

prepared by members of Work-package 2 in the Nat-Man project (Nature-based Management of beech in Europe) funded by the European Community 5th framework programme

Hahn, K.; Christensen, M.

Publication date: 2003

Document version Peer reviewed version

Citation for published version (APA): Hahn, K., & Christensen, M. (2003). A study on dead wood in european beech forest reserves: prepared by members of Work-package 2 in the Nat-Man project (Nature-based Management of beech in Europe) funded by the European Community 5th framework programme. Nat-Man Working Report, No. Vol. 9

A Study on Dead Wood in European Beech Forest Reserves

Edited by Morten Christensen & Katrine Hahn

Contributors: M. Christensen, K. Hahn, E.P. Mountford, S.M.J. Wijdeven, D.B. Manning, T. Standovar, P. Odor, & D. Rozenbergar

Deliverable 20 of the Nat-Man Project Produced under Work-Package 2 2003

The report is produced by the Nat-Man Project (Nature-based Management of Beech in Europe) co-ordinated by *Forest & Landscape Denmark*, and funded by the European Community 5th Framework Programme. Contact: Co-ordinator Jens Emborg, jee@kvl.dk - The report is available at www.flec.kvl.dk/natman

1. Introduction

This report forms part of the Nat-Man project (Nature-based Management of beech in Europe) funded by the European Community 5th Framework Programme. It focuses on dead wood quantities, dead wood size class composition and decay class composition in various European beech forest reserves, including several sites in England, Denmark, The Netherlands, France, Hungary and Slovenia where new fieldwork was carried out as part of the Nat-Man project.

The work in WP2 for this study is linked to the research in WP6 and WP7 within the Nat-Man project. The information in this report serves as a reference-point for the nature-based management of beech forests in Europe. It will be used in other parts on the Nat-Man project and will be used in other publications out of the Nat-Man project.

Dead wood is widely recognised as an important habitat for forest dwelling organisms as it provides shelter and food for many threatened species, especially invertebrates (e.g. Heliövaara and Väisänen, 1984; Kirby and Drake, 1993; Samuelsson et al., 1994, Siitonen 2001, Harmon et al. 1986), fungi (Sippola and Renvall 1999, Heilmann-Clausen 2001), bryophytes (Söderström 1988, Lesica et al. 1991, Ódor and Standovár 2001), lichens (Humphrey et al. 2002) cavity nesting birds (Sandström 1992, Mikusinski and Angelstam 1997) and small mammals (Harmon et al. 1986). However, the amount of this commodity is much lower in managed forests and plantations than in near-natural stands (Andersson and Hytteborn, 1991, Lesica et al., 1991, Samuelsson et al. 1994, Green and Peterken, 1997, Kirby et al. 1998, Jonsson, 2000, Ódor and Standovár 2001). Therefore, in the interests of conservation, efforts are being made to rise levels towards those found in natural forests (e.g. Hodge and Peterken, 1998, Harmon 2001). Unfortunately, natural-reference sites are scarce - at least in north-west Europe where no truly natural forests have survived and the few sites that have been dedicated as strict forest reserves, i.e. management by non- or minimumintervention, have usually been untreated for less than a century (Parviainen et al., 1999). The reserves in central-eastern Europe have in some cases a longer history as strict forest reserves due to historical reasons and may serve as a better guideline for natural levels of fallen dead wood. However, the amounts of dead wood in natural forests in various regions of Europe do not only depend on former forest management, but also on soil types, climate, species composition, and disturbance regimes, which all contribute to the overall cycle of formation and decomposition of dead wood.

In this report, dead wood data from four different countries in Europe are represented and analysed with respect to quantities, size class composition and decay class composition. Such information may serve as a reference point for comparison with other European beech forest reserves, well aware of the large variation in natural growth conditions, natural disturbance types, and former management history throughout Europe.

2. Methods

2.1 Study sites

A total of 13 forest sites, covering app. 850 ha, were included in the study. These sites represent a series of minimum-intervention reserves, all supporting high forest, mainly dominated by beech (*Fagus sylvatica*) in various mixtures with ash (*Fraxinus excelsior*), elm (*Ulmus glabra*), hornbeam (*Carpinus betulus*), lime (*Tilia cordata, T. platyphyllos*), oak (*Quercus robur, Q. petrea*), silver fir (*Abies alba*), Norway spruce (*Picea abies*) or sycamore (*Acer pseudoplatanus*). The majority of the sites are in North-West Europe, but others were from Central Europe, including some near-virgin beech reserves in Hungary (Figure 1, Table 1).

Figure 1. The geographical distribution of the 13 minimum-intervention beech forest sites included in the study.

Site name	Area (ha)	Forest type, main soils, main species, location	Summary of past treatment
Suserup Skov, Denmark	19	NW European lowland beech forest Calcareous, well-drained, brown earth soil Beech-ash-elm-oak-(lime) 55.37 N, 11.55 W	Ex-wood pasture, grazed until c.1800; minimum treatment since 1850; non-intervention since 1927.
Strødam reservatet, Denmark	25	NW European lowland beech forest Mesotrophic brown earth soil Beech-(oak-ash) 55.97 N, 12.27 E	Ex-wood pasture, grazed until c.1770, minimum treatment since 1925, non-intervention since 1949.
Møns Klinteskov, Denmark	25	NW European lowland beech forest Calcareous soil Beech 54.96 N, 12.54 E	Ex-wood pasture and possible coppicing, minimum intervention since 1790, non-intervention since 1935.
Knagerne, Denmark	6	NW European lowland beech forest Acid brown earth soil Beech 56.13 N, 9.53 E	Old beech stand, regenerated about 250 years ago. Possibly same history as Velling Skov. Non- intervention since 1990.
Velling Skov, Denmark	24	NW European lowland beech forest Acid brown earth soil Beech 56.04 N, 9.50 E	Old beech stand, with evidence of former charcoal burning, coppice, grazing and masting pigs, non- intervention since 1990.
The Mens, England	155	NW European lowland beech forest Acid clay soils Beech-oak-holly-(birch-ash) 51.0 N, 0.5 W	Ex-wood pasture; enclosed c.1850, thinned at least once since, now old-growth and untreated.
Ridge Hanger, England	50	NW European lowland beech forest Mainly calcareous rendzina soils Beech-ash 51.0 N, 1.0 W	Ex-wood pasture/coppice, then promoted to high forest, now untreated.
Noar Hill, England	70	NW European lowland beech forest Mainly calcareous rendzina soils Beech-ash 51.1 N, 0.9 W	Ex-wood pasture/coppice, then promoted to high forest, now untreated.
Buckholt Wood, England	100	NW European lowland beech forest Calcareous brown earth soils Beech-holly-(ash) 51.80 N, 2.20 W	Ex-wood-pasture/coppice, then promoted to high forest, now untreated.
Fontainebleau (La Tillaie), France	136	NW European lowland beech forest Brown calcareous and acid podsol sandy soils Beech-oak-(ash-field maple-hornbeam-holly) 48.43 N, 2.68 E	Grassy oak forest in 8 th century, and last cut over in 1372. Described in 1664 as high forest with mature beech, oak, and some hornbeam and lime. Protected since 1853; longest untreated reserve in NW Europe.
Kékes Forest Reserve, Hungary	72	Central European montane beech forest Brown earth soils on andesite, with steep scree slopes Beech-maple-ash-lime 47.87 N, 20.00 E	Uneven-aged, oldest trees 220 years old, never used for timber production, possible former uses includes burning large standing trees for charcoal.
Õserdõ Forest Reserve (Bükk Mts), Hungary	59	Central European montane beech forest Deep slightly podsolic brown earths and shallow rendzina on steep parts Beech-sycamore-mountain ash 48.05 N, 20.43 E	Stand regenerated about 160 years ago, regularly thinned until 40-50 years ago, since more or less untouched.
Alsóhegy Forest Reserve, Hungary	101	Central European montane beech forest Karst plateau Beech-hornbeam-oak-rowan-lime 48.55 N. 20.70 E	Example of traditional mittelwald - coppice with standards, left to free development between 1920-1940.

Table 1. Forest reserves included in the study, their size, position, forest type and forest history.

2.2 Recording methods

Dead wood quantity and size class distribution

In all four countries, line-intersect sampling (Warren and Olsen, 1964, Kirby et al 1998) was used to record the volume and length of fallen dead wood. The number and length of the line transects varied between the sites depending on the size of the area sampled and the density and patchiness of logs. At each site a number of equal length transects (covering a total distance = t) were laid out from random start points and in random directions. The number (N) of fallen dead stems attaining five cm diameter and intersecting the line was counted, and their diameter (d) in cm where they intersected the line was measured and species identified. The length (L) and volume (V) of fallen dead wood was estimated using the formulae, $L = N*pi*10^4/2*t$ (m/ha), and V = SUM ($pi^{2*}d^2/8*t$) (m^3/ha).

In Denmark, estimates of volume of standing dead wood (snags) were obtained from a 10 m wide strip along the line transects. In England, estimates of snag volume were obtained from measurements (stem dbh and height) made on permanent transect or plots, which varied in size depending on the study site. In France, no estimates of standing volumes were made. In Hungary, snag volume was estimated in independent circular plots with a 30 m radius, with height and diameter (basal, 1.3 m, and top) being measured for snags > 10 cm dbh.

Standing dead wood was assigned to 10 cm size classes according to its breast height diameter at 1.3 m from the base. For fallen dead wood, diameter at the intersection was measured.

Decay phases

The decay condition of dead wood was determined using a key for a six-class scale for decay of dead wood (Van Hees et al. in press, Ódor and van Hees in press) where each stem was assigned to a decay class by test of hardness combined with a visual estimation of outline and bark (Table 2).

Sampling time

Fieldwork related to the sampling of dead wood in the forest reserves was carried out in the period June 2000 to June 2002 (Table 3).

Decay	Bark	Twigs and	Softness	Surface	Shape
Class		branches			
1	intact or missing only in small patches, > 50%	present	hard or knife penetrate 1- 2 mm	covered by bark, outline intact	circle
2	missing or < 50%	only branches >3 cm present	hard or knife penetrate less than 1 cm	smooth, outline intact	circle
3	missing	missing	begin to be soft, knife penetrate 1-5 cm	smooth or crevices present, outline intact	circle
4	missing	missing	soft, knife penetrate more than 5 cm	large crevices, small pieces missing, outline intact	circle or eliptic
5	missing	missing	soft, knife penetrate more than 5 cm	large pieces missing, outline partly deformed	flat eliptic
6	missing	missing	soft, partly reduced to mould, only core of wood	outline hard to define	flat eliptic - covered by soil

 Table 2. Description of Decay Classes (DC)

Table 3. Overview of time of recording and sampling statistics

Site	Time of recording	# transects	Transect length (m)	# circular plots (radius = 30 m)	Area of study (ha)	Total transect length/ area (m/ha)
Suserup A	December 2001	15	50 m		11 ha	71
Strødam	November 2001	30	50 m		25 ha	60
Velling + Knagerne	November 2001	30	50 m		30 ha	50
Møn	December 2001	15	50 m		20 ha	38
The Mens	June 2001	10	50 m		17 ha	29
Ridge Hanger	May 2001	10	20 m		5 ha	40
Noar Hill Hanger	September 2000	5	50 m		7 ha	36
Buckholt Wood	June/July 2000	10	20 m		2 ha	100
Fontainebleau I	June 2000	10	25 m		1 ha	250
Fontainebleau II	June 2000	10	25 m		1 ha	250
Õserdõ	April 2001	20	60 m	20	25 ha	48
Kekes	September 2001	37	60 m	26	47 ha	47
Alsohegy	June 2002	42	60 m	46	100 ha	25

2.3 Literature review

Additional information on dead wood in other European beech forest reserves was obtained through a comprehensive literature review. The review was primarily focused on reports and publications where information on estimates of living volume, fallen dead volume, standing dead volume and total dead wood volume was available, see Appendix A for an overview.

3. Results

3.1 Dead wood quantities

Results on dead wood quantities are based on the NatMan research sites (Figure 1) as well as the literature review (see Appendix A for details on sites). The amount of dead wood differed greatly. It ranged from almost nothing to more than 550 m3/ha. Generally, the highest amounts were from mountainous beech-fir-spruce forests in central-eastern Europe. However, high levels were also recorded from other forest types where old stands had been largely destroyed by windstorms. Based on the dead wood data of the investigated sites we didn't find any simple correlation between total dead wood and living wood volume. It appears as that live volume increased there was greater variation in the total dead wood volume (Figure 2).

The (lack of) relationship between fallen and standing dead wood volume is shown Figure 3. Most sites had a higher amount of fallen dead wood than standing dead wood. Those sites, where the amount of standing dead wood was higher than the amount of fallen dead wood, were typically

those, which were mixtures with spruce and fir, as these species generally stay upright for longer after death. Certain types of disturbance were closely linked to the production of either standing dead wood (dry-out) or fallen dead wood (storm).

Figure 3. The relation between standing and fallen dead wood in European beech forest reserves. The full line represents the 1:1 ratio between standing and fallen dead wood. See appendix 1 for details on sites.

3.2 Size class distribution

The size-class distribution of fallen dead wood was determined for 14 sites in Denmark, England, France and Hungary. The characteristics of the sites in each country are discussed below.

For the Danish sites (Figure 4), the results show that most sites have a lack of dead wood in the two largest diameter classes, but in Suserup, the whole diameter range is represented, supporting the steady state of the forest described by Emborg et al. (2000). For Strødam and Knagerne, the general pattern is a lower level of dead wood and a lack of the largest diameter classes. This relates to the former management of the forest as well as the slightly more sandy soils here. Velling represents a newly established forest reserve, which is illustrated by the lack of large diameter classes and the steep decrease in volume with increasing diameter class. However, due to great variation in the soil

conditions from poor sandy and dry soils to rich spring-dominated soils, it expected that the future diameter distribution of dead wood would be close to that of Strødam. For Møn, the diameter distribution of dead wood is rather low and the maximum diameter attained is rather low compared to the other forest reserves, but rather high (37%) compared to the living volume. The reason for lower quantities is the extreme soil conditions, with a very this soil layer on top of the pure chalk.

The size-class distributions for fallen dead wood in four sites recorded in England are shown in Figure 5. Buckholt Wood contained only small diameter pieces and the total fallen dead wood volume for this site was very low. The stand was only middle-aged and dead wood input had been restricted to small-sized branches and trunks killed by exclusion. The Mens contained more fallen dead wood and included some middle-sized trunks and small diameter pieces. The area was an old-growth stand, which had lost some canopy beech oak during windstorms in the last 15 years. The final two sites at Noar Hill and Ridge Hanger, had some of the highest levels of fallen dead wood recorded, and included many middle and some large diameter trunks. These sites had supported old-growth stands dominated by beech, but were largely blown apart during an exceptional windstorm in October 1987. Further trees were lost at both sites during storms in 1990 and the next decade.

Figure 6 shows the size-distribution of fallen dead wood as recorded in the two plots at Fontainebleau Forest Reserve, France (see Mountford 2002). Both contained moderate-high levels of fallen dead wood, fallen trunks and branches across many of the diameter classes, and supported old-growth beech stands that had broken up during windstorms in 1967, 1987, 1990 and 1999. These storms damaged trees in both plots by uprooting and snapping. Plot 1 suffered mainly during the storm of 1999, whereas plot 2 suffered major storm-damage in 1967 and occasional damage in the storms thereafter. Thus, the volume of fallen dead wood in plot 1 was far higher at the time of sampling in summer 2000 (256 v 142m³ ha⁻¹). Although the level in plot 2 was more moderate, it had remained relatively stable from 1982 when it was measured as 145m³ ha⁻¹ (Koop and Hilgen, 1987). During the same period, the volume in plot 1 had increased nearly three times from 92 to 256m³ ha⁻¹. This demonstrates that the ultimate maximum of fallen dead wood achieved by a mature stand, is related to time it takes to break-up. If canopy trees die and fall progressively, then the maximum level is moderate but sustained over a longer period. Whereas, if a stand collapses almost over night in a severe windstorm, this will achieve a higher maximum level of fallen dead wood, but this will be relatively short-lasting. For the Hungarian sites Kékes and Oserdo (Figure 7) a wide diameter range is represented for dead wood. In Kékes the proportion of small trees (below 35 cm) is high, while in Oserdo the proportion of large logs (above 65 cm) is much higher. It is supposed that there are two important reasons of this difference: (1) the productivity of the Oserdo site is much higher, and (2) it is a formerly managed forest of which a considerable part of the trees of the upper canopy have reached the collapsing stage now. Kékes is a non-intervention stand on a steep slope with very low productivity, which has never been cut. Also these are the reasons that the amount of dead wood is higher in Oserdo than in Kékes. The amount of logs is much lower in Alsóhegy than in the other two sites, and the majority of the logs are small (below 25 cm). This stand was more intensively managed in the last decades (mainly by irregular coppice) than the other two sites.

Figure 4. The diameter size class distribution of dead wood in 10 cm classes for the Danish beech forest reserves Suserup, Strødam, Velling, Knagerne and Møn. Horizontal axis = diameter classes (cm), vertical axis= dead wood volume (m^3/ha) .

Figure 5. The diameter size class distribution of dead wood in 10 cm classes for the English beech forest reserves. Horizontal axis = diameter classes (cm), vertical axis= dead wood volume (m^3/ha) .

Figure 6. The diameter size class distribution of dead wood in 10 cm classes for the French beech forest reserves. Horizontal axis = diameter classes (cm), vertical axis= dead wood volume (m^3/ha) .

Figure 7. The diameter size class distribution of dead wood in 10 cm classes for the Hungarian beech forest reserves. Horizontal axis = diameter classes (cm), vertical axis= dead wood volume (m^3/ha) .

3.3 Decay class distribution

The decay-class distribution of fallen dead wood was determined for four sites in Denmark and three sites in Hungary. The characteristics of the sites in each country are discussed below.

When reading the figures, it is important to be aware of the fact that the transition phases naturally are of unequal length (preliminary results of WP7). Here it is found that decay class (DC) 1 and 2 are rather short with a maximum of 10 years in total - whereas DC 3, 4 and 5 represent long-lasting phases - often more than 5-10 years each. Just as with the diameter class distribution, the absence of dead wood in the latest decay phases strongly indicates a break in the continuity of dead wood supplies, typically due to a combination of recent harvesting of large timber and dead wood removal.

In Denmark (Figure 8), Suserup, Strødam and Møn represent sites with a long history of nonintervention, whereas Velling and Knagerne are more recent reserves. This is reflected in the absence of dead wood in decay phase 5 and 6 for Velling and Knagerne. The decay class distribution is clearly influenced by irregular disturbance events. An example of this is the supposed 'overrepresentation' of DC 4 and 5 in Suserup, caused by a severe windstorm in 1967.

From the Hungarian sites (Figure 9) all of the decay phases are represented with relatively high amounts of dead wood in Oserdo and Kékes showing a relatively long non-intervention history in them. The proportion of well-decayed logs (DC 4 to 6) is lower in Kékes. In this site most of the logs disintegrate in later stages because of the steep slope and high rock cover, and occur only as fine organic woody material among the outcrops. In Alsóhegy later stages are underrepresented because of recent management activities.

Figure 8. The decay class distribution (decay class 1-6) in relation to dead wood volume in the Danish beech forest reserves Suserup, Strødam, Velling, Knagerne, and Møn. Horizontal axis = decay classes (see Table 2 for explanation), vertical axis= dead wood volume (m^3/ha) .

Figure 9. Decay class distribution (decay class 1-6) in relation to dead wood volume in Hungarian beech forest reserves Õserdõ, Kekes and Alsohegy. Horizontal axis = decay classes (see Table 2 for explanation), vertical axis= dead wood volume (m^3/ha) .

4. Discussion

4.1 Dead wood quantities

The amount of dead wood present is often a combination of former forest management, stand development stage, and the pattern caused by irregular, natural disturbances. To sort these complicated figures out combined models of dead wood productions, patterns in time and space and decomposition rates would be needed and should be applied to different forest ecosystems around Europe. However, this report provides some background information to help answer these questions.

It was found that the total dead wood volume in the beech forest reserves studied varied by about 500 m³/ha. For the sites studied in Nat-Man, the average was 136 m³/ha across the 14 samples. This demonstrates that there is no one level of natural dead wood, rather that level differs greatly from site to site. This is related to the general cycle of dead wood levels in natural stands (Table 4). As a stand progresses into maturity the volume of dead wood tends to increase; it then peaks during and immediately after the break-up of the old-growth stand; and then falls to a minimum during the stem exclusion stage as the replacement stands develops towards maturity. The scale of stands within natural beech forests probably differs on a regional and local scale. Natural disturbance patterns are probably larger in NW Europe than elsewhere on the continent, because severe windstorms are more common here (e.g. Peterken 1996). In Central and East Europe, stand dynamics are typically small-scale, but even here quite large-scale disturbances can occur occasionally.

Development	Dead	Comments
stage	wood	
0	level	
Stand initiation	Medium to	Dead wood is residual from the previous old-growth stand. The amount
	very high	depends on the biomass accrued in the previous stand and the scale and
		intensity of the break-up of the old-growth stand. The abundance of snags
		v logs depends on the type of disturbance: drought kills trees standing,
		whereas windstorms usually uproot or snap trees.
Stem exclusion	Low	Much of the dead wood decays within a few decades. The longevity
		depends on the size of logs/snags (larger material decays less rapidly), the
		rapidity with which snags fall (logs decay faster than snags), and the
		presence of slow-decaying material (beech decays much faster than oak).
		During the stem exclusion stage there is little input and most that is input
		is small and decays rapidly.
Understorey	Low-	By this age a few larger (and more persistent) branches/trunks become
reinitiation	medium	dead wood and levels increase somewhat.
Old-growth	Medium	By this age even more large branches/trunks become dead wood and levels
		increase further. More large aerial dead wood occurs, notably in large
		senescent trees.
Canopy break-	Medium-	When old-growth stands break-up dead wood levels increase, often
up	high	dramatically because mature beech trees are prone to damage and death
		through windstorms, drought and senescence.

Table 4. Trend in dead wood levels in natural beech forest stands in Europe.

4.2 Size class distribution

The data recorded for the Nat-Man study shows that the size class distribution of dead wood varied between countries, forest reserves within each country, and in some cases within particular forest reserves. The three main factors influencing the size class distribution were stand age, site productivity, local disturbance, and management history. Large logs were found on fertile sites that had mature stands. Here, trees had been able to grow large and produce large trunks when they fell. In several cases, individual large trees or parts of stands had been blown down prematurely by windstorms, sometimes in combination with other debilitating agents (e.g. drought, water logging, animal damages and fungi). Possibly, differences in the speed of decomposition also influenced the size class pattern. Large logs could be missing in stands, which were recovering after past felling. It was also possible that at some sites the sampling missed the few large logs that were present. In a few cases, the sites had extreme growth conditions, e.g. dry calcareous or sandy sites, where trees could not attain large diameters.

4.3 Decay class distribution

It is expected that a forest, which has remained unmanaged, would contain dead wood in all decay phases due to a biological decomposition of the dead wood. It is also expected that the dead wood in such a stand would be distributed in the various decay phases, so that the volume in the earlier decay phases is higher and vice versa in the later decay phases due to the physical breakdown of the matter. However, the decay phases are not constructed to reflect decay phases of equal length, but rather to be simple and correct to use under field conditions. When reading the figures, it is important to be aware of the fact that the transition phases naturally are of unequal length (preliminary results of WP7). Here it is found that decay class (DC) 1 and 2 are rather short - app. 10 years in total - whereas DC 3, 4 and 5 represent long-lasting phases – often more than 10 years each. Just as with the diameter class distribution, the absence of dead wood in the latest decay phases strongly indicates a break in the continuity of dead wood supplies, typically due to a combination of recent harvesting of large timber and dead wood removal.

5. Perspectives

The amount of dead wood is one of the major topics in the discussion on sustainable forest management. In the process of developing Pan-European indicators for sustainable forest

management (MCPFE meetings) dead wood is included as indicator 4.5 'Volume of standing deadwood and of lying deadwood on forest and other wooded land classified by forest type' (MCPFE 2002). This raises the important question 'What is the amount of dead wood in our natural forest ecosystems?'

6. Acknowledgements

Thanks to Erzsébet Szurdoki, László Gálhidy, Anne Maren Ingemann Madsen, Jacob Heilmann-Clausen, Jaris Bigler, Thomas Vrska, Peter Meyer, and Ruben Walleyn for help with fieldwork and unpublished data.

7. References

- Andersson, L.I. and Hytteborn, H. 1991. Bryophytes and decaying wood a comparison between managed and natural forest. Holarctic Ecology 14: 121-130.
- Batelka, J. 1975. Porostní struktura a prirozená obnova pralesovité rezervace Klucí. Lesnictví 21: 767-791.
- De Keersmaeker L., Baete H., Van de Kerckhove P., Christiaens B., Esprit M., & Vandekerkhove K. 2002.
 Bosreservaat Kersselaerspleyn. Monitoringrapport. Monitoring van de vegetatie en de dendrometrische gegevens in de kernvlakte en de steekproefcirkels. Rapport IBW Bb 2002.002, 210 p. In press.
- Debeljak, M. 1999. Mrtvo drevje v pragozdu Pecka (Dead trees in the virgin forest of Pecka) V: Zbornik gozdarstva in lesarstva. Št. 59:5-31.
- Emborg, J., Christensen, M. & Heilmann-Clausen, J. 2000. The structural dynamics of Suserup Skov, a nearnatural temperate deciduous forest in Denmark. Forest Ecology and Management 126: 173-189
- Green, P. & Peterken, G.F. 1997. Variation in the amount of dead wood in the woodlands of the Lower Wye Valley, UK in relation to the intensity of management. Forest Ecology and Management 98:229-238.
- Hanke, U. 1998. Vegetation und Bestandesstruktur im Bannwald Napf, Südschwarzwald. Mitteilungen der Forstlichen Versuchs- und Forschungsanstalt, Baden-Württemberg. Heft 202. 50 pp.
- Harmon, M.E., Franklin, J.F., Swanson, F.J., Sollins, P., Gregory, S.V., Lattin, J.D., Anderson, N.H., Cline, S.P., Aumen, N.G., Sedell, J.R., Lienkaemper, G.W., Cromack, K. and Cummins, K.W. 1986.

Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133-276.

- Harmon, M.E. 2001. Moving towards a new paradigm for woody detritus management. Ecological Bulletins 49: 269-278.
- Hartman, T. 1987. Gozdni rezervati Slovenije Pragozd Rajhenavski Rog. Ljubljana, Univerza Edvarda Kardelja v Ljubljani, Vdo Biotehniška fakulteta. 89. 80 pp.
- Heilmann-Clausen, J. 2001: A gradient analysis of communities of macrofungi and slime moulds on decaying beech logs. Mycological research 105(5): 575-596.
- Heliövaara, K. and Väisänen, R. 1984 Effects of modern forestry on northwestern European forest invertebrates: a synthesis. *Acta Forestalia Fennica* 189, 1-29.
- Heupel, M. 2002. Naturwaldforschung im Saarland am Beispiel der Naturwaldzelle Hoxfels. Berichte des Forschungszentrums Waldökosysteme. Reihe B, 67. 182 pp.
- Hocke, R. 1996. Niddahänge östlich Rudingshain Waldkundliche Untersuchungen. Naturwaldreservate in Hessen 5/1. Mitteilungen der Hessischen Landesforstverwaltung, Band 31. 191 pp.
- Hodge, S.J. and Peterken, G.F. 1998 Deadwood in British forests: priorities and a strategy. *Forestry* **71**, 99-112.
- Humphrey,J.W.; Davey,S.; Peace,A.J.; Ferris,R; Harding,K. 2002. Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biological Conservation 107: 165-180.
- Jaworski, A. and Skrzyszewski, J. 1995. Budowa, struktura i dynamika drzewosranów Dolnoreglowych o charakterze pierwotnym w rezerwacie Lopuszna. Acta Agraria et Silvestria.Series Silvestris 33:3-37.
- Jaworski, A., Pach, M., & Skrzyszewski, J. 1995. Budowa i struktura drzewostanów z udzialem buka i jawora w kompleksie lesnym Moczarne oraz pod Rabia Skala (Bieszczady). Acta Agraria et Silvestria.Series Silvestris 33:39-73.
- Jaworski, A., Podlaski, R. & Waga, T. 1999. Budowa i struktura drzewostanow o charakterze pierwotnym w rezerwacie Swiety Krzyz (Swietokrzyski park narodowy). Acta Agraria et Silvestria.Series Silvestris 37:27-51.
- Jože, P., Perušek, M. and Kos, I., 1997. Biotska raznolikost gozdnate krajine z osnovami ekologije in delovanja ekosistema - Ljubljana : Zavod za gozdove Slovenije : Zveza gozdarskih društev Slovenije, Gozdarska založba.
- Jonsson, B.G. 2000. Availability of coarse woody debris in a boreal old-growth Picea abies forest. Journal of Vegetation Science 11: 51-56.
- Kirby, K.J. and Drake, C.M. 1993 *Dead Wood Matters: The Ecology and Conservation of Saproxylic Invertebrates in Britain.* English Nature Science No.7, Peterborough.

- Kirby, K.J., Reid, C.M., Thomas, R.C. & Goldsmith, F.B. 1998. Preliminary estimates of fallen dead wood and standing dead trees in managed and unmanaged forests in Britain. Journal of Applied Ecology 35, 148-155.
- Kölbel, M. 1999. Totholz in Naturwaldreservaten und Urwäldern. LWF aktuel 'Totes Holz lebend(ig)er Wald. 18:2-5.
- Koop, H. & Hilgen, P. 1987. Forest dynamics and regeneration mosaic shifts in unexploited beech (Fagus sylvatica) stands at Fontainebleau (France). Forest Ecology and Management. 20:135-150.
- Korpel S. 1997. Totholz in Naturwäldern und Konsequenzen für Naturschutz und Forstwirtschaft. Forst und Holz 52(21):619-624.
- Korpel, S. 1992. Ergebnisse der Urwaldforschung für die Waldwirtschaft im Buchen-Oekosystem. Allg.Forst-u.J.-Ztg. 21, s. 1148-1152.
- Kovac, J. 1999. Zgradba pragozdnega ostanka Bukov vrh (Structure of Virgin Forest Residue Bukov Vrh). Gozdarski vestnik - Let. 57 (5-6): 227-236.
- Leibundgut, H. 1982. Europäische Urwälder der Bergstufe. Dargestellt für Forstleute. Naturwissenschafter und Freunde des Waldes. Verlag Paul Haupt. 195 pp.
- Lesica, P., McCune, B., Cooper, S.V. and Hong, W.S. 1991. Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. Canadian Journal of Botany 69: 1745-1755.
- Mayer, H. & Neumann, M. 1981: Struktureller und entwicklungsdynamischer Vergleich der Fichten-Tannen-Buchen-Urwälder Rothwald/Niederösterreich und Corkova Uvala/Kroatien. Forstwissenschaftliches Centralblatt 100:111-132
- Mayer, H. & Reimoser, F. 1978: Die auswirkungen des Ulmensterben im Buchen-Naturwaldreservat Dobra (Niederösterreichisches Waldviertel). Forstwissenschaftliches Centralblatt 97(6):314-321.
- MCPFE 2002. Improved pan-European indicators for sustainable forest management, as adopted by the MCPFE Expert Level Meeting 7-8 October 2002, Vienna, Austria.
- Meyer, P. 1999: Totholzuntersuchungen in nordwestdeutschen Naturwäldern: Metodik und erste Ergebnisse. Forstwissenschaftliches Centralblatt 118:167-180.
- Mikusinski, G. and Angelstam, P. 1997. European woodpeckers and anthropogenic habitat change: a review. Vogelwelt 118: 277-283.
- Mountford, E P. 2002. Fallen dead wood levels in the near-natural beech forest at La Tillaie reserve, Fontainebleu, France. Forestry. Research note 75(2): 203-208.
- Mountford, E.P. & Peterken, G.F. 2000. Natural developments at Scords Wood, Toy's Hill, Kent, since the Great Storm of October 1987. English Nature Research Report No. 346. English Nature, Peterborough.

- Mountford, E.P., Peterken, G.F., Edwards, P.J. & Manners, J.G. 1999. Long-term change in growth, mortality and regeneration of trees in Denny Wood, an old-growth wood-pasture in the New Forest (UK). Perspectives in Plant Ecology, Evolution and Systematics 2: 223-272.
- Odehnalová, P. 2001. Dynamika lesních spolecenstev v prírodní rezervaci V Klucí. Ms. Depon. In: Library of Mendel's Agricultural and Forestry University Brno: 90 pp.
- Ódor, P. and Standovár, T. 2001. Richness of bryophyte vegetation in a near-natural and managed beech stands: The effects of management-induced differences in dead wood. Ecological Bulletins 49: 219-229.
- Ódor, P. and van Hees, A.F.M. in press. Preferences of dead wood inhabiting bryophytes to decay phase, log size and habitat types in Hungarian beech forests. Journal of Bryology.
- Prusa, E. 1982. Kurzgefasste Ergebnisse von Untersuchungen einiger Urwaldbestände in Böhmen und Mähren. In Mayer, H. Urwald-Symposium Wien 1982. p. 81-92
- Prusa, E. 1985. Die böhmischen und mährischen Urwälder ihre Struktur und Ökologie. Verlag der Tschechoslowakischen Akademie der Wissenschaften, Prag, 578 pp.
- Samuelsson, J., Gustafsson, L. and Ingelög, T. 1994 *Dying and Dead Trees: A Review of Their Importance for Biodiversity*. Swedish Threatened Species Unit, Uppsala.
- Sandström, U. 1992. Cavities in trees: their occurrence, formation and importance for hole-nesting birds in relation to silvicultural practise. PhD thesis, Swedish University of Agricultural Sciences, Department of Wildlife Ecology, Uppsala.
- Saniga, M. & Schütz, J. P. 2001a. Dynamics of changes in dead wood share in selected beech virgin forests in Slovakia within their development cycle. Journal of Forest Science 47(12): 557-565.
- Saniga, M. & Schütz, J.P. 2001b: Dynamik des Totholzes in zwei gemischten Urwäldern der Westkarpaten im pflanzengeographischen Bereich der Tannen-Buchen- und der Buchenwälder in verschiedenen Entwicklungsstadien. Schweiz. Z. Forstwes. 152(10):407-416.
- Saniga, M. 1999. Struktúra, produkcné pomery a regeneracné procesy Badínskeho pralesa (Structure, production conditions and regenerative processes in the Badín virgin forest). Journal of Forest Science 45(3): 121-130.
- Schmaltz, J. & Lange, A. 1999. Untersuchungen in der Zerfalls- und Verjüngungsphase eines Buchennaturwaldes auf der Insel Vilm. Forstarchiv 70:66-73.
- Siitonen, J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecological Bulletins 49: 11-42.
- Sippola, A.L. and Renvall, P. 1999. Wood-decomposing fungi and seed-tree cutting: A 40-year perspective. Forest Ecology and Management 115: 183-201.
- Szwagrzyk, J., Szewczyk J., & Bodziarczyk, J. 1995. Structure of forest stand in the Zarnówka reserve of the Babia Góra national park. Folia Forestalia Polonica. Series A. 37:111-123.

- Söderström, L. 1988. The occurence of epxylic bryophyte and lichen species in an old natural and a managed forest stand in Northeast Sweden. Biological Conservation 45: 169-178.
- Tabaku, V. & Meyer, P. 1999. Lückenmuster albanischer und mitteleuropäischer Buchenwälder unterschiedlicher Nutzungsintensität. Forstarchiv 70(3):87-97.
- Van Hees, A., Christensen, M., Odor, P., Standovar, T., Piltaver, A., Verkamp, M. and others. NatMan WP6 - Protocol for the study of the vegetation on beech CWD.

Vrska, T. 1998. Prales Salajka po 20 letech (1974-1994). Lesnictví-Forestry 44: 153-181.

- Vrska, T., Hort, L., Odehnalova, P. & Adam, D. 1999. Prales Zákova Hora po 21 letech (1974-1995)
 (Zákova hora virgin forest after 21 years (1974-1995)). Journal of Forest Science 45(9): 392-418.
- Vrska, T., Hort, L., Odehnalova, P. & Adam, D. 2000. Prales Polom po 22 letech (1973-1995) (Polom virgin forest after 22 years (1973-1995)). Journal of Forest Science 46(4): 151-178.
- Vrska, T., Hort, L., Odehnalova, P., Adam, D. & Horal, D. 2001a. The Milesice virgin forest after 24 years (1972-1996). Journal of Forest Science 47(6): 255-276.
- Vrska, T., Hort, L., Odehnalova, P., Adam, D. & Horal, D. 2001d. The Razula virgin forest after 23 years (1972-1995). Journal of Forest Science 47(1): 15-37.
- Vrska, T., Hort, L., Odehnalova, P., Horal, D. & Adam, D. 2001b. The Boubín virgin forest after 24 years (1972-1996) development of tree layer. Journal of Forest Science 47(10): 439-459.
- Warren W. G. & Olsen, P. F. 1964. A line intersect technique for assessing logging waste. Forest Science 10 (3):267-276.

Appendix A

Image: Provide and antipage: Provide antipa	Site name	Country	Year	Site	Latitude	Longitude	Altitude	Main	Living	Minimum	Snag &	Minimum	Fallen	Minimum	All	Dead/living	Reference/recorders
Series Lee Series Series <th></th> <th></th> <th>recorded</th> <th>area</th> <th>Ν</th> <th>Е</th> <th>(m)</th> <th>tree</th> <th>tree</th> <th>dbh</th> <th>standing</th> <th>dbh</th> <th>log</th> <th>dbh</th> <th>CWD</th> <th>volume (%)</th> <th></th>			recorded	area	Ν	Е	(m)	tree	tree	dbh	standing	dbh	log	dbh	CWD	volume (%)	
Stroken Reserve DK 200 25 55.7 12.7 20.2 FK, 0 400 601 200 10.4 5.00 40.0 2.00 10.0				(ha)				species	volume	recorded	dead	recorded	volume	recorded	volume		
Image: Proprint series Image: Proprint series <thimage: proproprint="" series<="" th=""> Image: Proprint serie</thimage:>									(m3/ha	(<i>cm</i>)	trees	(<i>cm</i>)	(m ³ /	(cm)	(m3 -1)		
Strodun Reserve DK 2001 25 5.97 12.27 20.25 Fu, Qu 400 alt 5 cm 104 5 cm 168 23% NAT-MAN results Suscrup Skov DK 2001 16.6 55.37 11.55 10.30 Fa all 4 or 9 5 cm 10.9 5 cm 10.8 22.3% NAT-MAN results Knagerne DK 2001 5.4 5.13 9.53 70.90 Fa all 4 or 5 cm 5 cm 10.5 5 cm 74 37% NAT-MAN results Mark Kinteskko DK 2001 2.5 5.9.68 1.5.0 Fa, Fa - 6 6 3 cm 13 5 cm 7.4 37% NAT-MAN results Deadls Mood GB 1996 2.5 5.0.80 1.50 Fa, Fa - - 1 1 cm 201 5 cm 7.4 7.5% vartating results Deadls Mood GB 1996 2.5 5.0.80<)		volume (m3/ha)		ha)				
Suscrup Slow DK DK S.5.7 I.1.55 I.5.7 PL0 PL0 P.0	Strødam Reserve	DK	2001	25	55,97	12,27	20-25	Fa, Qu	490	all	39	5 cm	104	5 cm	143	29%	NAT-MAN results
Kagerie DK Colo FR. U FR. U All 47 Colo Colo <th< th=""><th>Suserup Skov</th><th>DK</th><th>2001</th><th>10,6</th><th>55,37</th><th>11,55</th><th>10-30</th><th>Fa,Qu,</th><th>674</th><th>3 cm</th><th>9</th><th>5 cm</th><th>159</th><th>5 cm</th><th>168</th><th>23%</th><th>NAT-MAN results</th></th<>	Suserup Skov	DK	2001	10,6	55,37	11,55	10-30	Fa,Qu,	674	3 cm	9	5 cm	159	5 cm	168	23%	NAT-MAN results
Knugerne DK 2001 5.6 5.6.13 9.53 70-90 Fa all 4.7 5.cm 5.8 5.cm 1.05 - NATAMA results Velling Skow DK 2001 24 5.6.0 9.00 6.5 1.00 Fa 201 all 2.2 5.cm 5.0 5.cm 7.4 37% NATAMA results Backholt Wood GB 1998 2.9 5.0.40 -4.00 Fa, - - 6.6 3.cm 113 5.cm 179 - NATAMA results Dendies Wood GB 1996 2.5 5.00 -1.50 Fa, Qu - - 1 5.cm 173 . NATAMA results Dendies Mood GB 2001 15.4 5.1.0 -0.09 Fa, Qu - - 1 5.cm 272 5.cm 273 . NATAMA results The Mens GB 2001 1.6 0.09 Fa, Qu - <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Fr, Ul</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								Fr, Ul									
Veling Nav DK 2001 24 50,04 9,20 50,04 9,20 80,04 9,20 10 70 50 50 70	Knagerne	DK	2001	5,6	56,13	9,53	70-90	Fa		all	47	5 cm	58	5 cm	105	-	NAT-MAN results
Main Shintekov DK 2001 25 3-490 12.54 80-10 Fa 201 3 all 25 5 cm 50 5 cm 74 57% MAT-MAN results Denkihi Wood GB 2000 650 51.80 2-2.20 Fa, F - - - - 66 3 cm 13 3 cm 17 - MAT-MAN results Dendies Wood GB 1996 25 50.80 -1.50 Fa, Ft - - 66 3 cm 113 3 cm 179 - MAT-MAN results Ridge Hanger GB 2001 20 51.00 -1.00 Fa, Fr - 1 5 cm 271 5 cm MAT-MAN results The Mess GB 2001 154 51.00 -0.50 Fa, Fr - - - - - MAT-MAN results Lady Park Wood I (old GB 1995 35 51.80 -2.70 Fa, Fr - -	Velling Skov	DK	2001	24	56,04	9,50	50-100	Fa	349	all	22	5 cm	70	5 cm	92	26%	NAT-MAN results
Buckhol Wood GB 200 650 51,80 -2,20 $ r_{1} r_{1} r_{1} r_{2} $ - 3 3 cm 3 cm 6 - NAT-MAN results Dendle Wood GB 1998 25 50,40 -4,00 Qu_{c} S - 66 3 cm 113 5 cm 179 - NAT-MAN results Denay Inclosure GB 1996 25 50,00 -1.00 Fa, Qu - - 1 5 cm 272 5 cm 273 - NAT-MAN results The Mens GB 2001 154 51,00 -0.00 Fa, Pr - - 28 6 cm 88 5 cm 115 - NAT-MAN results The Mens GB 1999 154 51,00 -0.00 Fa, Pr - - 15 5 cm 177 5 cm 201 - - - - - - - - - - - - - - <th>Møns Klinteskov</th> <th>DK</th> <th>2001</th> <th>25</th> <th>54,96</th> <th>12,54</th> <th>80-110</th> <th>Fa</th> <th>201</th> <th>all</th> <th>25</th> <th>5 cm</th> <th>50</th> <th>5 cm</th> <th>74</th> <th>37%</th> <th>NAT-MAN results</th>	Møns Klinteskov	DK	2001	25	54,96	12,54	80-110	Fa	201	all	25	5 cm	50	5 cm	74	37%	NAT-MAN results
Dendes Wood CH 198 29 50.40 -4.00 PR - - 66 3 cm 113 5 cm 119 - NA1-MAN Presidis Denny Inclosure GB 1996 25 50.80 -1.50 Fa. Qu - - 91 1 cm 201 5 cm 292 - Mounford et al. 1999 Ridge Hanger GB 2001 20 51.00 -1.00 Fa. Fr - - 1 5 cm 272 5 cm 273 - NAT-MAN Presults The Mens GB 2001 154 51.00 -0.00 Fa. Fr - - 31 5 cm 470 5 cm 501 - MAT-MAN Presults Toy Still GB 1995 35 51.80 -2.70 Fa. Fr. - - - - - - - - - - - - MAT-MAN Presults Lady Park Wood II GB 1991	Buckholt Wood	GB	2000	650	51,80	-2,20		Fa, Fr	-	-	3	3 cm	3	5 cm	6	-	NAT-MAN results
Demay Inclosure GB 196 25 50,80 -1,50 Fa, Qu - - 91 <i>I</i> cm 201 5 cm 292 - Mounford et al. pop Ridge Hanger GB 2001 20 51,00 -1,00 Fa, Ft - - 1 5 cm 272 5 cm 273 - NAT-MAN results The Mens GB 2001 154 51,00 -0,30 Fa, Be, Qu - - 286 6 cm 88 5 cm 101 - NAT-MAN results Lady Park Mood I lote growth) GB 1995 35 51,80 -2,70 Fa, Fr, Qu, Ti - - 2 5 cm 71 5 cm 99 - Grow A Pertense Gidg growth) GB 1995 35 51,80 -2,70 Fa, Fr, Qu, Ti - - 42 5 cm 81 5 cm 81 5 cm 112 - Grow A Peterken Gidg growth) GB 1995	Dendles Wood	GB	1998	29	50,40	-4,00		Fa, Qu, Cs	-	-	66	3 cm	113	5 cm	179	-	NAI-MAN results
Ridge Hanger GB 2001 200 1.00 Fa, Fr - - 1 5 cm 272 5 cm 273 - NAT-MAN results The Mens GB 2001 154 51.00 -0.00 Fa, Be, - - - 31 5 cm 470 5 cm 513 - NAT-MAN results Toy's Hill GB 1997 154 51.00 -0.00 Fa, Be, - - - 31 5 cm 470 5 cm 501 - MAT-MAN results Nar Hill GB 1995 35 51.00 -0.00 Fa, Fr, - - - 22 5 cm 77 5 cm 99 - Green & Peterken JOV (0.00) Lady Park Wool II GB 1995 35 51.80 -2.70 Fa, Fr, - - - 32 5 cm 81 5 cm 81 2 cm 6 cm 87 - Green & Peterken JOV (0.01 Cm) JOV (0.01 Cm) JOV (0.01 Cm) JOV (0.01 Cm)	Denny Inclosure	GB	1996	25	50,80	-1,50		Fa, Qu	-	-	91	1 cm	201	5 cm	292	-	Mountford et al. 1999
The Mens GB 2001 154 51,00 -0.50 Fa,Qu $ 28$ $6 cm$ 88 $5 cm$ 115 $-$ NAT-MAN results Toy's Hill GB 1999 154 51,30 0.30 Fa, Bc $ -$ <t< th=""><th>Ridge Hanger</th><th>GB</th><th>2001</th><th>20</th><th>51,00</th><th>-1,00</th><th></th><th>Fa, Fr</th><th>-</th><th>-</th><th>1</th><th>5 cm</th><th>272</th><th>5 cm</th><th>273</th><th>-</th><th>NAT-MAN results</th></t<>	Ridge Hanger	GB	2001	20	51,00	-1,00		Fa, Fr	-	-	1	5 cm	272	5 cm	273	-	NAT-MAN results
Toy's Hill GB 1999 154 51,30 0,30 Fa, Be, Qu - 31 5 cm 470 5 cm 501 - Mounford 2000 Nor Hill GB 1995 35 51,80 -2,70 Fa, Fr, Qu, Ti - <t< th=""><th>The Mens</th><th>GB</th><th>2001</th><th>154</th><th>51,00</th><th>-0,50</th><th></th><th>Fa, Qu</th><th>-</th><th>-</th><th>28</th><th>6 cm</th><th>88</th><th>5 cm</th><th>115</th><th>-</th><th>NAT-MAN results</th></t<>	The Mens	GB	2001	154	51,00	-0,50		Fa, Qu	-	-	28	6 cm	88	5 cm	115	-	NAT-MAN results
Noar Hill G B 7 51,10 -0.90 Fa, Fr. - - - - - - - NAT-MAN results Lady Park Wood I (old growth) GB 1995 35 51,80 -2.70 Fa, Fr. - - 22 5 cm 77 5 cm 99 - Green & Peterken (997 Lady Park Wood II GB 1995 35 51,80 -2.70 Fa, Fr. Qu, Ti - - 32 5 cm 81 5 cm 112 - Green & Peterken (997 Lady Park Wood III (old-growth) GB 1995 35 51,80 -2.70 Fa, Fr. Qu, Ti - - 42 5 cm 46 5 cm 87 - - Green & Peterken (997 Lady Park Wood V & Cod Idely rowth GB 1995 35 51,60 2.70 Fa, Fr. Qu, Ti - - 11 5 cm 15 5 cm 199 7 Green & Peterken (997 Coed Idu-Weir GB 1994	Toy's Hill	GB	1999	154	51,30	0,30		Fa, Be, Ou	-	-	31	5 cm	470	5 cm	501	-	Mountford 2000
Lady Park Wood I (old- growth) GB 1995 35 51.80 -2.70 Fa, F. Qu, Tr Qu, Tr $ -2$ 5 cm 77 5 cm 99 $-$ Green & Peterken 1997 Lady Park Wood II (old-growth) GB 1995 35 51.80 -2.70 $Fa, Fr, Out, Ti 32 5 cm 81 5 cm 112 Green & Peterken1997 Lady Park Wood III(old-growth) GB 1995 35 51.80 -2.70 Fa, Fr, Out, Ti 42 5 cm 46 5 cm 35 Green & Peterken1997 Lady Park Wood V GB 1995 35 51.80 -2.70 Fa, Fr, Out, Ti 20 5 cm 15 5 cm 35 Green & Peterken1997 Code Ithel-Weir GB 1994 ? 51.60 2.70 Fa, Qu 312 5 cm 21 10 cm 18 10 cm 32 Green & Peterken1$	Noar Hill	G B		7	51,10	-0,90		Fa, Fr	-	-	-	-	-	-	-	-	NAT-MAN results
growth) res res res Qu, Ti res	Lady Park Wood I (old-	GB	1995	35	51,80	-2,70		Fa, Fr,	-	-	22	5 cm	77	5 cm	99	-	Green & Peterken
Lady Park Wood II GB 1995 35 51,80 -2.70 Fa, Fr, 0.7 $ -32$ $5cm$ 81 $5cm$ 112 $ Green \& Peterken$ (old-growth) GB 1995 35 51.80 -2.70 $Fa, Fr, 0.00000000000000000000000000000000000$	growth)							Qu, Ti									1997
Lady Park Wood III (old-growth) GB 1995 35 51,80 $-2,70$ $Fa, Fr.$ Qu, Ti $ 42$ $5cm$ 46 $5cm$ 87 $ Green & Peterken1999$ Lady Park Wood V& (old-growth) GB 1995 35 $51,80$ $-2,70$ $Fa, Fr.$ Qu, Ti $ 20$ $5cm$ 15 $5cm$ 87 $ Green & Peterken1999$ Cood Ithel-Weir GB 1994 ? $51,60$ $2,70$ $Fa, Fr.Qu, Ti$ $ 20$ $5cm$ 15 $5cm$ 35 $ Green & Peterken1997$ Cood Ithel-Weir GB 1994 ? $51,60$ $2,70$ Fa, Fu $ 11$ $5cm$ 15 $5cm$ 32 $ Green & Peterken1997$ Pipebrandje NL 1999 36 $52,25$ $5,72$ 50 Fa, Qu 312 $5cm$ 21 $10cm$ 18 $10cm$ 39 $12%$ $NAT-MAN results$ $20,cn$ $12%$ $12%$ $12%$ $12%$ <th< th=""><th>Lady Park Wood II (old-growth)</th><th>GB</th><th>1995</th><th>35</th><th>51,80</th><th>-2,70</th><th></th><th>Fa, Fr, Qu, Ti</th><th>-</th><th>-</th><th>32</th><th>5 cm</th><th>81</th><th>5 cm</th><th>112</th><th>-</th><th>Green & Peterken 1997</th></th<>	Lady Park Wood II (old-growth)	GB	1995	35	51,80	-2,70		Fa, Fr, Qu, Ti	-	-	32	5 cm	81	5 cm	112	-	Green & Peterken 1997
Conception Concept	Lady Park Wood III (old-growth)	GB	1995	35	51,80	-2,70		Fa, Fr, Ou Ti	-	-	42	5 cm	46	5 cm	87	-	Green & Peterken
Ar (durg) over filling for the filling for the filling	Lady Park Wood V &	GB	1995	35	51,80	-2,70		Fa, Fr,	-	-	20	5 cm	15	5 cm	35	-	Green & Peterken
Pipebrandje NL 1999 36 52,25 5,72 50 Fa, Qu 312 5cm 21 10 cm 18 10 cm 39 12% NAT-MAN results Zoinenwoud BE 2000 10,5 50,77 4.45 90 Fa 7.4 ? 19 7cm 120 7cm 139 17% De Keersmaeker et al. 2002 La Tillaie I FR 1982 34 48,43 2,68 140 Fa 253 5cm 68 10 cm 128 7cm 189 40% Koop & Hilgen 1987, Baren & Hilgen 1987 La Tillaie I FR 2000 36 48,43 2,68 140 Fa 253 5cm 68 10 cm 128 10 cm 196 77% NAT-MAN results La Tillaie I FR 2000 36 48,43 2,68 140 Fa, Qu 26 5cm 41 10 cm 91 10cm 131 50% NAT-MAN results 1987	Coed Ithel-Weir	GB	1994	?	51,60	2,70		Fa,	-	-	11	5 cm	11	5 cm	22	-	Green & Peterken
Hyperrandle NL 1999 36 52,23 5,72 30 Fa, Qu 512 5 cm 21 10 cm 11e 10 cm 13e 10 cm 39 12% NAT-MAN results Zoinenwoud BE 2000 10,5 50,77 4.45 90 Fa 794 ? 19 7 cm 120 7 cm 139 17% De Keersmaeker et al. 2002 La Tillaie I FR 1982 34 48,43 2,68 140 Fa 253 5 cm 68 10 cm 145 9,5 cm 189 40% Koop & Hilgen 1984 La Tillaie I FR 2000 36 48,43 2,68 140 Fa 253 5 cm 68 10 cm 145 9,5 cm 189 40% Koop & Hilgen 1984 La Tillaie I FR 1982 34 48,43 2,68 140 Fa, Qu 265 5 cm 41 10 cm 128 10 cm 131 50% NAT-MAN results La Tillaie II FR 1982 34 48,43 2,68	Dite shares die	NI	1000	26	52.25	5 72	50	Qu, Ii	210	5	21	10	10	10	20	120/	1997 NAT MAN nogular
Zoinel Word BE 2000 10,3 20,77 4,43 90 Fa 794 1 19 7 cm 120 7 cm 139 17% De Retrimation 1 La Tillaie I FR 1982 34 48,43 2,68 140 Fa, Qu 478 ? 44 9,5 cm 145 9,5 cm 189 40% Koop & Hilgen 1987, Baren & Hilgen 1987, Baren & Hilgen 1987, Baren & Hilgen 1984 La Tillaie I FR 2000 36 48,43 2,68 140 Fa 253 5 cm 68 10 cm 128 10 cm 196 77% MAT-MAN results La Tillaie II FR 2000 36 48,43 2,68 140 Fa, Qu 265 5 cm 648 10 cm 128 10 cm 131 50% MAT-MAN results La Tillaie II FR 2000 36 48,43 2,68 140 Fa, Qu 265 5 cm 41 10 cm 91 10 cm 131 50% MAT-MAN results Vilm N DE 1997 20 54,32 </th <th>Pijpebrandje</th> <th>NL DE</th> <th>2000</th> <th>10.5</th> <th>50.77</th> <th>3,72</th> <th>30</th> <th>Fa, Qu</th> <th>704</th> <th>3 Cm</th> <th>21</th> <th>10 cm</th> <th>10</th> <th>10 cm</th> <th>120</th> <th>12%</th> <th>NAT-MAN results</th>	Pijpebrandje	NL DE	2000	10.5	50.77	3,72	30	Fa, Qu	704	3 Cm	21	10 cm	10	10 cm	120	12%	NAT-MAN results
La Tillaie I FR 1982 34 48,43 2,68 140 Fa, Qu 478 ? 44 9,5 cm 145 9,5 cm 189 40% Koop & Hilgen 1987, Baren & Hilgen 1984 La Tillaie I FR 2000 36 48,43 2,68 140 Fa 253 5 cm 68 10 cm 128 10 cm 196 77% NAT-MAN results La Tillaie II FR 1982 34 48,43 2,68 140 Fa, Fr 397 ? 28 9,5 cm 92 9,5 cm 120 30% Koop & Hilgen 1987, Baren & Hilgen 1984 La Tillaie II FR 1982 34 48,43 2,68 140 Fa, Qu 265 5 cm 41 10 cm 91 10 cm 131 50% NAT-MAN results La Tillaie II FR 2000 36 48,43 2,68 140 Fa, Qu 265 5 cm 41 10 cm 91 10 cm 131 50% NAT-MAN results Vilm N DE 1997 20 54,32 13,53	Zomenwoud	BE	2000	10,5	50,77	4,45	90	Га	/94	-	19	7 Cm	120	7 Cm	139	1 / 70	al. 2002
La Tillaie I FR 2000 36 48,43 2,68 140 Fa 253 5 cm 68 10 cm 128 10 cm 196 77% NAT-MAN results La Tillaie II FR 1982 34 48,43 2,68 140 Fa, Fr 397 ? 28 9,5 cm 92 9,5 cm 120 30% Koop and Hilgen 1987 La Tillaie II FR 2000 36 48,43 2,68 140 Fa, Fr 397 ? 28 9,5 cm 92 9,5 cm 120 30% Koop and Hilgen 1987 La Tillaie II FR 2000 36 48,43 2,68 140 Fa, Qu 265 5 cm 41 10 cm 91 10 cm 131 50% NAT-MAN results Vilm N DE 1997 20 54,32 13,53 2-10 Fa, Qu, Ac, Ca 501 7 cm 433 7 cm 106 7 cm 149 27% Schmaltz & Lange 1999 Heillige Hallen DE 1997 25,6 52,20 13,25 120-140 <th>La Tillaie I</th> <th>FR</th> <th>1982</th> <th>34</th> <th>48,43</th> <th>2,68</th> <th>140</th> <th>Fa, Qu</th> <th>478</th> <th>?</th> <th>44</th> <th>9,5 cm</th> <th>145</th> <th>9,5 cm</th> <th>189</th> <th>40%</th> <th>Koop & Hilgen 1987, Baren & Hilgen 1984</th>	La Tillaie I	FR	1982	34	48,43	2,68	140	Fa, Qu	478	?	44	9,5 cm	145	9,5 cm	189	40%	Koop & Hilgen 1987, Baren & Hilgen 1984
La Tillaie II FR 1982 34 48,43 2,68 140 Fa, Fr 397 ? 28 9,5 cm 92 9,5 cm 120 30% Koop and Hilgen 1987 La Tillaie II FR 2000 36 48,43 2,68 140 Fa, Qu 265 5 cm 41 10 cm 91 10 cm 131 50% NAT-MAN results Vilm N DE 1997 20 54,32 13,53 2-10 Fa, Qu Ac, Ca 561 7 cm 43 7 cm 106 7 cm 149 27% Schmaltz & Lange 1999 Heillige Hallen DE 1997 25,6 52,20 13,25 120-140 Fa 507 35 cm 88 35 cm 97 20 cm 185 36% Tabaku & Meyer 1999 Heillige Hallen DE 1997 25,5 51,75 10,08 370-420 Fa, Fr, Ac 576 7 cm 55 7 cm 16 7 cm 21 4% Meyer 1999 and Meyer pers, comm.	La Tillaie I	FR	2000	36	48,43	2,68	140	Fa	253	5 cm	68	10 cm	128	10 cm	196	77%	NAT-MAN results
La Tillaie II FR 2000 36 48,43 2,68 140 Fa, Qu 265 5 cm 41 10 cm 91 10 cm 131 50% NAT-MAN results Vilm N DE 1997 20 54,32 13,53 2-10 Fa, Qu 561 7 cm 43 7 cm 106 7 cm 149 27% Schmaltz & Lange 1999 Heilige Hallen DE 1997 25,6 52,20 13,25 120-140 Fa 507 35 cm 88 35 cm 97 20 cm 185 36% Tabaku & Meyer 1999 Hünstollen DE 1996 55,5 51,75 10,08 370-420 Fa, Fr, 576 7 cm 5 7 cm 16 7 cm 21 4% Meyer 1999 and Meyer pers, comm,	La Tillaie II	FR	1982	34	48,43	2,68	140	Fa, Fr	397	?	28	9,5 cm	92	9,5 cm	120	30%	Koop and Hilgen 1987
Vilm N DE 1997 20 54,32 13,53 2-10 Fa,Qu, Ac, Ca 561 7 cm 43 7 cm 106 7 cm 149 27% Schmaltz & Lange 1999 Heillige Hallen DE 1997 25,6 52,20 13,25 120-140 Fa 507 35 cm 88 35 cm 97 20 cm 185 36% Tabaku & Meyer 1999 Hünstollen DE 1996 55,5 51,75 10,08 370-420 Fa, Fr, 576 7 cm 55 7 cm 16 7 cm 21 4% Meyer 1999 and Meyer pers, comm,	La Tillaie II	FR	2000	36	48,43	2,68	140	Fa, Qu	265	5 cm	41	10 cm	91	10 cm	131	50%	NAT-MAN results
Heillige Hallen DE 1997 25,6 52,20 13,25 120-140 Fa 507 35 cm 88 35 cm 97 20 cm 185 36% Tabaku & Meyer 1999 Hünstollen DE 1996 55,5 51,75 10,08 370-420 Fa, Fr, Acc 576 7 cm 5 7 cm 16 7 cm 21 4% Meyer 1999 and Meyer pers, comm.	Vilm N	DE	1997	20	54,32	13,53	2-10	Fa,Qu, Ac, Ca	561	7 cm	43	7 cm	106	7 cm	149	27%	Schmaltz & Lange 1999
Hünstollen DE 1996 55,5 51,75 10,08 370-420 Fa, Fr, 576 7 cm 5 7 cm 16 7 cm 21 4% Meyer 1999 and Meyer pers, comm.	Heillige Hallen	DE	1997	25,6	52,20	13,25	120-140	Fa	507	35 cm	88	35 cm	97	20 cm	185	36%	Tabaku & Meyer 1999
	Hünstollen	DE	1996	55,5	51,75	10,08	370-420	Fa, Fr, Ac	576	7 cm	5	7 cm	16	7 cm	21	4%	Meyer 1999 and Meyer pers. comm

Site name	Country	Year	Site	Latitude	Longitude	Altitude	Main	Living	Minimum	Snag &	Minimum	Fallen	Minimum	All	Dead/living	Reference/recorders
		recorded	area	Ν	E	(m)	tree	tree	dbh	standing	dbh	log	dbh	CWD	volume (%)	
			(ha)				species	volume	recorded	dead	recorded	volume	recorded	volume		
								(m3/ha	(<i>cm</i>)	trees	(<i>cm</i>)	(m ³ /ha	(<i>cm</i>)	(m3/ha		
)		volume))		
									_	(m3/ha)			_			
Lüssberg	DE	1997	29,1	52,85	10,25	101-150	Fa, Qu	375	7 cm	2	7 cm	7	7 cm	9	3%	Meyer 1999 and
		100.0			10.70	100 -00	_									Meyer pers. comm.
Vogelherd	DE	1996	10,6	51,75	10,58	480-500	Fa	443	7 cm	3	7 cm	23	7 cm	27	6%	Meyer 1999 and
¥7.11 1 1	DE	100.0	265	51.75	10.42	200.250		(10	7	17		60	~		100/	Meyer pers. comm.
Konigsbuche	DE	1996	26,5	51,75	10,42	200-250	Fa,	612	/ cm	1/	/ cm	60	/ cm	//	13%	Meyer 1999 and
T al a	DE	1000	27.2	52.05	10.42	51 100	Qu, Pi	(07	7	1	7	40	7	41	<u>(0)</u>	Meyer pers. comm.
Lonn	DE	1990	57,5	52,95	10,42	51-100	га	087	7 CM	1	7 CM	40	7 Cm	41	0%	Meyer 1999 and Mayon pong. comm
Ronnwold Nonf	DE	1004	120.6			1250	Di Eo	192	a11	80	a112	21	a119	111	220/	Hanko 1008
Baillwaid Napi	DE	1994	139,0			1550	Γ1, Γa, Δh	465	un	00	un?	51	ans	111	2370	11unke 1990
Waldhaus	DE	1001	96.6	/0.85	10.48	370-445	Fa	480	2	6	2	8/	2	90	10%	Kölhel 1000
Platzer Kunne	DE	1991	24.2	50.22	9.98	570 445	Fa	595	. ?	23	. 2	34	. 2	57	10%	Kölhel 1999
Kalkherg	DE	1991	23.8	50,22	9.88		Fa	681	. ?	10	. 2	27	2	37	5%	Kölbel 1999
Hoher Knuck	DE	1991	109.2	49.95	9.40		Fa Ou	576	. ?	16	. ?	79	2	95	16%	Kölhel 1999
Schwarzwihrberg	DE	1991	24.4	49.35	12 37		Fa Pi	876	. ?	13	. ?	60	2	73	8%	Kölhel 1999
Niddahänge I	DE	1988	19.8	50.42	9.00	517-700	Fa Ac	542	>7 cm	4	>20 cm	32	>20 cm	36	7%	Hocke 1996
Thuumunge I	DL	1900	17,0	50,12	2,00	517 700	Fr	512	> / cm		> 20 cm	52	> 20 cm	50	170	Hoeke 1990
Niddahänge II	DE	1988	20.8	50.42	9.00	517-700	Fa. Fr.	599	>7 cm	4	>20 cm	26	>20 cm	30	5%	Hocke 1996
			- , -	/	- /		Ac					-				
Hoxfels	DE	1986	55	49,47	6,87	230-413	Fa	297	?	13	?	5	?	18	6%	Heupel 2002
Hoxfels	DE	2000	55	49,47	6,87	230-413	Fa	360	?	45	?	10	?	55	15%	Heupel 2002
Barbia Gora	PL	1992	35	49,57	19,55	920-	Fa,	553	>7 cm	196	>7 cm	141	>7 cm	337	61%	Szwagrzyk et al.
						1045	Ab, Pi									1995
Gorce NP, Lopuszna I	PL	1991	0,6	49,55	20,12	990-	Fa, Pi,	614	> 6 cm	44	>6/8 cm	135	?	179	29%	Jaworski et al. 1995
						1025	Ab									
Gorce NP, Lopuszna II	PL	1991	0,5	49,55	20,12	990-	Pi, Fa,	694	> 6 cm	98	>6/8 cm	93	?	191	28%	Jaworski et al. 1995
						1025	Ab									
Gorce NP, Lopuszna II	PL	1991	0,5	49,55	20,12	990-	Fa,	742	> 6 cm	71	>6/8 cm	61	?	132	18%	Jaworski et al. 1995
						1025	Ab, Pi		-				-			
Bieszczady Mts,	PL	c.1994	0,33	49,10	22,72	930-	Fa, Ac	545	>8 cm	12	>8 cm	51	>8 cm	62	11%	Jaworski et al. 1995b
Moczarne II	DY.	1004	0.05	10.10	22.52	1160		201	<u>^</u>	10		25	-	1.7	100/	
Bieszczady Mts,	PL	c.1994	0,25	49,10	22,72	930-	Ac, Fa	391	>8 cm	18	>8 cm	27	>8 cm	45	12%	Jaworski et al. 1995b
Moczarne I	DI	- 1004	0.25	40.10	22.72	020	Δ. Γ.	257	× 9	-		20	2.0	25	120/	Immenti et al. 1005k
Bieszczady Mits, Rabia	PL	c.1994	0,25	49,10	22,12	930-	Ас, Га	237	>0 cm	3	>8 cm	30	>8 cm	33	13%	Jaworski et al. 1995b
Swietekrzycki ND I	DI	1002	451	50.99	20.88	560 570	Eo Ab	521	> 9 am	100	> 8 am	105	> P arr	214	410/	Invorski et al. 1000
Swietokrzyski NF I Swietokrzyski ND II	PL DI	1992	451	50.88	20,00	560 570	Fa, AD	202	>0 Cml	109	>0 cm	103	>0 Cirl	214	41%	Jaworski et al. 1999
Swietokrzyski NP II Milosioo	rL CZ	1992	431	10,88	20,88	1070	Fa, AD	203	>0 CM	105	>0 CM	183	>0 CM	248 95	1/2%	Juworski et al. 1999
winesice		1972	9,03	48,98	15,85	1070-	гі, га, ль	4/0	10 cm	21	10 cm	58	10 cm	80	18%	vrska et al 2001a
		1				1143	AU			1						

Site name	Country	Year	Site	Latitude	Longitude	Altitude	Main	Living	Minimum	Snag &	Minimum	Fallen	Minimum	All	Dead/living	Reference/recorders
		recorded	area	Ν	E	(m)	tree	tree	dbh	standing	dbh	log	dbh	CWD	volume (%)	
			(na)				species	(m3/ha	(cm)	trees	(cm)	(m3/ha	(cm)	(m3/ha		
)	(0111)	volume	(0111))	(011))		
										(m3/ha)						
Milesice	CZ	1996	9,63	48,98	13,83	1070-	Pi, Fa,	567	10 cm	47	10 cm	91	10 cm	139	24%	Vrska et al 2001a
Bouhín	CZ	1996	46.62	48 97	13.80	930-	A0 Pi Fa	772	10 cm	67	10 cm	167	10 cm	234	30%	Vrska et al 2001h
Doubli	02	1770	10.02	10,57	15,00	1110	Ab	112	10 cm	07	10 cm	107	10 cm	231	5070	775ku cr ur 20010
Mionsí	CZ	1994	171,0	49,53	18,65	620-950	Fa, Ac,	590	10 cm	57	10 cm	98	10 cm	155	26%	Vrska et al 2000
Damila	67	1072	7	40.25	10.20	600 812	Ab	550	2	150	2	14	2	167	200/	Vanka at al 2001 d
Kazula	CZ	1972	25.52	49,55	10,30	000-812	га, Ab. Pi	330	2	132	2	14	2	107	50%	Vrska et al 2001a
Razula	CZ	1995	23.52	49,35	18,38	600-812	Fa,	592	?	65	?	144	?	209	35%	Vrska et al 2001d
							Ab, Pi									
Salajka	CZ	1994	21.86	49,40	18,42	715-815	Fa,	473	10 cm	80	10 cm	144	10 cm	224	47%	Vrska et al. 1998
Zakova hora	C7	197/	38.10	19.65	16.00	730-808	Ab, Pi Fa Pi	536	2		2		9	181	3/1%	Vrska et al. 1000
	CL	17/4	50,10	47,05	10,00	750-000	Ac	550	•		·		·	101	5470	VISKU EI UI. 1999
Zakova hora	CZ	1995	38,10	49,65	16,00	730-808	Fa, Pi,	580	?	30	?	103	?	133	23%	Vrska et al. 1999
7. 01	07	1075	07.70	40.67	14.70	705 005	Ac		10	10	10	70	10	107	100/	D 1002 1005
Zofin	CZ	1975	97,72	48,67	14,70	/35-825	Fa, Ab Pi	666	10 cm	49	10 cm	/8	10 cm	127	19%	Prusa 1982, 1985a
V Kluci	CZ	1973	??	49.32	15.52	635-680	Fa. Ul.	681	10 cm	46	10 cm	52	10 cm	98	14%	Batelka 1975
					· · · · · ·		Ac									
V Kluci	CZ	2000	??	49,32	15,52	635-680	Fa, Ac,	681	10 cm	49	10 cm	153	10 cm	201	30%	Odehnalova 2001
Dolom	67	1073	10.34	40.78	15 75	545 625	Fr Di Ea	545	9	51	9	77	9	128	24%	Vrska at al. 2000
roioili	CL	1975	19,54	49,70	15,75	545-025	Ab, Ac	545	-	51	-	,,	-	120	2470	VISKU EI UI. 2000
Polom	CZ	1995	19,34	49,78	15,75	545-625	Pi, Fa,	593	?	44	?	94	?	138	23%	Vrska et al. 2000
	~~~			10.00			Ac, Fr									
Kyjov	SK	1963	53.4	48,88	22,05	/30-/90	Fa, Ac, Er	550	7	33	all	52	all	86	16%	Saniga & Schütz
Kviov	SK	1973	53.4	48.88	22.05	730-790	Fa. Ac.	631	7	40	all	62	all	102	16%	Saniga & Schütz
	~			,	,		Fr									2001
Kyjov	SK	1983	53.4	48,88	22,05	730-790	Fa, Ac,	622	7	81	all	49	all	130	21%	Saniga & Schütz
Vator	CV.	1002	52.4	10 00	22.05	720 700	Fr Fa Aa	650	7	56	all	120	a11	104	200/	2001 Samiaa & Sahiita
кујоч	эк	1995	55.4	40,00	22,03	/30-/90	га, Ac, Fr	039	/	30	an	156	an	194	29%	2001
Rozok	SK	1979	67.1	48,98	22,63	610-650	Fa	716	6	24	all	84	all	108	15%	Saniga & Schütz
	~			10.15												2001
Rozok	SK	1989	67.1	48,98	22,63	610-650	Fa	778	6	33	all	157	all	190	24%	Saniga & Schütz
Rozok	SK	1999	67.1	48.98	22.63	610-650	Fa	816	6	33	all	115	all	148	18%	Saniga & Schütz
	511	1,,,,	07.1	10,20	22,00	010 050	1	010	U U	55		110		110	10/0	2001
Havesova	SK	1979	171.3	49,02	22,25	540-590	Fa	697	7	41	all	79	all	121	17%	Saniga & Schütz
																2001

Site name	Country	Year	Site	Latitude	Longitude	Altitude	Main	Living	Minimum	Snag &	Minimum	Fallen	Minimum	All	Dead/living	Reference/recorders
		recorded	area	Ν	E	( <b>m</b> )	tree	tree	dbh	standing	dbh	log	dbh	CWD	volume (%)	
			(ha)				species	volume	recorded	dead	recorded	volume	recorded	volume		
								(m3/na	( <i>cm</i> )	trees	( <i>cm</i> )	(m3/na	( <i>cm</i> )	(m3/na		
								)		(m3/ha)		)		)		
Havesova	SK	1989	171.3	49,02	22,25	540-590	Fa	705	7	33	all	86	all	119	17%	Saniga & Schütz 2001, Korpel 1997
Havesova	SK	1999	171.3	49,02	22,25	540-590	Fa	736	7	39	all	84	all	123	17%	Saniga & Schütz 2001
Dobroc	SK	1958	101,8 2	48,68	19,67	700- 1000	Ab, Fa, Pi	866	?	34	all	198	all	232	27%	Saniga & Schütz 2001b
Dobroc	SK	1978	101,8 2	48,68	19,67	700- 1000	Ab, Pi, Fa	727	?	84	all	197	all	281	39%	Saniga & Schütz 2001b, Korpel 1997
Dobroc	SK	1988	101,8 2	48,68	19,67	700- 1000	Pi, Ab, Fa	726	?	72	all	206	all	278	38%	Saniga & Schütz 2001b
Dobroc	SK	1998	101,8 2	48,68	19,67	700- 1000	Pi, Fa, Ab	741	?	79	all	227	all	306	41%	Saniga & Schütz 2001b
Stuzica 4	SK	1991	218	49,07	22,53	730-770	Fa, Qu	569	7	60	all	48	all	108	19%	Korpel 1997
Stuzica 5	SK	1991	442	49,07	22,53	790-830	Fa, Qu	647	7	60	all	48	all	108	17%	Korpel 1997
Sitno	SK	c.1991	45,49	48,42	18,98	760-790	Fa, Ac, Qu,	594	?	29	all	74	all	103	17%	Korpel 1997
Rastun	SK	c.1993	18,00	48,60	16,27	550-620	Fa, Qu, Ac	527	7	33	all	37	all	70	13%	Korpel 1992, Korpel 1997
Badin	SK	1957	30,70	48,67	19,00	710-770	Fa, Ab	745	?	34	all	172	all	173	23%	Saniga & Schütz 2001a
Badin	SK	1970	30,70	48,67	19,00	710-770	Fa, Ab, Ac	770	?	138	all	145	all	162	21%	Saniga & Schütz 2001a
Badin	SK	1977	30,70	48,67	19,00	710-770	Fa, Ab, Ac	753	?	124	all	150	all	156	21%	Saniga & Schütz 2001a
Badin	SK	1987	30,70	48,67	19,00	710-770	Fa, Ab, Ac	663	?	96	all	280	all	288	43%	Saniga & Schütz 2001a, Saniga 1999
Badin	SK	1997	30,70	48,67	19,00	710-770	Fa, Ab, Ac	627	?	50	all	273	all	286	46%	Saniga & Schütz 2001a, Saniga 1999
Rothwald	AU	1977	300	47,78	14,83	940- 1500	Fa, Ab, Pi	547	1 cm	106	1 cm	190	1 cm	296	54%	Mayer & Neumann 1981 ao.
Dobra	AU	1970	6	48,58	15,40	390-550	Fa, Ul, Ti, Ac	582	8 cm	-	?	-	?	45	8%	Mayer & Reimoser 1978
Bükk, Oserdő	HU	2001	59,3	48,05	20,43	800-900	Fa, Ac, Fr	765	2 cm	26	>2 cm	138	>10 cm	164	21%	NAT-MAN results
Kekes	HU	2002	54,8	47,87	20,00	750-950	Fa	454	2 cm	15	>2 cm	84	>10 cm	99	22%	NAT-MAN results
Alsohegy	HU	2002	112,8	48,55	20,70	470-550	Ca, Qu, Fa	284	2 cm	19	>2 cm	21	>10 cm	40	14%	NAT-MAN results
Perucica	BA	c.1978	786	43,27	18,75	1100- 1600	Ab, Fa, Pi	1095	all	100	all	-	all	100	9%	Leibundgut 1982
Rajhenaski Rog	SI	1985	51,3	45,66	15,02	850-960	Ab, Fa	813	5 cm	122	5 cm	16	5 cm	138	17%	Hartman 1987
Pecka	SI	1980	60,2	45,75	15,00	800-910	Ab, Fa	930	all	181	?	178	?	181	19%	Leibundgut 1982
Pecka	SI	1999	60,2	45,75	15,00	800-910	Fa, Ab	687	5 cm	291	5 cm	277	5 cm	568	83%	Debeljak 1999

Site name	Country	Year	Site	Latitude	Longitude	Altitude	Main	Living	Minimum	Snag &	Minimum	Fallen	Minimum	All	Dead/living	Reference/recorders
		recorded	area (ba)	Ν	E	( <b>m</b> )	tree	tree	dbh recorded	standing	dbh waaawdad	log	dbh maaamdad	CWD	volume (%)	
			(IIA)				species	(m3/ha	(cm)	trees	(cm)	(m3/ha	(cm)	(m3/ha		
								)	(0111)	volume	(011)	)	(011)	)		
										(m3/ha)						
Krokar	SI	c. 1996	72,8	45,54	14,78	850- 1190	Fa, Ab	634	?	-	?	-	?	69	11%	Joze 1997
Bukov Vrh	SI	1998	9,25	45,99	13,89	1200- 1300	Fa, Ab, Ac	525	5 cm	67	5 cm	25	?	92	18%	Kovac 1999
Strmec	SI	2001	15,55	45,62	14,82	900	Fa, Ab, Pi, Ac	660	10 cm	-	?	-	?	166	25%	NAT-MAN results
Mirdita	AL	1997	с. 3500	42,02	20,15	1370- 1430	Fa	560	7 cm	5	7 cm	35	20 cm	40	7%	Tabaku & Meyer 1999
Puka	AL	1997	с. 3500	42,02	20,15	1370- 1430	Fa, Ab	781	7 cm	9	7 cm	20	20 cm	30	4%	Tabaku & Meyer 1999
Rajca	AL	1997	c. 2000	41,23	20,12	1400- 1450	Fa	807	7 cm	25	7 cm	59	20 cm	83	10%	Tabaku & Meyer 1999