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Abstract

In this article we show that technological parameter estimates obtained by estimating a cost

function that is derivable as the dual of a production function can be biased and inconsistent
if the stochastic structure of the model arises from certain types of behavioural assumptions
made about rational agents. We consider a speci ¢ example in which rms are uncertain about
prices. We show that when actual prices di®er from expected prices and rms have to make
decisions on the basis of their expectations, the inherited stochastic speci cation of the dual
system is highly non-linear in the disturbance terms making consistent parameter estimation
impossible by conventional methods. This is demonstrated by a Monte Carlo simulation study
of two text-book examples using synthetic data. It is also shown that this type of result can
arise when the researcher derives the error structure from the assumption that agents make

optimization errors.

1From August 1, 1997 to December 31, 1997



1 Introduction?

It has been a tradition in the design of econometric models to use a two stage procedure.
The rst stage speci es a set of relationships, often a set of rst-order conditions derived from
an optimization problem. The second stage completes the model by adding a set of random
disturbance terms to each equation. In many cases the two stages are independent and the
error structure has no behavioral content. In such cases it is legitimate to ask why these
models contain random components.2 Recently, economists have realized the importance of
making stochastic speci cations an integral part of economic models. Following Fuss et al
(1978, section 7), McElroy (1987, page 738) proposes a ‘general error model' in which the
\... estimated behavioral equations (e.g. cost and derived demand equations) inherit their
stochastic speci cation from the underlying maximization problem.”" While her application of
this idea to the theory of producer behavior is somewhat limited, since it focuses exclusively
on the asymmetries between the researcher and the agent with respect to the observability of
information, the idea is extremely important.

Our research extends this approach by also considering the uncertainty that agents face
and uses the fact that when expectations are not ful lled exactly, errors are produced. These
errors arise in a natural way and satisfy the econometrician's need for a stochastic element in
the model; however, their presence has dramatic implications for the way the model should be
estimated. In what follows we consider both primal and dual (i.e. cost function) approaches
to estimating technological parameters and the implications of this \derived" stochastic speci-
~cation on the consistency of these estimates.

The approach taken here is an experimental one. While it is possible to deal with these
issues theoretically by deriving the properties of the various estimators by analytical methods,
this is by no means a trivial task. As an alternative, we construct a number of \laboratory
experiments" in which it is possible to generate data sets which satisfy a particular hypothesis.
Various estimation procedures are then applied to the models using this data to see if the
procedure works. This is the only alternative to theoretical derivations. In particular, it should
be emphasized that using data generated by \real" agents like rms or individual plants can
never be used to resolve this problem because the researcher can never be sure of either the
technology being used or the objectives of the agents.

The data used in this experiment are generated to satisfy various criteria. In particu-
lar, having speci ed the technology and the expectations mechanism, we generate factor and
commodity prices both expected and realized and from these, assuming expected pro t maxi-
mization in a perfectly competitive environment, we compute the inputs and outputs. Parame-
ter estimates are then obtained for both the primal and dual versions of the model and their

2Earlier versions of this paper were presented at the European Meetings of the Econometric Society in Istanbul
and the Institute of Economics, University of Copenhagen. We are grateful to the seminar participants for their
comments as well as those of Zvi Griliches, lan Irvine, and Yair Mundlak.

3A good example of this methodology in the area of producer behaviour may be found in the survey article
by Jorgenson (1987, page 1861).



statistical properties evaluated.

The main nding is that, while there are no problems in estimating the primal model:
the production function and a set of marginal productivity conditions, the estimation of the
dual: the cost function and a set of conditional input demand functions, is generally impossible
to estimate consistently. The reason for this lies in the nature of individual agent's decision
making process. Decisions are made on the basis of expected prices, hence cost depends on
both expected factor prices and actual factor prices. This causes the disturbance terms to enter
the cost function and conditional input demand functions non-linearly and, consequently, none
of the estimation methods available produces consistent estimates.

Over the last two decades the profession has produced a very large literature on the estima-
tion of technology parameters. Much of it attempts to do this with cost functions.* Based on
the results presented below we have serious reservations about this approach. The methodolog-
ical perspective mentioned in the rst paragraph requires, as a minimum, consistency between
the theoretical model of the agent's behavior and the econometric model estimated by the
researcher. This means that the disturbance terms must have their counterpart in the theoret-
ical model otherwise the \true" model is not being estimated. However, when we attempt to
~nd economically plausible or reasonable scenarios which generate a stochastic structure for an
econometric model the resulting disturbance terms often turn out to be very \unreasonable".
These lead to serious estimation problems, many of which, arise in systems of equations involv-
ing the cost function and the conditional input demand functions. Consequently, it is our view
that traditional results on economies of scale, economies of scope, or the complementarity or
substitutability of inputs should be viewed with considerable caution if they have been obtained
using this dual approach.®

The literature in this area suggests that researchers have a free choice over the representa-
tion of technology; it is largely a matter of convenience whether one estimates the production
side or the cost side. One of the consequences of embedding the stochastic structure in the
economic core of the model is that this statement is no longer generally true. A number of
cases emerge where it does matter. In the examples considered below the maintained hypoth-
esis can only be formulated in the context of the primal problem and attempting to employ
a “exible functional form for the cost function and the conditional input demand functions or
factor shares simply fails to represent the hypothesis.

The paper has the following format. In the next section a very simple model of producer
behavior under uncertainty is outlined. In Section 3 both primal and dual representations of two
self-dual production technologies, the Cobb-Douglas and the CES, are estimated by a number
of di®erent procedures. This section also shows that it is important that output be speci ed
as an endogenous variable if the theory suggests that it should be.® The last section contains

4A good summary of this literature can be found in Berndt (1991, Ch. 9).

SWe are not the “rst to note dizculties with cost function estimation. Mundlak (1996) shows that cost
function estimation can be ine=cient.

5This may appear to some readers to be obvious and in any case not worth discussing. However, it should be
pointed out that a very high proportion of studies which estimate cost functions treat output as being exogenous.



a discussion of the implications of these results.

2 A Static Stochastic Model of Producer Behavior

Consider the following static optimization problem. The agent is a rm whose technology is
represented by a production function f and which maximizes expected pro t,

1 (V) = E[fuf(v:®) j W:v] €

by the appropriate choice of v, where v is a k-dimensional input vector and the ® vector is a set
of technological parameters. ¥ and ® are the same for all rms. pisa rm-speci ¢ productivity
variable and (p;wW) is the price vector of the rm's output and inputs, respectively. These
are also speci ¢ to each rm, although this is not indicated in the notation. In equation (1)
expectations are taken with respect to (W), which is not known to the rm when it makes its
input-output decision. We follow Fuss et al (1978) and McElroy (1987) by assuming that | is
known by the rm's management but is not observable to the researcher.

The solution to this problem is given by a set of rst-order conditions

of

v = W i=1l:.:k 2

where (B; W) is the expected value of (f;W). These equations can be solved to get

) i=1:::k 3

and

y() = uf(v():®) 4

which are the unconditional input demand functions and the rm's output supply function,
respectively.

For more on this point see Mclntosh (1982).



As we mentioned in the introduction this is a laboratory exercise so that the data sets that
satisfy the above equations are generated arti cially. This is done by specifying a distribution
for (f; W) and then drawing an independent sample from it. |1 is generated in a similar fashion.
The procedure is straightforward and all that is required is that (f;W) and p are positive and
that p is independent of (B;W). In order to proceed with the experiments we have to specify
what the researcher knows about the problem and the mechanism whereby stochastic elements
enter the structural equations. First, since p is unobservable to the researcher it is treated as
an unobservable univariate random e®ect on productivity. Expected prices are not observed
by the researcher but the realization of the process, (p;w), is observed, and furthermore, the
researcher knows how expectations are formed. Speci cally, it is known that there is a set of
relationships between (p; w) and their expected values, (B; W) of the form: p = %p and V¥ = T;w;
where % and !; are independent random variables whose means are all equal to one.” Once a
functional form for f is assumed and parameter values assigned, equations (3) and (4) can be
used to get the inputs and the output. Like (p;w), (%; 1) and (B; W) are speci ¢ to each rm.

The data available to the researcher for each rm are the quantities (y;v) and the price
vector, (p;w), and the researcher knows the functional form of f, knows that rms maximize
expected pro ts and are price takers in all markets so that (p;w) is exogenous, knows how
expectations are formed and knows that there is an unobservable random e®ect. Given this
information the standard procedure for obtaining estimates of ® is to represent the model by
a set of non-linear structural equations to which conventional estimation methods are applied.
For the primal problem these are the expected marginal productivity conditions together with
the production function. As we shall see in the next section, this system of equations can be
estimated consistently by conventional estimation procedures.

However, researchers often prefer to use the rm's cost function and a set of conditional
factor demand functions (or their shares in total cost) rather than the production function
and a set of expected marginal productivity conditions. Given (y; ) conditional input demand
functions are well de ned and solve

C(W;y=p) = MinEM:x: f(x;®) _ y=y] (5)

This gives

Xi = Xi(W;y=p) i=1:::k (6)

as the conditional input demand functions. Now economists traditionally write the cost func-
tion as C(W;y=p) = W:x(W; y=l); but this does not represent the rm's true cost in this case.

"This makes expected prices and factor prices equal to their actual values on average so this convention could
be considered as a multiplicative version of rational expectations. In the nal section the case of additive errors
is discussed.



The actual cost that the rm has to pay is equal to w:x(W;y=u) because rms have to make
input decisions on the basis of expected factor prices before they observe actual factor prices.
Consequently the true cost function must be de ned as®

x
Cr(w;W;y=p) = wiXi (W; y=p) @)

i=1

and depends on actual factor prices as well as expected factor prices.® As we shall see in the next
section consistent parameter estimates can be obtained only when the following relationship
exists between the two cost functions

Cr(w;W;y=i) = h(¥})C(w;y=p) 3

3 Monte Carlo Simulations

In this section we consider two self-dual technologies, the rst of which, is a very simple two
factor Cobb-Douglas production function

y = pvphvg? )

The generated data has the following properties. In(y) is a zero mean normal random
variable with standard deviation %,. (In(p); In(wy); In(w;)) has a trivariate normal distribution
with zero mean. (In(%);In(11);In(Y,)) are independent unit variance normal random variables
normalized so that the sample average of (%; 1) is equal to the unit vector. Given |1 and g = Yip
and W = T;w;, v and y can be computed from equations (3) and (4) once values for (®1; ®;)
are speci ed. In this example these are chosen to be (0:3; 0:6).

The primal problem structural equations for this model are obtained by substituting
(%ap; Yawg; oo Tewy) for (B; W) in equation (2), taking logs and adding the log of the equation
y = uf(v; ®). The resulting system has an error structure of the form u; = In(Y;) i In(%) i In(p)
for i =1;:::k and uy = In(u) which arises in a natural way from the agent's expectations and
the random e®ects in the production function and does not depend on any ex-post ad hoc error
speci cation assumptions. These equations together with those for the dual are displayed in
the Appendix.

8As notation we use the vector, v, to represent the unconditional factor demand function and the vector, X,
for the conditional factor demand function.
®Notice that the dual pro t function has similar properties.



The error terms in this system are distributed multivariate normal with zero means and the
maximization of the likelihood function for this system yields consistent estimates of (®;;®,).
The st row of Table 1 gives the averages of the parameter estimates and their standard errors
for 50 replications, each with 1000 observations. It is clear from these results that, as expected,
the application of the maximum likelihood estimation procedure generates consistent parameter
estimates.

Turning to the dual problem for the Cobb-Douglas example the true cost function is given

by
_® ®>
CriwWiy=i) = hep(1)(Kke + Ko)Wi 2wy (y=p) (10)
= hep(1)Cep(W;y=H) (11
where
I(1 2+k2 1 ®(?-l® ®(?-2®
1 e —| 1+®2 g ®1+®2
hCD(-) 2(k1+k2) 1 =2 (12)
and

®:

ki = (®=0,)% % (13)
i®

ky = (®=0,)%7% (14)

Ccp(w; y=p) is the standard cost function arising from the Cobb-Douglas technology. Its for-
mula may be found in Varian (1992, p. 55).

The dual system consists of the logarithm of the cost function de ned by equation (10),
and the logarithms of the two conditional input demand functions where, as in the primal
problem, (B; W) is replaced by its equivalent (Yip; Y1w1; Tow2). Here the error structure is more
complicated. Given the form of hcp(!) the presence of In(hcp (1)) in the cost function error
term destroys the normality of the error structure. The mean of this term is also positive which
requires an adjustment of the constant term in this equation if consistent parameter estimates
are to be obtained.

The dual is estimated, rst by the Full Information Maximum Likelihood (FIML) proce-
dure, in spite of the fact that this estimation method is inappropriate, because this is what is
usual in the literature referred to in the introduction. In addition to the non-normality of the
error structure and the need for a constant term adjustment, this estimation procedure falsely
speci es y as an exogenous variable when it is clearly endogenous. These estimates appear
in the second row of Table 1. These values bear little relation to the true parameter values



TABLE 1

Average Parameter Estimates For The Cobb-Douglas
Example; ® = 0:3, ® = 0:6
(Standard Errors)

Model Estimation Method ®y ®;

Primal FIML 0.3003 | 0.5998
(0.0046) | (0.0048)

Dual FIML 0.2050 | 0.7316
(0.0034) | (0.0039)

Dual NL3SLS 0.2527 | 0.6549
(0.0064) | (0.0072)

Dual NL3SLS 0.3003 | 0.6000
Sub-system (0.0065) | (0.0073)

so the conventional approach of applying maximum likelihood to the cost function and a set
of conditional factor demand functions appears to be rather unsatisfactory. The estimates in
row 3 of Table 1 are the result of applying Non-Linear Three Stage Least Squares (NL3SLS)
to the system. There is a considerable improvement in the quality of the estimates but they
are still many standard errors away from the true parameter values. This improvement is due
to two factors. First, we are able to recognize the endogeneity of In(y) by not including it on
the instrument list. Secondly, the NL3SLS estimator does not depend on any distributional
assumption for its consistency'® so that the non-normality of the error structure does not bias
the estimates by mispecifying the objective function which, in this case, is a weighted sum of
squares rather than a likelihood function. However, consistent estimates for the dual can be
obtained when the logarithm of the cost function has its constant term adjusted (for example,
by adding a nuisance parameter) so that the mean of the error is equal to zero or when the cost
function is dropped from the system. The results of doing the latter using just the sub-system
of conditional input demand functions are shown in the fourth row of Table 1.

In the second example the production function is speci ed as CES and the data on prices,
random e®ects, and expectation errors are the same as in the rst example. The production
function is of the form?!?

10gee Amemiya (1985, page 256) for the consistency requirements of this estimator.
11 This particular speci” cation is due to Jehle (1991, p. 245).



TABLE 2

Average Parameter Estimates For The CES
Example: ® = 0:5, ® = 0:75
(Standard Errors)

Model Estimation Method ®y ®;

Primal FIML 0.5001 | 0.7497
(0.0083) | (0.0038)

Dual FIML 0.7087 | 0.8605
(0.0101) | (0.0037)

Dual NL3SLS 0.7543 | 0.8310
(0.0221) | (0.0155)

Dual NL3SLS 0.3925 | 0.7612
Sub-system 0.0161 0.0174

y = p(va®t + v, ®1) 820 (15)
with ®, < 1.

The results for the CES case which are shown in Table 2 are, with one exception, similar
to those for the Cobb-Douglas. Primal estimation produces consistent estimates which are very
close to the true values of (®;; ®;,). These were chosen to be (0:5;0:75) in this example. Likewise,
dual estimation leads to inconsistent estimates and these estimates are somewhat worse relative
to the true values than was the case for the Cobb-Douglas. Unlike the Cobb-Douglas example,
however, estimating the dual sub-system of conditional input demand functions without the
cost function does not produce consistent parameter estimates.

4 Discussion

The examples employed here are self-dual and explicitly exclude the translog and more general
°exible functional forms. There is a very good reason for this. As shown earlier, when rms have
to make decisions on their expectations before they observe actual factor and output prices, the
resulting cost function depends on both expected and realized prices. The form of this derived



cost function can only be obtained by knowing the algebraic representation of the production
function, but, as is clear from the foregoing, even where such knowledge is available this will not
generally result in consistent estimates of the technological parameters. In particular, it would
be incorrect to use a translog cost function which has as its only arguments observed factor
prices because that would \assume away" the maintained hypothesis that rms act before they
can observe factor and output prices. Since the translog functional form is not self-dual there
is no obvious way of deriving a translog cost function which includes both expected and actual
factor prices in a way which correctly represents the maintained hypothesis.!?

One concludes from examples of this type that the estimation of non self-dual °exible
functional forms can be carried out successfully only on the production side and attempts to
estimate the dual system will generate misleading results.

In Section 2 the expectation formation mechanism was assumed to be multiplicative in
nature. This is unusual and most formulations of the rational expectations hypothesis have
been of the additive variety. The rst point to note is that none of the results is altered by
changing to an additive error model. In the present context the additive formulation has two
undesirable characteristics. When we write ¥ = w; + 1; the condition that W¥; _ 0 makes the
independence of I; from w; problematic. There are ways of getting around this like assuming
that the variance of !; is suzciently small relative to, the mean of w; or the smallest value of
wi, whichever is the more appropriate. But these assumptions are arbitrary and they generate
relatively \small" errors which is not always what is required. Secondly, as a practical matter,
it does not seem reasonable to us that forecast errors should be independent of the size of the
variable being predicted. Errors which are proportional to the value of the variable are much
more attractive. As a result we concentrated on the multiplicative model.

The conclusion to be drawn from these two examples is that while it may be desirable to
make the stochastic speci cation of the model responsive to the demands of economic theory,
this may impose constraints on the way the model can be estimated. Furthermore, this prob-
lem is much more general than one might have expected from the examples in the previous
section. It can arise in a wide variety of circumstances and researchers should be aware of such
possibilities. Consider an alternative justi cation for the presence of random components in a
system of structural equations: optimization errors. It is sometimes suggested that stochastic
elements occur in regression equations because agents make optimization errors. These lead
to discrepancies between marginal products and relative prices. While the conceptual basis
may be di®erent from the model based on expectation errors, the logic and the algebra are the
same. Consequently, the same problems will arise in connection with the estimation of the cost
function.

We might also considered the case of measurement errors. Our approach di®ers from that
of Fuss et al (1978) in the sense that the measurement error mechanism produces true and

2McElroy (1987) is able to estimate the dual system and her application is, in fact, a translog cost function
example. As readers will recall, however, her errors arise because the econometrician is unable to observe what
the agent observes. When, in addition, there are prediction errors or optimization errors (see below) and these
feed back into the system through measured variables like cost, the resulting model is much more complicated.



observed variables with the same mean so that there is no systematic bias in the error. Like
Fuss et al the results depend on whether the variable is a price or quantity. In the general case
measurement errors involving quantities prevent the consistent estimation of both the primal
and dual systems; whereas measurement errors in prices only prevent dual system estimation.
The situation for the two special cases examined here is somewhat better; both primal and dual
estimation is possible for both types of error for the Cobb-Douglas and the dual of the CES
can be estimated in the presence of quantity measurement errors.

5 Appendix

The structural equations for the Cobb-Douglas primal model are

IN(®) + (®1 i DIn(v1) +®zIn(v2) i In(wi=p) = ux (16)
IN(®2) +®1In(v1) + (®; i 1)In(v2) i In(Wz=p) = Uy 17
In(y) i ®1In(vy) i ®In(v2) = uy (18)
and for the dual they are
In(Cr) i [@B1In(wy) + ®2In(w2) + IN(Y)]=(®1 +®2) i In(ki +k2) = ug (19)
In(x1) i [i®2In(w1) +®2In(w2) + In(Y)]=(®1 +®2) i In(k)) = uj (20)
In(x2) i [®1In(w1) § ®1In(wz) + In(y)]=(®1 + ®2) i In(kz) = u; (21)
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