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Abstract
We define an evolutionary process of “economic Darwinism” for playing-

the-field, symmetric games. The process captures two forces. One is “eco-
nomic selection”: if current behavior leads to payoff differences, behavior
yielding lowest payoff has strictly positive probability of being replaced by
an arbitrary behavior. The other is “mutation”: any behavior has at any
point in time a strictly positive, very small probability of shifting to an arbi-
trary behavior. We show that behavior observed frequently is in accordance
with “evolutionary equilibrium”, a static equilibrium concept suggested in
the literature. Using this result, we demonstrate that generally under posi-
tive (negative) externalities, economic Darwinism implies even more under-
(over-) activity than does Nash equilibrium.
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1 Introduction

An interesting view in economics asserts that the foundations for behavioral princi-

ples such as profit maximization or behavior in accordance with Nash equilibrium

should be found in evolutionary selection against those who do not behave in ac-

cordance with these principles. Such a view was, e.g., underlying the defense of the

assumption of profit maximization by Alchian (1950), Enke (1951) and Friedman

(1953). Informally the idea is that economic agents, e.g. owners and managers of

firms, in their behavior are guided by simple rules of thumb and markets select

against behavior that leads to relatively low payoffs. This happens, for instance, by

capital seeking to the more profitable firms. Hence, badly performing behavior will

disappear and remaining behavior will perform well vis-a-vis other remaining behav-

ior in accordance with profit maximization and Nash equilibrium. The economist

can therefore safely analyze as if active individuals obey these principles although

no one does so consciously.

This paper studies an evolutionary process intended to formalize the above idea

in the context of strategic interactions (games) and investigates what kind of behav-

ior it supports. The situation we have in mind is that a symmetric game is played

recurrently by individuals, and in each round the game is played “all against all”,

such that participating individuals are “playing the field” as opposed to a situation

with “pair-wise contests”. Any participant is locked at a fixed strategy, its rule of

thumb, except for random shifts. We intend to identify the behavioral implications

of two forces: economic selection and mutation.

Economic selection should capture the elimination of the unfit: if current behav-

ior implies payoff differences between individuals, then (individuals with) behavior

yielding relatively low payoffs have positive probability of being displaced by (incom-

ing individuals with) an arbitrary behavior. Displaced behavior is not necessarily

replaced by a more successful behavior that already occurs, but by an arbitrary

possible behavior. This means that the kind of selection we have in mind is not

appropriately mimicked by imitation. In a biological context it may be natural to

assume that badly performing, displaced individuals are replaced by the offspring of

more successful individuals, and the offspring inherits the more successful behavior

of its parents, so that the resulting evolutionary selection is as if more successful
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behavior is imitated. In an economic context the idea of inherited behavior is not

as natural. For instance, a fired manager is not replaced by a clone of another and

more successful manager, but rather by a new candidate with own “fresh” ideas.

Hence, if one wants to study the mere implications of elimination of the unfit in

an economic context, a process of imitation will not generally be an appropriate

metaphor. It is to distinguish the kind of Darwinian selection studied here from

a biological one that we refer to it as “economic”. The fact that the evolutionary

process we study is not one of imitation, is a main novel feature of this paper.

The second force, mutation, should capture that economic agents experiment

with alternative behavior: for any individual there is in any round of play a small

positive probability that current behavior is replaced by an arbitrary behavior.

By economic Darwinismwe understand the combined force of economic selection

and mutation.

To be more specific we formulate an explicit dynamic process as follows. In

each round of play the actions of the individuals participating in the play of a

symmetric, n-player game are listed in the current “state”. A basic dynamic process,

a Markov chain on the state space, captures economic selection: if the current

state implies payoff differences, actions giving maximal payoff are not changed,

while for actions yielding lowest payoff, and possibly for other actions yielding less

than maximal payoff, there is positive probability that the actions are replaced

by arbitrary actions. A perturbed process captures economic selection as well as

rare mutation: in addition to the transitions between states as governed by the

basic process, every individual has in any round a small independent probability of

switching to an arbitrary behavior. As the probability of mutation becomes very

small, only particular states will be observed frequently. These are the so-called

stochastically stable states and the particular patterns of behavior associated with

these are the patterns supported by economic Darwinism.

To characterize these patterns of behavior we make use of a static solution con-

cept originally suggested by Schaffer (1989) and further studied by Possajennikov

(2003) and Alós-Ferrer and Ania (2002). Let “wide spread” behavior be repre-

sented by a common strategy used by everybody, so that everybody obtains the

same payoff and the situation therefore is stable with respect to economic as well as

biological selection. For such wide spread behavior to be stable also with respect to
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mutation there should be no alternative strategy such that a single player deviating

to this strategy obtains strictly larger payoff than the non-deviating players, since

a mutation to such a strategy would be successful and displace existing behavior.

Following Schaffer and Possajennikov we refer to a strategy fulfilling this criterion

as a symmetric evolutionary equilibrium.1 It is well-known that such an equilibrium

is equivalent to a symmetric Nash equilibrium of a modified game where payoffs are

defined relatively, such that a player’s payoff in the modified game is the excess of

his payoff from the original game over the lowest payoff of a player.

Our first main result is that for a large class of games, any stochastically stable

state involves behavior is as in a symmetric evolutionary equilibrium (given such

an equilibrium exists). As a corollary, if there is a unique symmetric evolution-

ary equilibrium, the two solution concepts coincide. These results are useful for

applications because evolutionary equilibrium is relatively tractable.

One implication is that economic Darwinism does not generally support Nash

equilibrium since Nash equilibria in relative payoffs only accidently coincide with

the original Nash equilibria. Hence, the view described in the first paragraph is not

generally supported by our formal results.

We use the equivalence between stochastically stable states and evolutionary

equilibrium when the latter is unique to prove our second main result: in typical

economic situations where externalities are either overall positive or overall negative,

the outcomes of economic Darwinism are even worse than Nash equilibrium out-

comes with respect to efficiency, as they involve even more under- or over-activity.

The contributions of the literature most closely related to this paper study evo-

lutionary processes of imitation and mutation. Originally Vega-Redondo (1997)

suggested such a process and studied it in symmetric, n-player Cournot oligopoly

games. Vega-Redondo’s process can be viewed either as one of conscious imita-

tion or as a metaphor for evolutionary (biological) selection. Vega-Redondo found

that behavior in the unique stochastically stable state according to his process of

imitation and mutation corresponds exactly to the competitive or price-taking, Wal-

1Schaffer (1989) studies the implications of symmetric evolutionary equilibrium in Cournot
duopoly games and finds equivalence with competitive (price taking) equilibrium. Possajennikov
(2003) and Alós-Ferrer and Ania (2002) study more general games and establish equivalence
results between (symmetric) evolutionary equilibrium and so-called aggregate-taking equilibrium,
see Section 2 below.
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rasian outcome. The results of Vega-Redondo have been generalized and extended

by Schenk-Hoppé (2000), who also studies a process of imitation and mutation in

Cournot oligopoly. Furthermore, Schipper (2003) and Stegeman and Rhode (2004)

study processes of imitation and mutation in more general settings.2

According to these imitative processes, there is in each round for each individual

positive probability that the current strategy is revised into the strategy of another

individual who earns at least as much payoff. Since, whenever a type of behavior is

revised, it is changed into a behavior that is already being used, the set of behaviors

can only shrink (except for mutation). According to economic selection relatively

poorly performing behavior is replaced by arbitrary behavior, so that the set of

strategies used can increase even without mutation. Thus, our process of economic

Darwinism is different from imitation and mutation, also in a mathematical sense.

As a consequence, the proofs of the basic equivalence theorems as well as their un-

derlying assumptions are essentially different between the contributions mentioned

and this one: economic selection allows more generality than imitation, as will be

explained in detail in Section 4 below.

Section 2 defines symmetric games and evolutionary as well as other static equi-

librium concepts, and states some well-known equivalence results. Section 3 defines

the dynamic process of economic Darwinism and stochastic stability with respect to

it. In Section 4 we state our result on the relation between evolutionary equilibrium

and stochastic stability with respect to economic Darwinism, and explain how our

theorem and its proof differ from similar theorems and proofs for processes based

on imitation. In Section 5 we use our characterization to identify the outcomes of

economic Darwinism in some games of economic interest, and Section 6 states our

result on the general efficiency implications of economic Darwinism. Section 7 offers

some concluding remarks.

2Stegeman and Rhode formulate very explicitly the idea that imitation can (should) be seen
as capturing Darwinian selection: “Our strategy selection process is imitative, but it is useful to
view imitation dynamics as a special case of Darwinian dynamics: in a finite population of fixed
size, Darwinian selection requires that individuals playing poorly-performing strategies switch to
strategies that are performing better”. As we have argued above, this may be a natural view for
biological selection, but less natural in an economic context.
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2 Symmetric games and evolutionary equilibrium

We consider a game with a fixed set of players, N = {1, ..., n}. The non-empty
strategy set of each player i is S ⊆ R. The set of strategy profiles is Ω ≡ Sn.

A profile (element in Ω) will be denoted by ω or (s1, ..., sn) or (si, s−i). Payoff

functions are ui : Ω→ R, i = 1, ..., n.
We focus on symmetric games and assume that the payoff obtained by player i,

when player i uses strategy si and the other players use a constellation of strategies

s−i, depends in the same way on si and s−i independently of i, and is the same

independently of how the strategies of s−i are distributed among the players different

from i:

Assumption 1. There is a common payoff function u : Ω → R, such that

ui(s1, ..., si, ..., sn) = u(si, s−i) for i = 1, ..., n, and u has the property that u(si, s−i) =

u(si, s
0
−i) for any permutation s0−i of the strategies in s−i.

Assumption 1 implies that whenever two players take the same action they

receive the same payoff.

Contributions such as Alós-Ferrer and Ania (2002), Possajennikov (2003), Schip-

per (2003), and Leininger (2004) assume that there is a common utility function,

v : R2 → R, and an aggregator function, A : Ω → R, such that ui(si, s−i) =
v(si, A(si, s−i)) for all players i, and A fulfils A(ω) = A(ω0) for all permutations ω0

of ω. When the payoff functions have this special structure we say that the game

has "the aggregator property".3 The aggregator property implies Assumption 1

and is featured by many economic examples, but Assumption 1 allows for more (see

Section 5 below).

The static concept of evolutionary equilibrium formulated by Schaffer (1989) and

meant to capture the elimination of the least fit when mutations occur is motivated

as follows. A first requirement for evolutionary stability is that all players obtain the

same payoff, since if there were payoff differences a behavior yielding lowest payoff

would tend to die out. Since the aim is to establish support for certain types of

“common, widespread behavior”, the focus is on symmetric strategy profiles where

all players take the same action and thus automatically obtain the same payoff.

3A game has the aggregator property in our terminology if it is an aggregative game in the
sense of Corchón (1994) and is symmetric in the sense of Assumption 1.
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Second, there should be stability with respect to mutations, such that if a single

player mutates to a new behavior, then this behavior will be displaced because

it obtains least payoff in the constellation of behavior after the mutation. These

considerations lead to the following definition.

Definition 1 A strategy profile (s∗1, ..., s
∗
n) ∈ Ω is a symmetric evolutionary equi-

librium if s∗i = s∗ for all i, and for all i, j and si: ui(si, s
∗
−i) ≤ uj(si, s

∗
−i). It is

strict if furthermore for all i, j and si 6= s∗: ui(si, s∗−i) < uj(si, s
∗
−i).

Alternatively, s∗ is the strategy of an evolutionary equilibrium if there is no i

and si such that ui(si, s∗−i) > uj(si, s
∗
−i) for j 6= i, and it is strict if furthermore

there is no i and si 6= s∗ such that ui(si, s∗−i) ≥ uj(si, s
∗
−i) for j 6= i. In terms

of the common payoff function u, the requirement of Definition 1 is that for all s:

u(s, s∗, ..., s∗) ≤ u(s∗, s∗, ..., s∗, s).

As observed by Schaffer (1989), it is straightforward that symmetric evolutionary

equilibria can be characterized as symmetric Nash equilibria of a modified game with

payoffs defined relatively:

Proposition 1 Let ûi(ω) ≡ ui(ω)−minj 6=i uj(ω). Then ω∗ = (s∗, ..., s∗) is a (strict)

symmetric evolutionary equilibrium in the game under consideration if and only if

ω∗ is a (strict) Nash equilibrium of the modified game where the set of players and

the strategy set are the same and the payoff functions are (ûi), i = 1, ..., n.

Proposition 1 is useful for finding or characterizing evolutionary equilibria as

in Sections 5 and 6, and it can be used for demonstrating existence of symmetric

evolutionary equilibrium for some games by standard fixed point arguments, e.g.:

Proposition 2 If S is compact and convex and payoff functions are such that

ui(si, s−i)−minj 6=i uj(si, s−i)) is continuous in (si, s−i) and quasi concave in si for

all i, then a symmetric evolutionary equilibrium exists. If, furthermore, ui(si, s−i)−
minj 6=i uj(si, s−i) is strictly quasi concave, then all symmetric evolutionary equilibria

are strict.

For games with the aggregator property, Possajennikov (2003), Alós-Ferrer and

Ania (2002), and Schipper (2003) define a symmetric aggregate-taking equilibrium

as a symmetric profile where each player has maximized payoff neglecting any in-

fluence on the aggregator A:
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Definition 2 A strategy profile (sa, ..., sa) is a symmetric aggregate-taking equilib-

rium if for all s ∈ S: v(sa, A(sa, ..., sa)) ≥ v(s,A(sa, ..., sa)). It is strict if further-

more for all s 6= sa: v(sa, A(sa, ..., sa)) > v(s,A(sa, ..., sa)).

Assuming differentiability, the first order condition for s∗ being a symmetric

aggregate-taking equilibrium is:

∂

∂s
[v(s, A(s∗))] ≡ v1 = 0.

Furthermore, according to Proposition 1, (s∗, ..., s∗) is an evolutionary equilibrium

if and only if s∗ maximizes ui(si, s∗−i)−minj 6=i uj(si, s∗−i) with respect to si for each
i. For games with the aggregator property this maximization problem is the same

as:

max
s∈S

£
v(s, A(s, s∗−i))− v(s∗, A(s, s∗−i)

¤
,

for which the first order condition is:

∂

∂s

£
v(s,A(s, s∗−i))− v(s∗, A(s, s∗−i))

¤
= v1 + v2

∂A

∂s
− v2

∂A

∂s
= v1 = 0.

The two first order conditions are thus equal. This proves:4

Proposition 3 If each of symmetric evolutionary equilibrium and symmetric aggregate-

taking equilibrium is unique and characterized by first order conditions then they

coincide.

3 The process of economic Darwinism

For our explicit dynamic analysis we have, for technical reasons, to assume that the

strategy set S is finite. We assume furthermore that the finite game considered is

such that equal payoffs for everybody can only be obtained if everybody uses the

same strategy, that is, in addition to Assumption 1 we assume:

Assumption 2. The strategy set S is finite and the common payoff function u

is such that if u(si, s−i) takes the same value for for all i, then s1 = · · · = sn.

4The equivalence between evolutionary equilibria and aggregate-taking equilibria is investigated
more thoroughly by Possajennikov (2003) for the differentiable case and by Alós-Ferrer and Ania
(2002) for the general case. Proposition 3 is a version of Possajennikov’s result.
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Given finiteness, Assumption 2 is fulfilled generically: Consider a given finite

grid S. Assume that the payoff function u were such that for some strategy profiles

with strategy differences all players got the same payoff. Then almost any (small)

perturbation of u would imply payoff differences for the same profiles. Hence, given

finiteness, Assumption 2 is little restrictive.

In a game with a large, but finite number of strategies in S, for instance a

price-setting oligopoly where prices have to be integers, appealing to the genericity

argument for “only equal payoffs at equal strategies” as we do, implies appealing

that very small payoff differences can have evolutionary consequences. However, in

the present context an appropriate interpretation of a strategy is perhaps not “set

price equal to 55 cents”, but rather a general rule of thumb such as “set price equal

to the double of short run average cost” or “set price equal to the double of long run

marginal cost”. There may well be relatively few relevant such rules even though

there are truly many possible different prices.

The n-player game considered is assumed to be played recurrently among indi-

viduals. The outcome in each round is described by a state that lists the actions

taken by each of the n individuals. Hence, a state has the structure of a strategy

profile and will be denoted by ω = (s1, ..., sn) ∈ Ω. The state space Ω is finite.

On this state space we define a dynamic process capturing the two essential

forces of economic selection and mutation.

According to economic selection individuals who perform badly in terms of pay-

off, the unfit, are sometimes displaced by other individuals who take up a random

action. We express economic selection dynamics by a basic (unperturbed) Markov

chain on Ω with a matrix Π0 of transition probabilities, π0ωω0 (0 ≤ π0ωω0 ≤ 1 for all
(ω, ω0), and

P
ω0 π

0
ωω0 = 1 for all ω), requiring:

(1) If ω = (s1, ..., sn) is such that all players obtain the same payoff (ui(ω) = uj(ω)

for all i, j), then π0ωω = 1.

(2) If ω = (s1, ..., sn) is such that there are payoff differences (ui(ω) 6= uj(ω)

for some i, j), then for any state ω0 = (s01, ..., s
0
n): (a) if π

0
ωω0 > 0, it must

be for all i ∈ argmaxj∈N uj(ω), that s0i = si, and (b) if s0i = si for all i /∈
argminj∈N uj(sj, s−j)), then π0ωω0 > 0.

The restrictions on Π0 expressing economic selection are that (1) if everybody
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gets the same payoff in ω, then the next round’s state will also be ω for sure, and

(2) if there are payoff differences at ω then (a) strategies yielding highest payoff

are not changed, while (b) any successor where at least one of the players who got

minimal payoff has shifted to another strategy, has positive probability, implying

that strategies with lowest payoff disappear with positive probability and are taken

over by arbitrary other strategies.

We have expressed economic selection generally in terms of restrictions on the

transition probabilities, π0ωω0. Several explicit selection processes will imply our

general assumptions (1) and (2). Assume, for example, that in each round individ-

uals who receive a “selection draw” are replaced by individuals whose strategies are

picked according to a given probability distribution with full support on S. One

possible process is defined by everybody with lowest payoff in the last round, and

no other, having a given, strictly positive (and independent) probability of receiving

a selection draw. Another possibility is that everybody who did not get the highest

payoff in the last round, and no other, has a given (independent) probability of

receiving a selection draw. There are many possibilities in between, for instance

where the probability of receiving a selection draw depends negatively on payoff in

“softer”, more monotone ways than in the two cases just described.

The mutation process is added as follows: From the state chosen in a given round

by the economic selection dynamic, Π0, there is for each player and for each s ∈ S

(independently) a small probability ε > 0 of switching to s within the round. Each

such switch is referred to as a mutation.5 This defines a modified Markov chain Πε,

where the transition probability from ω to ω00 is defined as follows: For a pair of

states ω0, ω00, let k(ω0, ω00) be the number of players behaving differently in the two

states, i.e., k(ω0, ω00) = # {i |s0i 6= s00i }. Thus, k(ω0, ω00) is the number of mutations
involved in the transition from ω to ω00 via ω0. Then, πεωω00 =

P
ω0:π0

ωω0>0
π0ωω0ε

k(ω0,ω00).

It is obvious that Πε is ergodic.6 Furthermore, Πε is a regular perturbation of

Π0 in the sense of Young (1993), i.e., Πε is ergodic, Πε → Π0 as ε→ 0, and for each

5The mutation process is that each individual mutates (independently) with probability ε ·#S,
and in case of mutation a random strategy is picked from S according to the uniform probability
distribution. It is well known that one can be much more general with respect to the muta-
tion process without affecting results. For instance different players could mutate with different
probabilities and different strategies could have different probabilities when mutations occur.

6It is a finite Markov chain and irreducible (since from any state one can go to any other state
in one step by appropriate mutation), and aperiodic (since for any state one can stay in that state
by appropriate mutation).
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transition ωω00 for which π0ωω00 = 0, there is a well-defined order by which π
ε
ωω00 → 0

as ε→ 0. Here this order is given by the minimal number of mutations required to

go from ω to ω00, i.e., by minω0:π0(ω,ω0)>0 k (ω0, ω00). This number (which is equal to

zero when π0ωω00 > 0) is referred to as the resistance in the transition from ω to ω00.

We state some standard results from the theory of Markov chains needed for

our purposes. The results mentioned can all be found in Young (1993) or Freidlin

and Wentzel (1984), see also Young (1998).

Since Πε is ergodic it has a unique invariant (stationary) distribution µε, i.e.,

a probability distribution over Ω fulfilling µεΠε = µε. In the long run the rela-

tive frequencies by which states are visited converge with probability one to the

probabilities of µε. Since our interest is in the process with economic selection

and mutation for small mutation probability, we will be interested in the limit dis-

tribution, µ0 = limε→0 µ
ε. This limit distribution exists and is invariant for Π0

(µ0Π0 = µ0). Thus, the states that have strictly positive probability according to

µ0 are the only states that will be observed frequently when mutations are rare.

These states are termed stochastically stable states.

Definition 3 A state ω is stochastically stable with respect to the process of eco-

nomic Darwinism if and only if µ0(ω) > 0.

It follows from the existence of µ0 that stochastically stable states exist. The

remainder of this section presents a characterization of stochastically stable states.

An absorbing set is a subsetM of Ω, which is closed with respect to finite chains

of transitions with positive probability according to Π0, that is, for all ω ∈ M ,

ω0 /∈ M , one has π0ωω0 = 0, and for all ω, ω
0 ∈ M , there are states ω1, ...ωm ∈ M ,

such that π0ωω1 > 0, π0ω1ω2 > 0, ..., π0ωmω0 > 0. In our case, the absorbing sets are

particularly simple, being exactly all the singleton sets of form {(s, s, ..., s)}, where
s is an arbitrary strategy in S:

Lemma 1 Given Assumption 1 and Assumption 2, for any s ∈ S, the set {(s, s, ..., s)}
is absorbing, and there are no other absorbing sets.

Proof. In a state ω = (s, s, ..., s) all players obtain the same payoff by Assump-

tion 1. Hence π0ωω = 1, and {ω} is absorbing.
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Consider a state ω = (s1, ..., sn), where players do not all use the same strategy.

By Assumption 2, they do not all obtain the same payoff. With positive probability

according to Π0, all the players with minimal payoff switch to one of the strategies

in {si}i∈N that did not yield minimal payoff, so in the resulting state fewer different
strategies are used. If not all players use the same strategy in the resulting state,

then the argument can be repeated. It therefore has positive probability according

to Π0 that in a finite number of rounds a state of the form (s, s, ..., s) is reached,

and such a state is absorbing. Hence, no state with action differences can be in an

absorbing set and therefore no other absorbing sets than the singleton sets of form

{(s, s, ..., s)} exist. ¤

We will talk simply of absorbing states (not sets). An invariant distribution for

Π0 can only attach positive probability to absorbing states. Hence, only absorb-

ing states can be stochastically stable. This leaves us with many candidates, but

stochastically stable states can be further characterized.

Above we defined the resistance in a transition ω → ω00 from one state to

another as the integer number minω0:π0(ω,ω0)>0 k (ω0, ω00), i.e., as the minimal number

of mutations required to go from ω to ω00 in one step. Define the resistance in

a transition from one absorbing state, ω, to another, ω00, as the minimal total

resistance (minimal number of mutations) required to go from ω to ω00, possibly

indirectly over other states ω0 which do not have to be absorbing.

For any absorbing state ω, define an ω-tree as a directed graph on the set of

absorbing states, such that for any absorbing state ω0 6= ω there is exactly one path

in the graph leading from ω0 to ω. If there are k absorbing states, then any ω-tree

contains k − 1 arcs. For any given ω-tree define its total resistance as the sum of

all the resistances over the arcs in the tree. For any absorbing state ω define the

stochastic potential as the minimal total resistance over all ω-trees.

Young (1993) proves that the stochastically stable states are exactly the absorbing

states with minimal stochastic potential. We use this in the next section to establish

a very close relation between evolutionary equilibrium and stochastic stability with

respect to our process of economic Darwinism.

11



4 Economic Darwinism implies evolutionary equi-
librium

In this section we (still) impose everywhere Assumption 1 and Assumption 2. This

means that any symmetric evolutionary equilibriummust be strict, since a deviating

player cannot obtain the same payoff as the other players and must therefore obtain

strictly less. Given a symmetric evolutionary equilibrium, (s∗, ..., s∗), we say that

the absorbing state ω∗ ≡ (s∗, ..., s∗) corresponds to the evolutionary equilibrium.

Theorem 1 Given Assumption 1 and Assumption 2, if a symmetric evolutionary

equilibrium exists, then any stochastically stable state with respect to the evolu-

tionary process of economic Darwinism corresponds to a symmetric evolutionary

equilibrium.

To prove this note that by assumption there is at least one symmetric evolu-

tionary equilibrium, so there is at least one state, ω∗ = (s∗, ..., s∗), corresponding to

an evolutionary equilibrium. The proof proceeds by showing, in two lemmas, that

the resistance in the transition from such an ω∗ to any other absorbing state is at

least two, while from any absorbing state, ω = (s, ..., s), that does not correspond

to a symmetric evolutionary equilibrium, the resistance in the transition from ω to

any state ω∗ that does correspond to a symmetric evolutionary equilibrium is one.

Lemma 2 The resistance in a transition from an absorbing state, ω∗, corresponding

to a symmetric evolutionary equilibrium to any other absorbing state, ω, is at least

two.

Proof. We show that it takes at least two mutations to go from an absorbing

state ω∗ = (s∗, ..., s∗) corresponding to a symmetric evolutionary equilibrium to a

different absorbing state. If there is only one mutation from ω∗, then the resulting

state has (at most) one player using a strategy s 6= s∗, while all the remaining

players still use s∗. By Assumption 1, all the players using s∗ get the same payoff.

Furthermore, since (s∗, ..., s∗) is a strict symmetric evolutionary equilibrium, and

different strategies are now used, it follows by Assumption 2 that the player who

plays s gets strictly less payoff than the other players. So, according to Π0 it has

probability one that in the next state all the other players still play s∗, while the last
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player plays some s0, and it has positive probability that s0 = s∗. If s0 6= s∗, then

the same happens again with positive probability of reaching ω∗ in the next step.

As long as ω∗ has not yet been reached there is in each round positive probability of

reaching ω∗ in the next round. Let the minimal of these probabilities (over all states

where the last player has not yet come to play s∗) be πmin. Then over T rounds,

the probability of not reaching ω∗ is at most (1− πmin)T , which goes to zero as T

goes to infinity. It thus has probability one according to Π0 to eventually return to

ω∗. One cannot get from ω∗ to another absorbing state by just one mutation, so

the resistance from ω∗ to any other absorbing state ω is at least two. ¤

Lemma 3 The resistance in a transition from an absorbing state, ω, that does not

correspond to a symmetric evolutionary equilibrium, to any ω∗, that does corre-

sponding to a symmetric evolutionary equilibrium, is one.

Proof. We show that from an absorbing state ω = (s, ..., s) not corresponding to

a symmetric evolutionary equilibrium, there is a single mutation leading to a state

from which it has positive probability according to Π0 to go to any ω∗ = (s∗, ..., s∗)

corresponding to a symmetric evolutionary equilibrium. Since (s, ..., s) is not an

evolutionary equilibrium, there is a deviation, s0, that will bring the deviator a

strictly larger payoff than the other players, who by Assumption 1 get the same

payoff. Assume that player 1 mutates and plays s0. Now with positive probability

according to Π0, the process reaches in the next round a state (s0, s∗, ....s∗), where

player 1 still plays s0 while all other players play the strategy s∗. In this new state

the players 2, ..., n all get the same payoff by Assumption 1 and player 1 obtains

strictly less, because (s∗, ..., s∗) is a strict evolutionary equilibrium. With positive

probability according to Π0 the process will therefore in the next round reach the

state (s∗, ....s∗). This means that the resistance from ω to any ω∗ is one. ¤

Proof of Theorem 1. Consider an ω-tree, where ω does not correspond to a

symmetric evolutionary equilibrium. Let ω∗ be a an absorbing state that does

correspond to a symmetric evolutionary equilibrium. Change the ω-tree in the

following way: remove the transition out of ω∗ (by Lemma 2 this has resistance

at least 2), and add a transition from ω to ω∗ (by Lemma 3 this has resistance

1). Thereby an ω∗-tree with strictly lower resistance than the ω-tree has been

constructed. This shows that the stochastic potential of ω∗ is strictly lower than
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the stochastic potential of ω, so that ω cannot be stochastically stable. Thus, any

stochastically stable state must correspond to an evolutionary equilibrium. ¤

Theorem 1 does not say that in games with more than one evolutionary equilib-

rium all states corresponding to evolutionary equilibria are stochastically stable,7

but for games with a unique evolutionary equilibrium we have:

Corollary 1 Given Assumption 1 and Assumption 2, if the game has a unique

evolutionary equilibrium (s∗, ...s∗), then the unique stochastically stable state is ω∗ =

(s∗, ...s∗).

If a game has exactly one symmetric evolutionary equilibrium, then only behav-

ior as in this equilibrium will be observed frequently according to the dynamics of

economic Darwinism.

Theorem 1 and its corollary are our basic results characterizing behavior re-

sulting from economic selection and mutation. A result similar to Corollary 1 for

processes of imitation and mutation is found in Schipper (2003), who extends the

analysis of Vega-Redondo (1997) to a class of games more general than Cournot

oligopoly, namely games which have the aggregator property, and where the payoff

function v fulfils a particular assumption of “quasi-submodularity” with respect to

a player’s own strategy and the aggregate. Schipper shows that under these as-

sumptions, if the game has a unique aggregate-taking equilibrium, then there is

a unique stochastically stable state with respect to the process of imitation and

mutation and this state corresponds to the aggregate-taking equilibrium. Each of

these characterizing results, Schipper’s and our, essentially follows from three basic

features corresponding to our lemmas 1, 2, and 3.

First, absorbing sets are singletons where all individuals use the same strat-

egy. In our model this follows by Assumption 2, and this is the crucial role played

by Assumption 2. In Schipper’s and in Vega-Redondo’s settings it follows from a

particular feature of their imitation process: different individuals who all obtain

maximal payoff, but use different strategies, imitate each other with positive proba-

bility. This is not an essential difference, however, since if one imposed Assumption

2 in an imitation setting one would be able to do without this particular assumption.

7Section 5.3 provides an example of a game with several evolutionary equilibria out of which
exactly one is stochastically stable.
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Second, it takes more than one mutation to escape an equilibrium. This follows

by more or less the same argument for the two types of processes, since a single

mutation from either an evolutionary or an aggregate-taking equilibrium will bring

the mutant less payoff than the non-mutants and hence one is led back to the

equilibrium with positive probability either by economic selection or by imitation.

Third, it takes just one mutation to reach an equilibrium. In our setting of eco-

nomic selection, if play is stuck at an absorbing state that does not correspond to an

evolutionary equilibrium, then a mutation exists that gives the mutant strictly more

payoff than the non-mutants. After such a mutation economic selection will with

positive probability bring all the non-mutants to play the strategy of a particular

symmetric evolutionary equilibrium, and in this new situation the mutant obtains

strictly less payoff than the non-mutants, so economic selection will with positive

probability take play all the way to the equilibrium.8 In a setting of imitation

a similar argument would not work: it would still be true that from an absorb-

ing state not corresponding to an (aggregate-taking) equilibrium, there would be

a single mutation giving the mutant more payoff than the non-mutants (since un-

der the considered assumptions an aggregate-taking equilibrium is an evolutionary

equilibrium), but the mutating strategy would not have to be an aggregate-taking

equilibrium strategy and therefore imitation of the successful mutation would not

necessarily take play all the way to an equilibrium. This is why sub-modularity is

assumed. For games with the aggregator property, sub-modularity ensures that if

all players use one and the same strategy that is not an aggregate-taking equilib-

rium strategy, then a deviation directly to the aggregate-taking equilibrium strategy

(assumed to be unique) will yield the deviator higher payoff than the non-deviating

players. Hence, from any non-equilibrium absorbing state a single mutation to the

equilibrium strategy gives the mutant higher payoff than the non-mutants and then

imitation will with positive probability bring all players to the equilibrium strategy.

Summing up, with respect to how the basic equivalence results are obtained, the

essential difference between the imitation based and the economic selection based

approaches, and the one intimately linked to the difference between imitation and

economic selection, is how the property that it takes just one mutation to reach an

8In the second step of this argument it is used that the evolutionary equilibrium in question
is strict, which is implied by Assumption 2. However, for this purpose one could have imposed a
direct assumption of strictness of equilibrium.
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equilibrium is ensured. As explained, for the process based on economic selection an

assumption like submodularity is not required, exactly because economic selection

allows for new strategies to emerge without mutation.

Our results thus apply also for games that are not submodular. This is an

important extension because some games of economic interest are not submodular,

e.g., the price-setting oligopoly with strategic complementarity considered in Section

5.2.

Furthermore, our results apply for symmetric games that do not have the ag-

gregator property. In Schipper’s contribution, as well as in Vega-Redondo’s, the in-

tention is to relate stochastic stability (with respect to the process of imitation and

mutation) to aggregate-taking equilibrium, for which purpose the aggregator prop-

erty is, of course, needed. Relating to evolutionary rather than to aggregate-taking

equilibrium allows us the generality of avoiding the assumption of the aggregator

property. Should this be fulfilled, evolutionary and aggregate-taking equilibrium

coincide under relevant assumptions, Possajennikov (2003), Alós-Ferrer and Ania

(2002) and Proposition 3 above.

5 Examples

The examples of this section illustrate the usefulness of the equivalences established

above, that is, Theorem 1 or Corollary 1 in combination with Proposition 1 or 3.

We consider a game with the aggregator property that is submodular (Section 5.1)

and a game with the aggregator property that is not submodular (Section 5.2), as

well as a game without the aggregator property (Section 5.3). The examples also

illustrate the economic consequences of economic Darwinism under externalities as

dealt with more generally in Section 6.

5.1 Cournot oligopoly

Each of n firms sets a quantity qi ∈ S = [0,∞) and obtains payoff:

ui (q1, ..., qn) = P

Ã
nX

h=1

qh

!
qi − C (qi) ,

where the inverse demand curve, P (Q), and the cost curve, C(qi), are assumed to

be differentiable with P 0 < 0, C 0 > 0, and C 00 ≥ 0. This game has the aggregator
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property with
Pn

h=1 qh as the aggregator. We assume P (∞) < C 0(0) < P (0),

which means that there is a unique “competitive equilibrium”, qi = qc for all i and

P (nqc) = C 0(qc).

We do not have to conduct any formal analysis to find the outcome of economic

Darwinism in this example. A unique symmetric evolutionary equilibrium is equiv-

alent to symmetric Nash equilibrium in relative payoffs (Proposition 1) as well as to

symmetric aggregate-taking equilibrium (Proposition 3), and it is well-known that

each of these coincide with the unique competitive equilibrium under appropriate

conditions, Possajennikov (2003) and Vega-Redondo (1997). It follows that under

assumptions ensuring a unique symmetric evolutionary equilibrium this must be the

competitive equilibrium. For a version of the game where the strategy set is finite

and qc ∈ S and Assumption 2 is fulfilled, the state ωc = (qc, ..., qc) is by Theorem

1 the unique stochastically stable state.

The intuition for this result is instructive: Start from a Cournot-Nash equilib-

rium given by qi = qne for all i, and ∂ui/∂qi = 0, or P 0(nqne)qne+P (nqne) = C 0(qne).

Price, P (nqne), is above marginal cost, C 0(qne). A unilateral increase of production

from qne by one oligopolist will (of course) imply a loss of profit for the deviator, but

the other oligopolists will loose more (strictly at qne the deviating player’s loss is of

second order while the others’ are of first order). All oligopolists’ payoffs are reduced

to the same extent by a decreased price, but as long as price is above marginal cost

the deviator is partly compensated by the positive marginal profit earned on the

increased production (given the price). Hence, all the way up to the competitive

equilibrium where price is equal to marginal cost, increases in production will im-

ply increased relative profit for the deviator, so only at the competitive equilibrium

no increase in relative profit can be obtained. For the particular game of Cournot

oligopoly the possibilities for relative payoff increases are exhausted exactly when

price equals marginal cost.

In the Cournot example economic Darwinism leads to higher activity than does

Nash equilibrium (now assumed to be unique), qne < qc, as can easily be seen from

the conditions P (nqc) = C 0(qc) and P 0(nqne)qne + P (nqne) = C 0(qne). Nash equi-

librium in turn involves higher activity than in the social optimum (the monopoly

outcome), where qi = qo for all i, and qo maximizes P (nq) q − C (q): Assuming

P 00(Q)Q/P 0(Q) > −2, the function P (nq) q − C (q) is concave in q and there is
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a unique social optimum, 0 < qo < ∞, given by P 0(nqo)nqo + P (nqo) = C 0(qo).

Comparison to the first order condition for Nash equilibrium shows that qo < qne.

All in all qo < qne < qc, and the example suggest that this will be a general property

of situations with negative externalities, and vice versa for positive externalities.

Our next example demonstrates primarily the usefulness of our established

equivalences and the bite of economic Darwinism in games that are not submodular.

It also shows that competitive equilibrium, or price equal to marginal cost, is not a

general implication of economic Darwinism.

5.2 A differentiated product Bertrand oligopoly with strate-
gic complementarity

Consider a market with n price-setting firms and zero maginal costs, where the

payoff functions are:

ui (pi, p−i) =

µ
1− pi +

1

2

Pn
h=1 ph
n

¶
pi.

This game has the aggregator property with the average price, A = (
Pn

h=1 ph) /n,

as the aggregator.

The symmetric unique Nash equilibrium of this game is pi = pne for all i, where:

pne =
2n

3n− 1 .

Taking the aggregate as given, best responses are:

pi =
1

2

µ
1 +

1

2
A

¶
.

Thus, the optimal pi is increasing in A, i.e., there is strategic complementary be-

tween the aggregate A and the individual price pi, which implies that quasi sub-

modularity is not fulfilled.

The unique symmetric aggregate-taking equilibrium is pi = p∗ = 2/3 for all i,

and by Proposition 3 this is also the unique symmetric evolutionary equilibrium.

In an appropriate finite version of the game where 2/3 ∈ S, Theorem 1 implies that

the unique stochastically stable state is ω∗ = (p∗, ..., p∗).

The symmetric price that maximizes the firms’ common payoff, ui (p, ..., p) =¡
1− p+ 1

2
p
¢
p, is po = 1. Hence p∗ < pne < po.
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In our examples so far the outcome of economic Darwinism has corresponded

to “optimization neglecting one’s influence on the aggregator”. We now consider

a game where this is not the case, because the game does not have the aggregator

property.

5.3 A learning spill-over game

Each of n ≥ 4 firms produces output from labor input ci ∈ [0,∞). The wage rate
is normalized to one. The firms sell output at a common price p > 0. A productive

externality, a learning spillover, implies that a firm’s production depends positively

on the labor input of the firm among the other firms that uses the largest labor

input and hence has the highest production (each firm learns from the one opponent

there is most to learn from). The payoff functions are:

ui(c1, ..., cn) = 4c
1
2
i

∙
max
j 6=i

cj

¸ 1
4

p− ci.

This game does not have the aggregator property.

The best reply of firm i, given by

∂ui
∂ci

= 2c
− 1
2

i

∙
max
j 6=i

cj

¸ 1
4

p− 1 = 0,

is ci = [maxj 6=i cj]
1
2 (2p)2. Hence, the unique symmetric Nash equilibrium is ci =

cne ≡ (2p)4 for all i.
The Nash equilibrium is not efficient. The best symmetric outcome is found by

maximizing 4c
3
4p− c with respect to c. The first order condition is 3c−

1
4p− 1 = 0,

giving the symmetric social optimum, ci ≡ co = (3p)4 for all i. In Nash equilibrium

too little effort is exerted from a social point of view, because each firm does not

take the positive externality of its production into account.9

To find the symmetric evolutionary equilibria by use of Proposition 1, we find

the following right and left hand derivatives at symmetric points (ch = c for all h):µ
∂ui
∂ci
− ∂uj

∂ci

¶
∂ci>0

¯̄̄̄
¯
ch=c

= 2c
− 1
2

i

∙
max
j 6=i

cj

¸ 1
4

p− 1− c
1
2
j c
− 3
4

i p = c−
1
4p− 1,

9The efficient symmetric outcome is not overall efficient: a higher total payoff can be obtained
in asymmetric situations where only one or two firms exert a lot of effort.
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µ
∂ui
∂ci
− ∂uj

∂ci

¶
∂ci<0

¯̄̄̄
¯
ch=c

= 2c
− 1
2

i

∙
max
j 6=i

cj

¸ 1
4

p− 1 = 2c−1
4p− 1.

By Proposition 1, the conditions:µ
∂ui
∂ci
− ∂uj

∂ci

¶
∂ci>0

¯̄̄̄
¯
ch=c

≤ 0, and
µ
∂ui
∂ci
− ∂uj

∂ci

¶
∂ci<0

¯̄̄̄
¯
ch=c

≥ 0,

characterize interior evolutionary equilibrium. These conditions are equivalent to

p4 ≤ c ≤ (2p)4. Thus, there is a continuum of symmetric evolutionary equilibria,

ci = c for all i, namely one for each c from p4 up to the Nash equilibrium (2p)4.

In an appropriate finite version of the game, where (2p)4 ∈ S and Assumption

2 is fulfilled, the unique stochastically stable state is ω∗ = ((2p)4 , ..., (2p)4) corre-

sponding to the evolutionary equilibrium that is also Nash equilibrium. To see this

first note that by Theorem 1, only states corresponding to evolutionary equilibria

can be stochastically stable. Consider any state (c, ..., c) where c is an evolutionary

equilibrium and c 6= (2p)4. From this state simultaneous mutation by two play-

ers to (2p)4 will result in a state ω0 where the mutants get the Nash-equilibrium

payoff (since they can utilize the learning spill-over from each other), whereas the

non-mutants get a strictly lower payoff (facing the same learning spill-over as the

mutants, but exerting too little effort). Thus there will be positive probability ac-

cording to the unperturbed process to go from ω0 to ω∗. From ω∗, on the other

hand, two mutations do not suffice to escape, since any two mutants will obtain

strictly lower payoff than the remaining (at least two) players who still use (2p)4:

two mutants who both mutate to c < (2p)4, will (as the non-mutants) utilize the

spill-over from (2p)4, but their effort levels will be inferior.

This example illustrates the bite of economic Darwinism in situations where the

aggregator property is not fulfilled and in situations where evolutionary equilibrium

does not give a sharp prediction.

6 Economic implications of economic Darwinism

The examples of Section 5 suggest that externalities imply that economic Darwinism

generally leads to socially too high or low activity to a degree at least as bad as,

and sometimes worse than, Nash equilibrium. This is indeed a general result as will

now be shown.
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We impose some simplifying assumptions in addition to Assumption 1. First we

assume that the strategy set, S, is a convex and closed subset of R+, and that the
payoff functions, ui, are differentiable (until we “finitize” the game to be able to

use the relation between evolutionary equilibrium and stochastically stable states).

Second, we consider situations where externalities are overall positive, ∂ui/∂sh >

0 for all i 6= h. Results for the case of overall negative externalities, ∂ui/∂sh < 0

for all i 6= h, follow analogously.

Third, we assume that each of the concepts symmetric social optimum, symmet-

ric Nash equilibrium and symmetric evolutionary equilibrium is unique and that the

latter two are interior and fully characterized by first order conditions (considered

below) and furthermore, these properties are insensitive to small perturbations of

payoff functions (the latter property being fulfilled generically).

Welfare, W (s), at a common strategy, s, is the common utility of all players at

the strategy profile (s, ..., s), that is, W (s) ≡ ui(s, ..., s) for any i. The symmetric

social optimum is: si = so for all i, where so maximizes W (s).

Our final assumption is that W is concave. The derivative of W (s) is:

W 0(s) =
nX

h=1

∂ui
∂sh

(s, ..., s) ,

where, from the assumed symmetry, i can again be any player.

Define the “marginal product”, m(s) ≡ ∂ui
∂si
(s, ..., s), from a symmetric profile.

Again, i can be any player in this definition. The unique symmetric Nash equilib-

rium, si = sne for all i, is given by m(sne) = 0. From our assumptions, m(s) has

to be strictly decreasing at sne: First, m(s) has to intersect strictly with the s-axis

at s = sne, since otherwise a small perturbation of payoff functions could imply

non-existence of Nash equilibrium. Second, m(s) must be decreasing by the second

order condition.

Since, at the symmetric Nash equilibrium, m(sne) = ∂ui
∂si
(sne, ..., sne) = 0, one

has:

W 0(sne) =
X
h6=i

∂ui
∂sh

(sne, ..., sne) ,

which is strictly positive because of positive externalities. Hence, so > sne, and

obviouslyW (sne) < W (so). This is just a restatement of the well-known result that

with positive externalities, Nash equilibrium implies socially too little activity.
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A symmetric evolutionary equilibrium, si = s∗ for all i, is given by the first

order condition: ∂ui
∂si
(s∗, ..., s∗) − ∂uj

∂si
(s∗, ..., s∗) = 0, where the first term is m (s∗),

and, again because of symmetry, i and j can be any two (different) players. Hence,

m(s∗) =
∂uj
∂si

(s∗, ..., s∗) .

Positive externalities thus imply m(s∗) > 0. Since m(sne) = 0, and m(s) is de-

creasing at s = sne and m(s) only has the one intersection with the axis at sne, one

has that s∗ < sne. Hence, the evolutionary equilibrium is further away from the

social optimum than the Nash equilibrium implying, from the concavity of W , that

W (s∗) < W (sne).

Imposing an appropriate further assumption of finiteness where all of so, sne

and s∗ are in S, and Assumption 2, symmetric social optimum, symmetric Nash

equilibrium, and symmetric evolutionary equilibrium are unchanged and the latter

coincide with the unique stochastically stable state. This suffices for:

Theorem 2 Under the assumptions of this section, if externalities are overall pos-

itive (negative), symmetric social optimum implies “higher” (“lower”) actions and

higher welfare than does symmetric Nash equilibrium, and symmetric Nash equilib-

rium implies “higher” (“lower”) actions and higher welfare than does the outcome

of economic Darwinism.

7 Concluding remarks

Our first main results, Theorem 1 and Corollary 1, establish a close connection

between frequently observed, so-called stochastically stable states and evolutionary

equilibrium, in fact an equivalence when the latter exists uniquely. One implication

is that economic Darwinism does not in general support Nash equilibrium behavior.

Theorem 1 and Corollary 1 hold under relatively general conditions. By consid-

ering an evolutionary process based on economic selection rather than on imitation

we have obtained a process that in our eyes captures ’survival of the fittest in eco-

nomics contexts’ more reasonably and at the same time gives more generality in

the basic characterization results: we have avoided underlying assumptions of the

aggregator property and sub-modularity.
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Our second main result, Theorem 2, establishes what we consider to be the most

important economic implication of economic Darwinism: in the presence of overall

positive or negative externalities, outcomes arising from economic Darwinism are

even worse than Nash equilibrium outcomes.

It is not just, as with Nash equilibrium, that each individual’s behavior is in-

sensitive to the way it affects other people’s payoffs. For the outcomes of economic

Darwinism it is true that even if an increase in “effort” would benefit the indi-

vidual undertaking it, the increase will not be undertaken unless it improves the

individual’s relative position, that is, unless it benefits the individual more than it

benefits other individuals. And even if it hurts the individual, it will be undertaken

if it hurts other people more. This gives an increased tendency (as compared to

Nash equilibrium behavior) to contributing too little in the presence of positive

spill-overs, and to exploiting too much in the presence of negative spill-overs.

It is often argued that social institutions such as legal systems or customary

norms and conventions are rooted in the fact that traditional selfish (Nash equi-

librium) behavior would create socially too bad outcomes in standard social envi-

ronments. In so far as unchecked behavior is more guided by evolutionary forces

than by selfish “rationality”, the argument in favor of social institutions stands even

stronger.
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