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Abstract

This paper considers allocation rules. First, we demonstrate that
costs allocated by the Aumann-Shapley and the Friedman-Moulin cost
allocation rules are easy to determine in practice using convex envel-
opment of registered cost data and parametric programming. Second,
from the linear programming problems involved it becomes clear that
the allocation rules, technically speaking, allocate the non-zero value
of the dual variable for a convexity constraint on to the output vector.
Hence, the allocation rules can also be used to allocate inefficiencies
in non-parametric efficiency measurement models such as Data Envel-
opment Analysis (DEA). The convexity constraint of the BCC model
introduces a non-zero slack in the objective function of the multiplier
problem and we show that the cost allocation rules discussed in this
paper can be used as candidates to allocate this slack value on to the
input (or output) variables and hence enable a full allocation of the
inefficiency on to the input (or output) variables as in the CCR model.

Keywords: Cost Allocation, Convex Envelopment, Data Envelopment Analy-
sis, Slack Allocation.
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1 Introduction

Production of multiple goods often involves joint costs, which complicate
internal cost allocation. The literature on cost allocation has mainly focused
on two cost allocation rules in such cases,

i. the Aumann-Shapley rule introduced in Aumann and Shapley (1974),
which can be seen as a multi dimensional version of average cost shar-
ing. Axiomatic characterizations are e.g. given (independently) in
Billera and Heath (1982) and Mirman and Tauman (1982). Billera,
Heath and Raanan (1978) and Samet, Tauman and Zang (1983) are
early examples of application.

ii. the Friedman-Moulin rule that was recently introduced in Friedman
and Moulin (1999) and can be seen as a multi dimensional version of
serial cost sharing. Friedman and Moulin also provide an axiomatic
characterization.

These rules have many appealing properties in common. As demonstrated
in Friedman (2003) they are both members of a class consisting of convex
combinations of path generated rules. This class is characterized by the
standard properties of additivity and separability. However, there are also
properties which separates the two. Friedman and Moulin (1999) show that
the Aumann-Shapley rule does not satisfy demand monotonicity in the sense
that if the level of some output increases this output will also receive a larger
cost share (demand monotonicity is satisfied by the Friedman-Moulin rule).
On the other hand, the Friedman-moulin rule does not satisfy simple scale
invariance (as do the Aumann-Shapley rule).
The aim of the present paper is two-fold: First, we shall demonstrate that

the cost shares of both rules are easy to determine in practice. Both rules
require the definition of a cost function and we suggest to estimate the cost
function using simple convex envelopment of observed cost data. With this
approach we are able to use parametric programming to determine the cost
shares related to arbitrary output vectors.
Second, from the linear programming problems involved it becomes clear

that the allocation rules, technically speaking, allocate the non-zero value of
the dual variable for a convexity constraint on to the output vector. Hence,
there is a flip side to the story of cost allocation, which concerns the allocation
of inefficiencies in non-parametric efficiency measurement models such as
Data Envelopment Analysis (DEA) see e.g. Cooper, Seiford and Zhu (2004).
In the original DEA model using constant returns to scale (the CCR model)
the efficiency score of the envelopment problem can be seen as allocated on to
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the input (or output) variables via the dual multiplier problem. Adding the
convexity constraint in the variable returns to scale version of DEA (the BCC
model) introduces a non-zero slack in the objective function of the multiplier
problem and we demonstrate that the cost allocation rules discussed in this
paper can be used as candidates to allocate this slack value on to the input
(or output) variables and hence enable a full allocation of the inefficiency on
to the input (or output) variables like in the case of the CCR model.
Papers by Cook and Kress (1999), Cook and Zhu (2005) and Beasley

(2003) also deal with cost allocation using non-parametric techniques, but
in a different context than the present paper. They consider the case where
a group of similar production units, each using the same type of multiple
inputs to produce the same type of multiple outputs (e.g. branches of a bank
or other types of similar subunits), are operating under a common fixed cost
(e.g. marketing costs), which has to be allocated among the units in the
group. Hence, costs are not directly a function of the inputs and outputs
involved, but constitutes a fixed amount that has to be allocated according
to the multidimensional production characteristics of all subunits.
The paper is organized as follows: Section 2 introduces the cost allocation

model and the Aumann-Shapley and Friedman-Moulin cost allocation rules
are defined. Moreover, it is shown how the cost function can be estimated
empirically using convex envelopment of cost data. Section 3 establishes
the parametric programming problems which are relevant for the calculation
of cost shares according to the Aumann-Shapley and Friedman-Moulin cost
allocation rules and illustrates the procedure by a simple example. In Section
4 it is demonstrated that such cost allocation rules can be used to allocate
inefficiencies on to specific inputs (or outputs) in the DEA framework (or to
be more precise, in the BCC model). Section 5 closes with final remarks.

2 The Cost Allocation Model

Consider n different types of outputs and let q ∈ Rn
+ be a (non-negative)

output vector where qi is the level of output i. The cost of producing any
(output) vector q is given by a non-decreasing cost function C : Rn

+ → R
where C(0) = 0 (i.e. no fixed costs).
Denote by (q, C) a cost allocation problem and let φ be a cost allocation

rule, which specifies a unique vector of costs related to each output x =
(x1, . . . , xn) = φ(q, C) where

n

i=1

xi = C(q),
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and xi is the cost related to output i.
In particular, consider the set of continuously differentiable cost functions

C and denote by ∂iC(q) the first order derivative of C at q with respect to
the ith argument.
Define the Aumann-Shapley rule φAS (Aumann and Shapley 1974) by

allocated costs,

xASi (q, C) =
qi

0
∂iC(

t

qi
q)dt = qi

1

0
∂iC(tq)dt for all i = 1, . . . , n. (1)

Note, that i∈N xASi (q, C) = C(q). In particular, p
AS
i = 1

0 ∂iC(tq)dt can
be seen as the unit cost of output i - also known as the Aumann-Shapley
price.

Example 1

Consider the two-outputs case n = 2 and let costs be determined by the
cost function

C(q) = q2 + (q1 + q2)
0.5.

If, for instance, the output vector is given by q = (q1, q2) = (1, 2) the total
cost is C(1, 2) = 2 + 30.5 = 3.73. Since,

∂1C(q) = 0.5(q1 + q2)
−0.5 and ∂2C(q) = 1 + 0.5(q1 + q2)

−0.5,

the Aumann-Shapley allocated costs are given by,

xAS1 ((1, 2), C) =
1

0
0.5(3t)−0.5dt = [3−0.5t0.5]10 = 0.58

and

xAS2 ((1, 2), C) = 2
1

0
(1 + 0.5(3t)−0.5)dt = 2[t+ 3−0.5t0.5]10 = 3.15,

with corresponding unit costs (Aumann-Shapley prices) of 0.58 and 1.58
respectively.

Now, consider a given output vector q where the outputs are labeled accord-
ing to increasing quantities, i.e. q1 ≤ . . . ≤ qn. Define the Friedman-Moulin
rule φFM (Friedman and Moulin 1999) by the allocated costs

xFMi (q, C) =
qi

0
∂iC((te) ∧ q)dt, for all i = 1, . . . , n, (2)
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where e = (1, . . . , 1) and (a∧b)i = min{ai, bi}. Note, that i∈N xFMi (q, C) =
C(q). The allocated cost, xFMi , is determined as the integral of the marginal
cost ∂iC along a path joining 0 and q by raising all coordinates at the same
speed and freezing a coordinate once it reaches qi - that is, by the path:
0→ (q1, . . . , q1)→ (q1, q2, . . . , q2)→ (q1, q2, q3, . . . , q3)→ . . .→ (q1, . . . , qn).

Example 2

Using again the cost function

C(q) = q2 + (q1 + q2)
0.5

with partiel derivatives

∂1C(q) = 0.5(q1 + q2)
−0.5 and ∂2C(q) = 1 + 0.5(q1 + q2)

−0.5,

we now get allocated costs

xFM1 ((1, 2), C) =
1

0
∂1C(t, t)dt =

1

0
0.5(2t)−0.5dt

= [2−0.5t0.5]10 = 0.71,

and

xFM2 ((1, 2), C) =
1

0
∂2C(t, t)dt+

2

1
∂2C(1, t)dt

=
1

0
(1 + 0.5(2t)−0.5)dt+

2

1
(1 + 0.5(1 + t)−0.5)dt

= [t+ 2−0.5t0.5]10 + [t+ (1 + t)
0.5]21 = 3.02.

In practice, of course, the cost function has to be estimated on the basis
of registered cost data. Below, we shall consider a non-parametric estimation
of C.

2.1 Data Envelopment

Let {(qj, Cj)}j=1,...,h be a set of h observations of (output) vectors qj and
their associated production cost Cj. These observations can be construed as
originating either from the same firm over h time periods or from h different
firms at a given point in time.
Based on such a data set a cost function may be estimated empirically

using a traditional parametric approach where a given functional form is
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postulated and parameters associated with this form are estimated. This
approach is taken in numerous studies of cost functions.
However, here we suggest to consider a non-parametric approach where

the production possibility set is estimated using simple convex envelopment of
the data points as suggested in Charnes, Cooper and Rhodes (1978) and fur-
ther treated in Banker, Charnes and Cooper (1984) and Banker and Maindi-
ratta (1988).
We may consider costs C(q) as the result of producing output vector q.

Hence, a ‘cost’ possibility z is a data point (q, C) ∈ Rn
+ × R+ where C is

the possible cost associated with producing q. Denote by C ⊂ Rn+1 the cost
possibility set.
Following Banker, Charnes and Cooper (1984) we assume,

Convexity: If z, z ∈ C then λz + (1− λ)z ∈ C for λ ∈ [0, 1].
Decreasing returns: If z ∈ C then λz ∈ C for λ ∈ [0, 1].
Free disposability: Let z = (q, C) ∈ C and let q ≤ q and C ≥ C then
z = (q , C ) ∈ C.

For a given data set {(qj, Cj)}j=1,...,h ∈ {Rn+1}h we obtain an empirical
estimate C∗ of the cost possibility set C as the intersection of sets satisfying
the three conditions above, which contains all the data points, i.e. as,

C∗ = {(q̂, Ĉ) ∈ Rn+1
+ |

h

j=1

λjqj ≥ q̂,
h

j=1

λjCj ≤ Ĉ,
h

j=1

λj ≤ 1, λj ≥ 0,∀j}.

Moreover, let
Q∗ = {q|∃C̄ : (q, C̄) ∈ C∗}

be the set of possible productions q given the observed data set.

Alternatively we may replace the assumption of decreasing returns (in
production) with the assumption:

Constant returns: If z ∈ C then λz ∈ C for λ ≥ 0.

In this case we get

C∗ = {(q̂, Ĉ) ∈ Rn+1
+ |

h

j=1

λjqj ≥ q̂,
h

j=1

λjCj ≤ Ĉ,λj ≥ 0, ∀j}.
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In the following we shall use the assumption of decreasing returns and
only use the case of constant returns for comparison.

The (efficient) boundary of C∗ is a non-parametric estimate of the cost
function C(q). Note that due to convexity of C∗ the estimated cost function
C∗(q) will be convex and piecewise linear. The convexity assumption may
be relaxed (see e.g. Bogetoft 1996, Bogetoft, Tama and Tind 2000) but, for
the present purpose and the ease of exposition, we continue with the convex
version above.
Even though the estimate C∗ is not differentiable in general, it is continu-

osly differentiable along a line segment [0, z], except perhaps for finitely many
points (see e.g Samet, Tauman and Zang 1984). Thus, both the Aumann-
Shapley and the Friedman-Moulin rule are well defined with respect to the
estimate C∗.

3 Cost Allocation Using Data Envelopment

First consider calculation of the Aumann-Shapley cost shares with respect
to the estimate C∗. In connection with transportation problems, Samet,
Tauman and Zang (1984) suggested to use parametric programming (see
e.g. Bazaraa, Jarvis and Sherali 1990) to determine the Aumann-Shapley
cost shares. We use the same technique to determine the Aumann-Shapley
prices, which are easily found as a finite sum of gradients of the linear pieces
of C∗ along the line segment [0, q] weighted with the normalized length of
the subintervals where C∗ has constant gradient.
Select a given output vector q̂ ∈ Q∗. In our case, we first consider para-

meter values t ∈ [0, 1] and solve

min
h

j=1

λjCj (3)

s.t.
h

j=1

λjqj ≥ tq̂ (4)

h

j=1

λj ≤ 1 (5)

λj ≥ 0,∀j. (6)

As a result we get the relevant subintervals of [0, q̂] for which the gradients
are constant, i.e. a series of values tm for which the gradient is constant on
the interval [tm−1, tm]. The values of the gradients are equal to the values of
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the optimal dual variables corresponding to the constraints (4). The optimal
dual variable corresponding to the convexity constraint (5) is usually non-
zero. In technical terms, we may consider the Aumann-Shapley allocation
procedure as a way to transfer and allocate the value of this dual variable to
the dual variables corresponding to (4) as illustrated in Example 3 below.
If the convexity constraint (5) is removed, we get a constant returns to

scale version of the problem, i.e.

min
h

j=1

λjCj

s.t.
h

j=1

λjqj ≥ tq̂

λj ≥ 0,∀j.

In this model the gradients are the same all over the interval [0, q̂] with values
determined by the optimal dual variables, and by linear programming duality
they can be applied directly in the cost sharing problem (as Aumann-Shapley
prices).

Example 3

Consider the following data from four observations:

Obs. q1 q2 C
1 2 3 6
2 3 1 5
3 4 5 15
4 5 2 10

Let q̂ = (4, 3) and define q̄ = (q̄1(t), q̄2(t)) = (q̂1t, q̂2t) = (4t, 3t). Hence,
we solve the following problem:

min 6λ1 + 5λ2 + 15λ3 + 10λ4
2λ1 + 3λ2 + 4λ3 + 5λ4 ≥ 4t
3λ1 + 1λ2 + 5λ3 + 2λ4 ≥ 3t
λ1 + λ2 + λ3 + λ4 ≤ 1

λi ≥ 0 for i = 1, . . . , 4.

By parametric linear programming we get, omitting the t argument in
the q̄ variables:

9



t objective function
0 ≤ t ≤ 7

11
= 0.64 9

7
q̄1 +

8
7
q̄2

7
11
≤ t ≤ 11

13
= 0.85 9

5
q̄1 +

7
5
q̄2 − 9

5
11
13
≤ t ≤ 1 17

8
q̄1 +

19
8
q̄2 − 43

8

From the above table we get Aumann-Shapley allocated costs

xAS1 = 4× {9
7
× 7

11
+
9

5
× (11
13
− 7

11
) +

17

8
× (1− 11

13
)} = 6.09

and

xAS2 = 3× {8
7
× 7

11
+
7

5
× (11
13
− 7

11
) +

19

8
× (1− 11

13
)} = 4.16.

Observe that xAS1 + xAS2 = 10.25 which is equal to the objective function
value of the above program when t = 1, as it should be.
The third convexity constraint is binding and receives in this case a non-

zero dual variable value which is equal to the element −43
8
in the last row

of the table. Again from the last row we see that the optimal dual variable
corresponding to the first element in the output vector is equal to 17

8
= 2.125.

Multiplication of this price by the output quantity q̂1 = 4 gives the value of
8.50. The difference between xAS1 and this value is -2.41. The similar dif-
ference corresponding to the second element of the output vector is -2.96.
The two differences add to −5.37 = −43

8
which is equal to the value of the

optimal dual variable corresponding to the convexity constraint, as it should
be. In this way the dual variable for the convexity constraint is distributed
on to the values of the output vector.

The corresponding constant returns to scale model, obtained by removal
of the convexity constraint, is

min 6λ1 + 5λ2 + 15λ3 + 10λ4
2λ1 + 3λ2 + 4λ3 + 5λ4 ≥ 4t
3λ1 + 1λ2 + 5λ3 + 2λ4 ≥ 3t

λi ≥ 0 for i = 1, . . . , 4.

(7)

In this case we get the same objective function for all t as shown by the
next table.

t objective function
0 ≤ t ≤ 1 9

7
q̄1 +

8
7
q̄2
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The optimal dual variables for the two constraints of the program (7) are
(9
7
, 8
7
) and they are equal to the coefficients of the objective function in the

above table, as they should be. This confirms that the cost allocation by the
Aumann-Shapley method in the case of constant return to scale is equivalent
to a cost allocation based on the optimal dual variables of the model. In this
case it is not necessery to allocate dual variables arising from an additional
(convexity) constraint.

The same type of technique can be used to determine the allocated costs
of the Friedman-Moulin rule. Consider an output vector q̂ ∈ Q∗ and let
q̂(·) = (q̂(1), . . . , q̂(n)) be the vector q̂ where the indices have been permuted
such that they are in increasing order, i.e. q̂(1) ≤ . . . ≤ q̂(n). Moreover, define
vectors p0 = (0, . . . , 0), p1 = (q̂(1), . . . , q̂(1)), p2 = (q̂(1), q̂(2), . . . , q̂(2)), . . . ,
pi = (q̂(1), . . . , q̂(i−1), q̂(i), . . . , q̂(i)), . . . , pn = q̂(·).
We now have to solve n problems for s = 0, . . . , n − 1, and parameter

values t ∈ [0, 1],

min
h

j=1

λjCj

s.t.
h

j=1

λjqj ≥ ps + t(ps+1 − ps) (8)

h

j=1

λj ≤ 1

λj ≥ 0,∀j.

Again we obtain the relevant subintervals of the path

[p0, p1], [p1, p2], . . . , [pn−1, pn]

for which the gradients are constant, i.e. a series of values tm for which
the gradient is constant on the interval [tm−1, tm]. We may then determine
the gradients on all such subintervals and determine the Friedman-Moulin
allocated costs as illustrated by the following example.

Example 3 continued:
Continuing the previous example we get that (q̂(2), q̂(1)) = (q̂1, q̂2) = (4, 3),

p1 = (3, 3) and p2 = (3, 4). Hence for s = 0 we shall solve
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min 6λ1 + 5λ2 + 15λ3 + 10λ4
2λ1 + 3λ2 + 4λ3 + 5λ4 ≥ 3t
3λ1 + 1λ2 + 5λ3 + 2λ4 ≥ 3t
λ1 + λ2 + λ3 + λ4 ≤ 1

λi ≥ 0 for i = 1, . . . , 4.
This gives us the table

t objective function
0 ≤ t ≤ 7

9
= 0.78 9

7
q̄1 +

8
7
q̄2

7
9
≤ t ≤ 11

12
= 0.92 9

5
q̄1 +

7
5
q̄2 − 9

5
11
12
≤ t ≤ 1 17

8
q̄1 +

19
8
q̄2 − 43

8

The contribution to xFM1 from this table is

3× {9
7
× 7
9
+
9

5
× (11
12
− 7
9
) +

17

8
× (1− 11

12
)} = 4.281

and to xFM2

3× {8
7
× 7
9
+
7

5
× (11
12
− 7
9
) +

19

8
× (1− 11

12
)} = 3.843.

Next for s = 1 we shall solve

min 6λ1 + 5λ2 + 15λ3 + 10λ4
2λ1 + 3λ2 + 4λ3 + 5λ4 ≥ 3 + t
3λ1 + 1λ2 + 5λ3 + 2λ4 ≥ 3
λ1 + λ2 + λ3 + λ4 ≤ 1

λi ≥ 0 for i = 1, . . . , 4.
implying the table

t objective function
0 ≤ t ≤ 1 17

8
q̄1 +

19
8
q̄2 − 43

8

The contribution to xFM1 is

1× 17
8
× 1 = 2.125

and to xFM2

0× 19
8
× 1 = 0.

Hence, in total, the Friedman-Moulin allocated costs are given by

xFM1 = 4.281 + 2.125 = 6.41
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and
xFM2 = 3.843 + 0 = 3.84.

Again xFM1 + xFM2 = 10.25 as it should be. So the Friedman-Moulin rule
allocates more costs to q1 in comparison to the Aumann-Shapley rule. Again
we see that the value of the dual variable of the convexity constraint −43

8
=

−5.37 is allocated to the values of the output vector, but this time with the
shares −2.09 and −3.28 respectively for output 1 and output 2.

4 Allocation of efficiency in DEA

The previous section treated the distribution of costs in a cost-output space
subject to assumptions about convexity and disposability, which are standard
in Data Envelopment Analysis (DEA). The purpose of this section is to use a
similar type of approach with respect to the DEA model itself in production
space. This is quite natural since basically costs can be considered as aggre-
gated inputs producing output vector q. Hence, instead of estimating a cost
function we now estimate a production function non-parametrically. Conse-
quently, the observations are now inputs and outputs from a set of similar
decision making units (DMU’s) and the DEA model calculates an efficiency
score for a selected DMU relative to a set of observed DMU’s.
We shall here discuss the output oriented model, in which the output

vector of the selected DMU is (radially) scaled to the largest extent given
the DMUs’ input use. The size of this scaling (θ) is the efficiency score
assigned to the DMU.
Let H denote the index set of all DMUs and let (xj, yj) denote the input-

output vector of the jth DMU, which may contain both multiple inputs
and multiple outputs. Specifically let (x0, y0) be the input-output vector of
the DMU under consideration. Then the standard output oriented constant
returns to scale model (the CCR model) can be formulated as the following
linear programming (envelopment) problem.

max θ

s.t. −
j∈H

λjyj + θy0 ≤ 0

j∈H
λjxj ≤ x0

λj ≥ 0 for all j ∈ H.
The dual (multiplier) problem is

min ux0
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s.t. uxj − vyj ≥ 0
uyo = 1

u, v ≥ 0.
The dual variables in vector u indicate the marginal value of the inputs

for the determination of the efficiency score θ. The total marginal value
of all inputs is thus ux0 which (by duality) equals θ. Thus, looking at the
multiplier problem we are able to allocate the inefficiency to each specific
input category.
However, adding a convexity constraint as in the BCCmodel with variable

returns to scale we get the following linear programming problem.

max θ

s.t. −
j∈H

λjyj + θy0 ≤ 0

j∈H
λjxj ≤ x0

j∈H
λj = 1

λj ≥ 0 for all j ∈ H.
with the dual multiplier problem

min ux0 + u0

s.t. uxj − vyj + u0 ≥ 0
uyo = 1

u, v ≥ 0 and u0 free.
Again the total marginal value of all inputs is thus ux0 but in this case the

amount differs from the value of the efficiency score by the amount u0. The
analogy with the cost sharing model now becomes clear since we may dis-
tribute u0 onto the individual input elements by either the Aumann-Shapley
approach or the Friedman Moulin approach in order to fully allocate the
inefficiency to all inputs.
For example, using the Aumann-Shapley approach we get the following

parametric program in the variable t ∈ [0, 1]
max θ

s.t. −
j∈H

λjyj + θy0 ≤ 0

j∈H
λjxj ≤ tx0
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j∈H
λj = 1

λj ≥ 0 for all j ∈ H.

and basically proceed as in section 3.

5 Final Remarks

Considering practical application of the cost allocation rules it may be conve-
nient to eliminate dominated observations before formulating the parametric
programming procedure in (3) to (6), simply in order to reduce the dimen-
sion of the problem. This may, for example, be done quite efficiently using
DEA to partition the data set into efficient and inefficient observations.
The above approach has been outlined in a data envelopment framework

due to the underlying natural assumptions about free disposability and con-
vexity. Observe, however, that the programming problem stated in (3) to (6)
with t = 1 has the exact form of the master problem in the Dantzig-Wolfe de-
composition procedure in linear programming. See for example Bazaraa et al.
[4]. This procedure is valid for any linear programming problem which may
naturally be split in two or more constraint sets. As discussed in the current
DEA setting the allocation procedure technically transfers the dual variable
corresponding to the convexity constraint onto the remaining constraints.
Via the Dantzig-Wolfe decomposition (or directly) the current approach can
be extended to transfer the marginal values of any selected constraints in a
linear programming problem to the remaining constraints.

References

[1] Aumann, R and L. Shapley (1974), Values of Non-atomic Games, Prince-
ton University Press.

[2] Banker R.D., A. Charnes and W.W. Cooper (1984), Some models for
estimating technical and scale inefficiencies in Data Envelopment Analy-
sis, Management Science, 30, 1078-1092.

[3] Banker R.D., Maindiratta, A (1988), Nonparametric analysis of tech-
nical and allocative efficiencies in production, Econometrica, 56, 1315-
1332.

[4] Bazaraa, M.S., J.J. Jarvis and H.D. Sherali (1990), Linear Programming
and Network Flows (2’ed.), Wiley.

15



[5] Beasley, J.E. (2003), Allocating fixed costs and resources via data envel-
opment analysis, European Journal of Operational Research, 147, 198-
216.

[6] Billera, L.J. and C. Heath (1982), allocation of shared costs: a set of ax-
ioms yielding a unique procedure, Mathematics of Operations Research,
7, 32-39.

[7] Billera, L.J., C. Heath and J. Raanan (1978), Internal telephone billing
rates - a novel application of non-atomic game theory, Operations Re-
search, 26, 956-965.

[8] Bogetoft, P. (1996), DEA on relaxed convexity assumptions, Manage-
ment Science, 42, 457-465.

[9] Bogetoft, P. J.M. Tama and J. Tind (2000), Convex input and out-
put projections of nonconvex production possibility sets, Management
Science, 46, 858-869.

[10] Charnes, A. W.W. Cooper and E. Rhodes (1978), Measuring the effi-
ciency of decision making units, European Journal of Operational Re-
search, 2, 429-444.

[11] Cooper, W.W., L.M. Seiford and J. Zhu (2004), Handbook on Data
Envelopment Analysis, Kluwer Academic Publishers, Boston.

[12] Cook, W.D. and M. Kress (1999), Characterizing an equitable allocation
of shared costs: A DEA approach, European Journal of Operational
Research, 119, 652-661.

[13] Cook, W.D. and J. Zhu (2005), Allocation of shared costs among de-
cision making units: a DEA approach, Computers and Operations Re-
search, 32, 2171-2178.

[14] Friedman E. (2003), Paths and consistency in additive cost sharing,
Economic Theory, 23, 643-658.

[15] Friedman, E. and H. Moulin (1999), Three methods to share joint costs
or surplus, Journal of economic Theory, 87, 275-312.

[16] Mirman, L. and Y. Tauman (1982), Demand compatible equitable cost
sharing prices, Mathematics of Operations Research, 7, 40-56.

16



[17] Samet, D., Y. Tauman and I. Zang (1984), An application of the
Aumann-Shapley prices for cost allocation in transportation problems,
Mathematics of Operations Research, 9, 25-42.

17


