available whey 

protein concentrate 
(C) 

         4.2 
                 4.8 
                         5.4 
         4.2 
                 4.8 
                         5.4 

M-0-V-1 
N-0-V-2 
O-0-V-3 
P-1-V-1 
Q-1-V-2 
R-1-V-3 

 0.3 
 0.3 
 0.3 
      1.5 
      1.5 
      1.5 

 
High viscosity 

producing whey 
protein concentrate 

(V) 

         4.2 
                 4.8 
                         5.4 
         4.2 
                 4.8 
                         5.4 

S-0-M-2 
T-0-M-3 
U-0-M-4 
V-1-M-2 
X-1-M-3 
Y-1-M-4 

 0.3 
 0.3 
 0.3 
      1.5 
      1.5 
      1.5 

 
Whey protein 

concentrate with 
microparticulated 
whey protein (M) 

                 4.8 
                         5.4 
                                 6.0 
                 4.8 
                         5.4 
                                 6.0 

* The product with commercial whey protein concentrate adjusted to 4.8% total protein with 
0.3% fat was selected as the reference product to appear in all sensory sessions. Due to data 
analytical considerations the reference is treated as 4 different products, listed 1-4. 
 
 

The total fat content was adjusted by addition of full fat cream (40% milk fat) to the milk 

base. The four different types of protein additions and the levels they were added were chosen 
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in collaboration with Arla Foods Ingredients, Nr. Vium, Denmark, as those that would provide 

good fat replacers in low-fat and nonfat yoghurts. Simultaneously with the sensory descriptive 

analysis a number of instrumental measurements (rheological and microstructural 

characterization) were carried out. This, together with sensory panelist fatigue laid some 

constraints on the experimental design. On each day of the experiment, seven products were 

evaluated. To estimate the basic product batch to batch variation one product was selected to 

be evaluated every day. The yoghurts were produced by Arla Foods Ingredients, Nr. Vium, 

Denmark in their pilot plant, according to standard methodology for manufacture of stirred 

yoghurt (blending, prepasteurization, homogenization, pasteurization, cooling, inoculation, 

incubation, cooling, mixing, filling and final cooling). The same starter culture (YC 183, Chr. 

Hansen, Denmark) and fermentation conditions (final pH 4.10-4.30) were applied to all 

products and all replicates. All yoghurts were produced exactly 7 days in advance of sensory 

evaluation, and kept on storage at 4 °C until the morning of the tests. 

 

The product with commercial protein adjusted to 4.8% total protein with 0.3% fat was selected 

as the reference products to appear in all sensory sessions. Due to data analytical 

considerations the reference is treated as 4 different products, listed 1-4. 

 

2.2 Sensory descriptive analysis 

Sensory descriptive analysis was performed under normal light with yoghurt (approx. 100 ml) 

in transparent containers with lids. A panel consisting of 12 external paid panelists was used 

for the evaluation. All panelists had passed screening tests according to ISO-standards (ISO-

8586-1, 1993), and had previous experience with sensory evaluation. Sensory sessions were 

held in the sensory laboratory at the Royal Veterinary and Agricultural University, which 

comply with international standards for test rooms (ISO-8589, 1988). In five training sessions 

panelists were trained on the products, and descriptors were chosen after suggestions from 

the panel leader on the basis of consensus among the panelists. Each training session had a 

duration of approximately one and a half hour (In the fifth training session panelists evaluated 

a subset of the samples for sensory evaluation in the sensory evaluation booths). A total of 29 

descriptors were used for the descriptive analysis. Those are listed in Table 2, together with 

their abbreviations and original Danish terms. For a number of descriptors reference standards 

were developed, those are listed in table 3.  
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Table 2: Sensory descriptors, their abbreviations in plots and original words in Danish 
 

Descriptors Abbreviations 
in plots 

Original terms 
in Danish 

Aroma (Smell) 

  Tomato smell 
  Lamb smell 
  Creamy smell 
  Buttermilk smell 
  Flour smell 
 

 
S-Tomato 
S-Lamb 
S-Cream 
S-Buttermilk 
S-Flour 

 
Lugt af tomat 
Lugt af lam 
Flødelugt 
Kærnemælkslugt 
Melet lugt 

Visual appearance 

 Whiteness 
 Green 
 Grey 
 Yellowness 
 Glossy 
 Grainy surface 
 

 
White 
Green 
Grey 
Yellow 
Glossy 
V-Grainy 

 
Hvid farve 
Grøn farve 
Grå farve 
Gul farve 
Blankhed 
Grynethed 

Flavour (Retronasal aroma and basic 

tastes) 
 Lamb flavour 
 Butter flavour 
 Cream flavour 
 Buttermilk flavour 
 Floury flavour  
 Sour taste 
 Sweet taste 

 
F-Lamb 
F-Butter 
F-Cream 
F-Buttermilk 
F-Floury 
Sour 
Sweet 

 
Smag af lam 
Smag af smør 
Smag af fløde 
Smag af kærnemælk 
Melet smag 
Sur smag 
Sød smag 

Texture and mouthfeel 
 Oral viscosity 
 Smoothness 
 Melt down rate 
 Astringent sensation 
 Fatty after-mouthfeel 
 Dry after-mouthfeel 

 
M-Viscosity 
M-Smoothness 
M-Meltdown 
Astringent 
Fatty-AMF 
Dry-AMF 

 
Viskositet 
Glathed 
Nedsmeltning 
Astringerende 
Fedtet eftermundfylde 
Tør eftermundfylde 

Non-oral manipulation 
 Non-oral viscosity 
 Grainy on lid 
 Viscosity by spoon 
 Continuous flow from spoon 
 

 
NO-viscosity 
Grainy on lid 
Spoon-Viscosity 
Spoon-Flow 

 
Gelstivhed 
Grynethed på låg 
Viskositet med ske 
Sammenhængende 
flydning fra ske 

Metadescriptor 

  Creaminess 
 

 
Creaminess 
 

 
Cremethed 
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Table 3: Reference standards for sensory descriptors 
 
Descriptors Abbreviations 

in plots 
Reference material (if any) 

Aroma 

  Tomato smell 
 
  Lamb smell 
  Creamy smell 
 
  Buttermilk smell 
 
  Flour smell 
 

 
S-Tomato 
 
S-Lamb 
S-Cream 
 
S-Buttermilk 
 
S-Flour 

 
0.3 L yoghurt (Jersey 0.1% fat, Thise Dairy, Denmark) 
added 5 drops of Heinz ® Tomato Ketchup 
See detailed procedure for lamb aroma below* 
Full fat homogenised milk (3.5% fat) and Cream (38% 
fat) in a 1 to 5 mixture 
Organically produced buttermilk (Arla Foods, Denmark) 
0.3 L yoghurt (Jersey 0.1% fat, Thise Dairy, Denmark) 
added 15 mL wheat flour 

Flavour  

 Lamb flavour 
 Butter flavour 
 
 Cream flavour 
 Buttermilk flavour 
 Floury flavour  
 

 
F-Lamb 
F-Butter 
 
F-Cream 
F-Buttermilk 
F-Floury 

 
See above 
Lump of organically produced, salted butter (Lurpak ®, 
Arla Foods, Denmark). 
See above 
See above 
See above 

 
*Procedure for production of Lamb smell reference: Fry three medium sized lamb chops on 
medium heat in a skillet. Pour 0.5 L yoghurt (Jersey 0.1% fat, Thise Dairy, Denmark) in a 
shallow container. Cover the container with aluminium foil and make a reasonable number of 
small holes. Place the lamb chops on the foil. Wrap close and tight with ceran wrap. Leave 
overnight in refrigerator at 5 °C. 
 

The use and definitions of the meta-descriptor Creaminess was allowed to be individual for 

each panelist, as part of the scope of the experiment was to investigate what Creaminess 

consists of. It would thus be of no use for the experiment to define Creaminess to the 

panelists. During the first training session, panelists were instructed that they should use their 

own definitions for Creaminess in their evaluation of the products. Panelists individually wrote 

down their own short definition of Creaminess after having tasted a number of the samples. 

Initially in the second training session a summary of the panels’ definitions were presented 

verbally to the panelists. After this the descriptor was not discussed anymore 

 

All samples were kept at 13°C for one hour before sensory sessions. Samples were served only 

one sample at a time to panelists and were taken out 1-2 minutes before serving. For all 

evaluation sessions a computerized score collection software (FIZZ, Biosystemes, France) was 

used. For all descriptors a horizontal 15 cm unstructured line scale was used. For the majority 

of the descriptors, scales were anchored at the left end with "a little" (in Danish: “lidt”) and at 

the right end with "a lot" or (Danish: “meget”). A few descriptors were anchored differently. M-

Viscosity and Viscosity by spoon were anchored with “thin” and “thick (Danish: “tynd” and 

“tyk” respectively). M-Meltdown was anchored with “slow” and “fast” (Danish: “langsom” and 

“hurtig” respectively). Sensory analysis of the 24+1 products was carried out in triplicate, and 
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in randomised order within each replicate. In each session only 7 products were evaluated, so 

a total of 12 sessions were necessary to complete the experiment. Due to a major power 

failure during the experimental period one of the sessions had to be completely remade, 

including a new set of yoghurts. This occurred 5 days later than the scheduled last session. 

The implication of this was that a total of four of the panelists could not participate, resulting in 

missing data point for these panelists, in that particular session. 

 

2.3 Data analysis 

Data analysis was performed in MATLAB Ver. 6.5 (MathWorks, Natick, MA), employing the 

PLS_Toolbox Ver. 3.0 (Eigenvector Research, Manson, WA) for two-way PCA and PLS-R, and 

the N-way Toolbox (Andersson & Bro 2000; available from www.models.kvl.dk) for three-way 

PARAFAC and N-PLS. A number of additional diagnostics for three-way analysis was applied 

during data analysis, all of them part of the N-way toolbox, or obtainable from the same 

internet location.  

 

For regression methods (N-PLS and unfold-PLS) data were centered over first mode 

(products), since the absolute values of intensities are of less relevance for the purpose of this 

analysis.  

 

A permutation approach was applied for cross-validated unfold-PLSR prediction of Creaminess, 

to test significance of differences between individual panelists. Initially RMSECV (panelists as 

cross-validation segments) was calculated for a number of latent variables in prediction of 

Creaminess.  Subsequently the panelists’ ratings were scrambled randomly and block-wise 

several times (10,000, out of the 12! possible) so that the ratings from one panelist would 

substitute those of another, as illustrated in figure 2. Assessment of significance was done by 

compared the RMSECV from the true solution with those of the block-wise scrambled solutions.  

 

3. Results and Discussion 

3.1. Decomposition of the sensory data array. 

 

3.1.1 Three-way decomposition (PARAFAC). 

After some initial runs we focus on a limited set of models, with different pre-processing 

options and three to four latent variables (LV’s), as indicated in table 4.  
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Table 4. Overview of different PARAFAC models. 
 

Model 
# 

Pre-processing 
Centering; Scaling 

# Latent 
Variables 

SSERR Iterations Explained 
Variance 

% 
1 [0 0 0; 0 0 0] 3 201855 158 84.0 
2 [0 0 0; 0 0 0] 4 174773 210 86.1 
3 [1 0 0; 0 0 0] 3 127471 36 40.6 
4 [1 0 0; 0 0 0] 4 121311 30 43.5 
5 [1 0 1; 0 0 0] 3 106891 194 10.6 
6 [1 0 1; 0 0 0] 4 103486 70 13.4 
7 [1 0 0; 1 0 0] 3 8.519 70 40.5 
8 [1 0 0; 1 0 0] 4 8.193 96 42.8 
9 [1 0 1; 1 0 1] 3 1.0195 56 10.5 
10 [1 0 1; 1 0 1] 4 0.992 39 12.9 

 
In the Pre-processing column, [1 0 1; 1 0 1] denotes mean centering across first and third 
modes, scaling within first mode, etcetera. SSERR is Error Sum of Squares. 
 

  
 

Models #3, #4 and #9, #10 appear to be most stable, i.e. permitting most LV, judging from 

scree plots, number of iterations and the Core Consistency Index (Bro & Kiers, 2003). Yet, 

Models #3 and #4 (based on centered data) are preferred to the auto-scaled models #9 and 

#10, since there might be inherent differences in the variance of descriptors, as argued in the 

introduction. Centering across first and third modes (Models #5 and #6) was tried, and failed 

miserably (whereas auto-scaling within and centering over first and third modes worked nicely, 

refer to Models #9 and #10).  

Our most coveted descriptor ‘creaminess’ comes out strongly in the B-loadings plot, both in 

first and second LV. It is evidently positively correlated to ‘Fatty-AMF’, ‘F-Cream’, ‘M-

Smoothness’ and negatively to ‘Dry-AMF’, ‘F-Floury’, ‘Grainy’, among others (figure 3).  

 

The score plot (not shown) reveals a shift from first to second and third replicates (i.e., over 

time); data from the 1st replicate also seem more spread out. This would mean that panelists, 

despite being trained on all samples beforehand, spend the first replicate to figure out the 

samples, and stabilize more in the second and third replicates. 

 



 13 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

S-Tomato
S-Lamb
S-Cream

S-ButtermilkS-Flour
WhiteGreenGrey

Yellow
Glossy

V-Grainy

F-Lamb

F-Butter

F-Cream

F-Buttermilk
Sour

Sweet

F-Floury

M-Viscosity

M-Smoothness

M-Meltdown

Astringent

Fatty-AMF

Dry-AMF

Non-oral viscosity

Grainy-on-lid

Spoon-Viscosity

Spoon-Flow

Creaminess

LV #1

LV
 #

2

 

Figure 3: Loadings B-mode (Descriptors) for PARAFAC model 
 
  

3.1.1.1 Outlier detection 

A variety of tools and graphical displays are at our disposal to detect outlying samples: scores, 

loadings, residuals, leverages, influence plots as well as Resample Influence Plots and Identity 

Match Plots plots from Jack-knifing (Riu & Bro, 2003) and yet we fail to notice any eye-popping 

outliers.  

 

3.1.2 Panelist differences 

A self-invented addition for displays of outliers is also plotted. We plot Root Mean Square Error 

(RMSE) for each panelist for individual descriptors (figure 4) and summed over all descriptors 

(figure 5).Panelist 11 have the highest residuals on the descriptor ‘creaminess’ (not named in 

figure 4, but it is the descriptor closest to the right side). Still comparing over all descriptors 

panelist 11 appear no worse than the others (figure 5).  

We also notice no apparent structure in residual and leverage plots where panelists (Mode 3) 

are coded by seniority (1=most experienced, 11 and 12=least experienced). This speaks 

volumes about the quality of panelist selection and training.  
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Figure 4: Root Mean Square Error (RMSE) for each panellist for individual descriptors. 
 
 

 

 
Figure 5: Root Mean Square Error (RMSE) for each panellist summed over descriptors. 
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As to the optimal number of LV’s, Scree plots turn out to be less useful in our case, as we 

observe no abrupt fall in Error Sum of Squares, (SSErr, table 4). Contrarily, the Core 

Consistency Index (Bro & Kiers, 2003) points unequivocally at a three-factor model. 

Segmented cross-validation (leaving out multiple, contiguous objects) with 5 segments gives 

the same result. Furthermore we don’t see any new interesting features turning up in score 

and loadings plot by adding a fourth LV.  

 

We will conclude our PARAFAC modeling here. We should mention that our final model of 

choice (centered across first mode could possibly be improved upon omission of the relatively 

unstable protein level 4, or indeed the entire 1st replicate (one third of the samples). 

 

3.1.3. Unfold PCA 

Finally a few words about unfold-PCA contrasted to PARAFAC. As mentioned before, unfold-PCA 

is capable of resolving replicate 1 from the others, just like PARAFAC, but the model 

complexity is much higher. When the data are unfolded along panelists the loading plot, is 

quite hopeless, as each descriptor appears 12 times. Alternatively the data can be unfolded 

along the products, but then each product will appear 12 times. This can be circumvented by 

using two-way ANOVA-PLSR (cf. Martens & Martens, 2001), but it is no longer an analysis of 

one data matrix alone. 

 

 

3. 2 Regression models for prediction of Creaminess (N-PLS 

and unfold-PLS). 

3.2.1 Three way regression models (N-PLS). 

3.2.1.1 Outlier detection 

The results from initial PARAFAC analysis showed that it was impossible to pinpoint any one 

product, descriptor or panelist that had distinct outlier behavior. Thus, no data points were 

excluded in the analysis. 

 

3.2.1.2 Optimal number of components 

Cross validation with sensory replicates (3) as cross validation segments showed that five LV’s 

gave the lowest Root Mean Square Error of Prediction (RMSEP). Hovewer, when increasing the 

number of segments to 12, then 9 LV’s gives the lowest RMSEP, and the first local minimum 

occurs already at the second LV. It is likely that there might be additional learning and 

improvement of the panelists’ capabilities in the first few sessions (i.e. the first replicate). By 

increasing the number of segments beyond the number of sensory replicates, the model will 
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start to incorporate some of this variance that stems from smaller differences between 

panelists in their use of the descriptors. Also differences in use of the scale within the 

individual panelist over the course of the 12 session will then start to be modeled. These 

differences are of little importance, as there are only negligible RMSEP-decreases. 

 

A close inspection of the scores and loadings in X from the cross validated N-PLS-model, show 

that the fourth and fifth LV separate those panelists (1, 4, 8, 11) that missed one session from 

the others panelists. Also LV 4 and 5 separates the 7 products that were evaluated in this 

session from the remaining 77 (Figures not shown). This shows that even though the fourth 

and fifth LV’s show a decrease in RMSEP, the decrease is closely related to the missing values 

in the data set. We choose to use only the three first LV’s for subsequent analysis of panelists’ 

differences in perception of the sensory properties and relations to the meta-descriptor 

Creaminess. 

 

3.2.2 Prediction of Creaminess 

It is of interest to understand which sensory properties can predict Creaminess in plain 

yoghurt. This is investigated in a series of plots. Figures 6 (A: LV#1-#2 and B: LV#1-#3) show 

the distribution of the products with regard to their sensory properties (X-scores (T)), i.e. all 

descriptors, except Creaminess. The effect of the experimental design is systematically 

reflected in the distribution. Samples without added protein are located on the lower left corner 

of Figure 6A, and increasing levels of added proteins towards the upper right corner. Generally 

there are relatively little deviations between replicates, as similar products are closely located. 

LV#3 mainly describes a difference in the two products (D and E) with added skim milk 

powder, and the lowest fat level (0.3%) from the other products. Figures 7 (A: LV#1-#2 and 

B: LV#1-#3) show configuration of the Creaminess of the products. The pattern is a low 

Creaminess on the left side and higher towards upper right corner, in 7A, and a difference in 

Creaminess in LV#3, mainly in products D and E. Figures 8 (A: LV#1-#2 and B: LV#1-#3) 

show the configuration of the sensory descriptors in X (WJ, second mode loadings), and it 

becomes apparent that the first LV is mostly related to texture (left to right - low to high 

viscosity), while the second relates more to mouth-feel and flavours (e.g. M-Smoothness and 

F-Cream, Fatty after-mouth-feel versus F-Floury and Dry after-mouth-feel). The third LV is 

mainly related to differences in the descriptor F-lamb. D & E – both 0.3% fat with added skim 

milk powder) possess a high intensity of this. Products D and E have a high Creaminess, but 

also a high intensity of lamb flavor.  
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Figure 6. Score plot X-scores, mode 1 (Products). A: LV #1 and #2. B: LV #1 and #3. Product 
abbreviations are listed in table 1. Last character in product abbreviation refers to replicate. 
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Figure 7: Score plot Y-variables (Creaminess of products). A: LV #1 and #2. B: LV #1 and #3. 
Product abbreviations are listed in table 1. Last character in product abbreviation refers to 
replicate. 
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3.2.3 Panelist differences. 

The most interesting part of the analysis is the examination of differences among panelists in 

their perception of creaminess. Likewise, differences in the configuration of the panelists in 

their evaluation of the other sensory descriptors and Creaminess are of interest. Figures 9 (A: 

LV#1-#2 and B: LV#1-#3) show the panelist configuration in the sensory descriptors. 

Panelists 1 and 6, and to some degree 9, have the highest loadings weights in LV #1, while 

panelists 3 and 5 have the lowest (figure 9A). Still, absolutely seen the differences are small, 

as the scale only goes from approx. 0.23 to 0.36. The interpretation of this is that the panelists 

on the right end (1, 6, and 9) overall give a higher score in the viscosity-related descriptors. 

And the panelists in the upper part of LV#2 (panelists 2, 3, 8, 9) overall seen give higher 

scores to the descriptors in that direction (Grainy–on-lid, V-Grainy, F-Floury and Dry-AMF). 

Figure 9B shows that panelist 9 is the most extreme in LV#3, indicating that the panelist gives 

high scores in F-lamb, and oppositely, panelists 10 and 12 give very low ratings in F-Lamb. 

Although it is difficult to know the exact absolute differences, the plots show that panelists 1, 

6, and 9 are most different from the averages, and to a lesser extent panelists 2 and 3 are 

also different in some way.  

 

The panelist configuration in Creaminess is shown in figures 10 (A: LV#1-#2 and B: LV#1-

#3). The differences in the first LV are much more apparent for this descriptor alone, the 

range goes from approx. -0.1 to approx. 0.4. This shows that some panelists (3 and 7 mostly) 

have loadings weights that are opposed to the others, i.e. they score at least of the samples 

reversed to the other panelists. In LV #2 panelists 2 and 9 show quite different behaviors from 

the others. In LV #3, panelist 3 has the highest loadings weights, and panelist 12 has the 

lowest. The configuration of panelists is thus quite different between Creaminess and the 

remaining sensory descriptors. However, the absolute size of these differences is difficult to 

assess. 
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Figure 8: Loading weights plot for X-variables, mode 2 (Descriptors). A: LV #1 and #2. B: LV 
#1 and #3. Refer to table 2 for full descriptors. 
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Figure 9: Loading weights plot X-variables, mode 3 (Panellists). A: LV #1 and #2. B: LV #1 
and #3. 
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Figure 10: Loading plot Y-variables (Creaminess by 12 panellists). A: LV #1 and #2. B: LV #1 
and #3. 
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3.2.4 Permutations of unfold-PLS 

The outcome of the permutation tests is displayed in figure 11. Since none of the 10,000 

permuted PLS models perform even close to the un-permuted model, in terms of RMSECV, it is 

clear that the considered PLS model can be considered relevant with a very high significance (α 

= 10-4). This provides strong support for the notion of creaminess being idiosyncratic. 

 

Figure 11: Histogram from permutation test. Occurences of grouped RMSECV’s . Unpermuted 
model indicated with arrow. 
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3.2.5 PARAFAC regression. 

In PARAFAC regression we first run PARAFAC (3 LV’s) on centered X (minus Creaminess), and 

then feed scores and loadings into N-PLS (centered Y). Plots from the model (not shown) show 

that loading weights look similar to those from N-PLS, despite the fact that Y has a high 

variance, and thus is likely to corrupt the decomposition of X in N-PLS.  

 

4. Conclusions 

4.1 Multi-way models 

Using a number of different diagnostic tools it was shown that three latent variables gave 

robust and reliable models, both in PARAFAC and in N-PLS. Although we attempted to detect 

outliers by a number of different tools, it was not possible to pinpoint any one sample, 

descriptor or panelist that had distinct outlier behavior. However, it was clear that the results 

from the first sensory replicate were somewhat more unstable than those from the remaining 

replicates.  

 

4.2 Panelist differences  

The results both from PARAFAC, N-PLS and unfold-PLS with scrambling permutations all 

indicate some degree of individual differences among panelists in their evaluation of 

Creaminess. It is our opinion that the permutation test provides solid evidence that the 

individual panelists’ perception of creaminess differ significantly. The block-wise permutation 

clearly shows that the statistical relationship between the sensory descriptors and the meta-

descriptor is unique for each panelist. However, based on the present experiment and result it 

can be difficult to conclude exactly what the size of these differences is. Still, as Creaminess 

has the highest leverage of the different descriptors, it is clear that it is the descriptor that 

carries most information about the products. In that way the results support that Creaminess 

is a ‘meta-descriptor’. 

 

4.3 Creaminess in plain yoghurts 

It appears that although the major contribution to Creaminess is related to texture and mouth-

feel descriptors, a number of flavor descriptors are also involved. Based on the broad range of 

sensory properties of the studied samples, we feel confident in making a general conclusion 

about creaminess in stirred plain yoghurts. A stirred plain yoghurt with high creaminess is 

characterized by a relatively high, but not too high, viscosity. It must possess a smooth 

mouth-feel, and fatty after mouth-feel. The yoghurts with high Creaminess ratings are also 

high in intensity of fat-related flavors, like cream, and butter, and they are sweeter than those 
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with less Creaminess. A special case is observed in this study, where samples with a clearly 

perceptible lamb flavor are rated high in Creaminess.  
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ABSTRACT

With the specific objective of investigating the sensory concept of creami-
ness, as well as other sensory attributes obtained from descriptive analysis, a
set of 25 samples of stirred low-fat yogurt were submitted to rheological
(shear and imperfect squeeze flow viscometry, dynamic oscillation and Post-
humus funnel) and sensory testing. Fat levels ranged from 0.3 to 3.5% and
protein from 3.4 to 6.0%, and four different protein sources were employed,
one being skimmed milk powder, the remaining three were milk protein prepa-
rations, one of which contained partially microparticulated whey protein
(MPP). Based on averaged data from the sensory panel (n = 12), creaminess
could be modeled by two other sensory descriptors, oral viscosity and smooth-
ness (R2 = 0.78), but was poorly modeled by the entire set of rheological data.
The MPP-containing blend did best in terms of matching the creaminess
scores of a control yogurt containing 3.5% fat (no additional protein added).

KEYWORDS

Creaminess, low fat, viscosity, yogurt, sensory, rheology

INTRODUCTION

The liking of yogurt has been found to be strongly dependent of its fat
content (Folkenberg and Martens 2003), and fat replacement with milk protein
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is often the cause of product defects such as syneresis, graininess and off-
flavors. Creaminess is thus clearly one of the key attributes in assuring con-
sumer acceptance of fermented low-fat dairy products. Several attempts have
been made at addressing the nature and contents of the concept “creaminess.”
Creaminess can be regarded as a metadescriptor, i.e., a composite of other
independent descriptors (the term metadescriptor was first coined by Frøst
et al. 2001, in connection with the sensory perception of fat in milk, where
total fattiness was used as a metadescriptor). Creaminess has been studied
most extensively for oil in water emulsion systems, where it has been primarily
related to viscosity, and to a lesser degree the volume fraction of oil (Akhtar
et al. 2005); the size of the oil droplets has not been found to affect the sensory
perception of creaminess significantly. In fluid milk, the total fattiness of a
milk sample containing 1.5% fat could be matched by a skimmed milk sample
(0.1% fat) to which a thickener, as well as a whitener and an aroma had been
added (Frøst et al. 2001). This indicates that texture/mouthfeel, flavor and
appearance are involved in the perception of fat in fluid milk. Furthermore, in
another study, the presence of particles has been found to influence the per-
ceived creaminess of model systems and chocolate mousses (Kilcast and
Clegg 2002); the same principle is used in certain fat replacers. Microparticu-
lation of protein results in dispersions of protein particles with a diameter in
the range of 0.1–20 mm, capable of emulating the sensory properties of fat
(Cheftel and Dumay 1993). In stirred yogurt (a semisolid liquid with weak
gel-like properties), both the presence of particles and the additional factors
from the fluid milk (appearance, flavor) may be important for the metadescrip-
tor creaminess.

Using magnitude estimation and an untrained sensory panel, creaminess
has been modeled as a function of sensory viscosity and smoothness for a wide
range of semisolid foods (Kokini and Cussler 1983), with R2 = 0.81.

Creaminess thickness smoothness= ⋅0 54 0 84. . (1)

The sensory dimensions had previously been reduced to these descriptors
by regression analysis. In contemporary sensory analysis, a descriptive analy-
sis by a trained panel would preferentially have been used. Elmore et al. (1999)
used a trained sensory panel to describe the sensory properties (appearance,
texture and flavor) of eight vanilla puddings varying in composition. The
sensory properties were subsequently linked to consumers’ perception of
“liking of creamy texture.” In general, Elmore et al. (1999) found that the
underlying sensations encompassing liking in the vanilla pudding were related
to texture, smoothness and dairy flavor. Overall, these observations suggest
that the perception of creaminess involves several senses, encompassing at
least olfaction, gustation and texture perception.
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The cortical representation of food texture, gustatory and olfactory per-
ception shows some degree of convergence in specific areas in the orbito-
frontal cortex, where single-neuron recording on primates has shown that
some neurons respond to specific patterns of combinations of sensory inputs
(Rolls 2004). Interestingly, some populations of neurons in the orbitofrontal
cortex in macaque monkeys have been found to respond to viscosity stimuli
(carboxymethyl cellulose solutions of different viscosities), while others
respond specifically to gritty texture (in the form of suspended microspheres).
Some neurons respond unimodally to texture, while others also receive taste
input (Rolls et al. 2003). The result provides some initial evidence about the
information channels that is used to represent the texture and flavor of food.
The orbitofrontal cortex is an important region of the brain with respect to
representation of the reward value of sensory inputs (Rolls 2004). This indi-
cates that the cortical representation of complex sensory inputs with high
reward value, e.g., a food product with high creaminess, may converge in this
region.

As a consequence of homogenization of milk for yogurt manufacture,
milk fat and casein micelles combine to form pseudocasein particles, and
subsequent heat treatment adds denatured whey protein to the structure. Milk
fat globules are thus not freely dispersed in yogurt, but rather are embedded
within the milk protein matrix. The effect of fat, and fat replacers, is hence
indirect, in that it affects the acid milk gel structure. In set yogurt, the addition
of microparticulated protein has been found to result in somewhat shorter
casein micelle chain structure (and a softer texture), compared to milk fat
(Tamime et al. 1995).

The Posthumus funnel (Posthumus 1954) is an empirical method com-
monly used in yogurt production, one of the reasons being its ability to predict
sensorially perceived thickness/viscosity (for a Newtonian fluid, the efflux
time is proportional to the kinematic viscosity). For instance, Skriver et al.
(1999) found a correlation of r = 0.834 between the efflux time, a measure of
apparent viscosity and oral viscosity. Beal et al. (1999) and Martin et al.
(1999) elaborated more on the method, introducing the parameter flowing time
coefficient (FTC), defined by

d

d FTC

w

t
w k= − +1

(2)

where w denotes the mass of the material exiting the funnel at time t, and k is
a constant. The FTC is a measure of viscosity just as the commonly used efflux
time. Unfortunately, the authors did not justify this development in sensory
terms, i.e., compare correlation estimates between these two viscosity mea-
sures and sensory data; correlations between FTC and oral and spoon viscosity
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were r = 0.644 and 0.290, respectively. The shear rate varies considerably
throughout the funnel as the material is drained by gravity. Hellinga et al.
(1986) modeled the flow in 10 segments of the funnel, and found a decrease in
shear rate from 100–500 to 15–90/s during the measurement, although their
experimental results did not fit completely to the developed model. It has been
noted that a combination of shear and elongational flow is present in the
Posthumus funnel (van Vliet 1999, 2002); a similar situation is encountered in
the mouth during oral processing.

Few methods are available for measuring elongational properties. The
squeezing flow technique ideally yields estimates for biaxial elongational
viscosity, and has been adapted to semisolids such as yogurt (Suwonsichon
and Peleg 1999; Campanella and Peleg 2002). In the imperfect squeezing flow
setup, where the lower plate is replaced by a shallow container, flow conditions
are less well defined, and stress values (rather than viscosities) are used as
consistency indices; in addition, stresses measured after relaxation for a certain
period of time can be used as measures of yield stress. An attractive feature of
squeezing flow viscometry is that the material to be tested is not broken down
by the measuring system prior to testing, i.e., intact gels such as set yogurt can
be tested (Raphaelides and Gioldasi 2005). Contrary to shear viscometry, slip
is not a problem, but actually a prerequisite for a proper test.

A recent development in the study of sensory–rheology relationships has
been the concept of using raw measurement data as independent variables in
multivariate regression models, rather than, say, parameters extracted from
flow curves, a soft-modeling approach previously used for modeling sensory
data for raw and cooked potatoes from uniaxial compression curves (Thybo
and van den Berg 2002), and also termed spectral stress–strain analysis
(Meullenet et al. 1999; Carson et al. 2002). In the latter study, a penetrometric
method was used to model seven texture descriptors developed from the
sensory profiling of yogurt; significant variables were identified by jackknif-
ing. Oral thickness was found to be less accurately predicted (R = 0.78) than
“spoon impression,” visual thickness and slipperiness. The parameters
extracted from flow curves (and other forms of raw data) can have more or less
of physical and sensory meaning. Skriver et al. (1999) preselected shear
stresses and moduli based on their correlation to sensory viscosity, and sub-
sequently submitted these, as independent variables (X ), along with param-
eters fitted from empirical flow models, to multivariate modeling of the
dependent variable sensory viscosity (Y ); in soft modeling, the entire flow
curve would be used in the regression model. In viscometry, for instance, shear
stresses at different shear rates are likely to be highly collinear; this is a
problem in multiple linear regression (MLR), but is handled adequately by
latent variable (LV) methods such as principal component regression and
partial least square regression (PLSR). These methods are also called for when
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the number of variables is high compared to the number of samples, which will
normally be the case in spectral stress–strain analysis.

In the present work, we have characterized low-fat yogurt sensorially
and rheologically, with a particular view to the concept of creaminess. The
sensory–rheology relationships are thoroughly investigated to evaluate the
predictive value of the different types of rheological measurements on indi-
vidual sensory properties.

MATERIALS AND METHODS

The experimental design (fat level, protein level, protein type) was pri-
marily chosen to provide a wide sensory space for sensory analysis. Four
different milk protein sources were used: skimmed milk powder (SMP), and
three milk protein blends (C, M and V), one of which (M) contained micro-
particulated whey protein. The other two were a commercial milk protein
blend from Arla Foods Ingredients, Nr. Vium, Denmark (C), and a high
viscosity-yielding milk protein blend (V). Two fat levels were used, 0.3 and
1.5%, as well as a full fat sample containing 3.5% fat (no protein added); there
were three protein levels: 4.2, 4.8 and 5.4% (4.8, 5.4 and 6.0 for the M protein
type, which required a higher dosage level). Finally, two samples without
added protein (fat = 0.3 and 1.5%) were produced. This amounts to a total of
4 ¥ 3 ¥ 2 + 3 = 27 samples. Because of capacity constraints, two combinations
were left out of the final design (4.2% protein with SMP, at either fat level),
giving a final experimental design of 25 different combinations. A schematic
overview of the samples is given in Table 1. These 25 different yogurt samples
were produced in triplicate, apart from one reference product which was
repeated 12 times (once every sensory session), for a grand total of 84 samples.
Yogurts were manufactured in the pilot plant facilities of Arla Foods Ingredi-
ents, by blending pasteurized skimmed milk, cream and milk protein, followed
by two-stage homogenization at 200/50 bar, 65C, heat treatment at 95C/5 min
and inoculation with a high-body, mild-flavor yogurt starter culture (F-DVS
YC-183 Yo-Flex; Chr. Hansen A/S, Hørsholm, Denmark) at 42C. Upon reach-
ing pH 4.6, the yogurt was stirred manually and pumped through a strainer and
a tubular cooler at a constant back pressure (to ensure a reproducible mechani-
cal treatment), and filled at 22C, before storage at 4C; the final pH was
~4.1–4.3. Because of the inherently unstable nature of stirred yogurt, all
sensory and instrumental testing was performed on exactly 7-day-old samples.

The sensory testing comprised a descriptive analysis by a trained panel
(12 participants). All panelists were screened according to international stan-
dards (ISO-8586-1 1993). Twenty-eight sensory descriptors were developed
by consensus during five training sessions of 1.5 h, using refererence samples
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where feasible. Table 2 lists the descriptors, their definitions, abbreviations
and original terms in Danish. In addition, the descriptor creaminess was
evaluated without prior consensus among the panelists, i.e., each panelist used
his or her own concept of creaminess. The samples were kept at 13C for 1 h
prior to the sensory sessions, and served in random order, one sample at a time,
and seven samples per session, under normal light conditions in transparent
100-mL containers with lids. The sensory analysis took place in a sensory
laboratory complying with international standards for test rooms (ISO-8589

TABLE 1.
SCHEMATIC OVERVIEW OF THE YOGURT SAMPLES, ABBREVIATIONS

AND COMPOSITION

Product abbreviation Fat content (%) Added protein type Total protein level (w/w %)

0 1 3 0 1 2 3 4

0N0 0.3 None (N ) 3.3
1N0 1.5 3.3
3N0 3.5 3.3

0S2 0.3 Skim milk powder (S ) 4.8
0S3 0.3 5.4
1S2 1.5 4.8
1S3 1.5 5.4

0C1 0.3 Commercial milk protein
blend (C )

4.2
4 ¥ 0C2* 0.3 4.8
0C3 0.3 5.4
1C1 1.5 4.2
1C2 1.5 4.8
1C3 1.5 5.4

0V1 0.3 High viscosity – producing
milk protein blend (V )

4.2
0V2 0.3 4.8
0V3 0.3 5.4
1V1 1.5 4.2
1V2 1.5 4.8
1V3 1.5 5.4

0M2 0.3 Partially microparticulated
milk protein blend (M )

4.8
0M3 0.3 5.4
0M4 0.3 6.0
1M2 1.5 4.8
1M3 1.5 5.4
1M4 1.5 6.0

The different contents of fat (0, 1, 3) and protein (0, 1, 2, 3, 4), and a short description of these proteins
(N, S, C, V, M) were added.
* The yogurt with 0.3% fat-added commercial milk protein blend adjusted to 4.8% total protein was

selected as a reference sample to appear in all 12 sensory sessions. Because of data analytical
considerations, these 12 samples were treated as four different products.
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1988). The samples were scored on a computer screen using a 15-cm unstruc-
tured scale; a computerized score collection software (FIZZ; Biosystemes,
Couternon, France) was employed. The scales were anchored with “a little”
and “a lot” (“lidt” and “meget,” in Danish), except for the viscosity descriptors,
for which the terms “thin” and “thick” (“tynd” and “tyk”) were used;
M-meltdown was anchored with “slow” and “fast” (“langsom” and “hurtig”).

TABLE 2.
SENSORY DESCRIPTORS, THEIR ABBREVIATIONS IN PLOTS AND ORIGINAL

TERMS IN DANISH

Descriptor Abbreviations in plots Original terms in Danish

Aroma (smell)
Tomato smell S-tomato Lugt af tomat
Lamb smell S-lamb Lugt af lam
Creamy smell S-cream Flødelugt
Buttermilk smell S-buttermilk Kærnemælkslugt
Flour smell S-flour Melet lugt

Visual appearance
Whiteness White Hvid farve
Green Green Grøn farve
Gray Grey Grå farve
Yellowness Yellow Gul farve
Glossy Glossy Blankhed
Grainy surface V-grainy Grynethed

Flavor (Retronasal aroma and basic tastes)
Lamb flavor F-lamb Smag af lam
Butter flavor F-butter Smag af smør
Cream flavor F-cream Smag af fløde
Buttermilk flavor F-buttermilk Smag af kærnemælk
Floury flavor F-floury Melet smag
Sour taste Sour Sur smag
Sweet taste Sweet Sød smag

Texture and mouthfeel
Oral viscosity M-viscosity Viskositet
Smoothness M-smoothness Glathed
Meltdown rate M-meltdown Nedsmeltning
Astringent sensation Astringent Astringerende
Fatty after mouthfeel Fatty-AMF Fedtet eftermundfylde
Dry after mouthfeel Dry-AMF Tør eftermundfylde

Nonoral manipulation
Nonoral viscosity NO-viscosity Gelstivhed
Grainy on lid Grainy on lid Grynethed på låg
Viscosity by spoon Spoon-viscosity Viskositet med ske
Continuous flow from spoon Spoon-flow Sammenhængende flydning fra ske

Metadescriptor
Creaminess Creaminess Cremethed
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Steady shear viscometry was performed at 13C using a cup-and-bob
measuring system (C25; cup diameter: 27.5 mm, bob diameter: 25.0 mm) in a
Bohlin VOR – (Malvern Instruments Ltd., Malvern, U.K.) controlled strain
rheometer. The initial equilibrium time was 300 s, the constant delay time was
20 s and the measurement time was 10 s. Shear stress was measured at 31
increasing, and subsequently decreasing, shear rates in the range of 0.00919–
231/s. The flow curves from viscometry were fitted to the Herschel–Bulkley
and QRS (Skriver et al. 1993) models using Gauss–Newton nonlinear regres-
sion (PROC NLIN in SAS version 8.2; SAS Institute, Cary, NC). In addition,
the hysteresis loop area between the up and down flow curves was determined
using numerical integration.

Dynamic oscillatory testing comprised strain sweeps (1 Hz) and fre-
quency sweeps (0.005–10 Hz, strain 0.003) in the Bohlin VOR rheometer,
again using the C25 measuring system, and an initial equilibrium time of
300 s. From the strain sweep, a yield stress value was derived as

s g0 yield yield= ′G (3)

where G�yield and g yield are elastic modulus and shear strain, respectively,
recorded when the former was reduced to 98% of its maximum value. From
frequency sweep data, log(G) versus log(frequency) was plotted for moduli
G*, G� and G�. The slope and intercept of these curves were obtained by linear
regression, along with estimates for moduli G at 1 Hz.

Imperfect squeezing flow viscometry was performed using a lower con-
tainer of diameter d = 140 mm, and an upper cylindrical probe (d = 120 mm),
both made of Teflon (Dupont, Wilmington, DE) and fitted to an Instron UTM
model 5564 (Instron Corp., High Wycombe, U.K.) with a 500-N load cell.
Samples of 100 mL, corresponding to an initial sample height of 6.50 mm, were
poured into the container and allowed to relax at 13C for 30 min prior to testing.
The samples were compressed at 0.1 mm/s to a final height of 0.7 mm; stress
values obtained during compression every 0.1 mm, at heights 3.0–0.7 mm
(where squeezing flow is apparent), were used as consistency indices. Subse-
quently, the compressed samples were relaxed for a further 180 s to record
stresses after 60 and 120 s; these values were used as yield stress estimates.

Posthumus funnels with orifices of 4 and 8 mm were used, and testing
was performed at 5C. The material exiting the funnel was collected in a beaker
placed on an electronic balance interfaced to a computer. The resulting efflux
curve (Fig. 1) was fitted to a second-degree polynomial, yielding the polyno-
mial coefficients a, b and c. In addition, the efflux time was estimated from the
efflux curve: teff = t280g, i.e., the time it took to collect 280 g of sample from the
funnel (this being approximately the mass of yogurt between the upper and
lower level marks in the funnel). The FTC was found by plotting mass change
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per time unit (Dw/Dt) versus mass, and subsequently performed linear regres-
sion on the linear portion of the curve. Finally, the mass of residual material in
the funnel after emptying (i.e., when Dw/Dt = 0 for at least 5 s) was taken as a
potential measure of yield stress.

Data Analysis

Initially, univariate analysis of variance (ANOVA) and multivariate data
analysis (ANOVA–PLSR) were applied to analyze the sensory data. Mixed-
model ANOVA for individual descriptors was performed with products
(n = 25) as fixed factors and the panelists (n = 12) as random factors. This
method is commonly applied for data from descriptive analysis (Næs and
Langsrud 1998). ANOVA–PLSR is a multivariate regression method where
the effect of design factors on the response variables (here, the sensory
descriptors) is evaluated (Martens and Martens 1986, 2001). The method
avoids multicollinearity problems by modeling LVs representing the main
variation found to be common for the variables. The method evaluates effects
of the experimental design variables on sensory properties We have used it
here as a graphical alternative to ANOVA (Aastveit and Martens 1986). For
multivariate analyses, cross validation was performed, leaving out one repli-
cate at a time (Martens and Næs 1989). Jackknifing with replicates served as

FIG. 1. EFFLUX CURVE FROM POSTHUMUS FUNNEL
The continuous curve represents fitted second-degree polynomial, yielding parameters a, b and c.
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the validation tool for all multivariate analyses, comparing the perturbed
model parameter estimates from cross validation with the estimates for the full
model (Martens and Martens 2000). For multivariate analysis of relationships
between consensus sensory descriptors and creaminess, the analysis was per-
formed both on the full data set, to explore the effect of differences among the
panelists. For other multivariate data analyses, data were averaged over the
panelists, and those data were used for the analysis of product properties and
relationships with instrumental measurements.

Sensory–instrumental relations were modeled by uni- and multivariate
techniques, using R, version 2.0.1 (R Development Core Team 2004); The
Unscrambler, version 9.1 (CAMO, Woodbridge, NJ) and MATLAB, version
6.5 (MathWorks, Natick, MA) in combination with the PLS_Toolbox, version
3.0 (Eigenvector Research, Manson, WA). The sensory response variables
were submitted to the Box–Cox transformation prior to linear regression
modeling; the transformation parameter l was rounded off to the nearest
multiple of 0.50. Apart from the univariate parameters extracted from the three
types of flow curves (shear and squeezing flow viscometry; Posthumus
funnel), the entire curves (only the up part in case of shear viscometry, and
only until the cylindrical part was emptied, i.e., until m = 280 g, in the case of
the Posthumus funnel, in the remaining places of the data vector the last
measured value was duplicated) were used as input for PLSR modeling of
M-viscosity. The predictive ability of these models, as well as that of univariate
linear models of M-viscosity regressed on extracted parameters, was validated
by leave-one-out cross validation. For the univariate linear models, the pre-
dicted values arising from cross validation were retransformed to the original
sensory scale prior to computing the root mean square error of cross validation
(RMSECV), and were thus directly comparable to those computed for the
multivariate models. Regression coefficients, on the other hand, cannot be
retransformed and will not be given here.

RESULTS AND DISCUSSION

Sensory Data

The results from ANOVA showed that 26 of the descriptors had signifi-
cant differences among the samples. The descriptors S-tomato, S-buttermilk
and Gray were not found to discriminate significantly between the products,
and were thus excluded from further analysis. Figure 2 shows correlation
loadings plot of the sensory descriptors from the first two of the three signifi-
cant LVs (explaining in average 58, 18 and 3% of the variation in sensory data,
respectively, data averaged over the panelists). Figure 3 shows distribution and
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differences among the products, also indicating the different factors and levels
in the object labels. Product differences are referred to along with the expla-
nations in the text.

The grouping and orientation of the descriptors in Fig. 2 show that the
first underlying dimension was related mainly to texture. In the left end, a
group of descriptors consisting of M-meltdown, NO-viscosity, M-viscosity and
spoon-viscosity is placed, indicating that products in this direction had a high
viscosity and a slower meltdown rate in the mouth. Meltdown rate is defined
as the rate by which the yogurt bolus breaks down in the mouth. Meltdown rate
is the perception of reduction of viscosity as a consequence of manipulation in
the mouth and mixing with saliva. Figures 2 and 3 show that the products with
a relatively high level of added protein (level 3) had the highest sensory
viscosities and the slowest M-meltdown. Notice that a further increase in
addition of microparticulated protein (M) did not give a further increase in
viscosity (Fig. 3). In the opposite end, products with a low score in the
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FIG. 2. ANALYSIS OF VARIANCE–PARTIAL LEAST SQUARE REGRESSION
CORRELATION LOADINGS PLOT SHOWING HOW SENSORY DESCRIPTORS CORRELATE

WITH LATENT VARIABLES (LVs)
The inner and outer circles represent 50 and 100% explained variance, respectively. Refer to Table 1

for descriptor abbreviations.
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aforementioned descriptors are situated. Those products were also high in
glossy and spoon-flow ratings. This is the group of products without or with a
low level of added protein (1 and 0 in Fig. 3). To some degree, those products
also had a high smoothness, particularly the 3.5% fat yogurt (“3NO”), as can
be seen as an indication of the fat level in Fig. 3. The second dimension is
mainly related to the metadescriptor creaminess, located in the top part of the
dimension. Products in this direction possessed the highest creaminess. A high
creaminess is correlated with F-cream, sweet and F-butter, and to some degree
also to a fatty after mouthfeel (fatty-AMF). The products with the highest
creaminess were “1S2,” and others in that direction. Overall, the products with
added SMP (labeled S in plots), and the products with level 2 or 3 of added
microparticulated milk protein blend (labeled M in plots), had a high creami-
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ness (see also Table 3). Products in the opposite end of the second dimension
were characterized by a low creaminess, and this was correlated with a high
intensity in dry-AMF, astringent and sour. To some degree, this was also
correlated with F-floury. Those were mainly products with the lowest fat level
(0.3%; 0 in Fig. 3), and added commercial milk protein blend or viscosity-
yielding milk protein blend (C and V, respectively, in Fig. 3). Products in the
lower left corner of the plot had a high viscosity (from dimension one), and a
relatively low creaminess. Lastly, they also had a grainy appearance (V-grainy
and grainy on lid). The third LV (not shown) spanned the difference between
samples with and without a high intensity of F-lamb and S-lamb, and a higher

TABLE 3.
Creaminess RATINGS FOR ALL INDIVIDUAL YOGURTS

(MEAN OF 12 PANELISTS, THREE REPLICATES)

Yogurt sample Creaminess
mean rating

Dunnett’s one-sided
test: P value for sample
scoring higher in
creaminess than control

0N0 1.71 1.0000
1N0 4.12 1.0000
0C3 4.56 1.0000
0C1 5.02 1.0000
0V3 5.07 1.0000
0V1 5.47 1.0000
4 ¥ 0C2 6.99 1.0000
1C3 7.23 0.9990
0V2 7.23 0.9984
3N0 7.86 NA
0S2 8.13 0.8835
0M2 8.13 0.8817
1M4 8.21 0.8476
1V3 8.37 0.7535
0S3 8.38 0.7452
1V1 8.63 0.5542
0M4 8.80 0.4199
1C1 8.98 0.2865
0M3 9.67 0.0256*
1S3 9.70 0.0220*
1V2 9.78 0.0153*
1M3 10.21 0.0057**
1M2 10.49 0.0002***
1C2 11.12 0.0000***
1S2 11.25 0.0000***

Dunnett’s pair-wise multiple comparison test against full fat sample
“3NO” as control.
NA, not applicable.
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astringent rating than what is apparent from LVs 1 and 2. This group of
products consisted of all those with added SMP (S). The intensity of
lamb smell and lamb flavor was proportional to the level of added SMP.
Furthermore, the effect was most pronounced in the 0.3% fat level. A likely
explanation for the occurrence of these descriptors is some off-flavor aroma
compounds from the SMP.

Interestingly, creaminess was the most discriminating of all 29 sensory
descriptors; this has also been seen in other sensory yogurt studies (Muir et al.
1997). Further, when regressing creaminess ratings (from all the panelists) on
the remaining 25 significant descriptors using PLSR, three LVs described the
data adequately, capturing 48.8 + 3.6 + 1.2 = 55.6% of the total variance. The
analysis showed some differences among the panelists in their rating of
creaminess. The panelists attributed different weights to flavor versus texture
properties (Frøst et al. 2004). The relative importance of each consensus
descriptor in describing creaminess variance is shown by the regression coef-
ficients (Fig. 4). Not unexpectedly, texture-related descriptors carried the most
weight, but others, e.g., S-cream, F-cream, F-butter and sweet, were also
important. Many of these descriptors were (cross) correlated, and a consider-
able reduction in the number of explaining variables was possible. In fact,
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when regressing creaminess on just M-viscosity and M-smoothness (i.e., MLR,
excluding interactions), we find with R2 = 0.423 and RMSECV = 2.92.

Creaminess viscosity smoothness= + −0 573 0 650 2 640. . . (4)

The variance described by those two descriptors alone accounted for as
much as 76% of the variance described by 25 descriptors. The two sensory
descriptors M-viscosity and M-smoothness were sufficiently uncorrelated
(r = –0.397) to ensure that multicollinearity was not a problem (nor was heter-
oscedacity in this case, so no transformation of the response was necessary).

Table 3 lists creaminess ratings for the individual products. From here,
it is evident that the addition of all the protein types strongly affected the
creaminess. Testing the differences in creaminess with Dunnett’s one-sided
test, using the full-fat “3N0” as a control sample, a number of samples had a
higher creaminess rating. However, among the 0.3% fat samples, only the one
with added microparticulated milk protein blend to level 3 (“0M3”) was
significantly creamier than the full-fat control.

Sensory–Instrumental Relationships

One way to map instrumental and sensory data together graphically is the
correlation loadings plot (Fig. 5), based on a partial least square 2 regression
model in which all instrumental data are employed as the independent vari-
ables (X), and all sensory variables as dependent variables (Y). In the corre-
lation loadings plot, the loadings are transformed to (scale–invariant)
correlation coefficients between the input variables and the partial least square
components (Martens and Martens 2001). The ellipses represent 50 and 100%
explained variance. Such a model inevitably has a limited predictive ability,
inasmuch as several of the Y variables are uncorrelated (Esbensen 2002). Still,
from our data, it was evident that several measures of physical and sensory
viscosities were located closely to each other in the map, and thus were more
or less redundant. This was corroborated by univariate correlations: The cor-
relation coefficient between oral and nonoral viscosity was 0.973 and between
oral and spoon viscosity was 0.980. Yet, because of the sequence in which the
sensory evaluation took place, it is unlikely that the panelists would remember
their different viscosity scores and thus be biased.

Regressing creaminess on the entire set of rheological data (using PLSR,
with autoscaled data, and two LVs) gave models with modest predictive ability
(R2 = 0.38, RMSECV = 1.88). This is expected, as creaminess is orthogonally
positioned to the sensory viscosity parameters. The proximity of the a4mm

coefficient, in the correlation loadings plot (Fig. 5), hints at a possible corre-
lation to creaminess. However, correlations found close to the origin of the
correlation loadings plot are most likely spurious.
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Modeling of Oral Viscosity (M-viscosity)

An assessment of the predictive ability of different rheological param-
eters should be compared to the inherent uncertainty of the sensory measure-
ments. An ANOVA–PLSR model predicting M-viscosity from the design
variables (based on the panelists’ average ratings), and validated by jackknif-
ing, using replicates as segments, gave an RMSECV of 1.12 (R2 = 0.864). This
is the upper limit for precision in a predictive model. Models performing better
will have overfitted the data more than the inherent uncertainty of the sensory
data permits.

Considering the empirical nature of the method, it is striking that the
empirical Posthumus funnel method, in the form of the second-order poly-
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nomial coefficients a and b, delivered the best prediction of M-viscosity
(R2 = 0.898 for the 8-mm orifice) among all of the extracted viscometry param-
eters (Table 4). This was considerably better than the commonly measured
efflux time (R2 = 0.556), or the recently suggested FTC (R2 = 0.754). For all
extracted parameters, the 8-mm orifice clearly offered the best predictive
ability in terms of RMSECV. Even better was the soft-modeling approach
(Table 5); with just two LVs as much as 98% variance was captured for both
the 4- and 8-mm orifice. The predictive abilities were roughly the same as for
a8mm and b8mm. As is evident from the correlation loadings plot, the first part of
the Posthumus efflux curves carried the least amount of information. The first
part is closer to the origin of the correlation loadings plot, and thus has less

TABLE 4.
REGRESSION OF ORAL VISCOSITY (M-viscosity) ON

RHEOLOGICAL PARAMETERS

Transformation R2 RMSECV

Posthumus funnel
a4mm None 0.178 4.91
a8mm Log 0.884 1.21
b4mm None 0.505 2.97
b8mm Square root 0.898 0.97
c4mm Square 0.194 2.82
c8mm None 0.507 2.07
FTC4mm Square 0.302 2.91
FTC8mm Power 2.5 0.787 1.53
Efflux time, t280g4mm Power 2.5 0.613 2.10
Efflux time, t280g8mm Power 2.5 0.609 2.14

Shear viscometry
Shear stress at 9.2/s Power 1.5 0.837 1.12
s0 (Herschel–Bulkley) Square 0.531 2.13
K (Herschel–Bulkley) None 0.779 1.38
N (Herschel–Bulkley) None 0.391 2.28
Q (QRS) Power 1.5 0.694 1.53
R (QRS) None 0.286 2.48
S (QRS) Square 0.709 1.60

Imperfect squeezing flow viscometry
Stress at 1.7 mm Power 1.5 0.733 1.43

Oscillation
G* at 1 Hz Power 1.5 0.841 1.12
G� at 1 Hz Power 1.5 0.840 1.12
G� at 1 Hz Power 1.5 0.812 1.42
Intercept G* None 0.863 1.09

Given are the coefficients of determination (R2) as well as the root
mean square error of cross validation (RMSECV).
FTC, flowing time coefficient.
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predictive value. Using a subset of samples, for which t280g8mm is less than 60 s,
we used an untransformed linear model with R2 = 0.756, RMSECV = 1.73.
The efflux time could thus describe the sensorially perceived thickness in a
linear fashion, but only over a more limited viscosity range (Fig. 6).

Turning to shear viscometry, we found the best fit to M-viscosity at a
shear rate of 9.2/s (R2 = 0.837). A better approach to find the sensorially most
important shear rate is to inspect the regression vector from the soft modeling
of oral viscosity on the shear viscometry flow curve. The regression vector
increased monotonously with the shear rate (Fig. 7); the reason why we
obtained a different result from the linear regression models based on invidual
shear rates is that the Box–Cox transformations (used because of the variance
inhomogeneity of M-viscosity) used are not optimal for every shear rate con-
sidered (a rounded-off value for the transformation parameter l was used). The
soft modeling gave predictions similar to those based on shear stress and
the Herschel–Bulkley parameter K. The hysteresis loop area correlated to
M-viscosity (R2 = 0.691), similar to the r = 0.867 found by Skriver et al.
(1999). The loop area is traditionally regarded as a measure of thixotropy and
it was hence inferred that the perception of sensory viscosities not only
depended on physical viscosity, but also on the degree of resistance to break-
down. However, this was possibly because the loop area, as is the case for our
data, was strongly correlated to shear stress (r = 0.895 at a shear rate of 9.2/s).
Introducing this shear stress as a partial variable, we only found a partial
correlation coefficient of just 0.0232, supporting the notion of a spurious
correlation between loop area and oral viscosity.

Stress values from imperfect squeezing flow also correlated to oral vis-
cosity (R2 = 0.73; differences between different heights are not significant),

TABLE 5.
SOFT MODELING OF M-viscosity BASED ON POSTHUMUS FUNNEL FLOW CURVE,

SHEAR VISCOMETRY AND IMPERFECT SQUEEZING FLOW VISCOMETRY

Percent variance captured
in X (cumulative)

Percent variance captured
in Y (cumulative)

RMSECV

Posthumus funnel
4-mm orifice, LV 1 99.67 82.95 3.68
4-mm orifice, LV 2 99.97 97.69 1.37
8-mm orifice, LV 1 99.93 87.76 3.12
8-mm orifice, LV 2 99.99 98.23 1.21

Shear viscometry
LV 1 99.30 98.05 1.24

Imperfect squeezing flow viscometry
LV 1 99.95 97.13 1.51

LV, latent variable; RMSECV, root mean square error of cross validation.
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despite the fact that the employed strain rate is several orders of magnitude
lower than what is encountered in oral processing. Turning to soft modeling,
we found the regression coefficient to be decreasing with height (Fig. 8), i.e.,
the most informative stress value was the one measured at the final height of
H = 0.7 mm. This is consistent with findings from the discrimination testing on
yogurt (Corradini et al. 2001); it was found that imperfect squeezing viscom-
etry could resolve two (sensorially indistinguishable) commercial brands
of yogurt at heights 0.8 and 1 mm, but not 2 mm. The biaxial strain rate is
given by

d

d
be
t

V

H t
=

( )2
(5)

where V denotes the displacement rate (Campanella and Peleg 2002). Thus, the
smallest height, representing the highest explanatory power relative to oral
viscosity, corresponds to the highest strain rate. By and large, in terms of
predictive performance, the imperfect squeezing flow method appears to be
outperformed by shear viscometry. Squeezing flow viscometry ideally mea-
sures elongational viscosity; however, in the imperfect version, where the
lower plate is replaced by a shallow container, the flow is less well defined. In
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the Posthumus funnel, there are both shear and elongational flows, depending
on the location; this might be the reason of the difference in predictive
performance.

For both shear and imperfect squeezing flow viscometry, one single LV
essentially explained the variation in the PLSR models of oral viscosity.

It is noteworthy that dynamic moduli described essentially the same
amount of variance of the sensory descriptor M-viscosity as does shear vis-
cometry; this was also found by Skriver et al. (1999). But again, this could be
a spurious relationship because of the strong correlation between shear stress
and dynamic moduli. In our case, we found a correlation of r = 0.878 between
the elastic modulus at 1 Hz and shear stress at 9.2/s. The elastic modulus
measured at 1 Hz in the data set varied between 71 and 647 Pa, proof of the
considerable texture span encountered in this study.

Yield Stresses

In the correlation loadings plot (Fig. 5), the considered measures of yield
stress from shear and imperfect squeezing flow were close to each other and
thus correlated, but apparently not to anything of sensory relevance. The same
applies to the residual mass of yogurt remaining in the Posthumus funnel after
measurement. It is conceivable that other methods for measuring yield
stresses, e.g., the vane method, could give more sensorially relevant results.

CONCLUSIONS

The sensory perception of creaminess in low-fat yogurt was clearly
dependent on several more sensory variables than just oral viscosity and
smoothness, but these were the most important. This corroborates the findings
of Kokini and Cussler (1983), even though we have arrived at this conclusion
in a very different manner. Because creaminess in low-fat yogurts is not only
a result of texture properties, it will be difficult to improve its prediction from
rheological properties. As to the sensory relevance of elongational flow, we
have not provided conclusive evidence to support the notion that this type of
flow is more sensorially important than shear flow.

It was evident that much improved predictions of oral viscosity can be
obtained from the Posthumus funnel by recording the mass of yogurt exiting
the funnel, either in the form of features extracted from the resulting efflux
curve, or by using the efflux curve as an input for soft modeling. In the present
study, we have considered a very wide texture span, and the commonly
measured efflux time was still effective when predicting the sensory thickness
of samples of more equal viscosity. We have demonstrated that a soft modeling
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approach can result in very precise predictions of textural parameters, even
when using an emprical test such as the Posthumus funnel.
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Effect of fat, protein and shear on graininess, vis cosity and 
syneresis in low-fat stirred yoghurt 
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Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark. E-mail: tj@kvl.dk 
 
 

 The effect of fat (0.2, 0.85 and 1.5%) and protein (3.4, 4.4 and 5.4%) levels, as well as that of mechanical shearing 

(pore size of smoothing filter: 50, 100 and 150 µm) on the post-aggregation of stirred yoghurt particles as well as on the 

viscosity and syneresis in low-fat stirred yoghurt were investigated. To quantitate the proportion of yoghurt particles 

aggregated subsequent to the filtration of the stirred yoghurt gel we have introduced the Degree of Aggregation, i.e. the 

ratio of yoghurt particles with a particle size exceeding the filter size. Empirical models of Degree of Aggregation, as well 
as of viscosity and syneresis, were built using Response Surface Methodology (RSM). All three could be adequately 

modelled by including the fat and protein levels, their interaction term Fat x Protein as well as the filter pore size. Protein 

content and Degree of Aggregation were found to be positively correlated for fat levels above 0.7%, and negatively 

correlated for fat levels below 0.6%. The post-aggregation behaviour of low-fat, stirred yoghurt is ascribed to their 

branched network microstructure, which is presumed to be more susceptible to mechanical attrition.    
 
Einfluss  von  Fett,  Protein  und  Stress  auf  die  Körnigkeit,  Viskosität  und  Synärese  von  fettarmem  gerührten  

Joghurt   
 Der Einfluss von Fett- (0,2, 0,85 und 1,5%) und Proteingehalt (3,3, 4,4 und 5,4%) sowie mechanischer Scherkraft 
(Porengröße des glättenden Filters 50, 100 und 150 µm) auf die Postaggregierung von gerührten Joghurtpartikeln, 
sowie auf die Viskosität und Synärese von fettarmem Joghurt wurde untersucht. Um den Anteil von aggregierten 

Joghurtpartikeln nach der Filtration zu beurteilen, wird ein Aggregierungsgrad vorgeschlagen, d.h. der Anteil von 

Joghurtpartikeln, deren Partikeldurchmesser die Porengröße übersteigt. Empirische Modelle von Aggregierungsgrad, 
Viskosität und Synärese wurden mit der Response Surface Methode (RSM) erstellt. Alle drei wurden zufriedenstellend 

modelliert durch Einschluss von Fett- und Proteinkonzentrationen, der Wechselwirkung Fett x Protein sowie der 

Filterporengröße. Proteingehalt und Aggregierungsgrad waren positiv korreliert bei Fettgehalten über 0,7% und negativ 

korreliert bei weniger als 0.6%. Das Postaggregierungsverhalten von fettarmem Joghurt wurde auf eine verzweigte 

Mikrostruktur zurückgeführt, die vergleichsweise empfindlich gegenüber mechanischen Einflüssen ist.  
61 Yoghurt  (composition and physical properties) 61 Joghurt  (Zusammensetzung und physikalische 
    Eigenschaften 

 

 

1. Introduction 
 The presence of graininess (lumpiness, grittiness) is 

a common defect in dairy products found especially in 

low-fat, stirred semi-solid products such as yoghurt 
and cream cheese. These are essentially stirred acid 

milk gels, i.e. concentrated suspensions of acid gel 
particles in milk serum. The control of texture defects in 

cultured products has been reviewed recently (1). 
Graininess is commonly ascribed to the addition of 
whey protein. In one study, whey protein concentate 

(WPC) was partially substituted for skimmed milk 

powder (SMP) in lactose-reduced yoghurt (2). The 

resulting yoghurts were significantly grainier after one 

week of storage, implying that post-aggregation, i.e. 
the aggregation of acid milk gel particles occurring after 

the stirring of the gel, of the yoghurt particles play a 

part. Addition of WPC has been shown to result in more 

grainy yoghurts than SMP (2,3), even if the total solids 

(TS) is lower (2). Addition of caseinate gives an 

intermediate graininess and increasing the pre-heat 
treatment time of the milk base increases graininess in 

yoghurt (3). It was inferred that graininess is linked to 

the amount of denatured whey protein in the milk base. 
Additions of polysaccharides can also give rise to 

graininess due to phase separation (3), ostensibly by 

depletion flocculation. Addition of pectins, for instance, 
may cause graininess in stirred yoghurt if the added 



quantity exceeds the recommended 0.08-0.20 g/100 g. 
A different phenomenon is seen with modified starch; 
native starches tend to be shear-sensitive and are thus 

prone to cause graininess in stirred yoghurt. 
Graininess has also been found to depend on the 

starter culture (4); L. delbrueckii var. bulgaricus 

reportedly causes more graininess than L. helveticus. 
The notion of starter bacteria as the reason for 

graininess has, however, been dismissed by others 

(5). Increasing the intensity of stirring after acidification 

(changing the stirring speed from 50 to 400 ppm) gave 

a clear (negative) effect on graininess, whereas the 

stirring time did not. The fermentation time (achieved 

by using different starter cultures) has also been found 

to influence graininess, with r=0.86 (6,7). However, 
when modified stach was used, the situation appears 

to be different. In one study, yoghurt with added 

modified waxy maize starch, and fermented at 35ºC, 
was less grainy that when fermented at 43ºC, despite 

the longer fermentation time (8), whereas in another 

study it was found that an increasing substitution of 
SMP by WPC in modified starch-added yoghurt 
reduced the level of   graininess (9); it should be noted 

that control samples without added starch did not 
exhibit graininess. In another study, the visual 
appearance of yoghurt changed from very smooth to 

very granular when the fermentation temperature was 

increased from 41 to 47ºC (10); it should be 

emphasized that some technological parameters (e.g. 
fermentation temperature and time) are confounded, 
and as such difficult to separate.  
 Grains recovered from yoghurt have been found to 

contain more protein and total solids, and little or no fat 
(5,7). Electron microscopy has not revealed any 

agglomerations of starter bacteria within the grains, 
lending credence to the notion that the starter cultures 

per se do not take part in the formation of granules. 
Graininess was found to be less pronounced when a 

more »viscous« (i.e., exopolysaccharide-forming) 

yoghurt starter culture was used. 
 With the specific objective of reducing graininess, 
the acidified milk gel is commonly submitted to a 

mechanical treatment (»smoothing«), in addition to 

the stirring process. This may consist of pumping the 

coagulum through a filter (11), and/or maintaining a 

constant backpressure over a valve (12).  
 Graininess has primarily been quantitated 

sensorially in the literature, e.g. by visual examination 

of a sample of yoghurt spread on dark glass (10). 
However, a method based on image analysis has also 

been decribed (13): a yoghurt sample is suspended in 

water and poured into a Petri dish; the number of grains 

with a diameter exceeding 1 mm is enumerated. One 

could argue that the limit of 1 mm should be set 
differently, since grains of a much smaller diameter can 

be perceived both visually and orally (14). In addition, 
soft, large grains might not contribute to the sensorially 

perceived graininess.  
 It is clear from the above that the level of graininess 

is influenced by the level of fat and protein, which also 

affect other functional characteristics such as viscosity 

and syneresis. A balance between the latter and 

graininess will thus have to be struck. However, the 

effects on graininess of fat and protein levels as well as 

the mechanical treatment of yoghurt (and, in particular, 



the interactions between these) have not been studied 

systematically. The purpose of the present study was 

to provide empirical response surface models of 
graininess as well as viscosity and syneresis in low-fat 
stirred yoghurt. Mathematical optimization (i.e., 
minimization) of graininess with viscosity and 

syneresis constraints will be dealt with in a forthcoming 

paper. 
 
2  Materials and methods. 
2.1 Experimental design 
 A three-level factorial design with four centre points 

was used. The factors considered were fat content 
(0.2, 0.85 and 1.5 per cent), protein content  (3.4, 4.4 

and 5.4 per cent) and filter pore size (50, 100 and 150 

µm). A total of 30 samples of yoghurt were prepared in 

randomized order in the course of two days, including 

all combinations of fat content, protein content and 

pore size, as well as four centre points (0.85% fat, 4.4% 

protein and filter with 100 µm in poresize). Two centre 

point samples were manufactured each day. 
 
2.2 Yoghurt manufacture 
 Pasteurized skimmed milk was standardized to the 

desired fat at protein contents by addition of 
pasteurized full cream (Arla Foods, Viby, Denmark) 

and medium-heat skimmed milk powder (Arla Foods 

Ingredients, Viby, Denmark), respectively. The 

ingredients were mixed using a Silverson L4R mixer 

(Silverson Machines Ltd., Waterside, UK) at 5°C.  The 

milk base was homogenized at 200/50 bar, 65°C,  and 

subsequently heat treated at 95°C  for 5 min. The milk 

was cooled to 42°C  and inoculated with yoghurt starter 

(YC-183, Chr. Hansen, Hørsholm, Denmark). Upon 

reaching pH 4.55 the yoghurt was cooled to 22°C  in a 

plate heat exchanger and smoothed by passing a 

tubular filter with a defined pore size (50, 100 or 150 

µm) at a constant counterpressure of 2 bar. The 

yoghurt was kept at 5°C  for one week before analysis 

was performed.  
 
2.3 Instrumental analyses 
 The particle size distribution of the yoghurt was 

measured using a Malvern Mastersizer Microplus 

(Malvern Instrument Ltd., Malvern, UK). Deionized 

water was used as solvent (identical results were found 

when reconstituted permeate powder was used). 
Before sampling the yoghurt was gently stirred with a 

spoon five times. For further analysis the proportion of 
particles (volume percentage) exceeding the pore size 

in the filter used to smoothen the yoghurt was used 

(see Fig. 1). This quantity, calculated by interpolation, 
was referred to as the Degree of Aggregation (DOA). 
 Syneresis was quantified by submitting yoghurt (30-
32g) to centrifugation at 222 g for 10 min. at 4°C  (15), 
The clear supernatant was poured off, weighed and 

recorded as syneresis (%). 
 The viscosity was measured using a Brookfield 

viscometer (Model DV–III+, Brookfield Engineering, 
Stoughton, MA). The measurements were performed 

using a DT-bar spindle at 5 rpm, 10ºC. The Brookfield 

viscosity so obtained has been found to correlate well 
to sensory thickness (16). 



 All instrumental measurements were performed in 

triplicate, and mean values were used for further 

analysis.  
 
2.4 Statistical analysis  
 In the statistical analysis all the factors were 

considered quantitative, except for the factor pore size 

used in the analysis of DOA, which was considered 

qualitative. A second order polynomial including 

interactions was used as initial model and step-wise 

regression was used to eliminate insignificant terms (p 

> 0.05) successively, simplifying the model.  
 
3. Results 
 The four centre samples were used to test 
repeatability and day-to-day variability statistically. 
Using the response variable syneresis, we found that 
both replicate and day were not significant (p=0.33 and 

0.22, respectively). 
 
3.1 Degree of Aggregation 
 The extent of post aggregation occurring in the 

container after shearing, expressed as Degree of 
Aggregation (DOA) significantly depended on both the 

fat (p=0.0004) and the protein contents (p=0.042), with 

R2
adj=0.97. In Fig. 2 the response surface of DOA as a 

function of fat and protein contents is presented. These 

results indicate that fat in the yoghurt matrix interfered 

with the post aggregation process, as a higher fat 
content resulted in a decreased DOA. The protein 

content appeared to interact with the fat content 
(p=0.0023). The results indicate that protein content 
and DOA are positively correlated for fat levels above 

0.7%, and negatively correlated for fat levels below 

0.6%. Results are given in Table1. 
 
3.2 Viscosity  
 Statistical analysis showed that the fat content, the 

protein content and the interactions between them had 

a significant effect on the viscosity of the yoghurt with 

R2
adj=0.92 (Table 2). Log-transformation of viscosity 

was necessary to achieve variance homogeneity. Filter 

size was found to influence the viscosity of the yoghurt 
as well. Homogenization of the  milk base incorporates 

the milk fat into the protein matrix, where the protein 

covered fat globules act as pseudocasein micelles 

(17,18). When describing the character of the stirred 

yoghurt with respect to syneresis and viscosity, the role 

of fat can generally be compared to that of protein; 
homogenization of the fat increases the number of 
structure building components, which results in higher 

viscosity and lower syneresis (17). For yoghurts with a 

high level of protein, the character of the fat in the 

yoghurt matrix appeared to change. The present 
results indicate that for protein levels above 5.2% the 

fat content was negatively correlated to the viscosity 

(see Fig. 3).  
 
3.3 Syneresis  
 The results from investigation of syneresis in 

yoghurt could be modelled (R2
adj=0.92) with the 

significant parameters given in Table 3. The response 

surface of the predicted values for syneresis is 



depicted in Fig. 4. No significant interactions between 

the factors fat content and filter size, nor between 

protein content and filtersize were found. The minimum 

syneresis was found at a fat content of 1.5%, a protein 

content of 5.4% and a filter size of 91 µm. The main 

factor influencing syneresis was the protein content, 
supporting previous research (1,19). 
 
4. Conclusions 
 The present results corroborate those of other 

researchers with regards to the influence of fat and 

protein content on syneresis and viscosity of yoghurt 
(1,17,18). However, some novel conclusions are 

proposed. For high levels of protein, a negative 

correlation between fat content and viscosity was 

registered. Assuming that protein is able to form a gel 
matrix by itself, the homogenized fat will compete for 

protein, because of the need for protein as membrane 

material for the newly formed homogenized fat 
globules. It is assumed that the homogenized fat 
globule, as a pseudocasein micelle, contributes to the 

structure formation to a lesser extent than the same 

amount of protein would do in the milk plasma. In this 

case, the protein used as membrane material is less 

efficient in structure formation, even though fat is 

incorporated into the matrix. Microstructure studies of 
low fat set style yoghurts shows a more branched 

network structure for low-fat yoghurts, than for 

yoghurts with a higher fat content, where the structure 

is more dense, and branched to a lesser extent (20). 
When shearing yoghurt, a branched network will be 

more prone to shattering than a dense, clustered 

network. Hence, a yoghurt with a branched network will 
have a greater potential for post-shearing aggregation 

in the container due to more broken bonds, which are 

expected to have a higher post-aggregation potential. 
The fat globules in the sheared yoghurt matrix are 

presumed to play a role as structure breakers, where 

they, due to difference in size, interfere with the 

aggregation in the container. Fat globules in a sheared 

yoghurt are thus assumed to play a dual role, where 

they a) promote formation of a dense, clustered 

network during fermentation, and b) interfere in the 

post-shearing aggregation in the container. This theory 

could explain the negative correlation between fat 
content and DOA. DOA was found to be a useful tool in 

investigation of the post-shearing textural alterations 

occurring in fermented milk. Correlation between 

sensory graininess and DOA was not investigated in 

the present work. However is seems reasonable that 
grains and sandy texture in stirred fermented milk to 

some extent can be related to the particle size 

distribution and thereby to DOA.      
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Table  1: Parameter  estimates  (Est±SEM)  for  the  

dependent  variable  degree  of  aggregation  

(DOA).  p-values  are for  parallel  tests  in  the  

final  model.   

Model term Degree of aggregation p-value 

Fat -27.1±6.5 0.004 
Protein -3.13±1.5 0.042 
Fat*protein 4.96±1.5 0.002 
Filter 50 59.5±6.6 a1 
Filter 100 23.9±6.6 b 
Filter 150 22.2±6.6 b 

<0.0001 

Any two data in the column having a common letter are not 
significantly different (tested by t-test) 

 



 
Table  2: Parameter  estimates  (Est±SEM)  for  the  

dependent  variables  log(viscosity).  p-values 
<0.05 are for  parallel  tests  in  the  final  model,  

p-values>0.05  are for  successive  tests  in  the  

statistical  model  reduction 

Model term log(viscosity) p-value 

Intercept 2.06±0.42  
Fat 0.417±0.11 0.0013 
Protein 0.798±0.19 0.0004 
Filter -4.40·10-3±1.7·10-3 0.019 
Fat2 - 0.98 
Protein2 -5.68·10-2±2.2·10-2 0.015 
Filter2 1.92·10-5±8.6·10-6 0.036 
Fat*protein -8.10·10-2±2.5·10-2 0.004 
Fat*filter - 0.21 
Protein*filter - 0.65 

 
 
Table  3: Parameter  estimates  (Est±SEM)  for  the  

dependent  variables  syneresis.  p-values<0.05  

are for  parallel  tests  in  the  final  model,  p-
values>0.05  are for  successive  tests  in  the  

statistical  model  reduction. 

Model term Syneresis P-value 
Intercept 65.8±4.9  
Fat -20.0±4.1 <0.0001 
Protein -9.39±0.91 <0.0001 
Filter -0.146±6.2·10-2 0.027 
Fat2 - 0.46 
Protein2 - 0.81 
Filter2 8.06·10-4±3.1·10-4 0.015 
Fat*protein 2.89±0.91 0.004 
Fat*filter - 0.28 
Protein*filter - 0.17 

 
  

 
 
Fig. 1: Definition of Degree of Aggregation (DOA). 

 
 



 

 

 
Fig. 2: Contour plot of the Degree of Aggregation as a 

funcion of fat and protein content. 

  

 
 
Fig. 3: Contour plot of log(viscosity) as a function of fat and 

protein content. 

 
  

 
 
Fig. 4: Contour plot of syneresis as a function of fat and 

protein content 
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Abstract 

The sensory properties of 25 plain yoghurts and 18 low-fat cream cheeses were investigated by descriptive 

analysis. In addition, digital images of sample surface were captured and the relationship between image 

properties and sensory properties were investigated. Global image features of the yoghurt and cream 

cheese surfaces were extracted using the Angle Measure Technique (AMT). Multivariate data analyses 

(Partial Least Squares Regression) were applied for investigation of the relation between digital image global 

features and sensory properties. For both product categories properties could be predicted with Root Mean 

Square Error of Cross Validation (RMSECV) for the yoghurts [1.00;1.97] and for the cream cheeses 

[0.29;2.00]. In both cases the largest RMSECV is for the prediction of Creaminess. Furthermore, other 

sensory descriptors, not related to appearance and structure could also be predicted. However, this is due to 

covariation with the visual descriptors. 

 

Keywords 

Yoghurt, Cream cheese, Sensory descriptive analysis, Creaminess, Angle Measure Technique, Image 

analysis, Multivariate data analysis, Partial Least Squares Regression 

Introduction 

Texture derives from the structure of food and the way ingredients interact as discussed by Wilkinson et al. 

(2000) and the perception of texture is a combination of information from several senses. The first step in 

sensory evaluation of food is most often the appearance, which is also the step with the shortest response 
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time (Jones & O'Neil, 1985). Visual cues such as colour, gloss, grains and heterogeneity provide information 

about the surface properties of a food. The appearance provides the initial texture analysis of the product 

and sensory expectations of oral texture properties are created based on previous knowledge and 

encounters with other more or less similar products. Additional information is obtained by handling the food, 

e.g. stirring, cutting or spreading. However, the most important part of the dynamic texture perception occurs 

in the mouth. During mastication textural parameters are perceived when the food is broken into small 

particles by chewing, wetted and lubricated with saliva, and formed into a bolus suitable for swallowing. 

Hutchings and Lillford (1988) suggested that each food has a characteristic ’breakdown path’ in the mouth 

comprised of three dimensions: breakdown of structure, degree of lubrication and time. Perception of a given 

food is a result of sensory input through all the senses, interpreted by the mind and influenced by personal 

experience. If the psychological element of expectation based on surface appearance or past experience is 

not met during the oral perception of the food, it can have a strong influence on reducing the level of texture 

acceptance (Szczesniak, 2002). 

 

Surface characteristics – appearance – provide important textural cues (Ball et al., 1957). Smoothness 

relates to the surface texture perception produced by moisture and/or fat content, whereas graininess relates 

to size, shape and arrangement of particles (ISO-11036, 1994; Szczesniak, 1963). Rohm et al. (1994) 

observed a close relationship between appearance of yoghurt surfaces and perceived mouth feel. A smooth 

mouthfeel correlates with a uniform surface whereas an irregular surface has a grainy texture. When 

assessing yoghurt surface properties, visual gloss - a measure of light reflectance - is an important attribute. 

According to Beck and Prazdny (1981) there are two types of light reflectance. The mirror-like shine 

perceived when an actual image of the light source appears on the product surface and diffuse reflectance 

where the light reflected is scattered by the product surface. They reported that highlights produce 

perception of glossiness, if an intensity gradient causes the surface to appear curved. However, one should 

be aware that luminance have been reported to be highly correlated with changes in the visible surface 

(Lederman & Abbott, 1981). Still, there is good evidence of high correlation between appearance and 

textural properties, thus making prediction of oral texture and mouth feel properties from surface images 

feasible. Little has been published on instrumental measurements of surface properties of acid milk gels 

such as yoghurt and cream cheese. 
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Creaminess is essential to many dairy products as it relates positively to product liking (Richardson-Harman 

et al., 2000). Consumers seem to consider a product creamy when it has a high fat content, has dairy flavour 

and a viscous, slippery, greasy and mouth coating texture (Richardson-Harman et al., 2000). Several 

researchers have found that creaminess relates both to thickness (depending on physical viscosity) and 

smoothness (depending on physical frictional forces) (Guinard & Mazzucchelli, 1996; Kokini & Cussler, 1983; 

Richardson et al., 1993). Other studies have found that creaminess is highly correlated to perceived fattiness 

in different dairy product categories (Frøst et al., 2001; Hyvönen et al., 2003). Some studies have shown that 

creaminess is more complex, depending not only on texture characteristics, but also on flavour (de Wijk et 

al., 2004). Research on the perception of fat in milk suggested a so-called meta-descriptor, ‘total fattiness’ to 

describe the overall sensory properties of fat in milk (Frøst et al., 2001). The nature of a meta-descriptor is 

that it consists of a specific combination of a number of other more simple or straightforward descriptors1. 

Results from (Frøst et al., 2001) suggest that the use of the meta-descriptor ‘total fattiness’ is appropriate, as 

this descriptor alone best preserve the data structure from the full set of descriptors (Dijksterhuis et al., 

2002), i.e. it is the descriptor carrying the highest amount of information, and best separates the different 

products under examination. We suggest that creaminess is a meta-descriptor as well.  

 

In the present study, global image features were extracted using the Angle Measure Technique (AMT). This 

technique was originally introduced as an alternative method to fractal analysis (Andrle, 1994). It allows 

extraction and quantification of global properties of and image. The technique has subsequently been used 

for feature extraction in images of several types of food: bread texture (Esbensen et al., 1996; Kvaal et al., 

1998); model dressings (Egelandsdal et al., 1999); mayonnaise (Indahl & Næs, 1998); and some non-food 

applications: powder (Huang & Esbensen, 2000;2001). A thorough investigation of the methodology of the 

AMT principle and software is currently being performed (Johansen et al., 2006). Preliminary results indicate 

that AMT is most effective as analysis tool for isotropic images – which is the case with images of yoghurt 

and cream cheese surfaces. The present study investigates the relation between sensory properties 

(concentrating on structure-related properties - appearance, mouth feel and perceived texture) and surface 

                                                 
1 Naming the phenomenon a meta-descriptor should be credited to Garmt Dijksterhuis.  
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structures of plain yoghurt and cream cheese. Of particular interest is the prediction of creaminess from 

surface images.  

 

Materials and methods 

Experimental design and product manufacture 

Yoghurt 

A total of 25 plain stirred yoghurts were produced and analysed in a factorial design as indicated in table 1. 

The total fat content was adjusted by addition of full fat cream (40% milk fat) to the milk base. The yoghurts 

were produced according to standard methodology for manufacture of stirred yoghurt (blending, pre-

pasteurisation (65°C), homogenization (200bar), pasteurisation (95°C for 5 min), cooling (42°C), inoculation 

(YC-183, Chr. Hansen A/S, Denmark), incubation (below pH value 4.6), cooling (22°C), mixing, filling and 

final cooling (below 10°C)). The fermentation conditions were kept constant (final pH value 4.10-4.30). All 

yoghurts were stored at 4°C for exactly one week before further analysis, ensuring similar structural 

development. The yoghurts were produced and analysed in three  replicates, except for the reference which 

was produced each day and analysed in 12 replicates. For each session, six different yoghurt and one 

reference sample was photographed and analysed by descriptive sensory analysis. 

 

Table 1. The 25 analysed yoghurts abbreviations and composition. The different contents of fat (0, 1, 3) and 
protein (0, 1, 2, 3, 4) added and a short description of these proteins (N, S, C, V, M). 

Fat content (%) Added protein type Total protein level (w/w%) 
Product abbreviations 

0 1 3 (N, S, C, V, M) 0 1 2 3 4 
A0-N-0 0.3   3.3     
B1-N-0  1.5  3.3     
C3-N-0   3.5 3.3     
    

None (N) 
 
 

     
D0-S-2 0.3     4.8   
E0-S-3 0.3      5.4  
F1-S-2  1.5    4.8   
G1-S-3  1.5  

Skim milk powder (S) 

   5.4  
          
H0-C-1 0.3    4.2    
1-4 0-C-2* 0.3     4.8   
I0-C-3 0.3      5.4  
J1-C-1  1.5   4.2    
K1-C-2  1.5    4.8   
L1-C-3  1.5  

Commercial whey protein  
concentrate (C) 

   5.4  
          
M0-V-1 0.3    4.2    
N0-V-2 0.3     4.8   
O0-V-3 0.3      5.4  
P1-V-1  1.5   4.2    
Q1-V-2  1.5    4.8   
R1-V-3  1.5  

High viscosity producing whey protein 
concentrate (V) 

   5.4  
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* The yoghurt with 0.3% fat added commercial whey protein concentrate adjusted to 4.8% total protein was 
selected as the reference to appear in all 12 sensory sessions. Due to analytical conditions these 12 samples 
were treated as 4 different products. 
 

Cream cheese 

A total of 18 different cream cheeses and replicates of two were produced and analysed in a factorial design 

as indicated in table 2. The cream cheeses were produced in a pilot plant, according to standard 

methodology for manufacture of cream cheese. A milk base was homogenised, pasteurised, fermented pH 

adjusted, concentrated by centrifugation, pasteurised, homogenised, hot-filled and cooled.  

 

 

Table 2. The 20 analysed cream cheeses abbreviations and composition. The different contents of fat (0, 3, 
6, 9), salt content (1, m, 2) and pH value (1, m, 2). 

Fat content (%) Salt content (%) pH value 
Product abbreviations 

0 3 6 9 1 m 2 1 m 2 
A-F0-S1-p1 0.0    0.4   4.4   
B-F0-S1-p2 0.0    0.4     5.0 
C-F0-S2-p1 0.0      0.9 4.4   
D-F0-S2-p2 0.0      0.9   5.0 
           
E-F3-S1-p1  3.0   0.4   4.4   
F-F3-S1-p2  3.0   0.4     5.0 
G-F3-S2-p1  3.0     0.9 4.4   
H-F3-S2-p2  3.0     0.9   5.0 
           
I-F6-S1-p1   6.0  0.4   4.4   
J-F6-S1-p2   6.0  0.4     5.0 
K-F6-S2-p1   6.0    0.9 4.4   
L-F6-S2-p2   6.0    0.9   5.0 
           
M-F9-S1-p1    9.0 0.4   4.4   
N-F9-S1-p2    9.0 0.4     5.0 
O-F9-S2-p1    9.0   0.9 4.4   
P-F9-S2-p2    9.0   0.9   5.0 
           
Q-F0-Sm-pm 0.0     0.65   4.7  
R-F0-Sm-pm 0.0     0.65   4.7  
S-F9-Sm-pm    9.0  0.65   4.7  
T-F9-Sm-pm    9.0  0.65   4.7  

          
S0-M-2 0.3     4.8   
T0-M-3 0.3      5.4  
U0-M-4 0.3       6.0 
V1-M-2  1.5    4.8   
X1-M-3  1.5     5.4  
Y1-M-4  1.5  

Microparticulated whey protein 
concentrate (M) 

    6.0 
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The cream cheeses (Q, R, S, T) with the lowest and highest fat content adjusted to both average salt 
content and pH-level were selected as the reference to appear twice. 

 

Sensory descriptive analysis 

Yoghurts 

A panel consisting of 12 external paid panelists was used for the evaluation. All panelists had passed 

screening tests according to ISO-standards (ISO-8586-1, 1993), and had previous experience with sensory 

evaluation. Training (5 sessions of approximately 1½ hour) as well as the final assessment followed the 

recommendations of the International Dairy Federation (International IDF Standard 99C, 1997). A vocabulary 

best describing the yoghurts was developed on the basis of IDF standards (IDF, 1997), earlier used terms 

(Muir & Hunter, 1992; Szczesniak, 2002) and the panellists’ own words. The final 29 descriptors and their 

definitions can be seen in table 3. Idiosyncratic definition of the meta-descriptor Creaminess was allowed, to 

facilitate the elucidation of differences among panellists in their evaluation. Sensory descriptive analysis 

(three true replicates, 12 sessions in total) were carried out in the sensory laboratory at the Royal Veterinary 

and Agricultural University, which comply with international standards for test rooms (ASTM, 1986; ISO-

8589, 1988). All samples were served in plastic containers with lids, and coded with three-digit random 

numbers. Samples were served in a balanced randomised order. All samples contained approximately 100 

ml of yoghurt, and were stored at 13°C in a controlled temperature cabinet for about 1 hour before serving 

(IDF, (1997))  

 

All assessments were collected on a computerised data collection system (FIZZ v.2.10a Biosystemes, 

Couternon, France). The order of evaluation of the descriptors was as follows: aroma, appearance, flavour 

and taste, texture and finally manipulation by spoon. All descriptors were evaluated on a 15 cm unstructured 

line scale anchored at the left end with “a little”, “slow” or “thin” (in Danish: “lidt”, “langsom” or “tynd”) and at 

the right end with “a lot”, “fast” or “thick” (Danish: “meget”, “hurtig” or “tyk”), depending on the character of the 

descriptor. All sensory evaluations were performed in individual booths, where tap water and unsalted 

crackers (flatbrød) were available. 
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Cream Cheese 

A panel consisting of 10 external paid panelists was used for the evaluation. All panelists had passed 

screening tests according to ISO-standards (ISO-8586-1, 1993), and had previous experience with sensory 

evaluation. The training and assessments followed the same recommendations as the yoghurt study and a 

vocabulary consisting of 29 descriptors were used (table 3).  

 

Both the training and the descriptive analysis were performed in the same manner as the yoghurt study, 

except that all samples contained 40-45 gram of cream cheese. The descriptive analysis consisted of 6 

sessions with three replicates (10 samples evaluated in each session). The descriptors were evaluated in the 

following order: aroma, non-oral manipulation, appearance, flavour and taste, texture and mouth feel. The 

only change in the anchor points on the unstructured line scale were that to the left end “small” (in Danish: 

“lille”) and at the right end “large” (Danish: “stor”) were used.  

Table 3. Sensory descriptors for yoghurt and cream cheese, their definitions and original words in Danish. 

Descriptors Definition (reference material) Anchor points 
Original Danish 

words 
Product 

Aroma   Lugt Yoghurt 
Cream 
cheese 

Tomato smell Intensity of tomato aroma (0.3 L yoghurt (Jersey 
0.1% fat, Thise Dairy, Denmark) added 5 drops of 

Heinz ® Tomato Ketchup) 
a little – a lot Tomatlugt √  

Lamb smell Intensity of lamb aroma (see below for detailed 
procedure*) 

a little – a lot Lammelugt √  

Cream smell Intensity of raw cream aroma (full fat 
homogenised milk (3.5% fat) and cream (38% 

fat) in a 1 to 5 mixture) 
a little – a lot Flødelugt √ √ 

Buttermilk 
smell 

Intensity of buttermilk aroma (Organically 
produced buttermilk (ArlaFoods, Denmark)) 

a little – a lot Kærnemælkslugt √  

Flour smell Intensity of flour aroma (0.3 L yoghurt (Jersey 
0.1% fat, Thise Dairy, Denmark) added 15 mL 

wheat flour) 
a little – a lot Melet lugt √  

Acidic smell Intensity of acidic smell when opening the sample a little – a lot Syrlig lugt  √ 
Butter smell Intensity of butter flavour (Lump of organically 

produced old fashioned churned, salted butter 
(Lurpak ®, ArlaFoods, Denmark)) 

a little – a lot Smørlugt  √ 

Goat smell Intensity of goat–like aroma (goat yoghurt) a little – a lot Gedelugt  √ 
Old milk smell Intensity of old milk aroma a little – a lot Gammel mælk lugt  √ 

      

Non-oral 
manipulation 

  
Manipulation med 

hånd 
  

Resistance Resistance during spread with a knife low - high Modstand  √ 
      

Appearance   Udseende   
Whiteness Intensity of the colour white a little – a lot Hvid farve √ √ 
Greyness Intensity of the colour grey a little – a lot Grå farve √ √ 
Greenness Intensity of the colour green a little – a lot Grøn farve √  
Yellowness Intensity of the colour yellow a little – a lot Gul farve √ √ 
Blueness Intensity of the colour blue a little – a lot Blå farve  √ 

Glossiness Degree of surface shininess a little – a lot Blankhed √ √ 
Graininess Degree of yoghurt surface graininess a little – a lot Grynethed √  

Grain 
concentration 

Evaluation of closeness of grains a little – a lot 
Koncentration af 

gryn 
 √ 

Grain size Evaluation of the average size of grains small – large Størrelse af gryn  √ 
      

Flavour and   Smag   
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taste 
Lamb flavour Intensity of lamb flavour (see above) a little – a lot Smag af lam √  
Goat flavour Intensity of goat flavour (see above) a little – a lot Smag af ged  √ 
Butter flavour Intensity of butter flavour (Lump of organically 

produced old fashioned churned, salted butter 
(Lurpak ®, ArlaFoods, Denmark)) 

a little – a lot Smag af smør √ √ 

Cream flavour Intensity of cream flavour (see above) a little – a lot Smag af fløde √ √ 
Buttermilk 

flavour 
Intensity of buttermilk flavour (see above) a little – a lot 

Smag af 
kærnemælk 

√  

Flour flavour Intensity of flour flavour (see above) a little – a lot Melet smag √  
Sour taste Intensity of sour taste a little – a lot Sur smag √ √ 

Sweet taste Intensity of sweet taste a little – a lot Sød smag √ √ 
Salt taste Intensity of salt taste a little – a lot Salt smag  √ 

      

Texture and 
mouthfeel 

  Konsistens   

Viscosity Perceived thickness of the sample evaluated in the 
mouth 

thin – thick Viskositet √  

Smoothness Perceived smoothness of the sample evaluated in 
the mouth 

a little – a lot Glathed √ √ 

Firmness Perceived firmness of the sample evaluated in the 
mouth 

a little – a lot Fasthed  √ 

Flouriness Intensity of flour aroma (0.3 L yoghurt (Jersey 
0.1% fat, Thise Dairy, Denmark) added 15 mL 

wheat flour) 
a little – a lot Melethed  √ 

Chalkiness Perceived chalkiness of the sample evaluated in 
the mouth 

a little – a lot Kridtethed  √ 

Graininess Perceived graininess of the sample evaluated in 
the mouth 

a little – a lot Grynethed  √ 

 
Table 4 continued. Sensory descriptors for yoghurt and cream cheese, their definitions and original words in 
Danish. 
 

Stickiness Perceived stickiness of the sample evaluated in the 
mouth 

a little – a lot Klistrethed  √ 

Meltdown rate Amount of “work” to break down the bolus slow – fast Nedsmeltning √ √ 
Astringent Intensity of saliva losing feeling in the mouth – 

using the tough against the palate or the back of 
the teeth 

a little – a lot Astringerende √ √ 

Fatty after 
mouthfeel 

Degree of “fatty” mouth coating after 
expectoration of the sample 

a little – a lot 
Fedtet 

eftermundfylde 
√  

Dry after 
mouthfeel 

Degree of mouth dryness after expectoration of 
the sample 

a little – a lot Tør eftermundfylde √  

Aftermouthfeel Degree of mouth coating after expectoration of 
the sample 

a little – a lot Eftermundfylde  √ 

      

Non-oral 
manipulation 

  
Manipulation med 

ske 
  

Non-oral 
viscosity 

Rate of a spoon full to blur when it is placed on 
top of the sample 

a little – a lot Gelstivhed √  

Graininess on 
lid 

Half a spoon of sample spread on a lid a little – a lot Grynethed på låg √  

Viscosity with 
spoon 

Viscosity measured after three stirs with spoon thin – thick Viskositet med ske √  

Flow from 
spoon 

Continuous flow from spoon a little – a lot 
Sammenhængende 

flydning fra ske 
√  

      
Meta-

descriptor 
  Metadeskriptor   

Creaminess Perceived creaminess of the sample evaluated in 
the mouth 

a little – a lot Cremethed √ √ 

* Pour 0.5 L yoghurt (Jersey 0.1% fat, Thiese Dairy, Denmark) in a dish covered with aluminium foil. Make a 
number of small holes in the foil and place 3 fried lamb chops on the foil. Wrap close and tight with ceran 
wrap and leave overnight in refrigerator at 5°C. 
a In Danish, no word for flavour exists. In Danish taste or “smag” covers both flavour and taste. 
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Digital images of dairy product surfaces 

Camera and set up 

The camera used was a Nikon WC-E80, which is a standard three-channel digital camera (RGB), with wide-

angle converter, 5.0 mega pixels and 8 × zoom (NIKON CORPORATION, Tokyo, Japan). The digital colour 

images were RAW (12-bit) of the size 2560 × 1920 pixels. The photography was performed in a dark room. A 

15 inch monitor was connected to the camera to ensure that the focus of the image was optimal. 

 

The samples were placed on a baseboard for copy stands. The camera was located on a one meter column 

(Kaiser Fototechnik GmbH & Co. KG, Germany). Two copy arms with copy lighting units were placed in an 

angle of 73.3 degrees on each side of the camera (figure 1). The bulbs were Osram, DULUX®S G23, 

11W/11-860 850 lumen (LUMILUX, Daylight, Italy). Diffusion foil (Diffusionsfolie 5939, Kaiser Fototechnik) 

was placed in the light path. No alterations were made in the camera settings between sessions. A Petri dish 

containing the sample was placed against a grey card with a reference grey colour (The Jessop Group Ltd., 

Leicester, England). This ensured the same position of the samples in all images and that potential changes 

in colour between images could be observed. 

 

The dairy samples were prepared by pouring the sample into a Petri dish, tapping the Petri dish lightly 

ensuring an even spread and then scraping extra sample off in order to obtain a surface with the same 

height. Three Petri dishes were prepared for all the different samples and three pictures were taken of each 

Petri dish after rotating it 120 degrees clockwise each time, giving a total of nine images of each sample. 

Figure 2 shows examples of the obtained images before and after image pre-processing. Image capture of 

cream cheeses was more strictly controlled as the cheeses with high fat content had a more unstable 

structure, once ruptured by spreading. Therefore, the first image was taken exactly 1 minute and 10 seconds 

after surface scrape and the following two images were taken 40 seconds after each other. For the yoghurt 

experiment the lower part of a Petri dish with a diameter of 8.8 cm was used whereas for the cream cheese it 

was upper part of a Petri dish with a diameter of 9.2 cm.  
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Figure 1. The set up of camera and the two copy arms with lighting units in proportion to the dairy sample. 
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Figure 2. A: Left side images: Skim milk yoghurt without addition of protein. Right side images: Skim milk 
yoghurt added commercial whey protein concentrate in the highest level. B: Left side images: Cream cheese 
with 3% fat content, high salt concentration and low pH value. Right side images: Cream cheese with 9% 
fat content, high salt concentration and high pH value. The upper images are before pre-processing and the 
lower are after pre-processing. 
 

Image analysis 

The images of the dairy products surface was analysed using the Angle Measure Technique (AMT). The 

used program algorithm is accessible in a Graphical User Interface written in MATLAB 6.5 (The Mathworks, 

Natick, MA) available on the website http://www.models.kvl.dk. Before image analysis some pre-processing 

was necessary, also performed in MATLAB. All additional background around the Petri dish was removed in 

all the images reducing the image size (yoghurt images: 1481 × 1481 pixels and cream cheese: 1419 × 1419 

pixels (see figure 2)). The images where subsequently filtered for local noise (spatial arithmetic mean filter) 

and increasing contrast. For yoghurt images, dark uniform regions in the centre of the images was also 

removed by excluding regions of size 40 × 40 with a variance lower than 40, thus only including and 

analysing regions with some surface structure. Figure 2 illustrates the consequence of the pre-processing on 

selected images of both dairy products. Stratified random start points at a level of 2% were selected prior to 

unfolding of images. The images were unfolded by horizontally ’snake’ and on all image channels the AMT-

linear variant of the algorithm was applied. Detailed explanation of AMT is given in the accompanying 

manual on the website. 

 

Particle size distribution  

The particle size distribution of the cream cheeses was measured by low-angle laser light scattering using a 

Malvern Mastersizer Microplus and Malvern Small Volume Sampler Presentation Unit, Model DIF 2000 

(Malvern Instruments Ltd., Malvern, UK). Cheese was added directly to the Small Volume Sampler 

Presentation Unit until an obscuration of 20-22% was achieved. The measurements were performed in 

triplicate. Volume fractions were recorded in 61 intervals from [0.05 µm; 0.06 µm] to [477.01 µm; 555.71 µm]. 
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Data analysis  

Multivariate data analysis (Partial Least Squares Regression (PLSR)) was used to investigate all results: 

both AMT spectra, sensory data, and relationships between those. Initially ANOVA-PLSR (A-PLSR) was 

applied to evaluate the effect of experimental design factors on the response variables i.e. AMT spectra and 

sensory descriptors (Martens & Martens, 1986; 2001). The method avoids multicollinearity problems by 

modeling latent variables representing the main variance common for the variables. It is used as a graphical 

alternative to ANOVA. The AMT spectra from all three colour channels (red, green and blue) were tested, 

and the channel providing the best result was applied during additional analyses (blue channel for yoghurts 

and green channel for cream cheese). For sensory data, initially, univariate analysis of variance (ANOVA) 

was applied to analyse the sensory data. Mixed model ANOVA for individual descriptors was performed with 

products as fixed factors and panellists as random factors. This method is commonly applied for data from 

descriptive analysis (Næs & Langsrud, 1998). For descriptors with non-significant Product X Panellist 

interaction effects, interactions were omitted in a new analysis. Non-significant descriptors were omitted from 

further analysis. Least significant differences at 5% level (LSD 5%) were estimated based on Mean Square 

Error. Mean ratings over panelists from each replicate was used for ANOVA-PLSR. For multivariate analyses 

cross-validation was performed, using segments of 9 images from same sample for AMT spectra, and  

sensory replicates for sensory data (Martens & Næs, 1989). Jack-knifing served as the validation tool for all 

multivariate analysis, comparing the perturbed model parameter estimates from cross-validation with the 

estimates for the full model (Martens & Martens, 2000). For analysis of relationships between surface 

structure and sensory data, means over the nine extracted AMT spectra from each sample were taken. 

Afterwards a model on two thirds of the sample set (selected randomly) was tested against one third of the 

samples (cross-validation). A PLS2 analysis gave an initial overview of the relationships to all sensory 

descriptors. However, to get the exact result for each descriptor, PLS1 analyses were performed 

subsequently. All multivariate analyses were made using the Unscrambler 9.1 software (Camo Process AS, 

Oslo, Norway). 
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Results and discussion 

AMT-spectra 

Score plots from A-PLSR on AMT spectra from the yoghurt and cream cheese images are shown in figure 3. 

Yoghurt samples are coded as a function of added protein to the sample (figure 3a). A systematic effect of 

fat content, protein type and protein level was observed, indicating that the experimental design provided 

differences in image surface structure and extracted AMT spectra that can be modelled. Still, perturbed 

model parameter estimates from Jack-knife cross validation showed that there was not a complete 

separation of all 25 yoghurts. Roughly speaking, protein level is described in the first Latent variable 

(different symbols in figure 3a)). Protein type and fat levels are separated in a combination of latent variable 

1 and 2, Yoghurts with added skim milk powder (S) or microparticulated milk protein (M) are grouped to the 

upper right, while samples added high viscosity producing whey protein (V) and commercial whey protein (C) 

concentrates in the highest level are grouped at the bottom of the plot, except for the yoghurt containing 

1.5% fat and microparticulated protein added in the highest concentration (Y1-M-4). Yoghurts added 

commercial and high viscosity milk protein preparation were grouped in three according to protein level, with 

the lowest addition at the top and the highest concentration at the bottom of the plot.  

 

The A-PLSR plot of the cream cheese images AMT spectra are coded with respect to the fat content of the 

samples (figure 3b). Again, the effect of the experimental design is evident, although complete separation of 

all 18 different cream cheeses was not obtained. For the three lower fat levels, a high pH changes the 

properties of the spectre, so the samples are grouped with samples with a higher fat level. By contrast, a 

combination of low pH and low salt content make samples resemble those with a lower fat content. Thus, 

sample D-F0-S2-p2, with the lowest fat content (0% fat), high salt content (0.9% salt) and high pH value 

(5.0), is located close to sample M-F9-S1-p1, with the highest fat content (9% fat), low salt content (0.4% 

salt) and low pH value (4.4).  

 

In both product categories replicate samples are closely located together, in the case of yoghurt the sample 

1, 2, 3, and 4 are located close to the centre of the figure whereas for the cream cheese samples Q and R 

are located to the left and the samples S and T are at the bottom right, respectively. Perturbed model 

parameter estimates of scores showed high overlap between replicate samples. 
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Figure 3. Score plot from A-PLSR performed on the dairy products A: Yoghurt samples are separated after 
protein content and the variation in the images can be explained using two latent variables. B: Cream 
cheese samples are separated after fat content and the variation can be explained using 2 latent variables. 
Refer to table 1 and 2 for product abbreviations 
 

Descriptive analysis 

ANOVA on individual descriptors showed that only a few sensory descriptors did not vary significantly over 

the samples. Scrutiny of results from ANOVA and A-PLSR showed that for both product categories each 

individual product possessed unique sensory properties, significantly different from all other. The range of 

mean ratings for each descriptor, together with LSD 5% values are shown in table 4. Perturbed model 

parameters for A-PLSR showed that for yoghurts product Y1-M-4 varied considerably over the three batch 

replicates.  
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Table 5. Mean range of markings for all products (over panellists and replicates) and the Least Significant 
Differences (LSD) values (p<0.05) for all products and descriptors. 

Yoghurt Cream Cheese 
Descriptors 

Mean range LSD (5%) Mean range LSD (5%) 

Aroma     

Tomato smell [3.49 ; 4.99] -   
Lamb smell [2.37 ; 5.63] 0.80   
Cream smell [1.97 ; 3.35] 0.58 [2.63 ; 8.81] 1.04 

Buttermilk smell [3.43 ; 5.31] -   
Flour smell [1.77 ; 3.37] 0.73   
Acidic smell   [5.52 ; 8.98] 0.93 
Butter smell   [3.35 ; 9.21] 1.03 
Goat smell   [1.37 ; 6.13] 1.00 

Old milk smell   [2.08 ; 5.64] 0.88 
     

Non-oral manipulation     

Resistance   [1.78 ; 13.20] 0.78 
     

Appearance     

Whiteness [9.00 ; 10.42] 0.47 [6.51 ; 11.51] 0.80 
Greyness [1.11 ; 1.87] - [0.95 ; 2.51] 0.55 
Greenness [0.67 ; 1.79] 0.41   
Yellowness [2.09 ; 3.86] 0.51 [1.71 ; 6.48] 0.81 
Blueness   [0.82 ; 3.32] 0.67 

Glossiness [5.74 ; 12.05] 0.78 [0.65 ; 12.59] 0.70 
Graininess [1.40 ; 10.13] 0.82   

Grain concentration   [7.34 ; 10.33] - 
Grain size   [2.93 ; 9.76] 1.08 

     

Flavour and taste     

Lamb flavour [1.95 ; 5.60] 0.74   
Goat flavour   [1.04 ; 5.87] 0.90 
Butter flavour [1.88 ; 5.16] 0.64 [2.18 ; 10.99] 0.92 
Cream flavour [1.89 ; 5.71] 0.72 [2.00 ; 9.94] 0.91 

Buttermilk flavour [3.34 , 6.98] 0.79   
Flour flavour [1.42 ; 7.67] 0.83   
Sour taste [4.56 ; 7.42] 0.83 [5.27 ; 11.78] 0.79 

Sweet taste [2.57 ; 6.09] 0.70 [1.23 ; 5.55] 0.68 
Salt taste   [3.27 ; 10.48] 0.77 

     

Texture and mouthfeel     

Viscosity [1.29 ; 12.30] 0.69   
Smoothness [3.61 ; 11.78] 0.94 [0.93 ; 13.83] 0.63 

Firmness   [2.79 ; 12.77] 0.85 
Flouriness   [0.55 ; 9.35] 1.65 
Chalkiness   [1.26 ; 11.11] 0.77 
Graininess   [0.26 ; 13.77] 0.65 
Stickiness   [0.78 ; 10.14] 0.75 

Meltdown rate [1.53 ; 10.59] 0.83 [2.14 ; 12.40] 0.74 
Astringent [2.63 ; 5.40] 0.81 [3.74 ; 11.66] 0.92 

Fatty after mouthfeel [1.49 ; 8.01] 0.91   
Dry after mouthfeel [3.23 ; 7.06] 0.91   

Aftermouthfeel   [5.18 ; 8.91] - 
     

Non-oral manipulation     

Non-oral viscosity [0.73 ; 12.42] 0.78   
Graininess on lid [2.48 ; 12.65] 0.98   

Viscosity with spoon [1.24 ; 12.61] 0.68   
Flow from spoon [1.84 ; 14.18] 1.00   

     
Meta-descriptor     

Creaminess [1.76 ; 11.12] 0.93 [0.89 ; 12.41] 0.79 
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Prediction of sensory properties from global image features 

 

Yoghurt  

The yoghurt data was analysed with Partial Least Squared Regression (PLSR) by regressing the separately 

obtained sensory descriptors (Y-variables) on the AMT spectra (X-variables) using test set cross-validation 

(leaving one third of samples out). The correlation loadings plot from this initial PLS2 analysis displays the 

descriptors and correlations between these descriptors (see figure 4b). The total explained variance in Y is 

52% for the two significant latent variables (39 and 13%). The main variation in the first latent variable use 

47% of the variation in the image analysis data to explain 39% of the variation in the sensory data mainly 

relating to particle size and viscosity. Samples in the left side of the first latent variable had high ratings in a 

number of texture-related descriptors (Graininess, Graininess on lid, Non-oral viscosity, Viscosity with spoon, 

Viscosity and Meltdown rate). In the digital images this corresponds to relatively large changes at a small 

scale, i.e. the intensity (the blue channel in this case) varies considerably over the distance of a low number 

of pixels (1 to approximately 60 – corresponding to 0.06 – 3.57mm). By contrast, samples in the right side of 

first latent variable received high ratings in the some other textural descriptors (Glossiness, Smoothness and 

Flow from spoon). The images of these samples have low variation at the small scale and higher variance at 

larger scales (starting from approximately 75 to 250 pixels distance – 4.46 to 14.85mm). Some of these 

descriptors do not relate to appearance (Viscosity, Meltdown rate and Smoothness), but rather to oral 

perception. The high covariance with visual texture descriptors allows fairly good prediction of these 

descriptors. The second latent variable uses 31% of the variation in the image analysis to explain 13% of the 

variation in the sensory analysis. Creaminess is not predicted well. Thus, creaminess does not only depend 

on structural properties reflected in the images, but also on other factors, such as flavour, that are not 

reflected in the global features extracted from the images. The score plot from the PLS2 analysis show a U-

shaped sample spreading (figure 4a). In the upper right corner all the samples without addition of protein (N) 

are  
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Figure 4. PLSR-modelling of yoghurt data using cross validation. A: Score plot from PLS2 model. Latent 
variable 1 and 2 separates different levels of protein addition. B: PLSR correlation loadings for the two first 
dimensions. • Mean angle for increasing scale (MA1), • Mean difference in Y for increasing scale (MDY1) and 
▪ Sensory descriptors. The inner and outer circles represent 50% and 100% explained variance, respectively. 
 

located. The samples containing skim milk powder (S) are mainly located in the base of the U-shape 

whereas the commercial (C), high viscosity producing (V) and microparticulated milk protein preparation (M) 

are grouped together at the left side of the U-shape. As indicated in figure 4 there is an increase in the 

protein levels from the right side of the U-shaped plot to the left. Comparing the score and loading plots it is 

evident that low Viscosity, Glossiness and Smoothness related to samples with lower total protein, while the 

samples with the high concentration of protein were Grainy, Viscous and had a slow Meltdown rate. 
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Prediction of individual descriptors from the AMT spectra was performed using PLS1 regression (table 5). 

The texture-related descriptors have a correlation ≥ 0.83 and a RMSECV ≤ 1.68 except for low prediction of 

Creaminess (correlation = 0.52 and RMSECV = 1.97). Comparing these results with the uncertainty 

estimates from the sensory analysis (see table 4, LSD (5%)) the prediction error for the best predicted 

descriptors from the image analysis are in the same range. The next step was to estimate which loading 

weights (by PLS1 analyses) positively correlate to the different descriptors (table 6). Loading weights show 

how much each X-variable contribute to explaining the response variation along each model latent variable 

and hence can be used to find the relationship between the X- and Y-variables. It can be seen that 

Glossiness, Smoothness and Flow from spoon are correlated both for Mean Angle (MA) and Mean 

Difference in Y (MDY) when looking at the first two latent variables. Graininess and Grainy on lid relates at 

the first and second latent variable but as the only descriptor Graininess on lid also have a third latent 

variable. Viscosity, Meltdown rate, Non-oral viscosity and Viscosity by spoon have some similarities to 

Graininess and Graininess on lid, although only on the first latent variable.  

 

Table 6. PLS1-modeling of the yoghurt image analysis results against those of the sensory descriptors which 
could be explained. 

Descriptors AMT 

 Explained X 
variance (%) 

Explained Y variance (%) Slope Offset Correlation RMSEP #PLS components 

Appearance        

Glossiness 36,42 61,9 0.85 1.53 0.86 1.00 2 
Graininess 32,46 65,6 0.90 0.58 0.90 1.06 2 

Texture and mouthfeel        

Viscosity 50,28 58,12 0.72 2.06 0.89 1.30 2 
Smoothness 31 51 0.59 3.51 0.70 1.62 1 
Meltdown rate 51,27 54,11 0.66 2.27 0.87 1.29 2 

Non-oral manipulation        

Non-oral viscosity 49,29 57,11 0.70 2.20 0.89 1.47 2 
Graininess on lid 36,43,7 57,7,1 0.84 0.66 0.88 1.36 3 
Viscosity with spoon 50,28 60,12 0.75 2.03 0.90 1.25 2 
Flow from spoon 47,31 54,12 0.70 2.11 0.83 1.68 2 

Meta-descriptor        

Creaminess 53 28 0.28 5.33 0.52 1.97 1 
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Table 7. Positively correlated X-loading weights for the explained sensory descriptors for the yoghurt images, 
MA – Mean angle and MDY – Mean difference in Y. 

Descriptors Component number 
 PC1 PC2 PC3 
 SMA SMDY SMA SMDY SMA SMDY 

Appearance       

Glossiness 71-265 28-122, 527-684 60-740 24-412, 479-740   
Graininess 1-62, 415-740 1-23, 196-489 - -   

Texture and mouthfeel       

Viscosity 1-63, 279-740 1-24, 127-530 1-56 1-20   
Smoothness 78-307 31-149, 511-740     
Meltdown rate 1-65, 274-740 1-25, 132-530 1-65 1-25, 425-470   

Non-oral manipulation       

Non-oral viscosity 1-60, 294-740 1-25, 131-516 1-60 1-25   
Graininess on lid 1-62, 375-740 1-23, 180-490 - - 1-27, 200-393 1-14, 95-196, 448-521 
Viscosity with spoon 1-63, 282-740 1-24, 130-521 1-58 1-24   
Flow from spoon 72-208 29-100 66-545 25-317, 481-740   

Meta-descriptor       

Creaminess 1-36, 158-740 72-740     

 
 

Addition of protein increased Graininess and Viscosity. As reported in earlier studies, creaminess relates 

both to the textural properties viscosity and smoothness (Guinard & Mazzucchelli, 1996; Kokini & Cussler, 

1983; Richardson et al., 1993) but in some product categories it may also depend on flavour (Kilcast & 

Clegg, 2002; Richardson-Harman et al., 2000). However, no direct information about flavour can be 

extracted from images, explaining why Creaminess can not be predicted well from image analysis in the 

case of yoghurt.  

 

Cream cheese  

Partial Least Squared Regression (PLS2) was performed using test set validation on the data obtained from 

the surface images and sensory data (see figure 5). The total explained variance in Y is 69% for the two 

significant latent variables (66 and 3%). The first latent variable uses 98% of the variation in the AMT spectra 

from the images to explain 66% of the variation in the sensory data relating to nearly all descriptors. At the 

left side of the first latent variable, the largest contrast difference (MA and MDY) are seen at almost all scales 

for a number of highly correlated sensory descriptors (Butter smell, Cream smell, Sweet taste, Butter flavour, 

Cream flavour, Glossiness, Meltdown rate, Yellowness, Smoothness and Creaminess). The samples relating 

to the above mentioned descriptors exhibit more contrast complexity (larger Mean Angle and Mean 

Difference in Y) over the whole AMT spectrum. The right side of the plot contains all the descriptors that 

relate to the samples with the lowest change in contrast in all parts of the scale. The descriptors are  
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Figure 5. PLSR-modeling of the cream cheese data using test set validation. A: Score plot from PLS2 model. 
Latent variable 1 separates fat levels and within this separation a difference relating to the pH value. B: 
PLSR correlation loadings for the two first latent variables. • Mean angle for increasing scale (MA1), • Mean 
difference in Y for increasing scale (MDY1) and ▪ Sensory descriptors where S = smell, T = taste and F = 
flavour. The inner and outer circles represent 50% and 100% explained variance, respectively. 
 

 

Graininess, Acidic smell, Goat smell, Blueness, Greyness, Grain size, Resistance, Astringent, Flouriness, 

Chalkiness, Stickiness, Firmness, and Aftermouthfeel. The main separation was observed in first latent 

variable, the second latent variable only uses 2% of the variation in the AMT spectra from the images to 
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explain 3% of the variation in the sensory data. The span of the samples in the score plot is primarily related 

to the first direction. The main separation is between the cream cheeses’ fat content. Furthermore, within this 

grouping, first of all the increase in pH value and to some degree an increase in salt content changes the 

samples towards the same properties as those with a higher fat content. Relating the score and loading plots 

shows that for cream cheese an increase in fat content, as well as pH value, gives more Glossiness and 

Yellowness which are visual descriptors closely correlated to both textural descriptors (Smoothness, 

Meltdown rate ) and smell/taste descriptors (Butter smell, Cream smell, Butter flavour, Cream flavour and 

Sweet taste). The results of the PLS1 regression on the cream cheese are listed in table 7. The descriptors 

of interest have a correlation ≥ 0.74 and a RMSEP ≤ 2.80. When comparing with the panellist error from the 

sensory analysis (see table 4) the prediction error for the predicted descriptors from the image analysis are 

acceptable, also for Creaminess. The loading weights estimated by the PLS1 analyses can be seen in table 

8. The table indicates that for the first latent variable, which explains most of the variation, Butter smell, 

Cream smell, Butter flavor, Cream flavor and Sweet taste, are closely correlated to Yellowness, Glossiness, 

Smoothness, Meltdown rate and Creaminess represented by the same X-loadings weights. The descriptors 

Acidic smell, Greyness, Stickiness, Flouriness, Astringent, Aftermouthfeel, Firmness, Graininess, Chalkiness, 

Resistance, Blueness, Goat smell, Old milk smell, and Grain size are negatively correlated to all of the AMT 

spectra in the first latent variable. 
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Table 8. PLS1-modeling of the image analysis results against those of the sensory descriptors which could be 
explained. 

Descriptors AMT 

 Explained X 
variance (%) 

Explained Y 
variance (%) 

Slope Offset Correlation RMSEP #PLS 
components 

Aroma        

Acidic smell 98 45 0.47 3.74 0.74 0.70 1* 
Butter smell 98 56 0.58 2.72 0.81 1.13 1  
Cream smell 98 69 0.68 1.93 0.86 0.97 1 
Goat smell 98, 2, 0 53, 3, 7 0.58 1.36 0.82 0.86 3 
Old milk smell 98, 1, 1 42, 18, 6 0.63 1.25 0.84 0.50 3 

Non-oral manipulation        

Resistance 98, 2 77,2 0.79 1.19 0.89 1.62 2* 

Appearance        

Blueness 98, 2, 0 57, 11, 8 0.72 0.48 0.89 0.36 3 
Greyness 98 57 0.55 0.76 0.76 0.29 1* 
Yellowness 98, 2, 1 52, 5, 7 0.55 1.85 0.76 0.87 3* 
Glossiness 98 84 0.84 1.08 0.96 1.24 1* 
Grain size 98, 2, 0 52, 19, 14 0.80 1.11 0.90 0.95 3* 

Flavour and taste        

Butter flavour 98 66 0.67 2.07 0.87 1.33 1 
Cream flavour 98 73 0.72 1.78 0.88 1.26 1* 
Sweet taste 98 51 0.53 1.59 0.78 0.75 1* 

Texture and mouthfeel        

Firmness 98, 2 79, 2 0.80 1.33 0.90 1.41 2* 
Smoothness 98, 2 72, 5 0.77 2.35 0.87 2.41 2* 
Meltdown rate 98 73 0.70 2.34 0.86 1.76 1* 
Astringent 98, 2 63, 2 0.71 2.08 0.88 1.42 2* 
Flouriness 98 46 0.49 2.24 0.75 1.81 1 
Chalkiness 98, 2 64, 3 0.69 1.27 0.84 1.75 2* 
Graininess 98, 2 69, 5 0.73 1.06 0.84 2.80 2* 
Stickiness 98 71 0.70 1.44 0.87 1.69 1* 
Aftermouthfeel 98, 2 57, 3 0.62 2.64 0.79 0.67 2 

Meta-descriptor        

Creaminess 98, 2 71, 4 0.78 1.93 0.89 2.00 2 

*The actual decrease in RMSEP continued further than the chosen PLS components, however the loadings 
became unstable when using more then the chosen PLS components. 
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Table 9. Positively correlated X-loading weights for the explained sensory descriptors for the cream cheese 
images, MA – Mean angle and MDY – Mean difference in Y. 

Descriptors Component number 
 PC1 PC2 PC3 
 SMA SMDY SMA SMDY SMA SMDY 

Aroma       

Acidic smell - -     
Butter smell 4-709 1-709     
Cream smell 4-709  1-709     
Goat smell - - - 405-709 8-260 1-115 
Old milk smell - - 36-139 7-42 1-221 1-113 

Non-oral manipulation       

Resistance - - 594-709 294-709   

Appearance       

Blueness - - 578-709 279-709 12-249 5-97 
Greyness - -     
Yellowness 1-709 1-709 1-101 1-38 624-709 480-709 
Glossiness 4-709 1-709     
Grain size - - 524-709 280-709 14-269 2-119 

Flavour and taste       

Butter flavour 4-709 1-709     
Cream flavour 4-709 1-709     
Sweet taste 4-709 1-709     

Texture and mouthfeel       

Firmness - - 575-709 266-709   
Smoothness 2-709 1-709 1-266 1-130   
Meltdown rate 4-709 1-709     
Astringent - - 484-709 205-709   
Flouriness - -     
Chalkiness - - 594-709 285-709   
Graininess - - 614-709 288-709   
Stickiness - -     
Aftermouthfeel - - 624-709 266-709   

Meta-descriptor       

Creaminess 3-709 1-709 1-336 1-142   

 
 

 

The particle size distributions of the cream cheeses (see figure 6), largely showed that the non-fat samples 

exhibited a bimodal size distribution (it is thus less meaningful to characterize the size distribution by an 

average value). A clear inverse relationship is also seen between fat content and particle size. An increase in 

the pH value decreases the amount of largest particles, but does not shift the histogram towards overall 

smaller particles as is the case when increasing salt content. Relating the surface images and the results 

from the Mastersizer shows that the samples containing 9% fat (except the one with the lowest pH value and 

salt content), all samples with 6% fat and high pH value and samples with 0 and 3% fat with the highest pH 

value and highest salt content all contained particles in the range 0.8 to 19µm and images with high contrast 

complexity. The rest of the samples with 0 and 3% fat and the samples with 6% fat at low pH and low salt 

mainly contained particles ranging from 66 to 410µm and the surface images all exhibited low contrast 

complexity. 
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Figure 6. Distribution of particles size for the cream cheeses containing different levels of fat. For each fat 
level the effect of pH and salt content can be seen. 

 

These results indicate that decreasing the fat content in cream cheese increases the amount of large 

particles which both affects the product appearance and the textual sensation, as these samples for example 

are more Grey, Grainy and Firm. However, the concentration of large particles can be affected both by pH 

value and salt content, in that an increase in both will reduce the number of large particles, due to a reduced 

aggregation of acid milk gel particles. This reduction in the amount of large particles changes the 

appearance of a low fat cream cheese towards the higher fat containing cream cheeses, as these samples 

are more Yellow, Glossy, Smooth and Creamy. The fairly good prediction of Creaminess in cream cheese 

indicates that in this study it is related to textural properties in a more straightforward manner than in the 

case of yoghurt. 
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Conclusion 

The results indicate that all of the design variables had an effect on the dairy products visual appearance. 

For yoghurt addition of protein was the most important factor separating the samples, followed by protein 

type and fat content. For the cream cheeses, the fat content had the highest impact, followed by the pH 

value and the salt concentration. For both dairy product categories the strong correlation between 

appearance and structural properties made it possible to relate image features to perceived textural 

properties and for the cream cheese even smell, taste and flavour could be distinguished. For both products 

the prediction error for the best predicted descriptors from the image analysis was approximately the same 

as the panellist error in the sensory analysis.  

 

Prediction of perceived creaminess was better in cream cheese than in yoghurt. This indicates that the 

perception of creaminess in the chosen set of low fat cream cheese was more straightforwardly related to 

textural properties, whereas the perception of creaminess in the chosen set of yoghurts requires some 

specific texture and flavour properties. 
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Abstract 

 

Studies linking the microstructure of dairy products to sensory properties are mostly 

qualitative in nature. In the present work we have related sensory data to confocal 

laser scanning images of yoghurt and cream cheese using feature extraction techniques 

(Angle Measure Technique and Fourier transform magnitude spectra) and PLS 

regression. Application of AMT and FFT made it possible to discriminate between 

microstructures and find some of the same correlations seen in the sensory analysis 

alone. In particular, a correlation between yoghurt microstructure and the sensory 

property creaminess was found. 

 

Keywords 

 

Yoghurt, Cream cheese, Sensory descriptive analysis, Image analysis 

 

Introduction 

 

Confocal laser scanning microscopy (CLSM) has proven an excellent tool for studying 

food structure (Blonk and van Aalst, 1993). It is suitable for examining the general 
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microstructure of milk gels, but not the finer details or internal structure of features like 

casein micelles or protein clusters (Heertje et al., 1985). CLSM has been used 

extensively to characterize milk gel structures, but mostly qualitatively (Lucey et al., 

1998b; Lucey et al., 1998a). Studies relating large data sets, e.g. of sensory data, to 

CLSM images require image analysis algorithms which extract relevant features. One 

approach is to measure relevant properties such as mean pore size (Pereira et al., 

2006); correlating these properties with sensory data is straight-forward with univariate 

linear regression. Another way to deal with the issue is to extract global features from 

the images. This is particularly relevant to near-isotropic image such as CLSM images of 

milk gels. Image texture methods can be divided in four categories: statistical, 

structural, model-based and transform-based (Bharati et al., 2004).  

 

Both methods employed in this study belong to the group of transform-based texture 

methods. Kvaal et al. (1998b) compared different multivariate feature extraction 

methods on images of wheat baguettes with regards to their ability to predict sensory 

descriptors from a full descriptive analysis. The Angle Measure Technique turned out to 

be the best in predicting sensory porosity. In addition, the AMT-based models required 

fewer latent variables, and were thus deemed more robust. In a similar study on 

mayonnaise, Indahl and Næs (1998) found that the Absolute Difference Spectrum 

(ABDF) method predicted a subset of five sensory descriptors slightly better than the 

magnitude spectrum of the Fourier transform, which in turn performed better than, 

among other, the Angle Measure Technique (although no statistically significant 

difference between any of the methods considered was found). It was inferred that the 

Fourier-based and similar feature extraction methods are preferable for images 

containing periodic phenomena, whereas the AMT spectra seemed to contain more 

information in the case of more irregular structures (Kvaal et al., 1998a).  

 

The method Angle Measure Technique (AMT) was introduced by Robert Andrle in 1994 

as an alternative method to fractal analysis in characterizing the complexity of two-

dimensional geomorphic lines (Andrle, 1994). Esbensen et al. (1996) investigated the 

use of AMT on other applications than geological images. In contrast to Andrle who 

analyzed an image of a curve, Esbensen et al. analyzed an unfolded (vectorized) image. 

AMT has since been evaluated on different food products. Scanning electron microscopy 
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images of dressing systems were examined by Egelandsdal et al. (1999) and on 

powders (Huang and Esbensen, 2000; 2001). 

 

The Fourier transform is widely used in image processing and analysis. Discrete Fourier 

Transforms (DFT) on isotropic images yields a matrix of the same dimensions as the 

image itself. For isotropic image the DFT array is approximately rotationally symmetric 

around the zero-frequency (centre of the array), this means that the features are (to 

within the approximation) only located in one dimension. This dimension is the radial 

axis of the polar coordinate system with centre equal to the zero-frequency point. The 

projection of the DFT array onto this axis is called the radial average:  
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where Cr is the set of points belonging to the digitized circle of radius r and F may be 

the real, imaginary or the amplitude of the elements in the DFT array. Similarly, an 

angular average may be defined as: 
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where Lθ is the set of points belonging to the digitized line with angle θ to the abscissa. 

Figure 1 shows the principle of radial averages graphically.  

 

 

 

Figure 1. Two CLSM images A and P, their Fourier transform magnitude, and derived radial averages. 
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Although the angular average is in principle negligible for isotropic images, in reality 

there is always some information to gain from it, since nothing is perfectly isotropic. 

 

Materials and methods 

A total of 25 batches of stirred yoghurt (Janhøj et al., 2006b) and 20 batches of cream 

cheese were evaluated (Janhøj et al., 2006a). Design variables for the yoghurt study 

were fat level, protein type and protein level (see Table 1). 

 

Table 1. The 25 analysed yoghurts abbreviations and composition. The different contents of fat (0, 1, 3) 
and protein (0, 1, 2, 3, 4) added and a short description of these proteins (N, S, C, V, M). 

 

Fat content (%) Added protein type Total protein level (w/w%) Product abbreviations 
0 1 3 (N, S, C, V, M) 0 1 2 3 4 

A0-N-0 0.3   3.3     
B1-N-0  1.5  3.3     
C3-N-0   3.5 3.3     
    

None (N) 

     
D0-S-2 0.3     4.8   
E0-S-3 0.3      5.4  
F1-S-2  1.5    4.8   
G1-S-3  1.5  

Skimmed milk powder (S) 

   5.4  
          
H0-C-1 0.3    4.2    
REF0-C-2* 0.3     4.8   
I0-C-3 0.3      5.4  
J1-C-1  1.5   4.2    
K1-C-2  1.5    4.8   
L1-C-3  1.5  

Commercial milk protein  
preparation (C) 

   5.4  
          
M0-V-1 0.3    4.2    
N0-V-2 0.3     4.8   
O0-V-3 0.3      5.4  
P1-V-1  1.5   4.2    
Q1-V-2  1.5    4.8   
R1-V-3  1.5  

High viscosity milk protein preparation 
(V) 

   5.4  
          
S0-M-2 0.3     4.8   
T0-M-3 0.3      5.4  
U0-M-4 0.3       6.0 
V1-M-2  1.5    4.8   
X1-M-3  1.5     5.4  
Y1-M-4  1.5  

Microparticulated milk protein 
preparation (M) 

    6.0 

 

 

The yoghurt with 0.3% fat added commercial milk protein preparation adjusted to 4.8% 

total protein was selected as the reference to appear in all 12 sensory sessions. These 

12 samples were treated as 4 different products (1, 2, 3 and 4). Due to CLSM 

equipment failure, only half of the image data set could be used in the yoghurt trial, 

corresponding to the second half of the second replicate and all of the third replicate. 

 

The cream cheese samples were varied in fat content, pH and salt concentration (see 

Table 2). 



 5 

 

Table 2. The 20 analysed cream cheeses abbreviations and composition. The different contents of fat (0, 
3, 6, 9), salt content (1, m, 2) and pH value (1, m, 2). 

 

Fat content (%) Salt content (%) pH value Product abbreviations 
0 3 6 9 1 m 2 1 m 2 

A-F0-S1-p1 0.0    0.4   4.4   
B-F0-S1-p2 0.0    0.4     5.0 
C-F0-S2-p1 0.0      0.9 4.4   
D-F0-S2-p2 0.0      0.9   5.0 
           
E-F3-S1-p1  3.0   0.4   4.4   
F-F3-S1-p2  3.0   0.4     5.0 
G-F3-S2-p1  3.0     0.9 4.4   
H-F3-S2-p2  3.0     0.9   5.0 
           
I-F6-S1-p1   6.0  0.4   4.4   
J-F6-S1-p2   6.0  0.4     5.0 
K-F6-S2-p1   6.0    0.9 4.4   
L-F6-S2-p2   6.0    0.9   5.0 
           
M-F9-S1-p1    9.0 0.4   4.4   
N-F9-S1-p2    9.0 0.4     5.0 
O-F9-S2-p1    9.0   0.9 4.4   
P-F9-S2-p2    9.0   0.9   5.0 
           
Q-F0-Sm-pm 0.0     0.65   4.7  
R-F0-Sm-pm 0.0     0.65   4.7  
S-F9-Sm-pm    9.0  0.65   4.7  
T-F9-Sm-pm    9.0  0.65   4.7  

 

 

The cream cheeses (Q, R, S, T) with the lowest and highest fat content adjusted to 

both average salt content and pH-value were selected as the reference to appear twice. 

 

Confocal laser scanning microscopy 

 

Yoghurt  

 

Due to the inherently unstable nature of the sirred yoghurt, sensory evaluations and 

microscopy were performed on exactly seven day old samples. A Leica TCS SP2 

confocal laser scanning system (Leica Microsystems, Mannheim, Germany) fitted with 

an upright Leica DM RXE microscope and an argon laser with excitation at 488 nm was 

used. Filter settings for the green channel were at wavelengths emitted at 500-535 nm. 

The lens was a 20 × 0.4 Na Dry N-Plan lens. 

 

The hydrophilic protein network in the yoghurt samples were dyed with the fluorescent 

dye, Oregon Green® 488 (D-6145) from Molecular Probes, Eugene, OR, USA. A solution 

of dye was made by dissolving 0.0019g dye in 2mL ethanol giving a 0.095% solution. 
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This was afterwards diluted with ethanol to a 0.0095% solution, which then was filtered 

using a 20µm micro filter and kept in the dark at 5ºC.  

 

Samples were prepared first by placing a thin layer of dye solution on a covering glass 

and letting it dry. The sample of yoghurt was then placed on the slide in an amount 

that could spread and give a relatively big surface. The covering glass was placed on 

the yoghurt sample and fixed with correction fluid. After drying the sample could be 

placed in the microscope. 

 

It was attempted to obtain a picture in the same depth of all the samples. Therefore 

each time a new slide was placed in the microscope, the microscope was re-zeroed. 

The xz-plan was used to positioning the covering glass at the centre of the screen 

before starting to focus in the xy-plan. Each image had the format 1024 × 1024 pixels 

for 750 × 750 µm and consisted of an accumulation of four images obtained at the 

exact same position in the yoghurt. Three slides were prepared for all samples and 

three pictures were taken of each slide, giving a total of nine images of each yoghurt 

sample. 

 

Cream cheese  

 

For the cream cheese samples a Leica TCS SP confocal laser scanning system (Leica 

Microsystems, Mannheim, Germany) fitted with an inverted Leica DM IRBE microscope 

and an argon/krypton laser with excitation at 488 and 568 nm was used. Filter settings 

for the green channel were at wavelengths emitted at 500-535 nm. The lens was a 20 × 

0.4 Na Dry N-Plan lens and a 63 × N-Plan lens. 

 

The cream cheese samples were dyed with the non-specific dye Nile Red (Molecular 

Probes, Eugene, OR) as well as with Oregon Green® 488 (D-6145). The Nile Red 

solution was prepared as the Oregon Green mentioned before. 

 

Samples were prepared first by placing a thin layer of an equal mixture of Oregon 

Green and Nile red on a covering glass and letting it dry. A thin slice of cream cheese 

sample was then placed on the slide in an amount that gave a relatively big surface. 
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The covering glass was placed on the sample and fixed with correction fluid. After 

drying the sample could be placed in the microscope. 

 

Three slides were prepared for all samples and five pictures were taken of each slide, 

giving a total of 15 images of each cream cheese sample.  

 

Image analysis 

 

Prior to image analysis, pre-processing was necessary. The images were made more 

equal in  local brightness level by local grid adjustment (xpolyxyfit), followed by 

removal of local noise (convolution) and finally magnification of the differences in 

contrast. Figure 2 shows a images before and after pre-processing. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

The pre-processed CLSM images of yoghurt were analysed by the Angle Measure 

Technique (AMT) using the IMAT Toolbox (Laugesen et al., 2005) under MATLAB 6.5 

(The MathWorks, Natick, MA).  The AMT-linear algorithm was used to analyse the 

vertically unfolded images (“classic” unfolding). AMT-linear uses a “random” point A and 

Figure 2.  From left to right are shown the microstructure images before 
(upper) and after pre-processing (lower) from yoghurt A, G and I. 
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a value s, the points B and C are defined as the point at distances s on the x-axis to the 

right and left of A, respectively.  

 

 

 

 

 

 

 

 

 

 

 

When increasing s, B and C are simply the next pixels in the unfolded sequence of 

pixels. The grid sampling was preformed before unfolding with approximately 1% 

stratified randomly selected samples. This gave a grid of 100 by 100 with one random 

point within each grid box. The value s increased to 1024, the size of the images.  

 

All CLSM images of cream cheese were analyzed by the radial mean of Fast Fourier 

transform algorithm using the IMAT Toolbox. The log power of the DFT, 

F=log(|DFT(X)|) was used.  

 

Sensory descriptive analysis 

 

The samples were evaluated sensorially by descriptive analyses using a trained panel. 

The descriptors, tabulated in Table 1 and Table 4 were developed by consensus, with 

the exception of the meta-descriptor creaminess.  

Figure 3. Illustration of the AMT-linear. 
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Table 3. Sensory descriptors (yoghurt study) their definitions and original terms in Danish. 

Descriptors Definition (reference material) Anchor points Original terms in 
Danish 

Aroma   Lugt 
Tomato smell Intensity of tomato aroma (0.3 L yoghurt (Jersey 0.1% fat, 

Thise Dairy, Denmark) added 5 drops of Heinz ® Tomato 
Ketchup) 

a little – a lot Lugt af tomat 

Lamb smell Intensity of lamb aroma (see below for detailed procedure*) a little – a lot Lugt af lam 
Cream smell Intensity of raw cream aroma (full fat homogenised milk 

(3.5% fat) and cream (38% fat) in a 1 to 5 mixture) 
a little – a lot Flødelugt 

Buttermilk smell Intensity of buttermilk aroma (Organically produced buttermilk 
(ArlaFoods, Denmark)) 

a little – a lot Kærnemælkslugt 

Flour smell Intensity of flour aroma (0.3 L yoghurt (Jersey 0.1% fat, Thise 
Dairy, Denmark) added 15 mL wheat flour) 

a little – a lot Melet lugt 

    

Appearance   Udseende 
Whiteness Intensity of the colour white a little – a lot Hvid farve 
Greenness Intensity of the colour green a little – a lot Grøn farve 
Greyness Intensity of the colour grey a little – a lot Grå farve 

Yellowness Intensity of the colour yellow a little – a lot Gul farve 
Glossiness Degree of yoghurt surface shininess a little – a lot Blankhed 
Graininess Degree of yoghurt surface graininess a little – a lot Grynethed 

    

Flavour and taste   Smag 
Lamb flavour Intensity of lamb flavour (see above) a little – a lot Smag af lam 
Butter flavour Intensity of butter flavour (Lumb of organically produced old 

fashioned churned, salted butter (Lurpak ®, ArlaFoods, 
Denmark)) 

a little – a lot Smag af smør 

Cream flavour Intensity of cream flavour (see above) a little – a lot Smag af fløde 
Buttermilk flavour Intensity of buttermilk flavour (see above) a little – a lot Smag af kærnemælk 

Flour flavour Intensity of flour flavour (see above) a little – a lot Melet smag 
Sour taste Intensity of sour taste a little – a lot Sur smag 

Sweet taste Intensity of sweet taste a little – a lot Sød smag 
    

Texture and mouthfeel   Konsistens 
Viscosity Perceived thickness of the sample evaluated in the mouth thin – thick Viskositet 

Smoothness Perceived smoothness of the sample evaluated in the mouth a little – a lot Glathed 
Meltdown rate Amount of “work” to break down the bolus slow – fast Nedsmeltning 

Astringent Intensity of saliva losing feeling in the mouth – using the 
tough against the palate or the back of the teeth 

a little – a lot Astringerende 

Fatty after mouthfeel Degree of “fatty” mouth coating after expectoration of the 
sample 

a little – a lot Fedtet eftermundfylde 

Dry after mouthfeel Degree of mouth dryness after expectoration of the sample a little – a lot Tør eftermundfylde 
    

Non-oral manipulation   Manipulation med ske 
Non-oral viscosity Rate of a spoon full to blur when it is placed on top of the 

sample 
a little – a lot Gelstivhed 

Graininess on lid Half a spoon of sample spread on a lid a little – a lot Grynethed på låg 
Viscosity with spoon Viscosity measured after three stirs with spoon thin – thick Viskositet med ske 

Flow from spoon Continuous flow from spoon a little – a lot Sammenhængende 
flydning fra ske 

    
Metadesciptor   Metadeskriptor 

Creaminess Perceived creaminess of the sample evaluated in the mouth a little – a lot Cremethed 
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Table 4.  Sensory descriptors (cream cheese study), their definitions and original terms in Danish. 

Descriptors Definition (reference material) Anchor points Original term in Danish  

Aroma   Lugt 
Cream smell Intensity of raw cream aroma (full fat homogenised milk (3.5% fat) 

and cream (38% fat) in a 1 to 5 mixture) 
a little – a lot Flødelugt 

Acidic smell Intensity of acidic smell when opening the sample a little – a lot Syrlig lugt 
Butter smell Intensity of butter flavour (Lump of organically produced old 

fashioned churned, salted butter (Lurpak ®, ArlaFoods, Denmark)) 
a little – a lot Smørlugt 

Goat smell Intensity of goat aroma (goat yoghurt) a little – a lot Gedelugt 
Old milk smell Intensity of old milk aroma a little – a lot Gammel mælk lugt 

    

Non-oral 
manipulation 

  Manipulation med hånd 

Resistance Resistance during spread with a knife low - high Modstand 
    

Appearance   Udseende 
Whiteness Intensity of the colour white a little – a lot Hvid farve 
Greyness Intensity of the colour grey a little – a lot Grå farve 

Yellowness Intensity of the colour yellow a little – a lot Gul farve 
Blueness Intensity of the colour blue a little – a lot Blå farve 

Glossiness Degree of surface shininess a little – a lot Blankhed 
Grain 

concentration 
Evaluation of closeness of grains a little – a lot Koncentration af gryn 

Grain size Evaluation of the average size of grains small – large Størrelse af gryn 
    

Flavour and 
taste   Smag 

Goat flavour Intensity of goat flavour (see above) a little – a lot Smag af ged 
Butter flavour Intensity of butter flavour (Lump of organically produced old 

fashioned churned, salted butter (Lurpak ®, ArlaFoods, Denmark)) 
a little – a lot Smag af smør 

Cream flavour Intensity of cream flavour (see above) a little – a lot Smag af fløde 
Sour taste Intensity of sour taste a little – a lot Sur smag 

Sweet taste Intensity of sweet taste a little – a lot Sød smag 
Salt taste Intensity of salt taste a little – a lot Salt smag 

    

Texture and 
mouthfeel   Konsistens 

Smoothness Perceived smoothness of the sample evaluated in the mouth a little – a lot Glathed 
Firmness Perceived firmness of the sample evaluated in the mouth a little – a lot Fasthed 

Flouriness Intensity of flour aroma (0.3 L yoghurt (Jersey 0.1% fat, Thise Dairy, 
Denmark) added 15 mL wheat flour) 

a little – a lot Melethed 

Chalkiness Perceived chalkiness of the sample evaluated in the mouth a little – a lot Kridtethed 
Graininess Perceived graininess of the sample evaluated in the mouth a little – a lot Grynethed 
Stickiness Perceived stickiness of the sample evaluated in the mouth a little – a lot Klistrethed 

Meltdown rate Amount of “work” to break down the bolus slow – fast Nedsmeltning 
Astringent Intensity of saliva losing feeling in the mouth – using the tough 

against the palate or the back of the teeth 
a little – a lot Astringerende 

Aftermouthfeel Degree of mouth coating after expectoration of the sample a little – a lot Eftermundfylde 
    

Meta-descriptor   Metadeskriptor 
Creaminess Perceived creaminess of the sample evaluated in the mouth a little – a lot Cremethed 

 

Data analysis 

 

The microstructure of the yoghurts and cream cheese were related to the sensory data 

by regressing the sensory data matrices on the extracted image feature spectra uning 

partial least squares regression (PLSR). Averages over the nine images of each yoghurt 

sample, and 15 images of each cream cheese were used as the independent variable. 

The PLS models were croo-validated Subsequently a model on a whole sample set (first 

or third replicate) and tested it against one half the samples (half of the second 

replicate). Both averaged datasets based on AMT spectra from all samples, and sets 
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from which potential outliers had been removed were analyzed. The cream cheese 

models were validated by leave-one-out cross validation. Both averaged datasets based 

on FFT magnitude spectra from all samples and sets based on average samples without 

potential outliers were tested.  

 

Initally PLS2 analyses (multivariate dependent sensory variable Y) were performed, 

followed by more accurate PLS1 analyses (univariate dependent sensory variable Y). All 

multivariate analyses were performed using the Unscrambler 9.1 software (Camo ASA, 

Trondheim, Norway). 

 

Results and discussion 

 

Microstructure data - Yoghurt 

 

To get a general view of the relation between the data obtained from the 

microstructure images (X-variables) and sensory data (Y-variables) partial least squares 

regression (PLSR) was performed using test set validation (see Figure 4).  
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Figure 4.  PLS2 modelling results for the first three dimensions. X-var. are the AMT spectra and 
Y-var. the sensory descriptors. X-var 91,3,4,1 / Y-var 11,28,19,5 
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The total explained variance in Y is 63% for the fire significant dimensions (11, 28 19 

and 5%). The first three dimensions uses 98% of the variation in the AMT spectres to 

explain 58% of the variation in the sensory data relating to some of the used 

descriptors. At the lower left corner of the correlation loadings plot of the first and 

second dimension the contrast difference (MA and MDY) are small scales, 

corresponding to glossiness and smoothness. The upper right side of the plot contains 

all the descriptors that relate to the samples with an over all higher contrast difference 

at all scales. The descriptors are graininess and graininess on lid. The plot of the second 

and third dimension shows that the viscosity related descriptors also can be predicted. 

In neither plot is creaminess well predicted. 

 

Because of the small number of image samples (due to the equipment failure), the 

precision of the PLS models was limited. No samples were removed before the models 

were made as this would change the experimental design completely, even though 

some samples had an outlier tendency (yoghurt B). The 0.3% fat yoghurt without 

added protein (yoghurt A) was found not to be an outlier but an extreme sample and 

removal of this sample did not affect the PLS2 modelling.  

 

Analysis of the AMT spectra includes analysing the X-loading weights estimated by PLS1 

regression (see Table 5). 
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Table 5. PLS1-modeling of the yoghurt image analysis results against those of the sensory descriptors 
which could be explained. *Use more PLS components but the explained X-varians does not bring any 
more information then the used components 

 

 Explained X 
variance 

(%) 

Explained Y 
variance (%) 

Slope Offset Correlation 
 

RMSEP #PLS 
components 

Aroma        

Cream smell 89,8 9,27 0.36 1.26 0.74 0.36 2 
Flour smell 91,6 24,8 0.32 1.35 0.55 0.62 2 

Appearance        

Yellowness 91,5 7,8 0.25 2.33 0.56 0.63 2 
Glossiness 91,5,2,1 15,31,25,4 0.59 4.50 0.80 1.63 4 
Graininess 91,5,2 22,27,23 0.57 1.93 0.82 1.72 3 

Flavour/Taste        

Flour flavour 91,6,1 21,14,12 0.34 2.10 0.73 1.83 3 

Texture/ Mouthfeel        

Viscosity 90,2,5,1 3,62,3,5 0.70 1.48 0.72 2.64 4* 
Smoothness 91,6,2 27,26,21 0.59 4.05 0.77 1.85 3 
Meltdown rate 91,2 4,55 0.45 2,98 0.61 2.59 2 
Fatty after mouthfeel 91,5 10,21 0.39 2.47 0.59 1.54 2 

Manipulation with spoon        

Non-oral viscosity 91,2 4,61 0.52 3.01 0.63 3.04 2 
Graininess on lid 91,5,2 23,30,23 0.62 3.38 0.85 1.99 3 

Metadescriptor        

Creaminess 91,6 17,17 0.41 3.86 0.63 2.00 2 

 

 

The positively correlated X-loading weights for the sensory descriptors are tabulated in 

Table 6.  
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Table 6. Positively correlated X-loading weights for the sensory descriptors, MA – Mean angle and MDY – Mean difference in Y 

Descriptors Component number 
 1 2 3 4 
 MA MDY MA MDY MA MDY MA MDY 

Aroma         

Cream smell 4-82, 994-
1024 

2-11, 502-523, 
1014-1024 

4-380, 728-1024 2-59, 455-571, 967-1024     

Flour smell 60-1000 11-503, 523-1015 - -     

Appearance         

Yellowness 10-60 - 13-128, 198-417, 
942-1015 

6-33, 480-546, 992-1021     

Glossiness 2-35, 
1007-1024 

2-8, 506-520, 
1018-1024 

3-45, 979-1024 2-45, 242-270, 488-539, 
753-784, 1000-1024 

488-508, 518-543 62-456, 511-513, 569-968 69-203, 823-987, 
1014-1024 

2-6, 23-82, 426-
595, 942-1001, 

1020-1024 
Graininess 51-994 14-499, 527-1012 52-115, 209-465, 

495-530 
- 10-466, 562-671, 920.1015 5-48, 467-559, 977-1021   

Flavour/Taste         

Flour flavour 65-995 14-500, 526-1012 - - 26-120, 243-266, 322-467, 
560-582, 612-656, 920-1006 

11-35, 478-549, 991-1013   

Texture/ Mouthfeel         

Viscosity 24-1003 12-502, 524-1014 22-136, 209-306 - 240-787 117-404, 621-911 2-62, 89-99, 
227-317, 353-
486, 559-670, 

984-1024 

211-334, 493-
531, 711-718, 

1006-1024 

Smoothness 2-36, 
1009-1024 

2-6, 507-518, 
1020-1024 

2-53, 123-149, 997-
1024 

2-26, 488-539, 1000-1024 2-14, 484-542, 1009-1024 2-6, 63-188, 232-278, 322-
456, 508-518, 569-704, 749-

794, 836-965, 1020-1024 

  

Meltdown rate 33-998 14-449, 527-1012 27-116, 210-298 -     
Fatty after mouthfeel 11-59 - 11-119, 926-1010 9-31, 482-544, 994-1017     

Manipulation with 
spoon 

        

Non-oral viscosity 27-1004 12-502, 
524-1014 

23-126, 153-459 -     

Graininess on lid 51-994 14-500, 526-1012 54-113 - 2-187, 231-302, 924-1013 7-34, 479-546, 991-1020   

Metadescriptor         

Creaminess 2-45 - 2-460, 584-642, 
961-1024 

2-21, 493-533, 1004-1024     
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The loading weights reveal how much each X-variable contributes to explaining the 

response variation along each model component. Hence, the loading weights can be 

used to find the relationship between the X- and Y-variables. Modelling of creaminess 

was only possible due to the presence of the 0.3% fat yoghurt without added protein 

(yoghurt A); removal of this sample led to the collapse of the model. However, this was 

not the case for any of the other descriptors. 

 

The correlations between the sensory descriptors, as evidenced by CLSM image 

features, appear from Table 6. The descriptors that correlate in the PLS1 analysis of the 

AMT spectra are nearly the same as the ones that correlate in the sensory analyses of 

yoghurt and cream cheese alone. The X-loading weights for the descriptors creaminess, 

yellow and fatty after mouthfeel are the same, cream smell, smoothness and glossiness 

somewhat less. X-loading weights for Graininess, graininess on lid, flour smell and flour 

flavour are different from of smoothness and glossiness and hence negatively 

correlated. The X-loading weights for viscosity, non-oral viscosity and meltdown rate 

are also similar and as such positively correlated, but closer inspection revels that they 

are not mirror images of any of the other descriptors. 

 

Certain features in the images make the prediction of aroma descriptors possible. In the 

case of cream smell this is likely to be related to fat level (which affects microstructure 

directly). For flour smell and flour flavour the correlation is likely due to the addition of 

the commercial milk protein preparation (C). 

 

From the PLS1 analysis it was evident that graininess and viscosity are correlated, but 

are not one and the same thing. As to graininess, a sample having a fine, close protein 

network consisting of tiny protein clusters are sensed as being least grainy whereas the 

samples having a network consisting of large protein clusters and large pores are 

sensed as grainy. With regards to viscosity, the high viscosity samples are also 

grainiest. However, the low viscosity yoghurt samples have an overall sparse network 

with a high degree of porosity. 

 

Qualitatively, the microstructure of the yoghurts with no protein added showed a open, 

highly porous and regular network, especially the 0.3% fat yoghurt without added 
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protein (yoghurt A). As mentioned previously, an open protein matrix results in a softer 

and thinner the yoghurt. This agrees with the findings of the present work since 

yoghurt A is the thinnest yoghurt. As observed in earlier studies, the microstructure of 

the full-fat yoghurt was denser and more closed than for the yoghurts with a reduced 

fat content and no addition of protein. 

 

In accordance with the literature, addition of protein increased the connectivity 

between protein clusters. For the yoghurts containing microparticulated protein, 

increasing amounts of microparticulated protein lumps were found inside the voids of 

the protein network, suggesting that the microparticles are not wholly integrated into 

the network.  

 

Microstructure data - Cream cheese 

 

A general view of the ability of FFT magnitude spectra to discriminate between samples 

was obtained by ANOVA PLSR: regressing the spectra on the design matrix (Aastveit 

and Martens, 1986; Martens and Martens, 2001). The total explained variance in Y is 

57% for the fire significant dimensions (45, 6, 4 and 2%). Figure 5 and Figure 6 show 

the first three latent variables, accounting for 55% of the variation in the FFT 

magnitude spectra. 
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The score plot of the first two latent variables shows that the samples can be resolved 

by fat level using the image features alone. This separation is mainly on the first latent 

variable. Looking at the correlation loadings plot, it can be seen that for the red channel 

the radius of interest are of a median size whereas for the green channel both median 

and large radii are of interest. Plotting the first and third latent variables against each 

other reveals a grouping concerning the production parameters pH value and salt 

content. 

-0,4 -0,2 0,0 0,2 0,4
-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

 

 

D
im

en
si

on
 2

Dimension 1

A

B

C

D

E

G

H

J

K

L

M

N

O

P

R

S

T

Q F

I

0% Fat

3% Fat

9% Fat

6% Fat

-1,0 -0,5 0,0 0,5 1,0
-1,0

-0,5

0,0

0,5

1,0

 

 

D
im

en
si

on
 2

Dimension 1

R1

R1

Figure 5. Score and correlation loadings plot from ANOVA PLSR modelling, PC 1 and 2. X-var 5 and 
5% / Y-var 45 and 6 (cross-validation over replicate). Dark curve in correlation loadings plot represent 
red CLSM channel (Nile Red), lighter grey curve represent green channel (Oregon Green). 
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The score plot shows that the samples with low pH value are located at the upper part 

of the plot and the high pH samples at the bottom. Within this grouping a another 

grouping related to salt concentration can be seen, with the upper samples having low 

salt concentration and the lower samples having high salt concentration. The 

intermediate points with regards to both pH and salt concentration are located in the  

middle of the the plot, except for sample G which is overlapping this separation. It 

should be mentioned that high quality images were difficult to obtain for sample G, 

which may explain that it is located on the “wrong” side of the replicated, intermediate  

samples (Q, R, S and T). Turning to the to the correlation loading plot, it is evident that 

the colour channels are separated, with the green channel being at the score plot the 

upper part and the red channel at the lower part. This is apparently due to the pH 

gradient along the third latent variable.  

 

To get a general view of the relationships between the data obtained from the 

microstructure images (X-variables) and sensory data (Y-variables), PLSR models were 
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Figure 6.  Score and correlation loadings plot from ANOVA PLSR modelling, PC 1 and 3. X-var 5 and 
5% / Y-var 45 and 4 (cross-validation over replicate). Dark curve in correlation loadings plot represent 
red CLSM channel (Nile Red), lighter grey curve represent green channel (Oregon Green). 
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developed using leave-one-out cross validation. The analysis was based on the X-

loading weights estimated by PLS1 regression (see Table 7).  

 

Table 7.  PLS1-modeling of sensory descriptors from FFT magnitude spectra of cream cheese CLSM 
image, validated by leave-one-out cross-validation.  

 

 Explained X 
variance (%) 

Explained Y 
variance (%) 

Slope Offset Correlation 
 

RMSEP #PLS 
components 

Aroma        

Cream smell 59,13,18 43,38,3 0.75 1.51 0.84 1.02 3 
Acidic smell 48,22,18,6 34,38,2,3 0.68 2.26 0.73 0.73 4 
Butter smell 59,16,15,5 46,34,6,2 0.81 1.26 0.86 1.00 4 
Goat smell 60,46 10,39 0.76 0.72 0.87 0.72 2 

Old milk smell 60,14,16 40,25,3 0.55 1.39 0.63 0.72 3 
        

Non-oral manipulation        

Resistance 60,11,18 46,40,2 0.84 1.05 0.88 1.71 3 
        

Appearance        

Greyness 42,33,15 40,26,7 0.60 0.69 0.72 0.31 3 
Yellowness 51,24,16 35,32,6 0.56 1.88 0.65 1.04 3 

Blueness 59,12,19 39,41,1 0.69 0.53 0.79 0.47 3 
Glossiness 59,13,18,1,5 44,40,3,6,0 0.88 0.81 0.92 1.64 5 
Grain size 59,11,9 36,37,5 0.65 2.11 0.72 1.60 3 

        

Flavour and taste        

Goat flavour 50,23,17 26,26,3 0.42 1.86 0.53 1.23 3 
Butter flavour 60,14,16,2,6 47,32,5,8,1 0.83 1.04 0.87 1.29 5 
Cream flavour 59,15,17,4 45,39,4,2 0.88 0.82 0.90 1.19 4 

Sour taste 34,38,18 39,20,4 0.45 4.57 0.56 1.89 3 
Sweet taste 59,12,19 35,36,1 0.64 1.26 0.74 0.81 3 

        

Texture and mouthfeel        

Smoothness 60,13,17,3,5,1,1 52,31,4,6,2,2,1 0.96 0.23 0.95 1.55 7 
Firmness 59,12,18,5,5,1 39,42,2,7,3,2 0.90 0.65 0.91 1.34 6 

Flouriness 56,22,12,3,5 40,27,10,12,3 0.80 0.82 0.89 1.20 5 
Chalkiness 60,11,18,5,4 54,38,2,2,1 0.96 0.14 0.96 0.88 5 
Graininess 60,13,16,3,5,1,1 54,28,4,6,2,3,1 0.97 0.36 0.95 1.70 7 
Stickiness 60,14,16,3,5 48,34,5,6,2 0.89 0.50 0.95 1.06 5 

Meltdown rate 60,13,17,5,4,1 47,36,5,5,3,1 0.94 0.53 0.96 1.01 6 
Astringent 58,15,17,3,5 43,38,5,6,2 0.85 1.07 0.90 1.08 5 

        
Meta-descriptor        

Creaminess 60,15,15,2,5 53,32,5,4,1 0.89 0.80 0.94 1.48 5 

 

 

The positively correlated X-loading weights for the sensory descriptors are tabulated in 

Table 8.  
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Table 8. Positively correlated X-loading weights for the relation between microstructure and sensory descriptors. G=green channel, R=red channel. 

Descriptors Component number 
 1 2 3 
 G R G R G R 

Aroma       
Cream smell 30-562, 619-722 12-417 - 12-176, 342-417, 544-636 424-563, 619-722 1-24, 312-722 
Acidic smell 1-32, 367-390, 548-624 1-12 1-722 8-24, 186-285 1-30, 360-420, 534-632 1-24, 300-722 
Butter smell 28-567, 612-722 16-409 - 16-94, 349-409, 548-632 426-552, 620-722 34-89, 333-722 
Goat smell 1-18 1-10, 507-522, 670-722 1-722 1-10, 456-522, 675-722   

Old milk smell 1-16 1-10 1-722 - 1-48, 354-458 1-16, 296-328, 390-581, 606-722 
       

Non-oral manipulation       
Resistance 1-19 1-0,463-534, 649-722 1-722 247-321, 447-527, 662-722 1-168 1-75,117-308 

       

Appearance       
Greyness 1-27, 559-617 423-550, 631-722 1-54 - 1-722 79-341, 448-522, 679-722 

Yellowness 72-346, 415-540, 634-722 16-674 - 1-5, 346-448, 528-664 72-262 25-184, 346-384 
Blueness 1-20 679-722 1-722 492-514, 698-722 1-90, 147-193 1-25, 148-264, 392-722 

Glossiness 32-548, 624-722 14-417 - 14-141, 341-417, 547-633 242-326, 425-549, 624-722 307-722 
Grain size 1-20 1-10, 512-528, 653-722 1-722 1-10, 465-522, 674-722 1-204 1-88, 144-192, 528-630 

       

Flavour and taste       
Goat flavour 1-29 - 1-722 231-325 1-29, 374-722 300-335, 390-567, 612-722 

Butter flavour 30-564, 616-722 15-410 - 15-163, 345-410, 550-631 253-316, 425-544, 624-722 34-69, 330-722 
Cream flavour 15-722 14-399 - 14-95, 352-396, 559-619 469-533, 655-722 1.19, 87-113, 281-722 

Sour taste 1-40, 352-410, 540-632 1-10 1.722 1-340 1-23, 379-434, 526-649 1-26, 384-722 
Sweet taste 31-556, 620-722 16-422, 566-616 - 16-162, 340-422, 541-639 1-12, 410-722 306-722 

       
Texture and mouthfeel       

Smoothness 27-575, 608-722 11-412 - 11-182, 342-412, 548-633 269-312, 415-562, 617-722 323-722 
Firmness 1-21 1-9, 455-534, 648-722 1-722 223-328, 444-527, 660-722 1-145, 591-597 1-46, 114-317 

Flouriness 1-21 1-9, 418-558, 625-722 1-722 200-345, 418-540, 640-722 1-97,567-608 214-298 
Chalkiness 1-17 1-7, 454-540, 640-722 1-87, 214-722 246-327, 437-533, 652-722 1-161 1-57, 151-265 
Graininess 1-16 1-10, 448-547, 634-722 1-88, 233-722 260-323, 433-538, 648-722 1-68 - 
Stickiness 1-18 437-547-547, 635-722 1-96, 226-722 232-332, 429-536,648-722 1-140 1-10, 159-270 

Meltdown rate 28-574, 608-722 10-416, 576-609 - 10-106, 347-416, 544-637 230-329, 404-564, 617-722 342-722 
Astringent 1-21 440-548, 634-722 1-722 232-331, 434-535, 649-722 1-136, 590-597 155-251 

       
Meta-descriptor       

Creaminess 28-568, 615-722 14-408 - 14-175, 346-408, 553-630 440-544, 627-722 35-114, 312-722 
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Here we notice that the X-loading weights for creaminess are almost the same as those 

of butter flavour, cream flavour, glossiness, smoothness and meltdown rate. Smell of 

cream and smell of butter are close by. Finally sweetness and yellowness has some 

similarities to creaminess. Again, graininess is negatively correlated to creaminess. 

Hand resistance, firmness, chalkiness, stickiness and flouriness are positively correlated 

to graininess whereas smell of goat and astringent has some similarities. Flavour of 

goat, smell of old milk, smell of acidic, sourness, grain size, blueness and greyness all 

correlate differently to some of the same X-loading weights as graininess do. 

 

The sensory analysis showed a close correlation between many of the descriptors. Since 

certain features in the images relates to some of the textural descriptors and these 

correlates to smells, flavours and tastes make the prediction of these possible. For 

example in the case of cream smell it is likely to be a structure relating to fat content 

and for acidic smell  and sour properly the effect of the pH value on the colouring of the 

samples as the dye Oregon Green® was pH sensitive.  

 

Conclusion 

 

It was possible, by application of AMT anf FFT, respectively, to discriminate between 

the microstructure in both the yoghurts and cream cheeses and reveal some of the 

same correlations between visual, textural and olfactory related descriptors as seen in 

the sensory analysis alone.  

 

Acknowledgements 

 

This work is supported financially by the Danish Agricultural and Veterinary Research 

Council and the Danish Dairy Research Foundation - Danish Dairy Board. Our 

collaborators at Arla Foods Ingredients, Nr. Vium,  and Arla Foods Innovation, 

Brabrand, are gratefully acknowledged for manufacturing samples for this study. The 

panellists and the technical staff from the sensory panel, Judith Henning, Rikke Jensen 



 22 

and Lisbeth Pii Nielsen are thanked for assistance with all aspects of sensory descriptive 

analysis. 



 

23 

References 

 

Aastveit, A. H. and Martens, H. (1986) Anova Interactions Interpreted by Partial Least-
Squares Regression. Biometrics 42 829-844 

Andrle, R. (1994) The Angle Measure Technique: A New Method for Characterizing the 
Complexity of Geomorphic Lines. Mathematical Geology 26 83-97 

Bharati, M. H., Liu, J. J., and MacGregor, J. F. (2004) Image texture analysis: methods and 
comparisons. Chemometrics and Intelligent Laboratory Systems 72 57-71 

Blonk, J. C. G. and van Aalst, H. (1993) Confocal scanning light microscopy in food research. 
Food Research International 26 297-311 

Egelandsdal, B., Christiansen, K. F., Høst, V., Lundby, F., Wold, J. P., and Kvaal, K. (1999) 
Evaluation of scanning electron microscopy images of a model dressing using image feature 
extraction techniques and principal component analysis. Scanning 21 316-325 

Esbensen, K. H., Kvaal, K., and Hjelmen, K. H. (1996) The AMT approach in chemometrics - 
first forays. Journal of Chemometrics 10 569-590 

Heertje, I., Visser, J., and Smits, P. (1985) Structure formation in acid milk gels. Food 
Microstructure 4 267-277 

Huang, J. and Esbensen, K. H. (2000) Applications of Angle Measure Technique (AMT) in 
image analysis: Part I. A new methodology for in situ powder characterization. 
Chemometrics and Intelligent Laboratory Systems 54 1-19 

Huang, J. and Esbensen, K. H. (2001) Applications of AMT (Angle Measure Technique) in 
image analysis: Part II: Prediction of powder functional properties and mixing components 
using Multivariate AMT Regression (MAR). Chemometrics and Intelligent Laboratory Systems 
57 37-56 

Indahl, U. G. and Næs, T. (1998) Evaluation of alternative spectral feature extraction 
methods of textural images for multivaria. Journal of Chemometrics 12 261-278 

Janhøj, T., Frøst, M.B., Andersen, C.M., Viereck, N., Ipsen, R., and Edrud, S. (2006a) 
Sensory, rheological and spectroscopic characterization of low-fat and non-fat cream cheese. 
International Symposium on Food Rheology and Structure, Zürich, February 19-23, 2006,  

Janhøj, T., Petersen, C.B., Frøst, M.B., Ipsen, R. (2006b) Sensory and rheological 
characterization of low-fat stirred yoghurt. Journal of Texture Studies (in press) 

Kvaal, K., Wold, J. P., Indahl, U. G., Baardseth, P., and Naes, T. (1998a) Multivariate feature 
extraction from textural images of bread. Chemometrics and Intelligent Laboratory Systems 
42 141-158 

Kvaal, K., Wold, J. P., Indahl, U. G., Baardseth, P., and Næs, T. (1998b) Multivariate feature 
extraction from textural images of bread. Chemometrics and Intelligent Laboratory Systems 
42 141-158 



 

24 

Laugesen, J. L., Johansen, S. M. B., and Frøst, M. B. (2005) IMage Analysis Tool (IMAT). 
Department of Food Science, The Royal Veterinary and Agricultural University, 
Frederiksberg, Denmark. http://www.models.kvl.dk 

Lucey, J. A., Munro, P. A., and Singh, H. (1998a) Rheological properties and microstructure 
of acid milk gels as affected by fat content and heat treatment. Journal of Food Science 63 
660-664 

Lucey, J. A., Teo, C. T., Munro, P. A., and Singh, H. (1998b) Microstructure, permeability 
and appearance of acid gels made from heated skim milk. Food Hydrocolloids 12 159-165 

Martens, H. and Martens, M. (2001) Multivariate Analysis of Quality. An Introduction. John 
Wiley, Chichester  

Pereira, R., Matia-Merino, L., Jones, V., and Singh, H. (2006) Influence of fat on the 
perceived texture of set acid milk gels: a sensory perspective. Food Hydrocolloids 20 305-
313 

 

 



 1 

Sensory and rheological characterization of acidified milk drinks 

 

Thomas Janhøj1,  Michael Bom Frøst and Richard Ipsen 

 

Department of Food Science 

KVL, The Royal Veterinary and Agricultural University 

Rolighedsvej 30 

DK-1958 Frederiksberg C 

Denmark 

 

Abstract 

 

A set of seventeen acidified milk drinks, of which eight were drinking yoghurts 

(made by dilution of a yoghurt base) with 3-8% milk solids non fat (MSNF) and 

the remainder milk-juice drinks (made from fruit concentrate and reconstituted 

milk powder) with 3% MSNF were submitted to descriptive sensory analysis 

and rheological characterization. The drinks were stabilized with pectin and/or 

carboxy methyl cellulose, CMC, (0-0.5%). The sensorially perceived 

Creaminess was found to depend linearly on Oral viscosity whereas the 

relationship between Creaminess and Smoothness depended on the level of 

MSNF. Drinking yoghurt stabilized using pectin were found to be shear-thinning 

whereas pectin-stabilized milk-juice drinks as well as either category of 

acidified milk drink stablilized by CMC were found closely approximate 

Newtonian behaviour. Viscometry data could only predict sensory viscosity 

moderately well, presumably due to the different functional properties of pectin 

and CMC. 
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Introduction 

 

Acidified milk drinks are a diverse group of beverages including drinking 

yoghurts and milk/juice drinks (Nakamura, Yoshida, Maeda and Corredig,  

2006). A common denominator of these products is their low pH and low 

viscosity, which results in sedimentation problems due to aggregation of milk 

protein (Amice-Quemeneur, Haluk, Hardy and Kravtchenko, 1995). Drinking 

yoghurts are made by diluting a fermented yoghurt base with water (and often 

fruit concentrate as well) whereas milk-juice drinks are made from diluted fruit 

concentrate and milk powder. A special variety of acidified milk drink is the 

Turkish product ayran, which contains salt. 

 

To prevent or reduce the aggregation of milk protein (i.e. casein) acidified milk 

drinks are commonly stabilized with high methoxy pectin. In dilute acidified 

milk systems pectin adsorbs onto the casein micelles as the result of an 

electrostatic interaction (Tuinier, Rolin, & de Kruif, 2002) and the mechanism 

of stabilisation of AMDs has been proposed to involve adsorption of pectin 

chains onto the micellar surface mediated by the charged blocks of the pectin 

molecule, while the uncharged domains form loops that extend into the 

solution and cause repulsive interaction between the micelles at low pH much 

as κ-casein does at pH 6.7 (Tromp et al, 2004).  

 

A weak gel network, necessary for long-time stability, has been found to be 

formed in stabilised acidified milk drinks, as evidenced by an increase in elastic 

modulus subsequent to shearing (Sedlmeyer, Brack, Rademacher and Kulozik, 

2004). Tromp, de Kruif, van Eijk and Rolin (2004) found that up to 90% of the 

pectin added as a stabiliser to AMDs did not directly interact with the milk 

protein particles. They proposed that complexes of casein micelles with 

adsorbed pectin form a self-supporting network which provide the stability in 

AMDs. The non-adsorbed pectin in the serum is then linked to this network but 

not necessary for the stability per se.  
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The protein-pectin interaction, and thereby the stability of AMDs, depends on 

pH, the concentration and type of pectin used, the concentration of casein and 

the ionic strength as well as on homogenisation and thermal treatment during 

processing (Glahn, 1994). 

 

Model studies of acidified milk drinks have been carried out using reconstituted 

skimmed milk powder and the acidulant glucono-δ-lactone (Lucey, Tamehana, 

Singh and Munro, 1999). The rheological properties of these models were 

found to be slightly different from those of acidified milk drinks made by 

fermentation, in that the Herschel-Bulkley flow behaviour index (n) was lower 

in drinks made using GDL, whereas the consistency index (K) and the yield 

stress (σ0) were higher. The effect of pasteurization temperature, storage 

temperature and pectin concentration on syneresis, rheological properties, 

particle size and microstructure has been studied (Lucey et al., 1999). 

Syneresis could be modelled satisfactorily (R2 = 0.88), while n and particle size 

were less well predicted (R2 = 0.51 and 0.63, respectively). 

 

Sensory studies of acidified milk drinks have been limited to hedonic 

evaluations by untrained panellists (Koksoy and Kilic, 2004; Penna, Sivieri and 

Oliveira, 2001). Acceptability of commercial acidified milk drinks has been 

found to be correlated positively to flow behaviour index n and consistency 

index K (Penna et al., 2001). In ayran, high levels of added hydrocolloids have 

been found to be detrimental to acceptability (Koksoy and Kilic, 2004).          

 

Creaminess has been found to be correlated to consumer acceptance in a wide 

range of dairy products, including fresh and reconstituted milks and creams 

(Richardson-Harman et al., 2000), yoghurts (Folkenberg and Martens, 2003; 

Ward, Koeferli, Schwegler, Schaeppi and Plemmons, 1999) and ice cream 

(Lähteenmäki and Tuorila, 1994). The purpose of the present work was to shed 

light on the sensory and rheological properties of this category of dairy 

products, with a particular view to creaminess. 
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Materials and methods 

 

Acidified milk drinks 

 

Seventeen acidified milk drinks were manufactured according to an incomplete 

factorial design. Several factors were varied: Milk Solids Non-Fat level (MSNF: 

2% and 8.5%); Acidification method (Lactic acid bacteria (yoghurt) and citric 

acid to final pH=3.95); addition of two hydrocolloids (GENU® Pectin type YM-

115-L and CEKOL® cellulose gum type HVD) at different levels, either alone or 

in combination. The amount of sugar (food grade sucrose): 8% and raspberry 

concentrate (65°Brix): 1% was kept constant in all 17 samples. The reason for 

the selection of factors and levels was to achieve commercial relevance as well 

as a wide span of sensory properties. Products with lactic fermentation 

(drinking yoghurts) were made from a yoghurt base (based on  reconstituted 

skim milk powder); mixed with sugar, water, hydrocolloid solution and 

raspberry concentrate to achieve the desired levels. Products acidified with 

citric acid (milk-juice drinks) were made from reconstituted skim milk; mixed 

in the same manner as decribed above. For both types final pH was adjusted 

to 3.95. The mixes were homogenized at 60°C, 180/50 bar, pasteurized at 90° 

for 15 seconds, cooled and kept at refrigerator temperature until instrumental 

and sensory measurements. 

 

Sensory analysis 

 

Descriptive sensory analysis was performed by a panel of trained panellists. All 

panellists were selected according to international standards (ISO-8586-1 

1993). Twenty sensory descriptors were developed by consensus during 

training sessions (3, duration approximately 1.5 hours), using refererence 

samples where feasible. Table 1 lists descriptors, abbreviations, definitions and 

reference material. In addition, the descriptor Creaminess was evaluated 

without prior consensus among panellists, i.e. each panellist used his or her 

own concept of Creaminess. Sensory analysis took place in a sensory 

laboratory complying with international standards for test rooms (ISO-8589 
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1988). Samples were scored on a computer screen using a 15 cm unstructured 

scale; a computerized score collection software (FIZZ, BIOSYSTEMES, 

Couternon, France) was employed. The scales were anchored with “a little” and 

“a lot” (“lidt” and “meget”, in Danish), except for the viscosity descriptors, for 

which the terms “thin” and “thick” (“tynd” and “tyk”) were used.  

 

Rheology 

 

Steady shear viscometry was performed in triplicate at 12ºC using a concentric 

double gap (24/27 mm) measuring system in a Bohlin C-VOR (Malvern 

Instruments Ltd., Malvern, Worcestershire, UK) controlled stress rheometer. 

Shear stress was measured at 30 logarithmically spaced shear rates in the 

range 0.1-100 s-1. The flow curves from viscometry were fitted to the Power 

Law model using non-linear regression. 

 

Data analysis 

 

Initially, univariate analysis of variance (ANOVA) and multivariate data analysis 

(ANOVA-Partial Lest Squares Regression (ANOVA-PLSR)) were applied to the 

sensory data. Mixed model ANOVA for individual descriptors was performed 

with products (n=17) as fixed factors and panellists (n=10) as random factors. 

This method is commonly applied for data from descriptive analysis (Næs and 

Langsrud, 1998). For descriptors with non-significant Product X Panellist 

interaction effects, interactions were omitted in a second analysis. Non-

significant descriptors were omitted from further analysis. Confidence intervals 

at 95% level (CI95%) were estimated based on Mean Square Error. ANOVA-

PLSR is a multivariate regression method where the effect of design factors on 

the response variables (here: the sensory descriptors) is evaluated (Martens 

and Martens, 2001; Martens and Martens, 1986). The method avoids 

multicollineariety problems by modelling latent variables (LV) representing the 

main variation found to be common for the variables. The method evaluates 

effects of the experimental design variables on sensory properties. We have 

used it here as a graphical alternative to ANOVA (Aastveit and Martens, 1986). 
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For multivariate analyses cross validation was performed, leaving out one 

replicate at a time (Martens and Næs, 1989). Jack-knifing with replicates 

served as the validation tool for all multivariate analysis, comparing the 

perturbed model parameter estimates from cross-validation with the estimates 

for the full model (Martens and Martens, 2000). For multivariate data analysis, 

data were averaged over panellists, and those data were used for analysis of 

product properties and relationships with instrumental measurements. 

Sensory-instrumental relations were modelled by uni- and multivariate 

techniques, using The Unscrambler Ver. 9.2 (CAMO Process AS, Oslo, Norway). 

 

Results and discussion 

 

Sensory data 

 

The results from ANOVA showed that 20 of the descriptors had significant 

differences among the samples. The descriptor Curtains was found not to 

discriminate significantly between the products, and was thus excluded from 

further analysis. Table 2 lists mean, p-value from ANOVA and confidence 

intervals (CI 95%) for all significant descriptors. Figure 1 displays results from 

ANOVA-PLSR in a geometrical manner. Figure 1A shows the distribution and 

differences among products, also indicating the different factors and levels in 

the object labels. Product differences are referred to along with the 

explanations in the text. Figure 1B shows the correlation loading plots of the 

sensory descriptors from the first two of the three significant latent variables 

(explaining 76, 8 and 4 % of the variation in sensory data, respectively, data 

averaged over panellists). Close scrutiny of Table 2 and The Jack-knife 

pertubation plots and estimation of model parameter stability from ANOVA-

PLSR (not shown) revealed that all 17 samples were significantly different in 

their sensory properties. Thus, the descriptive analysis demonstrated and 

explained the effects of all experimental factors on sensory properties. The 

grouping and orientation of the descriptors in Figure 1B show that the first 

latent variable was closely related to the highly interesting descriptor 

Creaminess and also to a number of other descriptors encompassing both 
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appearance, aroma, taste, flavour and texture. On the right side of Fig 1B, a 

group of correlated descriptors was located. Those best explained all relate to 

texture: Viscosity (Visual and Oral) and Resistance. Among the flavour 

descriptors are Cream flavour, Buttermilk aroma and Buttermilk flavour, and 

the somewhat less explained descriptor Citrus flavour. Fatty after mouth feel 

was also correlated to this group, though slightly less, and a highly negative 

correlation was apparent with Transparency, Sweet, Boiled milk aroma and 

Boiled milk flavour. The second latent variable was spanned by differences in 

Smoothness and to some degree also Colour. A third latent variable, also 

related to differences in Smoothness, was necessary to fully describe all 

systematic sensory variance among the 17 samples. The samples with highest 

intensity of Creaminess were, not surprisingly, the three samples with high 

MSNF level. The samples with a low MSNF level and a relatively high 

Creaminess were those with the highest Viscosity (Figure 1A and Table 2), i.e. 

the samples with the highest CMC content, either alone, or in a mixture with 

pectin (samples 2lacC5, 2citC5 and 2citP2C4). They possessed a combination 

of high Smoothness and medium Viscosity and had a significantly higher 

Creaminess than the remaining samples with a low MSNF level. This is not 

immediately apparent from the relationships displayed in Figure 1B. Figure 2 

shows the direct relationship between Smoothness and Creaminess for both 

low and high levels of MSNF. It is evident that the difference in MSNF resulted 

in two distinctly different types of relationships. For the low level of MSNF, 

Smoothness and Creaminess were positively correlated, whilst the relation was 

negative at the high level of MSNF. We suggest two reasons for these 

differences: 1) The samples made with high level of MSNF have have a higher 

intensity in dairy flavours which enhance Creaminess (Buttermilk and Cream 

flavour) as well as a lower intensity in dairy flavours that contribute to 

decrease Creaminess (Boiled milk flavour), as apparent from Table 2; 2) At 

higher level of Viscosity, its contribution to Creaminess exceeds that of 

Smoothness, so samples with low Smoothness can still possess a very high 

Creaminess. Detailed studies systematically and independently varying levels 

of Viscosity, Smoothness and e.g. Cream flavour will, however,  be necessary 

to disentangle the contribution of different sensory properties to Creaminess.  
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Rheological data 

 

Power law parameters K and n are tabulated in Table 3. Some of the flow 

curves fitted poorly to the Power law model. Overall, the drinking yoghurts 

appeared to be more viscous (higher K) and less Newtonian (lower n) than the 

milk-juice drinks. As expected, K increases with increasing milk solids and 

hydrocolloid dosage. Flow curves for drinking yoghurts and milk-juice drinks 

with 0.3% pectin and without CMC were clearly distinguishable (Figure 4); 

shear-thinning is evident in the drinking yoghurt while the milk-juice drink is 

essentially Newtonian. By contrast, flow curves for drinking yoghurts and milk-

juice drinks with 0.3 % CMC and without pectin coincided almost completety 

except at very low shear rates (Figure 5).  

 

Pectin is thus capable of inducing an ordered structure to drinking yoghurt but 

not milk-juice drinks; the only effect of CMC is to increase the viscosity - it 

does not make the structure any more ordered. This ability of pectin to induce 

formation of a weak network structure in AMDs is in accordance with earlier 

studies (Sedlmeyer et al., 2004; Tromp et al, 2004). CMC, which is also an 

anionic hydrocolloid, is know to interact with casein micelles (Everett & 

McLeod, 2005) and to form soluble complexes with milk protein at low pH 

(Doublier et al, 2000). Our rheological results indicate that milk protein 

aggregates stabilised by CMC in AMDs do not interact as extensively with each 

other or with non-absorbed polysaccharide as does high methoxy pectin. A 

more elaborate multivariate analysis using ANOVA PLSR on the individual raw 

flow curves showed that the pair 2lacP3 (drinking yoghurt)/2citP3 (milk-juice), 

both stabilized by 0.3% pectin, could be clearly distinguished rheologically, 

whereas the equivalent pair (2lacC5/2citC5) stabilized by 0.3% CMC was 

indistinguishable from each other. Looking closer at the matching sample pairs 

of drinking yoghurt and milk-juice drinks with identical levels of MSNF, pectin 

and CMC (Figure 6), the pair 2lacP3/2citP3 was barely distinguished sensorially 

with respect to Oral viscosity while 2lacC5/2citC5 was indistinguishable. So, 
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even if we could clearly measure a difference between drinking yoghurt and 

milk-juice drink at 0.3% added polysaccharide, the panel could hardly sense it.   

 

The Power law consistency index K was able to predict Oral viscosity 

moderately well (r = 0.70). However, this was essentially spanned by the 

samples with 8% MSNF (8lacP4, 8lacP5 and 8lacC5); within the remaining 

samples with 3% MSNF the correlation was r = 0.00. Oral viscosity was 

predicted moderately well by PLS regression on the shear stress data matrix 

with just one latent variable (R2 = 0.70). The predictive ability of these models 

was clearly inferior to other, uni- and multivariate models of sensory viscosity 

of dairy products (Janhøj, Petersen, Frøst and Ipsen, 2006b; Janhøj, Frøst, 

Andersen, Viereck, Ipsen and Edrud,, 2006a). The reasons seems to be the 

different functional properties (and mode of interaction with milk protein) 

between of pectin and CMC, which influence the rheological properties in 

different ways. Another possible problem is turbulence at higher shear rates. 

 

Conclusions 

 

Creaminess in acidified milk drinks appears to be largely determined by 

sensory viscosity. However, sensory viscosity is only predicted moderately well 

from rheological data.   

 

 

Acknowledgements 

 

This work was supported financially by the Danish Agricultural and Veterinary 

Research Council (Author M.B. Frøst) and the Danish Dairy Research 

Foundation - Danish Dairy Board (Author T. Janhøj). CP Kelco, Ll. Skensved, 

Denmark, are thanked for fruitful discussions regarding experimental design 

and manufacturing of acidified milk drink samples used in this study. The 

technical staff from the sensory panel, Judith Henning, Rikke Jensen and 

Lisbeth Pii Nielsen are thanked for assistance with all aspects of sensory 

descriptive analysis. 



 10 

References 

 

Aastveit, A. H. and Martens, H. (1986). Anova interactions interpreted by 

partial least-squares regression. Biometrics, 42(4) 829-844. 

Amice-Quemeneur, N., Haluk, J. P., Hardy, J., and Kravtchenko, T. P. (1995). 

Influence of the acidification process on the colloidal stability of acidic milk 

drinks prepared from reconstituted nonfat dry milk. Journal of Dairy Science, 

78(12) 2683-2690. 

Doublier, J.-L. , Garnier, C., Renard, D. & Sanchez, C. (2000). Protein-

polysaccharide interactions. Current Opinion in Colloids and Interface Science, 

5(3-4) 202-214  

 

Everett, D.W. &  McLeod, R.E. (2005). Interactions of polysaccharide stabilisers 

with casein aggregates in stirred skim-milk yoghurt. International Dairy 

Journal 15(11) 1175–1183. 

 

Folkenberg, D. M. and Martens, M. (2003). Sensory properties of low fat 

yoghurts. Part B: Hedonic evaluations of plain yoghurts by consumers 

correlated to fat content, sensory profile and consumer attitudes. 

Milchwissenschaft, 58(3-4) 154-157. 

Glahn, P. E. (1982). Hydrocolloid stabilisation of protein suspensions at low pH. 

In G.O. Phillips, D.J. Wedlock & P.A. Williams, Gums and stabilizers for the 

food industry (Vol. 6) (pp.171-177). Oxford: Pergamon Press. 

 

Janhøj, T., Frøst, M.B., Andersen, C.M., Viereck, N., Ipsen, R., and Edrud, S. 

(2006a). Sensory, rheological and spectroscopic characterization of low-fat and 

non-fat cream cheese. In P. Fischer, P. Erni & E. Windhab, International 

Symposium on Food Rheology and Structure, Zürich, February 19-23, 2006 

(pp. 383-387). 

Janhøj, T., Petersen, C.B., Frøst, M.B., Ipsen, R. (2006b). Sensory and 

rheological characterization of low-fat stirred yoghurt. Journal of Texture 

Studies, 37(3) 276-299. 

Koksoy, A. and Kilic, M. (2004). Use of hydrocolloids in textural stabilization of 

a yoghurt drink, ayran. Food Hydrocolloids, 18(4) 593-600. 

Lähteenmäki, L. and Tuorila, H. (1994). Liking for ice cream measured with 

three procedures: side-by-side, after consumption and single samples. Journal 

of Sensory Studies, 4(9) 455-465. 

Lucey, J. A., Tamehana, M., Singh, H., and Munro, P. A. (1999). Stability of 

model acid milk beverage: Effect of pectin concentration, storage temperature 

and milk heat treatment. Journal of Texture Studies, 30(3) 305-318. 



 11 

Martens, H. and Martens, M. (2000). Modified jack-knife estimation of 

parameter uncertainty in bilinear modelling by partial least squares regression 

(PLSR). Food Quality and Preference, 11(1-2) 5-16. 

Martens, H. and Næs, T. (1989). Multivariate calibration. Chichester: John 

Wiley and Sons.  

Martens, H. and Martens, M. (2001). Multivariate analysis of quality - an 

introduction. Chichester: John Wiley and Sons.  

Martens, M. Martens, H. (1986). Partial least squares regression. In J. R. 

Piggott, Statistical procedures in food research. London: Elsevier. 

Næs, T. and Langsrud, O. (1998). Fixed or random assessors in sensory 

profiling? Food Quality and Preference, 9(3) 145-152. 

Nakamura, A., Yoshida, R., Maeda, H., and Corredig, M. (2006). The stabilizing 

behaviour of soybean soluble polysaccharide and pectin in acidified milk 

beverages. International Dairy Journal, 16(4) 361-369. 

Penna, A. L. B., Sivieri, K., and Oliveira, M. N. (2001). Relation between 

quality and rheological properties of lactic beverages. Journal of Food 

Engineering, 49(1) 7-13. 

Richardson-Harman, N. J., Stevens, R., Walker, S., Gamble, J., Miller, M., 

Wong, M., and McPherson, A. (2000). Mapping consumer perceptions of 

creaminess and liking for liquid dairy products. Food Quality and Preference, 

11(3) 239-246. 

Sedlmeyer, F., Brack, M., Rademacher, B., and Kulozik, U. (2004). Effect of 

protein composition and homogenisation on the stability of acidified milk 

drinks. International Dairy Journal, 14(4) 331-336. 

Tromp, R. H., de Kruif, C. G., van Eijk, M., & Rolin, C. (2004). On the 

mechanism of stabilisation of acidified milk drinks by pectin. Food 

Hydrocolloids, 18(4) 565-572. 

 

Tuinier, R., Rolin, C., & de Kruif, C. G. (2002). Electrosorption of pectin onto 

casein micelles. Biomacromolecules, 3(3) 632-638.  

 

Ward, C. D. W., Koeferli, C. S., Schwegler, P. P., Schaeppi, D., and Plemmons, 

L. E. (1999). European strawberry yogurt market analysis with a case study on 

acceptance drivers for children in Spain using principal component analysis and 

partial least squares regression. Food Quality and Preference, 10(4-5) 387-

400. 

 

 



 12 

Tables 

 
Table 1: Sensory descriptors, their definitions and reference material, if used. 

 

Descriptor Definition Recipe for reference material 

Appearance 
Glass coating Amount of milk drink coating glass 

after swirling glass  thoroughly  
 

Curtains How cohesive was the glass coating   
Transparency Transparency of the sample at the 

edge of the glass tilted approximately  
45° 

 

Viscosity Measured during swirling of glass 
(thin – thick) 

 

Colour Colouration (white to red)  
Aroma 
Buttermilk Intensity when sniffed Buttermilk 
Raspberry Intensity when sniffed 0.5 L 0.5% fat milk added 30 ml organically 

produced raspberry cordial mixer 
Boiled milk Intensity when sniffed 0.5 L 3.5% fat milk + ½ caramel roll + 100 g 

parsnip boiled until the caramel melted and the 
parsnip was soft. Sieved and cooled 

Taste 
Sweet  Intensity 0.5 L 0.5% fat milk added 45 ml food grade 

sucrose 
Flavour 
Buttermilk Intensity when tasted Buttermilk 
Raspberry Intensity when tasted Same as for raspberry aroma  
Cream Intensity when tasted 38% fat cream 
Citrus Intensity when tasted A small piece of lemon 
Boiled milk Intensity when tasted Same as for boiled milk aroma 
Texture 

Resistance When sucking sample through a 
straw.  

 

Viscosity 
(Viscosity-O) 

Measured in mouth (thin – thick)  

Smoothness Measured in mouth  
Floury Measured in mouth 0.5L 0.5% fat milk added 30 ml wheat flour 
Astringent Lack of lubrication measured between 

inner side of incisors and tongue 
Quark 

Fatty after-
mouthfeel 

Measured in mouth 38% fat Cream 

Meta descriptor 
Creaminess Idiosyncratic definition, not discussed  
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Table 2: Product abbreviations and experimental design for acidified milk samples. Mean, p-value and confidence intervals (95% level; CI 

95%) for all sensory descriptors. 

 

     Appearance Aroma Taste Product 
abbreviation MSNF 

(w/w 
%) 

Acidification 
method 

Pectin 
Level 

(w/w %) 

 CMC 
Level 
(w/w 
%) 

 
Glass 

Coating 

 
Transpa-

rency 

 
Visual 

Viscosity 

 
Colour 

 
Butter- 

milk 

 
Raspberry 

 
Boiled 
milk 

 
Sweet 

8lacP4 0.4  13.0 1.4 10.4 4.4 10.1 7.2 3.3 8.3 
8lacP5 0.5  13.4 1.1 10.7 3.3 9.8 7.4 3.5 7.3 
8lacC5 

8.5 
 

 0.5 12.2 1.4 9.3 3.7 9.6 7.8 4.1 8.3 
2lacP3 0.3  5.6 6.7 3.4 5.8 5.8 7.6 6.2 10.5 
2lacP4 0.4  6.6 6.3 4.3 6.7 5.3 8.6 5.5 10.7 
2lacP5 0.5  7.5 5.7 4.9 7.9 6.3 7.8 4.7 10.3 
2lacC3  0.3 7.1 5.8 4.6 7.4 5.9 8.0 4.7 9.4 
2lacC5 

 
2 
 
 

Lactic acid 
bacteria 

 0.5 9.2 4.9 6.4 9.5 6.0 8.3 5.4 10.2 
2citP2 0.2  2.9 7.4 2.6 10.5 4.1 8.7 6.8 13.2 
2citP3 0.3  4.5 6.5 2.9 4.0 4.7 8.8 5.8 10.4 
2citP4 0.4  4.3 6.1 4.0 11.5 4.0 9.3 5.2 10.7 
2citP5 0.5  5.4 6.4 4.2 10.4 4.7 8.2 5.7 10.1 
2citC3  0.3 3.3 6.2 3.7 6.6 5.1 7.8 5.5 10.2 
2citC5  0.5 4.3 5.8 5.2 7.5 4.6 8.3 5.3 9.5 
2citP2C2 0.2 0.2 3.7 5.5 3.5 5.2 4.6 8.5 4.9 10.1 
2citP2C3 0.2 0.3 5.9 4.7 5.4 4.7 4.8 7.6 5.2 8.4 
2citP2C4 

 
2 
 
 
 
 
 

Juice + 
citric acid 

0.2 0.4 6.6 4.8 5.9 7.8 4.7 8.5 6.0 9.7 
p-value     <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 0.007 0.003 <0.0005 
CI 95%     0.8 0.5 0.7 0.5 0.8 0.7 0.9 0.7 
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Table 2 continued 

 

 Flavour Texture Meta-
descriptor 

Product 
abbreviation 

 
Butter 
milk 

 
Raspberry 

 
Cream 

 
Citrus 

 
Boiled 
Milk 

 
Resistance 

 
Oral 

Viscosity 

 
Smoothness 

 
Floury 

 
Astringent 

 
Fatty 
after 

mouth 
feel 

 
Creaminess 

8lacP4 10.5 7.8 4.1 5.7 4.1 11.6 11.4 4.8 5.4 8.5 3.7 8.1 
8lacP5 10.8 7.8 3.9 5.8 3.5 11.9 11.3 3.9 5.1 8.8 4.3 8.9 
8lacC5 10.0 8.1 4.5 5.8 4.0 9.4 8.8 5.2 4.4 8.0 3.5 7.3 
2lacP3 3.2 7.2 1.9 3.3 9.4 2.5 2.2 5.2 1.9 3.5 1.7 1.5 
2lacP4 3.1 8.0 2.1 3.2 7.8 3.2 3.0 6.0 1.7 4.6 2.4 2.6 
2lacP5 3.0 7.2 2.0 3.4 6.4 5.2 4.6 6.4 2.0 3.3 3.3 3.3 
2lacC3 3.9 7.6 2.1 4.0 4.2 3.6 3.4 5.2 1.8 4.4 2.1 2.0 
2lacC5 4.5 7.7 3.0 4.4 4.8 8.1 6.9 7.4 3.2 4.4 4.5 5.6 
2citP2 2.5 7.8 1.4 3.4 9.0 2.3 2.0 5.0 1.6 4.9 1.3 1.2 
2citP3 2.7 7.5 1.8 3.6 4.5 1.9 1.6 3.8 1.7 4.5 1.5 1.2 
2citP4 3.1 8.6 1.6 4.6 5.3 3.3 2.4 5.6 1.5 4.1 2.2 1.6 
2citP5 2.8 7.6 1.7 4.1 5.1 5.1 4.2 5.9 1.9 4.0 2.9 2.7 
2citC3 3.1 8.0 1.6 4.8 4.5 3.1 3.1 5.9 1.5 4.3 2.3 2.2 
2citC5 3.8 7.7 2.1 4.9 4.9 7.1 6.3 7.9 2.4 5.3 4.1 4.6 
2citP2C2 3.2 8.6 1.8 4.6 5.1 3.5 2.9 5.1 1.8 4.2 1.8 2.0 
2citC3 3.2 7.4 1.7 4.2 5.4 5.8 5.1 7.1 2.5 4.9 2.9 3.9 
2citP2C4 4.0 8.6 2.7 5.1 5.0 8.5 7.5 8.5 3.2 5.0 4.2 5.5 
p-value <0.0005 0.026 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 
CI 95% 0.6 0.6 0.5 0.7 0.9 0.6 0.6 0.7 0.5 0.7 0.7 0.7 
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Table 3: Power law parameters for flow curves (means of replicates). 

 

*Could not be fitted to the Power law model. 
 

 

Power law parameters Product 
abbreviation 

MSNF 
(w/w 
%) 

Acidification 
method 

Pectin 
Level 

(w/w %) 

 CMC 
Level 

(w/w %) 
 

K 
 

n 
 

R2 
8lacP4 0.4 0 0.1012 0.7544 0.99 
8lacP5 0.5 0 0.1054 0.7487 0.99 
8lacC5 

8.5 
 

0 0.5 0.1526 0.6725 0.94 
2lacP3 0.3 0 0.0708 0.6548 0.93 
2lacP4 0.4 0 0.0189 0.7452 0.88 
2lacP5 0.5 0 0.0437 0.6161 0.96 
2lacC3 0 0.3 0.0156 0.4234 0.81 
2lacC5 

 
2 
 
 

Lactic acid 
bacteria 

0 0.5 0.0280 0.8185 0.95 
2citP2 0.2 0 0.0407 0.8043 0.74 
2citP3 0.3 0 * * * 
2citP4 0.4 0 0.0166 0.7559 0.82 
2citP5 0.5 0 0.0265 0.7560 0.92 
2citC3 0 0.3 0.0108 0.7735 0.62 
2citC5 0 0.5 0.0303 0.8366 0.96 
2citP2C2 0.2 0.2 0.0128 0.7953 0.57 
2citP2C3 0.2 0.3 0.0232 0.8230 0.94 
2citP2C4 

 
2 
 
 
 
 
 

Juice + 
citric acid 

0.2 0.4 0.0349 0.8447 0.97 
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Figure 1A: Score plot from Anova-PLSR showing how experimental design and sensory 

descriptors correlate with latent variables. 
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Figure 1B: Correlation loading plot. Correlation loading plot, showing interrelationships among 

sensory descriptors and to latent variables. The inner and outer circles represent 50% and 

100% explained variance, respectively. 
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Figure 2: Relationships between Smoothness and Creaminess, specified for High and Low 

MSNF level groups of samples. 
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Figure 4: Flow curves for drinking yoghurt (2lacP3; grey line) and milk-juice drink (2citP3; 

black line), both with 0.3% pectin and 0% CMC. 
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Figure 5: Flow curves for drinking yoghurt (2lacC3; grey line) and milk-juice drink (2citC3; 
black line), both with 0.3% CMC and 0% pectin. 
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Figure 6: Oral viscosities of pairs of drinking yoghurts (Lac) and milk-juice drinks (Cit) with 

equal dosage levels of pectin and CMC. 




