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Summary 

Anthocorids are important predators of insect pests in pome fruit. Females insert their 

eggs in leaf tissue. Their choice of oviposition site determines the later distribution of 

nymphs. In two-choice experiments comparing oviposition on treated and healthy pear 

leaves it was tested whether a) the oviposition preference of Anthocoris nemoralis and A. 

nemorum was affected by simulated insect damage and whether the oviposition 

preference of A. nemoralis was affected by b) honeydew and c) prey, Cacopsylla pyri 

eggs. Honeydew was applied along the ventral midvein. Prey eggs were placed either 

along the ventral or the dorsal midvein. While A. nemoralis preferred damaged leaves; 

this was not the case for A. nemorum. Honeydew treated leaves attracted more 

oviposition. On honeydew-treated leaves significantly more eggs were laid on the ventral 

than on the dorsal leaf blade. Prey infestation attracted more oviposition when prey was 

placed along the ventral midvein. On infested leaves females laid more eggs along the 

ventral than the dorsal midvein. With prey along the dorsal midvein, no preference was 

found, but on infested leaves more eggs were laid along the dorsal rather than the ventral 

midvein. Results show that prey cues and presence of prey guide predator oviposition, 

even within the single leaf. The perspectives for biological control in orchards are 

discussed. 

 

Introduction 
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Two of the most abundant predators in apple and pear orchards of Europe are Anthocoris 

nemorum (L.) and A. nemoralis (Fabricius) (Anthocoridae: Heteroptera) (Skanland, 1981; 

Solomon, 1982). Both have a wide range of prey and habitats and oviposition occurs on 

various plants (Anderson, 1962a; Collyer, 1967; Scutareanu et al., 1994). Anthocoris 

nemoralis is mostly found on perennials, A. nemorum is found on both perennials and 

annuals (Anderson, 1962a).  

Several studies have documented the distribution of anthocorids among various 

habitats and annual changes in distribution among habitats (Anderson, 1962a; Collyer, 

1967; Fauvel, 1999). An understanding of the mechanisms that guide the distribution of 

anthocorids may be an important tool to improve biological control in orchards. One 

mechanism that can greatly influence the distribution of anthocorids is the female 

anthocorids choice of oviposition site, which determines resulting densities of the less 

mobile, but much more numerous, offspring on a given plant or in a given habitat.  

A predator’s choice of oviposition site may be affected by various factors. Plant 

species is one such factor. Thus, in a choice experiment A. nemorum preferred to oviposit 

on apple and A. nemoralis preferred pear (Sigsgaard, unpublished). Likewise, A. 

nemorum prefer barley to pear for oviposition (Herard & Chen, 1985). Plants may have 

some dietary value to anthocorids, which might affect oviposition preferences. Thus 

female longevity of the anthocorid Orius insidiosus (Say) -but not fecundity- was higher 

on young or old leaves of soybean than on middle-aged leaves (Armer et al., 1999). 

However, oviposition preference of O. insidiosus for four plant species was found to 

correspond with both nymph and adult survival as well as female fecundity, with bean 

being the optimal plant (Coll, 1996). Both anthocorids have been observed to pierce 
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leaves (Sigsgaard, personal observation), and so will be exposed to plant substances, 

which may affect preferences. 

If females place eggs close to a food source for the young, this can ensure a better 

survival of the next anthocorid generation. Thus, a female may choose oviposition site 

guided by cues of prey such as leaf damage and honeydew as well as the presence of prey 

itself. 

Regarding plant cues, psylla infested pear trees have been shown to be attractive 

to anthocorids (Scutareanu et al., 1996), and specific volatiles from infested trees 

identified with will attract A. nemoralis, though a laboratory reared culture did not show 

such a preference before having experienced these volatiles in the presence of food 

(Drukker et al., 2000). Whether oviposition is also guided by psylla induced plant 

damage was not tested. However, oviposition preference guided by prey cues have been 

shown in another predator,  

Honeydew may be an attractant as well as a source of water and/or energy for 

predators (Heidari & Copland, 1993; Patt et al., 2003); (Lakshmi et al., 2000). 

The effect of presence of prey will depend on prey dietary quality and prey 

preferences. Though, both anthocorids are polyphagous predators preying on aphids, 

mites, psyllids and lepidopteran eggs and young larvae, and are considered to play an 

important role in controlling insect pests (Hill, 1957; Anderson, 1962a; Anderson, 1962b; 

Collyer, 1967; Solomon, 1982; Solomon et al., 2000), A. nemoralis is considered 

particularly important in controlling pear psyllids (Fauvel et al., 1984; Solomon et al., 

1989; Trapman & Blommers, 1992; Rieux et al., 1994; Scutareanu et al., 1999; Beninato 

et al., 2000; Solomon et al., 2000). Pear psyllid, Cacopsylla pyri L. (Homoptera: 
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Psyllidae), which is both a preferred and high quality prey to A. nemoralis (Dempster, 

1963; Fauvel et al., 1984; Hodgson & Aveling, 1988). 

The present study tested whether a) A. nemorum and A. nemoralis would have any 

oviposition preference with regard to simulated insect damage and whether the 

oviposition preference of A. nemoralis would be affected by b) honeydew and c) the 

presence of prey, C. pyri eggs. 

 

Materials and methods 

Plant material 

Pear branches (cv. Clara Frijs) were field collected immediately before experiments at 

Pometet, an experimental orchard belonging to The Royal Veterinary and Agricultural 

University. Before being introduced to cages branches were gently shaken and individual 

leaves thereafter carefully examined under a stereomicroscope, while still on the branch. 

Any remaining arthropods were removed with a fine paintbrush. Finally, branches were 

washed with demineralized water and air-dried. For experiments, individual healthy and 

undamaged leaves were selected measuring 3-4 cm in length and 2-3 cm in width. 

Oviposition choice was assessed in experimental units with two single leaves. In all cases 

one leaf was healthy and undamaged. The other leaf was either damaged, had honeydew 

on it or was infested with C. pyri eggs. 

 

Insects   
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Anthocorids Anthocoris nemorum females were field collected in and around orchards 

five to ten days prior to an experiment and up till the onset of the experiment they were 

kept in thermo cabinets providing L16:D8 with temperatures of 20±1oC. Anthocoris 

nemoralis were laboratory reared in thermo cabinets under the same light and 

temperature regime. The A. nemoralis culture was initiated on individuals obtained from 

a laboratory rearing facility (EWH BioProduction).  

 

Rearing and maintenance of anthocorids For rearing and maintenance anthocorids 

were kept in units 7 cm in diameter and 8 cm high. The lid was provided with a 2.5 cm in 

diameter ventilation hole, covered with filter paper. The bottom of units was covered 

with filter paper. A twice-folded filter paper was provided for hiding. Water was 

provided on two 2 by 2 cm pieces of moistened paper bandage. Leaves of Pilea 

peperomiodies Diel (Urticaceae) were provided for oviposition and additional moisture. 

To reduce the risk of contamination of cages, leaves were soaked in 2% natrium 

hypochlorite for 2 min, rinsed with distilled water and allowed to air dry on clean paper 

prior to use. Biweekly, fresh leaves were provided and old leaves removed. Leaves with 

eggs were moved to new cages ensuring anthocorids of equal age in individual cages. At 

the same times excess of Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae) eggs 

were provided. Gauze was changed regularly. A maximum of ten adults were kept in 

each cage.  

To ensure that all females had mated, pairs of one male and one female 

anthocorid were transferred to small units (30 ml ‘medicine cups’) five to six days prior 

to oviposition experiments. Units measured 3.5 cm in diameter at the base, 4 cm in 
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diameter at the top and 4 cm in height, and had lids with ventilation holes. Water was 

provided on a 1 × 1 cm piece of gauze. In the case of A. nemoralis one to two day old 

females were used. Normally, mating was observed within a few minutes. When females 

were one week old they were used in the experiment. The females should then be ready 

to oviposit (Horton et al., 2000).  

 

Cacopsylla pyri Newly laid eggs of C. pyri were obtained from a greenhouse where 

C. pyri were kept in sleeve cages on potted pear trees. Temperature was set to 20oC but 

ranged from approximately 17 to 27. Daylength was maintained at L:D 16:8 by 

supplementing natural daylight with plant lamps. 

 

Honeydew from C. pyri  Fresh honeydew (up to 24 h old) was collected with a 

micropipette from honeydew droplets produced by C. pyri nymph allowed to feed under a 

sleeve cage in the greenhouse. 

 

Experimental units 

The small units used for mating of anthocorids, as described above, were also used as 

experimental units. To provide water and support for the leaves the base of the cages 

were covered with 3% agar, into which the petiole could conveniently be stuck.  

 

Method for preference experiments 
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Healthy or damaged leaves When comparing the two anthocorids preference for 

healthy or damaged leaves, damage by sap-feeding insects such as psyllids was mimicked 

by piercing leaves with a fine (minutien) pin. Each leaf had six equidistant pinholes along 

the midvein (at approx. 2 mm from the midvein) immediately before the experiment. A 

few females did not oviposit, and could thus not be included in the analysis.  

 

Honeydew An experiment assessed oviposition as affected by honeydew. Freshly 

collected honeydew (0.5 µl) was applied with a micropipette along the ventral midvein of 

pear leaves leaving four to five small droplets. 

  

Presence of prey Finally an experiment was carried out to assess oviposition as 

affected by the presence of prey eggs. Ten eggs were carefully removed from a leaf and 

then applied to each treated leaf with a wet paintbrush size 00. All eggs were placed 

along the ventral midvein. This is similar to the natural distribution of eggs, which are 

often laid along the midvein by the C. pyri female, as well as by the closely related C. 

pyricola Foerster (Horton, 1990). A preliminary experiment with eggs placed like this (n 

= 5) showed that eggs did not deflate or roll of the leaf. After a week all C. pyri eggs had 

hatched normally. 

The dorsal leaf side tends to be the least preferred for oviposition on pear 

(Sigsgaard, unpublished). To assess, how oviposition would be affected by placing prey 

eggs on the less-preferred dorsal leaf side, a separate experiment was done. In this case 

prey eggs were placed along the dorsal midvein of the pear leaf. For this experiment 
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small leaves were not available, so in order to fit leaves into the small cages each leaf was 

trimmed from approximately 5 or 6 cm to 4 cm. 

At the onset of an experiment one anthocorid female was carefully introduced into 

each cage. Each experiment lasted 48 h, with L:D of 16:8 and temperature of 20 ± 1oC.  

 After removal of the anthocorids from the cages, plant material was examined for 

eggs under the stereomicroscope. For each egg, the eggs position was noted as leaf 

margin (< 5 mm from edge), leaf centre (> 5 mm from edge), leaf tip (< 5 mm from the 

tip), or midvein (< 2 mm from midvein or on midvein). No eggs were observed in the 

petiole. It was also noted whether eggs were laid on the dorsal or ventral side of the leaf.  

 

Data analysis   

All statistical analysis was carried out in SAS/STAT ver. 8.2 (SAS Institute, 1990). 

Analyses were done using the GLIMMIX-macro with log link and Poisson error. 

Glimmix calls PROC MIXED. It allows users to choose an appropriate distribution for 

the data, and apply a link function. The degrees of freedom of the fixed effects F-tests 

were adjusted using Satterthwaite formulas. Variance components were estimated by 

restricted maximum likelihood (REML) (Littell et al., 1996). Anthocorid individuals 

were included as a random effect. Least significant variables were removed by backward 

selection starting from full models. Full models included main factors and all possible 

interaction terms. Approximated t-tests of differences of least square means (LS-means) 

were used to identify significant differences. Test for covariance components associated 

with random effects (anthocorid individuals and residuals) showed that anthocorid 

individuals accounted for a smaller portion (in all cases less than 10%) of random effects. 
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Replicates in which anthocorids did not lay any eggs during the 48 hours of the assay 

were excluded from analyses.  

 

 

Results 

 

Oviposition preference for damaged or healthy leaves 

To test oviposition preference for damaged leaves 25 A. nemoralis and 22 A. nemorum 

females were used. Of these seven and five females respectively did not oviposit and 

were excluded from the analysis leaving 18 replicates with A. nemoralis and 17 with A. 

nemorum. None died. 

Oviposition preference for damaged leaves was clear for A. nemoralis (Figure 1a), 

while no preference was found for A. nemorum (Figure 1b). The crossed effect of 

treatment × anthocorid species was significant (F= 5.65, df = 1,65, P = 0.021). 

Differences of LS-means showed that Anthocoris nemoralis laid significantly more eggs 

on damaged leaves than healthy leaves (t-test t = 2.97, df = 65, P = 0.0042), while A. 

nemorum showed no significant preference (t = -0.09, df = 65, P = 0.93).  

Anthocoris nemorum clearly preferred leaf margins, and A. nemoralis leaf blade 

and vein (Figure 1). A more detailed analysis aiming at investigating if egg distribution 

on the leaf was affected by leaf damage, showed a significant effect of leaf region × 

anthocorid species (F = 4.04, df = 1, 374, P = 0.045). Differences of LS-means showed 

that A. nemoralis laid significantly more eggs on the ventral leaf blade than on the ventral 

leaf margin (t= 1.97, df =376, P = 0.049), and significantly less eggs on the ventral leaf 
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margin that A. nemorum did (t = -2.40, df = 397, P = 0.017). Anthocoris nemorum laid 

significantly more eggs on the ventral leaf margin than on the ventral leaf midvein and 

leaf blade (t= 2.25, df = 376, P = 0.025 and t = 2.42, df = 376, P = 0.016) and also laid 

more eggs on the dorsal leaf margin than on the dorsal midvein and leaf blade (t = 2.83, 

df = 376, P = 0.005 and t = 3.49, df = 376, P = 0.0005). Finally, A. nemorum laid more 

eggs on the ventral than on the dorsal leaf margin (t = -2.33, df =176, P = 0.021). For A. 

nemoralis no significant difference in eggs numbers between leaf sides was found in 

either leaf margin, leaf blade or midvein. There was no significant effect of anthocorid 

species × treatment × leaf location or of treatment × leaf region. Thus, the anthocorids 

choice of leaf region was not significantly affect by treatment.  

 

Oviposition as affected by the presence of honeydew 

The preference for honeydew treated leaves over healthy leaves was tested with 33 A. 

nemoralis females. One died and one did not lay eggs, leaving 31 to be included in the 

analysis. 

Anthocoris nemoralis laid more eggs on leaves with honeydew than leaves 

without honeydew (Figure 2). The prefernce was highly significant (F =13.54, df = 1, 61, 

P = 0.0005). To assess if egg distribution on the leaf was affected by honeydew, a more 

detailed analysis was done. There was a significant crossed effect of egg position × 

treatment (F =2.62, df =5, 331, P = 0.024).  The approximated t-test of differences of LS-

means revealed that there was no significant difference between the number of eggs laid 

along the ventral midvein on treated and untreated leaves (t = -1.17, df =330, P = 0.24). 

On the other hand, there were highly significantly more eggs on the ventral leaf blade of 
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the treated than the untreated leaf (t = 3.79, df = 332, P = 0.0002). Further, on treated 

leaves more eggs were laid on the ventral leaf blade than on the dorsal (t = 1.72, df = 335, 

P < 0.0001), while there was no difference between the number of eggs on the dorsal and 

ventral leaf blade on untreated leaves (t = 0.70, df = 330, P = 0.48). 

 

Oviposition preference as affected by the presence of prey eggs 

The effect of presence of prey eggs on oviposition was first tested with C. pyri eggs 

placed along the ventral midvein. 17 A. nemoralis females were used. Of these one died 

and four did not oviposit, leaving 12 replicates for the analysis of data. In the second 

experiment C. pyri eggs were placed along the dorsal midvein. Here 19 females were 

used. Of these five did not lay any eggs, leaving 14 replicates. In all experimental units 

where females had oviposited, all C. pyri eggs had been consumed, only leaving empty 

egg shells. 

Oviposition preference was different in the two experiments and the effect of 

treatment × prey position was significant (F = 5.03, df = 1,19.4, P = 0.037). A 

comparison of LS-means revealed that while A. nemoralis laid significantly more eggs on 

infested leaves in the experiment where C. pyri eggs was placed along the ventral 

midvein (t = 2.52, df = P = 0.021), there was no significant difference in number of eggs 

laid on infested and healthy leaves in the experiment where C. pyri eggs were placed 

along the dorsal midvein (t = -0.35, df = 1,19.4, P = 0.73) (Figure 3). 

In a more detailed assessment of how proximity to prey may affect oviposition, A. 

nemoralis eggs numbers in four regions of the leaves were compared: dorsal and ventral 

midvein and dorsal and ventral leaf blade (combining the few eggs laid on the leaf 
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margins with those on the leaf blades). The effect of prey position × treatment × egg 

position was highly significant (F =5.73, df =3,167, P = 0.0009).  

In the experiment with C. pyri eggs placed along the ventral midvein, A. 

nemoralis eggs were concentrated on the ventral leaf side of the infested leaf, in 

particular along the ventral midvein, in the immediate proximity of prey eggs (Figure 3a). 

Significantly more eggs were placed along the ventral midvein than along the dorsal 

midvein. Further the ventral midvein of the infested leaf held more eggs than the ventral 

leaf blade (t = 2.51, df = 167, P = 0.0132 and t = 2.65, df = 167, P = 0.0087). This was 

not the case on the healthy leaf (t = -0.82, df = 167, P = 0.415). On the untreated leaf no 

difference was found between the number of eggs laid along the dorsal and ventral 

midveins (t = -0.82, df = 167, P = 0.42). Further, significantly more eggs were laid along 

the ventral midvein on the infested than on the healthy leaf (t = 2.74, df = 167, P = 

0.0067).  

In the experiment where prey eggs had been placed along the dorsal midvein, 

there was no significant difference between the number of eggs laid along the dorsal and 

ventral midveins of the infested leaves (t = 0.17, df = 167, P = 0.87), while on the healthy 

leaf, A. nemoralis prerferred the ventral to the dorsal midvein (t = 2.59, df = 167, P = 

0.011). At the same time, significantly more eggs were found on the dorsal than the 

ventral leaf blade of the infested leaves (t = 3.24, df = 167, P = 0.0014). In accordance, 

significantly fewer eggs were found along the ventral midvein on the infested leaf than 

along the ventral midvein of the healthy leaf (t = -2.71, df =167, P = 0.0075).  
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The differences in oviposition pattern on infested leaves depending on prey 

position are reflected in significant differences in the number of eggs laid along the 

ventral midveins (t = 2.72, df = 186, P = 0.007) (see also figure 3).  

In both experiments, more oviposition was concentrated in leaf regions closest to 

prey, with resulting differnces in egg distribution between healthy and infested leaves and 

between infested leaves with prey placed along the dorsal or ventral midvein. 

 

 

Discussion 

 

Oviposition preference for damaged or healthy leaves 

A preference to oviposit on damaged leaves could help anthocorids to locate prey in the 

field, and was clear for A. nemoralis. While attraction to psylla infested leaves and 

volatiles therefrom have been shown to attract A. nemoralis (Drukker et al., 1995; 

Scutareanu et al., 1997), this study shows that oviposition can also be attracted by 

mechanical leaf damage in the absence of prey. Prey search of another anthocorid, Orius 

tristicolor (White) (Heteroptera: Anthocoridae), has earlier been found to increase when 

leaves were artificially damaged with a pin. Thus, bean leaves that prior to experiments 

had been exposed to plant feeding (thrips or spider mites) or artificial damage, elicited 

increased searching and resulting higher predation success (VanLaerhoven et al., 2000). 

That prey cues may affect predator oviposition has been documented for syrphids. The 

syrphids were observed to adjust their oviposition according to aphid density, even when 

aphids were removed by the start of the experiment (Bargen et al., 1998). 
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While the oviposition preference of A. nemoralis for damaged leaves was clear, 

no preference for these leaves was found for A. nemorum. In an earlier study it was found 

that A. nemorum laid more eggs on apple or pear leaves, where a part was cut off, than on 

healthy leaves of the same size, while A. nemoralis preferred healthy pear and apple 

leaves to cut leaves (Sigsgaard, unpublished). Most likely, some of the same plant 

volatiles are released with the two kinds of leaf damage. However, the anthocorids 

general search and oviposition pattern means that A. nemoralis would be more exposed to 

pin holes along the midvein, since it has been observed to search the leaf midvein half its 

time  (Brunner & Burts, 1975). In contrast, search for prey by A. nemorum is 

concentrated on leaf margins as found on Brassica oleracea var. gongylodes (90.4%), 

tobacco (67.3%) and bean Phaceolus vulgaris (65.1%) (Lauenstein, 1980). Therefore, A. 

nemorum would be most exposed to a leaf cut, which it would encounter searching the 

leaf margin. 

In addition the more polyphagous A. nemorum might be more likely to place its 

eggs near leaf damage simulating damage by chewing insects than A. nemoralis.  

The within-leaf distribution of eggs on damaged and healthy leaves was not 

significantly different. Eggs of A. nemorum were predominantly laid on the leaf margin 

and eggs of A. nemoralis on the leaf blade and along the midvein. Only A. nemorum laid 

more eggs on the ventral leaf side, which in an earlier study tended to be preferred leaf 

side for both species (Sigsgaard, unpublished), which corresponds to observations of it 

search pattern with 71% of its time spent on the ventral side of pear leaves (Brunner & 

Burts, 1975). Data also corresponds to records of the two anthocorids general oviposition 
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pattern on different plants (Elliott & Way, 1968; Hodgson & Aveling, 1988), and for both 

species seems to reflect their search pattern (Lauenstein, 1980). 

 

Oviposition as affected by the presence of honeydew 

On leaves treated with honeydew of C. pyri A. nemoralis laid more eggs. On leaves with 

honeydew more eggs were laid on the ventral leaf blade, but fewer eggs were found along 

the midvein itself, than on the control, perhaps reflecting that though A. nemoralis prefers 

to oviposit close to honeydew, it avoids placing eggs in, or too close to it, perhaps to 

protect the eggs from being contaminated with the honeydew.  

Both A. nemoralis and A. nemorum have been observed to probe and/or feed 

honeydew from aphids and psyllids in the field and in the laboratory (Sigsgaard, 

unpublished). Positive responses to honeydew have been observed in other predators, 

including Heteropterans and the anthocorid O. tristicolor. Honeydew may be an 

attractant, as shown for Cyrtorhinus lividipennis (Reuter) (Heteroptera: Miridae) 

(Lakshmi et al., 2000). It may also be a source of water and/or energy, as shown for two 

other predators, Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) and 

Chrysoperla carnea (Stephens) (Heidari & Copland, 1993; Patt et al., 2003).  

 In a Dutch study it was shown that anthocorids were attracted to pear trees 

attacked by pear psyllids, and in a later study that two compounds; methyl salicylate and 

(E,E)-alpha-farnesene, both released by pear trees attacked by psyllids, are attractants of 

A. nemoralis (Drukker et al., 1995; Scutareanu et al., 1997). However, none of these 

compounds were identified in honeydew (Scutareanu et al., 2003), so these compounds 
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can be disregarded, when considering factors responsible for the attraction to oviposit 

near honeydew. 

 

Oviposition preference as affected by the presence of prey eggs 

Anthocoris nemoralis preferred to oviposit on leaves with C. pyri eggs along the ventral 

midvein compared to healthy leaves. When prey eggs were placed on the dorsal, less-

preferred, leaf side, the effect was not significant. However, a more detailed analysis of 

egg distribution on the individual leaves showed that eggs were preferentially laid close 

to where prey eggs had been applied, and that in the case where prey was placed along 

the dorsal midvein more eggs were laid there than along the ventral midvein –opposite to 

the untreated leaf where most eggs were found along the ventral midvein. A change in 

oviposition preference as a result of the position of prey was also documented for A. 

nemorum, which preferred barley to pear for oviposition except when prey, C. pyri, was 

offered on pear leaves (Herard & Chen, 1985). 

A study assessing A. nemorum’s oviposition preference on apple leaves with or 

without Operophtera brumata L. (Lepidoptera: Geometridae) eggs showed a near-

significant preference of A. nemorum to oviposit on leaves with prey (Sigsgaard, 

unpublished). Likewise, A. nemorum was observed to prefer to oviposit near spider mite 

colonies (Steer, 1929).  

The fact that oviposition preference was clear even at the small scale used in this 

series of experiments demonstrates that choice of oviposition site functions even down to 

position of eggs on the individual leaf.  
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Predator oviposition preference and biological control 

The ability of the anthocorids to use prey and prey cues such as leaf damage and 

honeydew to locate a suitable site for oviposition helps assure the offspring will have 

prey close at hand. The fact that such preference was observed even in the absence of 

prey, suggest that prey cues may be used in the field to attract predator oviposition. 

However, many factors probably interact when predators choose a habitat and a place to 

oviposit. Thus, an attempt to attract predators to traps with methyl salicylate, a chemical 

known to attract A. nemoralis to psylla infested trees (Scutareanu et al., 1997) showed 

that anthocorids –in the experiment principally Orius sp.- were only attracted in early 

spring (Molleman et al., 1996).  

Though results with honeydew look promising, field experiments attempting to 

raise predator numbers by application of artificial honeydews have not in all cases been 

successful with regard to heteroptera and anthocorids. Alfalfa plots treated with artificial 

honeydew (sucrose and water) held higher numbers of adults of an ichneumonid, adult 

syrphids, Geocoris spp. (Heteroptera: Geocoridae) and O. tristicolor but not of spiders or 

adults of two species of nabids, Nabis americoferus Carayon and N. alternatus Parshley 

(Evans & Swallow, 1993). In another study, potato plots treated with artificial honeydew 

led to lower densities of N. alternatus and of O. tristicolor (Ben Saad et al., 1976). The 

observed avoidance of A. nemoralis to lay eggs too near to honeydew should be 

considered in relation to possible use of honeydew as an attractant of this species. 

Anthocoris nemoralis is currently under evaluation for inoculative and/or 

inundative releases against pear psylla in various European countries, so far with variable 

results, often with initial success followed by dispersal away from the release area 
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(Fauvel et al., 1994; Beninato et al., 2000). Oviposition preference, presence of prey 

and/or plant related volatiles, may all affect the attraction to a plant, oviposition and later 

the retention of adult A. nemorum and A. nemoralis in orchards and thus the success of 

biological control.  
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Figure legends 

 

Figure 1. The average number of eggs laid on damaged (white) and healthy (grey) pear 

leaves by a) A. nemoralis (n = 18) and b) A. nemorum (n = 17) according to leaf location. 

While A. nemoralis laid more eggs on damaged leaves, the difference was not significant 

for A. nemorum. Leaf damage did not significantly affect the distribution of eggs within 

leaf regions for either anthocorid. 

 

Figure 2. The average number of A. nemoralis eggs according to their position on the 

honeydew-treated (white) and untreated (grey) pear leaves (n = 31). More eggs are laid 

on honeydew-treated leaves. Honeydew was placed along the ventral midvein. Near it, on 

the ventral leaf blade of the honeydew-treated leaf more eggs are laid than in the same 

position on the untreated leaf. 

 

Figure 3. Distribution of A. nemoralis eggs on leaves with prey (eggs of C. pyri) along a) 

the ventral midvein (white) and its control (grey) (n = 12) and b) the dorsal midvein 

(white) and its control (grey) (n = 14). In a) more eggs are laid on infested leaves, and in 

both a) and b) more eggs are laid close to prey eggs –along the ventral midvein in a) and 

along the dorsal in b). 
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Figure 1 
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Figure 2. 
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Figure 3  
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