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CHAPTER 1

General Introduction

Decision support system is a term which covers a wide area of applications.
Monitoring tools such as, e.g., Madsen and Ruby (2000); Madsen (2000)
are examples of methods to produce and present information to the decision
maker. Simulation tools such as Stérk et al. (2000) and Lloyd et al. (1994) are
examples of tools that allow evaluation of different strategies or risk analysis.
Despite the obvious differences in these applications they essentially do the
same. Produce more information for the decision maker to include in her
considerations when determining a course of actions. This is one perception
of the term decision support.

Another way to perceive the concept of decision support is as a system
that based on available relevant information present an optimal policy to the
decision maker. Most applications of this type have addressed the animal
replacement problem (see Kristensen (1994) for a survey). The traditional
animal replacement problem regards a sow or a cow and her future successors.
But problems such as delivery of slaughter pigs and fattening of bulls are
essentially also animal replacement problems. Only the item considered for
replacement is a group of animals. While monitoring tools have been widely
adopted in livestock production, there has been some reluctance to accept the
replacement models. Nonetheless, as the discussion and results of Kristensen
(1993) emphasize, the value of such decision support systems for research
purposes is equally important.

The framework of Markov decision processes(Bellman, 1957) has formed
the theoretical foundation for the development of animal replacement prob-
lems. A Markov decision process is defined as a set of states (state space),
a finite set of actions, a state transition function, and a reward function. A
state is a description of the system (i.e., a sow, a cow or a batch of slaughter
pigs) that captures all information relevant to the problem at hand. Early
on it became clear that "all information relevant to the problem at hand"
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in the case of animal replacement problems is too much to handle efficiently
in the original framework, hence the concept of hierarchic Markov processes
was formulated in Kristensen (1988) to allow a decomposition of the state
space to reduce the computational difficulties. The hierarchic Markov pro-
cesses surfaced just as the computers started to get cheaper, bigger and
faster. This combination resulted in a series of animal replacement models,
which generally grew in terms of state space as the models were developed
to include more information relevant to the decision problem.

Although the models grew, they still shared the same basic property in-
herited from the original Markov decision processes: Actions were chosen,
carried out and rewarded within the time span between successive decision
stages. The traits included in an animal replacement problem are affected
by other management decisions, some of which not always fit this property.
As an example, vaccination of a batch of slaughter pigs is usually done at the
start of a new production period, but the effect remains throughout the en-
tire production period. The optimal policy for the daily operation within the
batch will(in general) differ between vaccinated and unvaccinated batches.
Hence we require simultaneous optimization of decisions at multiple time-
scales. The concept of multi-level hierarchic Markov processes(Kristensen
and Jgrgensen, 2000) has been developed for modeling such decisions. It al-
lows the modeling to progress from the original animal replacement problem
towards a decision complez, in which the original replacement decision plays
an important part, but other decisions are considered simultaneously.

When more decisions are included in the decision problem, solutions to
the old problems of modeling and state space reduction become as urgent as
ever. The Chapters 2 and 3 regards these problems. In Chapter 2 techniques
for temporal abstraction and state space representation are reviewed. The
ideas are assembled from different fields of research such as robot navigation
and discussed within the context of herd management. Chapter 3 develops a
decision support system for simultaneous optimization of decisions regarding
delivery of slaughter pigs and control of a respiratory disease.

The works in the previous paragraph concerns the structural or quali-
tative elements of decision support. In Chapter 4 estimation of the herd
specific parameters required by decision support systems, i.e., the quanti-
tative aspect of modeling, is addressed. Exemplified by estimation of farm
specific parameters for a model of the joint distribution of series of litter
sizes for individual sows. While animal replacement models usually are well
founded in terms structural representation, parameters are often chosen to
reflect the behavior of a "typical" herd. However, for practical application
of decision support system we need to consider whether these population
estimates of a typical herd are adequate for modeling the individual herds.
If not, then a robust method for obtaining herd specific estimates regardless
the quality of data is needed. Deploying a decision support system for, e.g.,
culling of sows based on production history, is meaningless, unless the model
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underlying the decision process reflect the reality of the farm.
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CHAPTER 2

Recent developments in Markov Decision
Processes and their application within
livestock decision support systems.

(Submitted for journal publication)

Nils Toft and Anders R. Kristensen

Abstract: The development of animal replacement problems
into livestock decision support systems which addresses the deci-
sion complex defined by the production system requires introduc-
tion of new techniques in the traditional Markov decision prob-
lem framework. The basic requirements are methods for handling
temporal abstraction, i.e., the simultaneous optimization of de-
cisions at multiple time scales, and techniques for state space
decomposition. In this study we review some of the techniques
developed for addressing these issues. We discuss the contribu-
tions with respect to their computational as well as modeling
perspectives using examples of livestock decision support sys-
tems.

2.1 Introduction

The theory of Markov Decision Processes (MDP) originated in Bellman
(1957) and has since then been applied to numerous applications within
livestock management. The advent of the hierarchic Markov Process(HMP)
(Kristensen, 1987) virtually exploded the size of the state space allowing the
decisions to be based on more and more information. One of the largest
models developed so far is the dairy cow replacement model by Houben
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et al. (1994) in which 6,821,724 unique states describes the conditions of a
cow through her life. Models prior to the above are surveyed in Kristensen
(1994). Since then applications such as optimal delivery of slaughter pigs
(Kure, 1997), heifer rearing (Mourits et al., 1999), bull fattening (Makulska
and Kristensen, 1999), experimental economics (Verstegen et al., 1998) and
epidemic disease control (Toft et al., 2000b) have been developed within the
MDP/HMP framework.

Previous studies have defined some features that render the animal re-
placement problem different from the industrial replacement problem (Kris-
tensen, 1994). The essence of these considerations can be attributed to the
difference between biological variation and mechanical precision as well as
the repetitive nature of livestock production. The variation between pre-
sumably identical animals is substantially larger than the variation between
machines of same brand. Hence the animal replacement problem needs to
describe more traits in order to account for more features of the animals in
question. This leads to models with very large state spaces as in the dairy
cow replacement problem mentioned above.

For the traits of these very large state spaces one can make a number
of observations. First, some traits evolve in a non-stochastic way, like, e.g.,
the age of an animal which tends to increase by the stage length until the
animal is replaced and the age reset. Second, some traits remain constant for
several decision periods, e.g., the milk yield of a cow in her previous lactation
will remain constant throughout the entire duration of the current lactation.
Third, not all traits are relevant to all decisions, i.e., the choice of boar for
mating a sow might depend only on her genetic merit and previous litter
size, while traits like age are ignored. Finally, we can observe that there are
actions which have an impact that last for several decision periods, i.e., the
choice of boar can be assumed to impact the value of the future litter, but
all decisions made from mating to farrowing can also potentially influence
the outcome.

In the previous paragraph we made an important, but hidden, assump-
tion. By introducing actions which are not directly replacement decisions
we progressed our context from the mere replacement problem towards the
concept of a livestock decision support system. The replacement problem
is still an important feature of any livestock decision support system. The
decision complex regarding other actions than that of replacement, however,
influence the traits which form the basis of the replacement problem, hence
the need for simultaneous optimization of decisions on different aspects of
production.

Thus, we can now identify two major issues to be addressed by a frame-
work for decision support within livestock management: the complexity,
hence size of the state space for the decision problem; and the simultaneous
optimization of decisions on multiple time scales. In this paper we present
some developments within the MDP framework which somehow address the
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questions raised here. The remainder of this paper progress as follows: First
we summarize the concepts and basic theory of Markov decision problems.
Then we present some examples typical to livestock decision support sys-
tems. Using these examples we introduce and discuss temporal abstraction
and factored representations. Finally we briefly discuss an example of deci-
sion networks to represent and solve partially observable decision problems.
The motivation for this example is to retract attention to possible benefits of
modeling the state space independently of the decision problem. In the final
discussion we try to devise a path for future research in the methodological
elements of livestock management decision support systems.

2.2 The basics of Markov decision processes

A Markov decision process can be defined as a tuple {S, A, 7(a, s), p(-|a, s)}
where S is a finite set of states, A; is a set of available actions at a given
state s, r() is a reward function and p() is a transition function. A state
is a description of the system which captures all the information available
and relevant to the problem at hand. The set of states will be referred to
as the state space of the decision problem. Observing a particular state s,
the decision maker may chose among a set of available decisions Ay, which
are carried out and rewarded (with reward r(s,a)) before the next stage to
which transition occur with probability p(|s,a).

The term Markov indicates that the choice of action only depends on
the present state of the system, i.e., all information relevant to the decision
maker must be contained in the current state.

A policy 7 is a set of rules which determines the course of actions to
be taken at each state. The consequence of adopting a certain policy is
that the decision maker receives a reward at each stage. To determine the
value of a policy we need to adopt some criteria of optimality. A criteria
with a reasonable economic interpretation is the maximization of expected
discounted future rewards where the current value of a reward received n
stages into the future is discounted by a factor A*(0 < A < 1).

A Markov decision problem(MDP) is a Markov decision process plus a
criteria of optimality. The walue of a policy m under the above criteria is
simply the sum of expected future discounted rewards obtained by following
7. Since this value depends on the initial state, we denote the value of 7 at
state s as Vi (s). A policy 7* is optimal, if V;«(s) > Vi (s), for all s € S and
all policies 7.

A particular useful method for determining the optimal policy and its
value is the policy iteration algorithm (Howard, 1960). It proceeds as follows:

The policy iteration algorithm

1. Let 7* be any policy on §
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2. While 7 # 7* do

(a) m=n*
(b) (Policy evaluation) For all s € S, calculate V;(s) by solving the
set of | S| linear equations:

Va(s) = R(s) + A > _ p(sjln(s),s)Va(s;), Vs€S (21
s;€S

(c) (Policy improvement) For all s; € S, if there is an action a € Aj;
such that

R(si) + A > plsjla, i) Vae(s5) > Vae(s;) (2.2)
sj€S

then 7*(s;) = a; otherwise 7*(s;) = 7(s;)
3. Return 7

This method is indeed very efficient and is guaranteed to produce an optimal
policy, however, solving a set of |S| equations will prove almost impossible
for large state spaces. The modified policy iteration algorithm (Puterman,
1994) use partial evaluation to determine an approximate solution to the set
of linear equations without actually solving the system.

The reason for discussing these results here is partly to establish a com-
mon foundation in terms of basic concepts and notation and partly to at-
tribute the ideas underlying the policy and modified policy iteration algo-
rithms, which have served as inspiration for most of the results presented in
the next sections.

Please recall that the algorithms presented here apply to the concept of
semi-Markov decision problems as well. If the choice of action and current
state influence when the next decision point occur, the transition probabil-
ities can be replaced by a discounted version. Consider the case where the
effect of choosing action a in state s € S is that the system evolves to the
new state j € S with probability p(j|a, s), using f(j|a, s) units of time. Ap-
plying the rate a > 0 which relates to the discount factor A as A = e™* we
can write the discounted transition q(jla,s) = e~®/Ula5)p(j|a,s). Replac-
ing the transition p(j|a, s) by q(jla, s) everywhere in the above results and
omitting explicit reference to A render the results valid for this definition of
semi-MDP, see, e.g., Puterman (1994) for elaboration.

2.3 Examples

In order to illustrate the shortcomings of traditional MDP theory and em-
phasize the potential of the proposed extensions we use examples from within
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the herd management community. Our primary examples will be those of
Houben et al. (1994) and Toft et al. (2000b) which we shall discuss briefly
below. However, to emphasize certain points we introduce further examples
as our paper unfolds. Since our objective is to analyze the potential uti-
lization of techniques for state space decomposition/reduction and temporal
abstraction of actions our presentation of the examples will focus on these
aspects, and ignore the more technical features emerging from the specific
context.

2.3.1 Optimal replacement of mastitic dairy cows

The study presented in Houben et al. (1994) was initiated in order to in-
clude mastitis in the replacement decision in dairy cows. The study reports
that the main reasons for culling cows are poor production and appearance
(35%), poor fertility (20%), and mastitis (8%). The study concludes that
a model which include these factors could successfully account for 63% of
all replacement decisions. The analysis refrained from considering the sce-
nario of untreated mastitic cows, hence a mastitic cow which is not replaced
is implicitly assumed treated. The result is a model that optimizes three
decisions, which can be made at each state and stage:

1. Keep the cow at least 1 more month and do not inseminate her when
in estrus (keep).

2. Keep the cow at least 1 more month and inseminate her when in estrus
(insm).

3. Replace the cow immediately by a replacement heifer (repl).

The foundation for these decisions are a total of 6,821,724 different states
composed of the following factors: lactation number, production in current
lactation, production in previous lactation, calving interval (and open cows),
clinical mastitis in current month, accumulated number of mastitis quarters
in current lactation up to and including current month, accumulated number
of mastitis quarters in previous lactation.

We will ignore considerations regarding reward and estimation of the
various parameters required by the model. Note that the formulation as a
traditional MDP will result in model with a stage length of 1 month.

2.3.2 Optimal delivery and control strategies for slaughter
pigs in presence of epidemic disease

The model in Toft et al. (2000b) addresses the issue of selecting the optimal
control strategy for epidemic disease (in this case a flu-like condition) within
the context of the production system. Thus the model simultaneously op-
timizes the delivery of slaughter pigs and the appropriate control measures
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available for disease reduction. Specifically the model seeks for an optimal
policy involving the decisions:

1. Vaccination of the entire batch of pigs at insertion.
2. Reduce the stocking rate in the next batch of pigs
3. Use medicine after observing the onset of disease.
4. Empty the pen prematurely.

5. Deliver a certain fraction of pigs for slaughter.

These decisions are assumed to depend on the following factors: the
disease pressure from outside sources, the number of pigs in the section, the
number of healthy/sick pigs respectively and the fraction of pigs still left in
the pen.

2.4 Temporal abstraction

When considering the two examples from the previous section especially the
latter it seems that there is a problem with representing this decision problem
in a traditional MDP setting. A key property of the MDP framework is that
actions are selected, carried out and rewarded within the smallest increment
of time, i.e. the distance between two successive decision epochs or stages.
However, the two first decisions in the example of slaughter pigs are clearly
decisions which are only considered at the onset of a new batch, but where
the impact remain throughout the entire duration of that batch. Hence we
must define these actions in a different manner to model the example as a
traditional MDP. One obvious approach is to define such actions as mere
states which remain constant for several stages.

In this section we will elaborate on methods for handling decisions where
the time horizon goes beyond the next decision epoch. We shall report and
discuss result from different fields of research including robot navigation,
automated learning and management information systems. We shall try to
clearly outline the difference in perception of temporal abstraction within
the different fields. Ideas developed outside our own context might be bet-
ter explained using the original examples, before applying the ideas within
livestock production.

2.4.1 Macro-actions

Macro-actions, temporally extended actions, or options is a large collection of
research emerging from the ideas presented in Sutton (1995). The nature of
this work is somewhat philosophic, still it raises some important questions:
Does a macro-action always take the same time? Should its duration be
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MDP

SMDP

Options \' \/‘
over MDP

Figure 2.1: A possible state trajectory of an MDP, made up of small discrete-
time transitions, whereas that of an SMDP comprises larger, continuous-time
transitions. Macro-actions enable an MDP trajectory to be analyzed at
either level. (Sutton et al., 1998, cf. Figure 1)

explicitly represented? Is it committed to once or redecided at each time
step?

Precup et al. (1997) formally defines a macro-action as a triple (s, 7, 3),
where s is the state in which the macro-action applies, 7 is the policy that
specifies how the macro-action is executed, and S is a completion function
specifying the probability of completing the macro-action on every time step.
The policy does not have to be Markovian, i.e. it can depend on all available
information obtained since ¢y the onset of the macro-action.

Adapting the macro-action concept render the MDP into a semi-Markov
decision problem (semi-MDP). This implies that the algorithms developed
for MDP’s may still be applied to the model extended with a set of macro-
actions. Figure 2.1 visualize the connection between MDP’s, semi-MDP’s
and macro-actions.

To illustrate the idea of macro-actions consider a robot navigating through
the rooms of a house in grid-world, where at each time step the robot may
go up,down, right or left, given that no obstacle (e.g. walls) is in the way. A
possible set of macro actions could then be methods for navigating through
the different rooms of the house, i.e. for a certain macro-action s could be
the state indicating that the robot is in a specific doorway, 7 a set of instruc-
tions like e.g. right, left, down, down etc, and B is 1 when the robot reaches
another doorway and zero elsewhere.

Adding such a set of macro-actions to the original problem can speed
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up computation of optimal strategies for navigation dramatically, given that
the macro-actions are optimal with respect to navigation within the individ-
ual rooms. Still, in more complex scenarios the cost of determining optimal
macro-actions should be included. Furthermore, to solve our examples we
need some sort of state space reduction or decomposition. Neither of which
are attained within the original macro-action framework where one of two
approaches was taken: use the full set of actions plus macro-actions to speed
up computation while guaranteeing optimality, or use only a subset of orig-
inal actions plus macro-actions to obtain near optimality (faster than the
original problem).

Before we discuss the possible application of macro-actions to our exam-
ples, we will elaborate on the two issues of state space reduction and the
actual generation of macro-actions.

Abstract decision processes

An observation which has been done independently by several authors is
that in realistic problems the following applies: states are clustered together
in regions with only a small number of states having transitions out of the
region. Communication between regions is only carried out in a small number
of states, and generally it is not possible to reach all states from the current,
and not all state variables are of interest to the active set of actions.

Define boundary states as the states with transitions out of a region and
the states to which transition is possible as periphery. Then a local finite
MDP is defined on the region plus periphery states. A policy for this local
MDP is termed an abstract action for the full problem. An abstract decision
process is defined as an MDP on the regions, where the local policies define
actions on the abstract states.

To illustrate the idea, consider once more a robot navigation problem as
sketched in Figure 2.2, the doorways are periphery (and boundary) states
for the rooms defining regions.

The approach taken here to decomposition can be seen as a divide-and-
conquer method where the steps are:

1. Reformulate the problem in terms of smaller MDP’s over the subspaces
of the individual regions.

2. Solve each of these subproblems.
3. Combine the solution to obtain a solution to the original problem.

This is essentially the idea behind a number of different approaches (Kris-
tensen, 1988; Dean and Lin, 1995; Hauskrecht et al., 1998) which differ some-
what in solution technique and result, but essentially use the above idea.
Hauskrecht et al. (1998) generate all their local policies in advance which
yields an algorithm only ensuring d-optimality and might use substantial
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Figure 2.2: Abstract MDP for the 4 room example, black dots mark the
peripheral states of the original MDP, i.e. states in the abstract MDP
(Hauskrecht et al., 1998)

overhead compared to other approaches. Because a very large number of
policies are needed for the subspaces by this approach. However, in special
cases where, e.g. a large set of almost identical problems are solved, their
idea might be efficient, see Hauskrecht et al. (1998) for details.

Both the approach in Kristensen (1988) and Dean and Lin (1995) are
guaranteed to converge towards optimal solutions, since they are both spe-
cial cases of a general class of methods that must converge. Any reasonable
scheme that improves the policies in the regions and propagate the improve-
ments through an abstract decision problem will produce an optimal policy
as long as no regions "starve", i.e., never have their policies improved (Parr
and Russell, 1998). To see why, observe that the abstract decision problem
of assigning policies to regions, is really just a semi-MDP in which the set of
permitted actions is the set of possible policies defined over regions. Hence,
an optimal solution to high-level problem given the current set of local poli-
cies can be found using e.g., policy iteration. Once an optimal solution exists
for the high-level problem, the local policies is improved if possible and the
high-level problem is solved again.

Hierarchic abstract machines

The Hierarchic abstract machine(HAM)(Parr and Russell, 1998) is an at-
tempt to develop a formal specification of macro-actions. The idea is to
think of a policy as a program , i.e., a combination of small fragments ap-
plied in a possible stochastic way. In Parr (1998) the motivation for HAM’s
is given as:

This approach is rooted in the observation that engineers and
control theorists are generally quite good at designing controllers
that will realize specific low-level behaviors. A worthy goal for



18 Review of recent developments in Markov Decision Processes

artificial intelligence should not be the mere duplication of these
efforts using different means, but should be the leveraging of
these accomplishments to achieve more interesting higher-level
tasks.

A HAM is based on a (sub)set of actions at the lowest level. An ab-
stract machine, chooses among actions based on input of currents state. The
hierarchic machine, includes a possibility to call another machine as a sub-
routine. A special case of machine is the null HAM, which at each state
chooses among the entire set of available actions. A system with only the
null HAM, would produce the original MDP.

Applying macro-action technique to the examples

It would not be to hard to imagine macro-actions applied to the herd man-
agement examples of this paper. The original formulation of the mastitic
cow example rely on the hierarchic Markov processes (HMP) (Kristensen,
1988) to decompose the state space and render the model soluble. However,
the approach towards macro-actions as a means of temporal abstraction did
not come into play in the original formulation.

A macro-action is a plan to be carried out once a certain condition is
observed until a new condition is met. This is very similar to the plans and
guidelines already adopted in practical herd management. Historically these
plans are developed in a trial-and-error manner or just established as rules-
of-thumb. Still the objective is the same, to provide a policy for getting from
one point in the production cycle to a new one, e.g., start of insemination to
confirmed pregnancy.

The primary motivation for developing the large scale decision support
systems in herd management is to find an optimal policy, i.e. determine
whether or not the traditional guidelines and rules-of-thumb are optimal or
some other policy should be adopted. Specifically, in the case of mastitic
cows the study suggested that the optimal decision almost always was to
treat and keep the mastitic cow rather than replace her. Whether or not
this policy was already adopted is not important, but it is important to
allow an unrestricted search through the entire space of policies in order to
determine that the model suggest this as an optimal policy.

The idea of temporal abstraction was originally introduced to allow for
easier modeling of complex high-level tasks, such as driving to work vs. tak-
ing the train, without worrying about low-level decisions involving operating
the car or getting to the train station. However, the robot navigation com-
munity considers temporal abstraction as a sequence of low-level actions to
be carried out according to some (predetermined) policy. For application
within robot navigation this interpretation will probably suffice. But, as the
example of slaughter pigs suggests there might be a need for a wider defi-
nition of temporal abstraction. In the slaughter pig example we introduced
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two kinds of disease control measures: preventive and proactive. The dif-
ference between these types of control measures is striking. The preventive
measures are applied at the beginning of each batch and the effect remains
until the last pigs in the batch have been delivered for slaughter. The proac-
tive measures are applied only when disease is observed, and the decision to
do so might be influenced by any previous preventive measures applied prior
to this. Hence we can see that there apparently is a need for a framework
for simultaneous optimization of decisions with different time horizons, i.e.
the decision at the daily (operational) level depends on the policy chosen for
the duration of the batch (tactical level). Conversely, the decisions at the
tactical level cannot be optimized without considering the optimal policy for
decisions to make during the duration of the tactical decision. A framework
which allows modeling and optimization of such decision problems is defined
in the multi-level Hierarchic Markov processes (ml-HMP) (Kristensen and
Jorgensen, 2000).

Multi-level hierarchic Markov processes

The ml-HMP structure is defined as nested MDP’s where the top level is an
infinite stationary MDP. Each combination of state and action defined on
the top level is expanded into a finite MDP with a time horizon equal to the
length of a stage at the top level. This finite MDP may again be expanded
into a set of lower-level MDP’s using the same approach as above for each
combination of stage, state and action. The time horizon of a lower-level
(child) MDP is equal to the stage length of its parent. As an illustration see
Figure 2.3, where dashed lines are transitions of a high level action at a high
level state to the next high level decision epoch, and the full lines are the
underlying low level decision problem. In the ml-HMP structure parameters
are only specified at the lowest level. At higher levels the parameters are
obtained by pruning parameters at lower levels. The idea is that the reward
returned by a high level action depends on the underlying policy for the
low level actions to be carried out during the time horizon of the high level
action. Hence, the reward of a high level actions must be the net present
value of the policy for the MDP expanding the high level stage for the given
combination of state and action, i.e. given an optimal policy and associated
transitions and rewards, the high level equivalents are just the product of
the appropriate terms.

Solving ml-HMP’s rely on essentially the same techniques as other meth-
ods for decomposition within the temporal abstraction framework, e.g., an
abstract decision process (or founder process in ml-HMP nomenclature) is
constructed with actions equal to policies of underlying MDP’s. To give an
impression of the structure of the algorithm recall the policy iteration algo-
rithm. Essentially this algorithm is applied to the founder process except
that in the Policy improvement step a more complex operation is carried
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Figure 2.3: The expansion of a single stage of an HMP into a lower level full
process

out. Starting as far down and back in the hierarchy as possible the optimal
policies for the underlying processes are determined by working forwards and
upwards solving the finite horizon MDP’s while pruning parameters upwards
in the process. Once back at the top level, the new set of values and tran-
sitions can be applied to determine the new optimal high level policy and
corresponding value.

As mentioned in the previous section the ml-HMP framework is designed
to handle temporal abstraction as in the slaughter pig example. Here the high
level decisions are the preventive disease control measures, e.g., vaccination
and reduced stocking rate. The optimal policy for applying these must be
considered in conjunction with an optimal policy for daily operation, e.g.,
treatment of pigs and delivery (including early emptying of the section). It is
obvious that the decision to initiate a treatment for disease given a number
of sick pigs are observed must rely on whether we are operating under a
vaccination policy or not, i.e., in an unvaccinated population observing sick
pigs might result in initiation of treatment, whereas a few sick pigs in a
vaccinated population might call for closer monitoring of the condition, but
no treatment since the pigs supposedly are immune to disease.

As we pointed out earlier, the high-level decisions in the ml-HMP context
can be considered states in the traditional perception of MDP’s, however,
from a modeling point of view we must emphasize the potential in the flex-
ibility of modeling decisions at the same time scale as the state variables
of which the decisions rely. An implementation of the ml-HMP algorithm
and a GUI environment for easy specification and manipulation of models is
available, see Kristensen (2000) for details.
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2.4.2 Temporal abstraction revisited

We hope that it is clear at this point, that from a modeling point of view there
is great potential in a formulation of actions of which the impact goes beyond
the next decision epoch. Modeling high level actions without considering the
full detail of the underlying policy for the duration of the abstract action gives
the developer a powerful tool when constructing decision support models.
From this point of view the ml-HMP framework seems most awarding, and
the state space decomposition implicitly done by ml-HMP is crucial in the
large scale models derived from problems taken from livestock management.
Of course the approach of macro-actions and abstract decision problems
render more or less the same decomposition, but the concept of temporal
abstraction within this methodology is not as strong and flexible as the ml-
HMP.

We propose that a reasonable path for future research in temporal ab-
straction for use in livestock decision support systems should focus on the
ml-HMP technique, but try to incorporate some of the aspects from the
macro-action and HAM techniques. The reason for this suggestion is that
models in ml-HMP tends to grow very large because the researcher tries to
embrace as many of the decisions involved in the livestock production as
possible. Sometimes it is only specific elements of the production which are
of interest. Still, we must aim at optimizing the full system in order to make
inference about subsystems functioning within the context they are intended
to. Instead of completely modeling the full system, macro-actions could be
applied in the subsystems which are not directly under analysis, hence a set
of reasonable policies for e.g., nursing of piglets could replace the full mod-
eling of the nursing section of a sow model where the focus of the analysis is
the mating operation.

2.5 Factored representation of Markov decision prob-
lems

The state space decomposition which emerged from the discussion of tem-
porally extended actions in the previous section is the result of properties
common to the state space of many decision problems including the two ex-
amples we use in this review. Should we chose ever to enumerate the states
of either problem, we would not use a sequence of integers. Doing so would
leave us with the problem of mapping state 23 to the corresponding values
of lactation level, mastitic state etc. of the dairy cow example. Instead we
would list the states of the decision problems by iteration through the possi-
ble values of the factors defining the state space for the decision problem. We
have observed that states can be arranged in regions from which transition
in and out only occur from a small subset of states. This assumption can
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be generalized into observing that not all factors depend on each other, e.g.
transition from one state to another at the next decision epoch may depend
on only a small subset of factors. This is also the case for the reward, where
only a minor subset of the factors contribute to the cost/reward of the an
action.

In the following subsections we focus on the idea of factored represen-
tations of MDP’s using Dynamic Bayesian Networks (Darwiche and Gold-
szmidt, 1994) to represent the dependence between factors before and after
an action. In addition we will briefly review an algorithm which benefit from
the structure of a factored representation.

2.5.1 Bayesian network representations of MDP’s

As discussed elsewhere the mastitic dairy cow problem can be described
in terms of a set of state variables sufficient to characterize the state of the
system. Unfortunately, state space grow exponentially in the number of vari-
ables of interest. The solution in the previous section was to decompose state
space according to regions where local policies could be defined. However,
another idea could be to utilize the natural decomposition inherited by the
segmentation of the state space in relevant factors (or features). It is fair to
assume that in general there might be (conditional) independence between
several factors and that we can benefit from this in a compact representation
of the state transitions and reward functions.

A Bayesian Network is a framework for compact representation of prob-
ability distributions in factored form. In Jensen (1996) a Bayesian Network
(BN) is defined as:

e A set of variables and directed edges between variables.
e Each variable has a finite set of mutually exclusive states.

e The variables together with the directed edges form a directed acyclic
graph (DAG)

e To each variable A with parents Bj,..., B, there is attached a condi-
tional probability table P(A|By,..., By).

IfU ={Ai,...,A,} is the universe of variables then the joint probability
P(U) = P(A,...,A,) can be calculated as

P(U) = [ P(4ilpa(4:))

where pa(4;) is the the parent set of A;. The above rule is known as the
chain rule and is easily proved by induction. The representation of the joint
distribution as the product of conditionals is called the factorization of U
with respect to the DAG.
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Typically BN’s have been used for static problem domains, but it is also
very efficient in capturing the (stationary) distribution and effect of stochas-
tic actions associated by temporal decision problems. Specifically we use
dynamic Bayesian networks or action networks as developed in Darwiche
and Goldszmidt (1994). For the decisions keep and replace in the mastitic
dairy cow example corresponding action network representations of the tran-
sitions are given in Figure 2.4, where circles represent variables, solid arrows
are causal effects and dashed arrows are trivial transitions such as constant
values or deterministic increments, e.g., age. The Markov and stationary as-
sumptions allow the problem to be modeled as a two-stage dynamic Bayesian
network. The reward functions can be represented in a similarly compact
fashion. Rather than specifying a vector of rewards we can exploit the fact
that only a subset of factors actually contribute to the cost/reward structure
of the system. In the mastitic dairy cow problem only the current production
level, the mastitic state of the cow and nature of the action contribute to
the reward function. Using a diagram similar to the action network, with
circles still being factors, the reward modeled as a diamond and the decision
set as a square, the reward function for all three decisions are modeled in
one diagram in Figure 2.5

The benefit of this representation is dual: The potential saving in storage
and the increased understanding of the qualitative structure of the transition
and reward structure imposed by the graphical representation.

To make an approximate quantification of the storage reduction consider
that the need for storage of reward values is reduced from three vectors
of 6.821.724 elements to a table of 3 x 2 x 15 = 90 elements. The same
calculation for the transition suggest that a collection of tables of total size
12x15x15x2x18+2x4x4 = 97200432 = 97232 can replace a matrix of size
6.821.724 x 6.821.724 ~ 4.6 x 10'3. The savings compared to the traditional
MDP seems impressive, but remember that the dairy cow example was never
actually implemented in this setting. Instead state space decomposition was
done by adopting the hierarchic Markov decision processes.

The value function and actual policy of the MDP can also be represented
in a compact way, see, e.g., Boutilier et al. (2000) for details. The savings in
storage alone makes this approach promising, actual solution of the problem
can be done using the original policy iteration or better still modified policy
iteration. While the former always produce an optimal solution, the latter is
much easier to implement, using the conditional probability and reward ta-
bles for look-up. However, there exists more clever ways of solving a factored
representation of an MDP, one such method is the Structured policy iteration
(SPI) (Boutilier et al., 1995) which is based on the modified policy iteration,
but utilize the potential structure in value function and policy induced by
the structure of reward and transition. In the next section we briefly outline
the main ideas of the SPI algorithm.
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Figure 2.4: Action network representations of the state space for decisions
keep and replace in the mastitic dairy cow example where the decision to
keep or cull a sow is based on the variables: lactation(lac), production level
now and in previous lactation (Pnow,Pprev), mastitic state(mas), and ac-
cumulated mastitis case in current and previous quarter (accC, accP). The
absence of arrows in the replace network indicates complete independence
between the state of the dairy cow and her replacement heifer. Dotted ar-
rows indicate trivial or deterministic relationships not actually modeled. The
associated conditional probabilities defined by the network structure are not
shown.
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Figure 2.5: The reward function (diamond) for three decisions (square) of the
mastitic dairy cow example. Although the state space contains all the vari-
ables in Figure 2.4 the reward only depends on the current production level,
the mastitic state and the decision. The table of utility values associated
with this graphical structure is not shown.

2.5.2 Structured policy iteration

We ignore how to actually represent value functions and policies in a compact
way, but merely exploit the fact that at any stage in the computation: The
current policy 7 might be structured as well as its value V; or some estimate
V¢ thereof. According to Boutilier et al. (1995) two insights are crucial to
the SPI algorithm:

1. Given a structured policy 7 and a structured estimate V? for 7, an
improved estimate can often preserve much of this structure.

2. Given a structured value estimate V7, it is possible to compute a struc-
tured improving policy 7’

This suggests a structured form of successive approximation, combined with
a way of improving policy that exploits structure. Recall that the modified
policy iteration consists of a policy improving and partial policy evaluation
phase. The SPI algorithm contain the same elements, however, using struc-
tured versions of the two phases. Hence, the algorithm progress as follows:
choose a random structured policy, approximate the value function using
structured successive approzimation, produce an improved structured pol-
icy. The last two steps are then repeated until no improvement in policy is
possible.

The structured successive approximation embodies the intuition that,
given a structured value vector V¢, the conditions under which two states
can have different values V**! can be determined from the action network
representation. Especially, if the difference is only in variable(s) not relevant
to the structured value vector V* then these states must have identical values
in Vit
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The structured policy improvement seek to exploit the structure in the
network to avoid local comparison of policy in all states. The approach taken
is essentially to calculate structured value vectors for possible candidate ac-
tions and compare them to the current policy. For further description and
results the reader should consult Boutilier et al. (1995, 2000).

2.5.3 Factored representations revisited

The SPI algorithm is available for download, however, we have not tested
its performance on any of the examples. The dairy cow example is too
complicated to reproduce merely for reasons of comparison and the slaughter
pig example exhibits some features which are not easily transferred to a
general purpose algorithm.

Still the graphical representation of the dairy cow example in Figure 2.4
and 2.5 suggests that this is a powerful tool for future exploration. The
ability to construct a graphical representation of the model is particularly
useful in applications where several people are working together as a team.
The conditional dependencies between factors are easily deduced from the
Bayesian network. In general model construction, verification and valida-
tion using Bayesian networks has a reputation of causing less confusion be-
tween domain experts and computer scientist. Furthermore adopting this
methodology for model specification allow the MDP researcher to utilize the
numerous results regarding elicitation, visualization and verification of the
conditional probabilities associated to the graphical structures, for inspira-
tion see, e.g., Druzdel and van der Gaag (1995). Given enough data another
approach might be to apply one of the many learning algorithms for learning
the qualitative and/or quantitative structure of the network (Cowell et al.,
1999).

One obstacle for immediate acceptance of factored representation and the
SPI algorithm is the ability to model simultaneous optimization of decisions
at multiple time scales, in the sense advocated by the ml-HMP technique.
We shall refrain from proposing solutions to this problem here, but return
to the issue in the discussion at the end of this paper.

2.6 Decision networks

The possibility of modeling the domain or state space of a decision problem
using graphical representations, such as Bayesian networks has some obvious
advantages. Still, to produce the equivalent of an MDP we are restricted to
two-stage Bayesian networks where all factors represent elements which are
known to the decision maker at the decision epoch. These restrictions can
be a nuisance when modeling domains in cooperation with scientists from
other fields of research.
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The reward function network in Figure 2.5 contain all the elements re-
quired to define a decision network(Cowell et al., 1999). Circles are variables
or chance nodes, squares are decision nodes and diamonds are utility nodes.
The arcs in a decision network have different interpretation depending on
the types of node they connect. Arcs into a decision node reflect knowledge
available to the decision maker prior to choosing a policy for the decision.
Arcs into variable nodes have the same meaning as in a Bayesian network.
Finally, arcs into a utility node defines the domain for a utility node. Usually
there is the requirement that there is a directed path through all decision
nodes in the network, in order to ensure a unique sequence for evaluation of
the decision nodes. Furthermore, in the best known special case of decision
networks, the Influence Diagrams (Howard and Matheson, 1984) there is an
assumption of no-forgetting, i.e., at the decision time all information known
prior to this moment is remembered. Even though this assumption can be
justified it is more or less a relic from the decision trees of which the Influ-
ence diagrams emerged. A recent addition to the decision networks is the
LImited Memory Influence Diagrams(Lauritzen and Nilsson, 1999) in which
all information arcs are explicitly drawn.

Using, e.g., LIMID for modeling decision problems we can model the state
space independently of the decision problem. This implies that we can model
the domain using hidden or unobserved variables to describe the causal effect
of the decision problem’s domain. To give an example consider a simplified
version of the sow replacement problem described in Huirne (1990). We
consider production results as the sole cause of voluntary culling, thus ig-
nore the reproductive failure aspect of the original framework. Our decision
problem is to decide upon weaning of the piglets, whether to keep the sow
for one more production cycle, or to cull (replace) her immediately. To aide
this decision we consider her previous production results, in Huirne (1990)
it was assumed that the current and previous litter size would indicate the
next (expected) litter size. Within the MDP framework this is a reason-
able simplification, a tradeoff between accuracy and size of the state space.
Still, there are models which are likely to give a more truthful image of the
expected litter size of sow given her previous production record.

In a herd of sows, we can define a mean curve reflecting the expected
litter size of sows at different ages. It is the variation around this mean that
we seek to characterize. For longitudinal data such as production records
for individual sows it is common to consider at least three different sources
of variation: an additive or genetic effect, a serial correlation describing the
within sow variation and a random noise effect. A model involving these
elements is developed in Dethlefsen and Jgrgensen (1996) and the corre-
sponding decision problem is discussed in Toft et al. (2000a). The decision
network for the sow replacement problem is given in Figure 2.6 where the
model for litter size is defined by the unobserved nodes reflecting serial cor-
relation and additive effect. In fact it can be seen that the litter size of
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Figure 2.6: The sow replacement problem as a decision network where the
model for litter size has been separated from the decision problem.The in-
formation arcs (arcs into decisions nodes) defines the decision problem and
causal arcs (arcs into chance nodes) define the state space

individual parities are independent given we know the unobservable (hence
unknown) quantities A and M;. Modeling within the LIMID we can explore
the effect of incorporating additional knowledge in our decision foundation,
while maintaining the same model for expected litter size.

The potential problem with the formulation as a LIMID is that decision
networks at the moment cannot handle infinite time horizon problems. The
network of Figure 2.6 represents only the life time of one sow, the correct
representation is an infinite sequence of the sow and her successors. At
the moment work is carried out to remove this obstacle so the potential of
LIMID’s can be applied to the vast area of livestock management problems
that are repetitive in nature and thus require a framework with an infinite
time horizon.

2.7 Discussion

This survey of possible extensions of the traditional MDP framework is by no
means exhaustive, still, we have introduced new elements of modeling, which
can be useful to the livestock management community when developing the
next generation of decision support models.

There has been reluctance among farmers and extension services to de-
ploy the decision support models developed so far. Besides some obvious
remaining obstacles regarding farm-specific parameters and other practical
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issues, the critique has always been that the models disregard some impor-
tant synergy between certain elements, or that there are reasons for culling
not explicitly defined in the model, etc. The essence of these complaints is
that models should seek at embrace more of the decision complex defined in
the specific production system.

The replacement decision will still be an important aspect of management
in livestock production systems since it creates most of the dynamics of the
system. However, the decision to replace a production animal is often based
on its production parameters such as milk production or number of produced
piglets and its health status, e.g., mastitic condition. Most of these factors
are influenced by decisions made at some point in the production cycle, hence
these decisions should be considered when addressing the replacement issue.
This calls for deployment of ml-HMP or similar techniques.

As the models grow to cover more facets of the decision complex the
apparent need for contributions from other fields of research grow. The
ability to adapt to existing models may then become a valuable asset which
calls for incorporating the use of Bayesian networks or derived techniques in
the modeling phase. Thus a future challenge is how to connect the ml-HMP
technique and the factored representation.

As the example in Figure 2.6 suggest there might even be a need for
dropping the Markovian assumption and focus attention at the next level of
modeling represented by decision networks, i.e., Limited Memory Influence
Diagrams. The modeling issue has been addressed for years in the Bayesian
network community, where developments such as Object Oriented Bayesian
Networks(Koller and Pfeffer, 1997) has drawn some attention. The object
oriented modeling approach has some obvious possibilities when modeling
complex domains such as state spaces for livestock decision support systems.
Since it allows for a sort of hierarchic modeling of the state space, where some
can consider a factor like, e.g., feed as a unit, while others may divide the
feedstuff in elements like carbohydrates, protein, etc. The object oriented
approach has also been applied to LIMID’s (Hohle et al., 2000), thus an
object oriented modeling and design of decision problems is possible within
the LIMID framework. The decomposition of the state space into objects
has some promising features which should be examined in future research.
The concept of temporal abstraction as defined by the ml-HMP technique
is considered a crucial element in modeling, still the LIMID or its object
oriented flavor cannot address this issue adequately. A logical extension of
the LIMID idea is a multi-level hierarchic LIMID to handle the aspects of
temporal abstraction in large realistic decision complexes.
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2.8 Conclusion

In this study we have tried to devise a reasonable path for developing the
theoretical and practical aspects of livestock decision support system. We
find that the special properties of the livestock production system, i.e., the
decision complex of interacting decisions and the large state space required
by this decision complex, necessitate methods that allows for simultaneous
optimization of decisions at multiple time scales and at the same time de-
compose the state space. We find that the multi-level hierarchic Markov
processes is the framework which currently provides the most flexible tool
for modeling livestock decision support system, however, techniques such as
factored representations offer so many desirable features, i.e., the factored
representation itself and a graphical framework for design and modeling.
Merging these techniques is a worthy goal for future research. Still, perhaps
even more promising is the application of decision networks in the form of
limited memory influence diagrams. This tool allows for modeling of the
state space independently of the decision problem, hence we can directly
adopt existing theories in the development of the model, and define our
decision problem afterwards in terms of observable traits.
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CHAPTER 3

A framework for decision support related
to epidemic disease in slaughter pig
production.

(Submitted for journal publication)!

Nils Toft, Anders R. Kristensen and Erik Jgrgensen

Abstract:Decision support in slaughter pig production exposed
to epidemic disease requires simultaneous optimization of deci-
sions regarding the delivery of pigs and the control of disease.
This decision complex requires modeling and optimization of de-
cisions at multiple time scales. We present the development and
analysis of such a model using multi level hierarchic Markov pro-
cesses as a framework. In an example of realistic proportions we
demonstrate how the optimal policy at the daily operational level
is affected by the state and action at the higher level of tactical
control strategies.

3.1 Introduction

To be successful in modern pig production, the farmer must address a large
number of problems. One particular problem is that pigs are exposed to
various kinds of disease which may influence the return of the production
system. It is important to distinguish between 2 different kinds of disease.
The exotic diseases, e.g., classical swine fever, foot and mouth disease, etc.

!This research is supported by a grant from The Ministry of Food, Agriculture and
Fisheries
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which require total eradication of the herd by law, and the more common dis-
eases such as Swine Influenza which can be ignored by the pig producer if he
or she sees fit. Decision support systems that address the former type of dis-
ease have been developed at national or regional decision levels (Saatkamp,
1995; Stark et al., 2000). Modeling may have been applied to the within
farm spread of disease, however, the farmer is never actually given a choice,
since the eradication of the disease is a national concern.

Decision support systems for the more common kind of disease have also
been developed, see, e.g., Lloyd et al. (1994); Cherry et al. (1998). However,
these studies more or less assume that different control strategies are adopted
and do merely evaluate the expected outcome. There is a number of diseases
where this approach might be inadequate. Diseases of which the effect can
be described in terms of mere weight loss or reduced growth, rather than
animals dying by the numbers (i.e., Swine Influenza). The effect of such
diseases might be serious enough, still, it will not be economically optimal
to apply control measures at any cost.

To evaluate the possible benefit of control strategies of such diseases we
feel that it is necessary to develop a decision support system which models
the production system that the control strategies are intended to function
in. The purpose of this study is to present the development and analysis
of a system intended for optimization of the decision complex associated
with growing pigs for slaughter when the pigs might be exposed to infectious
disease. An example of realistic proportions follow the analysis.

3.2 Optimal slaughter pig marketing

The problem of optimal marketing of slaughter pigs has been addressed by
several authors. However, according to Kure (1997) most studies tend not
to

e clearly define the problem of marketing management and to separate
and handle different aspects of the problem.

e discuss and handle the (in most situations) strong dependencies be-
tween the (internal) supply of weaners (from the farrowing operation)
and the finishing operation.

e handle the stochastic variance and uncertainty of biological processes.

Kure (1997) proceeds to define slaughter pig marketing and the elements
required to determine the optimal strategy for the decision scenario per-
taining delivering pigs for slaughter. The essence of this analysis is: When
marketing a batch of pigs for slaughter, the manager is in general faced with
problems like:

e How to select and when to market individual pigs.
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e How to manage the weaner supply and demand. In particular when
to terminate a batch, i.e. when to insert a new batch of weaners, and
how to market the remainder of a batch.

In addition to these problems, special kinds of production systems like
continuous flow operations may allow for moving or re-grouping of pigs to
increase space utilization and homogeneity among marketed pigs.

As one might expect, the answers to the above questions depend on the
pricing system, and the type of operation on the individual farm.

The pricing system may vary among different packers, however, in Den-
mark the same system is used throughout the different slaughter houses. The
carcass is priced on weight and leanness. It is not customary as far as the
authors know, to market pigs based on their leanness. Hence we will ignore
this aspect, but acknowledge that other options for pricing than weight ex-
ists. Furthermore, results based on simulated data in Kure (1997) leave little
financial room for acquisition of equipment for measuring leanness.

As for the operation at the individual producer, several elements con-
tribute to the definition of the problem and its possible solutions. It is
customary to partition pig finishing operations into two subsets:

Batch operations, in which pigs are housed in physically separated units
or sections. The expected effect is to reduce the transmission of infec-
tious disease between sections and from pigs to weaners. Hence all pigs
in a section must be marketed before inserting a new batch of weaners
and replacement or reallocation of pigs is not possible.

Continuous flow operation, where no sectioning (except the pens) exists,
thus no grouping of pigs into batches exists. Since pigs of different ages
are housed together and mixing and regrouping is possible, this pro-
duction form is generally more flexible and space efficient than batch
operations. Pigs are normally sorted at insertion in order to increase
the homogeneity of the pens.

Despite the differences between the two systems no conceptual distinction
isneeded. Pens can be regarded simply as small sections. However, no matter
the obvious differences in production form some similarities exists as well.
One such major concern when addressing the issue of marketing pigs for
slaughter is the flexibility of supply. Given a surplus of weaners, one may
always consider selling these at the weaner market. However, given that this
batch was suppose to fill a section (which was suppose to be empty) then for
the next production period this section will be empty unless another batch of
weaners is available upon request. For a discussion of the different scenarios
and their impact on delivery policies the reader should consult Kure (1997).
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3.2.1 Defining the decisions and information pertaining op-
timal slaughter pig marketing.

Formally the problem of optimal slaughter pig marketing may be reduced
to retrieving relevant information and acting upon this information in an
optimal way.

Adopting the conventions of traditional decision theory some key issues
are identifiable in this problem as well.

State-of-nature, the description of relevant traits of a system regarding the
decision complex considered in the problem at hand. Here the relevant
information is the weight of the animals and the number of animals
(still) in the section. Thus for now we ignore information regarding
the pricing system and cost of feed. Broekmans (1992) describes how
the influence of price fluctuations may be included in the model.

Test decisions or non-intervening actions, some required information
may not be freely available. A good example is the weight of the pigs,
which may be established using different methods with varying cost
and precision. In Jgrgensen (1993) the influence of weighing precision
on delivery decisions in different housing systems is explored.

Intervening actions, i.e. actions which directly influence the state-of-nature.
Combined with the biological dynamics these actions evolves the sys-
tem. The intervening actions defined in slaughter pig marketing are:
Deliver the selected pigs for slaughter, and terminate the batch (i.e.
deliver the remainder of the pigs regardless of their weight.

To summarize the discussion of optimal marketing management of slaugh-
ter pigs; the objective is to deliver pigs for slaughter based on observation of
their live weight in a way which maximize the utility (or profit) of the entire
operation in acknowledgement of the restrictions imposed by the operation
itself, i.e. space, weaner supply etc.

3.3 A framework for decision support.

The system described above is adequately represented using the general
framework of Markov decision processes (MDP) (Puterman, 1994), however,
the concept of hierarchic Markov processes (HMP) (Kristensen, 1988) and its
extension of multi-level HMP (ml-HMP) (Kristensen and Jgrgensen, 2000)
provides a more powerful tool for discussion and implementation of these
ideas.

Adopting the ml-HMP technique each batch (or section) of pigs is mod-
eled as a sub-process of finite length, thus the process consists of an infinite
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‘ Parameter Description ‘

A1 Energy consumption per kg metabolic weight, FU,
Ao Energy consumption per kg gain, FU,

A3 Logarithm of outgrown weight, In(kg).

v Growth rate parameter

Table 3.1: Definition of parameters (A;) in Equation 3.2 model.

sequence of batches of pigs. Using this approach the peculiarities of the in-
dividual operations may be modeled, thus allowing the impact of different
systems to be explored.

3.3.1 A stochastic growth model

A requirement of the MDP technique is an exact representation of the state
space, i.e. all information regarding the state-of-nature must be included in
(or easily derived from other variables of) the model. One such necessary
information is the weight of the pigs in a given pen at a given time. Several
models have been suggested through the years. Since our primary concern
is short time prediction of the weight, i.e. the distribution of the weight
tomorrow given today’s distribution we will discard the more sophisticated
approaches and use a (piecewise) linear approximation.

Assume that the initial weight Wy of the individual pigs in a section is
given as Wy ~ N(ug,03). Define ¢; ~ N(ugt,agt) to be the daily gain of a
pig from time £ — 1 to ¢, and assume that daily gain is independent of the
current weight and the growth so far. Then the sum of these variables is a
mixture of Gaussian distributions, however, we approximate by an appropri-
ate Gaussian distributions. Hence, the weight of the individual pigs at day
t=1,2,... may be defined as:

W, = N, 03) (3.1)

where u; = po + Zle p¢; and of = of + Z::O aé. Using this representa-
tion of the weight the corresponding feed intake at day ¢ = 1,2, ... may be
calculated as in Jgrgensen (1993):

Fy = Xda[h3 — In(W)]W; + M W27, (3.2)

where the parameters \; are described in Table 3.1. Hence, the total feed
consumed until day ¢ is just F; = > Fj.

At first this model may seem too simple. But assuming that daily gain
is independent of the current, the piecewise linear growth curve suggested
here can be adapted to virtually any growth curve, since we only require
that it fits "once" a day. Hence, the distribution of the (;’s may be chosen
to model a theoretic growth curve or simply estimated using an appropriate
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data set. The calculation of daily feed intake in Equation 3.2 is based on the
traditional assumption that the total feed intake is dispensed on growth (the
first term) and maintenance (the second term). It is implicitly assumed that
the feed intake is big enough to allow for growth according to the Gompertz
growth curve, see e.g. Jorgensen (1998) for a discussion of these issues.

It is questionable to assume independence between successive (;’s, how-
ever, our primary concern is the mean and variance of the weight at certain
points in time, not how the weight of the pig evolves through time. Thus
if we knew the distribution of the weight in a section at, say, day 70, then
we would calculate the means and variance of the (;’s so that the initial
(known) distribution plus the sum of the 70 (;’s would result in the desired
distribution.

Modeling delivery of slaughter pigs

We will assume that the heaviest pigs in the population are the ones selected
for slaughter at any given time. Hence our assumption of weight being
Normal distributed will clearly become questionable after some subset of the
population has been slaughtered. However, the hypothetical distribution of
the entire population if no animals were slaughtered, may still be assumed
Normal.

We have chosen to model delivery in terms of a certain fraction of the
entire batch, hence we do not propose a threshold weight, but merely markets
an appropriate fraction of the pigs. Hence, if p, is the fraction of the original
population still left and pg is the fraction of pigs selected for marketing in
the current week, then Figure 3.1 illustrates the idea of the selecting the
heaviest pigs of the remaining population.

3.3.2 Adding disease to the problem of optimal marketing
management

The elements of the decision support system described so far forms the nec-
essary elements to explore the effect of different production systems on the
profit returned by the production facility, i.e. the housing system. We can
investigate the sensitivity of the proposed system with respect to different
parameters like e.g. daily gain.

One factor known to affect the average daily gain of pigs is respiratory
disease. If infected the pigs loose their appetite, hence reduce their feed
intake which subsequently reduces growth. Fortunately a number of different
control measures exists which can be applied at different times. Hence, to
optimize the performance of the production system in an environment with
presence of contagious disease it is necessary to simultaneously optimize the
delivery and control strategies. To handle the situation, we now propose an
extension of the system outlined so far. We expand the state space to allow



3.3 A framework for decision support. 41

Probability
0.03 004
i i

0.02
i

0.01
i

0.00
i

Figure 3.1: The hypothetical distribution of weight, with the remaining frac-
tion of pigs (pp) and the part of these selected for delivery (pg) imposed in

grey

modeling the spread of disease according to a widely accepted model, known
as the general epidemic model. Within this state space we introduce the
different control strategies which may be adopted. Some of these may not
be available at the moment. Even so, the decision support system developed
here may serve as a tool for exploring the cost-benefit of such controls.

3.3.3 The general epidemic model

In order to model the transmission of infectious disease between animals we
will rely on the so-called General Epidemic model, introduced in its stochas-
tic form by Bartlett (1949). The underlying assumptions are that all animals
are initially susceptible for transmission of disease. Upon infection they be-
come infectious for a period, after which they stop being infectious, recover
and become immune. They are said to be removed. An animal who is in-
fectious is called an infective. For convenience we will refer to models which
assume that animals pass, in turn, through the Susceptible, Infective and
Remowved state, as SIR models.

Using the general epidemic model, the spread of a SIR infectious disease
in a population of homogeneous individuals who mix uniformly, is modeled
as a Markovian continuous-time model.

Let us here briefly introduce the model as defined in Daley and Gani
(1999). Let S(t), I(t) and R(t) denote the respective number of susceptible,
infectious and removed individuals at time ¢. Consider a closed section of n
animals, hence the relationship

S(t)+I(t)+R() =n,  (v¢t>0) (3.3)
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The initial conditions of an epidemic are specified by S(0) = sg,I(0) = g
and R(0) = 79. For now we will assume that these quantities are known.
Assume that {(S,I)(t) : ¢ > 0} is a bivariate Markov process; Equation 3.3
ensure that R(t) = n — S(¢) — I(t) is known when (S, I)(¢) is known. The
infinitesimal transition probabilities of the General Epidemic in the interval
(t,t + 6t) is defined by

Pr((S, I)(t + 6t)

(= 1,3+ IS D) = (7)) = 2o,

Pr((S,1)(t +6t) = (3,5 = D|(S, D)) = (3,7)) = vjot, (3-4)
Pr((S,I)(t + 6t) = (i, 5)|(S, 1) (t) = (i,4)) =1 — ﬁnﬂat — jét.

After some finite (random) time the are no infectious animals present in
the section and the epidemic is over. The number of animals that are still
susceptible and the number who have been removed are called the final state
of the epidemic. The present formulation does not include exogeneous infec-
tious agents, hence we implicitly assume that the first infectious animal is
introduced either by a special event or at a rate which is negligible compared
to the within herd infection rate.

There are several features of this model open to criticism. In slaughter pig
production we can actually justify the assumption of homogeneity (contrary
to most published applications) whereas that of uniform mixing may be
questioned, since the pigs are usually grouped in pens.

The General epidemic model has two parameters S and . The pa-
rameter [ is the rate at which an infectious animal has close contact with
other animals in the section, hence BS(t)I(t)/n is the aggregated rate at
which infectious animals has close contacts with susceptibles. It is custom-
ary to reparametrize v to 4!, the mean duration of the infectious period.
The model implicitly assumes that the infectious period is exponentially dis-
tributed with parameter .

Most literature regarding epidemic models is concerned with estimation
of these parameters, or determining the final state of the epidemic. A third
often used property is the basic reproduction ratio Ry = [so/7y defined in
DeJong et al. (1993) as:

"..the expected number of new infections caused by a typical
infected individual during its entire infectious period in a vir-
gin(i.e. completely susceptible) population that is in a stable de-
mographic state at the moment the infection is introduced."

For any eradication strategy to be effective, it has to reduce the basic repro-
duction ratio below 1, given that the epidemic behave in a deterministic way.
In a stochastic framework, epidemics may fade out for Ry slightly above 1,
or they may fail do to so even if Ry < 1. Still the bigger the value of Ry the
larger the expected final number of affected animals.
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We will require the use of the model in a slightly different way. We are
going to assume that at time ¢ we have the distribution of S(t),I(t) and
R(t). Given a specific set of 8 and y we will determine the joint distribution
of Pr(S(t +1),I(t +1), R(t + 1) | S(2), I(2), R(2), B, 7)-

One obvious approach is to apply Equation 3.4 directly. However, this
method requires substantial computation and is increasing in complexity by
the number of pigs in the section. We would prefer an updating procedure,
which allowed for modeling of just about any number of pigs in a section
without increasing the demand in computer capacity dramatically.

One method to efficiently handle the nonlinear Markov process describ-
ing the general stochastic epidemic is based on the assumption that the vari-
ates are normally distributed (Whittle, 1957). In Isham (1991) this method
is applied to the SIR-model and compared to the traditional approach of
stochastic simulation with encouraging results for parameters suitable for
HIV epidemics in a population of 1000 individuals.

This approximation assumes that (S, ) has a bivariate normal distribu-
tion with mean g = (ug, pr) and covariance matrix

¥ (Uss 051)
os1 011
then the following five equations are obtained (n =S+ I + R as usual):

dus WSHT osI
— = —f— - f—,

dt n n
dpr SKI osI
L pESEL L g%y,
dt n
d
oss _ _ZﬁUSO'SI + pross n ﬂusuz + 051’ (3.5)
dt n n
dosy  ps(osr —orr) + pr(oss — 0sr) — pspr — os1
=p —Yosr,
dt n
do orr + pro +o
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where explicit dependence on ¢t has been dropped everywhere. This is just
a set of ordinary differential equations which is easily solved using standard
algorithms like Runge-Kutta (Press et al., 1992).

Starting the epidemic

So far we have ignored how to introduce the initial number of infectious an-
imals (i), i.e. we need to determine the probability of animals contracting
the disease from an outside source. For certain airborne diseases this risk
might be substantial and should probably be modeled throughout the en-
tire duration of the epidemic. Define ¢ as the transition intensity from S
to I conditioned on no disease animals in the current batch. This can be
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interpreted as a measure of the prevalence of disease among herds. Using
¢ we will determine the corresponding probability pg1 of introducing a sick
animal between 2 decision epochs, e.g., from day to day. It seems reasonable
to assume that the waiting time to introduction of disease is exponential,
hence within a batch we have:

po1 = 1 — exp(—¢) (3.6)

3.3.4 Decisions related to disease

Here we may again distinguish between intervening and non-intervening de-
cisions.

Non-intervening or test decisions are necessary since we are facing deci-
sion making under uncertainty, and the precision of which we may obtain
information depends on the method selected for information retrieval. As
an example consider visual inspection of the frequency of coughing among a
section of pigs compared to serologic analysis as an indicator of respiratory
disease. These methods may both increase the certainty in the state-of-
nature, however, at different costs and with different precision.

Intervening decisions or control measures may be divided into two differ-
ent categories, operational and tactical decisions. This distinction reflects an
important, however, often ignored property of control measures. Different
control measures may react on different time scales. To elaborate on this
statement, consider two completely different control measures for managing
respiratory disease, e.g. move sick animals to an "emergency" unit or start
a vaccination programme. The former decision is aimed at reducing the im-
pact of the ongoing epidemic by reducing the number of infectives in the
population (as well as the size of the population). Hence the main effect of
this control strategy is on the current batch of pigs which is suppose to have
a lesser epidemic, hence less reduction in daily gain. Any long term effect of
this control strategy is only a desirable side effect of possible lower basic risk
of introducing disease in the next batch. Initiating a complete vaccination
programme on the other hand is a decision which has no impact on the cur-
rent batch of pigs, since it is not customary to vaccinate pigs for a disease
which they have already been infected with. Thus, the proposed effect of this
control measure must be on the future batches of the current section (and
present and future batches in the other sections of the production system).

Modeling the effect of different control measures.

We have chosen to model disease using only three parameters describing
the evolution of disease plus a joint distribution of the three subsets of the
population, hence we should be able to model the impact of the different
control measures’s effect of the outcome of the epidemic using these elements
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only. There is, nonetheless another important motivation for adopting some
control strategies: the impact of disease on the affected animals is reduced.

In Table 3.2 some typical control measures are presented to illustrate
the ideas of different time horizons and different mechanisms in the basic
effect of disease related decisions. It is obvious that this short list is in no
way exhaustive, but the different control measures represents the various
mechanism that the modeling framework should allow for. Some additional
comments to some of the control measures may be appropriate here.

Traditionally the effect of a vaccine is measured in terms of its effi-
cacy(V E) defined in Becker and Britton (1997) as:

attack rate among vaccinated animals

VE=1-

attack rate among unvaccinated animals (37)
This is not a very satisfactory measure because it depends on both the hous-
ing system from which the data come and the time period over which the
data are collected. Furthermore the protective efficacy may be interpreted
differently dependent on the type of response it offers. It may be that a
fully susceptible pig has a force of infection §(¢)I/n exerted upon it at time
t, then a vaccinated pig has w3(t)I/n, where w € [0,1] is a measure of the
protection that the vaccine offers. On the other hand, it might be that a
fraction 7 of the vaccinated pigs are fully protected while the remainder have
no protection at all. Again 7 is a measure of protective efficacy, however, the
interpretation clearly differs in the two cases. In Figure 3.2, the difference
between the expected development of disease in a fully susceptible popu-
lation, a population with reduced susceptibility and a population in which
some individuals are completely immune, is outlined. Note that within 15-18
days all individuals are infected in the unvaccinated population and the two
vaccinated populations are indistinguishable. Hence at 15-18 days where the
attack rates are the same for each of the vaccinated populations and 100%
in the unvaccinated population, analysis would yield more or less the same
efficacy for the two vaccines. But, at day 60 the efficacies of the two vaccines
would differ.

Eradication or early delivery of the remaining pigs is supposed to lower
the risk of transferring disease from the current batch to the next, hence
we assume some sort of decay of infectious agents through time. It is not
a topic widely studied in literature, although it is possible to find estimates
of survivability of different bacteria or virus outside a host. We suggest the
following model for transmission of basic risk through batches. Let Al denote
the number of time units the housing facility is empty, then we may assume
that ¢ is given as:

log(¢t) = log(di—1) + al/n— Ale+ e, e~ N(0,V), (3.8)

where « is a measure of generated disease pressure by a sick animal within
the batch and € is a measure of disease pressure decay per time unit. We
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Time Horizon

Description

Effect in model

Operational

Move sick animals to a
different location, e.g.
an "emergency" unit, or
simply cull them.

Reduce the expected mean of
I(t + 1), hence reduce the ex-
pected effect of current epi-
demic.

Operational

Use medication to ease
the effect of disease

The effect is modeled in two
ways, the [ is reduced to
model the lower susceptibility,
and the 7y is reduced in order
to reflect the expected faster
recovery.

Tactical

Eradication, i.e. early
delivery of the entire
batch. That is to
empty the section be-
fore the optimal slaugh-
ter weight is obtained.
Eradication of the entire
production facility is an
action with the same ef-
fect, however, assumed
much more thorough.

This action is suppose to lower
the basic risk (¢) of transfer-
ring the disease to subsequent
batches, i.e. the decision to
empty a section early is proba-
bly accompanied by a decision
to disinfect the entire section.

Tactical

Vaccination, i.e. vacci-
nate subsequent batches
so the future popula-
tions will be less suscep-
tible to the disease

Future batches will have re-
duced values of 8, v and ¢
to model that the disease is
harder to introduce, does not
spread as effectively and make
the animals less sick.

Tactical

Reduce stocking rate,
i.e. insert fewer pigs in
the next batch

By reducing the number of
pigs occupying the section,
the pigs may be assumed less
stressed, hence a dampening
effect of the disease may be
present, i.e. the disease will
not effect the animals in the
section as hard as if the stock-
ing rate where at is maximum.

Table 3.2: Some typical operational and tactical control measures in respi-

ratory disease
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Figure 3.2: The effect of an epidemic with 8 = 1.25 among 400 susceptible
pigs (solid lines) and the corresponding developments in vaccinated popula-
tions with different meaning of the same efficacy (VE = 0.8)

have chosen to model the intensity ¢; at the log scale to avoid problems with
boundaries. I/n is the ratio of sick pigs at the termination of the batch.
Equation 3.8 can be regarded as an auto regressive process, with added
contribution from the batch and a constant decay per time unit empty. The
choice of model may be questioned, however, in absence of a gold standard
we note that this model allows for properties that can be justified as likely for
decay /transition of the basic risk. Furthermore, we can explore the effect of
different parameters in Equation 3.8 to quantify the influence on the overall
results.

3.3.5 Linking disease and growth

So far we have described how to estimate the populations of susceptible,
infectious and removed animals during an outbreak of an epidemic disease
in a parsimonious way, using only three parameters to describe the evolution
of the epidemic and three parameters to describe the joint distribution of
the populations of S, I and R respectively.

We have only considered the effect of the different control measures on
the outcome of the epidemic. It is time to explore how disease effect the
growth of the animals. Two things must influence the impact of disease on
the distribution of weights of the animals: The number of animals which
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acquire disease; and the severity by which they develop it.

Hence, we must introduce a parameter 1 to describe the dampening effect
of a control measure on the growth reduction in slaughter pigs infected with
the disease.

The most obvious explanation for a reduced growth caused by disease is
that the animals consume less feed while sick, thus leaving less energy for
growth (energy requirements for maintenance is assumed constant). How-
ever, we have chosen to model feed consumption as a result of growth and
not the opposite. We will therefore have to assume that disease reduce the
daily gain, hence implicitly the quantity of feed consumed.

It is likely that the period of time in which the daily gain is influenced
differs from the time the animal is infectious. An example is the Swine Flu
where the pigs are infectious for months but usually only sick for a couple
of days. In general it is not feasible to keep track of the evolution of the
disease due to the increase in state space such a procedure would require.
Thus a different method to differentiate between being affected and infectious
is required. Here we propose two different approaches which simplifies the
problem without too much loss of generality.

The first idea is applicable to diseases like the Flu, where the relevant
production traits are only affected in a short period of time when compared
to the duration of the infectious period. Assume that all growth reduction
occurs within the first day of disease. The number of newly infected animals
is easily determined through the transition probabilities of the model. Define
C; as the expected number of new cases from day ¢ — 1 to day ¢. Then
the expected daily gain of the entire population ( was defined earlier as
(¢ ~ N (uct,agt). Now we assume that daily gain in a population exposed
to epidemic disease (under a control strategy with dampening effect 1) is
Gy~ N(“é"’f’t)’ with

n—C C
pe — (1= ¥)up; oF = - tagt+;t‘72D (3.9)

where the full effect of disease is assumed to be N (pp;a%).

Another approach suitable for diseases of which the impact is more or less
permanent throughout the duration of the infectious period is to assume the
growth rate constant for each of the subpopulations, i.e. define the daily gain
of the population as the weighted sum of the daily gain of each subpopulation,
using the expected proportion of animals in each category as weights. These
numbers are also easily calculated from the transitions required by the model.

3.3.6 Summary of the generic framework

It is important to realize that while most of the discussion so far has been on
representing state-of-nature and the effect of the respective control measures
on the state-of-nature, the true nature of this problem should be regarded
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as a decision problem. That is to select the optimal strategy of choices
among the presented control measures (and implicitly assumed available test
decisions).

At this point it can be worthwhile to realize that the nature of the overall
problem is unaffected by including the decision complex regarding disease.
The main objective is still to maximize the total expected discounted reward
of the current and subsequent batches of pigs occupying the section consider
as the unit of interest here.

One major difference between the current problem and the original prob-
lem of optimal marketing management as outlined in Kure (1997) is that
decisions are introduced at multiple time scales. Thus, the original assump-
tion of Markov decision processes of actions being chosen, carried out and
rewarded within the smallest considered increment of time is relaxed. We
have operated with decisions on two time scales: The daily operational de-
cisions with a time horizon of a couple of days, or at most until the end of
the current batch, e.g. moving sick animals; and the tactical decision sce-
nario where decisions have a time horizon measured in terms of batches, e.g.
vaccination or eradication. Multi level hierarchic Markov processes (Kris-
tensen and Jgrgensen, 2000) are especially well suited to handle problems of
decisions at multiple time scales with an infinite time horizon.

What is important to keep in mind is that the individual variables or
parameters of the problem should be represented at the same level as the de-
cisions which influence these. Hence, at the batch level where decisions aim
at reducing disease pressure ¢ the state variable should be ¢ itself as well as
other variables which remain constant throughout the duration of a batch.
At the operational or daily level, the variables should be those describing
the distribution of the populations of S(t), I(t) and R(t) respectively, as well
as an appropriate description of the growth of the animals. Decisions rep-
resented here are the operational control measures, e.g. moving sick animals
and use medication, but in addition to these, we must allow the original set
of decisions, i.e. deliver some fraction of the heaviest pigs or terminate the
current batch. Thus the state space of the multi level hierarchic Markov pro-
cess is a discrete representation of the possible outcomes of ¢, i.e. transition
intensities of reasonable scale, at the founder level. Each child process have a
stage for each ordinary day of the production and one for each delivery day.
The states at each ordinary day are the possible configurations of susceptible
and infectious pigs. The states for a delivery day are the configurations of
susceptible and infectious pigs for the different number of pigs still left in
the section.
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3.4 An applied example — the case of Swine Flu

As an illustration of the framework presented here, we are going to implement
an example using the Swine Flu as a model disease. In the implementation of
this example we have made a series of simplifications, some due to the com-
plexity of the problem while others are the result of inadequate information
available to estimate possible effects.

3.4.1 Outline of the production facility and delivery policy

We are going to assume that the weaner supply is constant and inflexible,
i.e. with a constant interval the section must be emptied so that the new
batch can be inserted. Delivery of animals will occur in a fixed number of
deliveries starting some predetermined number of weeks prior to termination.
Appropriate initial weight and daily gain distributions are specified. Pigs
are selected and delivered once a week in the last 4 weeks. The number
pigs in each delivery is a multiple of some smallest quantity. Note that the
Danish pricing system is using a basic price per kg. for carcasses within a
certain weight interval (currently 67 - 79.9 kg) and a reduction of 0.1 dkr
per deviating kilo. In addition there is a premium for increasing lean meat
percentage above 59% (and a reduction below), however, we will ignore the
premium for leanness. We have chosen not to model any cost other than
food cost and the cost of applying e.g. vaccination or medicine. We implicitly
assume that all other cost are constant regardless of strategies. The result is
that output from the model should be compared in terms of relative effects,
absolute values does not reflect the actual return by adopting an optimal
scheme.

3.4.2 Modeling disease

The Swine Flu is characterized by certain properties which makes it an ideal
disease from a modeling point of view. The two most important properties
of the disease are: very few animals die from the flu and once sick, they
remain infectious throughout the production period. Hence, we do not need
to model animals dying and we only need to consider two types of animals,
those susceptible and those infectious. The removal occur at delivery, hence
the possible configurations of pigs is determined by the number of sick pigs
alone. We have chosen to model this scenario by choosing v = 0, although
the pigs eventually would recover if they were not delivered for slaughter.
As previously discussed, there exists two levels of decision problem: the
daily operation within each individual batch, and the tactical decision sce-
nario of the sequence of batches. At each level some appropriate control
measures may be applied, the nature of these is outlined in Table 3.2. Un-
fortunately neither vaccine nor medicine (if any available) is approved in
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Denmark, still we include these as possible decisions in order to do cost-
benefit analysis on these possibilities. We explicitly allow for a reduced
stocking rate and model the possibility to terminate the batch at any of the
given delivery times.

In Denmark, medication of animals requires successive retaining of pigs
for some period. To simplify the model, we will assume that medication is
prohibited once delivery has begun. Furthermore we assume that medication
is a shoot-and-forget decision. Once medicine has been administered we do
not observe the pigs until the onset of delivery. Usually it is not allowed
to use medicine as a preventive measure, hence we assume that at least one
animal is observed sick prior to start of medication. Hence for a large part
of the transitions we can apply either the probability determined earlier as
po1 or the distribution of sick animals at the next decision epoch, given the
current number of sick pigs.

Only one special case needs attention; the transition from the state de-
fined by zero sick pigs at a given time of delivery to the distribution of sick
pigs at the next delivery. Define S1(t) as the distribution of sick animals af-
ter t days given one animal is sick at time t = 0. The distribution of animals
sick at, say, day [ given no sick animals at day 1, can then be defined as the
the mixture:

!
SIL="Y_ poi(l - por)’ 'SI(I - j) (3.10)

j=1

where SI(t) is Gaussian as defined by Equation 3.5. Again we simply replace
this mixture by a Gaussian approximation with mean and variance defined
as the linear combinations suggested by Equation 3.10.

3.4.3 Scenario

When designing scenarios for application of the model the keyword should be
simplicity. Still the analysis conducted so far has emphasized the complicated
nature of the decision complex. It seem somewhat contradictory to illustrate
the full complexity of the system by simple examples. We are nonetheless
going to try, by focusing on only a small subset of the involved parameters.
Specifically we are going to focus on one instance of a rather vicious flu-like
disease (contact rate 8 = 0.5, weight reduction N(up = 7,0% = 3)), for
which there is a vaccine which reduce susceptibility for all animals (efficacy
= 0.95) and a medication (B,eq = 0.3) available.

The population exposed to this disease is a section of 200 animals with
an average daily gain of 0.8 kg. New animals are introduced every 112 days,
with 7 days allocated for cleaning the stables while empty.

Using this scenario we explore how the cost of vaccine and medicine may
influence the optimal policy for different levels of disease pressure ¢.
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Figure 3.3: The optimal vaccination policy given a certain level of disease
pressure for different cost (DKK) of the vaccine.

3.4.4 Scenario results and discussion

The scenario chosen for illustration left us with some possibilities for predict-
ing the outcome, thus we can consider the results as more of a validation of
the computer software than an example of practical importance. However,
the major justification of a system such as this is probably knowledge acqui-
sition (or more likely pinpointing where we know little, nothing or absolutely
nothing about the mechanisms involved).

There seem to be three different elements of the results to report: The
policy at the high level, the medication policy and the delivery policy. Partly
due to specification and partly due to the nature of the problem, it is possible
to present the results for different levels and aspects more or less independent
of the others.

The policy for application of vaccine at different cost is shown in Fig-
ure 3.3. As expected the vaccine is suggested at any level of disease pressure
for low cost and the policy is gradually changed towards recommendation
of vaccine at high levels only as the cost increase. At 30 DKK there is no
economic value in applying the vaccine.

The medication policy is of course dependent on the vaccine policy. Since
the vaccine reduces the contact rate () below that of the medication, there
is no point in applying the medicine in a vaccinated population. This is
reflected in the optimal policy, hence medicine is only given in unvaccinated
batches. Since the performance of the medicine is rather poor (a mere 40%
reduction) the policy is rather conservative.

Since the disease pressure (¢) only influences the probability of the first
sick animal our medication policy could be believed to be the same for all
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Figure 3.4: The threshold curves for applying the medicine at a given day
for a given medicine cost (mc). Only when the number of sick pigs for a
given day lies below the curve is medicine profitable at the specified cost.

levels of ¢ given no vaccine is applied. However, this is not the case for
reasons which we will address shortly.

The actual policy for different medicine costs is given in Figure 3.4 below
for a vaccine cost of 12 DKK, i.e., the medicine is given only at the 2 lowest
levels of ¢ where the batch is not vaccinated (refer to Figure 3.3). The curves
are upper boundaries for the number of sick animals to observe when initiat-
ing the medication treatment. Remember that medicine is assumed to work
just as a vaccine but with much lower efficacy. A medicine that reduce the
effect of disease would have a different optimal policy. It is noteworthy that
even for low cost medicine, treatment is only profitable for late outbreaks
that are determined fast. Hence the medicine treatment is much more sen-
sitive to continuous monitoring of the herd. An outbreak that start in the
evening might have evolved past the point of treatment before the morning.
Automatic monitoring such as discussed in Madsen and Ruby (2000) will
increase the value of available operational control measures, simply because
early warning might be necessary for the strategy to be effective.

Returning to the issue of different policies for administering medicine
at different levels of disease risk we will note that we have observed that
for a very small set of states, i.e., the days from 70-75 and less than 2 sick
animals, it is optimal to give medicine at the 2 states indicating highest
disease states. The reason for this behavior is driven by slightly different
motives than the medicine policy outlined in Figure 3.4. The reason for that
behavior was to reduce the weight loss imposed by the disease. The high-
disease-risk medicine policy aims at reducing the number of sick animals to
reduce the probability of being at high disease risk state at the next batch
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as well. We shall see when discussing the delivery policy how the same is
reflected there.

The complexity of the delivery policy makes it even harder to visualize
this than the previous parts of the policy. Nonetheless, we are going to try
to illustrate how the both the number of sick pigs and the disease pressure
influence the delivery policy. As a first illustration consider Figure 3.5, where
the delivery policy for the first delivery (of 4 with a week between each)
for each level of ¢ is shown as well as the delivery policy for a vaccinated
population. It is obvious that the delivery policy for high levels of disease
risk attempts to adjust the transition towards a reduced disease risk at the
next stage, i.e., cuts a loss now in anticipation of future rewards. However,
there is also a different motivation for the termination of an entire batch of
pigs at a lower weight than what would be expected in a healthy population.
In Figure 3.6 the choice to deliver 120 pigs at the last delivery when all pigs
are sick is a result of the required termination. Not a result of the remaining
pigs reaching optimal slaughter weight at the same time. When only a few
pigs are sick, we know that more will follow, and within a week most of
the pigs will be sick. By terminating the batch we avoid the weight loss
associated by the disease as well as gain an advantage at the next batch
because of reduced disease risk.

In Figure 3.6 the ratio of pigs delivered at each delivery is visualized for
2 opposite cases, where the pigs are either healthy throughout the delivery
or all pigs are sick prior to the first delivery. It is easily seen that while the
scenario of no sick pigs result in an expected delivery pattern, the case of
all sick pigs is clearly the result of forced delivery of pigs below the optimal
delivery weight. This is imposed by the restraints in production system,
where new pigs are awaiting to fill the section, thus forcing us to empty the
section at last delivery.

The differences displayed in delivery policies affects the transition from a
risk level at the current batch to the next, by means of increased probability
of transition towards a lower level when cost of vaccine increase. The reason
for this behavior lies in our (arbitrarily) chosen model which always reduce
the expected level of ¢ in the next stage until the lowest level where it stays
almost surely. If no vaccine is available it is important to reduce the risk of
disease fast, hence deliver pigs early just to get rid the infectious animals. In
presence of a vaccine as powerful as the one modeled here, we can disregard
the benefit of early delivery as means of reducing disease transmission, simply
because the disease develops slowly in a vaccinated population.

Hence it can be questioned whether pigs actually are better of without
a vaccine, since that situation actually promotes an adjustment of the pro-
duction towards a state with less risk of disease!
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Figure 3.5: The delivery policy at first delivery (out of 4) expressed as the
number of pigs left in the system given the number of sick pigs for each level

of ¢ and for a vaccinated population.
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Figure 3.6: The optimal delivery policy as number of pigs delivered at each
of 4 deliveries for the 2 cases of all pigs healthy throughout delivery and all
pigs sick prior to delivery.

3.5 Concluding remarks

The decision complex faced by slaughter pig producers can of course be ex-
tended beyond the one outlined here, where we focus on delivery decisions
and control strategies for epidemic diseases. However, we feel that we have
raised an important point. The evaluation of elements such as disease con-
trol can be incorporated into the production system and decision complex
already faced by the producer. By this approach it is possible to perform an
economic evaluation of the suggested control strategies for a specific disease,
thus allowing the pig producer to assess the value of, e.g., a vaccine within
his own production system.

The section chosen here as modeling unit is typically one of many parallel
sections operated by the pig producer. The usual system refills a section in
a fortnight every 16 weeks, hence 8 sections are needed to allow for arrival
of new pigs every week. This implies that we need to consider the risk of
cross-section infection. Our model cannot directly address this issue, but can
adjust by a suitable model disease pressure transition from batch to batch
(Equation 3.8).

Our analysis included elements which have more or less been ignored
by the example, e.g., the test decisions. The observations regarding disease
have been modeled as visual inspection (of perfect performance) and the
distribution of weight is assumed known implicit by knowing the days since
start of the batch, start weight and number of sick animals. The reason we
have ignored these in the specification of an example has to do with our
choice of modeling framework as well as our attempt to focus on the linking
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of optimal control strategies and delivery policies.

We believe that the analysis of a framework for simultaneous optimization
of delivery and control strategies and the resulting model will serve as a useful
tool towards a better understanding of the mechanisms involved in this kind
of decision complex and system.
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CHAPTER 4

Estimation of farm specific parameters in
a longitudinal model for litter size with

variance components and random dropout
(Submitted for journal publication)

Nils Toft and Erik Jgrgensen

Abstract: The estimation of farm specific parameters is often
ignored in studies of decision support systems such as, e.g., sow
replacement problems. This study concerns the specification and
estimation of farm specific parameters in a model for litter size
required by a replacement problem considering culling based on
productive performance. This implies a joint distribution of the
litter size at the parities under consideration. A non-linear para-
metric mean curve is used to model the expected litter size at
different parities for sows within the same herd. The covariance
matrix is modeled using variance components of random effects,
serial correlation and measurement error. Data from a total of 43
herds are used to devise a likelihood based inference, using maxi-
mum likelihood to obtain initial estimates for maximum posterior
estimation of farm specific parameters. The maximum posterior
approach is required to obtain reasonable estimates in the cases
where on-farm registrations are inadequate.

4.1 Introduction

Animal replacement problems is an area which has been developed through
the last 30-40 years, see e.g. Kristensen (1994) for a survey. Usually an



60 Estimation of farm specific parameters

application is well founded in terms of qualitative modeling, e.g., definition
of relevant decision variables and their structural transition through decision
stages. The quantitative modeling of parameters, however, is rarely given the
same attention. An example is the sow replacement model of Huirne (1990),
where the model is well founded in terms of structure in state space, but use
parameters obtained from literature to simulate a typical Dutch farm. As
demonstrated in Jgrgensen (1992) the variation among farms is too large to
ignore: using parameters common to all herds will lead to erroneous results
for some farms. Hence, it is necessary to use farm specific data to estimate
the relevant parameters in a decision support system.

For a decision support system to aid replacement based on production
results, i.e., piglets born per litter, a model for expected future production
given the observed history of litter sizes is required. Thus a joint distribution
of the expected litter size of the, say, first 15-20 litters is required. Of
special interest is the covariance structure of the distribution, since culling
based on production results rely on this dependence. Independence between
subsequent litters would allow culling to be based solely on age: once the
expected litter size for a given parity drops below a threshold value (which
depend on the shape of the mean curve) replacement is optimal.

The purpose of this study is to describe a model for litter size and a
method for estimation of the farm specific parameters required by this model.
The choice of model must be a tradeoff between complexity and how well
it describes data. The more parameters required to describe the model,
the worse it is in terms of state space complexity of the associated decision
problem. The estimation of the parameters must be able to address missing
information at two levels. Records for the individual sows rarely contains
registrations for all the parities of interest. Sows are culled at all parities
for various reasons. Hence estimation within the herd must be done by
methods that can handle missing values. In some herds the culling might be
so hard that sows rarely grow old, hence estimation of the expected mean and
covariance at the high parities is not possible using farm data only. To obtain
useful estimates for such farms as well, the estimation procedure must include
additional information, such as, e.g., an estimate of the distribution of the
parameters within a population of herds. This implies that we should model
the mean and covariance of the individual farms using the same parametric
model.

4.2 Data

Data for this study has been extracted from the data base of the Danish Ap-
plied Pig Research Scheme (DAPR) run by the National Committee for Pig
Production (Pedersen et al., 1995). The registrations are similar to the regis-
trations used by the commercial nation-wide used Management Information
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System, except they are performed in close scrutiny by a technician, who
visits the farm on a weekly basis. Herds are numbered to ensure anonymity
of the participating pig producers. Data are registrations of different sow
events and include traits like: day of farrowing, sow number, parity number,
number of piglets born alive, number of stillborn piglets, day of culling, herd
number etc. The farms in DAPR usually participate for a couple of years,
hence the data consists of many, short time series. For this study 43 herds
with a total of 123227 registrations is used. We have chosen to model the
total number of piglets born. It can be difficult to establish whether piglets
are stillborn or died shortly after birth, hence additional variation might be
introduced by using number of piglets born alive. We will ignore the differ-
ence in time between successive litters and treat parities as equidistant. In
general it is assumed that the possible variation in time between farrowings
does not contribute much to variation in litter size.

For modeling of litter size we transform data to series for individual sows,
ideally these series would all be of the desired length. However, missing
values occur for at least two reasons: censoring and drop-out. Censoring
occurs as either left or right censoring when sows were present prior to the
beginning of the study, or the study terminates before the sow is culled. The
series can have either or both kinds of censoring. Dropout occur because the
farmer is inclined to replace sows that perform at an unsatisfactory level.
Hence the sows in a herd must be subject to a biased selection. The sample
mean curve must be higher than the expected mean if no sows were culled.
The mean curve in absence of culling can be regarded as the true mean. One
objective of this study is to describe the evolution of the true mean as the
parity increases.

For our study two properties of data for the individual herds are impor-
tant: Long series for individual sows, and observations at high parities. In
Figure 4.1 the combination of these two traits is plotted, the closer to the
axes a herd lies, the less information can be anticipated from the data. The
nature of a sow herd ensures that given a reasonable time span of observation
in the herd, the parities below the maximum observed parity will all have
observations as well, hence maximum observed parity can be considered a
reasonable indicator of coverage through parities. The exceptions to this
reflection must be the two leftmost dots, where max length of the series are
1 and 2 respectively, but max observed parity is 10 and 9. The herds un-
derlying these combinations participated in the study for a very short time.

We will assume that observed litter sizes for sows at given parities in
absence of culling (i.e. without biased selection) are realizations of normally
distributed random variables. The normal plots for the observed values for
the first 9 parities of a herd are shown in Figure 4.2, the other herds provides
similar plots. Note that, as the parity increases the number of observations
underlying each plot decreases. Obviously the assumption of Normality in
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Figure 4.1: The combination of maximum observed parity and max series
length for the herds in the study. A number to the right of a dot indicates
more than one herd with this combination. The information in data decreases
as the dots are placed closer the axes.

these plots (e.g., observed litters) can be questioned, apparently to few low
litter sizes are produced, the result is a right-skewed distribution. Thus, the
natural representation of the litter size using a Poison distribution would be
even worse.

To get an idea of the variation among herds, the sample means and sam-
ple autocovariance has been calculated. The means are shown in Figure 4.3
individual means for the herds are joined by lines as visual aid. Observe how
the curves seems to share the same pattern of increasing average until parity
4-5 followed by a steady decrease afterwards. Fluctuations towards the end
of the curves is the due to the rapidly decreasing number of observations
underlying these high parity means.

We will assume variance homogeneity across parities. The autocovari-
ance between different lags is constructed as averages of covariance between
lags of elements of the sample covariance matrix constructed using pairwise
complete observations. Thus the uncertainty associated with the sample au-
tocovariance increase dramatically as lag between parities grows. However,
Figure 4.4 still gives an impression of a common covariance structure. The
plots suggest that initial analysis should allow for a auto-regressive term as
well as an additive effect.

We will assume that herds are independent and share the same mean and
covariance structure with parameters from a common distribution. Within
the herds we assume that sows are independent with common mean and
covariance, i.e., that series of litter sizes from individual sows are realizations
of the same multivariate Normal distribution.
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4.3 The model

To model the litter size of sows we need three elements: a part describing the
common mean of a herd, a part describing the common covariance structure
and a part describing the dropout process (culling) in a herd.

Assume the herd has m sows, with up to n litters per sow. In order to
model the dropout process we introduce y;kj as the hypothetical litter size
for sow % at litter j, which would have been observed in case of no missing
values. Then Y is an n-dimensional vector of measurements for the sth sow
and we assume that

Yi ~ Nop, V), (4.1)

i.e., a multivariate Normal distribution. Let Y; define the corresponding
actual observations with missing values because of culling (drop out) encoded
as 0. Let d; be the index of the first missing value due to culling in Y;. This
implies that 2 < d; < n indicates the dropout time, whereas d; = n + 1
identifies no dropout. If we ignore censoring, the relationship between Y5
and Yj; can be expressed as Yj; = Y}} for j < d; and Yj; = 0 elsewhere.

4.3.1 The mean curve

The curve describing the mean should be non-linear in order to allow a
structure where the expected litter sizes increase for the first 5-6 litters and
then start to decrease. An obvious approach could be to fit a polynomial,
however, we are especially interested in the prediction of litter sizes outside
the region of observations. Thus we adopt the curve suggested originally by
Jorgensen (1992) as a combination of a straight line and a Gaussian curve
i.e.,

pj = —01 exp(—(j% — 1)02) + 03 — 045 (4.2)

For certain values of @ = (01,02, 03,0,) the straight line dominates for large
parities, while the Gaussian term causes the curve to bend downward for
smaller parities. It is possible to reparametrize the model in terms of more
easily interpretable parameters as suggested in Jorgensen (1992). A sim-
ilar study on a smaller sample of herds (Dethlefsen and Jgrgensen, 1996)
indicates that this mean curve is a reasonable trade-off between complexity
and available data. A complex model is used in the first parities, whereas a
simpler linear model is applied at higher parities when observations become
sparse.

4.3.2 The covariance structure

An unstructured multivariate approach to repeated measures leaves the vari-
ance matrix 'V entirely unspecified, i.e., a total of n(n + 1)/2 parameters are
required to specify the variance matrix (n is the max number of litters of a



66 Estimation of farm specific parameters

sow, hence V is a n x n-dimensional matrix). It is a more or less straight for-
ward approach to estimate these parameters as the sample covariance given
we have enough data.

Here we use variance components in order to obtain a parsimonious
parametrization of V. In Diggle (1990) it is suggested that this can be
achieved by incorporating time series structure into the variance matrix of
the multivariate Normal distribution of (4.1).

Let y;; be the number of piglets of the ith sow’s jth litter. Assume that
13 can be decomposed as y;; = u; + €;;, where pu; is the deterministic mean
described in (4.2) and ¢;; is a random, zero-mean component. Adopting the
notation in Diggle (1990) ¢;; can be decomposed into three components,

€ij = A + M;(j) + Zij. (4.3)

In (4.3) the A; are mutually independent N (0,2?) random variables, which
represent the variation between sows. The Z;; are mutually independent
N(0,72) random variables representing measurement error, or short term
random influences. Finally the {M;(j)} are independent stationary random
processes with common autocovariance function y(u) = o?p(u), where the
correlation function p(u) is such that p(0) = 1 and p(u) — 0 as u — 0.
Here we assume an exponential correlation function,

p(u) = exp(—au), (4.4)

i.e., a first order auto-regressive stationary process (AR(1)) under our as-
sumption of equidistance between parities. The autocovariance function of
€;; can be derived as,

v(u) = (4.5)

vi+ 12402 ,u=20

v? +o?exp(—au) ,u > 0.
Hence, we have reduced the required set of parameters from n(n + 1)/2
to just 4. Define ¢ as the parameter vector describing the variance, i.e.,
¢ = (v%,72,0%,a). In general we cannot reduce this model when applying
it to the full set of herds. However for some herds this covariance structure
is over-parametrized which cause trouble in estimation of the parameters.
This regards especially the additive effect, which for most herds decrease to
nearly zero. As part of the initial analysis we will test for possible reductions
of the model in terms of variance components. To compare the individual
models we use Akaike’s information criteria (AIC), which favor the model
where

AIC = —2log-likelihood + 2n (4.6)

is smallest (n is the number of parameters in the model).
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4.3.3 The dropout structure

Let Hy = (yi1,.--,yix) denote an observed sequence of litter sizes up to
parity £ — 1, and define pg() as the probability of dropping out between
parity d — 1 and d. Diggle and Kenward (1994) distinguish between three
different types of dropout: Completely random dropout where p4() depends
neither on Hy nor Y}, random dropout where py() depends on Hy but not
on Y, and informative dropout where pq() depends on Y (and possibly
H,). Informative dropout might be present in e.g. medical studies where the
patient drops out of the study because she is too ill to attend the meeting
(or dies). However, our dropout can be classified as random dropout, i.e., we
expect culling to be based on previously observed litter sizes. This implies
that the probability of dropout between parity d — 1 and d can be modeled
as:

P(d; = d|history) = pq(Hg, B) (4.7)

where B is a vector of parameters. The important feature of this dropout
model is that dropout is modeled independently of the parameters describing
mean curve and covariance structure. The modeling of dropout must admit
the distinction between involuntary culling and culling based on production
parameters. In our case we could consider any culling not related to litter
size as involuntary culling, i.e., reproductive failure etc.

Diggle and Kenward (1994) suggest that a logistic linear model is used to
model Equation 4.7. The true nature of the drop-out process is likely to be
complex, and the logistic regression is a reasonable empirical model which
permits investigation of the possible effect of including covariates, such as
time.

For an initial dropout structure we will assume that dropout depends on
the previous litter size only, but assume the following relationship:

logit(p;) = Bj,0 + Bj,1yj—1 + 5]',23/]2'—1 (4.8)

i.e. pj(Hj,B) where B = (B1,0,61,1, 1,2 - -+ Bn,0,Bn,1,Pn,2). This implies that
the dropout structure or culling rate depends on the parity number as well
as the observed previous litter size. It seems reasonable to assume such
dependence, primiparous sows are unlikely to be culled due to low litter size,
or at least the threshold must be much lower than for older sows. In fact
a standard advise in Denmark is to completely ignore the size of the first
litter. This corresponds to assuming (1,1 = 1,2 = 0 in the above model.
The 3, elements can be considered as the joint effect of all other causes
than low production. Data does not provide much information about culling
if explored on individual parities, hence we simplify the above model further
and consider culling according to three different models: For first parity sows,
for sows between second and fifth parity, and for sows at higher parities. We
have tested the full model for possible reductions in each case. This suggest
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(using Akaike’s information criteria) that the majority of herds fit the simple
model (intercept only) for first parity sows, while the full model is preferred
in the other two cases. The models suggested here only allow one-step back
dependence of dropout. Logistic regression model can of course be extended
to include the effect of earlier litter sizes. For future reference we list the
models here, the dropout probabilities will henceforth be referred to as pq,
po_s5 and pg+, i.e.,

logit(p1) = B (4.9)
logit(pe 5) = B2 50+ P2 51Yj 1+ Po52Y7 (4.10)
logit(pes) = Bo+,0+ Bot+1¥j—1 + B+ 297 1 (4.11)

where we have kept the original notion of y; 1 to represent the litter size of
interest.

4.3.4 The joint distribution

We can now describe the joint distribution for Y; using the sequence of
conditional distributions of Y;;. We can ignore the subscript 7 since all sows
are assumed to share the same distribution. Let f7 (y;) denote the univariate
Gaussian density of Y;* and f7 (yfc) the multivariate Gaussian density of the k
to j elements of Y*. Define f;(y;|H;) as the conditional univariate Gaussian
distribution of y; given H;. Similarly define f;(y;), fj(yi), fi(y;|H;) as the
distributions for the observed data.

We see that the relationship between Y* and Y defined earlier and the
dropout process (4.7) implies that

P(y; = O0|Hj,y;—1 =0) =1 (4.12)
P(y; = 0|Hj,y; -1 # 0) = p;(H;,B) (4.13)
fily;|Hy) = {1 = p;(H;,B)}f; (y;|Hj,0,8),for y; # 0 (4.14)

Using equations (4.13)-(4.14) we can determine the joint distribution of Y.
Suppressing dependence on the parameters 8,¢ and 8 and assuming no data
missing because of censoring the PDF for a complete sequence is

n

Fay?) = fi() T fulyelHi) = £ (1) {1 — pi(HR)} (4.15)
k=2

k=2
whereas for an incomplete sequence with dropout at time d, i.e.,
Y =(Y1,...,Y43-1,0,...,0), the PDF for the joint distribution is

d—1

fa(y?) = fi(y1) {H fk(yk|Hk)}pd(Hd)

k=2

-1
= fi(yi™h) {H{l _pk(Hk)}}pd(Hd) (4.16)
k=2
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Censoring

Because of censoring the data seldomly consist of complete series, hence the
expressions in (4.15) and (4.16) should be modified to allow for right or left
censoring. This is simply done by only considering the part of the series
which contain data, i.e., start at litter [ instead of the first litter and likewise
end at litter s rather than the nth litter.

4.4 Estimation

Estimation should be likelihood based to handle missing values and dropout
structure. We propose the following procedure for estimation of parame-
ters for individual herds. First derive the likelihood function and obtain
maximum likelihood estimates for the herds where data is of a quality that
permits credible estimates. Using these we estimate the population mean
and between-herd variance of the parameters. This distribution of parame-
ters among herds is taken as our prior belief of parameters in a herd. The
combination of this prior and the likelihood function can be used to obtain
maximum posterior estimates of the parameters of individual herds, i.e., the
information from data adjusts the initial estimates to adapt the properties
of the herd. This implies that absence of data force estimates to be based
on the specified prior. Hence we can obtain estimates of, e.g., 84 even when
no high parity litters are available from the herd.

4.4.1 Likelihood function

The joint distribution derived in Section 4.3.4 for the different scenarios
(Equations (4.15)-(4.16)) and the similar derivations in the case of censoring
all share the same property. The joint distribution can be written as the
product of terms involving ¢ and 8 describing the evolution of the true mean
and B modeling the dropout structure. The consequence is that the log-
likelihood for @ and ¢, and B can be written as the sum of independent
terms:

This is a special case of the general expression in Diggle and Kenward (1994)
and implies that we can derive ML estimates for the mean curve indepen-
dently of the dropout structure since Li() and Lo() can be optimized inde-
pendently. For m sows, let (yi)Zi ={yij : j = ki, ..., d;} denote the observed
litters of the ith sow. Recall that f;-‘ (yfc) denotes the joint PDF of observed

litters for a given sow. Let (f;)y, (ygz) denote the joint PDF for the ith sow,
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then

log ()3, (v1%) = —{(d: — ki — 1)/2) og(2r) — 5 log |V (6)| -
oo - 0] [ViE@)] [l - u] @)

where ) = (uy,(8), ..., uq.(8)) and V,’i:: (@) is the relevant part of the co-
variance matrix. Lq() is just the sum of (4.18) for each sow, i.e.,

L1(0,¢) =) _log(fi)s, ((yo)i) (4.19)
=1

This expression can be optimized using a non-linear optimization algorithm,
like the Powell algorithm from Press et al. (1992). Care should be taken to
avoid problems with negative values of parameter estimates. All parameters
are assumed non-negative. This can be efficiently accomplished by a log-
transformation of the parameters, or by adding a non-negativity constraint.
The latter has been used here.

Since estimates for the parameters regarding drop-out structure can be
obtained independently of the remaining parameters due to our assumption
of random drop-out, analysis of drop-out is carried out by means of general-
ized linear models using the glm function in R (R D, 2000).

4.4.2 Maximum Posterior estimation

The ML estimates derived in the previous section are rather sensitive to
the nature of available data. As explored in the initial data analysis the
number of sows, the length of the series and the coverage of the entire set
of parities vary considerably between herds. For some herds the quality
data does not permit reasonable ML estimates, however, penalized Mazimum
Likelihood (Armitage and Colton, 1998) provides a suitable alternative for
estimation in sparse herds. The best motivation for this approach is in the
Bayesian interpretation, i.e., suppose we write the likelihood of the data Y
given the unknown (0, @) as:

p(Y10,¢) o< exp(L1(6,9)) (4.20)

and place a prior distribution on (8, ¢) of the form

p(6,9) o< exp(®(6, ¢)) (4.21)

then by Bayes’ theorem

p(0,4|Y) o exp(L1(0, ¢) + 2(0,¢)). (4.22)
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The (§,¢) estimator maximizing Equation 4.22 is called the mazimum a
posterior estimator (MAP). Equation 4.20-4.22 implies the penalized log-
likelihood function

L(0,¢) = L.1(6,4)+2(6,¢) = Zlog £1)4,(vi)i) +log(m(6, log(¢)), (4.23)

where L1() is log-likelihood function defined in Equation 4.19 and = () is the
multivariate Normal density of the joint distribution of @,log(¢) defined by
the sample mean and covariance of the ML estimators for the herds with suf-
ficient data. The log-transformation of the variance component parameters,
log(¢), is chosen to improve the approximation with the Normal distribution.

4.5 Results

Results can be divided in two parts since analysis of dropout and litter
size can be carried out independently, hence reported independently. As
mentioned earlier, the choice of dropout model can be questioned, still under
the assumption of random dropout, the results regarding litter size model
are not affected when inference is likelihood based. As we have previously
pointed out our primary concern is the analysis of the litter size model, hence
we do not investigate dropout in a maximum posterior setting, but merely
present and discuss the dropout results from the herds where ML estimates
of litter size parameters could be obtained. Thus we implicitly assume that
these herds provides enough data to ensure sound estimates for dropout as
well.

4.5.1 Litter size estimates

Initial analysis showed that ML estimates for some herds were questionable.
That is, the optimization either failed to produce a maximum or the esti-
mates were obviously far from any reasonable values. The problems occurred
when no observations for higher parities were available (to estimate ;) or
when the individual series were too short to produce a reasonable estimate
of correlation structure. This suggested that all herds with no series longer
than 7 was dropped from the initial study, in Figure 4.1 this implies that the
herds representing the 13 leftmost combinations was dropped. The remain-
ing 30 herds was analyzed using the full model with non-linear mean curve
and variance components reflecting short-term variation (Z;;), additive ef-
fect (A4;) and serial correlation (M;(7)). We also analyzed the 30 herds with
the reduced models of no additive effect and no serial correlation. Akaike’s
information criteria (Equation 4.6) implies that the log-likelihood of the full
model (8 parameters) must be at least 1 greater than the log-likelihood of the
model without additive effect (7 parameters) and 2 greater that the model
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without serial correlation (6 parameters). Out of 30 herds, 28 favor the
model without additive effect, 1 favor the full model and 1 suggest the last
model. Hence we proceed with the model reduced to short-term variation
and serial correlation. The estimates for the 30 herds are given in Table 4.1
below.

Using the estimates in Table 4.1 the mean and covariance matrix needed
for the penalized maximum likelihood estimation was calculated. Define ¢ =
(01,02,03,04,10g(7%),log(c?), log(a))?, then we assume that 4 is multivariate
normal distributed with mean

pp = (2.849,0.243,13.999,0.229, 1.824, 0.856, —2.109)", (4.24)

and covariance

0.5563 —0.068 0.540 0.078 0.007 0.021  0.025
—0.389 0.0565 —0.065 —-0.013 0.007 0.006 —0.005
0.827 —0.267 0.769  0.097 —0.005 0.017  0.050
Yy =1 0790 -0.416 0.830 0.018 —0.002 0.000  0.009
0.098 0.317 —0.055 —0.168 0.009  0.003 —0.009
0.185 0.172  0.123 —0.022 0.191 0.024 —0.020
0.073 —0.044 0.125 0.144 —0.196 —0.288 0.207

(4.25)
with correlations given below the diagonal. Note the high correlation be-
tween the individual parameters describing the mean curve (the first 4 rows
and columns in (4.25)). To see if there was a difference between using the
population mean in Equation 4.24 and the individual estimates of Table 4.1
we applied once more AIC. The model of individual estimates used 210 pa-
rameters as opposed to the 7 parameters of the model using the common
mean. The difference in log-likelihood was so big in favor of the full model,
however, that AIC as well as x?-test, using twice the difference between log-
likelihood, with 203 degrees of freedom absolutely favored the full model. To
see how well the assumption of Normal distribution of model residuals fit, we
have produced normal plots for the residuals (difference between observed
and predicted values, where the predicted values are E(y;|yi—1,---,¥1), €.&,
the conditional distribution of the expected litter size given the observed his-
tory). The plots in Figure 4.5 use the same herd as in Figure 4.2, but only
series without left censoring have been used. It seems that the assumption
of normality in residuals is somewhat justified, although the first 3 parities
are questionable.

The maximum posterior estimates of all 43 herds (and the prior mean
for reference) are given in Table 4.2 below.

To see how the estimated mean curve and sample means corresponds
plots have been constructed using herd 2 in Table 4.1 and herd 12 in Ta-
ble 4.2. The ML estimate is used here for herd 2, to get an impression of the
"pure" effect of dropout.
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01

02

03

04

7:2

5’2

~

a

35
36
37

2.624
2.742
2.485
2.334
3.805
2.678
1.890
2.994
1.778
1.968
3.021
2.974
2.620
2.887
2.432
3.118
2477
2.815
2.508
2.671
3.917
2.920
2.142
4.302
3.364
2.045
2.806
3.547
2.361
5.248

0.189
0.545
0.091
0.359
0.256
0.246
0.295
0.154
0.505
1.334
0.253
0.159
0.328
0.193
0.187
0.152
0.132
0.239
0.083
0.121
0.159
0.158
0.182
0.087
0.086
0.206
0.197
0.161
0.164
0.082

13.323
14.176
14.829
13.815
15.184
14.005
13.506
13.995
13.643
13.011
14.771
14.459
14.566
13.092
12.889
13.921
13.493
13.633
13.391
13.839
14.518
13.475
12.851
15.589
14.464
13.342
13.241
14.643
13.458
16.837

0.224
0.180
0.320
0.217
0.306
0.212
0.189
0.139
0.068
0.014
0.406
0.259
0.235
0.205
0.116
0.299
0.063
0.202
0.200
0.238
0.366
0.048
0.181
0.300
0.345
0.090
0.136
0.396
0.226
0.684

7.288
6.718
5.600
6.089
6.443
6.090
6.704
6.833
6.035
7.410
5.635
5.664
5.416
6.315
5.483
5.714
5.707
5.787
5.684
6.427
6.870
6.837
5.777
7.043
6.503
5.869
6.549
5.127
6.801
6.253

2.504
2.639
2.527
2.630
2.989
2.743
1.937
2.729
2.374
2.595
1.799
1.686
2.289
2.089
2.197
2.467
2.136
3.006
2.339
2.203
2,776
2.054
2.039
2.412
2.491
2.648
2.733
2.266
1.679
2.395

0.109
0.086
0.094
0.156
0.130
0.122
0.126
0.184
0.148
0.102
0.167
0.170
0.163
0.126
0.110
0.128
0.097
0.045
0.108
0.051
0.170
0.141
0.084
0.104
0.140
0.117
0.071
0.553
0.208
0.078

Table 4.1: The ML estimates of the reduced model @ and ¢*

for the 30 herds where data allows ML estimation.

= (2,0%0

)
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Figure 4.5: Normal plots for residuals of predicted versus observed value
for the first 9 parities of a typical herd, lines through data and distribution
quartiles are added. N is the number of litters underlying each plot.
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| Herd |

61

62

O3

04 |

7A.2

6’2

~

a

21*
22*
23
24
25
26
27*
28
29
30
31
32
33
34
35
36
37
38*
39*
40*
41*
42*
43*

2.737
2.768
2.439
2.571
2.398
3.632
2.703
1.924
3.100
3.248
1.973
0.758
2.082
2.943
2.885
3.820
2.627
2.904
2.470
3.106
3.889
2.812
2.734
2.822
2.666
2.707
3.037
3.572
3.373
2.276
3.504
3.311
2.295
2.930
3.133
2.529
3.529
3.739
2.213
2.649
2.032
2.736
2.833

0.186
0.525
0.495
0.094
0.352
0.271
0.247
0.301
0.153
0.243
0.449
0.687
0.799
0.261
0.165
0.141
0.327
0.180
0.175
0.150
0.119
0.142
0.122
0.232
0.078
0.122
0.126
0.170
0.143
0.158
0.110
0.087
0.188
0.180
0.173
0.158
0.103
0.119
0.360
0.186
0.277
0.286
0.244

13.408
14.205
14.038
14.816
13.842
14.996
14.015
13.495
14.119
14.019
13.782
12.960
13.154
14.662
14.364
15.241
14.569
13.202
13.013
13.938
14.841
13.688
13.845
13.692
13.589
13.861
14.304
14.154
14.126
13.045
14.671
14.377
13.622
13.443
14.199
13.616
14.761
14.963
12.934
13.915
12.981
13.858
14.014

0.231
0.185
0.189
0.317
0.219
0.282
0.213
0.185
0.164
0.245
0.097
0.000
0.039
0.385
0.250
0.224
0.236
0.219
0.134
0.299
0.386
0.159
0.125
0.209
0.222
0.241
0.237
0.301
0.181
0.201
0.204
0.331
0.137
0.166
0.319
0.247
0.375
0.265
0.045
0.231
0.164
0.221
0.230

7.143
6.666
6.229
5.597
6.189
6.534
6.161
6.541
6.887
6.358
6.088
9.196
7.375
5.578
5.580

6.53
5.468
6.269
5.564
5.790
6.337
6.616
5.692
5.839
5.721
6.285
5.507
6.907
6.661
5.742
6.784
6.480
5.964
6.514
5.692
6.505
6.147
6.041
5.491
6.102
5.461
6.198
6.168

2.455
2.641
2.264
2.413
2.453
2.745
2.579
2.055
2.535
2.329
2.329

2.09
2.599
1.907
1.908
2.177
2.251
2.172
2.205
2.384
2.053
2.579
2.229
2.786
2.293
2.309
2.335
2.548
2.295
2.110
2.536
2.405
2.460
2.674
1.906
1.942
2.437
2.696
2.278
2.199
2.078
2.335
2.343

0.110
0.097
0.115
0.103
0.132
0.116
0.110
0.144
0.143
0.123

0.13
0.087
0.104
0.178
0.188
0.157
0.154
0.131
0.111
0.121
0.175
0.101
0.111

0.07

0.11
0.079
0.132
0.134
0.143
0.101
0.118
0.129
0.108
0.082
0.274
0.199
0.109
0.108
0.113
0.093
0.116
0.122
0.122

Prior

2.849

0.243

13.999

0.229

6.222

2.379

0.136

Table 4.2: The maximum posterior estimates of the reduced model # and
) for all 43 herds A star in Herd number indicates a herd
excluded from prior analysis. At the last line the prior estimated from the
ML samples in Table 4.1 is given.

¢* = (T2’ 0-27a
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Figure 4.6: The estimated mean curves and the sample means for herd 2
(left), and herd 12 (right)

The sample autocovariance and the estimated curves have been plotted
for the same two herds in Figure 4.7. By coincidence the serial correlation
structure is almost identical in the two herds.

4.5.2 Dropout estimates

As discussed Section 4.3.3, the model for dropout has been reduced some-
what because data regarding dropout does not allow the full analysis. The
logit model is essentially a function describing the probability of a positive
outcome (culling) in a Binomial distribution. Data for this model is a ma-
trix where one row contains the counts of sows culled at a certain litter size
for the parity/parities under consideration (successes) and the other row
contains counts of sows not culled (failures). For the 2 models including
several parities, the counts are summed through parities for different lit-
ter sizes. Furthermore, litter sizes up to and including 8 are summed as
one, just as litter sizes from 18 and up. The estimates for the parameters
B = (81,0, B2-5,0, B2-5,1,B2-52, B6+,05 B6-+,1, B6-+,2) used in Equations 4.9-4.11
are given in Table 4.3 The first parity model produces estimates between -
0.988 and -2.665, which corresponds to dropout rates between 0.27 and 0.06
in the 2 herds, i.e., more than 4 times higher dropout rate in the first herd
for first parity sows.

To compare the estimates with sample dropout rates, the estimated
dropout curves for the 3 models has been plotted along the sample rates
for herd 1,2 and 17 in Figure 4.8. The estimate of dropout rate at the higher
litters can interpreted as an involuntary culling rate, since it is fair to assume
that sows producing 16 to 18+ litters are likely to have been culled for other
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‘ Herd ‘ B1,0 ‘ Ba—s50 Po-51 P52 ‘ Bero Ber1  Por2 ‘
11]-1463 | 2.139 -0.524 0.017 | 3.060 -0.55 0.018
2| -1.786 | 3.597 -0.674 0.021 5.553 -0.688 0.018
4 |-1.700 | 0.727 -0.281 0.006 2.588  -0.37 0.007
5| -1.348 | 4.092 -0.748 0.022 3.605 -0.421 0.006
6 | -1.776 | 3.259 -0.765 0.028 5.796 -0.845 0.029
71-0.988 | -0.214 -0.120 0.002 2.646 -0.37 0.01
8 | -1.745 | 4.088 -0.804 0.027 | 0.649 -0.045 -0.002
9 |-2.660 | 3.792 -0.909 0.032 7.059 -1.02 0.033

11 | -2.645 | 6.124 -1.041 0.031 3.114 -0.289 0.003
13 | -2.665 | 6.046 -1.186 0.040 5.806 -0.819 0.024
14 | -2.537 | 5.276 -1.068 0.037 6.702 -0.979 0.032
15 | -1.703 | 0.511 -0.309 0.010 4.065 -0.640 0.021
17 | -2.118 | 3.586 -0.761  0.025 7.331 -0.951 0.029
18 | -1.420 1.961 -0.494 0.015 2.928 -0.489 0.015
19 | -1.733 | 0.995 -0.368 0.011 5.350 -0.833 0.026
20 | -2.168 | 5.185 -1.104 0.038 5.792 -1.006 0.031
23 | -2.418 | 6.881 -1.199 0.038 6.569 -0.851 0.026
24 | -1.794 | 2.386 -0.620 0.021 5.529 -0.876 0.031
25 | -2.066 | 5.712 -1.152 0.041 2.347 -0.435 0.011
26 | -1.397 | 2.136 -0.478 0.013 3.363 -0.439 0.008
28 | -1.784 | 0.543 -0.266 0.006 7.955 -1.232 0.044
29 | -2.128 | 3.250 -0.711 0.023 | 12.762 -1.759 0.052
30 | -2.327 | -0.010 -0.250 0.004 | 4.691 -1.022 0.036
31 | -1.522 | 2.543 -0.633 0.023 3.258 -0.400 0.010
32| -1.938 | 2.579 -0.573 0.017 | 3.730 -0.634 0.019
33 | -1.965 | 2.788 -0.751 0.026 | -0.147 -0.007 -0.001
34 | -2.243 | 5.621 -1.198 0.042 6.563 -0.947 0.028
35 | -2.512 | 7.076 -1.422 0.054 8.629 -1.297 0.045
36 | -2.338 | 5.169 -1.075 0.038 | 10.800 -1.662  0.057
37| -1.996 | 2.687 -0.598 0.019 2.324 -0.370 0.012

Table 4.3: The ML estimates of the 3 models for

dropout, ie., 8 =

(B1,05 B2—5,0, B2—5,15 B2—5,2, B6+,0, B6+,15 B6+,2) from Equation 4.9-4.11.
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Figure 4.7: The estimated autocovariance curves and the sample autocovari-
ance for herd 2 (left), and herd 12 (right)

reasons.

4.6 Discussion

Some initial comments regarding the results presented in the previous section
might be appropriate.

The last two herds (42 and 43) in Table 4.2 have extremely few observa-
tions per sow (1.0 and 1.03). It can be seen, that the consequence is MAP
estimates very close to the prior mean. In general the MAP estimates differ
from the ML estimates in Table 4.1 in the cases where both estimates were
obtained. In the analysis we have assumed that a sample size of 30 herds
makes the influence of individual farms negligible in the prior, hence we have
used the same prior in all MAP estimates. The MAP estimates reflects that
inference is based on data as well as prior information, hence they lie closer
to the prior mean than the ML estimates.

The left plot in Figure 4.6 shows, how the mean curve for herd 2 in
general lies below the sample means at higher parities as a result of culling
low producing sows. The paradox of illustrating this effect is that when
high parity sample means are available, it implies that culling is moderate
otherwise the sows would be culled earlier. Thus only the small deviations
between sample means and mean curve in herd 2.

There seems to be apparent problems with estimation in herd 12 even
using the MAP estimates (Table 4.2). This is somewhat explained in the
sample means (Figure 4.6, right plot). It is obvious that the suggested mean
curve cannot be fit to the sample means. Apparently the samples are based
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Figure 4.8: The estimated dropout curves and sample dropout rates (grey
vertical lines) for herd 1 (top), 2 (middle) and 17 (bottom).



80 Estimation of farm specific parameters

on so much data that they efficiently overrule the specified prior. The result
is an extremely bad parametrization of the mean curve where there is no
decline in litter size as the parity increase. This result could be due to hard
consistent culling where no sows are allowed to grow old. Note how even
for this obvious problematic herd, the choice of modeling the covariance
structure using variance components enforce a reasonable autocovariance
structure.

Although (and because) it is obvious that herd 12 is problematic to our
estimation, it is an excellent example to elaborate on. Let us for a moment
consider the effect of this farm adopting a new culling strategy based on
production performance using the model described here. Since there is no
decline in expected mean for higher parity litters, the sows are allowed to
grow older, hence farm-specific information regarding the expected mean at
these higher parities is received. Our system would have to include these
new observations by re-estimating the parameters at a regular basis.

Our choice of model as well as some of the underlying assumptions in
this study can be questioned. By assuming independence between sows we
lose the information contained in knowledge of the pedigree of sows. Incor-
porating ancestral information could aid in estimating an additive effect as
recognized in breeding models. Our choice of correlation function (Equa-
tion 4.4) can be substituted by other models, such as a Gaussian correlation
structure, etc. The mean curve might be subject to further analysis. The
residual plots for parity 1-3 in Figure 4.5 indicates potential problems with
the shape of the curve at lower parities, the correlation between the 6’s (the
first four rows and columns of the covariance matrix (4.25)) suggest that a
reparametrization might be appropriate. Regarding the dropout structure,
it can be argued that when consider culling a sow the farmer observe her
entire history by inspecting the sow’s records. The model suggested here
only includes the information from her previous litter, and it is left for fu-
ture studies to test other models. Recall that the estimates of litter sizes
parameters are independent of the dropout model, given random dropout.
Thus the conclusions regarding the litter size model does not depend on the
assumed dropout structure. Using the dropout models defined in Equation
4.9-4.11, Figure 4.8 illustrates the current culling policies in the three herds.
The sample dropout rates for the first parity sows seems to justify the use
of the simple model, i.e., in these herds first parity sows are not culled for
low production. The constant dropout rate among first parity sows, must
be regarded as involuntary culling, i.e., culling for other reasons. To obtain
estimates from the herds excluded in Table 4.3 the maximum posterior esti-
mation could be applied here as well, however, we have chosen to postpone
this for future studies.

Despite any objections one might raise to the choice of model, the major
concern here lies in the method for inference about farm specific parameters.
There are several reasons to adopt an approach like maximum posterior es-
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timation for inference of parameters. While the parametric advance to mod-
eling covariance structure ensure that we can control the overall structure,
we still require substantial amounts of data to achieve reasonable estimates.
Even worse for the mean curve, where the shape at higher parities is deter-
mined primarily by 64, which can only be estimated when high parity litters
are available. 84 can be interpreted as the decrease in litter size per parity.
This is a rather important feature of the expected mean when considering
culling based on productive performance. In Table 4.2 the value of 6, vary
between 0 (herd 12) and 0.386 (herd 21). It is rather interesting that the
maximum decrease from the ML-estimates in Table 4.1 was observed in herd
37 as 0.684. The MAP estimate for herd 37 is 0.375, which is a smaller
decrease than, e.g. herd 14 (0.385). The ML estimate for herd 14 (0.406),
however, is considerably smaller than the ML estimate for herd 37. This is
yet another illustration of the effect of the prior in MAP estimation. Appar-
ently the ML estimate of decrease in herd 14 had much stronger support in
terms of data than the estimate in herd 37.

That the estimates differ significantly between herds was established by
AIC and x2-test, however, by assuming that parameters for individual herds
share a common distribution, the problem with absent high parity obser-
vations can be overcome. This problem is essentially the same for a newly
started farm and a farm where heavy culling have prevented sows from get-
ting old. Using only herd data, neither farmer can obtain reliable estimates
of the expected mean at high parities. This observation raise an interesting
point. Our primary interest in the parameters is for use in a decision sup-
port system to support culling decisions based on productive performance.
It is straight forward to implement the litter size model suggested here as a
sow replacement problem, see Jorgensen (1992) or Kristensen (1993). But
if this model suggest that culling should be hard, no information of high
parity sows is ever obtained, thus making it difficult to evaluate whether a
less restrictive culling policy might be optimal in case some of the underlying
model assumptions change.

These problems are essentially the same faced by breeders. Large data
bases have been established in order to base inference on the entire popula-
tion of animals rather than just on-farm records. For successful estimation
of farm specific parameters there is a need for a similar setup. A central
database of production records to exchange farm records for updated pop-
ulation distributions. In such a setup, it would be possible to pay farms to
have sows producing beyond their economic optimal culling age, to obtain
more records of very old sows.

To increase the precision in the prior density, cluster analysis etc., should
be conducted to see if some traits or specific farm characteristics like, e.g.,
housing, could be used to stratify the herds. Because of the anonymity of the
herds in this study, such information is unavailable, hence we have excluded
such analysis from this study.
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The perspectives of the work presented here is perhaps best seen in the
context of a decision support system. Although other distinct reasons for
explicit culling can be identified (In Huirne (1990) culling is based on produc-
tive and reproductive traits), we consider as system where the sole reason for
voluntary culling is the expected future production. An appropriate defini-
tion of optimality, is to find the policy that maximize the expected discounted
return of the sow and her future replacements. The implicit assumption un-
derlying this model is that sows compete for some scarce resource, e.g., the
pens in the farrowing section or some other constraint imposed by the pro-
duction system. The model can also be used for dynamic ranking of the sows
(Greve, 1995), when culling occur to introduce gilts purchased at regular in-
tervals in the herd.

The sow replacement model is often modeled as a Markov decision process
(Bellman, 1957), this implies that parameters are constant and that the
assumption underlying the model remains unchanged through an infinite
time-horizon. For a herd that adopt the culling policy devised as optimal
using the farm specific estimates obtained by our method, the short term
effect is a (perhaps) changed culling policy. However, in long run we would
prefer the observations of litter sizes in this changed structure to be reflected
in the farm estimates. Recall the discussion regarding herd 12 (with 64 = 0),
obviously the sows cannot produce high litters indefinitely, thus as the age
structure in the herd change we will be able to produce a more realistic
estimate of 84. In general the farm estimates should be revised frequently
just as the population mean should be revised often. Even if the number
of participating farms was increased to realistic proportions the estimation
would be easy to conduct say, once, a week. In a larger population it would
probably be possible to include only registrations of recent sows. Due to
genetic progress by breeding programs, we generally expect older sows to
have lower production performance, hence the information of current sows
of other farms might be more informative for estimation of farm specific
parameters than the registrations of past sows from the farm itself.

The nature and quality of decision support systems for sow replacement
has evolved in recent years, taking further variables and other management
decisions into account when devising an optimal policy, still the problem of
farm specific parameter estimation have been ignored. As pointed out in
the Introduction, this could lead to erroneous policies, because the variation
among farms in general is too large to ignore. In this study we have initiated
this aspect of on-farm decision support. We have restricted ourselves to anal-
ysis of litter size, but other parameters such as those regarding reproductive
performance must eventually be given the same attention. In closing we pro-
pose that the parameter estimation should be given as much attention as the
conceptual development of replacement models, and that a major difference
in the two elements is that while the former can be achieved using existing
theory, the latter necessitates an organization within the producing farms to
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CHAPTER 5

General Discussion

The title of this thesis is "Elements of decision support systems in pig produc-
tion". In the introduction (Chapter 1) three specific elements were outlined
for analysis.

e An analysis of existing techniques for temporal abstraction and state
space reduction/decomposition.

e Development of a decision support system for simultaneous optimiza-
tion of delivery policies and strategies for control of epidemic disease
in a slaughter pig production.

e Estimation of farm specific parameters in a litter size model required
for culling based on production performance.

This chapter summarize the conclusions from these studies and discuss
the perspectives for future work regarding the lines of research opened up
by the contributions in this thesis.

The review of Chapter 2 focuses on three topics which seem promising in
terms of future application to livestock decision support systems: Temporal
abstraction, factored representations and decision networks.

Temporal abstraction seems to have been developed in two different con-
texts more or less simultaneously. The idea as formulated in the macro action
definition allows for temporal abstraction in terms of sequential execution
of series of actions, while the concept as defined in multi-level hierarchic
Markov processes(ml-HMP) allows simultaneous optimization of decisions
at multiple time scales. The difference between the two perceptions of tem-
poral abstraction is mostly of modeling interest. The ml-HMP interpretation
allows for a closer correspondence between modeling at the conceptual and
computational level. The macro-action concept on the other hand has a
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close correspondence to the existing management techniques such as plans,
rules-of-thumb, recommendations etc, i.e., predefined policies for carrying
out certain tasks. An important reason for modeling the large scale decision
support systems based on Markov decision process related techniques is to
devise optimal policies, i.e., explore if the current recommendations or plans
can be improved. This suggest that in general the macro-actions will be
inadequate since the full set of original actions are needed as well to explore
all possibilities.

Despite the differences both temporal abstraction methodologies decom-
pose the underlying state space into regions in which most actions are lo-
cal and transition to states outside the region only occur in a small subset
of states. This provides an efficient method for decomposing the original
problem into region based problems communicating through a high level (or
abstract) decision problem.

Factored representations is a different concept for state space decomposi-
tion which utilize the underlying conditional independence of the state vari-
ables (or traits) describing the system. The savings by this approach can be
considerable as outlined in Chapter 2. The structure in state space will often
result in a structured policy, which can be improved to produce an optimal
structured policy using substantial less computational effort in terms of time
and storage. Another appealing property of the factored representations is
the use of Bayesian network methodology, which includes a graphical formu-
lation. Modeling of the state space can benefit from this framework since
a graphical representation is easier to understand and provides a common
basis for collaboration with domain experts.

The Bayesian network representation can be augmented by action and
utility nodes to form a decision network. The major benefit of adopting one
of the decision network techniques (e.g., Limited memory influence diagrams
(LIMID)) is the possibility to separate the formulation of the state space
and the decision problem. Currently this is at the cost of losing the infinite
time horizon, which plays an essential part in the formulation of what is
essentially still animal replacement problems.

The conclusion from this study is that the ml-HMP framework at the
moment seems to possess the most features required in formulation and op-
timization of the decision complexes emerging from livestock production.
However, as even the largest models are tradeoffs between complexity and
computation, the ml-HMP technique needs refining. A reasonable path is
to adopt first the factored representation in terms of Bayesian networks and
later the decision networks, most likely in the shape of LIMID’s.

The ml-HMP technique forms the framework for implementation of the
decision support system developed in Chapter 3. The overall objective of the
model is to optimize the decision complex of strategies for epidemic disease
control and the delivery decisions. Analysis of the possible control measures
revealed they were essentially divided in preventive measures applied prior
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to onset of disease, and active controls that can be considered once disease
is observed in the batch. This suggested that an ml-HMP model, where the
founder process modeled transition between batches and the child processes
modeled the daily operations within the individual batches, was appropri-
ate. The contributions from this study can be summarized in two parts. The
analysis of the decision problem and an actual implementation of an example.
The analysis focused on the conceptual development of the decision problem
and did not consider the restrictions imposed by the ml-HMP framework.
One of the major simplifications in the process from analysis to implementa-
tion is that the ml-HMP formulation requires full observability of the state
space. In essence an epidemic is only partially observable, and furthermore
there is a close correspondence between cost and precision when observing
the disease state of a herd. These issues regard the so-called test-decisions
that provides information of the state-of-nature while not affecting it. It is
an obvious shortcoming of the current example that this aspect is ignored,
but this had to be done in order to implement the model in the framework
that regardless of this limitation allows for most of the other elements of the
decision problem to be explored.

The implementation of the system and the somewhat preliminary results
presented here show that there is interaction between the batch level of
vaccination policies and the daily operations (of medication and delivery),
however, further analysis is needed to describe and quantify these synergies.
Still, the example has shown that the analysis of control strategies can be
done within a model of the production system, i.e., within the slaughter pig
production unit.

The studies of Chapter 2 and 3 both regards structural elements of deci-
sion support systems, i.e., methods for state space reduction and formulation
of decision complexes involving decisions at multiple time scales. Such is-
sues can be regarded as qualitative elements of decision support systems.
The study in Chapter 4 address the quantitative aspect of decision support
systems: Estimation of parameters, exemplified by estimation of herd spe-
cific parameters in a litter size model with variance component and random
dropout. The study develops a parametric model which describes the mean
and covariance structure using 7 parameters. Even this parsimonious model
requires substantial amounts of data to produce reasonable estimates. Espe-
cially the slope of the mean curve at higher parities is problematic. In cases
of heavy culling few sows get old, hence inference of the expected litter size
at the high parities must be based on other information, e.g., estimates from
other herds.

The study applied penalized mazimum likelihood to obtain mazimum pos-
terior estimates of the herd specific parameters. The maximum posterior
estimate can be regarded as a tradeoff between a common prior density for
the parameters and the information obtained by the likelihood of the pa-
rameters given observed data. This allows estimation of all parameters even
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when data is sparse, however, as can be expected the less data the closer to
the prior is the posterior estimate. The study concluded that the difference
between herds was too large to ignore in the parameter estimation, and de-
vised a method for estimation of the parameters even when data from the
herd are sparse. The maximum posterior estimation imposes a prior which
in this case was estimated using data from other farms, i.e., the prior is
the distribution of the parameters among herds estimated as the population
mean and between-herd variance. There is no reason why this prior could
not be obtained by other methods, such as simulation studies, expert opin-
ion, or using clinical trial results. Thus the maximum posterior approach is
a promising candidate for estimation of other herd specific traits, when farm
registrations are inadequate for estimation.



CHAPTER 6

Summary

During the last 2 decades a number of studies regarding optimization of
livestock management decisions have been conducted. Most of these works
have used the so-called animal replacement model, which optimizes the re-
placement of production animal(s) under uncertainty regarding its future
production traits. Although the models have been applied to different ar-
eas, such as replacement of dairy cows, delivery of slaughter pigs and heifer
rearing, the underlying assumptions have been the same: decisions are only
effective until the next decision stage. This implies that decisions with other
characteristics have been modeled as states of the system. To model more
complex decision scenarios from livestock management it is necessary to ex-
tend the decision concept to include decisions with longer time horizons.
Decisions at multiple time scales and methods for handling these are in-
troduced in this thesis by a review (Chapter 2) of existing methods for han-
dling temporal abstraction. These ideas are assembled from different fields
of decision problems, including livestock management. It is concluded that
there is conceptual difference between the individual methods. From a mod-
eling point of view, the idea as presented in the multi-level hierarchic Markov
processes is preferred for livestock decision problems. Temporal abstraction
is also an efficient method for state space reduction/decomposition. Despite
minor differences all reviewed ideas essentially do the same as the hierarchic
Markov processes applied by most studies of livestock replacement problems.
Another approach to state space reduction is given in the factored represen-
tations also reviewed here. An appealing property of the factored repre-
sentation is the modeling tool provided in terms of a graphical formulation
using Bayesian networks. Finally decision networks are introduced to allow
modeling in a graphical framework where state space and decision problem
may be modelled independently. At the moment the price of this flexibility
is a loss of the infinite time horizon, which is central in the formulation of
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replacement problems.

An example of a decision problem where temporal abstraction is needed,
is defined in Chapter 3. The problem regards the simultaneous optimization
of delivery policy and disease control in a section of slaughter pigs. The
problem is defined as a delivery problem, where control of disease is added.
The model operates with two different types of disease control: prevention
and treatment. The latter is only initiated when disease is observed, while
the former usually is applied at the beginning of a batch. Furthermore,
preventive methods like, e.g., vaccine are assumed to be effective throughout
the duration of the batch in question. The decision complex formed by this
model has two decision horizons. A batch level where the vaccination policy
is considered, and the daily operational level of delivery decisions. The
results presented in Chapter 3 indicates the expected interaction between
decisions at the two levels.

Another aspect of modeling is estimation of herd specific parameters for
decision support systems. In Chapter 4 herd specific parameters in a lit-
ter size model are estimated for 43 herds. The specified parametric model
using variance components and a non-linear mean curve, use only 8 param-
eters. Even for this parsimonious approach substantial amounts of data are
needed. Thus mazimum posterior estimation is applied using a prior based
on mazimum likelihood estimates from herds with sufficient data. The con-
clusions of this study are: that there is a documented difference between
herds. Thus, herd specific parameter estimates are required. These cannot
in general be estimated from farm data alone. But by applying additional
information, as in this case a prior based on average parameter estimates and
the between-herd variance, reasonable estimates are still possible to obtain.



CHAPTER 7

Sammendrag

Gennem de sidste 2 artier er der lavet en raekke studier med henblik pé at
bestemme den optimale strategi for en given problemstilling indenfor hus-
dyrbruget. De fleste af disse studier har taget udgangspunkt i de sakaldte
udskiftningsmodeller, der optimerer udskiftning af et produktionsdyr (eller
flok af sddanne) under hensyntagen til usikkerhed omkring dyrets egensk-
aber. Selvom disse modeller har beskeeftiget sig med sa forskellige ting som
udsaetning af malkekger, levering af slagtesvin og opdraet af kvier, si har
grundideen veeret den samme: beslutninger har kun effekt indtil det neeste
beslutningstidspunkt. Det har betydet at beslutninger med andre karakter-
istika er blevet behandlet som tilstande i systemet. For at kunne modellere
mere komplekse problemstillinger fra husdyrbruget er det ngdvendigt med
en udvidelse af beslutningsbegrebet til ogsd at omfatte beslutninger med
leengere varende tidshorisonter.

Beslutninger med forskellige tidshorisonter og metoder til handtering
af disse introduceres i denne afhandling i form af et review (Kapitel 2)
over eksisterende metoder til handtering af begrebet temporal abstraktion,
hentet fra forskellige omrader af beslutningstgtte verdenen. Det konklud-
eres, at der er vaesentlige konceptuelle forskelle mellem de enkelte metoder.
Fra et modellerings synspunkt er ideen som den fremstar i multi-level hier-
arkiske Markov processer umiddelbart at foretrackke. Temporal abstraktion
er udover en konceptuel modellerings ide ogsa en effektiv metode til reduc-
ering /dekomponering af tilstandsrummet. P& trods af mindre forskelle sé er
den gennemgéende ide den samme i alle de reviewed metoder. Fundamentalt
den samme ide, som danner grundlag for de hierarkiske Markov processer,
der er anvendt i en del af de eksisterende arbejder inden for udskiftningsmod-
eller i husdyrbruget. En anden mulighed for reducering af tilstandsrummet
er gennem de sékaldte faktoriserede representationer, der ogsa introduceres
i bemeldte review. En vaesentlig sidegevinst ved denne metode er et velfun-
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deret tilhgrende grafisk modellerings veerktgj iform af Bayesianske netverk.
Endelig praesenteres beslutnings netverk, der giver mulighed for at modellere
tilstandsrum og beslutningsproblem uathaengigt af hinanden. I gjeblikket
dog pé bekostning af den uendelige tidshorisont, der er central i beslut-
ningsproblemer.

Et eksempel pa et beslutningsproblem, der tydeligt udnytter begrebet
temporal abstraktion, er udviklet i Kapitel 3, hvor der fokuseres pa simul-
tan optimering af levering af slagtesvin, samt behandling af disse for en
epidemisk sygdaom. Problemstillingen behandles som et leveringsproblem.
der udvides med sygdomsbehandling. Der opereres med 2 slags sygdoms-
behandlinger: forebyggende og behandlende. De sidstnzevnte iveerksaettes
fgrst nar sygdom er observeret, mens de forebyggende oftest ivaerksaettes ved
indsaettelse af slagtesvinene i stalden. En forebyggelse som f.eks. vaccine
ma ydermere antages at veere effektiv gennem hele forlgbet. Dette giver et
beslutnings kompleks, indeholdende 2 niveauer af beslutningshorisont, dvs
med sygdomsforebyggende beslutninger pa holdniveau, mens det daglige for-
lgb inkluderer overvejelser omkring medicintildeling og levering af slagtesvin.
De prasenterede resultater synes at indikere den forventede sammenhaeng
mellem beslutningerne pa de 2 niveauer.

Et andet aspekt af modellering er estimation af beseaetningsspecifikke
parametre til brug i beslutningsstettesystemer. I Kapitel 4 bestemmes parame-
tre i en kuldstgrrelses model for 43 besaetninger. Den specificerede parametrisk
model med varianskomponenter, kraever ialt 8 parametre. Selv for denne
model kraeves der betydelige data maengder for at bestemme parametre for de
enkelte besaetninger. Derfor anvendes mazimum posterior estimation med en
prior baseret pa mazimum likelihood estimater for den del af besztningerne,
hvor data var tilstraekkelige. Konklusionerne af dette studie er, at der er
en dokumenteret forskel mellem besetninger. Dette kreever, at der anven-
des besztningsspecifikke estimater til beskrivelse af kuld str. For at skaffe
palidelige estimater fra alle beszetninger er det ngdvendigt at basere disse pé
mere information end blot besaetningsdata data, dette kan ggres som i dette
tilfeelde ved at basere estimaterne pa en prior defineret som gennemsnitlige
estimater og besaetnings variatonen mellem disse.



