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Abstract 
 

Bacterial protein meal (BPM) is a new protein feedstuff produced by fermentation of natural gas as 

energy and carbon source and ammonia as nitrogen source by Methylococcus capsulatus (Bath) 

(>90%), Ralstonia sp., Brevibacillus agri and Aneurinibacillus sp. The bacterial biomass is heat 

sterilised and spray-dried to obtain a dry and stable product.  

 

The aim of this thesis is to evaluate the effect of increasing dietary level of BPM on the protein and 

energy metabolism in the growing mink, chickens and pigs. Three experiments were conducted one 

with each of the species. Four diets were used in each of the experiments one served as control and 

in the others increasing contents of either fish meal (mink and chicken) or soybean meal (pig) were 

replaced with BPM so the level of protein was the same in all diets. During the growth period four 

(pig) or five (mink and chicken) balance and respiration (indirect calorimetry) experiments were 

conducted. In the mink and pig experiment the protein turnover was determined by the end-product 

methods using [15N] glycine as tracer. Furthermore was the content of purine base derivatives 

analysed in the urine. 

 

The experimental diets were well accepted by the animals except for the mink diet where 60% of 

the digestible nitrogen derived from BPM. The apparent digestibility of nitrogen decreased 

significantly in the mink and pig experiments as dietary BPM content increased. In both the mink 

and pig experiments the retention of nitrogen (RN) was not affected by diet. In the chicken 

experiment RN was the same on all diets with BPM, which was significantly lower than on the 

control diet. This was caused by slightly higher nitrogen content in the control diet than the diets 

with BPM in chicken experiment. The heat production was not affected by increasing content of 

dietary BPM. The retention of energy was affected only by diet in the mink experiment; mink on 

the highest inclusion level of BPM had zero retention of energy, while mink on the other diets has 

positive energy retention. The protein turnover increased significantly with increasing content of 

dietary BPM in the mink experiment. In the pig experiment no significant differences in protein 

turnover were observed. With increasing content of BPM in the diet the content of nucleic acid 

nitrogen also increased. This led to a higher excretion of allantoin in the urine. The mink had higher 

excretion of purine base derivates in relation to metabolic body size than the pig. The 

decomposition and excretion patterns of the purine bases differed between the two species. 
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It was concluded that up to 40% (mink), 20% (chicken) and 50% (pig) of the nitrogen can be 

derived from BPM without any negative effects on the protein and energy metabolism. Increasing 

content of BPM in diet led to higher urinary excretion of allantoin in the mink and pigs. 
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Sammendrag 
 

Bakterielt protein mel (BPM) er et nyt proteinfodermiddel produceret ved fermentation af naturgas 

som energi og karbon kilde og ammoniak som nitrogen kilde ved brug af Methylococcus capsulatus 

(Bath) (>90%), Ralstonia sp., Brevibacillus agri og Aneurinibacillus sp. Den bakteriel biomasse er 

steriliseret og sprøjtetørret for at opnå et tørt og stabilt produkt. 

 

Formålet med denne afhandling er at evaluere effekten af stigende mængder af BPM i foderet på 

protein og energi omsætningen hos mink, kyllinger og grise i vækst. Der blev udført tre forsøg en 

med hver dyreart. Der blev anvendt fire diæter i hvert af  forsøgene, en af diæterne fungerede som 

kontroldiæt og i de andre diæter blev stigende mængder af enten fiskemel (mink og kylling) eller 

sojaskrå udskiftet med BPM således at protein niveauet var det samme i alle diæter. I løbet af 

vækstperioden blev der udført henholdsvis fire (grise) og fem balance og respirationsforsøg. I 

forsøgene med mink og grise blev proteinomsætningen målt ved hjælp af slutprodukt metoden til 

dette formål blev [15N]glycine anvendt som tracer. Desuden blev indholdet af purine base derivater 

målt i urinen. 

 

Dyrene åd forsøgsdiæterne uden problemer undtagen minkfoderet, hvor 60% af det fordøjelige 

nitrogen kom fra BPM. Den tilsyneladende fordøjelighed af nitrogen faldt signifikant i mink- og 

griseforsøget, når indholdet af BPM i foderet blev øget. I både mink- og griseforsøget var 

aflejringen af nitrogen ikke påvirket af diæten. I kyllingeforsøget var aflejring af nitrogen den 

samme for alle diæter med BPM, hvilket var signifikant lavere end kontroldiæten. Årsagen var at 

kontroldiæten havde et lidt højere nitrogen indhold end diæter med BPM. Varmeproduktionen var 

ikke påvirket af stigende indhold af BPM i foderet. Aflejring af energi var kun påvirket i 

minkforsøget; minkene på det højeste iblandingsniveau af BPM havde en energiaflejring på nul, 

mens minkene på de andre diæter havde en positiv energiaflejring. Proteinomsætningen steg med 

stigende indhold af BPM i foderet i mink forsøget. I forsøget med grise blev der ikke observeret 

nogen forskelle i proteinomsætningen. Når indholdet af BPM øges i foderet stiger mængden af 

nukleinsyre i foderet også. Dette medførte at udskillelsen af allantoin i urinen steg. Minkene havde 

en større udskillelse af purine base derivater i forhold til metabolisk kropsstørrelse end grisene. 

Nedbrydningen af og udskillelsesmønstret af purine baserne var forskellige mellem de to arter. 
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Det blev konkluderet at op til 40% (mink), 20% (kylling) og 50% (gris) af nitrogenet kan stamme 

fra BPM uden negative effekter på protein og energiomsætningen. Stigende mængder af BPM i 

foderet medførte en højere udskillelse af allantoin i urinen hos minkene og grisene.  
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Introduction 
 

The demand for high quality protein feedstuff both for animals and humans is increasing worldwide 

because of an increase in the human population, limitation in fish available for production of fish 

meal, ban of meat-and bone meal and other animal by-products in many countries owing to bovine 

spongiform encephalitis and gene-modification of soy beans, which especially in the European 

countries have not been well accepted as animal feed and for human consumption. Therefore, new 

protein sources based on fermentation of different by-products from the industry may have the 

potential to enter the market. Although a new protein source not is used to any great extent on farm 

level the product in itself may be of scientific interest because of the different dietary components in 

the feedstuff, which may affect the metabolism of the animal. 

 

Before a new protein source is used for farm and companion animals the quality of the product has 

to be evaluated. Prerequisites for a protein feedstuff to be considered of high nutritional quality 

include a good palatability, a high biological value, harmlessness and a positive influence on 

product quality. Performance and digestibility studies give valuable information about expected 

growth rate, feed conversion rate and digestibility of the different nutrients in the diet. For a new 

protein source to be considered of high quality it must also be proved to sustain a high rate of 

nitrogen retention and not cause elevated heat production.  

 

Bacterial protein meal (BPM) with the trade name Bioprotein (Norferm DA, Norway) is a new 

protein source. BPM is produced by fermentation of natural gas as energy and carbon source and 

ammonia as nitrogen source by Methylococcus capsulatus (Bath) (>90%), Ralstonia sp., 

Brevibacillus agri and Aneurinibacillus sp. (Skrede et al., 1998). The bacterial biomass is heat 

sterilised and spray-dried to obtain a dry and stable product. The dry matter content of the final 

product is about 96% dry matter, 70% crude protein, 10% lipids and 7% ash (Skrede et al., 1998). 

Previously other types of microbial protein fermented on other substrates have been evaluated; 

many of them are not produced anymore. For reviews see Snyder (1970), Kihlberg (1972), Schulz 

and Oslage (1976), Litchfiel (1977), Waldroup (1981), Solomons (1983), Litchfiel (1983), 

Goldberg (1985), Giec and Skupin (1988), Kuhad et al. (1997), and Anupama and Ravidra (2000). 
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During the last decade BPM has been investigated in a number of performance studies in different 

monogastric species and fish, and has been found to be a promising new protein source: A dietary 

supply of BPM providing up to one third of the N intake sustained production performance and 

animal health in slaughter chickens (Skrede et al., 2003) and blue foxes (Skrede and Ahlstrøm, 

2002). When BPM made up about 50% of dietary N no adverse effects were reported for growing-

finishing pigs (Øverland et al., 2001) or Atlantic salmon (Storebakken et al., 2004; Berge et al., 

2005), but an inclusion level of 40% - 50% of the dietary N from BPM has resulted in reduced 

performance during the piglet period in some experiments (Øverland et al., 2001; 2004). The 

apparent faecal digestibility of nitrogen in BPM has been found to be 79%, 85,4% and 80.5% in 

mink, pigs and chickens respectively (Skrede et al., 1998). Comparison of diets where 50% of the 

nitrogen derived from BPM with other protein sources in the blue fox has shown that a diet with 

BPM had the same apparent total tract digestibility of nitrogen as meat meal and soybean meal but 

lower than fish meal (Vhile et al., 2005).  

 

Although the performance of animals fed BPM and the digestibility of BPM is identical to other 

high quality protein sources, it has to be proved that BPM gives the same retention of nitrogen 

(RN), heat production (HE) and retention of energy (RE) as other high quality protein sources i.e. 

fish meal and soybean meal. The content of non amino acid nitrogen in BPM is high. About 12% of 

the nitrogen in BPM derived from RNA and DNA. This level being low compared to that of many 

other single-cell proteins of bacterial origin (Braude et al., 1977; Tiermeyer et al., 1981; Rumsey et 

al., 1991; Kiessling and Askbrandt, 1993). Compared with fish meal and soybean meal the level in 

BPM is much higher (Greife, 1984a; Herbel and Montag, 1987; Devresse 2000). Only animal 

products like lymph nodes and pancreas have the same content of RNA and DNA on dry matter 

base as BPM (Herbel and Montag, 1987). These products can be found in slaughter-house offal and 

meat and bone meal used for instance in mink diets but not as single feedstuffs.  

 

From studies in rats and pigs it is known that the protein turnover may be affected by the quality of 

the protein (Schadereit et al., 1999; Saggua et al., 2000). Therefore the protein turnover was 

measured with the end-product methods using [15N]glycine as tracer. This method is easy to apply 

in difficult situations (Duggleby and Waterlow, 2005).  
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The dietary RNA and DNA are decomposed to nucleic acid in the lumen of the intestine and the 

digestibility is probably high (Shannon and McNab 1973; Roth and Kirchgessner, 1978; Greife and 

Molnar, 1980). The nucleic acids are absorbed as nucleosides or free purine and pyrimidine bases 

(Wilson and Wilson, 1958, 1962; Privat de Garilhe, 1967; Berlin and Hawkins, 1968; Barnard, 

1969). Investigations with different types of bacterial protein, yeast RNA, different nucleotides, 

nucleosides and purine bases and pyrimidine bases have shown that plasma concentration of 

allantoin, uric acid and creatinine may be increased (Roth and Kirchgessner, 1977a,b; Yokozawa et 

al. 1982, 1983; Greife et al. 1984; Brulé et al., 1988), the utilisation of dietary purine and 

pyrimidine bases differed (Savaiano and Clifford, 1978; Greife and Molnar, 1978a,b; Ho et al. 

1979; Greife, 1984b; Greife and Molnar, 1983, 1984a,b; Berthold et al. 1995) and urinary excretion 

of purine base derivates were increased (Heaf and Davis, 1976; D’Mello et al. 1976; Braude et al. 

1977; Roth and Kirchgessner, 1977a,b, 1978; Yokozawa et al. 1982, 1983; Greife et al. 1984; Brulé 

et al., 1988). 

 

Validation of protein quality and purine base metabolism in more than one species at different times 

during the growth period makes it possible to draw stronger conclusions of the results. Mink, pigs 

and chickens are all important production animals in the Nordic countries.  The differences in 

requirements for nutrients, anatomy, growth rate and physiology of the three species might lead to 

different results.  

 

Objectives of the thesis 
 

• To evaluate effects of bacterial protein meal from natural gas on the protein and energy 

metabolism in mink, chickens and pigs throughout the growth period when fed iso-

nitrogenous and iso-energetic diets.  

• To evaluate effects of bacterial protein meal from natural gas on protein turnover in mink 

and pigs by means of end product method using [15N]glycine as tracer. 

• To evaluate effects of bacterial protein meal from natural gas on intake of purine and 

pyrimidine bases and urinary excretion of purine base derivatives in mink and pigs. 
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Bacterial protein meal – production and composition 
 

Norferm DA produces BPM by continuous fermentation of natural gas as energy and carbon source 

and ammonia as nitrogen source by Methylococcus capsulatus (Bath), Ralstonia sp., Brevibacillus 

agri and Aneurinibacillus sp. (Skrede et al, 1998) in a loop fermenter at 45 °C (Norferm, 2005). The 

liquid from the fermenter containing the biomass is centrifuged, ultra-filtrated, spray-dried and heat 

treated to obtain a dry and storage stable product. 

 

More than 90% of the biomass from BPM is derived from the gram-negative bacterium 

Methyloccoccus capsulatus (bath). This bacterium has some characteristic traits, which have an 

impact on the chemical composition but also on the accessibility of the nutrients in the cytoplasm. 

Foster and Davis (1966) were the first who described the group of bacteria, which Methyloccoccus 

capsulatus (bath) belongs to. Methyloccoccus capsulatus (bath) is non-motile, theromtolerant 

diplococci with a diameter of approximately 1.0-2.0 μm (Foster and Davis, 1966, Smith et al., 

1970). Many bacteria store carbon as poly-β-hydroxybutyrate (PHB) if the nitrogen supply is 

limited but Foster and Davis (1966) could not detect it in methane-utilizing bacteria. In pigs PHB 

has been shown to have a digestibility of about 30% (Brune and Nieman, 1977a) and in rats the 

growth rate was depressed and mortality increased, if the PHB content in the diet was more than 

30% (Brune and Nieman, 1977b). The polysaccharides in the cell wall, which surrounds M. 

capsulatus (bath) are practically insoluble in water under growth conditions (50 ºC) but can be 

dissolved at 100 ºC (Foster and Davis, 1966) and therefore it may expected that the polysaccharides 

in the cell wall of M. capsulatus (bath) cannot be dissolved in the intestine, where the temperature is 

about 37 ºC and this may affect the digestibility. Besides the membranes, which surround the cell, 

Methyloccoccus capsulatus (bath) also has an intracytoplasmic membrane system, which possibly 

plays a role in transfer of energy (Smith et al., 1970). The amino acid, lipid and carbohydrate 

composition of the cytoplasm, and different cell wall components, are not known.  

 

BPM is described as light brown/reddish with neutral smell and a particle size of 150-200 μm. 

Chemical analyses have been performed on BPM (Skrede et al., 1998; Øverland et al., 2001; 

Storebakken et al, 2004; Schøyen et al., 2005; Norferm 2005; Kjos, unpublished data) and the 

results are given in Table 1. In the same table the chemical composition of fish meal (Skrede et al 

1998) and soybean meal (SBM) are given (Kjos, unpublished data) for comparison. 
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Protein and amino acids: The crude protein content of BPM is a somewhat lower than in fish meal 

(Table 1) and higher than in SBM. The processing of the final BPM was changed during the 

experimental period. The BPM used in the pig experiment (paper C/Kjos, unpublished data) was 

pelleted and during this process 1% soy oil was added (Øverland et al., 2004). This caused a slightly 

lower crude protein content (Kjos, unpublished data). 

 

The amino acid profile is similar to that of fish meal, except that the lysine content is somewhat 

lower and the tryptophan content higher (Skrede et al., 1998). Compared to SBM the amino acid 

composition of BPM mainly differs regarding the contents of S-containing amino acids with a 

somewhat higher content of methionine but lower content of cystine, the total S-containing amino 

acids being slightly higher in BPM. For other essential amino acids only minor differences between 

SBM and BPM have been found (Table 1).  

 

Fat: About 10% of the dry matter of BPM is fat. Phospholipids make up the main lipid fraction in 

Methyloccoccus capsulatus (bath). Phosphatidylethnolamine, phosphatidylglycerol, 

phosphatidylcholine and cardiolipin make up 74%, 13%, 8% and 5% of the phospholipids, 

respectively (Makula, 1978).  The two most common fatty acids are 16:0 and 16:1 (Makula, 1978, 

Jahnke, 1992). Also steroids and squalene have been detected in Methyloccoccus capsulatus (bath) 

(Bird et al., 1971). The content of fat in the batch of BPM used in the pig experiment (paper C) was 

slightly higher, because soy oil had been added during the pelleting process (Øverland et al, 2004).  

 

Carbohydrate: Nitrogen free extract and fibre make up about 10% of the dry matter (DM) in BPM 

(Table 1) but no further information is available on the composition. In general the cell wall of 

different gram-negative bacteria is characterized mainly by different heptoses, glucose, galactose, 

N-acetylglucosamine, rhamnose and mannose as well as some unusual dideoxy sugars (Madigan et 

al. 2000).  

 
RNA and DNA: About 10% of the DM in BPM is derived from RNA and DNA. The content is low 

compared to many other single-cell proteins of bacterial origin (Braude et al., 1977; Tiermeyer et 

al., 1981; Rumsey et al., 1991; Kiessling and Askbrandt, 1993). The content of the different 

pyrimidine and purine bases in BPM has not been analysed in this experiment but the content in the 
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diets has been analysed (papers 2, 3 and 4). The mol% G + C of the DNA is 62.5% in 

Methyloccoccus capsulatus (Whittenbury and Krieg, 1984). 

 

Minerals: The ash content of BPM is lower than in fish meal and higher than in SBM. The content 

of phosphorus is high, because of the high content of RNA and DNA. The phosphorus content is 

19.5 g/kg DM (Norferm, 2005). Kjos (unpublished) has determined the content to 10.4 and 16.4 

g/kg DM in the two batches of BPM used in the pig experiment (paper C). In SBM the phosphorus 

content in the batches used in the pig experiment were 6.4 and 5.4 g/kg DM and this is somewhat 

lower than BPM. In fish meal the phosphorus content is 23.9 g/ kg DM (Andersen and Just, 1990), 

which is higher than in BPM. The differences between fish meal and BPM regarding phosphorus 

are that in BPM phosphorus is mainly found in lipids, RNA and DNA whereas in fish meal it is 

mainly found in hydroxyapatite. 

  

Energy:  The gross energy content of BPM is claimed to be 22.1 MJ/kg DM (Norferm, 2005) and in 

our laboratory the value has been determined to 24.0 MJ/kg DM. 
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Table 1. Chemical and amino acid composition of bacterial protein meal (BPM), fish meal and soy bean meal (SBM). The chemical composition is given as g/kg and 

amino acids as g/16 g N. 

 BPM Fish meal SBM 
 Norferm 

20051 
Skrede et al. 

19982 
Øverland et al. 

20012 
Storebakke et al. 

20042 
Schøyen et al. 

2005 
Kjos, 

unpublished 3,4 
Skrede et al. 

1998 
Kjos, 

unpublished 3 

Dry Matter 95.0 95.9 95.8 98.6 93.6 93.9  91.6 90.0 
Crude Protein 67.1 70.2 69.2 67.1 67.5 65.6 73.8 46.1 
Crude Fat 9.3 10.3 10 10.3  11.7 11.0 2.2 
Ash 6.7 8.1 8.0 7.9  6.9 12.0 5.7 
Crude fibre 0.7     0.6  6.5 
N-free extract 11.2     9.3  29.6 
RNA  7.3       
DNA  2.2       
         
Lysine 6.5 6.1 5.8 5.1 5.1 5.3 8.6 6.2 
Methionine 2.8 3.0 2.7 2.2 2.4 2.5 3.0 1.3 
Cysteine 0.6 0.6 0.6 0.8 0.6 0.6 0.6 1.4 
Threonine 4.7 4.8 4.4 4.1 3.8 4.1 3.3 3.8 
Tryptophan 2.2 2.1  1.9 1.7 3.0 1.0 1.4 
Leucine 7.8 7.8 7.5 7.4 7.1 7.5 8.3 7.8 
Isoleucine 4.8 4.8 4.5 4.0 3.7 4.5 5.0 5.0 
Valine 6.4 6.1 5.8 5.5 5.7 6.0 5.4 5.2 
Tyrosine 3.7 3.8 3.6 3.3 3.4 3.7 3.1 4.2 
Phenylalanine 4.7 4.4 4.2 4.4 3.9 4.0 4.2 5.1 
Histidine 2.6 2.3 2.3 1.9 2.0 2.3 2.2 2.8 
Arginine 6.2 6.4 6.2 5.6 6.0 6.5 6.9 7.6 
Alanine 7.4 7.3 6.9 6.5 7.9 7.0 6.2 4.4 
Aspartic acid 9.2 9.1 8.5 8.1 8.0 8.3 11.3 11.6 
Glutamic acid 10.9 10.9 10.3 9.6 10.0 11.1 11.7 19.7 
Glycine 5.1 5.3 4.9 4.6 4.5 5.0 6.9 4.3 
Proline 4.5 4.3 4.0 3.6 3.5 3.7 5.0 5.1 
Serine 3.8 3.8 3.5 3.5 3.2 3.4 3.9 5.4 
1 Data given by Norferm DA, Tjeldbergodden, N-6699 Kjørsvigbugen, homepage: www.norferm.no. 
2 Experimentally produced batch. 
3 Average of analyses performed on the two batches used in the pig experiment (paper C).  
4 Commercially produced batch, which has been pelleted. During the pelleting process 1% soy oil has been added. 
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Characteristics of the species used in the experiments 
 

Three different species were used in the experiments: The mink (Mustela vison), which belongs to 

the group of mustelidae, the chicken (Gallus domesticus), which belongs to the group of birds and 

the pig (Sus scrofa), which belongs to the group of artiodactyla (Stevens and Hume, 1996). The pig 

and the chicken are ominvores and ingredients used for diet manufacturing for these species were 

almost the same. The mink is a carnivore and the diets are mainly based on offal from the fish 

industries and abattoirs and different dry animal by-products.   

 

When chickens are hatched they can be fed the same type of diets as fully-grown chickens. In 

comparison, mink and pigs give birth to offspring at an earlier stage of development than the 

chickens and they have to suckle their young. The length and capacity of their digestive tracts 

increase during the prenatal development (Stevens and Hume, 1996). Mink kits are born more 

immature than piglets. At birth the mink kits are blind, nearly hairless, undeveloped 

thermoregulation and with very limited locomotor abilities (Tauson, 1994). Therefore, BPM in the 

mink and pig experiment first was introduced after weaning. Mink kits used in the experiment 

(paper A) were weaned 6 weeks after birth and the piglets were weaned during their 5th week of life 

(paper C). 

 

The three experiments were terminated at different stages of growth and comparison of data 

between species has therefore to be done with caution. The last balance period in the mink 

experiment was conducted in November, where the mink is expected to have reaced mature size 

(Hansen et al., 1991). In the chicken experiment the last period was conducted when the animals 

where 30 to 34 days old and weighed about 2.1 kg. The highest growth rate of Ross chickens is 

obtained around day 40 after hatching (Ross, 2002) and this is in agreement with Chwalibog et al. 

(1985), who determined the age of maximum nitrogen retention to 45 days after hatching. The last 

period in the pig experiment was conducted when the pigs weighed around 80 kg and this was 

lower than the normal weight of mature body size. Whittemore et al. (1988) have shown that the 

highest retention of nitrogen was reached for pigs with a body weight of about 75 kg. Furthermore 

Chawlibog et al. (1996) have shown the highest retention of nitrogen to occur at 98 kg for pigs of 

both sexes and Tauson et al. (1998) to be about 135 kg for intact boars. 
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Furthermore, the genetic selection criteria for of the animals are different: The chicken is mainly 

selected for a fast growth rate and high feed utilisation (Christensen, 1999). Pigs are also selected 

for this purpose but also a high meat content and number of pigs per litter are parts of the selection 

program for Danish pigs (Lauritsen, 2005). The mink is mainly selected for body size but not feed 

utilisation because a bigger mink has a bigger skin (Christensen, 1999).  

 

Anatomic and physiological differences 

 

From Figures 1a, 1b and 1c it is clear that the anatomy of the three animals also differ. The mink 

has a very short gastrointestinal tract and the length about 4 times the length of the animal (Tauson, 

1988). In pigs the gastrointestinal tract is 14 times the body length (Argenzio, 1995). In the chicken 

the length of the gastrointestinal tract of 3 kg broiler is 217 cm (Denbow, 2000), if the chicken is 

about 46 cm in length (Stevens and Hume, 1996), the gastrointestinal tract is about 5 times longer 

than the animal, which is less than in the pig and nearly the same as the mink. However, the chicken 

gastrointestinal tract differs from that of the mink. Chickens have two ceacas with a length of about 

20 cm, whereas the mink has no cecum at all. In the cat, which has a gastrointestinal tract which is 

very similar to the mink, the small intestine makes up 83% of the total length of the intestine, in 

pigs it is 78% (Argenzio, 1995) and in chickens 93% (Denbow, 2000).  

 

The role of the colon in the chicken differs from both the mink and pig (Denbow, 2000). The 

chicken has not separate excretion of faeces and urine as the mink and pig but it excrets both 

residues from digestion of feed and urine as droppings. The ceacas are important in for digestibility 

of nutrients chicken. Urine from the cloaca can be carried into the ceacas where it can be degraded 

by micro organism (Denbow, 2000). In the pig colon undigested material can be degraded by micro 

organisms. In the mink the content of microbes in the intestine is much lower than in the pig 

(Williams et al., 1998). 

 

The metabolism of nutrients and importance of the different nutrients in the energy metabolism also 

differed between the animals. There are however, two things, which are of importance in 

connection with our experiments. The first is the excretion of nitrogen. In mink and pigs nitrogen is 

excreted as urea and ammonium and purine bases are decomposed to allantoin (Figure 2). In the 

chicken nitrogen is mainly excreted as uric acid and purine bases are also decomposed to uric acid.  
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The α-amylase activity in the mink intestine is low (Elnif et al., 1988) and also microbial activity is 

low (Williams et al., 1998). Mink can therefore only digested simple carbohydrates and to ensure 

the glucose homoeostasis the supply of amino acids has to be high. The oxidation of protein is 

therefore often higher in mink than in pigs (Chwalibog et al., 1998).  

 

 

 

 

 

 

 

 

 

Figure 1. Gastrointestinal tract of the mink (a), chicken (b) and the pig (c) from Stevens and Hume 

(1996). 

 

 

 

a) c) b) 
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Material and methods 
 

The experimental designs, diets and methods are described in details in papers A, B, C, D. 

However, some further diet information on diet composition is given in Table 2. In the general 

discussion the diets are numbered differently from the papers and in Table 2 both the numbers used 

in the general discussion and the numbers used in the respective papers are given. In general, the 

energy metabolism has been calculated in kJ except for all values in paper B being presented in kcal 

because of journal standards. All values regarding energy metabolism in the general discussion are 

given in kJ.  

 
Table 2. Content of bacterial protein meal (BPM) and nitrogen as is and on dry matter (DM) basis, % nitrogen (N) 

derived from BPM and purine and pyrimidine bases and diet codes used in the general discussion and in the papers. 

Diet codes used in the general 

discussion 
M1 M2 M3 M4 C1 C2 C3 C4 P11 P21 P31 P41 

Composition and chemical content of the diets          

BPM content as is 0 4.5 9.0 13.5 0.0 2.0 4.0 6.0 0 5.2 10.1 15.3 

DM 39.4 39.4 39.6 40.2 90.3 90.3 90.4 90.6 91.9 91.7 91.8 91.6 

Nitrogen as is 2.5 2.4 2.4 2.4 3.7 3.5 3.4 3.4 3.2 3.2 3.2 3.3 

BPM on DM basis 0.0 11.4 22.7 33.6 0.0 2.2 4.4 6.6 0.0 5.7 11.2 16.9 

Nitrogen on DM basis 6.3 6.1 6.1 6.0 4.1 3.9 3.8 3.8 3.5 3.5 3.5 3.6 

% of N derived from BPM 0 20 40 60 0 7 13 20 0 17 35 52 

% of N derived purine and 

pyrimidine bases 
5.8 7.7 9.9 11.2 2.9 3.6 4.1 4.9 2.7 5.6 7.7 9.7 

Diet codes used in             

Paper A Diet I Diet II Diet III Diet IV         

Paper B     D0 D2 D4 D6     

Paper C         BP0 BP5 BP10 BP15

Paper D M1 M2 M3 M4     P1 P2 P3 P4 
1 In the pig experiment both starter and growing-finishing diets were used (paper C). The protein level was slightly 

lower in the growing-finishing diet than in the starter diet. The values given in the table are the highest value of the two. 
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Summary of papers presented 
 

A. Nitrogen and energy balance in growing mink (Mustela vison) fed different levels of 

bacterial protein meal produced with natural gas 

 

The aim of the experiment was to evaluate how increasing dietary content of BPM affected nitrogen 

and energy metabolism and water turnover. 

 

Sixteen male mink kits of the standard brown colour type were randomly fed one of the four 

experimental diets. One diet served as control diet (diet I) and high-quality fish meal was replaced 

with increasing levels of BPM on basis of digestible nitrogen so 20% (Diet II), 40% (Diet III) and 

60% (Diet IV) of the digestible nitrogen derived from BPM. These diets were fed during the five 

balance periods as close as possible to ad libitum feeding. Nitrogen balance, water balance and 

respiration experiments (indirect calorimetry) were conducted when the mink kits were in their 

respective 10th (period 1), 15th (period 2), 18th (period 3), 24th (period 4) and 29th (period 5) week of 

life. 

 

The feed intake on Diet IV was significantly lower than on the other diets. The intake of nitrogen on 

Diet IV was also lower but the differences were not significant (P=0.07). The water balance was the 

same on all diets but intake of drinking water and faecal water increased whereas dietary water and 

urinary water decreased with increasing BPM content in the diet. The apparent digestibility of 

nitrogen, fat, carbohydrates and energy decreased significantly with increasing dietary content of 

BPM. The retained nitrogen was 0.45, 0.54, 0.52 and 0.40 g/kg0.75 on Diets I, II, III and IV, 

respectively, the observed differences between diets being non-significant (P = 0.06). The amount 

of metabolisable energy available for production was significantly reduced on diet IV (P = 0.001).   

Although mink kits on diet IV have a lower feed intake the heat production (HE) was the same on 

all diets (P = 0.78). HE was lowest on diet II with 645 kJ/kg0.75 and highest on diet I with 665 

kJ/kg0.75. Retained energy was approximately 150–160 kJ/kg0.75 on Diets I to III, whereas it was –11 

kJ/kg0.75 on Diet IV, the differences being significant (P < 0.001). The amount of HE from 

oxidation of protein decreased from 32.7% on Diet I to 26.6% on Diet IV, and oxidation of fat 

increased from 53.8% on Diet I to 63.5% Diet IV. It was concluded that up to 40% of the digestible 

protein could be derived from BPM.  
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B. Effect of bacterial protein meal on protein and energy metabolism in growing chickens 

 

The aim of this study was to evaluate whether increasing dietary content of BPM in the diet affected 

the nitrogen and energy metabolism and the carcass composition of growing slaughter chickens. 

 

Seventy-two Ross male chickens were randomly allocated to four experimental diets, each in three 

replicates. One of the diets served as control diet with no BPM (D0). In the other diets fish meal 

was replaced by BPM on basis of nitrogen content and about 6.5% (D2), 13.2% (D4), and 19.9% 

(D6) of the nitrogen was derived from BPM. Five balance periods were conducted when the 

chickens were 3–7, 10–14, 17–21, 23–27, and 30–34 days old. During the same periods, 22-hour 

respiration experiments (indirect calorimetry) were performed with groups of 6 chickens (period 1), 

5 chickens (period 2), and 1 chicken (periods 3–5). After each balance period, one chicken in each 

cage was killed and the carcass weight was recorded. Chemical analyses were performed on the 

carcasses from periods 1, 3, and 5. 

 

Weight gain, feed intake, and feed conversion rate were found to be similar for all diets. Intake of 

nitrogen was the same on the diets with BPM, which were significantly lower than the control diet 

(P = 0.01). This was caused by somewhat higher nitrogen content in the control diet. The higher 

intake of nitrogen also led to higher nitrogen retention on D0 (1.59 g N/kg0.75/day). The nitrogen 

retention on D2, D4, and D6 were 1.44 g, 1.52 g, and 1.50 g N/kg0.75/day, respectively and did not 

differ significantly. The amount of metabolisable energy available for production was the same on 

all diets (P = 0.39). The heat production was not affected by diet (P = 0.92) and was between 189 

kcal (792 kJ)/kg0.75/day (D6) to 210 kcal (877 kJ)/kg0.75/day (D4). The energy retention was also the 

same on all diets (P=0.88). The respiratory quotient was between 0.92 and 0.94 and was not 

affected by diet (P = 0.90). Oxidation of fat and carbohydrates was the same on all diets. The dry 

matter, nitrogen, fat and energy content of the carcasses were the same for all diets and this was in 

line with the findings for protein and energy metabolism of the study. It was concluded that up 20% 

of the nitrogen could be derived from BPM without negative effects on the overall nitrogen and 

energy metabolism in chickens.  
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C. Bacterial protein meal in diets for growing pigs – effects on protein and energy metabolism 

 

The aim of this study was to investigate the effect of increasing dietary content of BPM on the 

protein and energy metabolism in pigs from weaning until a live weight of 80 kg. 

 

Four litters with four castrated male pigs were bought when the pigs weighed about 8 kg. The litters 

were divided into two blocks according to time of weaning. A pig from each litter was fed one of 

the four experimental diets. Soybean meal was replaced with BPM on basis of digestible protein, 

and the BPM contents were 0%(BP0), 5%(BP5), 10%(BP10) and 15%(BP15) in the four diets, 

corresponding up to 0%, 17%, 35% and 52% of the digestible nitrogen derived from BPM, 

respectively. Four balance periods were conducted when the pigs weighed 9.5 kg, 20.7 kg, 45.3 kg 

and 77.2 kg at the start of the respective balance periods. During the same periods 22-hours 

respiration experiments (indirect calorimetry) were performed. 

 

Weight gain, feed intake and feed conversion rate as well as the intakes of nitrogen and energy were 

the same for all diets. The apparent digestibility of nitrogen was significant lower on BP10 than on 

BP0 whereas the apparent digestibility of energy and carbohydrates were similarly on all diets. 

Apparent digestibility of fat increased significantly with increasing BPM. The amount of digestible 

nitrogen was significantly lower on BP10 than on BP5 but this did not affect the retention of 

nitrogen, which was 1.50, 1.53, 1.33 and 1.46 g N/kg0.75 on BP0, BP5, BP10 and BP15, 

respectively. The utilisation of digestible nitrogen for retention was lowest on BP10 but did not 

differ significantly from the other diets (P = 0.15). Neither metabolisable energy (P = 0.22) nor heat 

production (P = 0.29) were affected by diet. Retention of energy was 620, 696, 613 and 664 

kJ/kg0.75, differences being non-significant (P = 0.25). N-free respiratory quotient was between 1.04 

on BP10 and 1.07 on BP0, which indicates that the pigs have retained fat. About 15% of the heat 

production came for protein oxidation, about 4% from fat oxidation and the rest from oxidation of 

carbohydrates, differences between diets being non-significant. It was concluded that the overall 

protein and energy metabolism in growing pigs were not affected when up to 50% of the dietary N 

was derived from BPM. 
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D. Bacterial protein meal in diets for pigs and mink – protein turnover and urinary excretion 

of purine base derivatives 

 

The aim of this study was to see how increasing levels of dietary BPM to mink and pigs affected the 

protein turnover and nucleic acid and creatinine metabolism. 

 

In each experiment sixteen animals were allocated to four experimental diets. One of the diets 

served as control diet without BPM (Mink(M)1, Pig(P)1) and then increasing levels of BPM 

replaced fish meal (mink) or soybean meal (pig) so that up to 17% (P2), 20% (M2), 35%(P3), 40% 

(M3), 52% (P4), and 60% (M4) of the digestible N was derived from BPM. In the mink experiment 

the five balance periods were conducted when the animals where in their respective 10th (period 1), 

15th (period 2), 18th (period 3), 24th (period 4) and 29th (period 5) week of life. In the pig experiment 

four balance periods were conducted when the animals weighed about 10.1 ± 1.8 kg (period 1), 21.9 

± 4.0 kg (period 2), 47.6 ± 4.7 kg (period 3) and 79.3 ± 5.0 kg (period 4). The content of creatinine 

and purine base derivatives were determined in the collected urine. The protein turnover was 

measured in all balance periods in the mink experiment. In the pig experiment it was only measured 

in periods 2 and 4. The protein turnover was measured by means of the end-product methods using 

[15N]glycine as tracer and urinary nitrogen as end-product. 

 

In mink the protein flux, synthesis and breakdown increased significantly with increasing dietary 

level of BPM. In the pig no diet effects were observed on the protein turnover. The net protein 

synthesis in the mink (P = 0.08) and pig experiments (P = 0.65) was not affected by diet. The intake 

of nucleic acid nitrogen (NAN) increased from 0.15 g/kg0.75 on M1 to 0.26 g/kg0.75 on M3 and M4 

in the mink experiment and from 0.08 g/kg0.75 on P1 to 0.33 g/kg0.75 on P4 in the pig experiment. 

The increased intake of NAN led, in both experiments, to an increased excretion of allantoin. 

Analysis of the species effects showed that the mink excreted 1.72 g/kg0.75 of allantoin, which was 

significantly more than the pig, which excreted 0.95 g/kg0.75 of allantoin. In mink about 96% of the 

excreted purine base derivates was allantoin whereas it in pigs was 93%. The mink excreted more 

purine base derivatives than ingested purine bases whereas the pigs on M2, M3 and M4 excreted 

less than ingested. It was concluded that increasing dietary content of BPM increased the protein 

turnover in mink but not in pigs. The excretion of allantoin increased with increasing dietary 

content of BPM
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General discussion 
 

During the three experiments measurements were carried out on the same animals four to five 

times. In general, the period effects can be explained by the physiological development of the 

animal. Only in few cases an interaction effect between diet and period were found. These effects 

could not be related directly to the BPM in the diet.  

 

Performance 

 

In the mink experiment the diets were only fed during the balance periods, which consisted of an 

adaptation period and a balance period (paper A). As the experimental diets only were fed during 

short periods it is not possible to conclude anything about the performance of the animals. Ahlstrøm 

et al. (2002) observed a decreased performance of mink kits during the first weeks after weaning 

when they were fed a diet with 8% BPM, corresponding to 42% of the nitrogen was derived from 

BPM.  

 

In the chicken and pig experiments the animals were fed the experimental diets from the start to the 

end of each experiment (papers B and C). No differences were observed in growth rate, feed intake 

and feed utilisation. Skrede et al. (2003) have observed the same performance in chickens as long as 

the diet contained less than 6% BPM, corresponding to 20% of the nitrogen derived from BPM. 

Øverland et al (2004) have used the same diets as used in our pig experiment and have observed a 

somewhat lower growth rate of pigs fed P4 in the piglet period. However, body weight gain and 

feed intake were also registered between balance periods in the pig experiment (unpublished data) 

and our data could not confirm the findings by Øverland et al. (2004). 

 

Intake of feed and nutrients 

 

The feed intake on the different experimental diets was similar within species except on M4 in the 

mink experiment (paper A). The lower feed intake on M4 was observed in all five balance periods 

conducted. In the first period the feed intake on M4 was only 0.56 of the intake on M1. However, 

the weight of the animals on M4 was also significantly lower than on M1 and M2. If this was taken 

into account and the feed intake was calculated on basis of metabolic body size the differences were 
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less pronounced, but still in period 1, 4 and 5 the intake on M4 was only 0.75-0.8 of the intake on 

the control diet (M1). It is not known why the feed intake on M4 was depressed. However, a 

depression in feed intake has also been observed on diets with methanol-grown bacterial protein in 

mink (Helgebostad, 1976; Skrede, 1976) and chickens (D’Mello and Acamovic, 1976; Plavnik et 

al., 1981). It was observed that the mink diets got stickier with increasing dietary content of BPM, 

findings concurring with Helgebostad (1976) for a diet based on methanol-grown bacterial protein. 

D’Mello and Acamovic, (1976) and Plavnik et al., (1981) related this stickiness to the adhesive 

properties of the protein, when it was moistened. In the pig experiment the pelleted diets were 

suspended in water (paper C) and no differences in consistency were observed between diets.  

The differences in consistency with increasing dietary BPM content observed in the mink 

experiment but not in the pig experiment may be an effect of the manufacturing process and the 

ingredients in the diets. The pig diets were manufactured as dry diets and then suspended in water 

whereas the mink diets were manufactured as wet diets. The BPM content on M4 in the mink 

experiment was 34% on DM basis, which was much higher than the 17% on P4 in the pig 

experiment (Table 2). Also ingredients used for diet composition differed, in the pig diets mainly 

vegetable ingredients were used whereas in the mink diets mainly ingredients of animal origin were 

used. 

 

The intake of nitrogen (IN) on basis of metabolic body size was the same on all diets in the mink 

experiment (paper A: Table IV) and also in the pig experiment (paper C: Table 4). In the chicken 

experiment higher N content on C1 compared with the other diets affected IN (Table 2). The IN 

was, however, the same on all diets with BPM (paper B: Table 4).  

 

The content of essential amino acids in the diets in both the chicken and pig experiment did not 

fulfil the requirements given by NRC (1994 (chicken), 1998 (pig)). This has caused a weak and 

non-significant depression in the RN and utilisation of both IN in the first balance period in the 

chicken experiment (paper B) and digested nitrogen (DN) for RN in the first and second balance 

periods in the pig experiment (paper C). In the chicken experiment the biggest differences 

compared to requirements given by NRC (1994) and Ross (2000) were on C3 and C4.  In the pig 

experiment the lysine level decreased with increasing dietary content of BPM (paper C: Table 2) 

but the ideal amino acid pattern was fulfilled for all diets (NRC, 1998). 
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Water metabolism 

 

The quantitative water metabolism was only measured in the mink experiment. Neither the water 

balance nor the total intake and the total excretion of water were affected by diet (paper A, Figure 

1). If the intake was divided into intake of dietary water and drinking water diet M4 differed 

significantly from the other diets. On this diet the intake of dietary water was significantly lower 

than the other diets and the intake of drinking water was significantly higher on M4 than on M2 and 

M3. Also the distribution of the excreted water between urine and faeces was influenced by BPM: 

the excretion of faecal water increased and urinary water decreased with increasing dietary content 

of BPM. In chickens the litter quality is of great importance for the health and slaughter quality of 

the animals. In this study, analyses of the water content in droppings did not differ and neither did 

the quantity of droppings (unpublished data). This concurred with the results by skrede et al (2003), 

which either have observed the same or better litter quality in chickens fed diets with BPM. In the 

pig experiment the total amount of urine and faeces excreted and water content in faeces were the 

same regardless of dietary BPM content. From the water excretion data from the chicken and pig 

experiments, it may be concluded that BPM only caused differences in the water turnover in the 

mink experiment. The changes in water turnover in the mink were probably caused by the lower 

apparent digestibility of nutrients, which probably have led to a higher water binding capacity of the 

intestinal content. The higher water intake on M4 was therefore an effect of the higher faecal water 

excretion. In mink kits Neil (1986) has shown that water absorbents increased faecal water 

excretion as well as the intake of drinking water. Material not degraded by endogenous enzymes 

can be degraded by microbes in the colon of the pig and the caeca of the chicken and it is probably 

therefore the water excretion through faeces and droppings not was affected in these two species. 

The mink has a colon (Figure 1) but the colon is short and the content of microbes is considerably 

lower than i.e. the pig and chicken (Williams et al., 1998) and therefore the digestibility of i.e. 

fibres is low (Børsting et al., 1995; Ahlstrøm and Skrede, 1998; Skrede et al., 2001).  

 

Digestibility 

 

The apparent digestibility of nitrogen (ADN) in the mink and pig experiments was negatively 

affected by dietary BPM. The effect was most pronounced in the mink where the ADN decreased 

from 83.3% on M1 to 77.2% on M4. In the pig the faecal ADN only decreased from 78.2% on P1 to 
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75.8% on P4 but the differences were significant. This concurred with findings in the blue fox by 

Vhile et al. (2005), who have shown that there was a decrease in ADN of a diet with BPM 

compared with fish meal but not SBM or meat meal. The ADN of BPM in the mink experiment was 

by linear regression determined to 64.5% in period 1 and between 73.6% and 75.8% in periods 2 to 

5 (paper A, Figure 2), which is lower than the 79% found by Skrede et al. (1998) and 82.3% found 

by Schøyen et al. (2005). The ADN of high-quality fish meal is between 82-87% (Ahlstrøm et al., 

2004) and therefore the observed decrease in ADN with increasing BPM content in the mink 

experiment may be expected. The ileal ADN of BPM has not been determined in the pig experiment 

but Skrede et al. (1998) has determined it to 78.1%. This is slightly lower than the ileal ADN of 

SBM, which is between 79-80% (Pedersen and Boisen, 2002). The slightly lower decrease of ADN 

in the pig experiment than in the mink experiment is therefore in agreement with the slightly lower 

differences between ADN of BPM and SBM than between BPM and fish meal. 

 

The lower ADN of BPM compared with both fish meal and SBM is probably related to the cell 

walls and membranes of M. capsulatus (Bath). Compared with other bacteria M. capsulatus (Bath) 

have internal membranes, which play a roll in the energy transfer in the cell (Davies and 

Whittenbury, 1970; Smith et al., 1970). The cell walls and internal membranes have probably a 

lower ADN than the cytoplasm. Schøyen et al. (2005) have investigated the effect on ADN in mink 

fed diets with either autolysed or hydrolysed BPM separated into two fractions depending on the 

molecular size. The low molecular fraction of both autolysed and hydrolysed BPM had a higher 

ADN and apparent amino acid digestibility than the high molecular fraction. The high molecular 

fraction was probably also the fraction, which had the highest content of residues from the cell 

walls and internal membranes. Digestibility studies in mink fed M. capsulatus (Bath) grown on 

methanol have shown a somewhat higher ADN than BPM and this is probably because of a lower 

content of internal membranes in the methanol grown M. capsulatus (Bath) (Skede, unpublished 

data). Autolysis of BPM could not alleviate the depression effect of membranes in M. capsulatus 

(Bath) (Schøyen et al., 2005).  

 

The apparent fat digestibility (ADF) differed between the mink (paper A: Table 3) and pigs (paper 

C: Table 3). In the mink the digestibility decreased and in the pig it increased with increasing 

dietary content of BPM. The fat content of the pig diet was rather low and increased slightly with 

increasing content of dietary BPM and therefore endogenous loss may have affected the ADF 
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(Jørgensen et al., 1992; 1993). If the endogenous loss of fat was 4.4 g/kg DM (Jørgensen et al., 

1993) the calculated true digestibility of fat still increased significantly with increasing dietary 

content of BPM (paper C). In the blue fox the ADF was the same in diets with and without BPM 

(Vhile et al., 2005; Skrede and Ahlstrøm, 2002). Therefore the decrease in ADF in the mink 

experiment could not be explained by the current knowledge of BPM. 

 

The apparent digestibility of carbohydrates (ADCHO) decreased significantly with increasing 

dietary BPM in the mink but did not differ between diets in the pig. Skrede and Ahlstrøm (2002) 

could not show any differences in ADCHO in the blue fox whereas Vhile et al. (2005) have shown 

a slightly higher ADCHO in the BPM containing diet compared with the diet with SBM. BPM 

contains about 12% nitrogen free extract and fibre (Table 1). The carbohydrate content derived 

from BPM differed considerably in the mink and pig diets. On M4 in the mink experiment 10.5% of 

the carbohydrates were derived from BPM whereas the content on P4 in the pig experiment was 

about 3.2%. This and the shorter colon, rapid transit time (Hansen, 1978; Charlet-Lery et al., 1981), 

lower content of microbes in the intestine (Williams et al., 1998) and the lower digestibility of 

fibres (Børsting et al., 1995; Ahlstrøm and Skrede, 1998; Skrede et al., 2001) may be the 

explanation for the lower ADCHO in the mink experiment. Furthermore, it may be expected that 

the cell wall carbohydrates have a low solubility in the intestine (Foster and Davis, 1966). 

 

It may be concluded that nutrients digestibility in the mink is more depressed than the pig with 

increasing dietary BPM content. It was probably because the control protein differed between the 

pig and mink experiment but also the shorter intestine in mink (Figure 1), the rapid transit time in 

the mink (Hansen, 1978, Charlet-Lery et al., 1981) and the lower content of microbes in the mink 

intestine than the pig intestine (Williams et al., 1998), which have caused the more pronounced 

depression in the mink. The digestibility of nutrients in the chicken was not investigated in the 

chicken experiment but the ADN would probably have been nearly the same on C4 and C1, because 

ADN of BPM fed to chickens is slightly higher than ADN of BPM fed to the mink (Skrede et al., 

1998) and the dietary content of BPM in the chicken experiment was considerably lower compared 

with the diets in the mink experiment (Table 2).  
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Nitrogen metabolism 

 

Both on M4 in the mink experiment (paper A:Table IV) and on P3 in the pig experiment (paper C: 

Table 4) the lower ADN together with a somewhat lower IN led to a lower level of DN. The diets 

with the lowest DN also had the lowest retention of N (RN). The RN in the mink experiment was 

between 0.40 g/kg0.75 (M4) and 0.54 g/kg0.75 (M2). In the pig experiment RN was between 1.33 

g/kg0.75 (P3) and 1.53 g/kg0.75 (P2). In both experiments the differences were non-significant and the 

P-value was 0.08 in both experiments. In the chicken experiment RN was between 2.58 g/kg0.75 

(C3) and 2.75 g/kg0.75 (C1) and the differences were significant. The higher RN on C1 was probably 

caused by higher nitrogen content on C1. The diets with BPM did not differ from each other and it 

may be concluded that BPM did not lead to any changes in RN. In all three experiments increasing 

dietary content of BPM did not lead to a linear changes in RN. The data also indicate that the 

capacity for protein synthesis in the three species differed considerably on basis of metabolic body 

size. 

 

From our data it was not possible to evaluate whether or not the animals have utilised nucleic acid 

nitrogen (NAN) for nitrogen retention. All diets met or exceeded the minimum protein content for 

the species (Hansen et al., 1991; NRC 1994; 1998). The content of NAN in the diets with the 

highest inclusion level of BPM were about 11% (Mink), 5% (Chicken) and 10% (Pig). Animals can 

synthesize non-essential amino acids from non-protein nitrogen (Eggum and Christensen, 1973). 

Studies with chickens have shown that purine and pyrimidine bases, within certain limits, can be 

used as a non-specific source of N for synthesis of non-essential amino acids. Provided the supply 

of essential amino acids was covered (D’mello, 1979 and 1986). The same has been shown in pigs 

fed yeast RNA (Roth and Kirchgesser, 1977a and 1978).  

 

The RN differed among species; chickens had the highest RN, pigs were intermediate and mink had 

the lowest RN on basis of metabolic body size. Chickens also had the highest IN and mink the 

lowest. The utilisation of IN or DN for RN also differed between species. Chickens had a utilisation 

of IN for RN between 62.6% and 64.3% (paper B, Table 4), pigs have a utilisation of DN for RN 

between 54.4% and 59.8% (paper C, Table 4) and the utilisation of DN for RN in the mink was 

about 20%. The chickens not only had the highest retention but also the highest utilisation. In 

comparison with the pig and mink the chicken only got 5% of the nitrogen from NAN on C4 and it 
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can be speculated whether a higher dietary content of BPM would have led to a decreased RN 

because the pool of digested amino acids then would have decreased.  

 

Both in the mink and the chicken there were interactions between diet and period for RN (papers A 

and B). In the mink RN on M4 in the first period was about 50% of the other diets, which was 

related to the lower feed intake observed in this period (paper A). In chickens the RN on C4 was 

also lowest in the first period but here it was supposed that it was a under supply of essential amino 

acids than required rather than BPM that has led to this decrease (paper B). 

 

Protein turnover 

 

The protein turnover was measured by means of the end-product methods using [15N]glycine as 

tracer in the mink and pig experiment (paper D). The species differences in supply of IN were also 

reflected in the turnover. The synthesis in the mink experiment increased significantly from 15.0 g 

protein/kg0.75on M1 to 20.3 g protein/kg0.75 on M4, and in the pig experiment the synthesis was 

between 30.8 g protein/kg0.75 (P4) and 34.0 g protein/kg0.75 (P1) but in contrast to the mink the 

differences were non-significant (paper D: Tables 3 and 4). 

 

The species differences in protein turnover with increasing dietary content of BPM can probably be 

related to the amino acid composition. The pig diets were balanced regarding the amino acid 

composition. In the mink diets no attempts were made to balance the amino acid content, but the 

supply of all essential amino acids may be expected to meet, or exceed the requirements of the mink 

as the protein level was higher than recommended (Hansen et al., 1991). From studies in pigs it is 

known that diets with same protein level but increasing content of essential amino acids increased 

the protein synthesis and breakdown (Gotterbarm et al., 1998). If the amino acid composition of 

BPM and fish meal as given by Skrede et al. (1998) is compared, the supply of methionine, cystine, 

tryptophan and threonine increased with BPM content in the diet.  

 

The protein synthesis in the mink experiment was higher than the protein synthesis determined for 

adult cats fed a high protein diet (Russell et al., 2003). However, there were some differences in the 

experiments, which may explain the differences observed. First of all the protein turnover may 

differ between the mink and the cat. The protein turnover for last balance period in the mink 
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experiment was still higher than the protein turnover for the adult cats, measured by Russell et al. 

(2003), although it is expected that the mink have reached their mature body size at this point. The 

protein synthesis may be overestimated in our experiment because 24 hours was used as cut-off 

time for excretion of label. Furthermore, Russell et al. (2003) calculated their synthesis on basis of 

excreted label in urea and ammonium whereas we used total N. 

 

The measured protein flux, synthesis and breakdown in the pig experiment was slightly higher than 

the measurements made by Gotterbarm et al., (1998), Roth et al. (1999), Windisch et al. (2000) and 

Saggau et al. (2000). The higher protein synthesis can be an effect of higher protein intake in this 

experiment compared with Gotterbarm et al., (1998), Roth et al. (1999), Windisch et al. (2000) and 

Saggau et al. (2000), because an increase in protein intake also increase the protein turnover (Reeds 

et al. 1980, 1981; Fuller et al. 1987). 

 

Nucleic acid metabolism 

 

In the chicken (paper B: Table 2) and the pig (paper C: Table 2) experiments the intake of NAN 

increased with increasing BPM content of the diet. The same would have occurred in the mink 

experiment, if the feed intake on M4 has been the same as on the other diets (paper D: Tables 1 and 

5). The differences in supply of NAN between the diets with the highest level of BPM and the 

control diet were greatest in the pig experiment, followed by the mink and then the chicken. 

 

Inntake of both purine bases and the three pyrimidine bases increased significantly in the pig 

experiment (paper D: Table 6). In the chicken guanine intake was nearly the same on all diets and 

the thymine intake was highest on C3 but did not differ significantly from C4 (paper B: Table 3). In 

the mink experiment intake of guanine was significantly lower on M4 compared with M3 and the 

intake of thymine decreased with increasing dietary content of BPM (paper D: Table 5). The 

content of the different purine and pyrimidine bases may depend on the feedstuff (Clifford and 

Story, 1976; Tiemeyer et al., 1981; Herbel and Montag, 1987; Lassek and Montag, 1990). In the 

mink experiment the content of thymine in fish meal may have been considerably higher than in 

BPM. 
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The digestibility of RNA and DNA in pigs and chickens has been shown to be high (Greife and 

Molnar, 1980, Roth and Kirchgessner, 1978, Shannon and McNab 1973). Barnard (1969) has in the 

cat, which also is a strict carnivore, shown that RNA is well digested although the content of 

pancreatic ribonuclease was considerably lower than in the pig and chicken. The digestibility in the 

mink is probably also high and this is supported by the fact that the excretion of purine derivatives 

in the mink increased with increasing dietary content of BPM. The digested RNA and DNA are 

mainly absorbed as different nucleosides and free purine and pyrimidine bases, and already in the 

enterocytes the catabolism of the nucleosides, purine and pyrimidine bases towards their end 

products begins (Figure 2 and 3) (Wilson and Wilson, 1958, 1962).  

 

The purine bases are decomposed to allantoin in the mink and the pig whereas in the chicken it is 

only decomposed to uric acid (Figure 2). However, small amounts of uric acid, xanthine and 

hypoxanthine were also found in the urine (paper D: Tables 5 and 6). The pyrimidine bases can be 

decomposed to metabolites which can enter the citric acid cycle or fat metabolism (Michal, 1999), 

except for cytosine, which either is excreted into urine or degraded by microbes in the intestine 

(Heaf and Davis, 1976; Kozak et al., 1980). 

 

From the purine base derivatives excretion data and intake of purine bases it is possible to calculate 

whether or not the animal has excreted more purine derivatives than ingested. On all mink diets and 

on the pig control diet more purine base derivatives than ingested were excreted. On P2, P3 and P4 

in the pig experiment less than ingested were excreted. The total excretion of purine base 

derivatives was 1.8 g/kg0.75 in mink and 1.0 g/kg0.75 in the pig although they had nearly the same 

intake (paper D: Table 7). The purine bases not found in urine in pig can probably have been 

retained in the pig body. Studies on the purine metabolism in the pig have shown that up to 40% of 

(8-C14)-adenosinemonophosphate (AMP) and 15% of the (8-C14)-guanosinemonophosphate (GMP) 

was retained in the body (Greife and Molar, 1984a). However, Greife and Molar (1984a) have also 

found label in breath and gastrointestinal tract content. Label in breath was derived from AMP and 

GMP, which have been microbially decomposed to CO2 and NH3. Label in the gastrointestinal 

content derived either from unabsorbed GMP and AMP or metabolites, which have been excreted 

into the gastrointestinal tract (Sørensen, 1960, Berlin and Hawkins, 1968). It can be concluded that 

the pigs probably have retained some of the dietary purine bases, but that excretion of purine 

derivatives into the gastrointestinal tract may also act as an important excretion route (Greife and 
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Molnar, 1984a). No similar studies of that kind have been conducted in the mink, but in rats and 

chickens the retention of labelled  (8-C14)-AMP and (8-C14)-GMP have been lower than the 

retention in the pig (Greife and Molar, 1983, 1984b). It is clear from our studies of the purine base 

metabolism in the mink and pigs that retention of dietary purine bases, and the importance of the 

different excretion routes differed between species. 

 

In mink (paper D; table 5) and pig (paper D, table 6) the allantoin excretion increased with 

increasing intake of NAN. Allantoin made up 96% of the purine base derivatives excreted in urine 

in the mink whereas it was only 93% in the pig. The rest was uric acid, xanthine and hypoxanthine. 

The data suggested that the mink had a more complete metabolism of the purine bases than the pig. 

 

Creatinine 

 

The pattern of creatinine excretion differed between the mink and pig. In the mink the creatinine 

excretion decreased with increasing dietary content of BPM, but in the pig no differences were seen 

(paper D). The creatinine excretion may give some information about renal function. Intake of free 

adenine is known to depress feed intake (rats: Clifford and Story, 1976; Yokozawa et al., 1982 and 

1983; Brulé et al., 1988; chickens: Baker and Molitoris, 1974; D’Mello, 1986), increase urine 

output and decrease creatinine concentration in urine (Clifford and Story, 1976; Savaiano and 

Clifford, 1978; Yokozawa et al., 1982 and 1983; Brulé et al., 1988). Neither in the mink nor in the 

pig an increase in urine volume was recorded. It can be concluded that the level of free adenine 

never exceeded the level where it has a negative effect (Clifford and Story, 1976). 

 

Energy metabolism 

 

The gross energy intake was not affected by diet in the three experiments (paper A: Table 5, paper 

B: Table 4; paper C: Table V). Metabolisable energy (ME) was in the mink experiment between 

652 (M4) and 816 kJ/kg0.75 (M1). ME was significantly lower on M4 than the other diets. ME was 

in the chicken experiment between 1513 (C2) and 1578 kJ/kg0.75 (C4) and in the pig experiment 

between 1360 (P3) and 1442 kJ/kg0.75 (P4). The difference between diets in the chicken and pig 

experiment was non-significant.  
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The HE was not affected by diet in the experiments. HE was between 619 (M2) and 644 kJ/kg0.75 

(M4) in the mink (paper A: Table V), 792 (C4) and 877 kJ/kg0.75 (C3) in the chicken (paper B: 

Table 4) and 730 (P2) and 777 kJ/kg0.75 (P4) in the pig (paper C: Table 5). HE was somewhat lower 

in mink than both the chicken and pig but the growth rate of the mink is also lower than both 

chicken and the pig. It was unexpected that the HE in the mink experiment on M4 not was affected 

by diet as the feed intake was decreased. In pigs a decreased feed intake led to a lower HE 

(Chwalibog et al., 1994). Even in period 1, where the intake of feed was reduced by 50% on M4 the 

HE was the same as on M1, M2 and M3. If HE is compared with the data for the protein turnover 

there could be an explanation, because the protein synthesis and breakdown increased with 

increasing dietary content of BPM, and this process costs energy. In the pig, where protein turnover 

also was measured, no differences in protein synthesis and breakdown were found with increasing 

dietary content of BPM.  

 

The measured HE in the pig experiment was slightly lower than found for pigs weighing 20-40 kg 

(Chwalibog et al., 2005) but in agreement with Noblet et al. (2003). The HE in periods 2 and 3 in 

the pig experiment was in agreement with Chwalibog et al. (2005). HE values for the mink kits 

were slightly higher than those measured by Chwalibog et al. (1982). The values for the chickens 

are in agreement with Noblet et al. (2003). It may be concluded that the HE of the three species 

were in fair agreement with values found in the literature. 

 

As ME and HE were the same on all diets in the chicken experiment (paper B: Table 4) and in the 

pig experiment (paper C: Table 5) the RE was also the same. In the mink the decreased level of ME 

on M4 led to lower RE on this diet. The RE was –11 kJ/kg0.75 on M4, which indicates zero weight 

gain (paper A: Table V). As the RN was positive the fat retention was negative and the mink on M4 

has mobilized energy. The non-protein respiratory quotient (RQnp) was 0.75 on M4 and 

significantly lower than on M2 and M3, and the oxidation of fat (OXF) as a percentage of the total 

HE was also higher on this diet (paper A: Table V and Figure 3). The mink experiment was only a 

short-term study where experimental diets were fed during the five experimental periods. The 

animals on M4 had the same body weight gain as animals on the other diets between experimental 

periods (unpublished data), and it can be concluded that no irreversible adaptation of the 

metabolism occurred during the experimental periods. There were, however, differences in RE 

between the different balance periods. In periods 2 and 3, where also the feed intake based on 
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metabolic size was the same as for the control diet, RE was positive and nearly the same as on the 

other diets. In periods 1, 4 and 5 RE was negative. 

 

In the chicken and pig no differences in oxidation pattern of nutrients were found. Respiratory 

quotient (RQ) in the chicken experiment (paper B: Table 4) and the RQnp in the pig experiment 

(paper C: Table 5) was also unaffected by dietary treatment. The RE was between 613 kJ/kg0.75 and 

696 kJ/kg0.75 in the pig and between 653 kJ/kg0.75 and 786 kJ/kg0.75 in the chicken, which was much 

higher than in the mink, which had a RE of 150 kJ/kg0.75 (M1), 152 kJ/kg0.75 (M2) and 162 kJ/kg0.75 

(M3).  

 

The higher growth rate of chickens and pigs compared with the mink had a considerable effect on 

the nitrogen and energy metabolism data. Comparison on metabolic body size has shown that the 

chicken had the highest RN, ME, HE and RE and the mink had the lowest.  

 

Carcass composition 

 

The chemical composition of the carcasses was investigated in the chickens because a decrease in 

the dressing percent of chickens fed increasing levels of dietary BPM have been observed (Skrede 

et al., 2003). From the energy metabolism measurements it was shown that the fat retention was not 

affected by diet and the same was shown in carcasses of the chickens. Dry matter, nitrogen, fat and 

energy content were the same on all diets. The ash content was for some unknown reason higher on 

C2 and C4 than C3. In the pig experiment the animals had the same fat and nitrogen retention on all 

diets. In the mink experiment animals fed diets M1, M2 and M3 also had the same retention of 

nitrogen and fat. 
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Figure 2. Decomposition of purine bases (modified after Greife 1984b and Michal, 1999) 

C
5

C
4

C
6

N
3

N
1

CH
2 NH

9

CH
8

N
7

NH2

Ribose P

Adenosine

P

Inosine

Adenosine deaminase

Hypoxanthine

Nucleoside phosphorylase

NH3

Ribose PP

Guanosine

Ribose

Ribose

Guanine

Xanthine

NH3
Guanine deaminase

H2O, O2

Xanthine
oxidase

H2O2

Uric acid

Allantoin

Uriate oxidase

H2O, O2

H2O2

2H2O, O2

H2O2, 
6CO2

Xanthine
oxidase

5'-Nucleotidase

C
5
C
4

C
6

N
H
3

N
1
CH
2

N
7

CH
8

N
H
9

NH2

OH

C
5
C
4

C
6

N
H
3

NH
1
C
2

N
H

7
C
8

N
H
9

O

O

O

C
5
CH
4CH23

C
2

N
H

7
C
8

N
H
9

O

NH21

O

O

End-product chickens 

End-product mink and pig 



   44

Figure 3. Decomposition of pyrimidine bases (modified after Greife 1984b and Michal, 1999)
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Conclusion 
 

From the three experiments with BPM to growing animals the following can be concluded: 

 

• Mink kits on M4 had a significantly lower feed intake and this was probably because the 

diet was stickier than the other diets. 

• In the mink experiment ADN, ADF and ADCHO decreased significantly with increasing 

BPM content. In the pig experiment only ADN decreased with increasing BPM content. 

• The decrease in ADN was somewhat higher in the mink experiment than in the pig 

experiment. However, different control protein sources were used: in the mink experiment 

high quality fish meal was used as control protein, which may be expected to have a higher 

ADN than soybean meal which was used as control protein in pig experiment. 

• The RN was not affected by diet neither in the mink nor the pig. In the chicken experiment 

the RN was slightly higher on C1 than the diets with BPM. This was probably caused by a 

higher protein content of C1. 

• HE was not affected by diet neither in the mink, chicken nor the pig experiments. 

• RE was positive on all experimental diets except mink fed diet M4, which had a RE at zero. 

The lower RE on M4 was a combination of lower feed intake, lower ADE and higher 

protein turnover.  

• The RQ in the chicken experiment and RQnp in the pig experiment were not affected by diet. 

RQnp on M4 in the mink experiment was significantly lower than on M2 and M3. 

• The oxidation of protein was significantly lower and OXF was significantly higher on M4 

than the other diets in the mink experiment. The oxidation of nutrients was not affected by 

diet in the chicken and pig experiments. 

• Increasing dietary content of BPM led to an increase in the protein turnover in the mink but 

not in the pig. The differences observed between the mink and pigs were probably related to 

composition of the diets. 

• An increase in the intake of NAN led to an increase in the excretion of allantoin both in the 

mink and pig. There were, however, differences between the mink and pig. The mink 

excreted more purine base derivatives than purine bases ingested on all diets whereas the 

pigs on P2, P3 and P4 excreted less than ingested.  
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• In general, there was no interaction between diet and period, and it is concluded that BPM 

can be used to newly hatched birds and newly weaned mink and pigs without negative 

effects on their RN, HE and RE. 

• The chicken had higher RN, ME, HE and RE than pig and mink. The differences between 

the pig and chicken were smaller than the differences between the mink and chicken.  

 

From the experiments it is concluded that BPM has no adverse effects on the protein and energy 

metabolism in mink, chicken and pig as long as the N derived from BPM not exceeds 40%, 20% 

and 50% in the diets for the three animals, respectively. 
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Future research areas 
 

The three experiments have shown that BPM is a high-quality protein feedstuff, which can supply 

up to 40%, 20% and 50% in the mink, chicken and pig, respectively. Although the feedstuff can be 

used as protein source for animals, there are a number of effects caused by BPM, which could be of 

scientific interest.  

 

• To evaluate the decrease in feed intake in the mink experiment, when more than 40% of the 

nitrogen derived from BPM. The observation from the mink experiment has indicated that 

the consistency might be a problem. 

• To evaluate the effect on the protein and energy metabolism in chickens, when more than 

20% of the N derived from BPM. Furthermore the purine base metabolism could be of 

interest as chickens excreted all nitrogen as uric acid.   

• Digestibility studies of BPM divided into different fractions i.e. cytoplasm, cell walls and 

internal membrane system to evaluate the impact on the different fractions on the total 

digestibility. 

• To evaluate whether the increase in ADF in the pig experiment was related to an increase in 

ADF in BPM or if it was related to the increase in fat intake. 

• To evaluate the digestibility of RNA and DNA and the retention of purine and pyrimidine 

bases in the mink. 

• To evaluate the impact of BPM on the microbial fermentation in the intestine. 

• To evaluate the impact of BPM on the development of the intestine after weaning, because 

dietary nucleotides probably play a roll in the growth and development of the intestine 

(Tsujinaka et al., 1999). 

• To evaluate whether the increase in protein turnover in the mink experiment was caused by 

changes in the amino acid composition of diets with increasing dietary content of BPM. 

• To investigate the decrease of urinary creatinine with increasing dietary content of BPM in 

mink. 
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ABSTRACT This experiment investigates the effect of increasing the dietary content of bacterial 

protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of 

growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three 

replicates with 0% (D0), 2% (D2), 4% (D4), and 6% BPM (D6), BPM providing up to 20% of total 

dietary N. Five balance experiments were conducted when the chickens were 3–7, 10–14, 17–21, 

23–27, and 30–34 days old. During the same periods, 22-hour respiration experiments (indirect 

calorimetry) were performed with groups of 6 chickens (period 1), 5 chickens (period 2), and 1 

chicken (periods 3–5). After each balance period, one chicken in each cage was killed and the 

carcass weight was recorded. Chemical analyses were performed on the carcasses from periods 1, 3, 

and 5. Weight gain, feed intake, and feed conversion rate were found to be similar for all diets. 

Chickens on D0 retained 1.59 g N/kg0.75/day, significantly more than chickens on D2, D4, and D6, 

which retained 1.44 g, 1.52 g, and 1.50 g N/kg0.75/day, respectively. This was probably caused by 

the higher nitrogen content of D0. Neither the heat production (P = 0.92) nor the retention of energy 

(P = 0.88) were affected by diet. Carcass composition was similar between diets, in line with the 

values for protein and energy retention found in the balance and respiration experiments. It was 

concluded that the overall protein and energy metabolism as well as carcass composition were not 

influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N.  

 

(Key words: chickens, bacterial protein meal, protein metabolism, energy metabolism, nucleic 

acids, carcass composition) 
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INTRODUCTION 

 

In animal nutrition, bacterial protein meal (BPM) can provide an alternative protein source to fish 

meal and meat-and-bone meal, and a non-GMO alternative to gene-modified vegetable protein 

sources. It is produced by the continuous fermentation of natural gas and ammonia by 

Methylococcus capsulatus (Bath)(>90%), Ralstonia sp., Brevibacillus agri, and Aneurinibacillus sp. 

(Skrede et al., 1998). The bacterial culture is concentrated, heat sterilized, and spray dried to obtain 

a dry product with high storage stability. BPM is reddish/brown with about 96% dry matter (DM), 

70% crude protein (CP), and 10% fat. The amino acid profile is similar to that of fish meal, except 

that the lysine content is somewhat lower and the tryptophan content higher (Skrede et al., 1998). 

BPM has a content of about 9.5% RNA and DNA, and as RNA and DNA contain 140 g N kg–1, 

about 12% of the N in BPM is derived from nucleic acids. This level is considerably higher than 

that found in other feedstuffs, such as fish meal (Greife, 1984), but it is lower than is reported for 

other bacterial proteins (Braude et al., 1977; Kiessling and Askbrandt, 1993). 

 

BPM has earlier been evaluated as a dietary protein source in production experiments with chickens 

(Skrede et al., 2003). Furthermore, BPM has been found to be a suitable protein source for pigs 

(Øverland et al., 2001, 2004), blue foxes (Skrede and Ahlstrøm, 2002), and Atlantic salmon 

(Storebakken et al., 2004; Berge et al., 2005).  

 

Whether nucleic acid N (NAN) can be utilized or whether it is only excreted⎯a process that costs 

energy⎯is an issue of importance when evaluating BPM as a protein source. In earlier studies with 

chickens, the apparent digestibility of yeast RNA-N was determined to be 77.2% (Shannon and 

McNab 1972) and even as high as 87–95% (Greife and Molnar, 1980), depending on the RNA 

content. The latter study found that nitrogen retention was not affected by RNA-N content, provided 

the diets contained equal levels of amino acid N (Greife and Molnar, 1980); similar findings were 

reported for a combination of purine and pyrimidine bases (D’Mello, 1979; D’Mello, 1986). Yeast 

RNA added to a pig diet increased N retention, provided that the diet was limited in protein and the 

supply of essential amino acids was sufficient to satisfy requirements (Roth and Kirchgessner, 

1977, 1978). These findings suggest that chickens may be able to utilize RNA-N, and possibly 

different combinations of purine and pyrimidine bases, as a source of non-specific N; therefore, it 
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could be speculated that a dietary BPM supply might be beneficial, provided there is an adequate 

essential amino acid supply. 

 

Studies of the effects of methanol-grown bacterial protein on the retention of nitrogen (RN) and on 

the utilization of ingested nitrogen (IN) for retention (RN/IN) have produced conflicting results. 

Some studies have reported unchanged RN and RN/IN (D’Mello and Acamovic, 1976; Plavnik et 

al., 1981), while others found a reduction in RN/IN (D’Mello and Acamovic, 1976) when the 

dietary level of bacterial protein was 9–10%. D’Mello and Acamovic (1976) found that 

consumption of more than 10% methanol-grown bacterial protein reduced RN/IN and the N 

content, but increased the fat content, of carcasses. 

 

The influence of BPM on RN, heat energy (HE), and retention of energy (RE) has hitherto only 

been investigated in mink. When feed intake was kept equal, increasing amounts of BPM in the 

diets of mink had no effects on RN, HE, and RE, although the digestibility of nitrogen, fat, and 

energy decreased with increasing dietary BPM levels (Hellwing et al., 2005). However, when 

dietary BPM supply made up 60% of N, feed intake was significantly reduced (Hellwing et al., 

2005). Reduced feed intake, but improved feed conversion, has also been reported in chickens fed 

high levels of bacterial protein replacing conventional protein sources (Bornstein et al., 1981; 

Plavnik et al., 1981; Skrede et al., 2003).  

 

The aim of the present study was to evaluate how increasing dietary levels of BPM, and hence 

increasing levels of nucleic acid N, affect protein and energy metabolism in young growing 

chickens. 
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MATERIALS AND METHODS 

 

Animals and Experimental Design 

 

Seventy-two-day-old male Ross chickens were bought from a commercial hatchery. At arrival, the 

chickens were weighed, individually marked, grouped according to weight, and then randomly 

allocated to four dietary treatment groups, each in three replicates (A, B, and C). The experiment 

was carried out in accordance with The Animal Experimentation Act in Denmark (law no. 726, 

September 9, 1993). 

 

Experimental diets and water were provided ad libitum from day one. The experiment comprised 

five periods during which balance and 22-hour respiration experiments by means of indirect 

calorimetry in an open-air circulation system were carried out. All replicates were used in the 

balance experiments but only two replicates (A and B) were used in the respiration experiments 

(Table 1). The chickens were 3, 10, 17, 23, and 30 days old at the start of the five, 4-day balance 

periods. During balance periods 1 and 2, all chickens from a single cage were measured in the 

respiration experiment. From balance period 3 onwards, only one and always the same chicken 

from each cage was used, owing to the limited ventilation capacity of the respiration unit (Table 1). 

 

The original number of animals per cage (six in the first balance period) was subsequently reduced 

by one randomly selected chicken per balance period, until two chickens remained in the fifth 

period.  

 

Diets and Feeding Routines 

 

The BPM2 was derived from an experimental batch. One of the four experimental diets served as 

control and contained no BPM (D0), while the remaining three diets had dietary BPM contents of 

2% (D2), 4% (D4), and 6% (D6). The BPM replaced fish meal on a crude protein basis, and crude 

protein derived from BPM made up 6.5%, 13.2%, and 19.9% of total dietary N in diets D2, D4, and 

D6, respectively. The diets were formulated so as to have equal levels of metabolizable energy and 

to be iso-nitrogenous, and were produced by the Center for Feed Technology, Ås, Norway. The 

                                                 
2 The BPM used is of the trade name Bioprotein (Norferm AS, Stavanger, Norway). 
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diets were pelleted using a Münch pellet press3 equipped with a 3-mm die. Dietary composition is 

given in Table 2 together with analyzed chemical composition. The contents of amino acids, and 

purine and pyrimidine bases are given in Table 3.  

 

Housing 

 

The chickens were housed in a 3-tier rack of twelve metabolic cages with four cages per tier. All 

diets were represented by one cage per tier. The cages were each 0.5 m × 0.5 m × 0.5 m in size. 

They had a plastic-coated wire floor, with a mesh size of 0.5 cm × 1 cm, located 7 cm above the 

bottom of the cages. During the respiration experiments, the chickens were placed in metabolic 

cages in the respiration chambers. 

  

For the first 10 days after arrival the room temperature was kept at 27°C, and a heating lamp inside 

each cage ensured that the temperature in the cage was 30–33°C. Then over the next several weeks 

the room temperature was gradually lowered from 27°C to 22°C. A 23-hour light:1-hour dark light 

cycle was used. 

 

Balance Experiment⎯Collection Procedures 

 

Chickens were weighed on the first and last day of each balance period. Collection procedures were 

performed daily between 9:00 and 12:00 a.m. Feed residues and droppings were weighed and 

frozen at –18°C after collection. Animals allocated to respiration experiments were brought to the 

respiration unit between 9.00 a.m. and 10 a.m. The chickens were placed in the metabolic cages 

used for the respiration experiments and given water and a weighed amount of feed. The next day 

the animals were brought back, and droppings and feed residues were collected. At the end of each 

balance period, droppings were homogenized, sampled for analyses of wet material, and the rest 

was freeze-dried. 

 

 

 

 

                                                 
3 Münch-Edelstahl GmbH, Hilden, Germany. 
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Respiration Experiment 

 

The measurements started at 11.00 a.m. and ended the following day at 9.00 a.m. The respiration 

chambers each had a volume of 760 L, and were constructed for animals with a live weight of 0.5 to 

5 kg. For a detailed description of the calibration and measurement procedures, see Chwalibog et al. 

(2004). 

 

Carcass Sample Collection 

 

The chickens selected for carcass analyses were fasted overnight and killed by means of CO2. The 

carcasses were weighed and frozen at –18°C for later analyses. The chickens from periods 1, 3, and 

5 were analyzed for DM, ash, N, fat, and gross energy (GE) after removal of the livers. 

 

Analytical Procedures 

 

All diets in all periods were analyzed for DM, ash, N, fat, and GE. Dropping samples were mixed 

carefully before being sampled for the analyses of DM and N. The N content was analyzed using 

wet material except in period 1, when it was analyzed using freeze-dried material. The freeze-dried 

droppings were milled, mixed to homogeneity, and then analyzed for DM, ash, fat, and GE. 

 

The carcasses were taken out of the freezer and then chopped twice in a mincing machine4 before 

being mixed to homogeneity. Sampling of material for analyses was as described above.  

 

DM was determined by evaporation at 105°C to constant weight. Ash was determined by 

combustion at 525 C°. N was determined by means of the micro-Kjeldahl technique using the 

Tecator-Kjeltec system 10305. Crude protein (CP) was calculated as N × 6.25. Fat was determined 

by petroleum ether extraction in a Soxtec system after HCl hydrolysis. GE was determined using an 

adiabatic bomb calorimeter6. The amino acids, except tryptophan, in the diets were determined 

according to the European Community Directive 98/64/EC (OJ 1998). Tryptophan was analyzed 

according to the procedure of Bech-Andersen (1991); for a more detailed description of the method, 

                                                 
4 BIZERBA, Bizerba-Werks Wilhelm Kraut GmbH&Co, Hamburg, Germany 
5 Tecator AB, Höganäs, Sweden 
6 IKA-Calorimeter system, IKA®Gmbh & Co. KG, Staufen, Germany 
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see Skrede et al. (2003). An HPLC procedure was used to determine the contents of adenine, 

guanine, thymine, uracil, and cytosine, as described in detail by Thode (1999). 

 

 

Calculations 

 

Carbohydrates (CHO) were calculated by difference. RN was calculated as N intake minus N in 

droppings. Metabolizable energy (ME) was calculated as ME, kcal = GE in feed – energy in 

droppings. HE was calculated according to Brouwer (1965) as HE, kcal = 3.886 × O2, L + 1.200 × 

CO2, L – 1.431 × UN, g, but without correction for UN because the content of uric acid in 

droppings was not analyzed. RE, kcal was calculated as ME – HE. Oxidation of carbohydrate 

(OXCHO) and fat (OXF) were calculated according to the equations given by Chwalibog et al. 

(1992). 

 

Statistical Analyses 

 

Statistical analyses of data from the balance and respiration experiments were carried out by means 

of the MIXED Procedure in SAS®7 (Littell et al., 1996), using the following model: 

 

Yijk = μ + αi + βj + (αβ)ij + εijk 

 

where Yijk is the Yijkth observation, μ is the general mean, αi is the fixed effect of diet (D0, D2, D4, 

and D6), βj is the fixed effect of balance period (1 to 5), αβij is the interaction between diet and 

balance period, and εijk is the residual error. Results were analyzed as repeated measurements, and 

the autoregressive order 1 (AR(1)) covariance structure was fitted (Littell et al., 1996). Results are 

presented as least squares means (LSmeans), and the square root of residuals (RR) is given for each 

variable. Pair-wise comparisons of LSmeans were made using the PDIFF option, and effects were 

considered significant if P < 0.05. Data from one cage in period 2 was omitted from analyses of the 

balance experiment data because of technical problems, but not from the respiration experiment. 

 

                                                 
7 SAS for Windows, 1998, version 8 edition, SAS Institute INC., Cary, NC 
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Statistical analyses of body weight and of the chemical composition of carcasses were all performed 

using the general linear model (GLM) procedures included in SAS® (SAS Institute Inc., 1990), with 

the same model as was used in the balance and respiration experiments. Results are presented as 

LSmeans and the root mean square error (RMSE) is given as a measure of variance. Two chickens 

died during balance period 3 for reasons unrelated to the experimental treatment and were thus 

omitted from data analysis.  



 10

RESULTS 

 

All results regarding nutrient intake and energy metabolism are presented in relation to metabolic 

body size (kg0.75) in order to facilitate comparisons among balance periods. Results regarding intake 

of amino acids are presented in g per day, and those regarding intake of purine and pyrimidine bases 

in mg per day. All results are presented per chicken per day. 

 

Intake of Nutrients and Performance 

 

 Effect of Diet. The DM intake was highest on D6 with 111 g/kg0.75 and lowest on D2 with 

105 g/kg0.75. Although the difference in DM intake was small, there was a tendency for a significant 

diet effect (P = 0.07) (Table 4). The contents of crude protein, fat, and CHO in the diets differed 

somewhat, resulting in significant differences in the intake of protein, fat, and CHO among the 

diets. Chickens on D2, D4, and D6 had the same intake of crude protein, which was significantly 

lower than that of the control diet. The intake of fat increased significantly from D0 to D6, whereas 

the intake of CHO on D0 and D2 was similar and significantly lower than on D4 and D6 (Table 4). 

The intake of GE differed by 27 kcal/kg0.75 between D2 and D6, and although the difference was 

numerically small the GE intake on D0 and D2 was significantly lower than on D6 (P = 0.02). The 

intakes of lysine, methionine, methionine plus cystine, and threonine were higher on D0 than on 

D6, whereas the intake of tryptophan was higher on D6 than on the other diets (Table 4). The intake 

of adenine, cytosine, and uracil increased with increasing dietary content of BPM. Intake of 

thymine was significantly higher on D4 than on D0 and D2. The intake of guanine was the same on 

all diets (Table 4). Despite the reported difference in nutrient intake, the daily weight gain, feed 

intake, and feed conversion rate were not affected by diet. 

 

 Effect of Period. The daily weight gain and feed intake increased significantly over the five 

balance periods. The feed conversion rate was significantly better in periods 1, 2, and 3 than in 

period 4, which again was better than in period 5. Intake of nutrients in relation to metabolic body 

size was highest in period 2. The intakes of DM, protein, fat, and GE were significantly higher in 

period 2 than in period 1. In periods 3, 4, and 5 the intake of nutrients was significantly lower than 

in the previous period (Table 4). The intake of amino acids, and of purine and pyrimidine bases 

increased significantly from period 1 to period 5.  
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Protein and Energy Metabolism 

 

 Effect of Diet. The intake of NAN increased from 0.13 g/kg0.75 on D0 to 0.19 g/kg0.75 on D6, 

but whether including or excluding NAN, the intake of nitrogen was significantly higher on D0 than 

on the other diets (Table 5). The higher intake of nitrogen on D0 caused a tendency towards a 

higher excretion of nitrogen (P = 0.09) and a significantly higher RN (P = 0.01). The utilization of 

IN for RN (RN/IN) did not differ significantly between diets, neither when related to total IN nor 

when NAN was omitted. ME, HE, RE, energy retained in protein (RPE), energy retained in fat 

(RFE), and the respiratory quotient (RQ) were not significantly affected by diet (Table 5), and 

neither were OXCHO nor OXF (Figure 1a).  

 

 Effect of Period. RN was highest in periods 1 and 2, thereafter decreasing significantly (Table 

5); RN/IN decreased significantly from period 1 to period 5. Both ME and HE increased from 

periods 1 to 2 and then decreased. RE decreased from 204 kcal/kg0.75 in period 1 to 139 kcal/kg0.75 

in period 5, and the amount of energy retained in protein was always higher than the amount of 

energy retained as fat. RFE decreased by 30% from periods 1 to 5, but the difference was not 

significant. RQ was close to 1.00 in periods 1 and 2, but decreased to approximately 0.9 in periods 

3, 4, and 5. The decrease in RQ and the great variation in HE, RE, and RFE were probably caused 

by the reduced feed intake of one chicken during the respiration experiment in periods 3, 4, and 5 

compared with the feed intake during the balance experiment, and by a great variation between 

animals on the same diet (data not shown). OXF was significantly lower in period 1 than in periods 

3, 4, and 5; consequently, OXCHO was significantly higher in period 1 than in periods 3, 4, and 5 

(Figure 1b). 

 

 Interaction between Diet and Period. The ranking of the different diets in the different 

periods with respect to RN, RN/IN, and RN/(IN-NAN) were not the same, and this caused 

significant interaction effects, e.g. chickens on D0 in period 1 had the highest level for these traits 

whereas the same chickens had the lowest level in period 2.   
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Chemical Composition of Carcasses 

 

 Effect of Diet. The weight of the carcasses was not significantly affected by diet (P = 0.09). 

The carcass contents of DM, N, fat, and gross energy were not affected by treatment, but the ash 

content was significantly lower on D4 than on D2 and D6 (Table 6).  

 

 Effect of Period. The carcass ash content was the same in the three periods (1, 3, and 5). The 

DM and N contents increased significantly from periods 1 to 3 as well as from periods 3 to 5. The 

fat and energy contents increased significantly from periods 1 to 3, but not from periods 3 to 5. 



 13

DISCUSSION 

 

Protein and Energy Metabolism 

 

Protein and energy metabolism traits were generally found to be unaffected by dietary treatment in 

the present study, the exception being RN, which was lower on diets containing BPM than on the 

control diet. This was likely caused by lower dietary crude protein content and thus a lower intake 

of crude protein, as well as likely by the limiting amino acids, e.i. lysine, methionine, methionine 

and cystine, and threonine, among chickens fed diets containing BPM. Diets containing different 

levels of BPM showed small differences in crude protein content, but resulted in similar RN values, 

although the contents of methionine, methionine plus cystine, and threonine, especially on D4, were 

slightly below the minimum requirements specified by NRC (1994). Our results suggest that a 

dietary supply of BPM up to 6% (approximately 20% of dietary N), replacing fish meal N, 

supported normal performance, protein retention, and energy metabolism. A well-maintained RN 

level has been reported for chickens fed 9% methanol-grown bacterial protein (Plavnik et al., 1981), 

as well as for chickens fed up to 5% yeast RNA (Greife and Molnar, 1980) 

 

Because we were working with intact birds, it was obviously impossible to investigate the effect of 

BPM consumption on the excretion pattern of nucleic acid or nucleic acid derivatives in urine and 

feces in chickens. It has previously been shown that the digestibility of yeast RNA is high in 

chickens (Greife and Molnar, 1980), and it may be assumed that most of the NAN in the chicken 

diets was digested. Some of the digested NAN is probably directly deposited in the body as nucleic 

acid in RNA and DNA (Greife and Molnar, 1984a, b). Nitrogen from purine and pyrimidine bases 

may also provide a source of non-specific N for the synthesis of non-essential amino acids, and thus 

contribute to the N retention in animals fed diets with a low N content but a sufficient content of 

essential amino acids (D’Mello, 1979). In the present study, the efficiency of N retention (RN/IN) 

was the same on all diets, despite the higher RN on the control diet without BPM. If NAN was 

omitted from IN, the efficiency of N retention increased, especially on the diet with the highest 

level of BPM, thus indicating a slightly higher utilization of amino acid N than of nucleic acid N. 

Because of our experimented approach, however, it was impossible to evaluate whether nucleic 

acids were retained or utilized for the synthesis of non-essential amino acids, nor was it an objective 

of the study.  
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Both total nucleic acid content and the relative proportions of the individual purine and pyrimidine 

bases may influence chicken growth: an inclusion of 0.1% free adenine supported normal feed 

intake and body weight gain, whereas feed intake and growth were negatively affected when free 

adenine made up about 1% of the diet (Baker and Molitoris, 1974; D’Mello, 1986). Furthermore, 

studies in rats have shown that only free adenine caused depression in feed intake and growth, 

whereas both adenosine and adenylate support normal growth (Brulé et al., 1988). The total content 

of adenine in our diets did not exceed 0.1%, so the inclusion of 6% BPM in the diet was below the 

level where free adenine may cause adverse effects.  

 

The lower RN of chickens fed BPM, shown in the present study, and the interaction observed 

between diets and periods for both RN and RN/IN may be explained by differences in the levels of 

digestible protein and amino acids among diets. As shown in Table 2, the crude protein level was 

lower in the BPM-containing diets than in the control diet. Furthermore, the amino acid digestibility 

of BPM in the chicken (especially of the cysteine contained therein) is lower than that of fish meal 

(Skrede et al., 1998), and increasing substitution of fish meal with BPM would be expected to 

reduce the digestibility of most amino acids. In addition, the contents of methionine, methionine 

plus cystine, and threonine on D4 and the content of methionine plus cystine on D6 were slightly 

lower than the minimum requirements for chickens between 0 and 3 weeks of age (NRC, 1994). 

This would be expected to affect N retention in young chickens more than in older birds, since the 

amino acid requirements are highest during early growth (NRC, 1994). This is reflected in the 

practical recommendation for the amino acid composition to be fed to Ross broilers, which is higher 

for the first 10 days than later on (Ross, 2002). In the first balance period, all limiting amino acids 

were lower than recommended for Ross broilers, except for methionine on D0 and D2, and 

isoleucine and tryptophan were lower than recommended on D6. In the second, third, and fourth 

balance periods only threonine on D2, D4, D6 and methionine plus cysteine on all diets differed 

from the recommendations. The deviation from the Ross recommendations was greatest on D4 and 

D6. This may explain the diet:period interaction shown for some parameters in the present study.  

 

Social facilitation may have an influence on the eating behavior of chickens: chickens without 

visual contact with other chickens eat less than those, which have such contact (Keeling and 

Hurnik, 1996). This may explain the reduced feed intake of the single chickens that were allocated 
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to the respiration experiments from period 3 onwards, compared with that of the chickens only used 

in the balance experiments. The reduced feed intake influenced HE, RE, RFE, and RQ, but the 

intake during the respiration experiments from period 3 onwards was the same for all diets; 

therefore, comparisons between diets should be considered as valid, whereas comparisons between 

the first two and the last three balance periods should be regarded cautiously.   

 

HE in chickens was unaffected by dietary BPM supply, as was also found in studies of mink kits 

fed different levels of BPM (Hellwing et al., 2005). The digested purine and pyrimidine bases may 

save energy if they are directly incorporated into RNA and DNA in the body, but if they are 

excreted, the decomposition requires O2 and increases the total excretion of CO2. A theoretical 

calculation of this cost was made, assuming that the purine and pyrimidine bases were 100% 

digestible and that purine bases were decomposed to uric acid and pyrimidine bases to their specific 

end products. If the consumption of O2 and excretion of CO2 related to these processes were 

subtracted, the recalculated HE differed less than 1% from the value reported in Table 5. Hence, the 

energy cost of decomposition of the nucleic acids was almost negligible compared to other 

metabolic processes in the body.  

 

The fact that neither RE nor RQ were affected by dietary level of BPM conforms with previous 

findings regarding mink (Hellwing et al., 2005), provided the BPM used in that study accounted for 

a similar amount of dietary N as in the present study. In mink (Hellwing et al., 2005), but not in 

chickens, the pattern of substrate oxidation was affected by level of dietary BPM. This discrepancy 

between the studies can be explained by only OXF and OXCHO being calculated for chickens, 

whereas the mink data also encompassed oxidation of protein. 

 

Changes in protein and energy intake, HE, RN, RE, and RN/IN over time showed the same pattern 

as reported by Chwalibog et al. (1985), but intake, retention, and utilization were all higher than the 

values of Chwalibog et al. (1985). The difference between our results and those of Chwalibog et al. 

(1985) may be an effect of different genotypes of chickens, since body gain and feed utilization of 

broiler chickens have improved greatly over the last 20 years. 
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Chemical Composition of the Carcasses 

 

A previous study by Skrede et al. (2003) showed lower abdominal fat content in chickens fed 6 and 

9% BPM, compared to the fat content achieved on a control diet devoid of BPM. The present study 

found no significant effect of diet on the fat content in carcasses, although the diets used had an 

increasing content of fat with an increasing content of BPM. The analyzed body composition agreed 

well with the protein and energy retention measured in the balance and respiration experiments. A 

previous study with a methanol-derived bacterial protein showed a reduction in nitrogen content 

and an increase in energy content of the body with increasing dietary levels of bacterial protein 

(D’Mello and Acamovic, 1976), but the levels of bacterial protein in diets used in that experiment 

were higher and the feed intake was also reduced on the two diets with the highest inclusion of 

bacterial protein. Hence, our results suggest that dietary BPM did not affect chemical body 

composition. 

 

Conclusion 

 

Animal performance and health, and nitrogen and energy metabolism traits were generally not 

affected by replacing high-quality fish meal with BPM comprising up to 6% of the 

diet⎯corresponding to 20% of the dietary N⎯in diets for broiler chickens from hatching until 35 

days of age. Higher nitrogen retention in the control group was explained by a higher CP content 

and hence higher intake of amino acids on the control diet. Carcass composition was independent of 

diet and concurred with the retention of protein and energy measured in the balance and respiration 

experiments.  

 

ACKNOWLEDGEMENTS 

 

This experiment was part of the strategic research program, “Protein produced from natural gas: a 

new feed resource for fish and domestic animals.” We gratefully acknowledge the financial support 

of the Research Council of Norway (grant no. 143196/140) for this program. Skilful technical 

assistance with chemical analyses was provided by Merethe Stubgaard, Lotte Ørbæk, and Ebba de 

Nedergaard Harrison, and with the operation of the respiration unit by Abdalla Ali, assistance for 

which the authors wish to express their sincere gratitude.  



 17

REFERENCES 
 
Baker, D. H., and B. A. Molitoris. 1974. Utilization of nitrogen from selected purines and pyrimidines and from 
urea by the young chick. J. Nutr. 104:553–557. 
Bech-Andersen, S. 1991. Determination of tryptophan with HPLC after alkaline hydrolysis in autoclave using α-
methyl-tryptophan as an internal standard. Acta agric. Scand. 41:305–309  
Berge, G. M., G. Baeverfjord, A. Skrede, and T. Storebakken. 2005. Bacterial protein grown on natural gas as a 
protein source in diets for Atlantic salmon, Salmo salar, in saltwater. Aquaculture 244:233–240.  
Bornstein, S., I. Plavnik, and B. Lipstein. 1981. Evaluation of methanol-grown bacteria and hydrocarbon-grown 
yeast as sources of protein for poultry: performance of broilers during the finishing period. Br. Poult. Sci. 22:141–
152. 
Braude, R., Z. D. Hosking, K. G. Mitchell, S. Plonka, and E. Sambrook. 1977. Pruteen, a new source of protein for 
growing pigs. I. Metabolic experiment: utilization of nitrogen. Livest. Prod. Sci.ence 4: 79–89. 
Brouwer, E. 1965. Report of Sub-committee on Constants and Factors. Pages 441-443 in Energy metabolism. 
Proceedings of the 3rd symposium. European Association for Animal Production, Publication No. 11. Academic 
Press, London. 
Brule, D., G. Sarwar, L. Savoie, J. Campbell, and M. Van Zeegelaar. 1988. Differences in uricogenic effects of 
dietary purine bases, nucleosides and nucleotides in rats. J. Nutr. 118:781–786.  
Chwalibog, A., P. Sørensen, and B. O. Eggum. 1985. Nitrogen and energy retention in fast growing chickens. Arch. 
Geflügelkd. 49:181–188 
Chwalibog, A., K. Jakobsen, S. Henckel, and G. Thorbek. 1992. Estimation of quantitative oxidation and fat 
retention from carbohydrate, protein and fat in growing pigs. J. Anim. Physiol. Anim. Nutr. 68:123–135. 
Chwalibog, A., A.-H. Tauson, and G. Thorbek. 2004. Energy metabolism and substrate oxidation in pigs during 
feeding, starvation and re-feeding. J. Anim. Physiol. Anim. Nutr. 88:101–112. 
D’Mello, J. P. F., and T. Acamovic. 1976. Evaluation of methanol-grown bacteria as a source of protein and energy 
for young chicks. Br. Poult. Sci. 17:393–401. 
D’Mello, J. P. F. 1979. Purine and pyrimidine utilisation by chicks fed nitrogen-limiting diets. J. Sci. Food Agric. 
30:381–387. 
D’Mello, J. P. F. 1986. Purine and pyrimidine supplementation of broiler diets. Arch. Geflügelkd. 50:101–104. 
Greife, H. A., and S. Molnar. 1980. N-stoffwechsel wachsender Broiler bei steigender Ribonukleinsäureaufnahme 
über das Futter. Arch. Geflügelkd. 44:172–183. 
Greife, H. A. 1984. Dei Nukleinsäuren⎯ein gesundheitlicher Risikofaktor beim Einsatz von 'Single-Cell Protein' in 
der Tierernährung? (Teil 1). Kraftfutter 412–414. 
Greife, H. A., and S. Molnar. 1984a. 14C-Tracerstudien zum Nukleinsäuren-Stoffwechsel von Jungratte, Küken 
und Ferkeln. 5. Mitteilung: Untersuchungen zum Purinstoffwechsel des Kükens. Z. Tierphysiol., Tierernähr. 
Futtermittelkd. 51:31–39. 
Greife, H. A. and S. Molnar. 1984b. 14C-Tracerstudien zum Nukleinsäuren-Stoffwechsel von Jungratten, Küken un 
Ferkeln. 6. Mitteilung: Untersuchungen zum Pyrimidinstofwechsel des Kükens. Z. Tierphysiol., Tierernähr. 
Futtermittelkd. 51:39–51. 
Hellwing, A. L. F., A.-H. Tauson, Ø. Ahlstrøm, and A. Skrede. 2005. Nitrogen and energy balance in growing 
mink (Mustela vison) fed different levels of bacterial protein meal produced with natural gas. Arch. Anim. Nutr. (In 
press) 
Keeling, L. J., and J. F. Hurnik. 1996. Social facilitation acts more on the appetitive than the consummatory phase 
of feeding behaviour in domestic fowl. Anim. Behav. 52:11–15. 
Kiessling, A., and S. Askbrandt. 1993. Nutritive value of two bacterial strains of single-cell protein for rainbow 
trout (Oncorhynchus mykiss). Aquaculture 109:119–130. 
Littell, R. C., G. A. Milliken, W. W. Stroup, and R.D. Wolfinger. 1996. SAS ® System for Mixed Models. Cary, 
NC. SAS Institute, Inc. 
National Research Council. 1994. Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, 
Washington, D.C. 
OJ. 1998. Commission directive 98/64/EEC. Official journal of the European Communities, L257, 14–28. 
Øverland, M., A. Skrede, and T. Matre. 2001. Bacterial protein grown on natural gas as feed for pigs. Acta Agr. 
Scand. A-AN. 51:97–106. 
Øverland, M., N. P. Kjos, and A. Skrede. 2004. Effect of bacterial protein meal grown on natural gas on growth 
performance and carcass traits of pigs. Ital. J. Anim. Sci. 3:323–336. 
Plavnik, I., S. Bornstein, and S. Hurwitz. 1981. Evaluation of methanol-grown bacteria and hydrocarbon-grown 
yeast as sources of protein for poultry: studies with young chicks. Br. Poult. Sci. 22:123–140. 



 18

ROSS. 2002. Ross Broiler Management Manual. Aviagen Limited, Newbridge, Midlothian, Scotland. 
http://www.aviagen.com/output.aspx?sec=16&con=368&siteId=2. Accessed July. 2005. 
Roth, F. X., and M. Kirchgessner. 1977. N-Ausnutzung und N-Bewertung steigender Gaben von Bakterien- und 
Sojaprotein bei wachsende Schweinen. Z. Tierphysiol., Tierernähr. Futtermittelkd. 39:156–170. 
Roth, F. X., and M. Kirchgessner. 1978. N-Verwertung alimentärer Ribonucleinsäure beim Ferkel. Z. Tierphysiol., 
Tierernähr. Futtermittelkd. 40:315–325. 
SAS Institute Inc. 1990. SAS/STAT® User’s Guide, Version 6, 4th edition, SAS Institute Inc., Cary N.C. 
Shannon, D. W. F., and J. M. McNab. 1972. The digestibility of the nitrogen, amino acids, lipid, carbohydrates, 
ribonucleic acid and phosphorus of an n-paraffin-grown yeast when given to colostomised laying hens. J. Sci. Fd 
Agric. 24: 27–34. 
Skrede, A., G. M. Berge, T. Storebakken, O. Herstad, K. G. Aarstad, and F. Sundstøl. 1998. Digestibility of 
bacterial protein grown on natural gas in mink, pigs, chicken and Atlantic salmon. Anim. Feed Sci. Tech. 76:103–
116. 
Skrede, A., H. F. Schøyen, B. Svihus, and T. Storebakken T. 2003. The effect of bacterial protein grown on natural 
gas on growth performance and sensory quality of broiler chickens. Can. J. Anim. Sci. 83:229–237. 
Skrede, A., and Ø. Ahlstrøm. 2002. Bacterial protein produced on natural gas: a new potential feed ingredient for 
dogs evaluated using the blue fox as a model. J. Nutr 132:1668s-1669s. 
Storebakken, T., G. Baeverfjord, A. Skrede, J. J. Olli, and G. M. Berge. 2004. Bacterial protein grown on natural 
gas in diets for Atlantic salmon, Salmo salar, in freshwater. Aquaculture 241:413–425. 
Thode, S. 1999. Bestemmelse af purinderivater (allantoin, urinsyre, hypoxanthin og xanthin) samt kreatinin i urin 
hos kvæg ved anvendelse af HPLC. Intern Rapport no.127. Danmarks JordbrugsForskning, Foulum, Denmark. 



 19

TABLE 1. Number of animals per cage in each balance and respiration experiment. Only replicates A and B 
were used in the respiration experiments 

   Period 
   1 2 3 4 5 
 Age (days)  3–7 10–14 17–21 23–27 31–35 
Diet Replicates Experiment      
D0 A Balance/Respiration 6/6 5/5 4/1 3/1 2/1 

B Balance/Respiration 6/6 5/5 4/1 3/1 2/1 
C Balance 6 5 4 3 2 

D2 A Balance/Respiration 6/6 5/5 4/1 3/1 2/1 
B Balance/Respiration 6/6 5/5 4/1 3/1 2/1 
C Balance 6 5 4 3 2 

D4 A Balance/Respiration 6/6 5/5 4/1 3/1 2/1 
B Balance/Respiration 6/6 5/5 4/1 3/1 2/1 
C Balance 6 5 4 3 2 

D6 A Balance/Respiration 6/6 5/5 4/1 3/1 2/1 
B Balance/Respiration 6/6 5/5 4/1 3/1 2/1 
C Balance 6 5 4 3 2 

Total Balance  72 60 48 36 24 
Total  Respiration  48 40 8 8 8 
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TABLE 2. Formulas and chemical composition of diets (%), and gross energy (GE) and metabolizable energy 
(ME) as Mcal/kg 

 D0 D2 D4 D6 
Ingredients     
Bacterial protein meal1 0 2 4 6 
Fish meal2 6 4 2 0 
Soybean meal3 20 20 20 20 
Oats 19.2 19.1 19.0 18.6 
Wheat 26 25.9 25.9 26 
Maize 22 22 21.9 22 
Soybean Oil 3 3.2 3.4 3.6 
Limestone 1.1 1.1 1.1 1.1 
Monocalcium phosphate 0.8 0.8 0.8 0.8 
Sodium chloride 0.07 0.07 0.07 0.07 
Sodium bicarbonate 0.25 0.25 0.25 0.25 
Manganese oxide 0.01 0.01 0.01 0.01 
Micro mineral premix4 0.15 0.15 0.15 0.15 
Vitamin premix5 0.21 0.21 0.21 0.21 
L-Lysine, HCl 0.3 0.3 0.3 0.3 
DL-Methionine 0.2 0.2 0.2 0.2 
Choline chloride 0.03 0.03 0.03 0.03 
Betaine 0.08 0.08 0.08 0.08 
Enzyme6 0.1 0.1 0.1 0.1 
Titanium dioxide 0.5 0.5 0.5 0.5 
     
Chemical composition     
Dry matter 90.3 90.3 90.4 90.6 
Organic matter 83.9 84.2 84.7 85.1 
N 3.7 3.5 3.4 3.4 
Protein (N*6.25) 23.0 21.7 21.2 21.1 
Carbohydrate 53.8 55.2 56.1 56.3 
Fat 3.5 3.8 3.9 4.3 
GE 4.1 4.2 4.2 4.2 
ME7 3.1 3.1 3.1 3.0 
1 Norferm DA, Stavanger, Norway. 
2 Norseamink, Norsildmel, Bergen, Norway. 
3 Solvent extracted, not dehulled, Denofa AS, Fredrikstad, Norway. 
4 Mineral premix providing the following per kg feed: Fe 75 mg, Mn 60 mg, Zn 105 mg, Cu 15 mg, I 0.7 mg, Se 0.3 
mg. Norferm. 
5 Vitamin premix providing the following per kg: vitamin A 5200 IU, vitamin D3 260 IU, dl-alfa-tocopheryl acetate 29 
mg, menadione 4.2 mg, thiamine 1.6 mg, riboflavin 7.9 mg, pyridoxine 2.6 mg, d-pantothenic acid 9.5 mg, niacin 27.5 
mg, biotin 0.12 mg, folic acid 1.45 mg, cyanocobalamine 0.01 mg. 
6 Avizyme 1200. Finnfeeds International, Marlborough, UK. The product contained 100 U/g β-glucanase and 2500 U/g 
xylanase extracted from Trichoderma longibrachiatum, and 800 U/g protease extracted from Bacillus subtilis. 
7 Calculated from the experimental data.  
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TABLE 3. Content of amino acids in the diets, g kg–1, and purine and pyrimidine bases in mg kg–1 
Diet code D0 D2 D4 D6 
Essential amino acids     
Methionine 5.8 5.7 4.6 4.8 
Threonine 7.9 7.7 6.9 7.5 
Valine 10.3 10.3 9.8 10.8 
Isoleucine 9.6 9.1 9.2 9.5 
Leucine 16.6 15.9 16.3 15.6 
Phenylalanine 11.1 10.5 10.7 9.9 
Histidine 5.2 5.1 5.0 4.8 
Lysine 13.8 13.5 12.6 12.2 
Arginine 12.8 13.1 12.4 12.5 
Tryptophan  2.2 2.2 2.3 2.6 
     
Non-essential amino acids     
Cysteine 3.4 3.4 3.1 3.1 
Tyrosine 7.5 8.1 7.5 7.2 
Aspartic acid 19.7 19.2 17.3 18.7 
Serine 10.4 10.4 9.6 10.0 
Glutamic acid 40.0 38.4 35.7 38.5 
Proline 11.7 11.2 11.1 12.1 
Glycine 9.9 9.3 8.7 9.0 
Alanine 10.1 10.2 8.6 9.8 
     
Purine bases     
Adenine 449 643 767 949 
Guanine 1400 1395 1442 1463 
     
Pyrimidine bases     
Cytosine 497 668 812 956 
Uracil 764 816 960 1099 
Thymine  199 207 248 226 
     
% N from purine and pyrimidine bases 2.9 3.6 4.1 4.6 
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TABLE 4. Intake of nutrients, purine and pyrimidine bases, and performance. Intake of bioprotein meal (BPM), dry matter (DM), crude protein (CP), fat, and 
carbohydrate (CHO) is given as g/kg0.75 per day, gross energy (GE) as Kcal/kg0.75 per day, amino acids as g/day, purine and pyrimidine bases as mg/day. Weight of animals, 

daily weight gain, and feed intake are given in g, and feed conversion rate in kg DM/kg gain. 
 Diet     Period      P-value   
 D0 D2 D4 D6  1 2 3 4 5 RR1 Diet 

(D) 
Period 

(P) 
D * P 

Age (days)      3–7 10–14 17–21 23–27 30–34     
Number of observations 
(n) 

15 15 14 15  12 11 12 12 12     

BPM intake 0.0d 2.3c 4.8b 7.4a  3.9AB 4.1A 3.8B 3.4C 3.0D 0.21 <0.001 <0.001 <0.001
DM intake 107 105 109 111  118B 122A 113C 100D 88E 4.8 0.07 <0.001 0.82 
CP intake (N*6.25) 27.2a 25.5b 25.6b 25.9b  28.3B 29.3A 27.2C 24.1D 21.3E 1.1 0.01 <0.001 0.78 
Fat intake 4.2d 4.4c 4.6b 5.0a  4.6C 5.2A 4.9B 4.3D 3.8E 0.2 <0.001 <0.001 <0.001
CHO intake 68b 68.9b 71.9a 73.3a  77.1A 79.3A 73.7B 65.1C 57.6D 3.1 <0.001 <0.001 0.87 
GE intake 491b 489b 505ab 516a  544B 563A 523C 462D 409E 22 0.02 <0.001 0.82 

               
Lysine 1.43a 1.36ab 1.27b 1.25b  0.34E 0.83D 1.38C 1.86B 2.22A 0.10 0.03 <0.001 0.56 
Methionine 0.60a 0.57a 0.46b 0.49b  0.14E 0.33D 0.55C 0.74B 0.89A 0.04 <0.001 <0.001 0.02 
Methionine + cystine 0.95a 0.91a 0.77b 0.80b  0.22E 0.54D 0.90C 1.21B 1.43A 0.06 <0.001 <0.001 0.11 
Threonine 0.82a 0.77a 0.69b 0.77ab  0.20E 0.48D 0.79C 1.07B 1.27A 0.06 0.03 <0.001 0.53 
Tryptophan 0.23b 0.23b 0.23b 0.26a  0.06E 0.15D 0.25C 0.33B 0.40A 0.02 0.03 <0.001 0.18 
               
Adenine 38.7d 53.5c 63.8b 80.8a  15.1E 37.1D 61.5C 83.2B 99.0A 4.8 <0.001 <0.001 <0.001
Guanine 120.5 116.2 120.0 124.6  30.9E 75.6D 125.4C 168.9B 201.0A 9.1 0.56 <0.001 0.68 
Cytosine 42.8d 55.6c 67.6b 81.3a  15.8E 38.8D 64.3C 86.9B 103.4A 5.0 <0.001 <0.001 <0.001
Uracil 65.8c 73.0bc 79.9b 93.5a  20.0E 49.0D 81.2C 109.6B 130.4A 6.1 <0.001 <0.001 <0.001
Thymine 17.2b 17.2b 20.6a 19.3a  4.8E 11.7D 19.3C 26.0B 31.0A 1.4 0.003 <0.001 0.02 
               
Weight  998 978 924 934  118E 368D 805C 1408B 2093A 77 0.49 <0.001 0.89 
Daily gain 69.2 68.9 66.2 67.2  20.4E 48.7D 80.4C 91.1B 98.9A 6.5 0.74 <0.001 0.99 
Feed intake 104 101 100 102  26E 64D 106C 143B 170A 7.7 0.89 <0.001 0.87 
Feed conversion rate 1.29 1.28 1.33 1.33  1.17C 1.19C 1.20C 1.42B 1.56A 0.07 0.27 <0.001 0.48 
1 Residual error. 
a,b,c,d Values with different superscripts differ significantly (P < 0.05). 
A,B,C,D,E Values with different superscripts differ significantly (P < 0.05). 



 23

TABLE 5. Nitrogen and pro tein metabolism. Intake of total N (IN), intake of N without nucleic acid N (IN-NAN), excretion of N in droppings, retained nitrogen (RN), 
metabolizable energy (ME), heat energy (HE), retained energy (RE), energy retained as protein (RPE), and energy retained as fat (RFE) in Kcal/kg0.75; respiratory 

quotient (RQ). 
 Diet     Period      P-value   
 D0 D2 D4 D6  1 2 3 4 5 RR1 Diet (D) Period (P) D * P 
Age (days)      3–7 10–14 17–21 23–27 30–34     
Number of observations in 
balance/respiration experiments (n) 

15/10 15/10 14/10 15/10  12/8 11/8 12/8 12/8 12/8     

               
IN 4.35a 4.07b 4.10b 4.14b  4.53B 4.69A 4.35C 3.85D 3.40E 0.18 0.01 <0.001 0.80 
IN-NAN 4.22a 3.93b 3.93b 3.95b  4.36B 4.51A 4.19C 3.70D 3.28E 0.18 0.001 <0.001 0.77 
N in droppings 1.59 1.44 1.52 1.50  1.49BC 1.62A 1.55B 1.48C 1.41D 0.10 0.09 <0.001 0.05 
RN 2.75a 2.63b 2.58b 2.64b  3.04A 3.06A 2.81B 2.37C 1.99D 0.13 0.01 <0.001 0.02 
RN/IN 63.0 64.3 62.6 63.4  66.9A 65.3B 64.5B 61.5C 58.5D 1.64 0.25 <0.001 0.002 
RN/(IN-NAN) 64.9 66.7 65.3 66.5  69.6A 67.8B 67.0B 63.9C 60.8D 1.7 0.15 <0.001 0.002 
               
ME 364 362 374 377  393B 420A 393B 337C 303D 20 0.39 <0.001 0.85 
HE 190 205 210 189  189BC 230A 221A 190B 163C 43 0.92 <0.001 0.89 
RE 174 156 168 188  204A 195AB 172B 147C 140C 47 0.88 0.03 0.42 
RPE 98 94 93 94  108A 110A 100A 84B 71C 5.8 0.23 <0.001 0.29 
RFE 76 62 76 94  96 86 72 62 69 46 0.89 0.29 0.49 
RQ 0.92 0.94 0.94 0.93  0.99A 0.96AB 0.89CD 0.89D 0.92BC 0.05 0.90 <0.001 0.62 
1 Residual error. 
a,b Values with different superscripts differ significantly (P < 0.05). 
A,B,C,D,E Values with different superscripts differ significantly (P < 0.05). 
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TABLE 6. Average body weight (g) and chemical composition of carcasses. DM, ash, N, and fat are given in %, and gross energy (GE) in kcal/kg. Only chickens from 
periods 1, 3, and 5 were used for carcass analysis. 

 Diet     Period      P-value   
 D0 D2 D4 D6  1 2 3 4 5 RMSE1 Diet (D) Period (P) D * P 
Age (days)      3–7 10–14 17–21 23–27 30–34     
Number of observations (n) 17 17 18 18  12 12 10 12 24     
               
Body weight 1295 1248 1187 1224  235E 561D 1178C 1747B 2472A 119 0.10 <0.001 0.86 
               
Chemical body composition                
Number of chickens (n) 8 8 9 9  12  10  12     
DM 31.8 31.8 31.1 32.1  28.8C  32.4B  34.0A 1.1 0.33 <0001 0.68 
Ash 2.6ab 2.7a 2.5b 2.7a  2.6  2.7  2.6 0.1 0.04 0.18 0.69 
N 3.0 2.9 3.0 2.9  2.7C  3.0B  3.1A 0.1 0.39 <0.001 0.33 
Fat 9.8 10.3 10.1 10.7  8.9B  10.4A  11.4A 1.2 0.54 <0.001 0.48 
GE 2011 2014 2006 2027  1750B  2096A  2197A 114 0.98 <0.001 0.63 
1 root mean square error. 
a,b Values with different superscripts differ significantly (P < 0.05). 
A,B,C,D,E Values with different superscripts differ significantly (P < 0.05). 
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Figure 1. Oxidation of carbohydrate (OXCHO) and fat (OXF) in relation to total heat energy (HE) 

a) for chickens fed diets with 0% bacterial protein meal (BPM) (D0), 2% BPM (D2), 4% BPM 

(D4), and 6% BPM (D6). OXF P = 0.65 and OXCHO P = 0.65 b) for chickens fed diets with a 

BPM content of 0% to 6% and were measured at 5 different ages, at 3, 10, 17, 23, and 30 days of 

age. OXF P < 0.001 and OXCHO P < 0.001. 
A,B,C, D Values with different letters differ significantly (P < 0.05 ) 

a) 
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Abstract 1 

This experiment investigated the effects of increasing the dietary content of bacterial protein meal 2 

(BPM) on the protein and energy metabolism of pigs from weaning until attaining a live weight of 3 

80 kg. A total of four litters with four castrated male pigs in each were used. The litters were 4 

divided into two blocks according to time of weaning. One pig from each litter was fed one of the 5 

four experimental diets. Soybean meal was replaced with BPM on the basis of digestible protein, 6 

and the BPM contents in the four diets were 0% (BP0), 5% (BP5), 10% (BP10) and 15% (BP15), 7 

corresponding up to 0%, 17%, 35% and 52% of the digestible nitrogen, respectively. Four balance 8 

periods were scheduled, at the start of which the pigs weighed 9.5 kg, 20.7 kg, 45.3 kg and 77.2 kg, 9 

respectively. During the same periods, 22-h respiration experiments were performed using indirect 10 

calorimetry. Weight gain, feed intake and feed conversion rate as well as the intakes of nitrogen and 11 

energy were the same for all diets. The apparent digestibility of nitrogen was significantly lower on 12 

diet BP10 than on BP0, whereas the apparent digestibility of energy was similar on all diets. The 13 

retention of nitrogen was 1.50, 1.53, 1.33 and 1.46 g N/kg0.75 on BP0, BP5, BP10 and BP15, 14 

respectively. Although the retention was 0.17 g N/kg0.75 lower on BP10 than on BP0, the difference 15 

was not significant. Neither metabolizable energy nor heat production were affected by diet. 16 

Retention of energy was 620 (BP0), 696 (BP5), 613 (BP10) and 664 kJ/kg0.75 (BP15), the 17 

differences among diets being non-significant. The N-free respiratory quotient was also similar on 18 

all diets. It was concluded that the overall protein and energy metabolism in growing pigs was not 19 

affected when up to 50% of dietary N was derived from BPM . 20 

 21 

Keywords: Pig, protein metabolism, energy metabolism, bacterial protein meal 22 

 23 
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 3

Introduction 1 

 2 

The global demand for high-quality protein feedstuffs for use in animal nutrition is increasing: fish 3 

for the production of fish meal is a limited resource, meat and bone meal and other animal by-4 

products are banned in many countries owing to bovine spongiform encephalitis, and important 5 

vegetable protein sources are increasingly genetically modified and thus considered unsuitable for 6 

the diets of food animals in many countries. Alternative protein sources thus must continuously be 7 

evaluated and, if proved suitable, included in the diets of farm and companion animals. The 8 

prerequisites for a protein feedstuff to be considered of high nutritional quality include good 9 

palatability, high biological value, harmlessness and being beneficial to product quality. Evaluation 10 

studies conducted with fast-growing animals such as pigs and chickens may form a suitable basis 11 

for conclusions as to the usefulness of such alternative protein feedstuffs. 12 

 13 

Bacterial protein meal (BPM) produced by the continuous aerobic fermentation of natural gas (99% 14 

methane) as the energy and carbon source and ammonium as the nitrogen source is one such a new 15 

interesting potential protein source (Skrede et al., 1998). The bacterial biomass comprises 16 

Methylococcus capsulatus (Bath; >90%), Ralstonia sp., Brevibacillus agri and Aneurinibacillus sp.; 17 

after fermentation the biomass is spray dried and heat treated to obtain a dry and storage-stable 18 

reddish/brown product with a dry matter (DM) content of approximately 96%. The crude protein 19 

(CP), fat and ash contents are approximately 70%, 10% and 7%, respectively (Skrede et al., 1998). 20 

Nitrogen (N) from the purine and pyrimidine bases in RNA and DNA makes up approximately 12% 21 

of the N in BPM, this level being low compared to that of many other single-cell proteins of 22 

bacterial origin (Braude et al., 1977; Tiermeyer et al., 1981; Rumsey et al., 1991; Kiessling and 23 

Askbrandt, 1993), but considerably higher than that of fish meal (Greife, 1984), wheat, barley, corn 24 

or soybeans (Herbel and Montag, 1987; Imafidon and Sosulski, 1990; Lassek and Montag, 1990).  25 

 26 

In pig diets, BPM may be used to replace soybean meal (SBM). Compared to that of SBM, the 27 

amino acid composition of BPM mainly differs in having a slightly higher content of S-containing 28 

amino acids (with a somewhat lower cystine but a higher methionine content). For other essential 29 

amino acids, only minor differences between SBM and BPM have been reported (Øverland et al., 30 

2001). The major lipid components of BPM are phospholipids, mainly phosphatidylethanolamine 31 

and phosphatidylglycerol with high contents of 16:0 and 16:1 fatty acids (Müller et al., 2004). 32 



 4

 1 

Production experiments reported to date suggest that BPM is a promising alternative protein source: 2 

dietary BPM providing up to one third of the N intake was found to sustain production performance 3 

and animal health in slaughter chickens (Skrede et al., 2003) and blue foxes (Skrede and Ahlstrøm, 4 

2002). When BPM made up approximately 50% of dietary N no adverse effects were reported for 5 

growing–finishing pigs (Øverland et al., 2001) or Atlantic salmon (Storebakken et al., 2004); 6 

however, when 40–50% of dietary N originated from BPM, reduced performance during the piglet 7 

period was noted in some experiments (Øverland et al., 2001 and 2004). 8 

 9 

A complete feedstuff evaluation cannot be based solely on performance data, but also needs to 10 

consider effects on nitrogen and energy metabolism. A high-quality protein source must sustain 11 

high nitrogen retention and not cause elevated heat production (HE). Results regarding BPM are 12 

still limited to studies of chicken and mink, which show that retained nitrogen (RN) remained 13 

unaffected when BPM made up 20–60% of digestible N in the mink diet (Hellwing et al., 2005a) or 14 

6.5–20% in the chicken diet (Hellwing et al., 2005b). However, the metabolic fate in the organism 15 

of the purine and pyrimidine bases in BPM still needs to be elucidated. If these bases are not 16 

digested and absorbed, apparent N digestibility will decrease. If they are absorbed but not used in 17 

protein metabolism, the excess N is excreted in urine in an energy-expensive process, likely to 18 

increase the animals’ HE. However, previous findings by Hellwing et al. (2005a and b) do not 19 

support such a scenario. Data regarding pigs fed yeast RNA in diets sufficient in essential amino 20 

acids but low in protein even suggest that RNA might serve as a non-specific N source, as indicated 21 

by improved N retention (Roth and Kirchgessner, 1977, 1978).   22 

 23 

The present study thus investigates the effects of replacing SBM with increasing dietary levels of 24 

BPM in the diets of pigs, from weaning until a weight of 80 kg, on quantitative nitrogen and energy 25 

metabolism traits.26 
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Material and methods 1 

 2 

Animals and experimental design 3 

In total, 20 recently weaned crossbred castrated male piglets [(Landrace*Yorkshire) * 4 

(Hampshire*Duroc)] from five litters were bought from a pig producer. The first three litters (Block 5 

A) were delivered one week before the last two litters (Block B). One litter from block A served as 6 

spare pigs. One pig from each litter was allocated to each of the four experimental diets. At arrival 7 

the piglets in block A weighed 8.1 ± 0.7 kg (mean ± SD) and the piglets in block B 9.8 ± 0.9 kg.  8 

 9 

Experimental diets were fed from day one. Nine days after arrival the pigs were placed in 10 

metabolism cages and the first 4-day balance period started 12 days after arrival. Another three 11 

balance periods were conducted 40, 68 and 96 days after arrival. The pigs weighed 9.5 ± 1.6 kg, 12 

20.7 ± 3.9 kg, 45.3 ± 4.6 kg and 77.2 ± 5.0 kg at the start of the four balance periods, respectively, 13 

during which the pigs were also subjected to 22-h respiration experiments by means of indirect 14 

calorimetry in an open-air circulation system.  15 

 16 

Diets 17 

The BPM (trade name, Bioprotein) was produced and supplied by Norferm AS (Stavanger, 18 

Norway). The BPM was pelleted with the inclusion of approximately 1% soy oil after spray-drying. 19 

Two batches of feed were produced: the first was used from arrival until the end of balance period 2 20 

(starter diet), and the second was used during the rest of the experiment (growing–finishing diet). 21 

The metabolizable energy content of the starter diet was somewhat higher than that of the growing–22 

finishing diet. Wheat was the main ingredient in the starter diet and barley dominated in the 23 

growing–finishing diet (Table 1). One of the experimental diets served as the control diet and 24 

contained no BPM (BP0), while the remaining diets contained 5% BPM (BP5), 10% BPM (BP10) 25 

and 15% BPM (BP15). The BPM replaced soybean meal on a digestible protein basis, comprising 26 

0/0, 17/17, 33/35 and 49/52% of N in the starter and growing–finishing diets, respectively. The 27 

diets were formulated to meet or exceed the requirements for essential amino acids and all other 28 

nutrients established by the National Research Council (NRC) (1998). The diets were produced by 29 

the Center for Feed Technology (Ås, Norway) and pelleted using a 3-mm die on a Münch pellet 30 

press (Münch-Edelstahl GmbH, Hilden, Germany). For a more detailed description of the diet 31 

formulation, see Øverland et al. (2004). The composition and chemical contents of the starter and 32 
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growing–finishing diets are given in Table 1, while the contents of amino acids and of purine and 1 

pyrimidine bases are presented in Table 2. 2 

 3 

Housing and feeding 4 

The pigs were housed individually for the duration of the experiment. For the first 9 days after 5 

arrival and between balance periods they were housed in pens with concrete floors covered with 6 

wood shavings. The pigs were fed once daily both during and between the balance periods. 7 

experimental diets were provided as close as possible to ad libitum feeding throughout the 8 

experiment. Between balance periods, water was provided ad libitum from drinking nipples. During 9 

the balance periods, water (twice the weight of the feed) was mixed into the diets. In addition, pigs 10 

were given drinking water in a trough. The temperature was kept at 20–22°C throughout the 11 

experimental period.  12 

 13 

To ensure pig welfare, all pigs were provided with a rubber mat in the front of the metabolism 14 

cages during the first and second balance periods, and if considered necessary, also in periods 3 and 15 

4.  16 

 17 

Experimental techniques 18 

Pigs were weighed at the start and end of each balance period. The collection of faeces and urine 19 

was performed between 8:00 and 12:00 every day. The pigs were fed between 11:30 a.m. and 12:00 20 

a.m. during the balance periods. Urine was collected in 30 ml of 5% sulphuric acid in periods 1 and 21 

2 and in 50 ml of 5% sulphuric acid in periods 3 and 4, except for 2 days in periods 2 and 4 when 22 

protein turnover was estimated by means of the 15N-glycine end-point technique (Hellwing et al., 23 

2005c).  24 

 25 

After collecting the faeces and urine the inside surfaces of the metabolic cage, the mat and 26 

collection plate were washed with citric acid. The feed residues, faeces, urine and citric acid rinse 27 

were weighed and stored at –18ºC. After each balance period, all the collected material was thawed 28 

and mixed to homogeneity except for the citric acid rinse. Samples for chemical analysis were taken 29 

and frozen for later use at –18ºC. The citric acid rinse was centrifuged at 3000 × g for 10 min to 30 

separate out the solid particles (assumed to be faeces residues) from the fluid citric acid rinse 31 
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(assumed mainly to contain N residues derived from urine). The sediment was weighed and freeze-1 

dried. A sample of the supernatant was stored at –18ºC. 2 

 3 

The animals were brought to the respiration unit between 9:30 and 10:30. Each respiration 4 

experiment lasted 22 h, starting at 11:00 and ending at 9:00 the following morning. The volume of 5 

each respiration chamber was 3500 L and the chambers were constructed for animals with live 6 

weights of 5–200 kg. For a detailed description of the calibration and measurement procedures, see 7 

Chwalibog et al. (2004). 8 

 9 

Health 10 

Some pigs in block A suffered from diarrhoea and pneumonia in the first week after arrival and 11 

were treated with antibiotics. In the first balance period, all pigs were healthy although some had a 12 

tendency to loose stools. During the interval between the first and the second periods, one pig in 13 

block A and one spare pig died and the post mortem examination showed that death was caused by 14 

oedema disease. Another pig with clinical signs of the disease was treated with antibiotics and the 15 

remaining pigs were given a prophylactic vaccination. The dead pig from block A was replaced 16 

with a spare pig.  17 

 18 

Analyses 19 

Samples of diets and freeze-dried faeces were milled and homogenised before analyses. All diets 20 

were analysed for dry matter (DM), ash, N, fat, gross energy (GE), amino acids, adenine, guanine, 21 

cytosine, thymine and uracil. Feed residues were analysed for DM. Wet faeces were analysed for 22 

DM and N and freeze-dried faeces for ash, fat and GE. The supernatant of the citric acid rinse was 23 

analysed for N, and the DM content of the sediment was determined by freeze-drying.  24 

 25 

DM was determined by evaporation at 105°C to constant weight. Ash was determined by 26 

combustion at 525°C. N was determined by the micro-Kjeldahl technique using the Tecator–Kjeltec 27 

system 1030 (Tecator AB, Höganäs, Sweden). CP was calculated as N × 6.25. Fat was determined 28 

by petroleum ether extraction in a Soxtec system after HCl hydrolysis. GE was determined using an 29 

adiabatic bomb calorimeter (IKA Calorimeter system, IKA® Gmbh & Co. KG, Staufen, Germany). 30 

The amino acids, except tryptophan, in the diets were determined according to the European 31 

Community Directive 98/64/EC (OJ 1998). Tryptophan was analysed according to the Bech-32 
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Andersen procedure (1991). An HPLC method, described in detail by Thode (1999), was used to 1 

determine the adenine, guanine, thymine, uracil and cytosine contents of the diets.  2 

 3 

Calculations 4 

Carbohydrates (CHO) were calculated by difference. Urinary N (UN) was calculated as the sum of 5 

the N in the urine and the citric acid rinse. Faecal N (FN) was calculated as the N content of the 6 

faeces plus the N content of the sediment from citric acid rinse. It was assumed that the N content 7 

of the sediment was the same as that of the faeces. Energy in urine (UE) was calculated using the 8 

factor 53.5 kJ/g × UN (Chwalibog et al., 2004). RN was calculated as ingested nitrogen (IN) minus 9 

UN and FN. Metabolizable energy (ME) was calculated as ME, kJ = GE (feed) – energy in faeces 10 

(FE) – energy in urine (UE). Heat production (HE) was calculated according to Brouwer (1965) as 11 

HE, kJ = 16.18 × O2, L + 5.02 × CO2, L – 5.99 × UN, g and retained energy (RE) as ME – HE. The 12 

non-protein respiratory quotient (RQnp) was calculated as RQnp = (CO2, L – [UN, g × 6.25 × 13 

0.774])/(O2, L – [UN, g × 6.25 × 0.957]).  14 

 15 

The HE is the sum of heat produced by the oxidation of protein (OXP), carbohydrate (OXCHO) 16 

and fat (OXF). The oxidation of each main nutrient was calculated using the following equations 17 

(Chwalibog et al., 1992): 18 

 19 

OXP, kJ = UN, g × 6.25 × 18.42 20 

OXCHO, kJ = (–2.968 × O2, L + 4.174 × CO2, L – 2.446 × UN, g) × 17.58 21 

OXF, kJ = (1.719 × O2, L + 1.719 × CO2, L – 1.963 × UN, g) × 39.76 22 

 23 

If RQnp > 1 the calculated OXCHO and OXF do not represent the actual oxidation of nutrients. 24 

Therefore, the values were interpreted as the “apparent values”, i.e. AOXCHO and AOXF. In order 25 

to calculate OXCHO and OXF for RQnp > 1, it was considered that AOXCHO was overestimated in 26 

relation to OXCHO by an amount equal to that of AOXF. OXCHO, kJ was then AXCHO, kJ – 27 

AOXF, kJ where AOXF has the reversed sign. OXF was zero. For further description of the theory 28 

and the calculations, see Chwalibog et al. (1992) and Chwalibog and Thorbek (1995). 29 

 30 

 31 

 32 
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Statistical analyses 1 

Statistical analyses of data from the balance and respiration experiments were carried out by means 2 

of the MIXED Procedure in SAS® (Littell et al., 1996) using the following model: 3 

 4 

Yijk = μ + αi + βj + (αβ)ij + γk + εijkl 5 

 6 

where Yijkl is the Yijklth observation, μ is the general mean, αi is the fixed effect of diet (BP0, BP5, 7 

BP10 and BP15), βj is the fixed effect of balance period (1 to 4), αβij is the interaction between diet 8 

and balance period, γk is the fixed effect of block (A and B) and εijk is the residual error. Data were 9 

analysed as repeated measurements and the heterogeneous autoregressive order 1 (ARH(1)) 10 

covariance structure was fitted (Littell et al., 1996). Results are presented as least squares means 11 

(LSmeans) and the square root of residuals (RR) is given for each variable. Pair-wise comparisons 12 

of LSmeans were made using the PDIFF option, and effects were considered significant if P < 0.05. 13 

One observation from period 2 was omitted because of an injury not related to the dietary treatment. 14 

Another three observations (regarding one pig in period 2 and two pigs in period 3) were omitted 15 

from the analysis of the respiration data because of technical problems.  16 

17 
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Results 1 

 2 

All results regarding intake of nutrients, protein and energy metabolism are presented in relation to 3 

metabolic body size (kg0.75) in order to facilitate comparisons among balance periods, the exception 4 

being intakes of amino acids, which are given in g/day. The block effects observed during the 5 

experiment were caused by differences in the weights of the piglets between the two blocks at 6 

arrival, the piglets in block B weighing almost 2 kg more than pigs in block A. 7 

 8 

Intake of nutrients, digestibility and performance 9 

Effect of diet: Intake of DM was 93 g/kg0.75 on diets BP0 and BP10 whereas it was 97 g/kg0.75 on 10 

BP5 and BP15, the differences between the diets being non-significant. The intakes of CP, 11 

carbohydrate and GE reflected the dry matter intake. Because the content of fat in both the starter 12 

and growing–finishing diets increased with increasing BPM content (Table 1), the intake of fat 13 

increased significantly with increasing dietary BPM (Table 3). The intake of lysine was 14 

significantly higher on diets BP0 and BP5 than on BP10 and BP15. The intake of methionine plus 15 

cysteine was the same on all diets, but the content of methionine increased whereas the content of 16 

cysteine decreased with increasing dietary BPM. 17 

 18 

The apparent digestibility of N (ADN) was lowest on diets BP10 and BP15, differing significantly 19 

(P = 0.002) from the ADN on BP0. The apparent digestibility of fat (ADF) increased significantly 20 

(P < 0.001) with increasing dietary BPM, whereas the apparent digestibility levels of carbohydrate 21 

(ADCHO) and of energy (ADE) were unaffected by diet (Table 3).  22 

 23 

The daily gain during the balance periods was lowest on BP10 at 688 g and highest on BP0 at 852 24 

g, but differences between diets were non-significant. The feed conversion rate tended (P = 0.12) to 25 

become poorer with increasing dietary BPM (Table 3). 26 

 27 

Effect of period: Intake of DM, CP, fat, carbohydrate and gross energy increased from period 1 to 28 

period 3, but in period 4 the intake of nutrients was intermediate to the levels in periods 1 and 2 29 

(Table 3).  30 

 31 
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ADN was the same in periods 1 through 3, whereas it was significantly higher in period 4. ADF 1 

was highest in period 2 and lowest in period 1. The lower ADF recorded in periods 3 and 4 2 

compared with period 2 was probably caused by the different ingredient composition in the starter 3 

diet versus the growing–finishing diet. The ADCHO and ADE were lowest in period 3 at 0.86 and 4 

0.80, respectively. There were small though significant differences in ADCHO among the periods, 5 

the highest ADCHO being found in period 1 (Table 3). 6 

 7 

The pigs weighed approximately 10, 22, 48 and 79 kg at the midpoint of each balance period. The 8 

body weight gain was lowest in the first period and then increased significantly until balance period 9 

3, after which the level remained the same in period 4. The feed conversion rate was most efficient 10 

in the first period and then declined to a constant level for the rest of the experiment (Table 3). 11 

 12 

Interaction between diet and period: The observed interaction between diet and period for intake of 13 

fat, methionine, cystine and tryptophan was mainly caused by that fact that the feed intake relative 14 

to metabolic body size was lower in period 4 than in period 3.  15 

 16 

Nitrogen metabolism 17 

Effect of diet: Because of the lower DM intake, IN was slightly lower (3.2 g/kg0.75) on diets BP0 18 

and BP10 than on BP5 and BP15 (3.4 g/kg0.75) but the difference was not significant. The intake of 19 

nucleic acid nitrogen (NAN) increased with increasing dietary BPM. Due to the lower IN and 20 

ADN, the DN was significantly lower on BP10 than on BP5. The faecal excretion of nitrogen 21 

tended to increase (P = 0.12) with increasing dietary BPM. The excretion of N in urine ranged from 22 

0.99 (BP0) to 1.06 g/kg0.75 (BP5 and BP15). RN was lowest on BP10 at 1.33 g/kg0.75 and highest on 23 

BP5 at 1.53 g/kg0.75, but the difference was non-significant (P = 0.08). The utilization of digested 24 

nitrogen for retention (RN/DN) was close to 60% on BP0 and 55% on BP10, the difference 25 

between the diets being non-significant. The partitioning of excreted N between faeces and urine 26 

was similar on all diets (Table 4). 27 

 28 

Effect of period: Both IN and DN increased significantly until period 3, after which they decreased 29 

significantly in period 4. UN excretion was highest in periods 3 and 4, when it differed significantly 30 

from the levels in periods 1 and 2. The highest RN values were recorded in periods 2 and 3, when 31 

they were significantly higher than in periods 1 and 4. Utilization of DN for retention (RN/DN) was 32 
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most efficient in period 2 (64%), after which it declined significantly to below 50% in period 4. 1 

This decline was reflected in the partitioning of N excretion between faeces and urine, the latter 2 

increasing continuously from period 2 to period 4 (Table 4). 3 

 4 

Interaction between diet and period: Animals on diets BP10 and BP15 had a poor utilization of DN 5 

for retention in period 1 (not shown), the utilization level being similar to that in period 4. This was 6 

likely the main cause of the interaction between diet and period observed for RN/DN. Significant 7 

interaction effects for UN and total N excretion could be explained by low UN on diets BP10 and 8 

BP15 during period 4.  9 

 10 

Energy metabolism 11 

Effect of diet: The intake of ME was highest on diets BP5 and BP15 and lowest on BP0 and BP10, 12 

but the differences were non-significant. HE was highest on BP15 but did not differ significantly 13 

from the levels on the other diets. RE was not significantly affected by diet. Approximately 35–14 

40% of RE was retained as protein and the rest as fat, and there were no significant differences 15 

among the diets. RQnp was unaffected by diet (Table 5). OXP, OXCHO and OXF were the same on 16 

all diets (Figure 1a). 17 

 18 

Effect of period: ME intake increased from a low level (approximately 1 MJ/kg0.75) in period 1 to 19 

approximately 1.65 MJ/kg0.75 in periods 2 and 3, after which it declined by approximately 0.4 20 

MJ/kg0.75 in period 4. This pattern was partly reflected in HE, although the lowest HE values were 21 

recorded in period 4. Consequently, RE was low in period 1, increased by almost 0.5 MJ/kg0.75 in 22 

period 2 and remained at this level in period 3. HE and RE values in the two last periods were 23 

probably somewhat affected by the decline in ME intake observed on the days of the respiration 24 

experiments (4 g DM/kg0.75 in period 3 and 27 g DM/kg0.75 in period 4), resulting in RE values in 25 

period 4 being lower than expected from the measured body weight gain. RQnp values were also 26 

lower than expected (Table 5). The pattern of substrate oxidation reflected both the rate of protein 27 

retention, OXP increasing significantly from period 1 to period 4, and the level of ME intake, OXF 28 

being highest in period 1 when ME intake was lowest and zero in periods 2 and 3 when ME intake 29 

was high (Figure 1b). 30 

31 
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Discussion 1 

 2 

Intake of nutrients, performance and digestibility 3 

The diets were generally well accepted and the animals performed well even on the diet with 4 

highest inclusion level, where BPM supplied approximately 50% of dietary N. The small and non-5 

significant difference in DM intake (approximately 4 g/kg0.75) could not be explained by the dietary 6 

level of BPM, since the lowest intakes were recorded on the control diet (BP0) and the 10% BPM 7 

diet (BP10). However, the differences in DM intake obviously influenced protein and energy intake 8 

and some of the other traits measured in the present study. Our results concur with those of 9 

Øverland et al. (2004): using the same diets as in the present study, they found no differences in 10 

feed intake but a small reduction in average daily gain on the diet containing the most BPM.  11 

 12 

The amino acid composition differed somewhat between diets, the control diet (BP0) having an 13 

almost ideal pattern of essential amino acids (NRC, 1998), whereas increasing BPM inclusion 14 

caused gradually lowered lysine content and higher contents of methionine and tryptophan. The 15 

lysine contents of all starter diets, declining from 10.7 g/kg feed on BP0 to 8.6 g/kg feed on BP15, 16 

were lower than recommended by NRC (1998) for pigs weighing 10–20 kg. Thus the differences in 17 

lysine content may have affected the results obtained in the two first study periods. All the 18 

growing–finishing diets contained sufficient amounts of lysine, according to the NRC (1998) 19 

recommendations.  20 

 21 

The intention of this study was to work with intact animals, i.e. animals not equipped with digestive 22 

tract cannulas. Therefore, all digestibility data represent total tract digestibility and no 23 

determination of digestibility at the terminal ileum was carried out. The ADN of BPM at the 24 

terminal ileum and of the total digestive tract of pigs has been estimated to be 0.78 and 0.85, 25 

respectively, using BPM as the sole source of protein (Skrede et al., 1998). Regression analysis of 26 

our data indicated a lower digestibility, although the equation had a low R2. However, the ADN of 27 

the control diet based on soybean meal was also low, and the effects of replacing SBM with BPM 28 

were rather slight. In studies of blue foxes, a BPM-based diet was found to have a significantly 29 

lower ileal and numerically lower total tract digestibility than a diet based on SBM (Vhile et al., 30 

2005).  31 

 32 
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The amino acids in BPM and other bacterial proteins are located both in the cytoplasm and the cell 1 

wall, so disruption of the cell wall is necessary to allow digestive enzymes to gain access to the 2 

amino acids in the cytoplasm. Despite this fact, Soeder (1977) stated that even a completely 3 

indigestible cell wall would only cause a minor decline in N digestibility. The explanation as to 4 

why the present study found that BPM consumption resulted in slightly lower ADN levels than 5 

those resulting from SBM consumption, may be that M. capsulatus, in addition to the cell walls, 6 

contains a complex system of poorly digestible internal membranes. Thus, a membrane-reduced 7 

extract of autolyzed BPM has been shown to have higher N digestibility than the crude autolyzed 8 

BPM does (Schøyen et al., 2005).  9 

 10 

The increasing ADF with increasing dietary levels of BPM found in our study was likely due to the 11 

increasing fat content of the diets, and hence reduced contributions to faecal fat from endogenous 12 

losses (Jørgensen et al., 1992 and 1993). An estimate of the true fat digestibility, assuming an 13 

endogenous loss of 4.4 g per kg DM (Jørgensen et al. 1993), indicated a higher fat digestibility in 14 

BPM than in the fat sources of the control diet. Unlike the results of the mink study (Hellwing et 15 

al., 2005a), ADCHO and ADE were not affected by increasing dietary content of BPM. This may 16 

be explained by higher levels of dietary carbohydrate – the main energy source in pig diets – and 17 

minor contributions from BPM to the carbohydrate fraction. The cell wall carbohydrates in BPM 18 

mainly consist of various heptoses, glucose, galactose, N-acetylglucosamine, rhamnose and 19 

mannose as well as some unusual dideoxy sugars. The digestibility of these compounds is probably 20 

low, as has been shown for yeast cell wall glucans (Longe et al., 1981). 21 

 22 

Protein metabolism 23 

Our diets were designed to be iso-nitrogenous, and protein metabolism traits were generally found 24 

to be independent of dietary BPM. The exception was the low ADN and DN on diet BP10, which 25 

was at least partly caused by lower DM intake. Despite less protein being available for retention 26 

and the sub-optimal lysine supply, the RN was only slightly and non-significantly lower than the 27 

highest value, which was found on diet BP5. This result concurs with our findings in mink, where 28 

RN was unaffected by dietary BPM level (Hellwing et al., 2005a). In slaughter chickens, Hellwing 29 

et al. (2005b) also found similar RN levels for all BPM-containing diets. 30 

 31 
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The utilization of DN for N retention was 9% higher on diet BP0 than on BP10, but the N derived 1 

from nucleic acids increased from 2.5% on BP0 to approximately 10% on BP15 and this fraction 2 

cannot be directly used for protein synthesis. The fate of nucleic acid N is important in relation to 3 

protein metabolism. Pig experiments have shown that up to 40% of adenine, 15% of guanine and 4 

20% of the pyrimidine bases in the diet were retained in the body (Greife and Molnar, 1984a and b). 5 

In addition, some NH3 released during the decomposition of the purine and pyrimidine bases might 6 

be used in the synthesis of non-essential amino acids, as has been shown in the case of yeast RNA 7 

in diets adequate in essential amino acids (Roth and Kirchgessner, 1978). The high values for RN 8 

on diets BP5 and BP15 indicate that some nucleic acid N may have been used for the synthesis of 9 

non-essential amino acids or have been directly deposited in the body. 10 

 11 

The retention of protein in different balance periods was in good agreement with results obtained by 12 

Whittemore et al. (1988), although the highest retention we found was in balance period 3 at an 13 

average pig live weight of 48 kg, while Whittemore et al. (1988) recorded maximum protein 14 

retention at 75 kg live weight. To achieve maximum protein retention the supply of both digestible 15 

protein and ME must be sufficient. The criteria for this (DN > 1.9 g/kg0.75, ME > 1100 kJ/kg0.75; 16 

Chwalibog et al., 1996; Tauson et al., 1998) were fulfilled in this study. The pattern of protein 17 

retention can be modelled according to a second order function. Data pertaining to pigs of mixed 18 

sexes from 2 to 120 kg (Chwalibog et al. 1996) or intact boars (Tauson et al. 1998) gave peak 19 

values of 180 g/day at 98 kg and 227 g/day at 135 kg, respectively. Using a similar approach with 20 

the present material gave a peak value of 210 g/day at 62 kg, but the equation had a significant 21 

negative intercept, so the result has only indicative value. Considering the genetic progress and 22 

effects of sex, our estimated maximum protein retention level seems reasonable, even though it was 23 

achieved at a lower than expected live weight. 24 

 25 

Energy metabolism 26 

Dietary supply of BPM was not found to affect HE in the present study, which is in agreement with 27 

the results of previous studies of mink (Hellwing et al., 2005a) and slaughter chickens (Hellwing et 28 

al., 2005b). This means that even assuming 100% digestion of the purine and pyrimidine bases, the 29 

energy cost for the excretion of their metabolites is small in relation to other metabolic processes. 30 

The ME intake was the same on all diets and hence the RE was unaffected by diet.  31 

 32 
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Excretion of UN was the same on all diets, resulting in a similar rate of protein oxidation, and the 1 

level found here was in agreement with that found by Chwalibog et al. (1992) for pigs fed balanced 2 

diets. We found that oxidation of carbohydrate was the main metabolic fuel, but in contrast to the 3 

results of Chwalibog et al. (1992), some fat was found to be oxidized. However, we found no 4 

dietary effects on the rates of carbohydrate and fat oxidation.   5 

 6 

Until period 3, HE increased linearly in relation to the metabolic body size of the pigs, as also 7 

shown by Thorbek (1975). In period 4, however, the lowest HE values were recorded, and RQnp 8 

was found to be lower than in periods 2 and 3, which was caused by a lower feed intake during the 9 

respiration experiments. During the last period the pigs were observed to spend most of the time 10 

sleeping without signs of hunger or discomfort. The feed intake during the complete balance period 11 

did not differ between diets, so between -diet comparisons are still valid, whereas comparisons to 12 

other balance periods should be made with caution.   13 

 14 

In agreement with Chwalibog et al. (1992) and with our previous results regarding mink (Hellwing 15 

et al., 2005a), oxidation of protein was found to increase with increasing period number, which is in 16 

line with the progressively decreasing protein requirement. Fat oxidation was zero during periods 2 17 

and 3, as would be expected of pigs fed at a high level of ME intake with diets containing high 18 

carbohydrate levels (Chwalibog et al., 1992, 1998 and 2001). In periods 1 and 4 oxidation of fat 19 

occurred; this was probably caused by the lower intake of ME, which is in agreement with 20 

Chwalibog et al. (2001). 21 

 22 

Conclusion 23 

The present data suggest that BPM providing up to 50% of dietary N in the diets of growing pigs 24 

can support normal performance as well as normal protein and energy metabolism. With increasing 25 

dietary levels of BPM, the amount of amino acid N decreased, but the animals were still able to 26 

maintain a high protein retention. This indicated a slightly more efficient utilization of dietary 27 

amino acid N, and possibly that some nucleic acid N might have been used for the synthesis of non-28 

essential amino acids or been directly retained in nucleic acids in the body. 29 

 30 

 31 

 32 
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Table 1. Composition and chemical content of diets used in balance and respiration experiments with bacterial protein 1 
meal as protein source for growing pigs. Data are expressed in g kg-–1 and for gross energy in MJ kg–1. 2 
 Starter diet  Growing–finishing diet 
 BP0 BP5 BP10 BP15  BP0 BP5 BP10 BP15 
Barley 226 246 250 270  487 518 541 563 
Wheat 480 480 500 497  250 250 250 250 
Bacterial protein meal (BPM) 0 52 101 153  0 50 100 150 
Soybean meal (45% crude protein) 210 140 68 0  224 146 72 0 
Soy oil 40 40 40 40  6.0 3.6 5.0 5.0 
Limestone 15.8 16.2 16.6 16.9  14.2 14.2 14.2 14.2 
Monocalcium phosphate 15.4 14.8 14.4 13.9  11.7 11.7 11.8 11.8 
Sodium chloride 4.7 4.6 4.5 4.40  3.8 3.7 3.6 3.5 
Iron fumarate 0.33 0.33 0.33 0.33      
Zinc oxide 0.10 0.10 0.10 0.10      
Premix starter diet† 1.55 1.55 1.55 1.55      
Premix growing–finishing diet‡      1.2 1.2 1.2 1.2 
L-lysine HCl (98%) 3.4 2.5 1.8 0.7  0.65 0.64 0.51 0.34 
DL-methionine 0.30 0.0 0.0 0.0  0.54 0.32 0.06 0.0 
L-threonine 1.0 0.63 0.4 0.0  0.60 0.37 0.09 0.0 
L-tryptophan 0.15 0.21 0.3 0.35      
Choline chloride 0.84 0.84 0.84 0.84  0.6 0.6 0.6 0.6 
Ascorbic acid 0.60 0.60 0.6 0.60      
Vitamin E  0.04 0.04 0.04 0.04      
          
Chemical composition          
          
Dry matter 919 917 918 916  881 886 892 890 
Ash 67.4 59.3 59.6 59.0  55.8 54.9 50.5 54.6 
Nitrogen 31.7 31.7 32.0 32.9  30.6 31.5 30.3 30.4 
Crude protein (N * 6.25) 198 198 200 206  191 197 189 190 
Fat 36.9 40.3 52.1 73.5  27 32 40 43 
Carbohydrate§ 617 619 606 578  608 603 612 603 
Gross energy 17.5 17.4 17.5 17.8  16.0 16.3 16.7 16.6 
† Vitamins and trace elements included to provide the following per kg of feed: 140 mg of Zn; 201 mg of Fe; 80 mg of 3 
Mn; 20 mg of Cu; 10 mg of I, 0.4 mg of Se; 3 300 μg of vitamin A; 34.4 μg of cholecalciferol; 137.5 mg of d-α-4 
tocopheryl acetate; 6.9 mg of riboflavin; 22.9 mg of d-pantothenic acid; 27.5 μg of cyanocobalamine. 5 
‡ Vitamins and trace elements included to provide the following amounts per kg of feed: 105 mg of Zn; 75 mg of Fe; 60 6 
mg of Mn; 15 mg of Cu; 7.44 mg of I; 0.3 mg of Se; 2 520 μg of vitamin A, 17.5 μg of cholecalciferol; 115.9 mg of d-7 
α-tocopheryl acetate; 5 mg of riboflavin; 15 mg of d-panthothenic acid; 20 mg of cyanocobalamine. 8 
§ Calculated by difference. 9 

10 



 21

Table 2. Content of amino acids (g kg–1) and purine and pyrimidine bases (mg kg–1 DM) in diets used in balance and 1 
respiration experiments with bacterial protein meal as protein source for growing pigs. 2 

 Starter diet  Growing–finishing diet 
 BP0 BP5 BP10 BP15  BP0 BP5 BP10 BP15 
Essential amino acids          
Lysine 10.7 10.2 9.8 8.6  9.9 10.0 9.1 8.2 
Methionine 2.8 2.9 3.4 3.8  3.0 3.6 3.5 3.7 
Threonine 7.0 6.9 7.1 6.8  7.1 7.4 6.8 6.6 
Tryptophan 2.5 2.7 2.9 3.2  2.6 2.9 3.0 3.2 
Histidine 4.6 4.6 4.5 4.4  4.9 4.8 4.5 4.2 
Phenylalanine 8.9 8.7 8.7 8.4  9.1 9.0 8.3 7.7 
Leucine 13.2 13.4 13.9 13.9  13.7 14.0 13.4 12.9 
Isoleucine 7.7 7.9 8.1 8.1  8.1 8.1 7.8 7.4 
Valine 8.8 9.4 10.1 10.6  9.4 10.0 10.0 9.9 
          
Non-essential amino acids          
Arginine 11.3 11.1 11.3 11.1  12.1 12.0 11.2 10.5 
Glutamic acid 44.6 43.1 41.9 39.0  41.4 39.1 35.7 32.8 
Glycine 7.6 8.0 8.5 8.8  7.7 8.3 8.3 8.1 
Serine 9.5 9.0 8.5 7.9  9.4 9.1 7.9 7.1 
Proline 13.9 13.9 13.9 13.7  13.1 13.0 12.8 12.0 
Alanine 7.3 8.3 9.4 10.3  7.7 9.0 9.5 9.8 
Aspartic acid 15.6 14.9 14.2 13.2  16.9 16.2 14.4 12.7 
Cystine 3.1 3.0 2.8 2.5  3.2 2.9 2.6 2.4 
Tyrosine 6.5 6.6 6.7 6.4  7.5 7.5 7.1 6.5 
          
Purine bases          
Adenine 392 899 1 272 1 905  446 1 027 1 345 1 743 
Guanine 347 770 1 148 1 617  370 876 1 155 1 518 
          
Pyrimidine bases          
Cytosine 506 939 1 328 1 794  522 1 083 1 428 1 783 
Uracil 722 1 031 1 177 1 541  790 1 267 1 508 1 732 
Thymine 139 208 265 347  126 240 252 284 
          
% of N from purine and pyrimidine bases 2.5 5.0 7.1 9.6  2.7 5.6 7.7 9.7 



 22

Table 3. Intake of nutrients (g/kg0.75/day) and amino acids (g/day), digestibility of nutrients and performance in pigs (weight in kg, daily gain in g/day and feed 1 
conversion rate in kg feed/kg gain) fed increasing levels of bacterial protein meal (BPM) from weaning to a weight of approximately 80 kg.  2 

 Diet  Period RR† P values 
 BP0 BP5 BP10 BP15  1 2 3 4  Diet (D) Period (P) D*P Block 
Live weight of pigs      10.1 21.7 47.5 79.1      
Number of pigs (n) 15 16 16 16  16 15 16 16      
Intake of nutrients               
Dry matter 93 97 93 97  67D 107B 118A 88C 0.95 0.38 <0.001 0.26 <0.001 
Protein (N*6.25) 20 21 20 21  15D 24B 25A 19C 0.87 0.15 <0.001 0.07 <0.001 
Fat 3.2d 3.9c 4.7b 6.1a  3.7C 6.0B 4.7A 3.5C 0.15 <0.001 <0.001 <0.001 <0.001 
Carbohydrate 63 66 62 64  44D 71B 80A 60C 0.95 0.46 <0.001 0.24 <0.001 
Gross energy 1.72 1.81 1.75 1.84  1.28D 2.06B 2.17A 1.62C 0.07 0.27 <0.001 0.38 <0.001 
               
Lysine 16.4ab 17.3a 15.3bc 14.2c  4.3D 12.1C 22.4B 24.5A 0.03 0.003 <0.001 0.07 <0.001 
Methionine 4.8c 5.9ab 5.7b 6.4a  1.4D 4.0C 8.3B 9.1A 0.01 <0.001 <0.001 0.001 <0.001 
Cysteine 5.2a 5.0a 4.4b 4.2b  1.2D 3.5C 6.7B 7.3A 0.08 <0.001 <0.001 0.004 <0.001 
Methionine plus cysteine 10.0 10.9 10.1 10.6  2.6D 7.5C 15.0B 16.4A 0.25 0.17 <0.001 0.07 <0.001 
Threonine 11.6 12.5 11.3 11.4  3.0D 8.6C 16.8B 18.4A 0.21 0.10 <0.001 0.08 <0.001 
Tryptophan 4.2c 4.9b 4.9b 5.5a  1.2D 3.5C 7.1B 7.7A 0.12 <.001 <0.001 0.01 <0.001 
               
Apparent digestibility               
Nitrogen (ADN) 0.78a 0.77ab 0.75c 0.76bc       0.76B 0.75B 0.75B 0.79A 0.02 0.002 <0.001 0.40 0.49 
Fat (ADF) 0.66c 0.74b 0.76b 0.81a  0.71C 0.77A 0.74BC 0.75B 0.001 <0.001 0.001 0.09 0.12 
Carbohydrate (ADCHO) 0.88 0.88 0.87 0.87  0.89A 0.88B 0.86D 0.87C 0.01 0.10 <0.001 0.61 0.23 
Energy (ADE) 0.82 0.82 0.81 0.81  0.82A 0.82A 0.80B 0.82A 0.01 0.11 <0.001 0.32 0.59 
Animal performance               
Live weight 38.1 40.2 40.4 39.7  10.1D 21.7C 47.5B 79.1A 0.43 0.64 <0.001 0.93 <0.001 
Daily gain 852 806 688 772  322C 596B 1 150A 1 050A 1.00 0.51 <0.001 0.89 0.01 
Feed conversion rate 1.8 1.9 1.9 2.1  1.4B 2.0A 2.0A 2.1A 0.25 0.12 <0.001 0.02 0.64 

† Residual error. 3 
a,b,c Values with different superscripts differ significantly, effect of diet (P < 0.05). 4 
A,B,C,D Values with different superscripts differ significantly, effect of period (P < 0.05). 5 

6 
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Table 4 Nitrogen metabolism in pigs fed increasing levels of bacterial protein meal (BPM) from weaning to a weight of approximately 80 kg. Ingested nitrogen (IN), 1 
ingested nitrogen minus nucleic acid nitrogen (IN–NAN), digested nitrogen (DN), urinary nitrogen (UN), faecal nitrogen (FN), retained nitrogen (RN) and N excretion 2 
(g/kg0.75/day) and utilization of DN for RN (%). 3 
 Diet  Period RR† P values 
 BP0 BP5 BP10 BP15  1 2 3 4  Diet (D) Period (P) D*P Block 
Live weight of pigs      10.1 21.7 47.5 79.1      
Number of pigs (n) 15 16 16 16  16 15 16 16      
IN 3.21 3.40 3.18 3.38  2.33D 3.76B 4.07A 3.03C 0.14 0.15 <0.001 0.07 <0.001 
IN–NAN 3.13 3.22 2.95 3.06  2.19D 3.52B 3.80A 2.84C 0.13 0.10 <0.001 0.09 <0.001 
DN 2.51ab 2.62a 2.37b 2.55ab  1.78D 2.82B 3.07A 2.39C 0.13 0.04 <0.001 0.23 <0.001 
FN 0.73 0.82 0.84 0.86  0.62B 0.98A 1.01A 0.64B 0.002 0.12 <0.001 0.13 0.14 
UN 0.99 1.06 1.01 1.06  0.67C 0.97B 1.26A 1.22A 0.09 0.44 <0.001 <0.001 0.12 
RN 1.50 1.53 1.33 1.46  1.04B 1.81A 1.80A 1.16B 0.13 0.08 <0.001 0.53 <0.001 
RN/DN 59.8 58.0 54.4 56.7  57.8B 64.1A 58.5B 48.5C 0.94 0.15 <0.001 0.001 0.01 
N excretion 1.73 1.87 1.86 1.92  1.29C 1.95B 2.27A 1.87B 0.08 0.35 <0.001 <0.001 <0.001 
    - in faeces, % 43 44 45 45  48AB 50A 44B 35C 0.87 0.90 <0.001 0.09 0.004 
    - in urine, % 57 56 55 55  52BC 50C 56B 65A 0.87 0.90 <0.001 0.09 0.004 
† Residual error. 4 
a,b Values with different superscripts differ significantly, effect of diet (P < 0.05). 5 
A,B,C,D Values with different superscripts differ significantly, effect of period (P < 0.05).6 
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Table 5. Energy metabolism in pigs fed increasing levels of bacterial protein meal (BPM) from weaning to a weight of approximately 80 kg. Metabolizable energy 1 
(ME), heat production (HE), retained energy (RE), energy retained in protein (RPE), energy retained in fat (RFE) (kJ/kg0.75/day) and N-free respiratory quotient 2 
(RQnp). 3 
 Diet  Period RR† P values 
 BP0 BP5 BP10 BP15  1 2 3 4  Diet (D) Period (P) D*P Block 
Live weight of pigs      10.1 21.7 47.5 79.1      
Number of pigs (n) 14 16 15 15  16 14 14 16      
ME 1 362 1 426 1 360 1 442  1 021C 1 637B 1 677B 1 255C 0.89 0.22 <0.001 0.66 <0.001 
HE 741 730 749 777  678C 821B 869A 629D 0.98 0.29 <0.001 0.43 0.001 
RE 620 696 613 664  340C 819A 808A 625B 0.85 0.25 <0.001 0.92 0.01 
RPE 220 226 195 217  154B 265A 267A 172B 0.97 0.07 <0.001 0.53 <0.001 
RFE 400 470 419 446  185C 554A 543A 454B 0.90 0.33 <0.001 0.85 0.51 
RQNP 1.07 1.06 1.04 1.05  0.97C 1.08B 1.12A 1.05B 0.04 0.16 <0.001 0.50 0.55 
† Residual error. 4 
A,B,C,D Values with different superscripts differ significantly, effect of period (P < 0.05). 5 
 6 
 7 
 8 
 9 

 10 

 11 

 12 
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 Figure 1. Oxidation of protein (OXP), fat (OXF) and carbohydrates (OXCHO) in percent of total heat production (HE) 1 

a) pigs fed diets with 0% bacterial protein meal (BPM) (BP0), 5% BPM (BP5), 10% BPM (BP10) and 15% BPM 2 

(BP15). P values, effect of diet: OXP = 0.47, OXF = 0.72 and OXCHO = 0.92. b) for pigs fed diets with a BPM content 3 

from 0% to 15% and measured in four balance periods at an average live weight of 10.1 kg, 21.7 kg, 47.5 kg, and 79.1 4 

kg. P values, effect of period: OXP < 0.001, OXF < 0.001 and OXCHO < 0.001.  5 
A,B,C, D Values with different capital letters differ significantly (P < 0.05 ) 6 

 

BP0 BP5 BP10 BP15
0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 OXP 
OXCHO

OXF 

Diet

%
 o

f H
E

 

a) 

1 2 3 4
0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 OXP 

OXCHO 

OXF 

b) 

A 

BC A 

DCB 

Balance period

%
 o

f H
E

 

CB

BA 
C1C 1 

1  OXF was zero in both periods 2 and 3



 1

Bacterial protein meal in diets for pigs and minks – protein turnover 

and urinary excretion of purine base derivatives 
 

Anne L. F. Hellwing1, Anne-Helene Tauson1, 3*, Anders Skrede2, 3, Nils P. Kjos2, Øystein Ahlstrøm2 

 

 1 Department of Animal and Veterinary Basic Sciences, The Royal Veterinary and Agricultural 

University, Grønnegaardsvej 3, DK-1870 Frederiksberg C, Denmark, 
2 Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. 

Box 5003, N-1432 Ås, Norway 
3 Aquaculture Protein Centre, Centre of Excellence, P.O. Box 5003, N-1432 Ås, Norway 

 

* Professor dr. Anne-Helene Tauson, phone: +45 35 28 30 39, fax: + 45 35 28 30 20, email: 

aht@kvl.dk  

 

Running title: Protein and purine metabolism in pigs and mink  

 

Keywords: Bacterial protein meal, purine base derivatives, protein turnover



 2

The effect of increasing the dietary content of bacterial protein meal (BPM) on protein turnover, 

and on nucleic acid and creatinine metabolism in growing minks and pigs was investigated in two 

experiments. In each experiment, sixteen animals were allocated to four experimental diets. The 

diets containing no BPM served as controls, i.e. (Mink(M)1, Pig(P)1); the experimental diets 

contained increasing levels of BPM to replace fish meal (minks) or soybean meal (pigs), so that up 

to 17% (P2), 20% (M2), 35%(P3), 40% (M3), 52% (P4), and 60% (M4) of digestible N was BPM 

derived. Protein turnover was measured by means of end-product methods using [15N]glycine as 

tracer and urinary nitrogen as end-product. In minks, protein flux, synthesis, and breakdown 

increased significantly with increasing dietary BPM. In pigs, diet had no observed effect on protein 

turnover. The intake of nucleic acid nitrogen (NAN) increased from 0.15 g/kg0.75 on M1 to 0.26 

g/kg0.75 on M3 and M4 in the mink experiment, and from 0.08 g/kg0.75 on P1 to 0.33 g/kg0.75 on P4 

in the pig experiment. Increased NAN intake led, in both experiments, to increased allantoin 

excretion. Analysis of species effects showed that minks excreted 1.72 g/kg0.75 of allantoin, 

significantly more than the 0.95 g/kg0.75 excreted by pigs. In minks, approximately 96% of the 

excreted purine base derivatives consisted of allantoin, whereas in pigs approximately 93% did. 

Thus, increasing the dietary content of BPM increased protein turnover in minks but not in pigs, 

and allantoin excretion increased with increasing dietary BPM. 
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Introduction 

 

Bacterial protein meal (BPM) is a protein source that offers a potential alternative to fish meal, meat 

and bone meal, soybean meal, and other vegetable protein sources in animal nutrition. In 

experiments with minks, chickens, and pigs it has been shown that up to 40% (minks), 20% 

(chickens), and 50% (pigs) of dietary N can be supplied by BPM without affecting nitrogen 

retention, heat production, and energy retention (Hellwing et al. 2005a,b,c). Similarly, production 

experiments with chickens (Skrede et al. 2003) and pigs (Øverland et al. 2001, 2004) have shown 

that up to one third (chickens) and 50% (pigs) of the N can be derived from BPM without negative 

effects on animal performance and production traits. 

 

BPM is produced by the continuous fermentation of natural gas (99% methane) as the 

carbon and energy source and ammonium as the nitrogen source by the bacteria Methylococcus 

capsulatus (Bath) (>90%), Ralstonia sp., Brevibacillus agri, and Aneurinibacillus sp. (Skrede et al. 

1998). The final dried product is a reddish/brown meal comprising approximately 96% dry matter, 

70% crude protein, 10% lipids, and 7% ash. Approximately 12% of N in BPM is derived from 

nucleic acid N in RNA and DNA, although the RNA and DNA contents are relatively low 

compared to those of other bacterial protein sources (Braude et al. 1977; Tiemeyer et al. 1981; 

Rumsey et al. 1991; Kiessling & Askbrandt, 1993). Compared to fish meal, the content of RNA and 

DNA is high in BPM (Greife, 1984a). The amino acid pattern of BPM is similar to that of fish meal, 

except for somewhat lower lysine and higher tryptophan contents. Compared to soybean meal 

(SBM), in BPM the methionine content is slightly higher and cysteine is slightly lower, resulting in 

a higher total combined content of methionine and cysteine in BPM than in SBM.  

 

Dietary RNA and DNA are decomposed into nucleic acids in the intestinal lumen, and 

further decomposed into nucleosides and free purine and pyrimidine bases by nucleoside phosphate 

enzymes in the mucosa (Privat de Garilhe, 1967). The nucleosides and the free purine and 

pyrimidine bases can either be used directly or further decomposed. Some of the intermediate 

products of the decomposition process can be salvaged to form new nucleotides. The utilisation of 

dietary purine and pyrimidine bases seems to be quite complicated, and it depends on the type of 

base and on the nutritional state and species of the animal (Savaiano & Clifford, 1978; Greife & 

Molnar, 1978a,b; Ho et al. 1979; Yokozawa et al. 1982, 1983; Greife, 1984b; Greife & Molnar, 
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1983, 1984a,b; Brulé et al. 1988; Berthold et al. 1995). From human studies of gout it is known that 

high protein levels and a high intake of purine bases increase the production and excretion of uric 

acid. However, the uricogenic effect of the different bases depended on type of base and whether it 

was given in the free base, nucleoside, or nucleotide form (Brulé et al. 1988). Pigs fed either yeast 

RNA or bacterial protein had an increased plasma concentration of allantoin and an increased 

excretion of purine derivatives in urine (D’Mello et al. 1976; Braude et al. 1977; Roth & 

Kirchgessner, 1977a,b, 1978; Greife et al. 1984). 

 

It is not known whether the increased load of purine bases as such affects protein turnover, 

but at a given dietary N level, the intake of amino acids from BPM-containing diets will decrease. 

In pigs protein quality has been shown to influence protein turnover (Saggau et al. 2000), while in 

cats, medium levels of protein gave a lower flux than a protein-rich diet did (Russell et al. 2003). In 

minks, the decarboxylation of 1-13C-leucine, as measured by breath testing, was not influenced by 

protein source (Tauson et al. 2000), but by protein supply (Tauson et al. 2001a). 

 

In both minks and pigs, increased intake of RNA and DNA may lead to changes in the 

excretion of purine derivatives in urine, though the response can be expected to differ between 

species due to differences in gastrointestinal tract anatomy, nutrient requirements, and nitrogen 

metabolism regulation. For example, the mink is a strict carnivore with a very short gastrointestinal 

tract and a high protein requirement, whereas the pig is an omnivore selected for high body weight 

gain and the efficient utilisation of nutrients.  

 

The present study investigates the impact of increasing the dietary supply of BPM on the 

whole-body protein turnover and on the excretion pattern of purine base derivatives in growing pigs 

and minks, and seeks to reveal possible species differences. 
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Material and methods 

 

Two nitrogen balance and respiration experiments, one with minks and the other pigs, were carried 

out. During the balance periods, protein metabolism was studied by means of end-product methods 

using [15N]glycine as the tracer (minks and pigs) and breath testing (minks). The collected urine 

was also analysed for purine base derivatives. These experiments are described in detail and the 

results of the nitrogen balance and energy metabolism studies are reported in Hellwing et al. 

(2005a,c). The present paper presents data regarding protein turnover, purine base derivative 

excretion patterns, and between-species comparative aspects.  

 

Animals and experimental design 

 

Minks. Sixteen male mink kits of the standard brown colour type were divided into two 

blocks according to time of birth, and allocated to four treatment groups as described by Hellwing 

et al. (2005a). The animals were measured in balance and respiration experiments (indirect 

calorimetry in an open-air circulation unit) in their 10th (period 1), 15th (period 2), 18th (period 3), 

24th (period 4), and 29th (period 5) week of life. During the balance periods, the animals were 

housed in metabolic cages in the laboratory under natural light conditions (55°N 12°E) and at room 

temperature. The metabolic cages were constructed according to the principles presented by 

Jørgensen and Glem-Hansen (1973), and had dimensions of 66 cm × 31 cm × 47 cm. In the interval 

between balance periods the animals were kept under conventional farm conditions and fed a 

conventional mink diet.  

 

Pigs. Sixteen castrated piglets [(Landrace*Yorkshire) * (Hampshire*Duroc)] from four 

litters were divided into two blocks according to time of weaning. One pig from each litter was 

allocated to each of the four treatment groups. The pigs weighed 10.1 ± 1.8 kg (period 1), 21.9 ± 4.0 

kg (period 2), 47.6 ± 4.7 kg (period 3), and 79.3 ± 5.0 kg (period 4) on the first day of each of four 

balance periods. During the balance periods, the animals were housed in metabolic cages in the 

laboratory at an ambient temperature of 20–22°C. Between the balance periods, the pigs were kept 

in individual pens in the stable (see Hellwing et al. 2005c). 
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Diets and feeding routines 

BPM. The BPM used in the mink diets was derived from an experimentally produced batch, 

whereas that used in the pig diets was produced commercially and pelleted before being delivered 

by Norferm AS (Stavanger, Norway). 

 

Minks. One experimental diet contained no BPM and served as the control diet (M1); in the 

other diets BPM replaced high-quality fish meal, so that BPM supplied 20% (M2), 40% (M3), and 

60% (M4) of the digestible N. The formulation and chemical composition of the diets are given in 

Table 1. The animals were fed as closely as possible to ad libitum feeding, and feed was offered 

once a day. Water was freely available at all times. For further details, see Hellwing et al. (2005a). 

 

Pigs. The pigs were fed once daily as closely as possible to ad libitum feeding, from 

weaning until the end of the experiment. Two sets of diets were used, one starter and one growing–

finishing. The pigs were switched to the growing–finishing diets directly after the end of balance 

period 2. The ingredients in both sets of diets were the same (for details see Øverland et al. 2004). 

One of the four diets served as the control diet (P1), in which approximately 50% of the N was 

supplied by soybean meal (SBM). In the other diets, SBM was replaced with BPM so that 

approximately 17/17% (P2), 33/35% (P3), and 49/52% (P4) of the N was derived from BPM in the 

starter/growing–finishing diets, respectively. Diet formulation and chemical composition are given 

in Table 2. For further details see Hellwing et al. (2005c). 

 

Collection procedures, data recording, and balance experiments 

 

Both minks and pigs were weighed at the start and end of each balance period. Feed residues, faeces 

and urine were collected quantitatively daily, weighed, and then frozen at –18°C. After each 

collection period, the metabolism cages, collection screens, and funnels were rinsed with 5% citric 

acid. Urine was collected in 5% sulphuric acid, the exception being days when [15N]glycine was 

used to study protein turnover (see below). At the end of each balance period feed residues, faeces, 

and citric acid rinse were thawed and mixed to homogeneity. Samples for dry matter and nitrogen 

analyses were taken. Urine samples were also thawed and mixed to homogeneity (not, however, the 

samples taken for 15N analyses). Urine collected during the balance periods was sampled for N and 

for purine derivative analyses, and samples were stored at –18°C pending analysis. Urine collected 
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during the protein turnover studies was divided into two samples, one for 15N and one for N 

analyses. 

 
15N-glycine endpoint technique 

 

Protein turnover was studied by means of an end-product method using [15N]glycine as the tracer; 

protein turnover was studied in minks in all periods, but in pigs only in periods 2 and 4. Before 

administration of the [15N]glycine urine was sampled from all animals in order to establish a 

baseline value for 15N. All samples were weighed, so that the content of excreted N could be 

included in the N balance calculations. 

 

Minks. 1-13C (99.0 atom% 13C), 15N (99.9 atom% 15N) glycine was used (Campro 

Scientific, Veenendaal, Netherlands) as the substrate, because the experiment was combined with a 

breath test (see below) conducted on the same day as the animals were measured in the respiration 

experiment. Immediately before the start of the respiration experiment, the animals were given an 

intraperitoneal injection of 1 ml/kg body weight of a solution containing 5 mg of [15N][1-13C] 

glycine dissolved in 1 ml of isotonic saline. Owing to the construction of the chambers, urine could 

not be sampled during the respiration experiments. Therefore, a pilot study of adult male minks was 

conducted using the same diets, in order to establish the excretion curve for the label. Urine was 

collected 3, 6, 9, 12, 15, 24, 36, and 48 h after the administration of [15N] glycine. The results 

suggested that the 24-h cumulative excretion of 15N could be used in the calculation of protein flux, 

breakdown, and synthesis, and that the label excreted later could be assumed to be recycled (Tauson 

and Bujko, unpublished data).    

 

Pigs. The dose (5 mg/kg body weight of [15N]glycine, 99.9 atom%; Campro Scientific, 

Veenendaal, Netherlands) was administered in 150 g of feed suspended in 100–150 g of water. The 

pigs were given 15 min to consume the feed. The urine excreted after 3, 6, 9, 12, 15, 24, 36, and 48 

h was collected, weighed, and then stored at –18°C for later analyses of N and 15N.  
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Breath testing 

 

Breath testing was performed with minks in periods 1, 3, 4, and 5 on the days of the respiration 

experiments, because it was then possible simultaneously to measure CO2 production and the 

C13/C12 ratio. Substrate and dose were as described above (end-product methods with [15N]). The 

animals were brought to the respiration chambers at least half an hour before the respiration 

experiment started, inserted into the chambers, and the chambers were closed. Ten minutes before 

the start of the respiration experiment, the baseline 13C/12C ratio was measured. Immediately before 

the start of the respiration experiment, the chambers were quickly opened and the dose administered 

by intraperitoneal injection. The 13C/12C ratio in breath air was then measured every 10 min for the 

next 4 h. 

 

Blood samples 

 

In the pig experiment, fasting blood samples were taken from the jugular vein once per period; two 

samples were collected, one in a heparin-coated and another in an EDTA-coated vacutainer tube. 

The samples were chilled on ice, and the plasma was separated by centrifugation for 20 min at 3000 

rpm at 4°C. The plasma was frozen at –18°C pending analysis. 

 

Analyses 

 

The DM in feed, feed residues, and faeces was determined by evaporation at 105°C to constant 

weight. The N content was determined in faeces, urine, citric acid rinse, and feed by means of the 

micro-Kjeldahl technique using the Tecator-Kjeltec system 1030 (Tecator AB, Höganäs, Sweden). 

The 15N content of urine was measured by means of emission spectroscopy using an NOI 7 

spectrometer (Fischer Analysen Instrumente GMBH (FAN), Leipzig, Germany). HPLC was used to 

determine the contents of adenine, guanine, thymine, uracil, and cytosine in the diets, and the 

contents of creatinine and the purine derivatives hypoxanthine, xanthine, uric acid, and allantoin in 

urine (minks and pigs) and plasma (only pigs; allantoin not analysed). For a detailed description of 

the procedures, see Thode (1999). The 13C/12C ratio in air from the mink respiration chambers was 

analysed using an IRIS infrared analysing system (Wagner Analysentechnik, Bremen, Germany) 

and the results were given in delta values, δ 13C. 
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Calculations 

 

Retained nitrogen (RN) was calculated as nitrogen intake, minus the nitrogen excreted in the faeces 

and urine and contained in the citric acid rinse. Protein turnover was calculated according to the 

single pool model proposed by Sprinson and Rittenberg (1949). When the free amino acid pool is 

constant, the turnover rate (termed flux, Q) is given as Q = S + E = B + I, where S is synthesis of N, 

E is excretion of N, B is breakdown of N, and I is intake of N (digested nitrogen). The flux, Q, can 

be estimated as Q = E * d/e, where E is the rate of N excretion, d is the dose given, and e is the 

cumulative excretion of 15N in urine over 24 h (mink) or 48 h (pigs). The net protein synthesis was 

calculated as the difference between synthesis and breakdown. 

 

The δ 13C values were converted to 13C enrichments E (in atom % excess) for the calculation of 13C 

recoveries (Klein, 1991). The recovery (f) as a percentage of the 13C dose (D) after administration of 

[1-13C][15N]glycine was calculated from the cumulative products of 13C enrichment, E((ti+1 + ti)/2) 

in breath CO2 (in atom% of excess) and the CO2 amount of nCO2(ti+1 – ti) produced in consecutive 

time periods (ti+1 – ti): 

 

f(% of 13C dose) = [∑
=

N

i 1
E((ti+1 + ti)/2) × nCO2(ti+1 – ti)]/D 

The relative growth rates of mink and pigs were calculated according to Brody (1945): 

 

k = (lnW2 – lnW1)/A2 – A1) 

 

where W1 and W2 are animal live weights in g, and A1 and A2 are animal ages in days at the 

beginnings and ends of the balance periods, respectively. 

 

Statistical analyses 

 

Four different models were used to analyse the data. All statistical analyses were performed using 

the Statistical Analysis Systems (SAS) statistical software package, version 8.0 (SAS Institute Inc., 

Cary, NC, USA). The results of all analyses are presented as least square means (LSmeans). 
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Analyses performed using the MIXED procedure are presented with square root of residuals (RR) 

while analyses performed using general linear models (GLM) are presented with root mean square 

error (RMSE) as measures of variance. Pairwise comparisons were made using the PDIFF option, 

and effects were considered significant if P < 0.05. 

 

Minks. All data except for those derived from the breath test were analysed using the GLM 

procedure in SAS (SAS Institute Inc., 1990) according to the following model: 

 

Yijkl = μ + αi + βj + (αβ)ij + γk+εijkl      (Model A) 

 

Pigs. Data were analysed using the MIXED procedure in SAS as repeated measurements, 

and the heterogeneous autoregressive order 1 (ARH1) covariance structure was fitted (Littell et al. 

1996). The following model was used: 

 

Yijk = μ + αi + βj + (αβ)ij + γk + εijkl     (Model B) 

 

Breath testing, minks. Statistical analyses of the breath testing data were carried out using 

the MIXED procedure in SAS as repeated measurements, and the autoregressive order 1 (AR1) 

covariance structure was fitted (Littell et al. 1996). The following model was used: 

 

Yijklm = μ + αi + βj + δk + (αβ)ij + (αδ)ik +(βδ)jk + (αβδ)ijk + γl + εijklm  (Model C) 

 

Analyses of diet and species effects. The dataset for this analysis comprised all data from 

the mink and pig experiments, except values omitted because of technical problems. Diets 

containing similar contents of N derived from BPM were paired as follows: D1 contained data from 

the two control groups M1 and P1; D2 contained data from M2 and P2, etc. Statistical analyses of 

these data were performed using the GLM procedure in SAS (SAS Institute Inc., 1990) with the 

following model: 

 

Yijk = μ + αi + κj + (ακ)ij + εijk      (Model D) 

 

In all models Y denotes the response variable analysed, 



 11

μ the general mean, 

α the fixed effect of diet, 

β the fixed effect of balance period, 

δ the fixed effect of time, 

κ the fixed effect of species, 

αβ the interaction between diet and balance period, 

αδ the interaction between diet and time, 

βδ the interaction between balance and time, 

ακ the interaction between diet and species, 

αβδ the three way interaction effect of diet, balance and time, 

 γ the effect of block, and 

ε the residual error.  



 12

Results 

 

The results are presented in relation to metabolic body size (kg0.75), in order to facilitate 

comparisons among periods and species. Significant block effects occurred in both the mink and pig 

experiments, caused by differences in the weight of the animals in the different blocks. The data for 

the nitrogen balance and the purine base metabolism are averages of four days of measurements, 

whereas the data regarding protein turnover cover one day in the mink and an average of two days 

in the pig study. 

 

Protein metabolism and turnover 

 

Minks. Intake of nitrogen (IN) was lower on M4 than on the other diets, but the differences 

were not significant (P=0.07). The excretion of faecal nitrogen (FN) increased while that of urinary 

nitrogen (UN) decreased with increasing content of dietary BPM (Table 3). During the 15N-glycine 

endpoint study, both the intake (I) and excretion of nitrogen (E) were significantly lower on M4 

than on the other diets. Both protein synthesis and breakdown increased with increasing dietary 

BPM. The protein flux rate appeared to form two groups, with diets M1 and M2 in one and M3 and 

M4 in the other, but the difference between the two groups was not significant (P=0.08). The net 

protein synthesis was 5.2 g protein on M1 and 1.7 g lower on M4, but the difference was non-

significant (P=0.08).  

 

The protein flux rate was highest during the first three periods when the growth rate of the 

mink kits was the highest. The net protein synthesis was highest in the first period and decreased 

significantly with age. In period 5, net protein synthesis was 0.1 g/day, indicating that the animals 

had reached mature body size (Table 3).  

 

Pigs. Intake of nitrogen was similar on all diets. Excretion of FN increased with dietary 

content of BPM, but not significantly (P=0.12). Excretion of UN did not differ significantly 

between diets. Nitrogen retention was 0.17 g lower on P3 than on P1, but the difference was non-

significant (P=0.08). Protein synthesis, breakdown, and flux rate were highest on P1 and lowest on 

P4, the differences being non-significant; however, the rates did not decrease linearly with 
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increasing dietary BPM content, because the synthesis, breakdown, and flux were higher on P3 than 

on P2 (Table 4). 

 

IN and excretion of FN and UN were highest in period 3. Though nitrogen retention was 

highest in period 2, it did not differ significantly from that of period 3. The protein turnover was 

only measured in balance periods 2 and 4: nitrogen intake (I) was the same in both periods, whereas 

nitrogen excretion (E) was significantly higher in period 2. Protein synthesis was significantly 

higher in period 2 than in period 4, while protein breakdown and flux were the same in both 

periods. Net protein synthesis was higher in period 2 than in period 4 (Table 4). 

 

Breath testing 

 

Neither the oxidation rate (data not presented) nor the cumulative recovery of label were affected by 

diet. The cumulative excretion of 13C after 240 min was 16.9% (M1), 17.2% (M2), 15.9% (M3), 

and 15.2% (M4) of the injected label. Balance period had a significant effect on the cumulative 

excretion, and after 240 min, 15.8% (period 1), 19.2% (period 3), 17.9% (period 4), and 12.3% 

(period 5) of the 13C was recovered. The recovery was significantly lower in period 5 than in the 

other periods (Fig. 1).  

 

Nucleic acid and creatinine metabolism  

 

Minks. The intakes of adenine, cytosine, and uracil increased and thymine decreased 

significantly with increasing dietary content of BPM. Despite a higher dietary content of guanine, 

on M4, guanine intake was significantly lower than on M3, caused by the lower feed intake (Tables 

1 and 5). The total intake of nucleic acid nitrogen (NAN) was 0.15, 0.20, 0.26, and 0.26 g/kg0.75 and 

made up 5.8% (M1), 7.7% (M2), 9.9% (M3), and 11.2% (M4) of the dietary N, respectively. The 

24-h urinary creatinine excretion decreased and while that of allantoin increased with increasing 

dietary content of BPM, whereas uric acid excretion was not affected by diet. The urinary 

concentration of creatinine decreased whereas that of allantoin increased significantly with 

increasing dietary BPM content (Fig. 2). On all diets, more purine base derivatives were excreted 

than were obtained from the diet. Both the ratio between nitrogen derived from creatinine and from 

purine base derivatives and the ratios between the different purine base derivatives were affected by 
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diet. The excretion of allantoin increased and that of uric acid decreased in relation to the total 

purine base derivative excretion when the dietary content of BPM increased (Table 5). 

 

Intake of feed, purine and pyrimidine bases, and NAN remained the same in the first three 

periods, but then decreased significantly during the last two periods. The 24-h excretion of 

creatinine, allantoin, and uric acid was highest in period 3 (Table 5).  

 

The interactions between diet and period for the intakes of adenine, cytosine, and uracil 

were caused by the lower feed intake on M4. In some periods, the intake of these bases was higher 

on M3 than on M4. The interaction effects on total excretion of purine base derivatives and other N-

containing products were caused by a distinctly different excretion pattern in period 1 than in the 

other periods.  

 

Pigs. Intakes of adenine, guanine, cytosine, uracil, thymine, and NAN increased with 

increasing dietary content of BPM (Table 6). The 24-h urinary excretion of creatinine was not 

affected by diet, but allantoin excretion was significantly higher on P4 than on the other diets. The 

24-h urinary excretion of uric acid and xanthine increased with increasing dietary content of BPM. 

The urinary concentration of allantoin increased with increasing dietary content of BPM, but the 

increase was not significant (P=0.07) (Fig. 2). The ratios between excretion of purine base 

derivatives and intake of purine bases were 1.26, 0.66, 0.48, and 0.38 on diets P1, P2, P3, and P4, 

respectively, and the observed decrease with increasing dietary BPM content was significant. With 

increasing dietary content of BPM, a decreasing fraction of the total excreted purine base 

derivatives consisted of allantoin, whereas the absolute contents of uric acid and allantoin increased. 

The plasma concentrations of creatinine, uric acid, xanthine, and hypoxanthine were not affected by 

diet (Table 6). 

 

The intake of NAN was lowest in period 1 and highest in period 3. The 24-h urinary 

excretion of allantoin was lowest in period 1 and highest in period 3. Creatinine excretion increased 

significantly with age; similarly, the plasma concentrations of creatinine, uric acid, and xanthine 

increased significantly with age (Table 6). 
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Species effects 

 

Effect of diet. When data were analysed for the two species together, diet effects on the 

intake and excretion of N and protein turnover traits as found for minks in the separate analyses 

were alleviated. The apparent digestibility of N decreased with increasing dietary level of BPM (as 

in the separate analyses of the two species), and this was hence the only N metabolism trait that was 

significantly affected by diet. The intake of NAN increased significantly with increasing dietary 

content of BPM. The excretion patterns for creatinine and the purine base derivatives were more 

clearly pronounced according to this analysis, the only trait not significantly affected by diet being 

excretion of uric acid. Creatinine excretion showed a clear decrease, whereas allantoin excretion 

increased steadily with increasing dietary content of BPM (Table 7). 

 

Effect of species. The analysis of effect of species on the investigated traits revealed 

interesting and clear differences between species. The intake of DM in pigs was approximately 

double that in minks, resulting in significantly higher IN and DN despite the lower crude protein 

contents of the pig diets. Similarly, FN and RN were higher, whereas UN was significantly lower, 

in pigs than in minks. The protein turnover rates were also significantly higher in pigs than in 

minks. Excretion of allantoin and uric acid was significantly higher in the minks than in the pigs, 

whereas the opposite was the case for the excretion of creatinine, xanthine, and hypoxanthine. In the 

minks, allantoin and uric acid made up a relatively greater proportion of the total excretion of 

purine derivatives than was the case in pigs. 
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Discussion 

 

The data from the present investigation demonstrate interesting similarities and differences between 

the investigated species: protein turnover in mink, but not in pigs, was affected by dietary content of 

BPM, whereas the purine base metabolism was influenced in both species. When comparing the 

data, however, it must be born in mind that the animals were at different stages of physiological 

maturity when the experiments were conducted: the first period was conducted shortly after the 

weaning of both pigs and mink, but during the last period the pigs were still far from their mature 

body weight, whereas the minks had almost reached mature body size and completed their first fur 

moulting–priming cycle. 

 

Nitrogen metabolism 

 

In both species, RN was independent of the dietary BPM content. This appeared both when 

analysing data from each species separately (Hellwing et al. 2005a,c) and in the comparative 

analysis. Surprisingly, at first sight IN was higher for the pigs than for the minks, despite the high 

protein requirement of the minks. However, this can be explained by the higher relative growth rate 

and higher feed intake of the pigs: although the mink diets had a higher crude protein content, it was 

not high enough to compensate for the effect of the pigs’ higher dry matter intake. The minks 

excreted more UN than the pigs did, and therefore the utilisation of DN for RN was considerably 

higher in the pigs than in the minks. To some extent these differences between species reflect 

differences between the metabolisms of the strict carnivore and the omnivore: strict carnivores, such 

as the minks in this experiment, are often fed above their minimum protein requirement, and hence 

use a greater part of the digested amino acids as an energy source than, for example, pigs do. This 

was demonstrated by the finding that protein accounted for a relatively greater proportion of the 

total heat production in the minks than in the pigs (Hellwing et al. 2005a,c).  

 

Protein turnover 

 

The calculated protein flux in minks was, in the present study, based on 24-h excretion data. In the 

cat (Russell et al. 2003) and in the pig (Saggau et al. 2000; Krawielitzki et al. 1989), 48-h data have 

previously been used. The choice of cut-off time for 15N excretion is important for the estimation of 
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the flux. If too short a cut-off time is chosen, the label will be incompletely excreted and the 

synthesis of protein overestimated, whereas if too long a cut-off time is chosen, some of the label 

may be recycled and the synthesis of protein underestimated (Waterlow et al. 1978). The cut-off 

time of 24 h for the minks was chosen after a pilot study, in which the cumulative excretion of label 

was measured for 48 h. From the excretion curve, Tauson and Bujko (unpublished data) concluded 

that most of the label not used in protein synthesis was excreted after 24 h, and that label excreted 

later was likely to be recycled. The increase in both synthesis and breakdown for minks with 

increasing dietary BPM seems, at first sight, contrary to the findings of Reeds et al. (1980, 1981), 

Fuller et al. (1987), and Russell et al. (2003), who have shown in the pig and cat that a decrease in 

dietary nitrogen content decreases the protein synthesis. However, an increase in the supply of 

essential amino acids at a stable level of nitrogen intake increases the protein synthesis and 

breakdown in pigs (Gotterbarm et al. 1998). The amino acid composition of our mink diets was not 

analysed, but from data by Skrede et al. (1998) it can be assumed that dietary methionine, cystine, 

tryptophan, and threonine increased with increasing dietary content of BPM. This may provide an 

explanation for the increasing synthesis and breakdown rate, even though the total content of amino 

N decreased; further study is, however, needed to confirm this. The lower protein accretion in 

period 3 than in period 1 was caused by protein breakdown being higher in period 3. Both protein 

synthesis and breakdown were lowest in period 5, and this could be expected because the animals 

had reached mature body size by then. The values for synthesis and breakdown in these almost 

mature minks were higher than those observed in mature cats (Russell et al. 2003). Although both 

the mink and the cat are strict carnivores, there might be species differences in the rate of protein 

synthesis and breakdown. Other reasons for the discrepancies may be that the use of 24 h as the cut-

off time may have resulted in overestimation of the protein synthesis and breakdown in the minks. 

Furthermore, the cat data (Russell et al. 2003) were calculated based on label excreted in urea and 

ammonia separately, whereas our data were calculated based on total urinary N. 

 

The protein synthesis, breakdown, and flux in pigs as found in this experiment were in the 

higher range of the values reported by Roth et al. (1999), Gotterbarm et al. (1998), Windisch et al. 

(2000), and Saggau et al. (2000). The higher values we found were probably an effect of higher 

protein intake, because the protein intake was lower in the experiments by Saggau et al. (2000), 

though high enough to cover the requirement. Reeds et al. (1980, 1981) and Fuller et al. (1987) 

have shown that higher protein intake can cause higher protein synthesis and breakdown. The lysine 
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content in the starter diet decreased with increasing dietary BPM content. This probably caused 

some negative effects, which are discussed in Hellwing et al. (2005c). The data indicated that 

protein synthesis and breakdown were lowest on P4 in period 2, and although the differences were 

non-significant; this finding might be attributed to the lysine content of this diet being lower than 

required. A supply of lysine below the requirement has been shown to decrease the protein flux, 

synthesis, breakdown, and retention (Salter et al. 1990). Calculated in relation to metabolic body 

size, protein synthesis decreased with age, but if calculated in g of protein per day, synthesis and 

breakdown increased significantly, which is in agreement with Reeds et al. (1980). 

 

Protein synthesis, breakdown, and flux were considerably higher in the pigs than in the 

minks. If a higher protein intake caused a higher protein synthesis and breakdown (pigs: Reeds et 

al. 1980, 1981; Fuller et al. 1987; cats: Russell et al. 2003), the higher IN measured for the pigs 

may offer an explanation. Furthermore, modern pig breeds have been selected for a high rate of 

protein accretion, which is not the case in the mink. 

 

Breath testing 

 

The cumulative excretion of 13CO2 was affected by period but not diet. Tauson et al. (2000) could 

not demonstrate any differences in the decarboxylation of 1-13C-leucine between minks fed diets 

based on fish meal and those fed diets based on soybean meal. In lactating mink dams, the level of 

protein supply has been shown to influence the oxidation rate (Tauson et al. 2001a). The higher 

cumulative excretion found in period 3 (late August–early September) than in period 5 (mid 

November) was contrary to the findings of Børsting and Riis (2000), who found a higher oxidation 

of uniformly labelled leucine in minks in August than in November. The difference in choice of 

label may, however, have played a role in this difference. Glycine is a glycogenic amino acid, 

which can be recycled to glucose whereas leucine is ketogenic; furthermore, Børsting and Riis 

(2000) used a uniformly labelled amino acid, whereas the glycine in our study was only labelled at 

the carboxyl atom. 
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Nucleic acid and creatinine metabolism  

 

The NAN intake did not increase on M4 compared with M3, due to the lower feed intake on M4. 

The decrease in thymine with increasing dietary content of BPM was unexpected, but as thymine 

only appears in DNA, the relative content of DNA may be higher in the fish meal used here than in 

the BPM (Herbel & Montag, 1987).  

 

The 24-h urinary creatinine excretion differed between the pigs and the minks. The pigs 

excreted more creatinine in relation to metabolic body size than the minks did, and this can possibly 

be related to the greater muscle mass of the pig. In the minks, the excretion decreased from 0.83 

mmol/kg0.75 on M1 to 0.21 mmol/kg0.75 on M4, while the level on M2 and M3 was the same as that 

observed by Tauson et al. (1997, 2001b) in adult female minks. In pigs, no differences in the 

excretion of creatinine between diets were found for either 24-h excretion or for concentration in 

urine. The creatinine excretion may be used as a non-specific measure of renal function. In rats, a 

decreased urinary concentration of creatinine and increased urine production have been observed 

when the rats were fed free adenine (Yokozawa et al. 1982, 1983; Brúle et al. 1988). In the mink 

experiment, the urine volume decreased with increasing dietary BPM content (Hellwing et al. 

2005a), indicating that the renal function was not impaired and that the content of free adenine from 

the diet or from the intestinal decomposition of RNA and DNA did not reach the level where 

problems have been observed (Clifford & Story, 1976). The decrease in creatinine excretion with 

increasing dietary BPM in the minks cannot be explained from the experimental data. However, 

because arginine is the substrate for creatinine synthesis, it may be speculated that this amino acid, 

which is of fundamental importance in the urea cycle of strict carnivores (Morris, 1985), might have 

become increasingly limiting as the intake of amino acids decreased. 

 

The metabolism of the pyrimidine bases is difficult to follow, as they are decomposed into 

products that can be completely oxidised. In both the pigs and minks, the excretion of allantoin 

increased with increasing dietary intake of purine bases; in pigs, uric acid and xanthine excretion 

increased as well, whereas xanthine excretion tended to decrease in the minks. In both species, 

allantoin made up more than 90% of the excreted purine base derivatives, and the influence of the 

other derivatives on the total excretion was negligible. Increased excretion of allantoin has also 

been observed in pigs fed yeast RNA or other types of bacterial protein (D’Mello et al. 1976; 
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Braude et al. 1977; Roth & Kirchgessner 1977a,b, 1978; Greife et al. 1984). The observed species 

differences in terms of total excretion and the ratio between the different purine base derivatives 

suggested that the minks examined in this experiment decomposed the purine bases to their end-

product allantoin more completely than the pigs did. The observed differences could be a possible 

effect of the difference in guanine and adenine intake. The content of guanine was lower than that 

of adenine in the mink diet while the opposite was the case in the pig diets, which might have 

affected the proportions of different purine base derivatives in the urine. Another explanation for 

the species differences in these traits might be that the pig has been shown to have a net secretion of 

urate in the nephron (Weiner, 1979). No corresponding data are available regarding the mink, but 

the cat is known to have a net reabsorption of urate (Weiner, 1979).  

 

The output of purine derivatives compared to the intake of purine bases differed between 

species: in both species the ratio decreased, but in the minks more purine base derivatives were 

excreted than ingested on all diets. Even though the above is a very simplified estimate, ignoring the 

facts that not all purine bases are digested and that other excretion routes are possible, it is known 

that other species differ in their utilisation and excretion of dietary purines. From studies in pigs and 

humans it is known that purine base derivatives are excreted into the gastrointestinal tract 

(Sørensen, 1960; Greife & Molnar, 1984b). Also, the retention of dietary purine bases may differ 

between species. It has been documented that pigs retained up to 40% and 15% of radioactively 

labelled adenosine monophosphate (AMP) and guanosine monophosphate (GMP), respectively, 24 

h after an oral dose (Greife & Molnar, 1984b). In rats, only 5% of the orally given AMP and 2% of 

the GMP were retained (Greife & Molnar, 1983), and in chickens up to 15% of the orally given 

AMP and 3% of the GMP were retained (Greife and Molnar, 1984a).  

 

The fasting plasma concentrations of creatinine, uric acid, xanthine, and hypoxanthine 

were not affected by dietary BPM content. It is known that free adenine, but not adenosine, AMP, 

guanine, guanosine, or GMP, may elevate plasma concentrations of uric acid, creatinine, and 

allantoin (Yokozawa et al. 1982, 1983; Brúle et al. 1988). It may therefore be concluded that the 

diets used in this experiment did not exert any uricogenic effect in the pigs. The plasma 

concentration of allantoin has been shown to be increased in pigs fed yeast RNA and methanol-

grown bacterial protein (Roth & Kirchgessner, 1977a,b), but as we did not measure the plasma 

concentration of allantoin we cannot estimate the impact of dietary BPM on this trait. 
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Conclusions 

 

The protein turnover rate, but not the net protein synthesis, increased in the minks, but not in the 

pigs, with increasing dietary BPM. The increased protein turnover in the mink experiment was 

probably related to the amino acid composition of the diet. Breath testing data from the mink 

experiment indicated that protein decarboxylation rate was not affected by diet.   

 

The increasing intake of NAN with increasing dietary content of BPM led to the increased 

excretion of allantoin in both minks and pigs. Furthermore, the data suggested that the metabolism 

of adenine and guanine was more complete in the mink than in the pig. 
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Table 1. Formulation and chemical composition of the experimental mink diets (g/kg), calculated percentage of ME 

derived from protein, fat, and carbohydrate, and contents of purine and pyrimidine bases (mg/kg).  

 M1 M2 M3 M4 
 Mean SD Mean SD Mean SD Mean SD 
Ingredients         
Bacterial protein meal  0  45  90  135  
Fish meal  120  80  40  0  
Cod fillet 150  150  150  150  
Whole chicken* 120  120  120  120  
Potato mash powder 40  40  40  40  
Heat-treated wheat and barley 80  80  80  80  
Rolled oats 40  40  40  40  
Soy oil 40  40  40  40  
Sugar beet pulp 20  20  20  20  
Vitamins and minerals† 2  2  2  2  
Water 390  385  380  375  
         
Chemical composition         
Number of analyses‡ 6  6  6  6  
Dry matter 394 9.4 394 5.2 396 2.7 402 1.7 
Organic matter 365 7.9 370 4.2 375 2.7 384 2.3 
Ash 29 1.6 24 1.4 21 0.2 18 1.0 
Nitrogen 25 1.2 24 0.8 24 0.4 24 0.4 
Protein (N * 6.25) 153  152  150  153  
Fat 77 3.9 77 0.8 76 1.7 76 1.3 
Carbohydrate 136 5.5 141 4.1 149 3.2 155 2.7 
Gross energy (kJ/kg) 9021 185 9043 177 9183 189 9218 147 
Energy distribution: 
protein:fat:carbohydrate (% of ME) 

35:41:24  35:41:24  35:42:23  35:42:23  

         
Adenine 455  663  952  1209  
Guanine 1810  2066  2345  2539  
Cytosine 348  659  922  1199  
Uracil 113  539  859  1032  
Thymine 360  298  240  198  
         
% of N from purine and pyrimidine 
bases 

5.8  7.7  9.9  11.2  

* Chicken prepared for human consumption, i.e. without head, feet, feather, and entrails. 
† Composition of supplement (content per kg supplement): Vitamins: retinol 2800500 IU, cholecalciferol 280000 IU, α-

tocopheryl acetate 24021 IU, thiamine 10002 mg, riboflavin 4801 mg, nicotinamide 8002 mg, pyridoxine 3201 mg, D-

pantothenic acid 3207 mg, biotin 80012 μg, folic acid 241 mg, choline chloride 60001 mg, cyanocobalamin 16008 μg, 

para-aminobenzoic acid 800 mg, betaine 33600 mg; minerals: Fe (FeSO4) 19712 mg, Cu (CuSO4) 1025 mg, Zn (ZnO) 

12561 mg, Mn (MnO) 6238 mg. The vitamins and minerals were mixed with calcium carbonate and soy husk meal 

(Trouw Nutrition Denmark A/S, Vejen, Denmark). 
‡ Six small batches of feed were used in the mink experiment. From each batch a sample was analysed. In the table the 

means are given with the standard deviation. 
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Table 2. Formulation and chemical composition of the pig experimental diets (g/kg), gross energy (MJ/kg), and purine 

and pyrimidine bases (mg/kg). 

 Starter diet  Growing–finishing diet 
 P1 P2 P3 P4  P1 P2 P3 P4 
Ingredients          
Barley 226 246 250 270  487 518 541 563 
Wheat 480 480 500 497  250 250 250 250 
Bacterial protein meal (BPM) 0 52 101 153  0 50 100 150 
Soybean meal (45% crude protein 210 140 68 0  224 146 72 0 
Soy oil 40 40 40 40  6 3.6 5.0 5.0 
Lime stone 15.8 16.2 16.6 16.9  14.2 14.2 14.2 14.2 
Monocalcium phosphate 15.4 14.8 14.4 13.9  11.7 11.7 11.8 11.8 
Sodium chloride 4.7 4.6 4.5 4.40  3.8 3.7 3.6 3.5 
Iron fumarate 0.33 0.33 0.33 0.33      
Zinc oxide 0.10 0.10 0.10 0.10      
Vitamins and minerals* 3.03 3.03 3.03 3.03      
Vitamin and minerals†      1.8 1.8 1.8 1.8 
L-lysine HCl (98%) 3.4 2.5 1.8 0.7  0.65 0.64 0.51 0.34 
DL-methionine 0.30 0 0 0  0.54 0.32 0.06 0 
L-threonine 1 0.63 0.4 0  0.60 0.37 0.09 0 
L-tryptophan 0.15 0.21 0.3 0.35      
          
Chemical composition          
Dry Matter 919 917 918 916  881 886 892 890 
Ash 67.4 59.3 59.6 59.0  55.8 54.9 50.5 54.6 
Nitrogen 31.7 31.7 32.0 32.9  30.6 31.5 30.3 30.4 
Crude protein (N * 6.25) 198 198 200 206  191 197 189 190 
Fat 36.9 40.3 52.1 73.5  27 32 40 43 
Carbohydrate‡ 617 619 606 578  608 603 612 603 
Gross energy 17.5 17.4 17.5 17.8  16.0 16.3 16.7 16.6 
          
Adenine 362 831 1265 1766  401 928 1213 1568 
Guanine 321 712 1059 1499  333 792 1043 1366 
Cytosine 466 868 1125 1663  470 979 1288 1604 
Uracil 667 953 1085 1429  711 1145 1360 1558 
Thymine 128 192 244 322  114 217 228 255 
          
% of N from purine and pyrimidine 
bases 2.5 5.0 7.1 9.6  2.7 5.6 7.7 9.7 
* Vitamins and trace elements included to provide the following amounts per kg–1 of feed: 140 mg of Zn; 201 mg of Fe; 

80 mg of Mn; 20 mg of Cu; 10 mg of I, 0.4 mg of Se; 11000 IU of vitamin A; 1375 IU of cholecalciferol; 137.5 mg of 

d-α-tocopheryl acetate; 6.9 mg of riboflavin; 22.9 mg of d-pantothenic acid; 27.5 μg of cyanocobalamin; 840 mg 

choline chloride; 600 mg ascorbic acid. 
†Vitamins and trace elements included to provide the following amounts per kg of feed: 105 mg Zn; 75 mg Fe; 60 mg 

Mn; 15 mg Cu; 7.44 mg I; 0.3 mg Se; 8400 IU vitamin A, 700 IU cholecalciferol; 115.9 mg d-1-α-tocopheryl acetate; 5 

mg riboflavin; 15 mg d-pantothenic acid; 20 mg cyanocobalamin; 600 mg choline chloride. 
‡ Calculated by difference 
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Table 3. Protein metabolism and turnover in mink kits fed diets in which 0% (M1), 20% (M2), 40% (M3), and 60% (M4) of N was derived from bacterial protein 
meal. 
 Diet Period  P values 
 M1 M2 M3 M4 1 2 3 4 5 RMSE* Diet (D) Period (P) D*P Block 
Age in weeks     9.5 14.5 17.5 23.5 28.5      
Number of observations (n)† 18 18 18 20 14 14 14 16 16      
Body weight (g) 2038a 1938ab 1784bc 1776c 871E 1585D 1912C 2439B 2609A 239 0.003 <0.001 0.99 <0.001 
Nitrogen balance data‡               
IN (g/kg0.75) 2.82 2.82 2.86 2.48 3.27A 3.23A 3.40A 2.31B 1.51C 0.50 0.07 <0.001 0.90 0.04 
FN (g/kg0.75) 0.47b 0.54ab 0.61a 0.57a 0.73A 0.66AB 0.64B 0.44C 0.27D 0.11 0.01 <0.001 0.61 0.22 
UN (g/kg0.75) 1.89a 1.75a 1.73a 1.52b 1.61C 2.00B 2.28A 1.56C 1.15D 0.31 0.01 <0.001 1.00 0.01 
RN (g/kg0.75) 0.45 0.54 0.52 0.40 0.94A 0.56B 0.48B 0.32C 0.09D 0.18 0.06 <0.001 0.02 0.47 
Protein turnover§               
I (g N/kg0.75) 2.56a 2.51a 2.66a 2.05b 3.00A 2.90A 2.97A 2.16B 1.19C 0.51 0.002 <0.001 0.33 0.36 
E (g N/kg0.75) 1.70ab 1.78a 1.82a 1.47b 1.61B 1.95A 2.13A 1.64B 1.14C 0.38 0.03 <0.001 0.81 0.01 
S (g protein/kg0.75) 15.0b 14.8b 17.6ab 20.3a 21.9A 16.2B 21.4A 13.0B 12.2B 5.3 0.01 <0.001 0.55 0.06 
B (g protein/kg0.75) 9.7b 10.4b 12.6b 16.8a 13.2AB 10.3B 16.1A 10.2B 12.1B 5.3 0.001 0.03 0.80 0.21 
Flux rate (g protein/kg0.75) 25.6 25.9 29.0 29.5 32.0AB 28.4B 34.7A 23.3C 19.3C 5.5 0.08 <0.001 0.34 0.52 
Net protein synthesis (g/kg0.75) 5.2 4.4 5.0 3.5 8.7A 5.9B 5.3B 2.8C 0.1D 2.2 0.08 <0.001 0.08 0.11 
IN, intake of N; FN, faecal N; UN, urinary N; RN, retained N; I, nitrogen intake; E, nitrogen excretion; S, synthesis; B, breakdown 
* Root mean square error 
† Six observations were omitted because of technical problems.  
‡ Average of four days 
§ Protein turnover measured by means of end-product methods using [15N]glycine as the tracer; intake and excretion of nitrogen are 24-h measurements. 
a,b,c Values with different superscripts differ significantly, effect of diet (P < 0.05 ). 
A,B,C,D Values with different superscripts differ significantly, effect of period (P < 0.05 ). 
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Table 4. Protein metabolism and turnover in castrated male pigs fed diets in which 0% (P1) and up to 17% (P2), 35% (P3) and 52% (P4) of the N was derived from 
bacterial protein meal. 
 Diet  Period RR* P values 
 P1 P2 P3 P4  1 2 3 4  Diet (D) Period (P) D*P Block 
Weight of animals║      10.1 21.7 47.5 79.1      
n† 15/7 16/8 16/8 16/8  16/0 15/15 16/0 16/16      
Body weight (kg) 49.0 51.4 50.5 51.2  10.1D 21.7C 47.5B 79.1A 0.43 0.64 <0.001 0.93 <0.001 
Nitrogen balance data‡               
IN (g/kg0.75) 3.21 3.40 3.18 3.38  2.33D 3.76B 4.07A 3.03C 0.14 0.15 <0.001 0.07 <0.001 
FN (g/kg0.75) 0.73 0.82 0.84 0.86  0.62B 0.98A 1.01A 0.64B 0.002 0.12 <0.001 0.13 0.14 
UN (g/kg0.75) 0.99 1.06 1.01 1.06  0.67C 0.97B 1.26A 1.22A 0.09 0.44 <0.001 <0.001 0.12 
RN (g/kg0.75) 1.50 1.53 1.33 1.46  1.04B 1.81A 1.80A 1.16B 0.13 0.08 <0.001 0.53 <.001 
Protein turnover§               
I (g N/kg0.75) 2.72 2.63 2.82 2.82   2.81  2.68 0.13 0.30 0.09 0.04 0.05 
E (g N/kg0.75) 1.09 1.07 1.15 1.12   0.92B  1.30A 0.10 0.84 <0.001 <0.001 0.39 
S (g protein/kg0.75) 34.0 31.7 32.7 30.8   36.0A  28.6B 1.00 0.91 0.03 0.32 0.23 
B (g protein/kg0.75) 23.8 21.9 22.2 20.2   24.2  19.9 1.00 0.88 0.19 0.31 0.09 
Flux rate (g protein/kg0.75) 40.9 38.4 39.8 37.8   41.8  36.7 1.00 0.92 0.10 0.46 0.21 
Net protein synthesis (g/kg0.75) 10.1 9.8 10.4 10.5   11.8A  8.7B 0.78 0.65 <0.001 0.41 0.01 
IN, intake of N; FN, faecal N; UN, urinary N; RN, retained N; I, nitrogen intake; E, nitrogen excretion; S, synthesis; B, breakdown 

* Residual error 
† Number of observations in balance experiment/protein turnover experiment; one pig was injured during the second balance period and its results were omitted. 
‡ Data for the nitrogen balance regards data from the four balance periods 
║ Average weight of the pigs during the balance period 
§ Protein turnover measured end-product methods using [15N]glycine as the tracer; intake and excretion of nitrogen are 48-h measurements 
A,B,C,D Values with different superscripts differ significantly; effect of period (P<0.05). 
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Table 5. Metabolism of creatinine and purine bases in mink kits fed diets in which 0% (M1), 20% (M2), 40% (M3), and 60% (M4) of N was derived from bacterial 
protein meal. 
 Diet  Period  P values 
 M1 M2 M3 M4  1 2 3 4 5 RMSE* Diet (D) Period (P) D*P Block 
Age in weeks      9.5 14.5 17.5 23.5 28.5      
Number of observations (n) † 18 18 20 20  14 14 16 16 16      
Intake                 
Feed intake (g/kg0.75) 117a 117a 122a 104b  143A 136A 136A 95B 64C 19.5 0.03 <0.001 0.71 0.04 
Adenine (g/kg0.75) 0.05c 0.08b 0.11a 0.12a  0.11A 0.11A 0.11A 0.08B 0.05C 0.02 <0.001 <0.001 0.01 0.04 
Guanine (g/kg0.75) 0.21c 0.24bc 0.28a 0.26b  0.30A 0.29A 0.30A 0.20B 0.13C 0.05 <0.001 <0.001 0.413 0.03 
Cytosine (g/kg0.75) 0.04d 0.08c 0.11b 0.12a  0.10A 0.11A 0.11A 0.07B 0.05C 0.02 <0.001 <0.001 0.004 0.04 
Uracil (g/kg0.75) 0.01c 0.06b 0.10a 0.10a  0.08A 0.09A 0.09A 0.06B 0.04C 0.02 <0.001 <0.001 <0.001 0.05 
Thymine (g/kg0.75) 0.04a 0.03b 0.03c 0.02d  0.03A 0.03A 0.03A 0.02B 0.02C 0.01 <0.001 <0.001 0.59 0.09 
NAN (g/kg0.75) 0.15c 0.20b 0.26a 0.26a  0.26A 0.26A 0.27A 0.18B 0.12C 0.04 <0.001 <0.001 0.11 0.03 
Excreted                 
Creatinine (mmol/kg0.75) 0.83a 0.59b 0.39c 0.21d  0.41C 0.55B 0.65A 0.53BC 0.38D 0.09 <0.001 <0.001 0.01 0.02 
Allantoin (mmol/kg0.75)  1.50b 1.71ab 1.86a 1.87a  1.58C 2.02AB 2.26A 1.77BC 1.03D 0.39 0.02 <0.001 0.16 0.04 
Uric acid (μmol/kg0.75) 72.6 70.9 69.4 64.6  67.7BC 83.7B 119.9A 46.5CD 29.0D 35.2 0.91 <0.001 1.00 0.07 
Xanthine (μmol/kg0.75) 6.47a 3.78b 1.69b 3.34b  5.66 4.46 4.74 2.87 1.38 4.41 0.02 0.08 0.98 0.58 
Hypoxanthine (μmol/kg0.75) 2.13a 1.91a 1.99a 1.41b  2.20AB 2.39A 1.76B 1.78B 1.17C 0.62 0.004 <0.001 0.58 0.14 
Purine bases out/in 1.54a 1.43a 1.21b 1.21b  0.57D 1.10C 1.39B 1.89A 1.78A 0.21 <0.001 <0.001 0.81 0.01 
% of urinary N                
Creatinine (%) 1.96a 1.54b 1.06c 0.69d  1.14C 1.19BC 1.24B 1.45A 1.54A 0.14 <0.001 <0.001 0.27 0.54 
Total purines (%) 4.97d 6.13c 6.80b 7.49a  6.31B 6.29B 6.30B 6.98A 5.86B 0.71 <0.001 0.001 <0.001 0.74 
Others (%) 93.07a 92.33b 92.14bc 91.82c  92.55A 92.53A 92.46A 91.56B 92.60A 0.72 <0.001 0.001 <0.001 0.84 
Individual purine base derivatives % of total purine base derivatives           
Allantoin (%) 95.02b 95.98a 96.41a 96.79a  95.73B 95.59BC 94.62C 97.23A 97.09A 1.36 0.002 <0.001 0.96 0.07 
Uric acid (%) 4.46a 3.72ab 3.39b 2.94b  3.81B 4.07B 5.09A 2.51C 2.67C 1.33 0.01 <0.001 0.95 0.05 
Xanthine (%) 0.38a 0.20b 0.09b 0.16b  0.30 0.22 0.22 0.16 0.13 0.22 0.002 0.32 0.99 0.95 
Hypoxanthine (%) 0.14 0.11 0.11 0.10  0.16A 0.12AB 0.08B 0.10B 0.11AB 0.07 0.33 0.04 0.73 0.06 
NAN, nucleic acid nitrogen 
* root mean square error 
† Six observations were omitted because of technical problems. 
a,b,c Values with different superscripts differ significantly; effect of diet (P < 0.05). 
A,B,C,D Values with different superscripts differ significantly; effect of period (P < 0.05). 
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Table 6. Metabolism of creatinine and purine bases in castrated male pigs fed diets in which 0% (P1) and up to 17% (P2), 35% (P3), and 52% (P4) of the N was 
derived from bacterial protein meal. 
 Diet  Period RR* P values 
 P1 P2 P3 P4  1 2 3 4  Diet (D) Period (P) D*P Block 
Weight (Kg)†      10.1 21.7 47.5 79.1      
Number of pigs (n)‡ 15 16 16 16  16 15 16 16      
Intake               
DM (g/kg0.75) 93 97 93 97  67D 107B 118A 88C 0.95 0.38 <0.001 0.26 <0.001 
Adenine (g/kg0.75) 0.04d 0.09c 0.13b 0.18a  0.08D 0.12B 0.14A 0.10C 0.004 <0.001 <0.001 <0.001 <0.001 
Guanine (g/kg0.75) 0.05d 0.14c 0.19b 0.27a  0.11D 0.18B 0.20A 0.15C 0.01 <0.001 <0.001 <0.001 0.002 
Cytosine (g/kg0.75) 0.05d 0.10c 0.12b 0.17a  0.08D 0.12B 0.14A 0.11C 0.0001 <0.001 <0.001 <0.001 0.001 
Uracil (g/kg0.75) 0.07d 0.11c 0.13b 0.16a  0.08D 0.12B 0.16A 0.12C 0.01 <0.001 <0.001 0.01 <0.001 
Thymine (g/kg0.75) 0.01c 0.02b 0.02b 0.03a  0.02C 0.03A 0.03A 0.02B 0.002 <0.001 <0.001 <0.001 <0.001 
NAN (g/kg0.75) 0.08d 0.18c 0.24b 0.33a  0.14D 0.23B 0.26A 0.19C 0.01 <0.001 <0.001 <0.001 <0.001 
Excreted               
Creatinine (mmol/kg0.75) 0.62 0.71 0.72 0.70  0.40C 0.44C 0.83B 1.08A 0.06 0.25 <0.001 0.84 0.005 
Allantoin (mmol/kg0.75) 0.77b 1.00b 0.97b 1.08a  0.53C 1.00B 1.33A 0.98B 0.15 0.002 <0.001 0.25 0.50 
Uric acid (μmol/kg0.75) 14.8b 20.8b 31.9a 38.1a  32.6A 27.9AB 25.2B 19.9B 0.84 <0.001 <0.001 0.04 0.18 
Xanthine (μmol/kg0.75) 13.2c 19.3b 25.0a 26.7a  13.0C 24.4A 25.3A 21.5B 0.81 <0.001 <0.001 0.03 0.42 
Hypoxanthine (μmol/kg0.75) 10.7 21.2 18.5 41.1  3.3C 16.3B 32.0A 40.0A 0.96 0.10 0.001 0.42 0.75 
Purine bases out/in 1.26a 0.66b 0.48c 0.38c  0.56B 0.71A 0.76A 0.75A 0.09 <0.001 <0.001 0.02 0.22 
% of urinary N            
Creatinine (%) 2.8 2.9 3.1 3.0  3.0B 2.1C 2.9B 3.9A 0.15 0.71 <0.001 0.09 0.16 
Total purines (%) 5.0b 6.1a 6.1a 6.5a  5.6B 6.5A 6.5A 5.1B 0.53 0.002 <0.001 0.02 0.71 
Others (%) 92.2a 91.0b 90.8b 90.4b  91.4 91.4 90.6 91.0 0.38 0.02 0.06 0.05 0.16 
Individual purine base derivatives % of total purine base derivatives           
Allantoin (%) 94.8a 93.9ab 92.4bc 90.8c  91.3C 93.8AB 94.3A 92.5BC 0.04 0.008 <0.001 0.83 0.13 
Uric acid (%) 2.2c 2.5bc 3.5ab 3.8a  5.8A 2.5B 1.8C 1.9C 0.05 0.02 <0.001 0.001 0.19 
Xanthine (%) 1.7b 1.9b 2.4a 2.4a  2.3A 2.3A 1.8B 2.0A 0.27 <0.001 <0.001 0.36 0.07 
Hypoxanthine (%) 1.4 1.7 1.6 3.0  0.6D 1.4C 2.2B 3.6A 0.20 0.22 0.001 0.65 0.19 
Plasma concentrations               
Creatinine (mmol/ml) 82.1 87.8 85.6 87.5  84.5B 73.4C 70.4C 114.7A 0.99 0.51 <.001 0.38 0.82 
Uric acid (mmol/ml) 68.0 65.8 65.2 55.3  61.0B 52.5B 70.4A 70.4A 0.98 0.08 <.001 0.46 0.29 
Xanthine (mmol/ml) 9.4 11.1 11.2 12.3  3.5C 5.2B 13.7A 21.6A 1.27 0.72 <.001 0.72 0.31 
Hypoxanthine (mmol/ml) 15.2 20.3 19.4 16.8  22.8AB 29.2A 15.3B 4.5C 0.77 0.71 <.001 0.74 0.05 
DM, dry matter; NAN, nucleic acid nitrogen 
* Residual error 
† Number of observations in balance experiment; one pig was injured during the second balance period and its results were omitted. 
‡ Average weight of the pigs during the balance period 
a,b,c,d Values with different superscripts differ significantly; effect of diet (P < 0.05). 
A,B,C,D Values with different superscripts differ significantly; effect of period (P < 0.05). 
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Table 7. Comparison of selected traits of the N metabolism, protein turnover, purine base, and creatinine metabolism in pigs and mink fed diets in which up to 0% 
(D1), 20% (D2), 40% (D4), and 60% (D6) of the N was derived from bacterial protein meal. 
 Diet  Species  P values 
 D1 D2 D3 D4  Pig Mink RMSE* Diet Species Diet*Species 
Relative weight gain 1.38 1.38 1.38 0.83  2.42A 0.07B 1.11 0.10 <0.001 0.006 
DM (g/kg0.75) 68.4 70.6 69.7 68.7  94.8 43.8 18.3 0.96 <0.001 0.65 
N metabolism, balance data            
IN (g/kg0.75) 2.98 3.07 3.02 2.93  3.29A 2.71B 0.83 0.91 <0.001 0.49 
DN (g/kg0.75) 2.40 2.43 2.32 2.24  2.51A 2.17B 0.64 0.60 0.002 0.34 
FN (g/kg0.75) 0.59 0.65 0.70 0.69  0.78A 0.53B 0.22 0.10 <0.001 0.93 
UN (g/kg0.75) 1.43 1.39 1.37 1.29  1.03B 1.71A 0.42 0.53 <0.001 0.24 
RN (g/kg0.75) 0.95 1.02 0.93 0.93  1.45A 0.46B 0.38 0.73 <0.001 0.42 
ADN (g/kg0.75) 80.8a 79.3a 77.1b 76.5c  76.4B 80.4A 2.99 <0.001 <0.001 0.04 
Protein turnover, end-product methods using [15N]glycine as tracer  
I (g N/kg0.75) 2.63 2.62 2.64 2.43  2.75A 2.41B 0.77 0.77 0.04 0.40 
E (g N/kg0.75) 1.41 1.44 1.43 1.31  1.12B 1.67A 0.47 0.78 <0.001 0.54 
S (g protein/kg0.75) 23.8 22.7 24.5 26.5  31.9A 16.8B 7.7 0.42 <0.001 0.73 
B (g protein/kg0.75) 16.2 15.4 17.0 19.5  21.7A 12.4B 6.8 0.21 <0.001 0.39 
Flux rate (g protein/kg0.75) 32.6 31.7 33.4 34.7  38.9A 27.2B 8.4 0.68 <0.001 0.85 
Net protein synthesis (g/kg0.75) 7.5 7.3 7.4 7.0  10.2A 4.4B 3.5 0.95 <0.001 0.64 
Purine metabolism            
NAN (g/kg0.75) 0.11d 0.19c 0.25b 0.29a  0.21 0.22 0.07 <0.001 0.48 0.001 
Excreted            
Creatinine (mmol/kg0.75) 0.73a 0.65b 0.55bc 0.46c  0.69A 0.50B 0.24 <0.001 <0.001 <0.001 
Allantoin (mmol/kg0.75) 1.12b 1.34ab 1.41a 1.47a  0.95B 1.72A 0.50 0.02 <0.001 0.82 
Uric acid (μmol/kg0.75) 43.2 44.7 50.6 51.4  26.3B 68.6A 34.7 0.69 <0.001 0.29 
Xanthine (μmol/kg0.75) 9.7c 11.4bc 13.3ab 15.0a  21.1A 4.0B 5.48 0.001 <0.001 <0.001 
Hypoxanthine (μmol/kg0.75) 6.5b 11.5b 10.3b 21.3a  23.0A 1.8B 17.7 0.01 <0.001 0.003 
% of urinary N            
Creatinine (%) 2.40a 2.24ab 2.09bc 1.86c  2.97A 1.32B 0.64 0.004 <0.001 <0.001 
Total purine derivatives (%) 4.88c 6.08b 6.44b 7.02a  5.88B 6.33A 1.03 <0.001 0.014 0.17 
Others (%) 92.72a 91.67b 91.47b 91.12b  91.14B 92.36A 1.22 <0.001 <0.001 0.73 
Individual purine base derivatives % of total purine base derivatives        
Allantoin (%) 94.84 95.00 94.43 93.80  92.95B 96.08A 1.96 0.06 <0.001 <0.001 
Uric acid (%) 3.37 3.04 3.44 3.36  3.01B 3.60A 1.78 0.79 0.05 0.004 
Xanthine (%) 1.05b 1.03b 1.26a 1.27a  2.10A 0.20B 0.35 0.003 <0.001 <0.001 
Hypoxanthine (%) 0.74b 0.92ab 0.88b 1.56a  1.93A 0.11B 1.30 0.04 <0.001 0.03 
DM, dry matter; DN, digested N; FN, faecal N; UN, urinary N; RN, retained N; ADN, apparent digestibility of N; I, nitrogen intake; E, nitrogen excretion; S, 
synthesis; B, breakdown 
* Root mean square error a,b,c,d Values with different superscripts differ significantly; effect of diet (P < 0.05). A,B Values with different superscripts differ significantly; 
effect of species (P < 0.05). 
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 Fig. 1. Cumulative excretion of 13C in periods 1, 3, 4, and 5. P values: diet P=0.65, period P=0.003, time P<0.001, diet * period P=0.74, diet * time P=0.13, period * 

time P<0.001, diet * period * time P=0.32, block P=0.27 
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Fig. 2. Urinary concentration of allantoin, creatinine, uric acid, xanthine and hypoxanthine in mink (a and b) fed diets where approximately 0% (M1), 20% (M2), 40% 

(M3), and 60% (M4) of N was derived from BPM, and in pigs (c and d) fed diets where up to 0% (P1), 17% (P2), 35% (P3), and 52% (P4) of N was derived from 

BPM. Only the P values for the diet effect are given. a: allantoin P<0.001, creatinine P<0.001; b: uric acid P=0.07, xanthine P=0.08, and hypoxanthine P=0.24; c: 

allantoin P=0.07, creatinine P=0.42; d: uric acid P=0.01, xanthine P=0.002, and hypoxanthine P=0.06 
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