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Reconstructing Teeth with Bite Information

Katrine Hommelhoff Jensen and Jon Sporring

Department of Computer Science, University of Copenhagen, Denmark
{katrine,sporring}@diku.dk

Abstract. We propose a method for restoring the surface of a tooth
crown so that the pose and anatomical features of the tooth will work well
for chewing. The system of teeth has been modeled with a 3D statistical
multi-object shape model build from 3D scans of dental cast models. The
restoration is carried out using the shape model statistics in a Bayesian
framework to calculate the most probable tooth crown shape(s), given
the fragments of one or more neighboring and opposing tooth crowns.
The modeling of and reconstruction with the multi-object shape model
has been realized by extending the model with a concept of elasticity that
generalizes better to new teeth. The elasticity has been calculated from
the surface curvature relations within and between each tooth sample,
simulating a prior knowledge of the shape variation.

1 Tooth Reconstruction

In the dental industry, the design and construction of restorations to be in-
serted in a patient’s mouth is carried out by dental technicians, that are highly
trained experts in tooth anatomy and the function of the bite. The task can
be to model the missing part of a broken tooth crown, model the crown of a
whole missing tooth or even several missing teeth. The restorations are tradi-
tionally constructed directly from the materials by hand, but the use of software
to model the construction elements of a restoration has been growing rapidly the
last couple of years [1,2,3]. Other than saving money on the temporary building
materials, the software solution saves time, as some of the traditional production
steps can be skipped and proper customized 3D modeling tools and automatic
routines can speed up the construction work. The existing dental software sys-
tems combines the software with a scanning device to produce a 3D surface model
of the patients remaining teeth, on which the restoration is to be designed. The
modeled restoration can then be exported as a 3D surface model and milled or
printed directly in the final material.

One of the most challenging steps towards an automation of dental restora-
tion modeling software is the anatomical deformations of the tooth crowns to
be reconstructed. An anatomical correct deformation of a tooth crown surface
cannot be calculated exclusively from the size and location of the surrounding
surfaces of the scanned data. Some prior knowledge must be added to the system,
which describes the shapes and legal deformations of the teeth. It is our goal to
develop a system that can learn and describe the complex shape system of the



bite, and with this knowledge reconstruct the surfaces of missing tooth crown
parts, whole teeth, or several teeth from information extracted from scanned
data. The work reported in this article is based on [4], and the plaster casts have
been scanned by the 3Shape laser scanner, some shown in Figure 1.

(a) (b) (c)

Fig. 1. Cast models scanned by the 3Shape laser scanner, aligned (a) and the
lower jaw (b), and a triangulated surface mesh of a scanned cast model (c).
Notice on (c) that the mesh has been decimated to a much lower solution than
the usual quality.

2 Shape Modeling

We operate with the notion of shape as that which is left, when translation, ro-
tation, and scaling is removed. To reconstruct the shape of an incomplete object,
we need a model description of the object shape and variability. The classical
approach is based on representing and modeling shape as a set of landmarks

(see [5,6,7,8] and references herein). On each training shape, a finite number of
landmarks are located on surface features that corresponds between the shapes.
This representation is directly applicable in the Active Shape Model (ASM). The
biggest disadvantage is the time-consuming manual labor needed. Alternative
approaches, that carry a smooth surface implicitly in the shape description, are
the Level-set function representation [9] and the Medial representation (M-rep)
[10]. However, both representations are problematic, since they cannot robustly
handle non-closed shape surfaces such as scans of plaster casts of teeth.

Shape Warping has also been studied in the literature: In [11], each training
shape landmark is warped to a template shape, where a template shape mesh
is projected onto the shape before warping landmarks and mesh vertices back.
Based on this idea, [12] introduced a 3D morphable model that use 3D meshes
as training data rather than images. Each mesh vertex achieves the same sta-
tus as a landmark, and the correspondence between the training meshes and the
template mesh is estimated from a sparse set of correspondence points, manually



marked by the user on each training mesh. In [3] the reconstructions were ad-
justed for neighboring teeth using local mathematical morphology. The quality
of the warping depends on both the complexity of the surfaces and the un-
known variation of the samples. Further, when only extracting data from the
occlusal, frontal, and back sides of the teeth, a significant amount of surface is
left unknown. We are thus lead to the idea of keeping the surface representa-
tion separated from the data. Further, the reconstruction situations depends on
the amount of a tooth that must be reconstructed. If the areas of reconstruc-
tion are somehow marked in the process, a better approach is to let the surface
conform to the reconstructed data, while respecting the borders between the re-
constructed parts and the original data. The task is to create a mesh that can be
guided through the landmarks, while keeping the surface smooth and respecting
the local and global constraints. This coupling we implement using Variational
Implicit Surfaces [13] interpolated between landmarks, and thus we obtain a
flexible method, that may be extended with additional information about the
anatomical features, and allow us to focus on landmarks only.

A shape will be described as a 3n dimensioned vector of point coordinates

x = [pT
1 , pT

2 , . . . , pT
n ]T = [x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn]T

with each point representing the position of a landmark and n is the number of
landmarks in the shape. Following [8], we use Procrustes analysis to align each

shape x to the mean shape x̄, where x̄ = 1
N

∑N
i=1 xi, and N is the number of

training samples. To align shapes, we first normalize for translation and size,
and then normalize orientation by minimizing the Procrustes distance,

d2
Procrustes = ||x − x̄||2 (1)

We will misuse notation and use x for the normalized shape coordinates in the
following. After having aligned the shapes we write,

X = [(x1 − x̄), (x2 − x̄), . . . , (xN − x̄)] (2)

Then we compute the covariance matrix as

C =
1

N
XXT (3)

and its eigenvalues λi and eigenvectors φi,

CΦ = ΛΦ (4)

where Λ is the diagonal matrix of eigenvalues and the columns of the matrix Φ

contains the corresponding eigenvectors or modes. Thus any shape x from the
training set can be reproduced by a linear computation of the mean and the
principal components as

x = x̄ + Φb (5)



where b is the vector of shape model parameters. The strength of the model is
that the eigenvectors corresponding to the largest eigenvalues model the training
set with an error equal to the sum of the neglected eigenvalues.

Our training set for each tooth consist of 12 samples. The landmarks were set
by a non-expert with expert assistance and are primarily anatomical, with the
exception of some pseudo-landmarks. 11 principal components were calculated
for each shape model. The relative small training set size could potentially intro-
duce problems regarding the generality, if the dependence on the model statistics
is not relaxed in the reconstruction procedure. We will attempt to add artificial
eigenmodes to the models, to improve flexibility without hazarding the object
shape or overruling the existing eigenmodes. The rationale is that landmarks
on the same side of a surface are expected to be correlated proportional with
their distance. Thus, if one landmark were to be moved, then we expect that the
neighboring landmarks will be effected. We will refer to this as elasticity, which
will be described in the following.

3 Model Elasticity

The modes of variations were calculated from the covariance matrix of the com-
bined data samples. Consider the general 3n×3n covariance matrix with covari-
ances cij

C =











c1 1 c1 2 . . . c1 3n

c2 1 c2 2 . . . c2 3n

...
...

. . .
...

c3n 1 c3n 2 . . . c3n 3n











(6)

If the covariance matrix of the data sample matrix was replaced by the identity
covariance matrix CId = I3n, then all landmark coordinates would be indepen-
dent of each other. This means that combinations of the resulting eigenmodes
could move the landmarks of a modeled shape in any direction. In that sense,
CId defines an under-constrained, lower limit to the shape models. In [14] it has
been shown how to add smoothness constrained deformations to a shape model
by increasing the correlation between neighboring points in 2D shapes. The idea
is, that when adding a small value to neighboring points in CId, a covariation
between the points is artificially created. Visually, moving a point in the shape
will have an elastic effect on the neighbors. The effect of moving a point in a 2D
shape with CId and CId augmented with with a positive value, e.g. 0.5, in the
covariances between neighboring points, is illustrated in Figure 2.

The actual smoothness used in [14] was, however, not controlled in the rela-
tion to the model statistics, they were implemented to substitute model statistics.
We need to control the amount of smoothness so that its function is a deforma-
tion supplement. Furthermore, we need to re-think the concept of neighbors in
3D, so that the elastic deformation added makes sense and respect the object
shape.



Fig. 2. The original 2D shape (left), the effect on the neighbors when moving a
point with CId as covariance matrix (middle) and with CId augmented with a
small value in the covariances of neighboring points (right).

In order to relax the tooth shape models we add a small value to all the
neighbor-landmark covariances in the covariance matrix. Defining ‘neighbor-
hood’ is a little more difficult in 3D, though. Neighborhood should be defined
more in terms of distance than a number of closest neighbors, and should further-
more be measured over the surface and not necessarily as the shortest distance
between two landmarks. As the solid objects teeth are, the smaller artifacts on
one side of a given tooth type doesn’t have any effect on the smaller surface vari-
ations on the other side, disregarding the distance from landmarks on one side
to landmarks on the other. In fact, when teeth have more unusual artifact’s on
the surface and is thus a difficult subject for an over-constrained shape model,
it is usually due to abnormal chewing or smaller damages, both of which only
have a local effect. The neighborhood of a landmark p could be measured as
the landmarks within some fixed distance from p. This, however, leaves us with
the problem of deciding such a distance. Furthermore, it could introduce some
problems regarding the scale of the individual tooth samples – we must choose
a method that determines a well defined neighborhood of all shape samples in a
model. Let dab be the mean surface-geodesic distance between landmark pa and
pb over the training data. Then, a general way of calculating how much they
should affect each other is to calculate this as a weight 0 < wab < 1, where it is
our experience that the following function is useful,

wab =
(

31−
β dab
dmax − 1

) 1 + na · nb

2
(7)

and where na are the normal at point pa as shown in Figure 3, dmax is the
maximum surface-geodesic distance between points on a shape over the training
set, and β is a locality parameter typically 2 or 3. For a given pair of hypothetical
landmarks pa and pb, where a 6= b, we modify the 9 corresponding entries of the
covariance matrix, Celastic = {celastic

ij }, as follows

celastic
ij = cij + wabα (8)

where α = vN
vregn being a parameter to control the amount of regularization, and

vreg is found experimentally such that v = 0 implies no elasticity added and
v = 1 implies maximum elasticity. The elasticity influences the least significant



Fig. 3. Three points on a tooth (green) together with their surface normal (red),
and angle difference to the rightmost normal. The neighbors to the rightmost
landmark is a weighted sum of the surface-geodesic distance and the angle dif-
ferences.

eigenmodes the most, and should be kept sufficiently small in order not to destroy
the statistical properties of the training data.

The parameters will experimentally be found by performing the leave-one-
out (LOU) experiments on the corresponding shape models based on PCA of
Celastic. The goal is thus to find a set of parameters that decreases the residual
error for all models in the experiment. The following results were achieved with
vreg = 100. Table 1 demonstrates the generally better results. With higher values

Shape model Mean residual error Mean residual error with elasticity

Upper 1st molar 0.010820445605 0.010042073205
Upper 2nd premolar 0.017800014466 0.016395261511
Upper 1st premolar 0.015877468511 0.014705151320
Upper canine 0.024195164442 0.022415077314
Lower 1st molar 0.011680148542 0.010770596564

Table 1. Leave-one-out experiments without and with elasticity of v = 0.2 and
locality β = 2.

of v than v = 0.2, the most significant eigenvectors slowly started changing
direction, until the corresponding eigenmode changed significance at around v =
0.9, and therefore we accept v = 0.2 as the maximum. The amount of non-zero
eigenmodes created from Celastic are typically as many as kn, but a big amount
of the least significant eigenmodes can be removed while still keeping the model
more general than in the pure statistical model.

4 Reconstruction with elasticity

We now wish to solve the problem of missing data for crown construction. Let
y be an incomplete shape vector with l < n points, and x be the corresponding
full shape. Then, we wish to find a linear transformation L : R

n 7→ R
l such that

y = Lx (9)



This system is an overdetermined system of equations. Since we cannot expect to
find a linear combination of the training samples that solves (9) exactly. Instead
the values of x can be found by minimizing an energy functional,

E(x) = ||Lx − y||2 (10)

which may be solved using the linear least squares method. Assume now that
y has been subtracted with the (dimension reduced) mean x̄, so that a model
approximation can be calculated as x = Φb. Inserting this into (10) we get

E(b) = ||L(Φb) − y||2 (11)

However, a fundamental problem with least square fitting of a model to data is
that of overfitting. Basically, there is a lot of uncertainties in the data, and the
model is only an approximation to the real physical system. Hence, we formu-
late the problem in the Bayes setting: Given an incomplete shape vector y, the
reconstruction problem consist of finding the optimal model coefficients b for y.
In terms of probability:

P (b|y) =
P (y|b)P (b)

P (y)
∝ P (y|b)P (b) (12)

This states that the optimal coefficients b will be the ones with maximum prob-
ability, conditioned to y. Both the prior probability P (b) and the likelihood
P (y|b) can be derived from the shape model definition. We use a normally dis-
tributed on b with a zero mean and covariance matrix equal to the identity,
b ∼ N(0, I), the probability density can then be written as:

P (b) = (2π)−m/2 exp

(

−
||b||2

2

)

(13)

and the probability density of the likelihood

P (y|b) = (2πσ2)−l/2 exp

(

−
||(L(Φb) − y||2

2σ2

)

(14)

The point of maximum posteriori is found to be [15]

x = x̄ + ΦV diag

(

wi

w2
i + σ2

)

UT (y − Lx̄) (15)

The reconstruction error for various missing landmarks is shown in Table 2. The
reduced elastic model results in a significantly better reconstruction, compared
to the normal covariance reconstruction.

The reconstruction with the elastic models showed that some kind of reg-
ularization is necessary, due to the increased number of eigenmodes and the
effect of the neighborhood relations on the reconstruction. As the complexity
of the reconstruction problem increases, the resulting shape quickly becomes
very distorted. Our experiments indicate that only a small number of artificial
eigenmodes should be used for optimal reconstruction. This is show in Figure 4.
With this approach we are now able to reconstruct hitherto unseen teeth such
as shown in Figure 5.



Removed landmarks Normal model Elastic model
out of 44 total Errec Errec

1 0.00159 0.00075
5 0.02201 0.00676
12 0.04915 0.01711
36 0.65755 0.65539
36 distr 0.19626 0.11631

Table 2. Reconstruction of molar training sample for the normal model and the
elastic model that includes regularized elasticity.

Fig. 4. Reconstruction molar training sample with elastic model, and different
amount of elastic eigenmodes removed. Three sets of landmarks are shown: ori-
gional (green), the reconstructed (blue), and the ground truth (yellow). From
left: 0 %, 50 %, 60 % and 80 % eigenmodes removed.

(a) (b) (c) (d)

Fig. 5. Reconstruction molar from elastic shape model, with elasticity v = 0.1
and locality parameter β = 3. (a) Original tooth with surface part to be re-
constructed. (b) Landmarks to reconstruct from. (c) Reconstructed landmarks
(blue). (d) Reconstruction with surface mesh.



5 Bite Constrained Reconstruction

One of the limitations of a PDM-based shape model is the undefined limit of
shape variation in each eigenmode. We assume limits of three standard deviations
of the mean, assuming a Gaussian data distribution. In PCA, when fitting the
data to an affine subspace, we cannot guarantee the displacement vectors in some
eigenmode not to overlap. The approximated limits on the modes of variation
makes it a common problem that the PDM produces shapes with illegal border-
overlaps. This is a problem of particular importance when modeling multiple
tooth shapes with one model, since the surfaces of neighboring and antagonist
teeth in a natural bite are not only close, they also share one or more contact
points, and thus inter-model border overlapping is very likely.

In the reconstruction, we wish to maximize the posterior probability of
the model parameters b given the incomplete shape vector y, by minimizing
||(LΦ)b − y||2. Let py be the landmark in y that was just given a new posi-
tion away from the collision, and let pm be the corresponding landmark in the
model to approximate py. Let Let n be a normal vector in the direction of the
penetration. Then, by minimizing the distance between the landmarks as

||nT pm − nT py||
2 (16)

the distance between the landmarks is only measured in the direction of n. This
expression increases the possibility of estimating a pm in a non-collision position,
by relaxing the movement of pm in the plane through py with the normal n, thus
motivating the most probably pm close to this plane. We will also refer to this
as a plane constraint. To respond to collisions, we apply an iterative algorithm,
where we in each step, seek the landmark of deepest penetration. This landmark
is then pushed out along the surface normal and apply the plane constraint, i.e.
require, that this landmark no longer can move in the normal direction. Steps
from this algorithm is illustrated in Figure 6.

(a) (b) (c) (d)

Fig. 6. Reconstruction of upper molar with collision with antagonist. Iterations
in the collision response algorithm. (a) Overview. (b)-(d) iterative reduction in
collisions



6 Conclusion

We have presented a system for reconstructing teeth based on an extension of
the Principal Component Analysis. Our extensions include both an elasticity
term for the covariance matrix and collision avoidance for antagonist teeth. The
conclusion is, that the reconstruction generalize well in terms of missing data,
collisions are minimized for improved biting, and preliminary clinical evaluation
indicate that the resulting models visualized by variational implicit surfaces are
more natural looking that standard reconstructions.
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