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Functional magnetic reso-
nance imaging (fMRI) generates
vast amounts of data. The han-
dling, processing, and analysis
of fMRI data would be incon-
ceivable without computer-based
methods. fMRI neuroinformat-

ics is concerned with research,
development, and operation of
these methods. Reconstruction,
rudimentary analysis and visu-
alization tools are implemented
in software controlling modern
MRI scanners. Research in ad-
vanced methods for analysis of
subtle activation patterns, realis-
tic physiological modeling, or for
integration of data from multiple
subjects etc., is the basis for a
lively research field and has led
to the development of a large
number of tools.

The standard analy-

sis

The dominant scientific paradigm
for fMRI analysis is the
hypothesis-driven and voxel-
based approach where consis-
tent activation responses to a
controlled behavioral brain func-
tion across multiple subjects is
detected. Such an analysis re-
quires a multi-step processing

scheme where the typical steps
involve: 1) spatial realignment
of the individual fMRI scans
for head motion correction; 2)
coregistration between functional
and anatomical scans; 3) spatial
normalization of the subjects in-
volved in the study, e.g., based
on anatomical MRs of different
subjects; 4) spatial smoothing; 5)
construction of summary images
(“statistical parametric maps”)
by estimation of the effect in each
voxel with respect to a behavioral
brain function; 6) statistical test
on these effects with a final report
on significantly activated voxels.
A number of publicly available
packages include functions for
most of the necessary processing
steps: SPM, FSL, AFNI, MEDx,
BrainVoyager, VoxBo, LIPSIA,
BAMM, see Table 1 for pointers.
BrainVoyager is a commercial
product, while SPM and VoxBo
rely on Matlab (Mathworks, Nat-
ick, MA) and IDL (Research Sys-
tems, Boulder, CO), respectively.
The commercial software MEDx
includes a compiled version of
SPM and FSL. Apart from the
functions mentioned above the
packages have a number of other
functionalities for image process-
ing and visualization. The de-
scription of LIPSIA exemplifies

the many tools [1].
A simple count from the

Brede Database (see below for
this database) quantifies the
dominance of the different ver-
sions of SPM (SPM99, SPM96)
with only few other tools in
widespread use, e.g., AIR —
a dedicated image registration
package, see Fig. 1. Note, how-
ever, that the count is for al-
ready published studies, — some
of which are years old, thus the
newest version of SPM (SPM2)
does not appear on the list as well
as other relatively new packages,
such as FSL, that has gained sig-
nificant attention.

Image processing

Motion correction, co-
registration and spatial normal-
ization, collectively referred to as
image registration, rely on spe-
cialized algorithms: AIR, AFNI,
INRIAlign, FLIRT in FSL and
spm realign in SPM among oth-
ers implement motion correction
adjusting for head motion be-
tween the scans. In this step
the object, the brain, undergoes
rigid body motion. Since the
MR acquisition mode is also ap-
proximately constant in time,
the gray level distribution of the
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Figure 1: Popularity of analysis software. Histogram of the tools used for analysis of functional neu-
roimaging experiments (including fMRI and PET) as recorded in the Brede Database.

brain images are directly com-
parable, and a mis-registration
cost-function based on gray level
similarity can be used. Details
distinguish the implementations,
e.g., FLIRT enables apodization
which suppresses the spurious
modes that appear in the cost-
function as parts of the brain flips
in and out of the field of view of
the scanner. If the activation
paradigm invokes activation in
large areas of the brain the signal
change may be (mis-)interpreted
as motion. The INRIAlign im-
age registration program aims
to correct the actual motion by
using a robust cost-function, in-
stead of the usual square error
cost-function.

Co-registration of a subjects
functional and anatomical MRs
requires an algorithm that can
match shapes across different
“modalities”, i.e., across differ-
ent gray level representations and
contrast. The most common
strategy is based on the esti-
mated mutual information based
on the joint gray-level histogram
of the two images. This is im-
plemented, e.g., in FLIRT and

spm coreg in SPM2. Other
approaches use different cost-
functions, e.g., AIR, or brain tis-
sue type segmentation and match
the segmented regions.

Spatial (“geometric”) distor-
tions can appear in fMRI scans.
Thus, a rigid body transfor-
mation may not be able to
align fMRI and anatomical MR
scans even within the same sub-
ject. Therefore a tool that
enables warping based on a
mutual information cost-function
is needed, such as MRIWarp.
Furthermore, SPM2 allows for
modeling of movement by field
inhomogeneity interactions and
FUGUE/PRELUDE in FSL pro-
vides unwarping based on extra
MRI data.

Spatial normalization is
aimed at matching different sub-
ject anatomies by non-linear spa-
tial alignment, so-called “warp-
ing”. The warp can be based on
nonlinear basis functions or free
transformations regularized by,
e.g., an elastic force between the
voxels. Tools for this process-
ing step include SPM, AIR and
MRIWarp. In most human stud-

ies spatial normalization usually
registers to a template approx-
imately conforming to the Ta-
lairach atlas [2]. This important
step allows the coordinates of
activated voxel sets (“Talairach
coordinates”) to be compared
across studies. Template volumes
from the Montreal Neurological
Institute (MNI) have been widely
adopted, and is included in, e.g.,
SPM2 and FSL.

Even with careful anatomi-
cal normalization a residual inter-
subject variability of the activa-
tion pattern will remain. Spatial
smoothing, implemented with a
“Gaussian kernel” in most pack-
ages, de-focus the scans and can
increase the local significance of
the common (population) activa-
tion pattern.

Additional image processing
steps are offered in available
tools, but not necessarily per-
formed in standard fMRI analy-
sis: intensity correction [3]; brain
extraction (BET in FSL, BSE
in BrainSuite, 3dIntraCranial in
AFNI, McStrip) [4]; tissue seg-
mentation (e.g., FAST in FSL,
spm segment in SPM2). Slice
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timing correction, correcting for
the different acquisition times of
slices in fMRI, is implemented in,
e.g., SPM, FSL, LIPSIA, AFNI
and in VoxBo.

Optimization of the fMRI
processing pipeline is an impor-
tant current research topic. The
preferred approach would be a
holistic optimization of the en-
tire processing chain. However,
each processing step can involve
numerous interdependent param-
eters and algorithmic choices,
hence, the methods are in prac-
tice optimized individually.

Voxel-based analysis

The aim of ordinary voxel-based
analysis is to identify activated
brain areas under given behav-
ior or stimulus. The most com-
mon acquisition scheme is based
on Blood Oxygenation Level De-
pendent (BOLD) contrast. The
most common experimental setup
is the so-called block design, in
which fMRI scans of the behav-
ing brain (“activation”) are in-
terleaved with scans where the
brain is either resting or engaged
in other reference activity (“base-
line”). The task of an analysis
tool is to detect the subtle differ-
ences between these scan sets.

In the simplest voxel-based
analysis the time course of a voxel
is modeled as two-samples —
activation and baseline and the
voxel is active if the no-difference
null hypothesis is rejected. The
BOLD signal measures activation
indirectly through the so-called
hemodynamic response. This
response is rather sluggish and
the fMRI response may be lag-
ging by 4-6 seconds. This
delay is typically compensated
by a linear time-invariant sys-
tem. Methods such FIR fil-
ters, discrete cosine functions and
other parameterized curve forms,
such as a temporally resampled
version of a gamma probabil-

ity density function have been
suggested and have appeared in
tools. These models can be
implemented within the frame-
work of the general linear model
(GLM) where activation/baseline
indicators are contained in a de-
sign matrix [5]. The GLM
not only allows for the modeling
of activation/baseline studies but
also accommodates experimental
designs involving multiple states,
e.g., factorial designs, and may
also be used to reduce the effects
of confounding signals discussed
further below. GLM is imple-
mented in a number of tools (e.g.,
FSL, SPM, VoxBo, LIPSIA, FM-
RISTAT, FIASCO), while tools
such as MRVision, Stimulate and
Yale implement the simpler mod-
els, see Fig. 2 for an example
analysis. Even though the GLM
is linear in the parameters and
the data it is possible to model
nonlinearities in the design vari-
ables quite simply by adding, say
the squared design variables in
the design matrix.

The BOLD fMRI signal is
often found to vary consider-
ably between scanning sessions
and between subjects, and it has
been recommended to invoke ran-
dom effects models where the
fMRI signal is modeled with two
components: The between-scan
within-session/subject variation
and the between-session/subject
variation. Such complex models
can be simplified for balanced de-
signs, and tools can analyze the
data in two steps: In the first step
the individual sessions/subjects
are treated independently, in the
second step the summary images
of the first step are analyzed.

Tools for region

based analysis

While voxel-based analysis dom-
inates fMRI analysis, region-
based analysis provides an alter-
native for group studies which

may be less sensitive to individ-
ual differences in anatomy. Ded-
icated tools available for region
based analysis, e.g., MarsBaR,
WFU Pick Atlas, Marina, typi-
cally provide means for creating
and handling regions and extract-
ing the relevant fMRI time se-
ries. Regions can be based on
volumes labeled with respect to
anatomy. Such labeled volumes
include the manually segmented
AAL (included in MRIcro) and
ICBM Single Subject volumes.
Both AAL and ICBM locate re-
gions based on the anatomical
MR of a single subject (MNI “sin-
gle subject”). The ICBM atlas
exists in a high resolution ver-
sion as well as a probabilistic
version for certain regions. An
automated, consensus-based, and
approximate method constructs
volumes from the anatomical la-
bels associated with Talairach co-
ordinates available in activation
foci databases [6]. The Brede
Toolbox (see below) facilitates
this method and probabilistic vol-
umes are available for a large
number of regions. Labeled vol-
umes are also indirectly available
through the so-called Talairach
Daemon.

Modeling of con-

founds

Scanner hardware drift, resid-
ual head motion effects, car-
diac and respiratory confounds
conspire to complicate model-
ing of the BOLD fMRI signal.
Tools that do not properly model
such temporally correlated (“col-
ored”) noise can not be expected
to make correct statistical infer-
ences.

Most tools include some form
of “detrending”, such as extrac-
tion of low frequency signals by
polynomials or other basis func-
tion sets, e.g., cosines. More
elaborate schemes model these
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Figure 2: Screen shot of a single subject analysis performed in SPM2. The left hand side consists of
two windows used as interface for design specification and analysis. The right hand side displays the
activation map (as a maximum intensity projection, corrected for multiple comparisons using FDR cor-
rection (P < 0.05), a graphical interpretation of the design matrix and a time-series plot from a single
voxel (400 samples). The time-series originates from the voxel with maximal probability of being acti-
vated in a visuo-motor experiment (vs. the baseline, which is not modeled explicitly in this analysis).
The RETROICOR method is used for modeling the confounding signal from respiration and cardiac
pulsation.

confounds by autoregressive pro-
cesses (e.g., SPM2) as an inte-
grated part of the analysis.

Effects of confounding signal
sources for which time courses
are available can be reduced by
including them in the GLM de-
sign matrix. This can, e.g., be
done for motion correction pa-
rameters, which can be obtained
from the image registration algo-
rithms, or for cardiac or respira-
tory confounds. The latter can
be added after conversion, e.g.,
by the RETROICOR method [7].
The combined set of parameters
for reduction of low frequency
artifacts, head motion residuals,
cardiac and respirations perform

well in modeling colored noise
fMRI data [8]. GLM-based tools
implicitly support this method,
though the inclusion of confounds
is not always seamlessly imple-
mented in the present tools.

Multiple compari-

son

An fMRI study typically tests
many individual hypotheses: The
tests are performed in a mass-
univariate setting over all vox-
els (or regions), and several tests
can be performed for the com-
binations (“contrasts”) of exper-
imental states. This can result

in a massive multiple compari-
son problem. If the number of
tests is not accounted for the sta-
tistical test will lead to an ex-
cess of significant results. Cor-
rection for the number of con-
trasts have been rarely made and
is only limited implemented in
tools. Correction for the num-
ber of tests across voxels are often
performed and implemented in
multiple tools (SPM, FSL, FM-
RISTAT) based on random field
theory [9]. The so-called false
discovery rate (FDR) is an alter-
native method for multiple com-
parison correction, which is im-
plemented in SPM2, AFNI and
BrainVoyager [10].
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A permutation test allows for
testing statistics that have no
known distribution. Under its
normal operation it will not cor-
rect for multiple comparisons,
but when coupled with the max-

imum statistics it becomes a ver-
satile method both to account
for multiple comparisons as well
as to handle statistics of un-
known distribution [11]. In this
form it is implemented in AFNI,
FSL, SnPM — a plug-in to SPM
— and in the VoxBo program.
Compared to random field the-
ory its implementation is sim-
ple. The drawback is its as-
sumption of exchangeability and
its computation time. The mul-
tiple sources of temporal corre-
lation in BOLD fMRI scans in-
validate simple temporal sample
exchangeability. This problem
can be circumvented by permut-
ing on the summary statistics of,
e.g., each subject, or by permut-
ing after wavelet transformation
as implemented in BAMM. It is
typically not feasible to perform
all permutations and the practi-
cal implementations uses approx-
imate permutation testing where
the distribution of the maximum
statistics is built from a random
subset of a few thousand permu-
tations.

Although it is considered
“best practice” to correct for the
number of multiple comparisons
by some method it is not al-
ways done. The Brede Database
records whether the P -values are
a result of a procedure corrected
for multiple comparison, and we
have found that about a third
of all reported Talairach coordi-
nates are corrected, see Fig. 3.

Multivariate data

analysis

The voxel-based (or region-
based) approaches are not the
only methods for supervised
modeling of fMRI data: In the

usual GLM approach the behav-
ioral label encoded in the design
matrix can be viewed as causes,
and the estimation of the model
parameters can be viewed as find-
ing the model that predicts the
fMRI data from the behavioral
labels. If the process is reversed
we get what has been termed
“recognition models”, that pre-
dict the behavioral labels from
the fMRI. Linear models, artifi-
cial neural networks (ANN) and
support vector machines have
been applied, see, e.g., [12, 13],
and the Lyngby package, imple-
menting the ANN, supports this
mode of analysis.

Explorative and di-

agnostic

Ordinary supervised modeling
with, e.g., GLM imposes rela-
tively strict model assumptions
on the fMRI data. The SPM ex-
tension “SPMd” provides means
for testing these assumptions by
a multitude of diagnostic mea-
sures [14]. It is not usu-
ally reported how the different
choices made during processing
and analysis affect the final re-
sults. The NPAIRS framework
and tool have been proposed for
unbiased estimation of the gener-
alizability of both univariate and
multivariate models and for the
quantification of reproducibility
of the summary image [15]. The
resulting performance metrics to-
gether form a complete frame-
work for holistic optimization of
fMRI processing pipelines

Unsupervised models typi-
cally make weaker assumptions
and can be used for explo-
rative investigation, or “hypoth-
esis generation” based on fMRI
data sets. Among the algo-
rithms available in tools are:
fuzzy clustering (EvIdent), sin-
gular value decomposition (MM,
Lyngby), agglomerative hierar-
chical clustering (3dStatClust

in AFNI), K-means clustering
(Lyngby) and different variations
of independent component analy-
sis (ICA) (e.g., GIFT, MELODIC
in FSL, FMRLAB, BrainVoyager
and Lyngby). The typical appli-
cation is on preprocessed data,
and ICA in particular has been
shown to be able to separate sig-
nal components in different types
of activations and confounds [16].
Unsupervised schemes may also
be used on the residuals of a GLM
analysis to explore for residual
un-modeled effects [14].

Connectivity

A basic drawback of the con-
ventional voxel or region based
analysis is that the statistical in-
ference is limited to that of a
voxel or a region, hence, fail
to detect global (weak) patterns
or “networks” [17]. Multivari-
ate methods, on the other hand
can exploit long-range dependen-
cies and may thus potentially de-
tect weaker and/or more subtle
effects. So-called structural equa-
tion modeling (aka path analy-
sis) and dynamic causal model-
ing (DCM) are means for ex-
plicit modeling of interaction be-
tween regions, see, e.g., [18].
DCM (implemented in SPM2)
is a sophisticated tool that in-
cludes hemodynamics modeling
and possible temporal depen-
dency between brain regions.

Visualization

Most tools described above in-
clude some form of visualization
of the fMRI data, both in terms
of the spatial and temporal di-
mensions. Many tools with a
specific focus on visualization are
available. MRIcro and mri3dX,
e.g., both allow for slice-based as
well as 3-D viewing.

Specialized visualization
tools (FreeSurfer, SureFit/Caret,
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Figure 3: Count on the type of P -values in the Brede Database.

SurfRelax, BrainVoyager, SUMA
in AFNI and Anatomist in Brain-
VISA) construct surface meshes
of the cortices based on seg-
mentation of anatomical scans.
Thresholded fMRI result vol-
umes can be projected onto the
mesh, see the example in Fig. 4.
Some tools allow for transforma-
tion of the mesh into a sphere
or a plane — a so-called flatmap
— with color coding according
to the gyrus/sulcus pattern and
projection of the functional re-
sult.

Execution environ-

ments

So-called execution environments
or script-builders do not process
or analyze brain data per se, but
rather control other programs,
facilitating their integration and
management of the multi-step
processing chain. They typi-
cally provide a graphical inter-
face for setup of parameters and
a graphical pipeline visualiza-
tion where results and parame-
ters can be routed between the
programs. Current execution en-
vironments include FisWidgets,
the LONI pipeline, BrainVISA
and RUMBA. FisWidgets con-
tains graphical wrappers for a
number of third party tools, e.g.,
AIR, AFNI, FSL, and Lyngby.
The LONI pipeline features a
client/server model. The SPM
and AFNI packages enable plug-

ins, and several tools provide fa-
cilities for controlling SPM in
batch mode, e.g., spmjob and
autospm2, while others enable
processing via computer clusters,
e.g., PSPM and VoxBo. Some of
these tools are in their early stage
of development.

Database issues

The fMRI Data Center (fM-
RIDC) is a database with brain
scans from published fMRI stud-
ies [19]. Publication of fMRI
studies in the Journal of Cog-
nitive Neuroscience requires the
submission of the fMRI scans
to this database. Each data
set typically contains the raw
fMRI data and subjects anatom-
ical MR. Apart from rather few
publicly available fMRI scans
used as demonstration data for
tools, the fMRIDC is the only
public source of fMRI data. A
simple web-interface allows for
search on the bibliographic de-
tails and for request of data
sets, which are delivered on
CD by surface mail. fMRIDC
annotates the studies against
an ontology setup via Protégé
(http://protege.stanford.edu/).
The annotation contains informa-
tion about, e.g., the experimen-
tal conditions and event timing.
Data from fMRIDC has already
been used in several published
studies with analysis methods
not anticipated in the original
experimental design.

The NeuroGenerator and
SumsDB are other examples of a
neuroimaging databases. Neuro-
Generator stores the actual imag-
ing data in an object-oriented
database management system
(ODBMS). ODBMS, such as
PostGreSQL, can handle special
data types, enabling the storage
of imaging data as volumes rather
than as just a block of bytes.

Storing fMRI

The raw image data from a con-
ventional fMRI study can easily
amount to several gigabytes, and
compression is desirable. Unfor-
tunately, ordinary loss-less com-
pression (e.g., with the gzip pro-
gram) typically obtains relatively
low compression ratios. Lossy
compression is in general not fea-
sible since the signal of interest is
small part of the overall signal.
A few lossless algorithms have
emerged that have been aimed
at fMRI compression: One such
uses integer wavelet transform
[20], and the SmallTime program
is a compression tool specifically
targeted for fMRI.

The many different file for-
mats used for fMRI (e.g., ANA-
LYZE, MINC, AFNI, DICOM,
VoxBo) form a obstacle for in-
teroperation of tools, though
the ANALYZE file format has
gained wide implementation
across tools. The original for-
mat did not support spatial nor-
malized volumes, (specification
of origo), and storage of affine

6



Figure 4: Activation from a retinotopic mapping experiment shown on a folded mesh with axial and
coronal cuts in BrainVoyager.

transformation parameters. SPM
extended the format by defining
extra fields in the header and
by augmenting the format by
an additional Matlab file. The
left/right orientation of the vol-
ume has been ambiguous between
versions, and the Neuroimaging
Informatics Technology Initiative
(NIfTI) effort includes a standard
left/right orientation as well as
fields to include the transforma-
tion parameters while maintain-
ing backward compatibility with
ANALYZE. A number of the
major packages have announced
support for this format. NIfTI is
not able to record all information
that a typical laboratory would
need, such as scanning parame-
ters and experimental informa-
tion, so laboratories will need
additional information structures

for storage of such information.

Bringing neuroimaging

in context

The results of fMRI studies form
a rapidly expanding body of
knowledge which is increasingly
difficult for the individual re-
searcher to span. Text-based
informatics services such as the
National Institutes of Health’s
PubMed help to find relevant lit-
erature, but does not record the
quantitative result of fMRI stud-
ies. One of the first databases
that specifically targets quanti-
tative results of fMRI and other
functional neuroimaging modali-
ties is the BrainMap database pi-
oneered by Peter Fox and Jack
Lancaster. Originally developed
for PET the present version con-

tains over 500 annotated stud-
ies with together almost 18,000
Talairach activation coordinates.
An associated tool can access the
central database via the Internet
with queries based on, e.g., bibli-
ographical details, behavioral do-
main, or specified locations in Ta-
lairach space. Furthermore, the
program has also visualization
options for Talairach coordinates,
see Fig. 5. The Brede Database is
a smaller database with a similar
scope as BrainMap. The entire
database is available as an XML
file on the web.

Peter Fox and Jack Lancaster
have also initiated meta-analytic
methods for modeling of Ta-
lairach coordinates across studies
— so-called functional volumes
modeling (FVM) [21]. If the co-
ordinates are confined to a spe-
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Figure 5: Screen shot of a graphical user interface to the BrainMap database with Talairach coordinates
plotted after a search for experiments on olfaction.

cific area their distribution can
be modeled with a Gaussian dis-
tribution. Spatially distributed
coordinates can be modeled with
more flexible models, e.g., Gaus-
sian mixture models, and ker-
nel density estimation has been
proposed [6]. The Brede Tool-
box is a Matlab-based package
for FVM and implements kernel
density estimates and statistical
tests for sets of Talairach coordi-
nates. Volumes can be generated
by sampling the FVM distribu-
tion on a regular grid. When sev-
eral sets of coordinates exist (re-
sulting in multiple volumes) this
data can be analyzed in much the
same way as an ordinary fMRI
data set. The Brede Toolbox has
been applied on data from Brain-
Map and Brede databases, e.g.,
for singular value decomposition,
independent component analysis
and maximum statistics permu-
tation testing. The toolbox al-
lows for query for “similar ex-
periments” based on activation
foci similarity in the Talairach
space, i.e., queries beyond sim-
ple text, c.f. PubMed [22]. The
Brede Toolbox furthermore con-
tains functions for visualization
of Talairach coordinates and vol-

umes.

Both BrainMap and Brede
provide interfaces for entry, but
the task of extracting coordinates
and annotating the experiments
is labor-intensive and no auto-
matic tool currently exists for
this task. For meta-analysis it
would thus be preferable to have
access to the raw data.

The BrainMap and Brede
databases facilitate a computer-
based approach to placing fMRI
studies in proper scientific con-
text, and the results from a meta-
analytic modeling with kernel
density estimates compare well
with results from an ordinary in-
dependent fMRI study [23].

Further information

fMRI neuroinformatics tools are
still evolving, new methods are
being described and a complete
and updated list of all tools and
all their functionalities for fMRI
is not presented here. The list
of pointers provided in Table 1
is not complete, e.g., there are
numerous packages that primar-
ily target processing and analy-
sis of anatomical MR scans. A

number of web-sites provide lists
of the neuroinformatics tools
and databases available: The

Neuroinformatics Portal Pilot

(http://www.neuroinf.de/) and
Internet Analysis Tools Registry,
(http://www.cma.mgh.harvard.edu/-
iatr/) enable collaborative entry
of information. Andrew Crabb
maintains idoimaging.com, the
Society for Neuroscience hosts
a web-site: The SfN Neu-

roscience Database Gateway

(http://big.sfn.org/ndg/site/),
and one of the authors
updates the Bibliographies

in functional neuroimaging

(http://www.imm.dtu.dk/˜fn/-
bib/Nielsen2001Bib/). Further-
more, SPM has a lively email
list (http://www.jiscmail.ac.uk/-
lists/spm.html) where new tools
are often presented.
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[6] F. Å. Nielsen and L. K.
Hansen, “Modeling of
activation data in the
BrainMapTM database: De-
tection of outliers,” Human

Brain Mapping, vol. 15,
pp. 146–156, March 2002.

[7] G. H. Glover, T.-Q. Li,
and D. Ress, “Image-based
method for retrospective
correction of physiological

motion effects in fMRI:
RETROICOR,” Magnetic

Resonance in Imaging,
vol. 44, pp. 162–167, 2000.

[8] T. E. Lund, K. H. Madsen,
K. Sidaros, T. E. Nichols,
and W.-L. Luo, “Non-white
noise in fMRI — does mod-
elling have an impact?,” De-
cember 2004.

[9] J. Cao and K. J. Wors-
ley, “Applications of ran-
dom fields in human brain
mapping,” in Spatial Statis-

tics: Methodological Aspects

and Applications (M. Moore,
ed.), vol. 159 of Lecture

notes in Statistics, ch. 8,
pp. 170–182, New York:
Springer, 2001.

[10] C. R. Genovese, N. A. Lazar,
and T. Nichols, “Thresh-
olding of statistical maps
in functional neuroimaging
using the false discovery
rate,” NeuroImage, vol. 15,
pp. 870–878, April 2002.

[11] T. E. Nichols and A. P.
Holmes, “Nonparametric
permutation tests for PET
functional neuroimaging
experiments: A primer with
examples,” Human Brain

Mapping, vol. 15, pp. 1–25,
January 2001.

[12] N. J. S. Mørch, L. K.
Hansen, S. C. Strother,
C. Svarer, D. A. Rotten-
berg, B. Lautrup, R. Savoy,
and O. B. Paulson, “Non-
linear versus linear models
in functional neuroimag-
ing: Learning curves and
generalization crossover,”
in Information Processing

in Medical Imaging, 15th

International Conference,

IPMI’97, Poultney, Ver-

mont, USA, June 1997,

Proceedings (J. Duncan and
G. Gindi, eds.), vol. 1230 of
Lecture Notes in Computer

Science, (Berlin), pp. 259–
270, Springer-Verlag, 1997.

[13] U. Kjems, L. K. Hansen,
J. Anderson, S. Frutiger,
S. Muley, J. Sidtis, D. Rot-
tenberg, and S. C. Strother,
“The quantitative evalu-
ation of functional neu-
roimaging experiments:
mutual information learn-
ing curves,” NeuroImage,
vol. 15, pp. 772–786, April
2002.

[14] W.-L. Luo and T. E. Nichols,
“Diagnosis and exploration
of massively univariate neu-
roimaging models,” Neu-

roImage, vol. 19, pp. 1014–
1032, July 2003.

[15] S. C. Strother, J. An-
derson, L. K. Hansen,
U. Kjems, R. Kustra,
J. Sidtis, S. Frutiger, S. Mu-
ley, S. LaConte, and D. Rot-
tenberg, “The quantitative
evaluation of functional
neuroimaging experiments:
the NPAIRS data analysis
framework,” NeuroImage,
vol. 15, pp. 747–771, April
2002.

[16] M. J. McKeown, L. K.
Hansen, and T. J. Se-
jnowski, “Independent com-
ponent analysis of func-
tional MRI: what is signal
and what is noise?,” Cur-

rent Opinion in Neurobiol-

ogy, vol. 13, pp. 620–629,
September 2003.

[17] N. Lange, S. C. Strother,
J. R. Anderson, F. Å.
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Name Usage URL

AAL Atlasing http://www.cyceron.fr/freeware/

AFNI General purpose http://afni.nimh.nih.gov/afni/

AIR Image registration http://bishopw.loni.ucla.edu/AIR/

BAMM General purpose http://www-bmu.psychiatry.cam.ac.uk/software/

BrainMap Databasing http://www.brainmap.org

BrainSuite Image processing http://neuroimage.usc.edu/brainsuite/

BrainVISA Environment http://brainvisa.info/

BrainVoyager General purpose http://www.brainvoyager.com/

Brede Databasing http://hendrix.imm.dtu.dk/services/jerne/

EvIdent Analysis http://www.ibd.nrc-cnrc.gc.ca/english/info e evident.htm

FIASCO General purpose http://www.stat.cmu.edu/˜fiasco/

FisWidgets Environment http://grommit.lrdc.pitt.edu/fiswidgets/

fMRIDC Databasing http://www.fmridc.org

FMRLAB Analysis (ICA) http://www.sccn.ucsd.edu/fmrlab/

FMRISTAT Analysis http://www.math.mcgill.ca/keith/fmristat/

FreeSurfer Visualization http://surfer.nmr.mgh.harvard.edu/

FSL General purpose http://www.fmrib.ox.ac.uk/fsl/

ICBM Atlas Atlasing http://www.loni.ucla.edu/ICBM/

INRIAlign Image registration http://www-sop.inria.fr/epidaure/software/INRIAlign/

GIFT Analysis (ICA) http://icatb.sourceforge.net/

LIPSIA General purpose http://granat.cns.mpg.de/Lipsia/

LONI Pipeline Environment http://www.loni.ucla.edu/

Lyngby Analysis http://hendrix.imm.dtu.dk/software/lyngby/

Marina ROI http://www.bion.de/Marina.htm

MarsBaR ROI htpp://marsbar.sourceforge.net/

McStrip Image processing http://www.neurovia.umn.edu/incweb/

MEDx General purpose http://medx.sensor.com/

MM Analysis http://www.madic.org/download/MMTBx/

MRI3dx Visualization http://www.aston.ac.uk/lhs/staff/singhkd/mri3dX/

MRIcro Visualization, ROI http://www.psychology.nottingham.ac.uk/staff/cr1/mricro.html

MRIWarp Image registration http://hendrix.imm.dtu.dk/software/mriwarp/

MRVision Analysis http://www.mrvision.com/

NIfTI File format http://nifti.nimh.nih.gov/

NPAIRS Diagnostic http://www.neurovia.umn.edu/incweb/

NeuroGenerator Databasing http://www.neurogenerator.org/

SmallTime Compression http://www.brainmapping.org

SnPM Analysis http://www.sph.umich.edu/ni-stat/SnPM/

SPM General purpose http://www.fil.ion.ucl.ac.uk/spm/

SPMd Model diagnostic http://www.sph.umich.edu/˜nichols/SPMd/

Stimulate Analysis http://www.cmrr.umn.edu/stimulate/

SumsDB Databasing http://sumsdb.wustl.edu:8081/sums/index.jsp

SureFit Visualization http://brainvis.wustl.edu/resources/surefitnew.html/

SurfRelax Visualization http://www.cns.nyu.edu/˜jonas/software.html

Talairach Daemon Atlasing http://ric.uthscsa.edu/projects/talairachdaemon.html

VoxBo General purpose http://www.voxbo.org/

WFU Pick Atlas ROI http://www.fmri.wfubmc.edu/

Yale Analysis http://mri.med.yale.edu/individual/pawel/fMRIpackage.html

Table 1: Tools for fMRI processing and analysis. “ROI” is dedicated region of interest (region-based)
functionality.
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