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Summary 

Two-thirds of the World’s cocoa is produced in West Africa with Ghana being the World’s 

second largest producer of cocoa beans accounting for approximately 20 % of the World 

annual production. Being the largest export commodity cocoa is of great economical 

importance for Ghana as a country and of even bigger socio-economic importance in the 

cocoa growing farms and villages throughout the country. Cocoa beans are the principal raw 

material of chocolate and originate as seeds in fruit pods of the tree Theobroma cacao. Raw 

cocoa beans have an astringent, unpleasant taste and flavour and have to be fermented, dried 

and roasted to obtain the characteristic cocoa taste and flavour. Despite the importance of the 

fermentation for the quality of the final product, our knowledge of the microbiology of the 

process is still inadequate. Especially there is a lack of studies on fermentation of cocoa in 

West Africa.  

 

The overall objective of the present Ph.D. thesis was to conduct a detailed microbiological 

investigation of Ghanaian cocoa fermentations using culture-based and culture-independent 

techniques. Consequently another objective was to develop a culture-independent method 

suitable for the investigation of cocoa fermentations based on Denaturing Gradient Gel 

Electrophoresis (DGGE). The present study represents the first investigation of cocoa 

fermentations taking advantage of recent year’s development in molecular biology for 

grouping and identification of the microorganisms participating in the process. Furthermore, 

the present study represents the first culture-independent investigation of cocoa fermentations. 

 

The microbiology of a number of Ghanaian cocoa fermentations representing tray, small heap 

and large heap fermentations have been thoroughly investigated using culture-dependent and 

culture-independent methods. Furthermore, the microbiology of cocoa fermentations 

representing different harvesting periods and geographic locations in Ghana were investigated 

using culture independent methods only. 

 

Samples were collected at 12-24 hour intervals during 72-144 hour tray and traditional heap 

fermentations. Yeast, Lactic Acid Bacteria (LAB), Acetic Acid Bacteria (AAB) and Bacillus 

spp. were enumerated on suitable substrates and more than 1500 isolates identified using 

phenotypic and molecular biology based methods. Samples for culture-independent 
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investigation of the process were freeze dried and DNA extracted using a DNA extraction 

protocol developed for the purpose.  

 

A microbiological succession was observed during the fermentations. At the onset of 

fermentation yeasts were the dominating microorganisms. Lactic acid bacteria became 

dominant after 12-24 hours of fermentation and remained predominant throughout the 

fermentations with AAB reaching high counts in the mid phase of fermentation. Bacillus spp. 

were only detected during heap fermentations, where they reached high numbers during the 

later stages of fermentation. Hanseniaspora guilliermondii was the predominant yeast during 

the initial phase and Pichia membranifaciens during the later phases of fermentation. A 

number of other yeast species including Issatchenkia orientalis, Candida zemplinina, 

Saccharomyces cerevisiae and three putatively undescribed yeast species were isolated during 

the fermentations. Apparently C. zemplinina and Sc. cerevisiae played a more prominent role 

during the investigated tray fermentations compared to the heap fermentations. Lactobacillus 

fermentum was the dominant LAB in most samples. Several other LAB including 

Lactobacillus plantarum, Leuconostoc pseudomesenteroides, Leuconostoc pseudoficulneum, 

Pediocococcus acidilactici and a putatively undescribed LAB were detected during the 

fermentations. Acetobacter pasteurianus, Acetobacter syzygii and Acetobacter tropicalis were 

the predominant AAB in all investigated fermentations. During the later stages of heap 

fermentation Bacillus licheniformis and occasionally other Bacillus spp. were detected in high 

numbers.  

 

Chromosome Length Polymorphism among yeasts involved in the fermentation was 

determined using Pulsed Field Gel Electrophoresis. Chromosome length polymorphism was 

evident within all investigated species showing that not only a range of different yeast species 

were involved in the fermentation, but among the different species also different strains were 

involved. 

 

A DGGE based method for culture-independent investigation of the yeast and bacterial micro-

populations involved in the cocoa fermentation was developed. The culture-based and culture-

independent results yielded comparable, but slightly different results. Among the yeasts H. 

guilliermondii could be detected using DGGE several days after it became undetectable using 
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culture-based methods.  Trichosporon asahii yielded on the other hand only faint bands in the 

denaturing gels despite the fact that it was detected using culture-based methods. Analysis of 

pure cultures showed that the targeted region of the 26S rRNA gene was poorly amplified in 

T. asahii, whereas all other investigated isolates were amplified equally efficiently using the 

chosen PCR approach. Among the bacteria DGGE indicated that Lc. pseudoficulneum plays a 

more important role during the fermentation of cocoa than expected from the culture-based 

findings where it was only infrequently detected, whereas it yielded a strong band in most 

DGGE profiles. Cluster analysis of the DGGE profiles revealed that the profiles clustered 

according to fermentation site and in the case of the profiles representing the yeast community 

also with fermentation method. Within each fermentation site the profiles clustered according 

to fermentation time. Given the results obtained during the present study DGGE seems to 

offer a relatively fast and reliable tool for studying yeast and bacterial dynamics during cocoa 

fermentations. 

 

The putatively undescribed LAB was thoroughly characterised pheno- and genotypically. It 

was revealed 16S rRNA gene sequence analysis that the isolates phylogenetically belong to 

the genus Lactobacillus and were closely related to Lactobacillus nagelii, Lactobacillus vini 

and Lactobacillis satsumensis. Low DNA-DNA reassociation values were obtained between 

the isolates and the phylogenetically closest neighbours. Furthermore, a number of phenotypic 

tests differentiated the isolates and the phylogenetically closest neighbours. Based on the 

genetic and phenotypic results, the isolates were considered to represent a novel species, for 

which the name Lactobacillus ghanaensis was proposed. 

 

Phylogenetic analyses of the 26S rRNA gene (D1/D2-region) revealed that the 3 putatively 

undescribed yeast species were distantly related to all known yeast species. The 

phylogenetically closest relatives of the 3 yeast species based on 26S rRNA gene (D1/D2-

region) similarity were; Species A, Saturnispora mendoncae (92.4 % similarity); Species B, 

Dipodascus geniculatus (81.8 % similarity); and Species B, Candida rugopelliculosa (92.3 % 

similarity), respectively. 

 

The work has been presented in 4 papers published in, accepted for publication in or 

submitted for publication to international scientific journals.  
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Resumé  

To-trediedele af al kakao produceres i Vestafrika. Ghana, der er verdens andenstørste 

producent af kakaobønner, står for ca. 20 % af verdensproduktionen. Eftersom kakaobønner 

er den største eksportartikel har kakao stor økonomisk betydning for Ghana som land, og 

endnu større socio-økonomisk betydning i de kakaodyrkende områder og landsbyer rundt 

omkring i landet. Kakaobønnen, der er den primære råvare i chokolade, stammer fra træet 

Theobroma cacao, hvor de udgør frugtens frø. Rå kakaobønner har en bitter, ubehagelig smag 

og skal fermenteres, tørres og ristes for at opnå den karakteristiske kakaoduft og -smag. På 

trods af, at fermenteringen har stor betydning for kvaliteten af det færdige produkt, er vor 

viden om de mikrobiologiske aspekter af fermenteringen stadig mangelfuld. I særlig grad er 

der en mangel på viden omkring fermentering af kakao i Vestafrika. 

 

Det overordnede mål for denne Ph.D.-afhandling var at gennemføre en detaljeret 

mikrobiologisk karakterisering af ghanesiske kakaofermenteringer med brug af såvel 

dyrkningsbaserede som dyrkningsuafhængige metoder. Da kakaofermenteringer ikke tidligere 

er blevet undersøgt vha. dyrkningsuafhængige metoder, var et yderligere mål at udvikle en 

dyrkningsuafhængig metode baseret på Denaturing Gradient Gel Electrophoresis (DGGE) 

egnet til at undersøge kakaofermenteringer mikrobiologisk. Dette studie repræsenterer den 

første mikrobiologiske undersøgelse af kakaofermenteringsprocessen, der drager nytte af de 

seneste års udvikling indenfor molekylærbiologien til at gruppere og identificere de 

involverede mikroorganismer. Ligeledes repræsenterer dette studie den første dyrknings-

uafhængige undersøgelse af kakaofermenteringsprocessen. 

 

En række ghanesiske kakaofermenteringer, repræsenterende 3 forskellige fermenterings-

systemer (”bakke” samt små og store ”bunke” fermenteringer), er blevet detaljeret 

mikrobiologisk karakteriseret vha. dyrkningsafhængige og dyrkningsuafhængige metoder. 

Ydermere er et antal fermenteringer, der stammer fra forskellige høsttidspunkter og områder i 

Ghana blevet karakteriseret udelukkende vha. dyrkningsuafhængige metoder. 

 

Med 12-24 timers interval blev prøver udtaget gennem 72-144 timers ”bakke” og traditionelle 

”bunke” fermenteringer. Gær, mælkesyrebakterier, eddikesyrebakterier og Bacillus spp. blev 

kvantificeret og isoleret på egnede substrater, og mere end 1500 isolater identificeret vha. 
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fæno- og genotypiske metoder. Til den dyrkningsuafhængige undersøgelse af processen blev 

prøverne frysetørret og DNA ekstraheret vha. en til formålet udviklet protokol.  

 

En mikrobiologisk succession blev observeret gennem fermenteringerne. Indledningsvist var 

gær de dominerende mikroorganismer. Efter 12-24 timer blev mælkesyrebakterier 

dominerende, hvilket de, med få undtagelser, forblev hele vejen gennem fermenteringerne. 

Eddikesyrebakterier voksede til høje antal i midterfasen af fermenteringerne, mens Bacillus 

spp. udelukkende blev detekteret i de senere faser af bunkefermenteringerne. Hanseniaspora 

guilliermondii var den dominerende gær i den indledende fase af fermenteringerne, mens 

Pichia membranifaciens var den dominerende gær i de senere faser. En række andre gær, bl.a. 

Issatchenkia orientalis, Candida zemplinina, Saccharmomyces cerevisiae og 3 gærarter, der 

tilsyneladende ikke er blevet beskrevet tidligere, blev isoleret gennem fermenteringerne. 

Tilsyneladende spillede C. zemplinina og Sc. cerevisiae en større rolle i de undersøgte bakke-

fermenteringen i forhold til de undersøgte bunkefermenteringer. Lactobacillus fermentum var 

den dominerende mælkesyrebakterie i de fleste undersøgte prøver. Flere andre 

mælkesyrebakterier, bl.a. Lactobacillus plantarum, Leuconostoc pseudomesenteroides, 

Leuconostoc pseudoficulneum, Pediocococcus acidilactici og en tilsyneladende ikke tidligere 

beskrevet mælkesyrebakterie blev isoleret gennem fermenteringerne. Acetobacter 

pasteurianus, Acetobacter syzygii, og Acetobacter tropicalis var de dominerende 

eddikesyrebakterier i alle undersøgte fermenteringer. Gennem de senere faser af 

bunkefermenteringerne blev Bacillus licheniformis og lejlighedsvist andre Bacillus spp. 

detekteret i høje antal. 

 

Kromosomlængdepolymorfisme blandt gær involveret i kakaofermenteringerne blev 

undersøgt vha. Pulsed Field Gel Electrophoresis. Kromosomlængdepolymorfisme var tydelig 

blandt alle undersøgte arter. Det vil sige, at ikke blot var en række forskellige gær involveret i 

fermenteringen af kakao, men indenfor de enkelte arter var endvidere forskellige stammer 

involveret. 

 

En DGGE-baseret metode blev udviklet med det formål dyrkningsuafhængigt at undersøge 

gær og bakterier involveret i kakaofermenteringerne. De dyrkningsbaserede og 

dyrkningsuafhængige metoder gav sammenlignelige, men dog lidt forskellige resultater. I den 
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DGGE-baserede undersøgelse af gær involveret i fermenteringerne kunne H. guilliermondii 

detekteres vha. DGGE flere døgn efter, at den ikke længere kunne detekteres vha. af 

dyrkningsbaserede metoder. På den anden side gav Trichosporon asahii kun svage bånd i 

DGGE-gelerne på trods af, at T. asahii blev detekteret vha. de dyrkningsbaserede metoder. 

Analyse af renkulturer viste, at 26S rRNA genet i T. asahii, i forhold til alle andre undersøgte 

isolater, blev dårligt amplificeret med den valgte PCR metode. Den DGGE-baserede 

undersøgelse af bakterier involveret i fermenteringen af kakao viste, at Lc. pseudoficulneum 

tilsyneladende spiller en større rolle i processen, end det var forventet ud fra de 

dyrkningsbaserede undersøgelser, hvor Lc. pseudoficulneum kun blev detekteret lejlighedsvist 

og i lave antal, hvorimod den gav et kraftigt bånd i de fleste DGGE profiler. Cluster analyse 

af DGGE profilerne viste, at profilerne grupperede sig efter, hvor fermenteringerne blev 

udført, mens gærprofilerne også grupperede sig efter fermenteringsmetode. Inden for hvert 

fermenteringssted grupperede profilerne sig efter hvor lang tid fermenteringen havde forløbet. 

Den udviklede DGGE metode synes at være et relativt hurtigt og pålideligt redskab til at 

undersøge betydningen af gær og bakterier gennem kakaofermenteringer. 

 

Den tilsyneladende ikke tidligere beskrevne mælkesyrebakterie blev grundigt karakteriseret 

fæno- og genotypisk. Sekventering og analyse af 16S rRNA genet viste, at isolaterne 

phylogenetisk tilhørte slægten Lactobacillus og var tæt beslægtede med Lactobacillus nagelii, 

Lactobacillus vini og Lactobacillis satsumensis. Bestemmelse af DNA-DNA re-associering 

mellem isolaterne og de phylogenetisk tættest beslægtede arter gav kun lave DNA-DNA re-

associerings-værdier. Ydermere kunne isolaterne adskilles fra de phylogenetisk tættest 

beslægtede arter på grundlag af en række fænotypiske test. På grundlag af de geno- og 

fænotypiske resultater blev det konkluderet, at isolaterne tilhører en ikke tidligere beskrevet 

art, for hvilken navnet Lactobacillus ghanaensis blev foreslået. 

 

Phylogenetisk analyse af 26S rRNA genet (D1/D2-regionen) viste, at de 3 tilsyneladende ikke 

tidligere beskreve gærarter var fjernt beslægtet med alle kendte gærarter. De tættest 

beslægtede slægtninge til de 3 gærarter baseret på sammenligning af 26S rRNA gen sekvenser 

(D1/D2-region) var henholdsvis; Uidentificeret art A, Saturnispora mendoncae (92,4 % 

overensstemmelse); Uidentificeret art B, Dipodascus geniculatus (81,8 % overensstemmelse); 

og Uidentificeret art C, Candida rugopelliculosa (92,3 % overensstemmelse). 
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Det udførte arbejde er blevet præsenteret i 4 artikler, publiceret, accepteret til publikation eller 

indsendt til publikation i internationale, videnskabelige tidsskrifter.  
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1. Introduction 
Cocoa beans originate as seeds in the fruit pods of the tree Theobroma cacao. They are the 

principal raw material of chocolate – a luxury commodity loved by most people and sold all 

over the World (Schwan and Wheals, 2004). Approximately 2/3 of the World’s cocoa is 

produced in West Africa. Ghana is the World’s second largest producer accounting for around 

20 % of the World production (Anon., 2005). Being the largest export commodity cocoa is of 

great economical importance for Ghana as a country and of even bigger socio-economic 

importance in the cocoa growing farms and villages around the country .  

 

Raw cocoa has an astringent unpleasant taste and has to be fermented, dried and roasted to 

obtain the characteristic cocoa taste and flavour. Cocoa beans are normally sold and exported 

as fermented, dried beans. The obtainable World market price is partly determined by the 

quality of the beans produced and the ability to produce cocoa beans of a consistent high 

quality is thus of great economical importance for the cocoa producing farmers and countries. 

Ghana is in general being considered as a premium producer of cocoa but variations in the 

quality are frequently encountered (Baker et al., 1994; Anon., 2005; Takrama, 2006; Aneani 

and Takrama, 2006). Beans of sub-optimal quality include under-fermented beans with a low 

flavour potential and over-fermented beans causing off-flavours in the final product. 

Furthermore, inadequate control of the fermentation and drying steps may lead to formation 

of mycotoxins such as ochratoxin A (OTA), causing among other things severe liver and 

kidney damage in humans (Höhler, 1998; Meister, 2004; Lindblom, 2006; Anon., 2006). This 

is not only a health problem for the consumers, but might also turn out to be a major 

economical problem for the cocoa producing countries in West Africa. The European 

Commission has not defined permitted limits for levels of OTA in cocoa beans yet. But 

depending on the limits (if any) to be set by the Commission it has been estimated that up to 

20 % of the cocoa bean production could be excluded from human consumption (Brera et al., 

2003; Anon., 2003; Lindblom, 2006; Anon., 2006). 

 

Despite the importance of the fermentation for the quality of the final product and even 

though the process has been studied for more than 100 years, our knowledge of the microbial 

species participating in and contributing to the fermentation is still inadequate. Especially 
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there is a lack of studies on fermentation of cocoa in West Africa. As a result efficient quality 

management measures (e.g. Good Manufacturing Practice, GMP; and Hazard Analysis 

Critical Control Point, HACCP) have only been introduced to a limited extent in the primary 

steps of cocoa processing.  

 

The fermentation of cocoa is a spontaneous microbiological process involving a large number 

of different microorganisms. The overall objective of the present Ph.D. thesis was to conduct 

a detailed microbiological investigation of Ghanaian cocoa fermentations hereby documenting 

the succession of microorganisms participating in the process. For the first time a combination 

of phenotypic and genotypic methods will be used for grouping and identification of the 

microorganisms being involved in the fermentation of cocoa.  

 

Molecular biology based culture-independent methods are a promising supplement to 

traditional culture-based methods for the investigation of complex microbial processes such as 

the cocoa fermentation. Another objective of the present study was thus to develop a culture-

independent method suitable for the investigation of cocoa fermentations using Denaturing 

Gradient Gel Electrophoresis (DGGE) as a rapid alternative to the traditional culture-based 

methods. Furthermore DGGE is offering the possibility to investigate the potential role of 

non-cultureable microorganisms in the process. 

 

Finally, given the heterogeneous and spontaneous nature of the cocoa fermentations the 

possibility to isolate hitherto unknown microorganisms contributing to our understanding of 

the biodiversity of traditional African fermentations is another objective of the investigations 

carried out. 

 

The results from the investigations carried out have been published in; accepted for 

publication in; or submitted to international scientific journals – see Appendixes I-IV. In 

chapters 2-7 the existing knowledge in the literature related to the aims and subject of the 

present thesis is described. The results obtained during the present study is presented and 

discussed in relation to the exiting literature where appropriate. Chapters 8-9 contain 

conclusions and perspectives for future research within the subject. 
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2. Cocoa 
The cocoa tree (Theobroma cacao, family Sterculiaceae) grows wild in the Amazons and 

other tropical areas of South and Central America. Two subspecies are recognised within T. 

cacao: Criollo and Forastero, which are further divided into various varieties such as 

Amelonado, a Forastero variety. Trinitario is a third group often referred to in the literature. It 

is a hybrid between Criollo and Forastero varieties. (Wood and Lass, 1985; Fowler et al., 

1998). 

 

Criollo have been cultivated in South and Central America as far back as 600 AD. The beans 

were used to make a spicy drink “chocolatl” based on roasted and grounded cocoa beans, 

maize meal, vanilla and chili. The drink was apparently consumed in large amounts by the 

Aztec royal courts and the beans were thus relatively valuable. Cocoa beans are easy to count, 

uniform in size and were due to their value used as a sort of currency until the Spanish 

conquest of the Aztec empire (Wood and Lass, 1985; Fowler et al., 1998). 

 

 
Fig. 1, A: Cocoa producing countries (red). B: Major cocoa producers, pct. of World production (2003/2004). 
Source: www.icco.org. 
 

Following the Spanish conquest of Mexico cocoa cultivation was spread to the Caribbean 

Islands, parts of South America and later taken across the Pacific to the Philippines, Sulawesi 

and Java. Until the eighteenth century the majority of the cocoa cultivated was Criollo, but 

during the eighteenth and nineteenth century Forastero varieties began to predominate. 

Towards the end of the nineteenth century cocoa of the Amelonado type was taken from 

Brazil and across the Atlantic to Ghana (then a English colony under the name “Gold Coast”) 

A 
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where it formed the basis for cocoa production in West Africa (Wood and Lass, 1985; Fowler 

et al., 1998). 

 

Today cocoa is grown in a 20° belt north and south of equator (Fig. 1A). The minimum mean 

(over a month) temperature in most cocoa growing regions is 18 °C, and the mean maximum 

temperature 32 °C. Temperatures as low as 2-6 °C can be tolerated, but if the temperature is 

10 °C or lower for several consecutive days it will have a significant impact on yield with 

losses of 50 % or more. A high rainfall of 1000-4000 mm/year is required. Furthermore the 

distribution of the rainfall is important, as the dry season preferably should be shorter than 3 

months and not totally dry. In the Tafo-region, Ghana, where a significant part of the present 

study has been carried out, the mean minimum temperature is 20-21.5 °C, the mean maximum 

temperature is 27.5-32.5 °C and the annual rainfall is 1600 mm. January is the driest month, 

with an average rainfall of 30-40 mm (Wood and Lass, 1985; Fowler et al., 1998).  

 

Theobroma cacao grows well in a wide range of soils. The climate and soil in parts of West 

Africa is ideal for growth of the cocoa tree and since the introduction of cocoa in the region 

approximately 100 years ago Ivory Coast has become the Worlds largest producer followed 

by Ghana (Fig. 1B) (Wood and Lass, 1985; Fowler et al., 1998; Anon., 2005).  

 

2.1 Composition of the mature cocoa fruit 
The fruit of the cocoa tree is a pod containing 20-30 (Criollo) or 30-40 (Forastero and 

Trinitario) beans (or seeds, as the fresh, unfermented bean is often referred to in the literature) 

embedded in a mucilaginous pulp. The pods develop from pollinated flowers emerging 

directly out of the bark on the stem or trunks of the cocoa tree (Fig. 2 and Wood and Lass, 

1985; Thompson et al., 2001).  

  

Raw Forastero beans are violet in cross-section and produce a strong cocoa flavour upon 

proper processing. Criollo beans in the raw state are white, ivory or very pale purple coloured 

and produce cocoa with a weaker but very aromatic flavour (Wood and Lass, 1985). The 

Criollo beans tend to be bigger and rounder and have a lower fat content compared to 

Forastero (Wood and Lass, 1985). 
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Fig. 2: Cocoa fruit pod growing directly out of the bark on a trunk of a cocoa tree (Forastero-type). Source: 
Louis Ban-Koffi, private pictures, reprinted with permission. 
 

Criollo and Trinitario are considered “fine” cocoas often sold at a higher price than Forastero. 

On the other hand Forastero is much less prone to various diseases giving a more stable crop 

from year to year and is thus preferred by farmers over most of the World. Today Forastero 

varieties account for approximately 95 % of the World production of cocoa. In West Africa 

almost exclusively varieties of Forastero (Amelonado, Amazon and Hybrid cultivars) are 

planted (Wood and Lass, 1985; Baker et al., 1994; Fowler et al., 1998; Takrama, 2006). For 

this reason focus will be on Forastaro cocoa in the following unless stated otherwise. 

 

2.1.1 The pulp 
The actual substrate for the fermentation of cocoa beans is the pulp surrounding the beans and 

the composition of the pulp is thus a decisive factor on the outcome of the fermentation step.  

The pulp is rich in sugars with a total content of glucose, fructose and sucrose of 10-15 % 

(Roelofsen and Giesberger, 1947; Pettipher, 1986b; Thompson et al., 2001; Ardhana and 

Fleet, 2003). The glucose/fructose to sucrose ratio changes with the degree of maturity with 

unripe pods containing a higher proportion of sucrose and ripe pods containing mainly 

fructose and glucose (Packiyasothy et al., 1981). The pH is relatively low (3.3-4.0) mainly 

due to the content of 0.5-2 % citric acid. A relatively high content of pectin and other 

polysaccharides (1-2 %) makes the pulp viscous (Roelofsen and Giesberger, 1947; Pettipher, 

1986b). In the present study it has been found that the main sugars of the fresh pulp were 

glucose (5.4-6.6 %) and fructose (6.3-7.4 %) with only small amounts of sucrose (less than 

0.3 %) present. The citric acid content was 0.6-0.7 % and no or only low amounts (less than 
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0.2 %) of acetic acid, lactic acid and ethanol were detected in the fresh pulp; the pH of the 

fresh pulp was 3.94-4.12 (Appendix III).  

 

2.1.2 The bean 
The fresh, unfermented cocoa bean (“the seed”) basically comprises two parts. An outer part 

comprising the testa (seed coat) surrounding the bean; and an inner part comprising the 

embryo (germ) and cotyledons contained within the testa. The testa of the cocoa seed is 

impermeable to larger molecules, whereas smaller molecules such ethanol and acetic acid are 

capable of diffusing into the seed (Roelofsen, 1958; Lopez and Dimick, 1995). The 

cotyledons are basically made up of different types of storage cells – e.g. lipid and polyphenol 

containing cells - with a plasma forming a grid between the two types of cells (see Fig. 3 and 

Lopez and Dimick, 1995).  

 

 

Fig. 3: Light microscopy of the inner of an 
unfermented cocoa bean fixated and cut lengthwise. 
Note the dark-stained phenolic compounds 
containing cells. Bar represents 20 µm (de Brito et 
al., 2000).  

 

The cocoa seed has an approximate composition of 32-39 % water, 30-32 % fat, 8-10 % 

proteins, 2-3 % cellulose, 4-6 % starch, 4-6 % pentosans, 2-3 % sucrose, 5-6 % polyphenols, 

1 % acids (mainly citric, oxalic and malic acid), 1-3 % theobromine and 0.2-1 % caffeine 

(Wadsworth, 1922; Forsyth and Quesnel, 1963; Weissberger et al., 1971; Lopez and Dimick, 

1995; Bucheli et al., 2001; Goto et al., 2002 and Nielsen, D.S. unpublished results). Three 

groups of polyphenols can be distinguished in Forastero beans: Catachins (ca. 37 %), 

procyanidins (58 %) and anthocyanins (4 %) (Wollgast and Anklam, 2000). The main 

catechin is (-)-epicatechin constituting up the 35 % of the total polyphenol content (Kim and 

Keeney, 1984; Wollgast and Anklam, 2000). Beans of the Forastero variety owe their 
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characteristic violet colour to the content of anthocyanins (Roelofsen, 1958; Lopez and 

Dimick, 1995; Wollgast and Anklam, 2000). Beans of the Criollo type contain approximately 

2/3 the amount of polyphenols found in Forastero and no anthocyanins have been detected 

(Wollgast and Anklam, 2000). 
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3. The primary processing of cocoa 
Raw cocoa has an astringent unpleasant taste and has to be fermented, dried and roasted to 

obtain the characteristic “cocoa” taste and flavour. The primary processing steps of cocoa 

production include harvesting, pod breaking, fermentation and drying. The fermentation and 

drying steps are often referred to simply as “curing”. During the fermentation various 

biochemical processes important for taste and flavour development are initiated in the beans 

(see chapter 4); processes that continue during the drying step. A further purpose of the 

fermentation is to facilitate removal of the mucilaginous pulp surrounding the beans as the 

pulp inhibit drying of the beans to a microbiological stable water content (Roelofsen, 1958; 

Wood and Lass, 1985; Lopez and Dimick, 1995). 

 

The ripe pods are harvested by cutting down the fruits with varying forms of knives. Pods 

within reach are often harvested with a cutlass (Fig. 4A) whereas pods on the branches higher 

in the tree are harvested using special harvesting knives on long poles (Wood and Lass, 1985; 

Lopez and Dimick, 1995). 

 

  

 

Fig. 4, A: Harvesting of ripe cocoa pods; pods within reach are harvested with a cutlass; B & C: The harvested 
pods are broken open with a cutlass or any other convenient tool. A and C: Louis Ban-Koffi, private pictures; B: 
Susanne Hønholt, private pictures, all reprinted with permission. 
 

It is common practice in many cocoa producing regions including Ghana to harvest the pods 

over some days before the collected pods are transported to a place at the farm suitable for 

subsequent handling. Storing the pods for some days before opening is considered beneficial 

for the fermentation, as it results in a more rapid increase in temperature during fermentation 

– and thus a faster fermentation – presumably because sucrose is converted to glucose and 

A B C 
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fructose (Rohan, 1963; Berbert, 1979; Dougan, 1980; Tomlins et al., 1993). The pods are 

broken open with e.g. a cutlass (Fig. 4B) or any other convenient tool and the beans scoped 

out of the broken pod (Fig. 4C) (Wood and Lass, 1985; Baker et al., 1994). 

 

3.1 Fermentation  

Following opening of the pods the cocoa beans are spontanously inoculated with a variety of  

microorganisms (See Chapter 5.1, Appendix I and Roelofsen, 1958; Thompson et al., 2001). 

During the fermentation various yeasts, lactic acid bacteria (LAB), acetic acid bacteria (AAB) 

and possibly Bacillus spp. develop in a form of succession carrying out the fermentation 

(Roelofsen and Giesberger, 1947; Roelofsen, 1958; Carr et al., 1979; Carr and Davies, 1980; 

Schwan et al., 1995; Thompson et al., 2001; Ardhana and Fleet, 2003; Schwan and Wheals, 

2004). The microbiology of the fermentation will be dealt with in detail in chapters 5 and 6 

but in summary the microorganisms metabolises the fermentable pulp sugars to ethanol. 

Subsequently some of the ethanol is further oxidised to acetic acid through an exothermal 

process. The ethanol and acetic acid penetrate the beans. This, in combination with the heat 

produced kill the germ and break down the cell walls in the bean initiating the processes 

leading to well fermented beans (Roelofsen and Giesberger, 1947; Roelofsen, 1958; 

Thompson et al., 2001). 

 

 
BB

 
Fig. 5, A: Heap under construction; the beans are placed on plantain leaves B: Heap covered with plantain 
leaves. A: Own pictures, B: Susanne Hønholt, private pictures, reprinted with permission. 
 

Various cocoa fermentation systems have been developed. The heap fermentation system 

dominates in Ghana and other West African countries (Wood and Lass, 1985; Baker et al., 

A  A 
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1994; Aneani and Takrama, 2006). In a heap fermentation the beans are piled on and covered 

with plantain leaves (Fig. 5A and B) or plastic tarpaulin. The cover protects the fermenting 

mass against insects and conserve heat (Wood and Lass, 1985; Aneani and Takrama, 2006; 

Zaouli, 2006). 

 

It is recommended to turn/mix the heaps every 24-72 hours during the fermentation to ensure 

a uniform fermentation, enhance growth of beneficial microorganisms and limit the growth of 

unwanted microorganisms (Lehrian and Patterson, 1983; Baker et al., 1994). However, 

turning of the heaps is tedious (see Fig. 6A) and according to Baker et al. (1994) 57 % of the 

Ghanaian farmers do not turn their heaps. A recent investigation by Aneani and Takrama 

(2006) confirmed this finding as they reported that 62 % of Ghanaian farmers do not turn their 

heaps.  

 

  
Fig. 6, A: Turning of a heap fermentation; B: Heap fermented for 48 hours; the beans of half the heap have 
been pushed aside. Three zones with varying degree of fermentation marked, 1: Outer zone; 2: Middle zone; 3: 
Central zone. Own Pictures. 
 

The fermentation progresses faster in the outer, well aerated parts of the fermenting mass as 

seen in Fig. 6B, where a heap fermentation has been opened after 48 h of fermentation and the 

beans of half the fermentation pushed aside. Three zones with varying degrees of 

fermentation can be recognised: A thin, outer layer (1), where the beans are almost fully 

fermented and the pulp surrounding the beans have been broken down and drained away. A 

middle zone (2) where the fermentation have progressed some, and a central zone (3) where 

the beans are surrounded by a white mucilaginous pulp and have the same appearance as 

when they were removed from the pod. Turning is in other words necessary to achieve a final 

product with a uniform degree of fermentation. 

A B
1

2

3
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To circumvent the laborious process of turning the heaps an experimental tray system claimed 

to give high quality beans in shorter time than the traditional heap system has been developed 

at the Cocoa Research Institute of Ghana (CRIG). In the tray system the raw cocoa beans are 

placed in 10 cm deep trays and 8-10 trays stacked on top of each other as illustrated in Fig. 

7A. Air is allowed to circulate between the trays ensuring aeration of the fermenting mass 

without turning the beans (Allison and Rohan, 1958; Allison and Kenten, 1963). 

 

  
Fig. 7, A: Tray fermentation; B: Box fermentation of cocoa beans. Own pictures 
 

A third system widely used in e.g. Brazil, Indonesia and Malaysia is the box fermentation 

system (Wood and Lass, 1985). As illustrated in Fig. 7B a number of boxes (here 3) are 

stacked in a stairwise manner on top of each other. Following pod breaking the beans are 

placed in the top box. After 1-2 days of fermentation the beans are moved to middle box and 

finally after 2-3 days of further fermentation into the lowest. The box fermentation systems 

facilitates turning, as the movement of the beans is aided by gravity and cocoa of good quality 

can be produced (Lehrian and Patterson, 1983; Wood and Lass, 1985). However, a problem 

occasionally encountered during box fermentation is uneven temperature and oxygen 

distribution through the fermenting mass with the corners and areas around aeration holes 

being better aerated and occasionally colder and less acidic than the rest of the fermenting 

mass enabling moulds to grow abundantly. Care must be taken with respect to adequate 

design and fermentation practice to avoid this (Maravalhas, 1966; Lehrian and Patterson, 

1983; Schwan et al., 1995; Senenayake et al., 1997). 

 

A B 
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Several other fermentation systems including fermentation on drying platforms, in bags, 

barrels, baskets and holes dug in the ground have been used over the last century (Rohan, 

1963; Lehrian and Patterson, 1983; Wood and Lass, 1985; Thompson et al., 2001). However, 

these methods are not widely used and will thus not be dealt with in detail here. 

 

Unfortunately a firm and easy-to-follow definition of when to stop the fermentation have 

never been developed. As a consequence the fermentation time varies widely from country to 

country and even from farmer to farmer. As an example it can be mentioned that in Ghana 

some farmers ferment their heap fermentations for 3 days whereas others ferment for up to 7 

days (Baker et al., 1994; Aneani and Takrama, 2006). However, even though no strict 

definition of when to terminate the fermentation has been developed, the experienced farmer 

still have a good idea of when to stop fermenting and start drying. This is based on the smell 

of the fermenting mass (i.e. development of acetic odour from the activity of acetic acid 

bacteria), the internal and external appearance of the beans and falling temperature of the 

fermenting mass (Forsyth and Quesnel, 1956; Forsyth and Quesnel, 1963). 

 

3.2 Drying 

The fermentation is stopped by drying the beans. The moisture content of the beans must be 

brought from the initial 40-60 % to 6-7 % to avoid growth of moulds. Furthermore, 

biochemical processes important for flavour and colour development of the cocoa beans take 

place during drying and the drying process is thus essential for the production of high quality 

cocoa. From the point of avoiding mould growth it is desirable to dry as fast as possible, 

whereas from the point of proper flavour development drying should not be too fast. It has 

been established that drying should take at least 48 hours to allow proper flavour development 

(Wood and Lass, 1985; Faborode et al., 1995; Thompson et al., 2001; Nganhou et al., 2003).  

 

Two systems are used for drying: Sun drying and mechanical drying. During sun drying the 

beans are spread in a thin layer on e.g. bamboo mats raised from the ground (Fig. 8A), plastic 

sheds or concrete floors. It is important to ensure uniform drying by mixing the beans 

regularly, breaking up clumps of beans etc. Furthermore the beans should be protected from 

rewetting due to rain and dew during night by covering the beans adequately as seen in Fig. 
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8B or by collecting and moving the beans indoor during rain and at night (Wood and Lass, 

1985; Thompson et al., 2001).  

 

  
Fig. 8, A: Sun drying on bamboo mats; B: Beans covered to protect against rain. Own pictures. 
 

Under sunny conditions the beans dry within a week, but under cloudy or rainy conditions 

drying may take up to 3-4 weeks. Obviously prolonged drying increases the risk of mould 

growth and spoilage (Wood and Lass, 1985; Thompson et al., 2001). 

 

Mechanical drying is another option. Generally hot air dryers driven by wood or oil are 

employed. Numerous designs have been developed, but normally indirect heating using heat 

exchangers are preferred. The initially drying rate must be slow and with frequent mixing to 

achieve uniform removal of water and allow time for the flavour and aroma precursor 

producing biochemical reactions to complete. This is achieved by keeping the temperature at 

60 °C or lower and dry for at least 48 hours (Wood and Lass, 1985; Thompson et al., 2001). 

 

Sun drying is the most widely used method for several reasons: First and foremost sun drying 

is cheap with no need to invest in expensive equipment and consumables (fuel). Furthermore 

cocoa is very prone to contamination with smoke. If smoke from the heating source of the 

mechanical dryer reach the cocoa due to badly constructed or poorly maintained equipment it 

will result in cocoa with smoky off-flavours severely limiting the value of the product (Wood 

and Lass, 1985; Thompson et al., 2001).  

 

A B
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3.3 Further handling 

Following proper drying the beans are ready for sale. Normally the beans are stored and 

transported in jute bags or as bulk goods. Some cocoa producing countries have established 

industry for further processing of the beans into cocoa butter, cocoa powder, cocoa mass and 

chocolate but typically the fermented and dried beans are exported directly to Europe, USA, 

Japan and other parts of the industrialised world (Wood and Lass, 1985; Anon., 2005). Here 

the beans are roasted, de-shelled and further processed into cocoa butter (the fat containing 

part), cocoa powder (the de-fatted part) or used directly for production of chocolate. Cocoa 

butter is an important ingredient in chocolate, but has found a range of other uses as well – 

e.g. in the cosmetic industry. Cocoa powder is used in numerous confectionaries and 

beverages (Wood and Lass, 1985). 
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4. Changes in the bean during fermentation and drying  
The fermentation of cocoa facilitate drying of the beans by removing the pulp, but the main 

reason for fermenting cocoa is to induce biochemical reactions within the bean that lead to 

formation of precursors of chocolate aroma, flavour and colour. The formation of aroma, 

flavour and colour precursors continue during the drying process as mentioned previously 

(Quesnel, 1965; Lopez and Dimick, 1995; Thompson et al., 2001). 

 

 
Fig. 9: Biochemical changes in the cocoa bean during fermentation (Lopez and Dimick, 1995). 
 

The combined effect of increasing temperature and acetic acid and ethanol penetrating the 

testa and entering the bean as the fermentation progresses kill the embryo (germ) and causes 

breakdown of the protein-lipid and polyphenol containing storage cells in the cotyledon (Fig. 

9 and Roelofsen, 1958; Biehl, 1973; Lopez et al., 1987; de Brito et al., 2000; Thompson et al., 

2001). The penetrating acetic acid cause the bean pH to drop from the initial value of 6.3-6.8 

to 4-4.5 (Forsyth and Quesnel, 1956; Lehrian and Patterson, 1983; Lopez and Dimick, 1995). 

 

Following breakdown of the cell walls in the bean numerous biochemical processes take place 

leading to the breakdown of proteins to peptides and amino acids (Rohan and Stewart, 1967a; 

Zak and Keeney, 1976; Biehl and Passern, 1982; Amin et al., 1997; Amin et al., 1998; 
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Hashim et al., 1998; Lerceteau et al., 1999; Buyukpamukcu et al., 2001); and breakdown of 

sucrose to fructose and glucose (Rohan and Stewart, 1967b; Hansen et al., 1998; Hashim et 

al., 1998; Goto et al., 2001; Goto et al., 2002). The theobromine and caffeine content of the 

beans slightly decreases during fermentation due to diffusion out of the beans (Knapp and 

Wadsworth, 1924; Timbie et al., 1978; Aremu et al., 1995 and Nielsen, D.S., unpublished 

results). Apparently there is no change in the fat content during fermentation and drying 

(Roelofsen, 1958; Forsyth and Quesnel, 1963; Lehrian and Patterson, 1983).  

 

 
0 h 24 h 48 h 

 
72 h 96 h 120 h 
Fig. 10: Changes in bean colour during fermentation. Cocoa beans were sampled with 24 hour intervals during 
120 h of heap fermentation. Still adhering pulp was manually removed and the beans sundried. The beans were 
subsequently de-shelled and grinded (P. Aculey, Unpublished results). 
  

Anthocyanins rapidly break down to anthocyanidins and sugars (galactose and arabinose); 

reductions of 93 % after 4 days of fermentation have been reported (Forsyth and Quesnel, 

1957; Lehrian and Patterson, 1983; Pettipher, 1986a; Lopez and Dimick, 1995; Wollgast and 

Anklam, 2000). The polyphenols (including the anthocyanidins) are oxidised and polymerize 

to insoluble high-molecular-weight compounds (tannins) during fermentation and drying. 

Furthermore polyphenols diffuse out of the beans during fermentation. All in all these 

processes lead to a significant decrease in the polyphenol content of the beans. The amount of 
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the main cocoa polyphenol, (-)-epicatechin, have been reported to decrease with 90 % or more 

during fermentation and drying (Kim and Keeney, 1984; Villeneuve et al., 1985; Pettipher, 

1986a; Wollgast and Anklam, 2000; Kealey et al., 2001). This leads to changes in the internal 

colour of the dried cocoa beans from the grey colour of the unfermented beans over violet to 

the brown colour of well fermented cocoa beans (Fig. 10 and Pettipher, 1986a; Wollgast and 

Anklam, 2000). This is exploited in a simple method for determining the degree of 

fermentation called the cut test. In short, a number of beans are cut lengthwise and the internal 

colour assessed. Brown beans are considered well fermented, violet beans partly fermented 

and grey (slaty) beans unfermented. The method is widely used due to its simplicity but is not 

without problems (de Witt, 1953; Lopez, 1984; Wood and Lass, 1985). 

 

Finally, during the roasting process the flavour and aroma precursors formed during 

fermentation and drying react to produce the characteristic “cocoa flavour” (Rohan and 

Stewart, 1966a; Rohan and Stewart, 1966b; Lehrian and Patterson, 1983; Thompson et al., 

2001). 
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5. The microbiology of cocoa fermentation  
Early investigations by Preyer-Buitenzorg (1901), Koeppen (1907) and Bainbridge and 

Davies (1912) all showed that microorganisms were involved in the fermentation of cocoa. 

Over the last century a number of studies have investigated the microbiology of cocoa 

fermentations, but unfortunately a great number of these studies have larger or smaller 

limitations:  

 

• A great number of these studies only present qualitative information about the species 

present and in general there is a lack of studies presenting quantitative and qualitative 

information about the microbiology of cocoa fermentations 

• The difficulties of conducting field work under tropical and often primitive conditions 

have led to some studies being carried out on samples transported for several days or 

even weeks before analysis and/or on small scale fermentations carried out in the 

laboratory. It is very likely that the microbial composition of these samples differs 

significantly from the composition immediately after sampling and the real 

fermentation 

• Microbiological taxonomy has changed significantly over the years and earlier 

identifications may not necessarily be correct today 

• Beside the present study, no studies taking advantage of recent years developments 

within molecular biology based methods for identifying the microorganisms 

associated with the fermentation of the cocoa have been published to date. 

 

Despite the above mentioned limitations there is a fairly good understanding of the process 

today, as it also will be presented and discussed in the following. 

 

5.1 Origin of inocula 
The fermentation of cocoa is a spontaneous microbiological process. The interior of 

undamaged, healthy pods are sterile or almost sterile containing no more than a few hundred 

microorganisms/g (Appendix I and Hoynak et al., 1941; Roelofsen, 1958; Faparusi, 1974).  
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Faparusi (1974) investigated the occurrence of yeasts associated with cocoa at different stages 

from flower to ripe pods. A number of yeasts often present in high numbers during the actual 

fermentation such as Candida krusei (imperfect form of Issatchenkia orientalis), Kloeckra 

apiculata (imperfect form of Hanseniaspora uvarum) and Pichia membranifaciens were 

detected at the different stages of maturation (Faparusi, 1974). The incidence of yeasts 

isolated from mature, aseptically opened pods differed from farm to farm. The incidence of P. 

membranifaciens infected pods differed from 25 to 50 % among the 5 farms investigated, 

whereas the incidence of Saccharomyces spp. infected pods ranged from 2 to 7.5 % of the 

pods (Faparusi, 1974). Maravalhas (1966) mention the occasional isolation of C. krusei from 

the interior of aseptically opened pods. During the present study it was found that the interior 

of the investigated Ghanaian cocoa pods contained around 102 yeast/g with I. orientalis 

constituting 80 % of the isolates and P. membranifaciens 20 % (Appendix I).  

 

From the surface of healthy Ghanaian cocoa pods a wide range of yeasts have been isolated 

during the present study (% of isolates in brackets): Hanseniaspora guilliermondii (53 %), 

Pichia guilliermondii (22 %), Candia intermedia (7 %), Candida parapsilosis (6 %), 

Cryptococcus laurentii (4 %), Candida silvicola (2 %), P. membranifaciens (2 %), 

Rhodotorula glutinis (2 %) and Cryptococcus humicola (2 %). Additionally I. orientalis was 

isolated from pods infected with black pod disease (Appendix I). 

 

Rombouts (1952) and Ostovar and Keeney (1973) isolated a wide range of yeasts involved in 

the fermentation of cocoa from knives used for pod breaking, fermentation boxes, pod 

surfaces, dried pulp and workers hands. Similar observations were reported by Rombouts 

(1952). During the present study P. membranifaciens, I. orientalis and Trichosporon asahii 

have been isolated from fermentation trays at the Cocoa Research Institute of Ghana 

(Appendix I). Plantain leaves used for covering the fermenting mass have been suggested as a 

source inoculation as well (Grimaldi, 1978). 

 

The fruit fly Drosophila melanogaster and other insects such as ants are another possible (and 

possibly underestimated) source of inoculation (Ostovar and Keeney, 1973; Gilbert, 1980). 

During cocoa fermentations D. melanogaster is present in numbers so high, that it is even 

referred to as “the cocoa fly” in a few early publications (Bainbridge and Davies, 1912; 
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Nicholls, 1913).  Early experiments by Nicholls (1913) suggested that D. melanogaster plays 

an important role in inoculating the cocoa pulp with yeasts and Bainbridge and Davies (1912) 

state that D. melanogaster is the main responsible for inoculating the fermenting mass with 

acetic acid bacteria. Ostovar and Keeney (1973) isolated 3 different AAB species, 4 different 

Bacillus spp., 4 different LAB species and various yeasts from 4 fruit flies collected at a 

cocoa farm on Trinidad. All isolates were isolated from fermenting cocoa at the farm as well. 

In Brazil it has been found that Drosophila spp. normally carries C. krusei and is an important 

vector for transferring microorganisms between ecological nieces (Dobzhansky and Da 

Cunha, 1955; Maravalhas, 1966; Gilbert, 1980). 

 

5.2 Overall microbial development during fermentation 

In the initial phases of the fermentation growth of yeasts are favoured due to the high sugar 

content, low pH (due to the relatively high content of citric acid) and limited oxygen 

availability in the pulp (Thompson et al., 2001). During the first 24-36 hours of fermentation 

the yeast population increase to 107-108 CFU/g normally followed by a steady decline through 

the rest of the fermentation (Roelofsen and Giesberger, 1947; Rombouts, 1952; Carr et al., 

1979; Schwan et al., 1995; Ardhana and Fleet, 2003). Similar results have been found during 

the present study (Table 1 and Appendix III). However, in a few fermentations yeast growth 

was slower not peaking until after 48-72 hours of fermentation (Appendix I). These 

fermentations were carried out in December, one of the dry months in Tafo, Ghana (Wood 

and Lass, 1985). It has previously been reported that microbial growth and the progress of 

fermentation varies with season and local climate offering a possible explanation of the 

delayed yeast growth during these fermentations (Koeppen, 1907; Roelofsen and Giesberger, 

1947; Rombouts, 1952; Wood and Lass, 1985).  

 

One of the large heap fermentations investigated was turned after 48 and 96 hours of 

fermentation, which seems to influence the yeast growth as seen from Table 1, where a 

decrease in the yeast cell count is observed in the outer part of the fermentating mass after 

turning followed by renewed growth. 
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Table 1: Growth [log(CFU/g), standard deviations in brackets] of yeast, Lactic Acid Bacteria (LAB), Acetic 
Acid Bacteria (AAB) and Bacillus spp. during fermentation of cocoa in the outer (15 cm from the surface ) and 
central parts of a large (500 kg) heap fermentation, a small (50 kg) heap fermentation (15 cm from surface) and a 
tray fermentation. All fermentations carried out in October. The large heap fermentation was turned after 48 and 
96 hours. Appendix III. 

 Fermentation time (hours) 
 0 12 24 36 48 60 72 84 96 108 120 132 144 
Yeast, 
log(CFUyeast/g) 

             

Large heap, outer 
part 

6.97 
(0.04) 

7.24 
(0.03) 

6.60 
(0.21) 

4.90 
(0.43) 

5.38 
(0.25) 

5.08 
(0) 

6.87 
(0.02) 

6.67 
(0.16) 

7.32 
(0.34) 

5.40 
(0.02) 

7.86 
(0.12) 

5.65 
(0.14) 

5.55 
(0.14) 

              
Large heap, central 
part 

7.23 
(0.21) 

7.47 
(0.12) 

5.73 
(0.02) 

6.34 
(0.06) 

5.19 
(0.16) 

5.25 
(0.07) 

4.76 
(0.06) 

5.82 
(0.06) 

4.30 
(0) 

5.48 
(0.04) 

4.40 
(0.71) 

5.85 
(0.10) 

4.30 
(0) 

              
Small heap 7.38 

(0) 
8.03 

(0.05) 
6.68 

(0.10) 
5.53 

(0.04) 
5.88 

(0.14) 
3.75 

(0.21) 
5.96 

(0.03) 
4.99 

(0.55) 
4.30 
(0) 

    

              
Tray 7.45 

(0) 
7.57 

(0.10) 
7.18 

(0.38) 
6.33 

(0.17) 
6.49 

(0.16) 
4.25 

(0.07) 
5.55 

(0.07) 
6.58 

(0.03) 
4.29 

(0.12) 
    

LAB, 
log(CFULAB/g) 

             

Large heap, outer 
part 

5.99 
(0.12) 

8.09 
(0.04) 

8.86 
(0.15) 

9.08 
(0.11) 

9.03 
(0.10) 

8.47 
(0.02) 

9.09 
(0.27) 

9.25 
(0.03) 

9.23 
(0.12) 

6.72 
(0.03) 

9.16 
(0.06) 

8.73 
(0.07) 

8.88 
(0.03) 

              
Large heap, central 
part 

5.53 
(0.04) 

7.02 
(0.03) 

9.16 
(0.13) 

9.18 
(0.04) 

9.41 
(0.05) 

9.40 
(0.01) 

9.29 
(0.08) 

8.17 
(0) 

6.76 
(0.05) 

4.90 
(0) 

6.43 
(0.05) 

8.29 
(0.12) 

5.58 
(0.04) 

              
Small heap 6.25 

(0.07) 
8.35 

(0.21) 
8.36 

(0.18) 
9.06 

(0.16) 
9.15 

(0.18) 
8.93 

(0.18) 
8.60 

(0.60) 
6.37 

(0.10) 
N.D.1     

              
Tray 7.23 

(0.21) 
8.62 

(0.03) 
9.71 

(0.10) 
9.54 

(0.34) 
9.33 

(0.04) 
8.27 

(0.04) 
9.07 

(0.18) 
8.45 

(0.04) 
8.58 

(0.19) 
    

AAB, 
log(CFUAAB/g) 

             

Large heap, outer 
part 

5.60 
(0) 

N.D. 7.14 
(0.02) 

7.33 
(0.17) 

7.76 
(0.02) 

6.94 
(0.01) 

No 
data2 

7.54 
(0.06) 

7.38 
(0) 

5.41 
(0.05) 

8.14 
(0.09) 

5.84 
(0.34) 

5.99 
(0.12) 

              
Large heap, central 
part 

N.D. N.D. 5.60 
(0) 

6.99 
(0.12) 

4.60 
(0) 

7.13 
(0.02) 

6.29 
(0.12) 

4.90 
(0.43) 

4.60 
(0) 

6.47 
(0.04) 

3.70 
(0) 

N.D. N.D. 

              
Small heap N.D. 6.19 

(0.16) 
7.76 

(0.02) 
7.88 

(0.06) 
7.60 
(0) 

6.26 
(0.04) 

6.25 
(0.07 

6.60 
(0) 

N.D.     

              
Tray N.D. N.D. 7.05 

(0.21) 
7.70 

(0.14) 
7.34 

(0.06) 
7.49 

(0.16) 
5.96 

(0.03) 
3.99 

(0.55) 
N.D.     

Bacillus spp. 
log(CFUBacillus/g)3 

             

Large heap, outer 
part 

N.D. N.D. N.D. N.D. 5.49 
(0.15) 

7.74 
(0.09) 

N.D. 3.60 
(0) 

9.10 
(0.71) 

5.75 
(0.21) 

7.99 
(0.12) 

7.75 
(0.04) 

7.81 
(0.19) 

              
Large heap, central 
part 

N.D. N.D. N.D. N.D. N.D. 7.84 
(0.34) 

N.D. 4.14 
(0.09) 

4.66 
(0.08) 

6.96 
(0.26) 

5.57 
(0.10) 

7.43 
(0.10) 

6.83 
(0.32) 

              
Small heap N.D. N.D. N.D. N.D. N.D. 4.05 

(0.21) 
N.D. 5.75 

(0.21) 
5.75 

(0.21) 
    

1 N.D.: None detected 
2 No data, plates partly overgrown by slimy non-AAB. CFUAAB approximately as for 60 hours of fermentation. 
3 No Bacillus spp. detected during tray fermentation 

 

The primary activity of the yeasts is assumed to be production of ethanol from carbohydrates. 

Consequently a sharp increase in the ethanol concentration and a decrease in the concentration 

of fermentable sugars are observed during the first 24-36 hours of fermentation (Roelofsen 

and Giesberger, 1947; Schwan et al., 1995; Lopez and Dimick, 1995; Ardhana and Fleet, 

2003). Maximum pulp ethanol concentrations as high as 6.5 % (Ardhana and Fleet, 2003) and 

as low as 1 % or less (Carr et al., 1979; Schwan et al., 1995) have been reported in the 

literature. However, as different sampling preparation and extraction methods have been used 
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it is difficult to directly compare the figures. Using basically the same experimental approach 

as Ardhana and Fleet (2003) who investigated Indonesian box fermentations it was in the 

present study found that the pulp ethanol concentration peaked around 2 % after 24-36 hours 

of fermentation (Appendix III). The lower values found in the present study possibly reflects 

differences in fermentation method (box versus heap) and/or e.g. different cocoa cultivars 

used in Indonesia and Ghana.  

 

During the fermentations investigated in the present study approximately 80 % of the sugars 

(glucose, fructose and sucrose) were metabolised within the first 24 hours. The exception here 

is the centre of the large heap fermentation, where a slower development was observed 

(Appendix III). Carr et al. (1979) also observed that the fermentation progressed slower in the 

central parts of large heap fermentations.  

 

The conversion of glucose and fructose to ethanol is an exothermic process producing 93.3 

kJ/mol reaction (Knapp, 1937; Forsyth and Quesnel, 1963; Carr, 1982). Consequently the 

production of ethanol in the initial phases of fermentation is accompanied by a moderate 

increase in temperature as also seen in Table 2 and Appendix III. 
 

Table 2: Development in temperature and pulp pH during fermentation of cocoa in the outer (15 cm from the 
surface) and central parts of a large (500 kg) heap fermentation, a small (50 kg) heap fermentation (15 cm from 
surface) and a tray fermentation. The large heap fermentation was turned after 48 and 96 hours. Appendix III. 

 Fermentation time (hours) 
 0 12 24 36 48 60 72 84 96 108 120 132 144 
Temperature, °C              
Large heap, outer part 28 29.5 34 42 43 48 48 44 42 44.5 44 46 44 
Large heap, central part 28 29 30.5 34 33.5 39 44 46 44.5 43 43.5 43.5 44 
Small heap 28.5 31 35 42 46 47 45 44 44.5     
Tray 28.5 33.5 34 37.5 45 46 46 46 45.5     
pH, pulp              
Large heap, outer part 4.10 4.50 4.24 3.93 3.98 4.03 4.21 4.37 4.40 4.35 4.49 4.58 4.55 
Large heap, central part 3.95 4.69 4.21 3.94 3.97 4.04 4.12 4.25 4.34 4.45 4.35 4.46 4.41 
Small heap 3.94 4.55 3.97 3.91 4.06 4.12 4.12 4.29 4.22     
Tray 4.12 4.28 3.85 3.82 3.98 4.06 4.20 4.29 4.26     

 
 

During the early phases of fermentation abundant growth of Lactic Acid Bacteria (LAB) also 

fermenting the sugars producing lactic acid is observed (Roelofsen and Giesberger, 1947; 

Schwan et al., 1995; Thompson et al., 2001; Ardhana and Fleet, 2003; Schwan and Wheals, 

2004). Lactic acid bacteria have been reported to reach 108-109 CFU/g during the first 24-48 

hours of fermentation (Carr et al., 1979; Schwan et al., 1995; Ardhana and Fleet, 2003). In 

Brazilian, Indonesian and Trinidadian box fermentations LAB have been found to decrease to 
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low (104 CFU/g) or non-detectable numbers during the later stages of fermentation 

(Rombouts, 1952; Schwan et al., 1995; Ardhana and Fleet, 2003) whereas Carr et al. (1979) 

found that LAB remained a significant part of the micropopulation constituting 10-50 % in 

most samples throughout Ghanaian heap fermentations. In comparison with Malaysian box 

fermentations investigated during the same study LAB in general constituted a smaller portion 

of the micropopulation during the box fermentations, but LAB was detectable in most 

samples (Carr et al., 1979). In the present study LAB reached numbers similar to those 

reported in the literature; i.e. reaching more than 109 CFU/g during the first 36 hours in all 

investigated fermentations (Table 1 and Appendix III). In agreement with the observations by 

Carr et al. (1979), but contrary to most published studies on box fermentations the LAB 

remained a predominant part of the micropopulation throughout all fermentations 

investigated. Whether this observation reflects differences between heap and box 

fermentations or local differences (climate, cocoa cultivar etc.) cannot be judged on the basis 

of the information available at present, but deserves further investigation in future studies. 

 

The role of yeast and LAB during the fermentation of cocoa is not restricted to producing 

ethanol and lactic acid. Breakdown of the pulp through pectinolytic activity by the yeast and 

assimilating citric acid by the yeast and LAB are other important functions (Sanchez et al., 

1984; Hugenholtz, 1993; Schwan and Rose, 1994; Schwan et al., 1997; Thompson et al., 

2001; Schwan and Wheals, 2004). The assimilation of citric acid causes the pH to increase. 

This is also observed in the present study, where the citric acid concentration in the pulp 

decreased from 0.6-0.7 % to low or non-detectable levels within the first 12 hours of 

fermentation accompanied by a pH-increase from 3.94-4.12 to 4.28-4.69 in the investigated 

fermentations (Table 2 and Appendix III). Following the initial increase in pH, pulp pH 

decreased again between 12 and 36 hours of fermentation followed by a steady increase from 

36 hours and onwards (Table 2 and Appendix III).  

 

In a recent study Ardhana and Fleet (2003) found that highly pectinolytic filamentous fungi 

grew well during first 36 hours of fermentation and suggested that filamentous fungi play a 

key role in the degradation of pulp pectin during the early phases of fermentation. On the 

contrary Roelofsen and Giesberger (1947) stated that moulds play no role during normal 

cocoa fermentations on Java (Indonesia).  
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The breakdown of the pulp cause some of the pulp to drain away and increase aeration of the 

fermenting mass favouring growth of aerobic AAB (Schwan et al., 1995). Acetic acid bacteria 

have been reported to reach anywhere between 105 and 109 CFU/g during box fermentations 

conducted in Indonesia, Belize, Brazil and Trinidad (Roelofsen and Giesberger, 1947; 

Rombouts, 1952; Ostovar and Keeney, 1973; Carr et al., 1979; Schwan et al., 1995; 

Thompson et al., 2001; Ardhana and Fleet, 2003). According to Carr et al. (1979) AAB 

reached around 108 CFU/g during Ghanaian heap fermentations. In the present study AAB 

grew from low or non-detectable levels at the onset of fermentation to 107 -108 CFU/g after 36 

hours of fermentation (Table 1 and Appendix III). Aeration of the fermenting mass by turning 

clearly influenced AAB growth in the large heap fermentation. Following turning the AAB 

counts decreased in the outer part the heap followed by renewed AAB growth. In the centre of 

the fermenting mass the picture was reversed (Table 1 and Appendix III). Carr et al. (1979) 

also observed that AAB growth in the central, less aerated part of heap fermentations were 

positively influenced by turning. The effect was less clear in the outer part of the fermenting 

mass, but as Carr et al. (1979) only took samples with 24 hour intervals it is likely they 

missed some of the effects of turning on microbiological growth. 

 

In general it is believed that AAB growth requires oxygen, but some strains are seemingly 

capable of growing under conditions with very low oxygen tension as Carr and Davies (1980) 

found that AAB from cocoa fermentations could be isolated from plates incubated 

anaerobically. The ability of AAB to spoil bottled wine further underline their potential for 

growing under very limited oxygen conditions (Drysdale and Fleet, 1988). 

 

The AAB metabolises the ethanol initially formed by the yeasts to acetic acid through an 

exothermal process. Furthermore some AAB species are capable of completely oxidising 

acetic acid to CO2 and H2O through an exothermal process (Forsyth and Quesnel, 1963; 

Kersters et al., 2003). The AAB activity leads to a further increase in temperature reaching  

45-50 °C or even higher (Roelofsen and Giesberger, 1947; Kenten and Powell, 1960; Forsyth 

and Quesnel, 1963; Quesnel, 1965; Biehl, 1969; Carr et al., 1979; Carr, 1982; Schwan et al., 

1995). In the present study maximum temperatures of 46-50 °C were observed in all 

investigated fermentations (Table 2 and Appendix I and III). It is interesting to note that the 
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temperature development in the centre of the large heap fermentation is relatively slow the 

first 48 hours of fermentation compared to the other fermentations and sampling sites. 

Following turning after 48 hours the temperature increases rapidly in the central parts, too 

(Table 2). A similar trend has been observed during Brazilian and Indonesian box 

fermentations (Roelofsen and Giesberger, 1947; Biehl, 1969; Passos et al., 1984a) and by 

Rohan (1957) and Carr et al. (1979) during Ghanaian heap fermentations. 

 

In the present study the acetic acid concentration peaked around 2 % after 60-72 hours of 

fermentation followed by a decline to 0.7-1 % by the end of fermentation (Appendix III). As 

mentioned previously it is difficult to directly compare values between different studies due to 

differences in methodology, but using a comparable experimental approach as in the present 

study Ardhana and Fleet (2003) obtained comparable results during Indonesian box 

fermentations. The decline in acetic acid concentration observed towards the end of 

fermentation were probably due to a combination of evaporation and metabolisation (Lehrian 

and Patterson, 1983; Schwan and Wheals, 2004). 

 

The ethanol and acetic acid diffuse into the beans. This in combination with the heat produced 

by the activities of the AAB leads to bean death and induces the biochemical changes leading 

to well-fermented cocoa beans as reviewed in chapter 4 (Quesnel, 1965; Thompson et al., 

2001).  

 

The high temperatures in combination with the ethanol and acetic present is a severe stress 

factor limiting the growth or killing vegetative cells of many microorganisms (Roelofsen and 

Giesberger, 1947; Lehrian and Patterson, 1983; Thompson et al., 2001). In the later phases of 

fermentation conditions with increasing pH and aeration becomes favourable for growth of 

spore-forming Bacillus spp. often reaching 108 CFU/g or more in the later stages of the 

fermentation (Rombouts, 1952; Carr et al., 1979; Schwan et al., 1995; Ardhana and Fleet, 

2003). Similar observations were made in the large heap fermentation investigated in the 

present study. In the investigated small heap and tray fermentations no or limited growth of 

Bacillus spp. were observed presumably because these fermentations were completed after 4 

instead of 6 days of fermentation (Table 1 and Appendix III). 
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The role of Bacillus spp. in the fermentation of cocoa has not been fully elucidated. However, 

due to their high enzymatic activity and production of e.g. short chain fatty acids, pyrazines 

and 2,3-butanediol the growth and activity of Bacillus spp. is likely to influence the final 

product possibly causing off flavours (Zak et al., 1972; Lopez and Quesnel, 1973; Schwan et 

al., 1986; Romanczyk et al., 1995). 

 

Towards the end of fermentation filamentous fungi grows well in the cooler and more aerated 

parts of the fermenting mass (Maravalhas, 1966; Lehrian and Patterson, 1983). Mould growth 

has been associated with internal moulding of the beans (a serious commercial defect), 

various off flavours such as “mouldy odour” and increased free fatty acids levels (Ciferri, 

1927; Dade, 1928; Ciferri, 1931; Hansen et al., 1973; Anon., 2003; Anon., 2006). 

Furthermore mould growth may lead to production of mycotoxins such as ochratoxin A, 

aflatoxins and citrinin (Höhler, 1998; Meister, 2004). It has recently been shown that 

ochratoxin A is produced not only during the drying step, but also during the actual cocoa 

fermentation (Petithuguenin, 2002; Lindblom, 2006; Anon., 2006). It is furthermore likely 

that excessive mould growth during the later parts of fermentation will enhance mould growth 

and thus potential mycotoxin production during the subsequent drying phase (Bunting, 1928; 

Roelofsen, 1958; Anon., 2003; Lindblom, 2006; Anon., 2006). 

 

5.2.1 Yeast involved in the fermentation 
The distinct smell of alcohol apparent during the early stages of cocoa fermentation soon led 

early investigators of the cocoa fermentation to conclude that yeasts were involved in the 

process (Preyer-Buitenzorg, 1901; Loew, 1907; Nicholls, 1913; Rombouts, 1953). These 

early studies reported the occurrence of a Saccharomyces-like yeast species for which Preyer-

Buitenzorg (1901) and later Nicholls (1913) suggested the name Saccharomyces theobromae. 

However, as stated by Rombouts (1953) it is most likely that Sc. theobromae was a mixture of 

different yeasts species. Furthermore a fission yeast, possibly Schizosaccharomyces pombe, 

an apiculate yeast, possibly K. apiculata and Saccharomyces spp. were reported frequently 

(Preyer-Buitenzorg, 1901; Loew, 1907; Bainbridge and Davies, 1912; Nicholls, 1913; 

Rombouts, 1953).  
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The involvement of Saccharomyces spp., Schizosaccharomyces spp. and apiculate yeasts in 

the fermentation of cocoa in all the important cocoa producing regions of the World, 

including South America, Indonesia and West Africa were confirmed by later studies 

(Steinmann, 1928; Busse et al., 1929; Ficker and von Lilienfeld-Toal, 1930; Ciferri, 1931). 

According to Knapp (1937) H.A. Dade isolated a number of yeasts from Gold Coast (Ghana) 

cocoa fermentations and deposited these isolates at the Central Bureau voor Schimmelcultures 

(CBS), Holland, where they were later identified as K. apiculata, C. krusei, Pichia 

fermentans, Candida mycoderma [now Candida vini (Meyer et al., 1998)] and Saccharomyces 

cerevisiae (Knapp, 1937; Rombouts, 1953).  

 

Roelofsen and Giesberger (1947) carried out a comprehensive study on box fermentation of 

cocoa in Java (Indonesia). Unfortunately, except for the identification of a few isolates to 

genus-level (Pichia spp. and Saccharomyces spp.) no serious attempts were made to identify 

the yeasts isolated during the study. Rombouts (1952) studied box fermentations on Trinidad 

and found that yeasts dominated the fermentations during the first 24 hours. The isolates were 

not identified in the original publication but according to Roelofsen (1958) the isolates were 

later identified and C. krusei was found to be the predominating yeast. Among others Sc. 

cerevisiae [then named Sc. cerevisiae var. ellipsoides (Vaughan-Martini and Martini, 1998)] 

K. apiculata and P. membranifaciens were isolated frequently as well. 

 

More recent studies of box fermentations in Belize, Brazil, Côte d’Ivoire, Malaysia and 

Indonesia have confirmed that the yeast community associated with cocoa fermentations is 

complex involving a number of species with Sc. cerevisiae, K. apis, K. apiculata, P. 

membranifaciens, P. fermentans, I. orientalis (and the imperfect form C. krusei), and various 

Candida, Torulopsis and Schizosaccharomyces spp. being isolated frequently (Ostovar and 

Keeney, 1973; Gauthier et al., 1977; Sanchez et al., 1985; Ravelomanana et al., 1985; Schwan 

et al., 1995; Thompson et al., 2001; Ardhana and Fleet, 2003). 

 

Only one systematic study dealing with the microbiology of Ghanaian cocoa fermentations 

have been published: Carr et al. (1979) reported the involvement of Hansenula, Kloeckra, 

Torulopsis, Saccharomyces, Candida, Pichia and Schizosaccharomyces spp. in Ghanaian 
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heap fermentations. Unfortunately the isolates were only identified to genus level (Carr et al., 

1979; Carr and Davies, 1980). 

 
Table 3: Composition of the yeast community sampled 15 cm from the surface (outer part) and in the center of a 
large (500 kg) heap cocoa fermentation turned after 48 and 96 hours. Abbreviations: H.: Hanseniaspora, S.: 
Saccharomycopsis, P.: Pichia, I.: Issatchenkia, C.: Candida, Sc.: Saccharomyces, Schiz.: Schizosaccharomyces 
(Appendix III). 

 Fermentation time (hours) 
 0 12 24 36 48 60 72 84 96 108 120 132 144 
Outer part, 
% of yeast population 

             

H. guilliermondii 79 67 71           
S. crataegensis 7             
P. pijperi 9 2            
Unidentified Species C 3             
I. hanoiensis 2             
C. zemplinina  19 14           
C. michaelii  3            
C. diversa  9 14           
P. membranifaciens   Det.1 100 70 50 100 100 100 90 100 100 100 
C. ethanolica     15      Det. Det.  
Sc. cerevisiae     15 17        
Schiz. pombe      33        
I. orientalis          10    
Central part,              
% of yeast population              
H. guilliermondii 78 53 21  25         
P. kluyveri 11             
C. diversa 11    13         
Unidentified Species C Det. 14            
S. crataegensis Det.             
C. zemplinina  33 57           
P. membranifaciens    9 13 11 31 97 50 100 100 67 100 
Sc. cerevisiae   22 91 25 89 45       
I. orientalis    Det.          
I. occidentalis    Det.          
C. ethanolica     13   3 50   33  
T. delbreuckii     13         
Schiz. pombe      Det. 24       
1 Detected sporadically 

 

Except for the studies published in connection with the present study (Appendix I-III) no 

studies on the microbiology of cocoa fermentations taking advantage of recent year’s 

development in molecular biology have been published to date. In the present study 

approximately 750 yeasts isolates from cocoa fermentations were grouped and identified 

using a combination of pheno- and genotypic methods including determination of micro- and 

macromorphology, carbohydrate assimilation patterns, Intragenic Transcribed Spacers (ITS)-

PCR, Repetive Element Palndromic (rep)-PCR and sequencing of the D1/D2-region of the 

26S rRNA gene. Over recent years rep-PCR has won increasing use as a tool for grouping 

bacteria and more recently also yeasts (Gevers et al., 2001; Capece et al., 2003; Andrade et 

al., 2006). The method proved to be an efficient and reliable tool for grouping the yeast 

isolates during the present study (Appendix III). 
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Table 4: Composition of the yeast community during tray fermentations carried out in October and December, 
respectively, and a small (50 kg, samples taken 15 cm from the surface) heap cocoa fermentation carried out in 
October. Abbreviations: H.: Hanseniaspora, S.: Saccharomycopsis, P.: Pichia, I.: Issatchenkia, C.: Candida, Sc.: 
Saccharomyces, Schiz.: Schizosaccharomyces; R.: Rhodotorula. (Appendix I and III). 

 Fermentation time (hours) 

 0 12 24 36 48 60 72 84 96 
Small heap, 
% of yeast population 

         

H. guilliermondii 42 82 71  Det.1     
Unidentified Species A 8         
C. quercitrusa 8         
Unidentified Species B 8 Det.        
C. diversa 25         
C. sorboxylosa 8         
S. crataegensis  9 Det.       
P. pijperi  2        
Unidentified Species C  7        
C. zemplinina   13       
C. cylindracea   8       
P. membranifaciens   8 13 66 67 92 71 33 
I. orientalis    25 3  4  67 
Sc. cerevisiae    62 31 33 4 29  
Tray, October, 
% of yeast population 

         

H. guilliermondii 18 47 33       
I. occidentalis 9         
I. hanoensis 9         
C. zemplinina 37 11 11 20      
C. sorboxylosa 18         
C.silvae 9 37        
C. cylindracea  5        
P. kluyveri   22       
C. diversa   34       
P. membranifaciens    40 94  100 95 100 
Sc. cerevisiae    40 6 67    
Schiz. pombe      33    
I. orientalis        5  
Tray, December, 
% of yeast population 

         

H. guilliermondii 31         
P. kluyveri 31  4       
C. stellimalicola 16         
I. orientalis 11      8   
Sc. cerevisiae 11  57  90  4   
C. quercitrusa   4       
R. glutinis   8       
P. membranifaciens   27  10  88   
1 Detected sporadically 

 

The yeast community associated with Ghanaian cocoa fermentations was complex with 4-6 

different species detected in each sample during the first 24 hours of fermentation (Table 3 

and 4 and Appendix I-III). Hanseniaspora guilliermondii was the predominant yeast in all 

heap fermentations during the first 24 hours with the exception of the central part of a large 

heap fermentation, where it was only detected at the onset of fermentation (Appendix I). Later 

in the fermentations, H. guilliermondii was only detected more occasionally (Table 3, 4 and 

Appendix III). The declining numbers of H. guilliermondii have been explained by the 

relatively low ethanol tolerance of Hanseniaspora spp. and the imperfect form, Kloeckra 
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(Schwan et al., 1995; Ardhana and Fleet, 2003). The increasing temperatures during the 

fermentation probably influences the growth and death of the various yeast species present 

during the fermentation as well (Kurtzmann and Fell, 1998; Ardhana and Fleet, 2003). 

 

Ardhana and Fleet (2003) reported the involvement of high numbers of K. apis (imperfect 

form of H. guilliermondii) during the first 24 hours of cocoa fermentations in Indonesia. Also 

Thompson et al. (2001) mention the involvement of K. apis during cocoa fermentations in 

Belize. Other studies report the involvement of the closely related Hanseniaspora uvarum (or 

its anamorph K. apiculata) in cocoa fermentations and according to Sanchez et al. (1985) and 

Schwan et al. (1995) K. apiculata shows the same growth pattern as observed for H. 

guilliermondii during the present study (de Camargo et al., 1963; Sanchez et al., 1985; 

Schwan et al., 1995).  

 

The newly described yeast Candida zemplinina (Sipiczki, 2003) was detected in several 

fermentations, most notably in the centre of a large heap fermentation and in the tray 

fermentation carried out in October (Table 3, 4 and Appendix III). Apparently this is the first 

reported isolation of C. zemplinina from other sources than botrytised wine fermentations. 

 

Compared to the heap fermentations H. guilliermondii was less dominant during the initial 

phases of the tray fermentations. Candia silvae, C. zemplinina, Candida diversa, Candida 

stellimalicola and Pichia kluyveri were among the other predominant yeasts during this phase 

of the tray fermentations possibly reflecting the higher oxygen availability during tray 

fermentations.  

 

After 36-48 hours of fermentation a switch in the yeast population was observed in all 

fermentations with Sc. cerevisiae and P. membranifaciens becoming the predominant yeasts. 

The only exception was a large heap fermentation where Issatchenkia orientalis became the 

predominating yeast (Appendix I). However, after 72 hours of fermentation a switch towards 

P. membranifaciens was observed here as well. Due to local farmer practices a few 

fermentations were only allowed to progress for 3 days (Appendix I). In all fermentations 

allowed to progress for 4 (small heap and tray fermentations) to 6 days (large heap 

fermentation) P. membranifaciens became the predominating yeast constituting up to 100 % 
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of the yeast population during the later phases of fermentation with the occasional appearance 

of S. cerevisiae, I. orientalis and C. ethanolica (Table 3-4 and Appendix III). 

 

Investigation of Chromosome Length Polymorphism (CLP) using Pulsed Field Gel 

Electrophoresis (PFGE) among of a number of H. guilliermondii, P. membranifaciens, P. 

kluyveri, Sc. cerevisiae and I. orientalis strains isolated during cocoa fermentations revealed 

that CLP was evident within all species investigated (Appendix I). This finding further adds 

to the complexity of cocoa fermentations as not only is a number of different species involved 

in the fermentation, but within the different species different strains are involved as well. 

 

Three putatively undescribed yeast species tentatively named Unidentified Species A, B and 

C were isolated during the investigated fermentations (Table 3 and 4 and Appendix III). The 

contribution to the actual fermentation of Unidentified Species A and B is probably limited as 

the two species apparently did not grow during the fermentation. Unidentified Species C did 

on the other hand grow during the initial phases of the small heap and in the centre of a large 

heap fermentation possible playing some sort of role in the implicated fermentations (Table 3 

and 4). The 3 putatively undescribed species will be described more detailed in chapter 7.2. 

 

5.2.2 Lactic Acid Bacteria involved in the fermentation 
The involvement of LAB in the fermentation of cocoa was established relatively late 

compared to the other major microbiological groups involved. Using microscopy Busse et al. 

(1929) and Ficker and von Lilienfeld-Toal (1930) both observed LAB-like microorganisms in 

the pulp from fermenting cocoa, but LAB was not cultivated from fermenting cocoa until the 

work by Roelofsen and Giesberger (1947) and Rombouts (1952). 

 

Only a very limited number of studies have investigated the importance of LAB in West 

African cocoa fermentations. Carr et al. (1979) and Carr and Davies (1980) found 

Lactobacillus collinoides, Lactobacillus fermentum, Lactobacillus mali and Lactobacillus  

plantarum to be the dominant LAB during Ghanaian heap fermentations. However, only a 

limited number of isolates were fully identified (Carr and Davies, 1980).  
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Ardhana & Fleet (2003) found Lactobacillus cellobiosus [later synonym of Lb. fermentum 

(Dellaglio et al., 2004)] and Lb. plantarum to be the dominant LAB involved in Indonesian 

box fermentations. Also Roelofsen and Giesberger (1947) found Lb. fermentum to dominate 

the LAB community during Indonesian cocoa fermentations. 

 

The LAB population of Brazilian and Caribbean box fermentations have been reported to be 

considerably more complex involving a number of Lactobacillus, Leuconostoc, Lactococcus 

and Pediococcus species, represented by species such as Lb. fermentum, Lactobacillus brevis, 

Lb. plantarum, Leuconostoc mesenteroides, Lactococcus lactis and Pediococcus acidilactii 

(Ostovar and Keeney, 1973; Passos et al., 1984b; Thompson et al., 2001; Schwan and Wheals, 

2004). 

 

In the present study more than 500 LAB isolates were identified using a combination of 

phenotypic and genotypic methods. Initially the isolates (all Gram-positive and catalase-

negative) were grouped on the basis of cell shape, gas production from glucose and growth at 

cardinal temperatures. After initial grouping the isolates were genotypically grouped using 

rep-PCR. Rep-PCR has previously been shown to be an effective method for rapid grouping 

of LAB isolates (Gevers et al., 2001; Kostinek et al., 2005) as was also the case in the present 

study. Relevant type strains were included in the rep-PCR and subsequent cluster analysis 

yielded a tentative identification of some of the isolates already at this stage (Appendix III). 

 

Following grouping by rep-PCR a large number of representative isolates were further 

characterised and identified on the basis of lactate isomer produced, production of NH3 from 

arginine, carbohydrate fermentation profile, 16S rRNA gene sequencing and in the case of all 

homofermentative isolates the presence of D-meso-diaminopimelic acid (mDAP) in the cell 

wall. Isolates belonging to the Lb. plantarum/Lactobacillus pentosus-group were 

unambiguously identified using multiplex PCR (Appendix III and Torriani et al., 2001). 
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Table 5: Composition of the Lactic Acid Bacteria (LAB) community during a large (500 kg) heap fermentation 
[samples were taken from 2 positions: 15 cm from the surface (outer part) and in the centre of the fermenting 
mass], a small (50 kg) heap fermentation (samples taken 15 cm from the surface) and a tray fermentation. The 
large heap fermentation was turned after 48 and 96 hours. Abbreviations: Lb.: Lactobacillus; Lc.: Leuconostoc; 
Pd.: Pediococcus (Appendix III). 

 Fermentation time (hours) 
 0 12 24 36 48 60 72 84 96 108 120 132 144 
Large heap, outer part, 
% of LAB population 

             

Lb. plantarum 60 11 5  9  9    21 85 63 
Lb. fermentum 40 81 76 100 86 100 81 89 92 69 74 15 37 
Unidentified Species D  8      11 8  5   
Lc. pseudoficulneum   19           
Lb. hilgardii1     5         
Pd. acidilactici          31    
Large heap, centre, 
% of LAB population 

             

Lc. pseudomesenteroides 82             
Lb. rossii1 18             
Lb. fermentum  100 98 47 87 100 100 100 100 100 52 75 4 
Lc. pseudoficulneum   2           
Lb. plantarum    53 9      42 25 76 
Unidentified Species D     4         
Pd. acidilactici           6   
Lb.hilgardii1             20 
Small heap, 
% of LAB population 

             

Lc. pseudomesenteroides 100 83  5          
Lb. fermentum  17 63 90 77 100 100 100      
Lb. plantarum   2           
Lc. pseudoficulneum   28           
Lac. lactis   7           
Pd. acidilactici    5 23         
Tray, 
% of LAB population 

             

Lb. plantarum 89 30 35 5     10     
Lc. pseudoficulneum 11  3           
Lb. fermentum  64 57 95 100 100 100 89 90     
Lc. pseudomesenteroides  6 2           
Lb. brevis   3           
Pd. acidilactici        11      
1 Isolates did not grow upon purification. Identified directly by rep-PCR grouping and 16S rRNA gene sequencing (see Appendix III for  
details) 

 

In the present study Lc. pseudomesenteroides and Lb. plantarum dominated the LAB 

community at the onset of fermentation but after 12-24 hours, Lb. fermentum took over as the 

dominant LAB (Table 5 and Appendix III). Despite differences in size and fermentation 

method, Lb. fermentum dominated throughout all fermentations investigated, a position only 

challenged by Lb. plantarum towards the end of the large heap fermentation (Table 5). Carr et 

al. (1979) also isolated Lb. plantarum and Lb. fermentum during Ghanaian heap fermentations 

but did not state which organisms dominated during the different stages of fermentation (Carr 

et al., 1979; Carr and Davies, 1980). Ardhana and Fleet (2003) found Lb. fermentum to be the 

predominating LAB during Indonesian cocoa fermentations. In agreement with the present 

study Lb. plantarum was isolated regularly and Lb. hilgardii more occasionally during the 

Indonesian cocoa fermentations (Ardhana and Fleet, 2003).  
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The involvement of Leuconostoc, Pediococcus and Lactococcus spp. in West African cocoa 

fermentations has not been reported before. However, their involvement in cocoa 

fermentations have been reported from Brazilian and Belizian fermentations previously 

(Passos et al., 1984b; Thompson et al., 2001).  

 

A putatively undescribed Lactobacillus spp. (Unidentified Species D in Table 5) was isolated 

mainly from the outer part of the large heap fermentation and will be described more detailed 

in chapter 7.1. The recently described Leuconostoc pseudoficulneum was isolated from all 

fermentations but in general it constituted a small part of the LAB community (Table 5). 

Apparently this is the first report of Lc. pseudoficulneum being isolated outside its original 

habitat, ripe fig (Chambel et al., 2006). 

 

Lactobacillus plantarum and in most cases also Lb. fermentum have been isolated during a 

wide range of cocoa fermentations around the World (Roelofsen and Giesberger, 1947; 

Ostovar and Keeney, 1973; Carr et al., 1979; Carr and Davies, 1980; Passos et al., 1984b; 

Schwan, 1998; Thompson et al., 2001; Ardhana and Fleet, 2003). Together with the results 

obtained during the present study this indicates that Lb. plantarum and possibly also Lb. 

fermentum are indigenous to fermentation of cocoa Worldwide.  

 

5.2.3 Acetic Acid Bacteria involved in the fermentation 
The ethanol formed by the yeasts in the early phase of fermentation is metabolised to acetic 

acid by AAB as mentioned previously. The smell of acetic acid associated with fermenting 

cocoa is easily recognisable and soon led early investigators to conclude that acetic acid 

producing microorganisms were involved in and significant contributors to the fermentation 

of cocoa (Loew, 1907; Bainbridge and Davies, 1912; Nicholls, 1913; Ashby, 1925; Knapp, 

1937).  

 

The first comprehensive study on AAB associated with cocoa was carried out by Eckmann 

(1928) who grew AAB cultures in Germany from pulp sweatings, dry beans and fresh fruits 

transported from the tropics. Eckmann (1928) mainly isolated Gluconacetobacter xylinus 

[then named Bacterium xylinus (Euzéby, 2006)], Acetobacter orleanensis [then named 
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Bacterium orleanese (Euzéby, 2006)] and Acetobacter pasteurianus [then named Bacterium 

ascendens (Euzéby, 2006)]. However, as the samples were transported for several weeks 

before being examined it is impossible to conclude anything about the significance of the 

isolated species on actual fermentations. Roelofsen and Giesberger (1947) found that A. 

pasteurianus [then named Acetobacter rancens (Euzéby, 2006)] and Gluconobacter oxydans 

[then named Acetobacter melanogenum (Euzéby, 2006)] were the dominant AAB during 

Indonesian (Java) cocoa fermentations. More recently Ardhana and Fleet (2003) isolated A. 

pasteurianus and Acetobacter aceti during Indonesian cocoa fermentations. 

 

In their study on Trinidadian box fermentations Ostovar and Keeney (1973) found that 

Gluconobacter oxydans [then named Acetobacter suboxydans (Euzéby, 2006)] was the 

predominant AAB during the first 24-32 hours of fermentation whereas A. pasteurianus 

predominated the AAB community from 40 hours of fermentation and onwards. 

Gluconobacter oxydans, A. aceti and A. pasteurianus have been found to dominate the AAB 

community in a number of other studies on cocoa box fermentations in Malaysia, Belize and 

Brazil (Carr et al., 1979; Passos and Passos, 1985; Schwan, 1998; Thompson et al., 2001). 

 

Besides the study by Carr at al. (1979) data regarding AAB involved in the fermentation of 

West African cocoa are scarce. Carr et al. (1979) and Carr and Davies (1980) identified a 

limited number of AAB isolated from fermenting cocoa and reported the involvement of A. 

pasteurianus [then named A. rancens and Acetobacter ascendens (Gosselé et al., 1983; 

Euzéby, 2006)], Gluconacetobacter xylinus [then named Acetobacter xylinum (Yamada et al., 

1997; Euzéby, 2006)] and Gluconobacter oxydans in Ghanaian cocoa fermentations.  

 

In the present study AAB were isolated on GYC (Glucose Yeast extract Carbonate) agar 

(Appendix III). Acid production dissolves the carbonate in the GYC agar causing a clearing 

zone around positive isolates (Drysdale and Fleet, 1988). Gram negative and Gram variable, 

catalase positive isolates causing clearing of GYC agar were considered presumptive AAB 

and were identified by Restriction Fragment Length Polymorphism analysis of 16S rRNA 

gene and 16S-ITS-23S rRNA gene fragments (PCR-RFLP) as described by González et al. 

(2006). Approximately 250 AAB isolates were identified using this approach. The PCR-

RFLP results were confirmed by sequencing of the 16S rRNA gene of selected isolates. 
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Sequencing and PCR-RFLP analysis gave identical results in all cases. The identification of 

Gluconobacter oxydans was further strengthened by the formation of water-soluble pigments 

on GYC agar and the absence of acid production from D- and L-arabitol (Appendix III and 

Kersters et al., 2003). 

 
Table 6: Composition of the Acetic Acid Bacteria (AAB) community during a large (500 kg) heap fermentation 
[samples were taken from 2 positions: 15 cm from the surface (outer part) and in the centre of the fermenting 
mass], a small (50 kg) heap fermentation (samples taken 15 cm from the surface) and a tray fermentation. The 
large heap fermentation was turned after 48 and 96 hours. Abbreviations: A.: Acetobacter, G.: Gluconobacter  
(Appendix III). 

 Fermentation time (hours) 
 0 12 24 36 48 60 72 84 96 108 120 132 144 
Large heap, outer part, 
% of AAB population 

      No 
data1 

      

A. pasteurianus 100   55  22    62    
A. syzygii   57   33  72      
A. tropicalis   29 45 100 45  14 100 38 100 100 100 
A. malorum   14           
G. oxydans        14      
Large heap, centre, 
% of AAB population 

             

A. pasteurianus   100   22 80   13    
A. syzygii    100  45 20   34    
A. tropicalis     100 33  100 100 53 100   
Small heap, 
% of AAB population 

             

A. syzygii  100 83 89 100 100 22 75      
A. pasteurianus   17    33 25      
A. malorum    11          
A. tropicalis       45       
Tray, 
% of AAB population 

             

A. syzygii   50 100          
A. malorum   50           
A. pasteurianus     73 100        
A. tropicalis     27  100 100      
1 No data, plates partly overgrown by slimy non-AAB. Composition of the AAB micropopulation approximately as after 60 hours of           
fermentation 

 

Acetobacter pasteurianus, Acetobacter syzygii and Acetobacter tropicalis were the 

dominating AAB during the fermentations. Occasionally A. malorum and G. oxydans were 

detected as well (Table 6 and Appendix III). Acetobacter pasteurianus and G. oxydans have 

previously been reported to form a significant part of the AAB community during cocoa 

fermentations in Ghana (heap), Malaysia (box), Indonesia (box), Trinidad (box) and Brazil 

(box) (Ostovar and Keeney, 1973; Carr et al., 1979; Carr and Davies, 1980; Passos and 

Passos, 1985; Ardhana and Fleet, 2003; Schwan and Wheals, 2004) whereas the involvement 

of A. syzygii in cocoa fermentations not has been reported before. The finding of previous 

studies indicating the involvement of A. aceti in the fermentation of cocoa could not be 

confirmed here (Ostovar and Keeney, 1973; Carr et al., 1979; Ardhana and Fleet, 2003; 

Schwan and Wheals, 2004). 
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5.2.4 Bacillus spp. involved in the fermentation 
Bainbridge and Davies (1912) were the first to observe growth of aerobic spore-forming 

bacteria during the later stages of cocoa fermentation and identified the bacteria as being of 

the Bacillus subtilis type. Later H.A. Dade (mentioned in a private communication to Knapp, 

1937) isolated Bacillus undulatus [B. undulatus is not a validly published name; furthermore 

it is not clear what the present name of Bacillus undulates would be (Euzéby, 2006)] and 

Bacillus megaterium during Gold Coast (Ghana) cocoa fermentations. In a later study by Carr 

et al. (1979) and Carr and Davies (1980) all identified isolates from Ghanaian heap 

fermentations were identified as B. subtilis. However, the number of isolates identified to 

species level was limited.  

 

Ostovar and Keeney (1973) and Schwan et al. (1986) reported that the Bacillus community 

associated with box fermentations in Trinidad and Brazil were complex involving 8-14 

different Bacillus spp. Carr and Davies (1980) reported the involvement of Bacillus 

licheniformis and Bacillus subtilis during Malaysian box fermentations. During an 

investigation of Indonesian box fermentations Ardhana and Fleet (2003) isolated Bacillus 

pumilus from all 3 estates investigated.  

 
Table 6: Composition of the Bacillus spp. community during a large (500 kg) heap fermentation and a small (50 
kg) heap fermentation. The large heap fermentation was turned after 48 and 96 hours and samples were taken 
from 2 positions: 15 cm from the surface (outer part) and in the centre of the fermenting mass. From the small 
heap fermentation samples were taken 15 cm from the surface. Abbreviations: B.: Bacillus (Appendix III). 

 Fermentation time (hours) 
 0 12 24 36 48 60 72 84 96 108 120 132 144 
Large heap, outer part, 
% of Bacillus spp. 
population 

             

B. licheniformis     100    50 100 72 96 80 
B. cereus      Det.1        
B. pumilus           18 4 11 
B. megaterium      100  100 50  10   
B. subtilis             9 
Large heap, centre, 
% of Bacillus spp. 
population 

             

B. licheniformis        29 35 17 68 60 34 
B. pumilus      Det.   22 66 32 40 66 
B. megaterium      100  71      
B. sphaericus          17    
B. subtilis         43    Det. 
Small heap, % of 
Bacillus spp. population 

             

B. megaterium      100        
B. licheniformis        100 100     
1 Detected sporadically 
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In the present study Bacillus spp. were identified using a using a combination of phenotypic 

and genotypic methods. Following micro- and macro-morphological examination all 

endospore-forming isolates were grouped and partly identified on the basis of 16S-ITS-23S 

rRNA gene polymorphism and rep-PCR (GTG5-primer) (Appendix III and Daffonchio et al., 

1998; de Clerck et al., 2004). Representative isolates were picked from all groups and 

subjected to 16S rRNA gene sequencing and API 50 CHB carbohydrate assimilation 

profiling. The different methods yielded similar results, identifying the major group of 

Bacillus isolates as B. licheniformis with B. megaterium and B. pumilus constituting two other 

significant groups. A smaller number of isolates were identified as B. subtilis, B. cereus and 

B. sphaericus (Table 6 and Appendix III). 

 

In general, B. megaterium was detected in the middle phase (60-96 hours), and B. 

licheniformis and B. pumilus in the mid and late phases of heap fermentation (Table 6 and 

Appendix III). No Bacillus spp. were isolated from the tray fermentation (Table 1 and 

Appendix III). It is interesting to note, that Ostovar and Keeney (1973) also mainly isolated B. 

megaterium during the middle phase of Trinidadian cocoa fermentations. Contrary to the 

results reported here Carr and Davies (1980) reported B. subtilis as the only Bacillus spp. 

involved in Ghanaian heap fermentations (Carr et al., 1979; Carr and Davies, 1980). Bacillus 

megaterium has been isolated from Ghanaian cocoa fermentations previously (H.A. Dade, 

personal communication to Knapp, 1937), but no data on the growth of this bacterium during 

heap fermentations have been published before. The involvement of Bacillus licheniformis, B. 

pumilus, B. cereus and B. sphaericus in heap fermentations have not been reported before, but 

their association to Indonesian, Malaysian, Brazilian and Trinidadian box cocoa fermentations 

have been established previously (Ostovar and Keeney, 1973; Carr and Davies, 1980; Schwan 

et al., 1986; Ardhana and Fleet, 2003).  

 

It is difficult to conclude which – if any – Bacillus spp. in general are predominating during 

cocoa fermentations on the basis of the results obtained during the present study and 

previously published literature, as data seems to be somewhat contradictive. A few examples: 

As mentioned above Carr and Davies (1980) only isolated B. subtilis during Ghanaian cocoa 

fermentations. In the present study B. licheniformis predominated among the Bacillus spp., 

whereas B. subtilis was isolated very infrequently. Bacillus licheniformis has also been found 
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to be among the   predominating Bacillus spp. during cocoa box fermentations by Carr and 

Davies (1980), Schwan et al. (1986) and Ardhana and Fleet (2003) – whereas Ostovar and 

Keeney (1973) also investigating box fermentations only isolated B. licheniformis during the 

drying process and not during the actual fermentations. 

  

5.2.5 Other bacteria involved in the fermentation 
A wide range of bacteria other than LAB, AAB and Bacillus spp. have been isolated during 

cocoa fermentations, but the importance of any given species is difficult to judge, as also 

stated by Lehrian and Patterson (1983). However, some species are encountered frequently 

and probably play some role in the fermentation. In Indonesia Ardhana and Fleet (2003) 

isolated Micrococcus kristinae and various Staphyloccus spp. during cocoa fermentations 

carried out at 3 different plantations, and Pseudomonas cepacea was isolated from 2 out of 3 

fermentations. Also Roelofesen and Giesberger (1947) and Ostovar and Keeney (1973) 

mention the occasional isolation of Micrococcus spp. during Indonesian and Trinidadian box 

fermentations.  

 

During an investigating of cocoa box fermentations carried out at 2 different estates in 

Trinidad Ostovar and Keeney (1973) observed that Zymomonas mobilis constituted 40-80 % 

of the micropopulation after 16-48 hours of fermentation in the central part of a box 

fermentation on an estate where the beans were tightly packed in the boxes and the oxygen 

availability thus limited. On the contrary Z. mobilis accounted for a much smaller percentage 

of the microorganisms at the other estate, where the beans were packed more loosely and the 

oxygen availability higher. Zymomonas mobilis grows well under anaerobic conditions and is 

an efficient producer of ethanol from glucose, fructose and sucrose. Consequently it has been 

suggested that Z. mobilis along with the yeasts play a role in converting sugars to ethanol 

during the first days of fermentation (Ostovar and Keeney, 1973; Lin and Tanaka, 2006). The 

role (if any) of Z. mobilis in Ghanaian cocoa fermentations is not known, but deserves 

investigation in a future study. 

 

Hoynak et al. (1941) isolated Flavobacterium spp., Achromobacter spp. and Proteus spp. 

during laboratory scale cocoa fermentations. However, as the fermentations were carried out 
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using cocoa pods transported for 3 weeks and subsequently sterilised it is questionable 

whether the mentioned species play any role during role during real cocoa fermentations. 

 

5.2.6 Moulds involved in the fermentation 
Filamentous fungi can be readily observed on the surface of fermenting cocoa if left 

undisturbed (i.e. no turning) for a few days, as seen in Fig. 11. Fungal growth is rarely 

observed below the outer layers of the fermenting mass (Dade, 1928; Bunting, 1928; 

Roelofsen and Giesberger, 1947; Roelofsen, 1958; Maravalhas, 1966; Lehrian and Patterson, 

1983), with the exception of the study by Ardhana and Fleet (2003) who observed fungal 

growth in samples taken from the centre of Indonesian box fermentations during the first 36 h 

of fermentation.  

 
Fig. 11: Visible mould growth on the surface of an unturned Ghanaian heap fermentation. Susanne Hønholt, 
private pictures, reprinted with permission. 
 

According to Bunting (1928) and Dade (1928) the moulds most frequently isolated during 

Gold Coast (Ghana) cocoa heap fermentations were members of the Aspergillus fumigatus 

group and Mucor spp. Maravalhas (1966) observed that moulds appear in succession with A. 

fumigatus appearing first followed by Mortierella gamsii [then named Mortierella spinosa 

(Gams, 1977)] and later Paecilomyces varioti. In the later stages of fermentation the 

temperature of the fermenting mass decreases and this is accompanied by growth of 

Penicillium citrinum and Aspergillus glaucus.  
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Penicillium citrinum produces the mycotoxin citrinin (Malmstrom et al., 2000). Citrinin was 

recently reported detected in cocoa bean shells, but has so far not been detected in the actual 

bean (Meister, 2004). However, according to Meister (2004) the relatively few reports of 

citrinin in food and feed stuff may be due to analytical difficulties in determining citrinin and 

not due to actual absence of the mycotoxin. If this is the case it is worrying that Ardhana and 

Fleet (2003) reported good growth of P. citrinum during the initial phases of Indonesian 

cocoa fermentations. Ardhana and Fleet (2003) furthermore reported growth of Penicillium 

purpurogenum, Penicillium ochrochloron, Aspergillus versicolor and Aspergillus wentii 

during the fermentations. 

 

5.3 Microbial growth during drying 

The ultimate goal of the drying process is to obtain microbiologically stable cocoa beans by 

drying to an extent where microbial growth becomes impossible. A water content of 7.2 %, 

has been established as a safe limit (Roelofsen and Giesberger, 1947; Roelofsen, 1958). As 

the water availability decreases during the drying process fewer and fewer microorganisms 

are capable of growing and a pronounced reduction in the number of viable microorganisms is 

observed (Carr et al., 1979; Schwan and Wheals, 2004). At the onset of drying yeast, AAB, 

LAB and Bacillus spp. were isolated by Carr et al. (1979) in Ghana. During the solar drying 

process all but sporeforming Bacillus spp. died out. A similar picture has been observed in 

Brazil (Schwan and Wheals, 2004).  

 

Many moulds are capable of growing at low water activities and if the reduction in moisture 

content during drying is too slow moulds will grow (Roelofsen, 1958; Wood and Lass, 1985). 

Various Aspergillus spp., Penicillium spp. and Mucor spp. have been frequently isolated from 

mouldy cocoa beans. Mould growth during drying should be avoided as it can result in the 

formation of off flavours, internal moulding of the beans and formation of mycotoxins (Dade, 

1928; Bunting, 1928; Roelofsen, 1958; Wood and Lass, 1985; Anon., 2003; Lindblom, 2006; 

Anon., 2006). 
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5.4 Use of starter cultures for fermentation of cocoa 

Soon after it was realised that microorganisms were responsible for the fermentation of cocoa 

beans the first attempts of controlling the fermentation using starter cultures were made, as 

Preyer-Buitenzorg (1901) inoculated cocoa fermentations with his so-called Sc. theobromae 

(see section 5.2.1). According to Preyer-Buitenzorg (1901) the resulting cocoa was of a better 

quality than cocoa fermented without the addition of Sc. theobromae. Subsequently a number 

of attempts have been made to improve or control the quality of fermented cocoa by using 

yeast as a starter culture (Ficker and von Lilienfeld-Toal, 1930; Knapp, 1937; Roelofsen and 

Giesberger, 1947; Sanchez et al., 1985; Samah et al., 1992; Dzogbefia et al., 1999). In general 

the effect of using yeast as a sole starter culture was limited (Knapp, 1937; Roelofsen, 1958). 

 

According to Busse et al. (1929) the quality of Cameroonian cocoa suffered from being too 

acidic and it was unsuccessfully attempted to retard the growth of AAB by adding 

Lactobacillus delbrueckii [then named Bacillus delbrückii (Euzéby, 2006)].  

 

More recently Schwan (1998) used a defined microbial inoculum consisting of a mixture of 

Sc. cerevisiae, Lb. plantarum, Lactobacillus delbrueckii subsp. lactis [then named 

Lactobacillus lactis (Weiss et al., 1983; Euzéby, 2006)], A. aceti and G. oxydans. The first 2-3 

days of fermentation the inoculum dominated the fermentation, but during the later phases of 

fermentation the inoculum was outgrown by naturally occurring microorganisms. The 

chocolate produced from the inoculated bean was of a quality comparable to chocolate 

produced from a spontaneously inoculated control fermentation. 

 

So far the aim of the different attempts to use starter cultures for the fermentation of cocoa has 

been to improve the quality of the resulting beans in terms of flavour potential, absence of 

excess acidity etc. and/or to increase the speed of fermentation. Work of Masoud et al. (2005) 

and Masoud and Kaltoft (2006) point at another potential use of artificial inoculation of cocoa 

fermentations, as strains of Pichia anomala, P. kluyveri and H. uvarum isolated from coffee 

fermentations have been found to inhibit growth and ochratoxin A production by Aspergillus 

ochraceus. The primary processing of cocoa and coffee has a number of similarities 

(Thompson et al., 2001) and it is indeed possible that the potential of some yeasts to inhibit 
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mould growth and mycotoxin production could be exploited in the primary processing of 

cocoa as well. 
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6. Culture-independent investigation of cocoa 
fermentations 
Due to complexity of the cocoa fermentation culture-based investigations of cocoa 

fermentations are tedious and time consuming. Furthermore, due to the spontaneous nature of 

the process it is desirable to investigate more than just a few fermentations to get a clear 

picture of which organisms are consistently present during the fermentations and which are 

just coincidently present in a few fermentations. Molecular biology based finger-printing 

methods such as Terminal-Restriction Fragment Length Polymorphism (T-RFLP), 

Temperature Gradient Gel Electrophoresis (TGGE) and Denaturing Gradient Gel 

Electrophoresis (DGGE), offer rapid, semi-quantitative alternatives for investigating the 

fermentation process also enabling the detection of organisms difficult to cultivate by 

conventional methods (Muyzer et al., 1993; Muyzer and Smalla, 1998; Giraffa and Neviani, 

2001). 

 

Denaturing Gradient Gel Electrophoresis is based on sequence-specific separation of PCR-

derived rRNA gene amplicons in polyacrylamide gels containg a linearly increasing 

concentration of denaturant (urea and formamide) as described by Muyzer and Smalla (1998). 

The technique has been most widely applied to study complex microbiota like the intestinal 

colon (Tannock, 1999; Nielsen et al., 2003) and soil (Muyzer and Smalla, 1998), but the 

method has during recent years also been applied to study the bacterial dynamics of various 

fermented products like; sausages (Cocolin et al., 2001b; Cocolin et al., 2004b), probiotic 

milk products (Fasoli et al., 2003), sourdough (Meroth et al., 2003b), fermented cassava 

(Ampe et al., 2001; Miambi et al., 2003), fermented maize products (Ampe et al., 1999; Ampe 

and Miambi, 2000; Omar and Ampe, 2000), cheese (Cocolin et al., 2004a), balsamic vinegar 

(De Vero et al., 2006), rice vinegar (Haruta et al., 2006), wine (Lopez et al., 2003; Bae et al., 

2006) and whisky (van Beek and Priest, 2002). Furthermore the DGGE method has been 

further developed to investigate yeast population dynamics in milk (Cocolin et al., 2002a), 

sourdough (Meroth et al., 2003a; Gatto and Torriani, 2004) and during cassava (Miambi et al., 

2003), coffee (Masoud et al., 2004) and wine fermentations (Cocolin et al., 2000; Cocolin et 

al., 2001a; Mills et al., 2002; Cocolin et al., 2002b; Cocolin and Mills, 2003; 

Prakitchaiwattana et al., 2004). 
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6.1 Development of a Denaturing Gradient Gel Electrophoresis 

(DGGE) based method for investigation of cocoa fermentations 

Sampling in the field raises the problem of preserving the samples. Freeze drying has 

previously been shown to be a suitable method for preserving DNA in various matrixes 

(Huckenbeck and Bonte, 1992; Verkooyen et al., 2003) and was thus chosen as preservation 

method with good results (Appendix II).  

 

Initially DNA was attempted extracted from the freeze dried cocoa pulp using 2 commercially 

available DNA extraction kits, but unfortunately with unsatisfying results (Appendix II). To 

overcome this, a protocol for DNA extraction from freeze dried cocoa pulp was developed. 

Efficient cell lysis was achieved using a combination of enzymatic, chemical and mechanical 

treatments (Appendix II and Zhou et al., 1996; Schabereiter-Gurtner et al., 2001). Cocoa pulp 

contains several potentially PCR-inhibiting compounds like polysaccharides, enzymes and 

other proteins that have to be removed during DNA extraction and purification (Pettipher, 

1986b; Rossen et al., 1992; Wilson, 1997). This was achieved through addition of 

cetyltrimethyl ammonium bromide [CTAB; at high ionic strength CTAB binds proteins and 

polysaccharides that otherwise might inhibit subsequent PCR reactions (Sambrook and 

Russell, 2001)], chloroform/isoamyl extraction and spin column purification (Appendix II).  

 

Choice of primer is an important parameter in DGGE mediated analysis of complex microbial 

communities. For bacteria primers most often target the 16S rRNA gene, but also primers 

targeting e.g. the rpoB gene have been developed (Giraffa and Neviani, 2001; Peixto et al., 

2002). For yeast and other eukaryotic organisms primers often target the 26S rRNA gene 

(Cocolin et al., 2000). Universal bacterial primers are in principle capable of amplifying DNA 

from all bacteria, whereas species- or group-specific primers selectively amplify bacteria from 

a specific group of microorganisms – e.g. lactic acid bacteria (Heilig et al., 2002; Nielsen et 

al., 2003). However, apparently some universal primers are not truly universal or at least 

some primers have a lower detection limit than others, as seen from Fig. 12. Two sets of 

universal primers were used to amplify the same samples. On average twice as many bands 

appeared when using the primers targeting the 16S rRNA gene V3-region compared to the 

primers targeting the V6-V8-region of the 16S rRNA gene. A similar observation was made 

by Nielsen et al. (2005a). 
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Figure 12: DGGE profiles (35-70 % denaturant) representing 16S rRNA 
gene fragments of cocoa pulp sampled after 0, 24, 48 and 72 hours of tray 
fermentation (carried out in January and amplified using PCR and 2 different 
primer sets: Lane 1-4 amplified using primers 968fGC and 1401r (V6-V8-
region); Lane 5-8 amplified using primers PRBA338fGC and PRUN518r 
(V3-region). Appendix III. 

 

Various gradients between 20 and 80 % denaturant were tested. It was found that a 35-65 % 

gradient was optimal for DGGE analysis of the yeast and bacterial communities associated 

with cocoa fermentation (Appendix II and III). 

 

Bands of interest in the DGGE gels can be identified by sequencing. In short the band is 

excised from the gel, the DNA eluted from the gel fragment and re-amplified using PCR and 

sequenced (Appendix II). Identification of DGGE bands using this approach should however 

be interpreted with caution, as formation of heteroduplexes during PCR, single-stranded DNA 

forming a “back-ground smear” in the gels and co-migration of different species with 

identical melting behaviour complicates the picture (Sekiguchi et al., 2001; Zhang et al., 

2005; Nikolausz et al., 2005).  

 

To confirm the electrophoretic mobility of the re-amplified fragment relative to the fragment 

from which it was excised the re-amplified PCR products were re-analyzed by DGGE using 

the original conditions. During the present and other studies occasionally a re-amplified 

fragment did not migrate as a single band, probably because the excised DNA fragment was 

contaminated with a back ground smear of single stranded DNA (Appendix II and III and 

Zhang et al., 2005; Nikolausz et al., 2005; Bae et al., 2006). If this is the case it is necessary to 

purify the band before sequencing to obtain a reliable sequence. In the present study this was 
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done by repeating the above procedure until a pure, single band was obtained (Appendix II 

and III). Other methods have been proposed, for instance treating the excised DNA fragment 

with mung bean nuclease to degrade contaminating single-stranded DNA before re-

amplification (Zhang et al., 2005).  

 

Figure 13 represents DGGE profiles of 26S rRNA gene fragments of cocoa pulp sampled 

after 3 and 24 h of fermentation during a tray fermentation carried out at the Cocoa Research 

Institute of Ghana. Selected fragments were identified by sequencing and the results 

compared to culture-based isolations and subsequent identification of the isolates (Fig. 13 and 

Table 7). 

 

 

 
 
 
 
Fig. 13: DGGE profiles (35-65 % denaturant) representing 26S rRNA (yeast) 
gene fragments of cocoa pulp sampled after 3 h and 24 h of tray fermentation and 
mixtures of DNA originating from pure cultures of a) Candida friedrichii b) 
Saccharomyces cerevisiae c) Issatchenkia hanoiensis d) Pichia membranifaciens 
and e) Trichosporon asahii.  
 
The closest relatives of the fragments sequenced (% identical nucleotides 
compared to sequences retrieved from the GenBank database) are as follows: 
Candida amapae (1, 100 %); Hanseniaspora guilliermondii (2, 100 %); 
Trichosporon asahii (3, 99.3 %); Candida stellimalicola (4, 100 %); Pichia 
kluyveri (5, 99.5%); Single stranded DNA/smear (6); ; Candida zemplinina (7, 
100 %); Saccharomyces cerevisiae (8, 100 %); Pichia membranifaciens (9, 100 
%); Issatchenkia orientalis (10, 100 %). Appendix II. 

 

The molecular biology and traditional methods yielded comparable, but slightly different 

results as seen in Table 7. For both samples more species were detected using the DGGE 

method compared to the traditional culture-based method. A fragment closest related to the 

wine-associated yeast Candida zemplinina (Sipiczki, 2003) was only detected using DGGE 

(band 7, Fig. 13 and Table 7). It has been suggested that the presence of C. zemplinina in wine 

fermentations is underestimated as it is difficult to cultivate (Mills et al., 2002), thus offering 

a possible explanation why C. zemplinina was only detected using DGGE and not using 

culture based methods. This finding underlines that the ability to detect organisms difficult to 
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cultivate is one of the DGGE techniques main advantages (Muyzer and Smalla, 1998). 

However, it should be noted that in a later investigation it was possible to detect C. 

zemplinina using DGGE as well as culture-based methods (Fig. 14, Table 3, Table 4 and 

Appendix III). Possibly C. zemplinina constituted a higher percentage of the yeast population 

during these fermentations, and was thus detectable using culture-based methods even though 

it was  possibly underestimated (Mills et al., 2002). 

 
Table 7: Composition of yeast populations after 3 and 24 h, respectively, of a tray fermentation investigated 
using culture based isolations and DGGE. Appendix II. 
 

 
 

Candida stellimalicola was only detected by DGGE after 3 h of fermentation and by DGGE 

as well as culture based isolations after 24 h (band 4, Fig. 13 and Table 7). The lower limit of 

detection using DGGE has been estimated to comprise 1 % of the yeast population 

(Prakitchaiwattana et al., 2004). For the culture based isolations 25 colonies were randomly 

picked and identified giving an approximate limit of detection of 4 % of the yeast population 

(Appendix I). Possibly C. stellimalicola constituted too little a fraction of the yeasts present 

after 3 h to allow detection using the culture-based approach. On the other hand Trichosporon 

asahii yielded only a relatively weak band in the denaturing gels (band 3, Fig 13) even though 

it formed 18% and 9% of the yeast population after 3 and 24 h of fermentation, respectively 

(Table 7). Estimation of the size and amount of PCR product by agarose gel electrophoresis 

showed that T. asahii pure cultures yielded a relatively weak band compared to other isolates. 

A possible explanation may be that the amplified fragment of the T. asahii 26S rRNA gene 

was less efficiently amplified compared to other yeast species present during the fermentation 

of cocoa (Appendix II and Kanagawa, 2003). DNA originating from different pure cultures 
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representing Candida friedrichii, Sc. cerevisiae, Issatchenkia hanoiensis, I. orientalis, T. 

asahii and P. membranifaciens isolated from cocoa fermentations were mixed and the 

mixtures used as template in PCR to investigate if the 26S rRNA gene fragment of some 

isolates were preferentially amplified. DGGE analysis of the mixtures showed that the 26S 

rRNA gene of T. asahii was less efficiently amplified compared to the other isolates 

investigated (results partly shown in Fig. 13) explaining why T. asahii only yielded a weak 

band in the denaturing gels. All other tested isolates were amplified equally effective (results 

partly shown in Fig. 13). 

 

Despite the above mentioned limitations DGGE offers a rapid and valuable alternative to the 

traditional culture-based investigation of cocoa fermentations. 

 

6.2 Investigation of Ghanaian cocoa fermentations using DGGE 

Samples representing cocoa fermentations carried out in different parts of Ghana [at the 

Cocoa Research Institute of Ghana (CRIG), New Tafo, and at farmers in New Tafo, Bompata, 

and Mampong], at different times during the season (August, October, December, January) 

and using different fermentation methods (small heap, large heap and tray fermentations) 

were investigated using DGGE (Appendix II and III).  

 

The yeast community associated with the fermentation of cocoa was investigated by DGGE 

analysis of PCR amplicons amplified using eukaryotic universal primers targeting a fragment 

of the D1/D2-region of the 26S rRNA gene (see 6.2.1); whereas the bacterial community was 

investigated by DGGE analysis of PCR amplicons amplified using prokaryotic universal 

primers amplifying the V3-region of the 26S rRNA gene (see 6.2.2). Fragments (bands) of 

interest were excised and identified using sequencing (Appendix II and III). Microbial 

dynamics during the fermentations were furthermore investigated by cluster analysis (see 

6.2.3). 

 

6.2.1 The yeast community 
Some of the fermentations have been investigated using culture-based methods as well as 

DGGE, for instance the fermentations represented by Fig. 14 carried out at CRIG, and Fig. 15 
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carried out at New Tafo (Appendix II and III). The DGGE and culture-based findings 

corresponded well, but in general H. guilliermondii was detected longer using DGGE 

compared to culture-based findings. This is for instance seen from Fig. 14, where H. 

guilliermondii yields as strong band until after 84 hours of fermentation. According to the 

culture-based findings H. guilliermondii constituted 67-79% of the yeast population during 

the first 24 hour of fermentation but was not detected afterwards.  

 

 

 
 
 
 
Fig. 14: DGGE profiles (35-65 % denaturant) 
representing 26S rRNA gene fragments (yeast) of 
cocoa pulp sampled with 12 hour intervals during 
144 hours of fermentation in a large heap (500 kg) 
carried out in October at the Cocoa Research 
Institute of Ghana. Identity of identified fragments 
indicated, see arrows. Abbreviations: H.: 
Hanseniaspora, S.: Saccharomycopsis, P.: Pichia, 
I.: Issatchenkia, C.: Candida, Sc.: Saccharomyces. 
Appendix III. 

 

The lower limit of detection using DGGE has as mentioned above been estimated to comprise 

1 % of the yeast population (Prakitchaiwattana et al., 2004). It can be speculated that the 

presence of a strong band representing H. guilliermondii at sampling times where H. 

guilliermondii was not detected using culture-based isolations, is due to the fact that H. 

guilliermondii was present in numbers below the detection limit of the culture-based 

isolations but above the detection limit of the DGGE method until 84 hours of fermentation. 

Alternatively H. guilliermondii possibly enters an uncultureable state after 36 hours of 

fermentation (Appendix II and III). 

 

Hanseniaspora guilliermondii was detected in the early stages of all fermentations 

investigated including the fermentations carried out in Mampong and Bompata (Fig. 14 and 

15; Appendix II and III). Taken together with the culture-based findings this indicates that H. 

guilliermondii is the dominating yeast in the early phases of Ghanaian cocoa fermentations. 

Later in the fermentations in particular P. membranifaciens but also I. orientalis yielded 
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strong bands in DGGE profiles representing all investigated fermentations (Fig. 14 and 15; 

Appendix II and III). Again this is supported by the culture-based findings indicating their 

predominant role among the yeast during the later phases of fermentations. 

 

 

 
Fig. 15: DGGE profiles (35-65 % denaturant) representing 26S 
rRNA gene fragments of cocoa pulp sampled after 0, 24, 48 and 
72 h of heap fermentation at New Tafo, Ghana. Lanes 1-11 
represents cocoa pulp from the same fermentation (carried out in 
January) but sampled in different depths of the fermenting mass 
(surface, 15 cm from surface and centre of the heap). Lanes 12-
17 represents cocoa pulp from a fermentation carried out in 
December sampled at the surface and 15 cm from the surface of 
the heap. The closest relatives of the fragments sequenced (% 
identical nucleotides compared to sequences retrieved from the 
GenBank database) are as follows: Hanseniaspora 
guilliermondii (1, 100 %); Candida neodendra and Candida 
diddensiae (2, 99.5 %); Ceratocystis paradoxa (3, 100 %); 
Scytaladium hyalinum (4, 95.1 %); Candida stellimalicola (5, 
100 %); Penicillium sclerotium (6, 96.2 %); Candida friedrichii 
and Candida tammaniensis (7, 99.5 %); Pichia kluyveri (8, 99.0 
%); Pichia membranifaciens (9, 100 %); Issatchenkia orientalis 
(10, 100 %); Rhizomucor pusillus (11, 99.0 %); Issatchenkia 
hanoiensis (12, 98.0 %); Aspergillus japonicus (13, 99.5 %); 
Saccharomycopsis vini (14, 99.5 %); Candida zemplinina (15, 
100 %); No sequence obtained (16). Appendix II. 

 

It was surprising to detect fragments closest related to the moulds Penicillium sclerotium; 

Scytaladium hyalinum and Ceratocystis paradoxa, the later causing rotting of bananas, 

pineapples and other tropical fruits, during the early phases of the New Tafo heap 

fermentations (Fig. 15 and Appendix II). This indicates that the beans were heavily infected 

with moulds from the onset of fermentation. The pods for these fermentations were harvested 

over 2-3 weeks. If the pods were damaged during harvest, it is likely that moulds will have 

penetrated into the pulp and developed during pod storage increasing the risk of mycotoxin 

production (Anon., 2003; Lindblom, 2006; Anon., 2006). 

 

The New Tafo fermentations were fermented for only 3 days (72 hours) and without turning 

(Fig. 15 and Appendix II). This fermentation schedule is practiced by some farmers, but 

generally not recommended (Baker et al., 1994). After 72 hours a mould, closest related to 

Rhizomucor pusillus, was detected in the outer part of the January fermentation (Fig. 15 and 

Appendix II) possibly reflecting the higher oxygen availability in the outer part of the 

fermenting mass. 
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Fig. 16: DGGE profiles (35-65 % denaturant) representing 26S rRNA gene 
fragments of cocoa pulp sampled with 24 h intervals during tray fermentation 
carried out in January at the Cocoa Research Institute of Ghana. The closest relatives 
of the fragments sequenced (% identical nucleotides compared to sequences 
retrieved from the GenBank database) are as follows: Candida amapae (1, 100 %); 
Hanseniaspora guilliermondii (2, 100 %); Candida zemplinina (3, 100 %); Candida 
stellimalicola (4, 100 %); Pichia kluyveri (5, 99.0 %); Issatchenkia orientalis (6, 100 
%); Saccharomyces cerevisiae (7, 100 %); Pichia membranifaciens (8, 100 %). 
Appendix II. 
 

 

Compared to the heap fermentations Sc. cerevisiae and C. zemplinina apparently play are 

more important during role during the investigated tray fermentations as they were detected 

during all investigated tray fermentations (Fig. 16), and only more occasionally during the 

heap fermentations (Appendix II and III). 

 

6.2.2 The bacterial community 
Denaturing gradient gel electrophoresis analysis showed that in the initial phases of cocoa 

fermentation LAB dominated the bacterial community with Lb. fermentum yielding a strong 

band throughout the fermentations. After 24-36 hours of fermentation, bands representing 

AAB becomes visible, and B. licheniformis and occasionally other Bacillus spp. are detected 

during the later stages of heap fermentation (Fig. 17 and 18 and Appendix III). A relatively 

complex AAB micro-population was observed during the Mampong fermentation as G. 

oxydans, A. syzygii/A. pasteurianus and A. tropicalis all yielded relatively strong bands during 

this fermentation (Appendix III). Unfortunately A. syzygii and A. pasteurianus migrate to the 

same position in the DGGE gels. As a consequence it was not possible to discriminate 

between these two species using DGGE (Fig. 17 and 18 and Appendix III).  
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Fig. 17: DGGE profiles (35-65 % 
denaturant) representing 16S rRNA gene 
fragments (bacteria) of cocoa pulp sampled 
with 12 hour intervals during 144 hours of 
fermentation in a large heap (500 kg) carried 
out in October at the Cocoa Research 
Institute of Ghana. Identity of identified 
fragments indicated, see arrows. Appendix 
III. 
 

 

The DGGE and the culture-based findings corresponded well with a few exceptions. 

Leuconostoc pseudoficulneum was occasionally identified during the culture-based part of the 

study (Table 5 and Appendix III). Surprisingly, this species yielded a strong band during all 

fermentations except the Mampong heap fermentation (Fig. 17 and 18 and Appendix III). 

Given these results, it is indeed possible that Lc. pseudoficulneum plays a more important role 

during the fermentation of cocoa than anticipated from the culture-based findings. 

 

 

 
 
 
Fig. 18: DGGE profiles (35-65 % denaturant) 
representing 16S rRNA gene fragments (bacteria) of 
cocoa pulp sampled with 12 hour intervals during 96 
hours of fermentation in a small heap (50 kg) carried 
out in October at the Cocoa Research Institute of 
Ghana. Identity of identified fragments indicated, see 
arrows. Appendix III. 

 

A band migrating to approximately the middle of the gel in all fermentations yielded a strong 

band in the initial phases of all fermentations including the fermentations carried out in 

Mampong and Bompata (indicated with an arrow and “No sequence” in Fig. 18). 
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Unfortunately, it was not possible to obtain a satisfying sequence from this band, and no pure 

isolates had the same electrophoretic mobility. As a consequence, the band remained 

unidentified (Appendix III). 

 

A weak fragment detected in the initial phase of one of the tray fermentations investigated 

using bacterial universal primers (V3-region) was surprisingly identified as the yeast H. 

guilliermondii (results not shown). The unintended amplification of eukaryotic DNA using 

prokaryotic specific primers has been reported before (Lopez et al., 2003). The problem is 

probably due to amplification of 18S rRNA gene fragments in PCR reactions where 

eukaryotic DNA is present in excess amounts compared to the amounts of prokaryotic DNA. 

This is likely to be the case in the initial phases of cocoa fermentations where H. 

guilliermondii as seen from Table 1 reaches high counts. However, as the fragment was weak 

and only detected in the initial phase of a single fermentation the problem was considered 

negligible but underlines that DGGE profiles always should be interpreted with caution 

(Appendix III). 

 

6.2.3 Cluster analysis 
Cluster analysis of DGGE profiles has previously been shown to yield valuable information 

about the microbial dynamics in various microbial communities including fermented foods 

(Ampe and Miambi, 2000; Nielsen et al., 2003). The dendrograms (Fig. 19 and 20) were 

calculated on the basis of Dice’s coefficient of similarity. Data were weighted to take into 

account the different intensities of the bands (Appendix II and III and Eichner et al., 1999; 

Ampe and Miambi, 2000).   

 

Cluster analysis of the DGGE profiles representing the yeast community associated with 

cocoa fermentations showed that the profiles grouped according to fermentation method and 

site (Fig. 19A). The tray fermentations formed one group in the dendrogram. The heap 

fermentations carried out at Mampong formed another group while the CRIG and New Tafo 

heap fermentations grouped between the tray and Mampong fermentations (Fig. 19A). 

 

 

 



 57

A B 

 

 

Fig. 19, A: Dendrogram derived from DGGE 
analysis of the yeast populations associated with 
the fermentation of cocoa based on Dice’s 
coefficient of similarity (weighted) with the 
unweighted pair group method with arithmetic 
averages clustering algorithm. Tray: Tray 
fermentation. Top: Heap fermentation, surface 
sample. 15 cm: Heap fermentation, sample taken 
15 cm below surface. Center: Heap fermentation, 
sample taken in the centre of the fermenting 
mass. Samples taken during 0-132 h of 
fermentation at Cocoa Research Institute of 
Ghana (CRIG); a farm in New Tafo (Tafo) and a 
farm in Mampong, respectively, in December, 
January and August. Appendix II. 
 
Figure 19, B: Detailed representation of the part 
of the dendrogram in Fig. 19A representing the 
Mampong fermentation. The heap fermentation 
was turned at 48 and 96 h, respectively. 
Appendix II. 

 

If the dendrograms were calculated on the basis of the DGGE profiles from one fermentation 

site at a time grouping with progress in the fermentation was observed. Figure 19B represents 

a dendrogram calculated on the basis of the DGGE profiles originating from the heap 

fermentation carried out in Mampong. Five groups in the dendrogram were recognized each 

representing a specific stage in the fermentation process. The impact of turning the heaps was 

also observed: The profiles representing samples taken immediately before turning (48 and 96 

h) group together, while the profiles representing samples taken 12 h after turning (60 and 108 

h) form another group (Fig. 19B). The same pattern was observed for the heap fermentation 

carried out at CRIG. Within the heap fermentations carried out at New Tafo grouping with 

fermentation time was also observed. However, the grouping was less clear cut compared to 

the Mampong and CRIG fermentations, probably because sampling position in the heap 

(surface, below surface and center) also influences the DGGE profiles (Fig 19A and 
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Appendix II). The tray fermentations grouped with season (August or December/January) but 

also with early and late fermentation within the seasons (Fig. 19A and Appendix II). Similar 

results were obtained when yeast derived DGGE profiles representing another set of 

fermentations were examined (Appendix III). 

 

 

 
Fig.  20: Dendrogram derived from 
DGGE analysis of the bacterial 
populations associated with heap and tray 
fermentation of cocoa in Ghana. The 
dendrogram is based on Dice’s 
coefficient of similarity with the 
unweighted pair group method with 
arithmetic averages clustering algorithm 
(UPGMA). Samples were taken during 0-
144 hours of fermentation at the Cocoa 
Research Institute of Ghana and at farms 
in Mampong and Bompata, respectively. 
Abbreviations: LHT: Large Heap Top 
fermentation (i.e. pulp sampled 15 cm 
from the surface of the heap); LHC: 
Large Heap Centre fermentation (i.e. pulp 
sampled in the centre of the heap); SH: 
Small Heap fermentation; Tray: Tray 
fermentation; CRIG: Cocoa Research 
Institute of Ghana. Appendix III. 

 

Cluster analysis of the DGGE profiles representing the bacterial community associated with 

cocoa fermentations revealed that the profiles grouped according to fermentation site (Fig. 
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20). In contrast to the cluster analysis of the DGGE profiles representing the yeast community 

the profiles representing the bacterial community did not cluster according to fermentation 

method. This indicates that the composition of the bacterial community associated with cocoa 

fermentation is more influenced by the fermentation site, than the fermentation method.   

 

Within each fermentation site the profiles clustered according to fermentation time (Fig. 20 

and Appendix III). This was also the case for the profiles representing the yeast community as 

mentioned previously (Fig. 19 and Appendix II and III). Construction of a library of DGGE 

profiles combined with cluster analysis seems in other words to provide a possible tool for 

monitoring the progress of fermentation at specific production sites (Appendix II and III). 

 

It is likely that the ability to monitor the progress of fermentation using DGGE can be used to 

obtain further insight into the processes leading to well fermented cocoa by correlating DGGE 

profiles with physical and/or chemical changes in the beans during fermentation.  Recently it 

has been shown that Near Infra Red (NIR) and fluorescence spectroscopy offer efficient tools 

for monitoring some of the changes taking place in the cocoa bean during fermentation and 

drying (Nielsen, 2006). Preliminary results have indicated that correlating NIR spectra of 

dried and grounded cocoa beans with DGGE profiles offers a promising novel method for 

investigating the connection between microbial activity in the pulp and the changes taking 

place inside the beans during fermentation (D.S. Nielsen, P.S. Nielsen and F. van den Berg, 

unpublished results). 
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7. Cocoa fermentations as a source of microbial diversity 
Detailed microbial characterisation of spontaneously fermented indigenous foods and feed 

products have revealed a range of previously undescribed microorganisms during recent years 

(Holzapfel, 2006). During the present study a previously undescribed LAB (see section 7.1) 

and 3 putatively undescribed yeast species (see section 7.2) have been isolated (Appendix III).    

 

7.1 Lactobacillus ghanaensis sp. nov.; a novel lactic acid bacterium 

isolated from Ghanaian cocoa fermentations 

From a large heap fermentation carried out at CRIG a number of isolates with unusual 

properties were isolated from MRS agar and tentatively identified as Lactobacillus spp. 

(Section 5.2.2 and Appendix III). Three of the isolates, designated L486, L489T and L499, 

were subjected to a detailed morphological, biochemical and molecular characterisation.  

 

Fig. 21: Cells and flagella of Lactobacillus 
ghanaensis sp. nov. L489T grown over night in MRS 
broth at 30 °C. Scanning Electron Microscopy, 
40000×magnification. Bar represents 2 µm. Appendix 
IV. 
 

 

All isolates were Gram-positive, catalase negative and did not produce gas from glucose. 

Under the microscope the isolates were rod-shaped and highly motile. Scanning Electron 

Microscopy revealed the presence of peritrichous flagella (Fig. 21 and Appendix IV).  

 

Sequencing of the 16S rRNA gene showed that L486 and L489T had 100 % identical 16S 

rRNA gene sequences, whereas L499 differed in one nucleotide from the former two 

(Appendix IV). The 16S rRNA gene sequences of L486, L489T, L499 and sequences of the 

closest phylogentic relatives retrieved from the GenBank database were aligned and a 

phylogenetic tree was constructed by the neighbour-joining method (Fig. 22). Comparison  

between the 16S rRNA gene sequences of L486, L489T and L499 with type strains in the 
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GenBank database revealed highest similarities with L. nagelii DSM 13675T (98.0 %), L. 

satsumensis DSM 16230T (95.5 %) and L. vini DSM 20605T (93.7 %) (Table 8). 

 

 

 
Fig 22: Phylogenetic tree 
(Neighbour-joining method) 
based on almost complete 
16S rRNA gene sequences 
showing the phylogenetic 
position of Lactobacillus 
ghanaensis sp. nov. among 
closely related Lactobacillus 
spp. Bootstrap values (%) 
based on 1000 replications 
are stated on each node. 
Appendix IV. 
 

 

DNA from the strains L489T and L499 was hybridised to each other and to L. nagelii DSM 

13675T and L. satsumensis DSM 16230T. L486 was not included in the analysis as it had 100 

% 16S rRNA gene homology to L489T. The DNA-DNA reassociation values between L489T 

and L499 were 92.5 % indicating that the strains are con-specific. Reassociation values of 18-

44 % were obtained with L. nagelii DSM 13675T and 0-12 % with L. satsumensis DSM 

16230T. All values for DNA-DNA hybridisation studies with the closest relatives L. nagelii 

DSM 13675Tand L. satsumensis DSM 16230T were thus well below the 70 % cut-off value 

that indicates separate species (Wayne et al., 1987). DNA reassociation values between L489T 

and L499 and the phylogenetically closely related L. vini were not determined, as L. vini does 

not contain mDAP in the cell wall (Table 8). The G+C content of strains L489T and L499 was 

37.8 mol% compared to the 37.7 mol% of L. nagelii DSM 13675T and 40.2 mol% of L. 

satsumensis DSM 16230T, respectively (Table 8). 

 

 
Fig. 23: GTG5-PCR fingerprints and corresponding dendrogram, derived from UPGMA linkage of correlation 
coefficients of  Lactobacillus ghanaensis and related lactobacilli. Appendix IV. 
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Rep-PCR analysis underlined that strains L486, L489T and L499 were genotypically very 

similar to each other, and different from the phyllogenetically closest neighbours, as they 

clustered together, away from Lb. nagelii, Lb. satsumensis and Lb. vini (Fig. 23 and Appendix 

IV). 

 
Table 8: Phenotypic differentiating features of motile Lactobacillus species. Lactobacillus mali is non-motile, 
but phylogenetically closely related to Lb. ghanaensis sp. nov. and is thus included for comparison. Appendix 
IV. 
 
Species: 1. Lb. ghanaensis sp. nov.; 2. Lb. nagelii; 3. Lb. satsumensis; 4: Lb. vini; 5: Lb. agilis; 6: Lb. ruminis; 7: 
Lb. curvatus subsp. curvatus; 8: Lb. mali. Data partially adopted from Torriani et al. (1996), Edwards et al. 
(2000); Kato et al. (2000); Hammes and Hertel (2003); Endo and Okada (2005) and Rodas et al. (2006). +, 
positive; -, negative; w, weak; d, strain dependent; ND, no data. 

 

Based on the above data it was concluded that the strains L486, L489T and L499 form a 

homogenous genetical distinct group closest related to L. nagelii and L. satsumensis. 

Phenotypically, strains L486, L489T and L499 are closely related to L. nagelii but the absent 

growth at pH 8.0 and 6.5 % NaCl; the absent to weak growth at 15 °C and pH 3.9, the 

inability to produce acid from sorbitol and tagatose (although delayed positive reactions were 

observed in strain L499) and the absence of dextran-production from sucrose differentiates 

strains L486, L489 and L499 from L. nagelii (Table 8 and Appendix IV). 
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The results obtained clearly indicated that the strains studied represented a new species in the 

genus Lactobacillus, for which the name Lactobacillus ghanaensis sp. nov. has been proposed 

(Appendix IV). 

 

7.2 Three putatively undescribed yeast species isolated during 

Ghanaian cocoa fermentations 

During the identification of yeasts isolated during cocoa fermentations it turned out that 3 

small groups of yeasts all had very low 26S rRNA gene D1/D2-region sequence similarity 

(81.8-92.4 %) to sequences deposited in Genbank. Neither was it possible to identify these 

isolates on the basis of their carbohydrate assimilation profile (Kurtzmann and Fell, 1998). 

Consequently the isolates were tentatively named Unidentified Species A, B and C. 

Unidentified Species A and B were only isolated from the small heap fermentation, whereas 

Unidentified Species C was isolated from the outer and central part of a large heap 

fermentations as well as from the small heap fermentation (Table 3, Table 4 and Appendix 

III). 

 

 

Fig.  24: Phylogenetic tree 
(Neighbour-joining method) 
based on almost complete 26S 
rRNA gene D1/D2 region 
sequences showing the 
phylogenetic position of 3 
putatively undescribed yeast 
species isolated from cocoa 
among closely related yeast 
species. Bootstrap values (%) 
based on 1000 replications are 
stated on each node. D.S. 
Nielsen, unpublished results. 

 

The 26S rRNA gene D1/D2-region sequences of isolates belonging to Unidentified Species 

A, B and C and the phylogenetic closest neighbours retrieved from the GenBank database 

were aligned and a phylogenetic tree was constructed by the neighbour-joining method (Fig. 

24). Unidentified Species A was closest related to [26S rRNA gene (D1/D2-region) similarity 

in brackets] Saturnispora mendoncae (92.4 %) and Saturnispora ahearnii (88.5 %); 

Unidentified Species B was closest related to Dipodascus geniculatus (81.8 %), Dipodascus 

Dipodascus albidus (U40081)
Dipodascus geniculatus (U40130)

Saturnispora sp. (AF017727)

Dipodascus australiensis (U40100) 

Saturnispora mendoncae (AF017726)
Saturnispora ahearnii (U94935)

Candida rugopelliculosa (U71069) 
Issatchenkia occidentalis G83 (DQ466536) 

Unidentified yeast “A”

Unidentified yeast “B”

Unidentified yeast “C”
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albidus (81.0 %) and Dipodascus australiensis (80.2 %); and Unidentified Species C was 

closest related to Candida rugopelliculosa (92.3 %) and Issatchenkia occidentalis (91.6 %).  

The low 26S rRNA gene D1/D2-region sequence similarity to other known species is a very 

strong indication that Unidentified Species A, B and C represents separate previously not 

described species (Peterson and Kurtzmann, 1991; Kurtzmann and Robnett, 1998). 

At present Unidentified Species A, B and C are undergoing a detailed morphological, bio-

chemical and molecular characterisation with the aim giving a detailed description of the 3 

putatively new species in a future publication. 
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8. Conclusion 

The present study represents the first investigation of cocoa fermentations taking advantage of 

recent year’s development in molecular biology based methods for typing and identification 

of microorganisms. Furthermore, using DGGE, the yeast and bacterial communities 

associated with cocoa fermentation have been investigated using a culture-independent 

approach for the first time in the present study. Two different fermentation systems (heap and 

tray) and fermentations carried out at different geographic locations and at different times 

during the season have been investigated and the succession of microorganisms being 

involved in the fermentation has been demonstrated. 

 

More specifically the present study has shown that during Ghanaian cocoa fermentations: 

- Yeast and LAB reached high cell counts during the first 24-36 hours of fermentation. 

Later in the fermentation the yeast cell counts decreased, whereas the LAB remained 

among the dominant organisms throughout the fermentations. Acetic Acid Bacteria 

showed good growth in the middle phase of the fermentations and in the later phases 

of the heap fermentations Bacillus spp. reached high numbers. 

- Hanseniaspora guilliermondii and P. membranifaciens were the predominating yeasts 

during early and late fermentation, respectively. Various other yeasts including C. 

zemplinina, I. orientalis and Sc. cerevisiae played prominent roles as well. 

- Three putatively previously undescribed yeast species were isolated during the early 

phases of fermentation. 

- Chromosome Length Polymorphism was evident within all yeast species investigated. 

- Lactobacillus fermentum was the dominating LAB during all investigated 

fermentations, with among others Lc. pseudomesenteroides and Lb. plantarum being 

isolated frequently as well. Based on the present study and other published studies Lb. 

plantarum and possibly Lb. fermentum seems to be indigenous to cocoa fermentations 

around the World. 

- A previously undescribed LAB was isolated from a large heap fermentation and 

named Lactobacillus ghanaensis sp. nov. 

- Acetobacter pasteurianus, A. syzygii and A. tropicalis were the predominant AAB 

during the investigated fermentations. 
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- Bacillus licheniformis, B. pumilus and B. megaterium reached high numbers during 

the later phases of heap fermentation. 

- No Bacillus spp. were detected during tray fermentation 

- Turning of heaps influences microbial growth during the fermentations. 

- Denaturing Gradient Gel Electrophoresis and culture-based investigations in general 

corresponded well and DGGE seems thus as an efficient tool for investigating cocoa 

fermentations. 

- Judged from the DGGE-based results Lc. pseudoficulneum possibly plays a more 

important during the fermentations than anticipated from the culture-based results. 

- Combined with cluster analysis DGGE offers a tool for monitoring the progress of 

cocoa fermentations. 
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9. A broader perspective - recommended future studies 
During the present study a good understanding of the microbiology of Ghanaian cocoa 

fermentations has been obtained through the combined use of culture-dependent and culture-

independent methods. It would add a lot to our understanding of cocoa fermentations as such, 

if fermentations in the other major producing countries such Côte d’Ivoire, Nigeria, Brazil, 

Indonesia, Malaysia etc. were investigated using the same approach. Furthermore it would be 

highly interesting to link such investigations to the quality of the final product, chocolate. 

 

The use of culture-independent techniques for the investigation of cocoa fermentations should 

be further exploited. The present study has pointed at DGGE as an effective tool for the 

investigation of cocoa fermentations. However, being only semi-quantitative DGGE should 

be supplemented with quantitative culture-independent methods. For instance DGGE could be 

used to investigate which organisms are present – and Real Time (RT)-PCR used to quantify 

these organisms.  

 

Leuconostoc pseduoficulneum was detected using DGGE in most fermentations investigated 

during the present study. The possible importance of Lc. pseudoficulneum during the 

fermentations could be investigated using RT-PCR. Alternatively a substrate better suited for 

isolation of Lc. pseudoficulneum than MRS should be identified or developed. 

 

Zymomonas mobilis has previously been found to constitute a significant part of the 

micropopulation during Trinidadian cocoa fermentations. Similarly it should be investigated 

whether Z. mobilis plays a role during Ghanaian cocoa fermentations as well as in cocoa 

fermentations in other parts of the World. 

 

Batches of cocoa showing an inhomogeneous degree of fermentation is a problem frequently 

encountered. Based on the more thorough knowledge of Ghanaian cocoa fermentations now 

obtained it should be considered to investigate the potential use of starter cultures to ensure an 

uniform degree of fermentation. Furthermore, the potential of using starter cultures for 

controlling mould growth and mycotoxin production during the fermentation should be 

investigated. 
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Tray fermentation is a promising method for uniform fermentation of cocoa, but our 

microbiological knowledge of the process is still inadequate. The present study has indicated 

that the microbiology of tray fermentations at least with regards to the yeast community differ 

from the traditional heap fermentations. How or if this influences the quality of the final 

product is not known. Furthermore it would be interesting to investigate possible differences 

between for instance the top tray, a tray in the middle of the stack and the bottom tray. 

 

As pointed out above there are issues left, that should be investigated, but our present 

knowledge of the primary processing of cocoa is adequate to develop and implement quality 

management measures based on e.g. the Good Manufacturing Practices (GMP) and Hazard 

Analysis Critical Control Point (HACCP) principles. However, implementing such quality 

management measures will not be easy. Alone the process of communicating the principles to 

the thousands of farmers in Ghana (not to mention the rest of West Africa) is a huge task. 

Even worse there is no real incentive for the farmers to use the principles as it will mean extra 

work without any benefits as the system is today, where for instance Ghana operates with 3 

standards for cocoa beans: Grade I, Grade II and sub-standard. Grade I is paid better than 

Grade II etc. The problem is that the beans are graded on the basis of absence of defects – i.e. 

no visible mould growth, no slaty beans etc. – not on the basis of positive attributes such as a 

high percentage of well-fermented brown beans with a high flavour potential. As the beans 

cannot be graded higher than Grade I there is no economical incentive for the farmer already 

producing Grade I cocoa to further improve the process. The solution is to develop a grading 

system rewarding beans of good quality – not just beans without defects. Alternatively 

chocolate producers may consider buying directly from the farmers or groups of farmers that 

have accepted to follow a given quality management system in the primary processing of 

cocoa. 

 

Should important markets like the EU or USA decide to impose regulatory limits on the 

amount of e.g. ochratoxin A in cocoa and chocolate products many cocoa producing farmers 

and countries will find themselves in troubles with selling a significant portion of their cocoa 

beans. However, if sound quality management measures are implemented the problem can be 

controlled if not completely avoided. 
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Abstract 

Three Gram-positive, catalase-negative, motile, rod-shaped strains L486, L489T and L499, were 

isolated from fermenting cocoa. The organisms produced DL-lactic acid from glucose without gas 

formation. Ammonia was not produced from arginine. Acid was produced from amygdalin, D-

cellobiose, esculin, D-fructose, D-glucose, D-galactose, D-mannitol, D-mannose, N-

acetylglucosamine, L-rhamnose, D-sucrose, salicin and D-trehalose. The cell wall contained 

peptidoglycan of the D-meso-diaminopimelic acid (mDAP)-type. 16S rRNA gene sequence analysis 

revealed that the isolates phylogenetically belong to the genus Lactobacillus and are closely related 

to Lactobacillus nagelii, Lactobacillus vini and Lactobacillis satsumensis. Low DNA-DNA 

reassociation values were obtained between the isolates and the phylogenetically closest 

neighbours. Based on the genetic and phenotypic results, the isolates are considered to represent a 

novel species, for which the name Lactobacillus ghanaensis is proposed. The type strain is L489T 

(= DSMZ  18630T = CCUG 53453T). 

 



Cocoa beans, the principal raw material of chocolate, have to be fermented, dried and roasted to 

obtain the characteristic cocoa flavour and taste. The fermentation of cocoa is a microbiologically 

complex process involving the activities of yeasts, lactic acid bacteria (LAB) and acetic acid 

bacteria (Schwan and Wheals, 2004). During an investigation of the microorganisms involved in the 

fermentation of cocoa beans, a number of isolates with unusual properties were isolated from MRS 

agar and tentatively identified as Lactobacillus spp. (Nielsen et al., 2006). This study presents the 

morphological, biochemical and molecular characterisation of 3 of these isolates designated L486, 

L489T (= DSMZ 18630T = CCUG 53453T) and L499 (= DSM 18631 = CCUG 53454). 

 

Strains L486, L489T, L499 and the reference strains Lactobacillus nagelii DSM 13675T, 

Lactobacillus satsumensis DSM 16230T and Lactobacillus vini DSM 20605T were grown in MRS-

broth at 30 °C (Merck, Darmstadt, Germany) for 2-3 days, added 20 % glycerol and stored at -80 

°C.  

 

 

Fig. 1: Cells and flagella of Lactobacillus 
ghanaensis sp nov. L489T grown over night in MRS 
broth at 30 °C. Scanning Electron Microscopy, 
40000×magnification. Bar represents 2 µm. 
 

 

Cell morphology of cultures grown over-night in MRS (30 °C) was determined using phase-contrast 

microscopy and scanning electron microscopy (SEM). For SEM, 30 µl of a culture diluted 10 times 

with sterile MilliQ-water was filtered through a polycarbonate filter (pore size 0.2 µm), exposed to 

osmium vapour for 1 h and coated with gold-palladium. Cells were observed in a FEI Quanta 200 

SEM at 15 kV. Cells were rod-shaped (0.7-0.8 µm × 1.4-2.5 µm) occurring either singly, in pairs or 

in short chains of 3-4 cells (Fig. 1). The cells were observed to be highly motile under the phase 

contrast microscope. Peritrichous flagella were observed using SEM (Fig. 1). 

 



Colonies grown on MRS-agar (Merck) incubated anaerobically for 4 days at 30 °C were 2-3 mm in 

diameter, white to creamish white, smooth, circular, convex and with entire or slightly uneven 

margin. If incubated aerobically (4 days, 30 °C), colonies were pin-point sized.  

 

Gram reaction and catalase activity were tested using standard methods. Growth at 15 and 45 °C 

(MRS broth), in the presence of 6.5 % NaCl, at pH 3.9 and pH 8.0, gas production from glucose 

(MRS broth with inverted Durham tubes, determined at 30 °C), production of NH3 from arginine 

and the presence of D-meso-diaminopimelic acid (mDAP) in the cell wall were tested following the 

protocol of Schillinger and Lücke (1987).  The configuration of the lactic acid enantiomer produced 

was determined enzymatically (Boehringer Mannheim GmbH, Mannheim, Germany) (Schillinger 

and Lücke, 1987). 

 

Carbohydrate fermentation patterns of L486, L489T and L499 were determined in microtitre plates  

following the protocol of Jayne-Williams (1976) and in addition, using the API50 CHL 

identification system (bioMerieux, Marcy-L’Etolie, France).  

 

For 16S rRNA gene sequencing, DNA was extracted using the method of Björkroth and Korkeala 

(1996) and the almost complete 16S rRNA gene was amplified using primers 7f and 1510r (Lane, 

1991; Björkroth and Korkeala, 1996). All reactions were carried out in a 50 µl volume containing 

1.25 U Taq DNA polymerase (Amersham Biosciences, Piscataway, NJ, USA), 5 µl 10×PCR 

reaction buffer (Amersham Biosciences), 200 µM of each deoxynucleotide triphosphate (Amersham 

Biosciences), 3.0 mM MgCl2 (Amersham Biosciences), 0.1 µM of each primer (DNA 

Technologies, Aarhus, Denmark), 1 % (vol/vol) formamide (Merck), 0.1 % (wt/vol) Bovine Serum 

Albumin (BSA, New England Biolabs, Beverly, MA, USA), 20 ng of DNA template and sterile 

MilliQ water for adjustment of the volume to 50 µl. The PCR reaction was performed under the 

following thermocycling program: 5 min of initial denaturation at 94 °C, 30 cycles of 94 °C for 90 

s, 52 °C for 30 s, 72 °C for 90 s followed by a final elongation step of 72 °C for 7 min. Following 

purification (Qiagen PCR Purification kit) the PCR products were sequenced in both directions 

using a CEQ 2000 Automated Sequencer (Beckmann Coulter, Fullerton, CA, USA), and a CEQ 

2000 Dye Terminator Cycle Sequencing Quick Start kit (Beckmann Coulter) or sent to a 

commercial sequencing facility (DNA Technology). Sequences were manually corrected and 

aligned using Vector NTI Suite 7 (Informax, Bethesda, MD, USA). Closest phylogenetic relatives 



were determined by aligning the corrected sequences to 16S rRNA gene sequences in GenBank 

Database using the BLAST algorithm (Altschul et al., 1997). Strains (GenBank/EMBL/DDBJ 

accession no. in brackets) L486 (DQ867003 ) and L489T (DQ523489) had 100 % identical 16S 

rRNA gene sequences, whereas L499 (DQ867004) differed in one nucleotide from the former two. 

The 16S rRNA gene sequences of L486, L489T, L499 and sequences of the closest phylogentic 

relatives retrieved from the GenBank database were aligned and a phylogenetic tree was 

constructed by the neighbour-joining method using Bionumerics version 3.5 (Applied Maths, Sint-

Martens-Latem, Belgium). Unknown bases were discarded for the analysis. The statistical reliability 

of the topology of the neighbour-joining tree was evaluated using bootstrap resampling of the data 

(1000 resamplings) (Fig. 2). Comparison  between the 16S rRNA gene sequence of L489T with type 

strains in the GenBank database revealed highest similarities with L. nagelii DSM 13675T (98.0 %), 

L. satsumensis DSM 16230T (95.5 %) and L. vini DSM 20605T (93.7 %) (Table 1).  

 
Table 1: Phenotypic differentiating features of motile Lactobacillus species. Lactobacillus mali is non-motile, but 
phylogenetically closely related to L. ghanaensis sp. nov. and is thus included for comparison. 
 
Species: 1. L. ghanaensis sp. nov.; 2. L. nagelii; 3. L. satsumensis; 4: L. vini; 5: L. agilis; 6: L. ruminis; 7: L. curvatus 
subsp. curvatus; 8: L. mali. Data partially adopted from Edwards et al. (2000); Endo and Okada (2005); Hammes and 
Hertel (2003); Kato et al. (2000); Rodas et al. (2006) and Torriani et al. (1996). +, positive; -, negative; w, weak; d, 
strain dependent; ND, no data. 
Characteristic 1 2 3 4 5 6 7* 8§ 

Growth in MRS at 15 °C  w + + - - - + + 
Growth in MRS at 45 °C + + + + + d - - 
Growth in MRS with 6.5 % NaCl - + + + ND ND ND - 
Growth at pH = 3.9 (MRS) w + + + ND ND ND ND 
Growth at pH = 8.0 (MRS) - + ND + ND ND ND - 
Lactate isomer DL DL L DL L L DL L 
Acid from         
  L-Arabinose - - - + - - - + 
  D-Cellobiose + + - + + + d + 
  Mannitol + + + - + - - - 
  Raffinose - - - - + + - - 
  L-Rhamnose + + + - - - - d 
  Sorbitol -/w + - - d - - - 
Dextran from sucrose   - + + - ND ND ND + 
mDAP in cell wall + + + - + + - + 
DNA G+C content (mol%) 37.8 37.7 40.2 39.4 43-44 44-47 42-44 32-34 
Percentage 16S rRNA gene similarity 
to L. ghanaensis L489T 

99.9- 
100 

 
98.0 

 
95.5 

 
93.7 

 
90.3 

 
92.3 

 
89.9 

 
91.9 

* Some strains motile, but lose their motility when subcultured (Torriani et al., 1996). 
§ Some strains reported motile (Kaneuchi et al., 1998) 
 

For determination of the G+C content and DNA-DNA hybridisation levels, DNA was extracted 

from L489T, L499, L. nagelii DSM 13675T and L. satsumensis DSM 16230T and purified following 



the protocol of Marmur (1961) as modified by Stackebrandt and Kandler (1978). Strain L486 was 

not included in the DNA-DNA hybridisation studies, as it has 100 % 16S rRNA gene homology 

with L489T. The G+C content of DNA was determined from the thermal melting temperature (Tm) 

of DNA using a Varian Cary 100 Bio UV-Visible spectrophotometer (Varian, Palo Alto, CA, 

USA). DNA-DNA relatedness was determined spectrophotometrically from renaturation rates (de 

Ley et al., 1970). DNA from the strains L489T and L499 was hybridised to each other and to L. 

nagelii DSM 13675T and L. satsumensis DSM 16230T. The reassociation values between L489T and 

L499 were 92.5 % indicating that the strains are con-specific. Reassociation values of 18-44 % were 

obtained with L. nagelii DSM 13675T and 0-12 % with L. satsumensis DSM 16230T. All values for 

DNA-DNA hybridisation studies with the closest relatives L. nagelii DSM 13675Tand L. 

satsumensis DSM 16230T were thus well below the 70 % cut-off value that indicates separate 

species (Wayne et al., 1987). DNA reassociation values between L489T and L499 and the 

phylogenetically closely related L. vini were not determined, as L. vini does not contain mDAP in 

the cell wall (Table 1). The G+C content of strains L489T and L499 was 37.8 mol% compared to 

the 37.7 mol% of L. nagelii DSM 13675T and 40.2 mol% of L. satsumensis DSM 16230T, 

respectively (Table 1). 

 
Fig. 2: Phylogenetic tree 
(Neighbour-joining method) 
based on almost complete 16S 
rRNA gene sequences showing 
the phylogenetic position of 
Lactobacillus ghanaensis sp 
nov. L486, L489T and L499 
among closely related 
Lactobacillus spp. (accession 
no. in brackets). Bootstrap 
values (%) based on 1000 
replications are stated on each 
node. 

 

The three strains were also genotypically investigated by Repetitive Element  Palindromic (rep)-

PCR using the primer GTG5 (5’-GTG GTG GTG GTG GTG-3’) following the method of Gevers et 

al. (2001) for lactic acid bacteria as previously described (Franz et al., 2006). Strains L486, L489T 

and L499 clustered closely (r = 85%) and were only distantly related to the type strains of L. 

nagelii, L. satsumensis and L. vini (Fig. 3). 

 



Fig. 3: (GTG)5-PCR fingerprints 
and corresponding dendrogram, 
derived from UPGMA linkage of 
correlation coefficients (r, expressed 
as a percentage value for conve-
nience) of  Lactobacillus ghanaensis 
sp. nov. and related lactobacilli. 

 

Based on the above data it can be concluded that the strains L486, L489 and L499 form a 

homogenous genetical distinct group closest related to L. nagelii and L. satsumensis. 

Phenotypically, strains L486, L489T and L499 are closely related to L. nagelii but the absence of 

growth at pH 8.0 and 6.5 % NaCl and the absent to weak growth at pH 3.9, the inability to produce 

acid from sorbitol and tagatose (although delayed positive reactions were observed in strain L499) 

and the absence of dextran-production from glucose differentiates strains L486, L489 and L499 

from L. nagelii (Table 1). 

 

The results obtained in the present study clearly indicate that the strains studied represent a new 

species in the genus Lactobacillus, for which we propose the name Lactobacillus ghanaensis sp. 

nov. with strain L489T (= DSMZ  18630T = CCUG 53453T) as the type strain. 

 

Description of Lactobacillus ghanaensis sp. nov. 

Lactobacillus ghanaensis (gha.na.en’sis, N.L. gen. n. Ghana named after the country where it was 

first isolated). 

Cells are rod-shaped 0.7-0.8 µm × 1.4-2.5 µm, occurring singly, in pairs or short chains of 3-4 cells. 

They are Gram-positive, catalase-negative, motile with peritrichous flagella and non-spore forming. 

Colonies are 2-3 mm in diameter, white to creamish white, smooth, circular, convex and with entire 

or slightly uneven edges after 3-4 days of anaerobic growth. Weak growth at 15 °C, good growth at 

45 °C. No growth occurs at 6.5 % NaCl. Weak growth at pH 3.9 and no growth at pH 8.0. 

Ammonia is not produced from arginine. No gas is produced from glucose. D(-)- and L(+)-lactic 

acid is produced as the end product from glucose metabolism. Acid is produced from amygdalin, D-

cellobiose, esculin, D-fructose, D-glucose, D-galactose, D-mannitol, D-mannose, N-

acetylglucosamine, L-rhamnose, D-sucrose, salicin and D-trehalose. Acid is not produced from D-

adonitol, amidon, D- and L-arabinose, arbutin, dulcitol, erythritol, D- and L-fucose, gentiobiose, 

gluconate, glycogen, inositol, inulin, D-lyxose, D-melezitose, D-melibiose, methyl ß-xyloside, D-

raffinose, D-ribose, D-sorbitol, D-turanose, xylitol, D- and L-xylose, 2- and 5-ketogluconate. Acid 



production from glycerol, D-lactose, D-maltose, methyl α-D-glucoside (delayed reaction), D-

sorbitol (delayed reaction), L-sorbose, and D-tagatose (delayed reaction) is strain-dependent. Does 

not produce dextran from sucrose. The cell wall contains peptidoglycan of the D-meso-

diaminopimelic acid (mDAP)-type. The G+C-content of the DNA is 37.8 mol%. 

 

The type strain is L489T (= DSMZ 18630T = CCUG 53453T). The type strain and all other known 

strains of the species have been isolated from cocoa fermentations in Tafo, Ghana. The description 

of the type strain corresponds to the description the species except that no acid is produced from 

glycerol, maltose, methyl α-D-glucoside, D-lactose, sorbitol and tagatose. 
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