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Abstract

We apply the dynamic stochastic framework proposed in the recent evolutionary literature

to a class of coordination games played simultaneously by the entire population. In these
games, payo¥s whence bestreplies are determined by a summary statistic of the populatior
strategy pro¢, le. We demonstrate that with simultaneous play, the equilibrium selection de-
pends crucially on how bestresponses to the summary statistic remain piece-wise constant.
In fact, all the strict Nash equilibria in the underlying stage game can be declared stochasti-
cally stable depending on how the bestresponse mapping generates piece-wise constant be
responses. Furthermore, we show that if the best response mapping is suA ciently asymmet-
ric, the expected waiting time until the unique stochastically stable state is reached is of the

same order as the mutation rate, even in the limit as the population size grows to in¢ nity.

Per Svejstrup Hansen

University of Copenhagen, Department of Economics

Studiestraede 6, 1455 Copenhagen K, Denmark



1 Introduction

We apply the dynamic stochastic framework proposed in Kandori, Mailath and Rob (1993)
(henceforth KMR) to a class of coordination games played simultaneously by the entire
population. This is taken to refer to a context where the interaction between players are weak
and di%use and therefore does not lend themselves to modeling with pairwise interaction,
anonymous or otherwise.

We choose to model the weak and di¥use interaction among agents in such away that
individual payo%s depend on the player's own strategy and a summary statistic of the popu-
lation's strategy pro¢ le. Speci¢ cally, we assume that each player's strategy space is discrett
and consist of\ linearly ordered strategies, and, as is often assumed in economic models,
the statistic is taken to be the mean of the current strategy distribution.

In the class of games studied in this paper players would try to coordinate since they
receive a strictly higher payo%: from playing a strategy that matches the current population-
wide mean, than from playing any other strategy. This implis that thereM gtrict Nash
equilibria in this class of games. In addition we posit that the strategies are totally rankable
in the Pareto sense, and that coordinating on a higher value of the statistic gives the player
a strictly higher payo%: than coordination on a lower one.

Note that since there are more average numbers than strategies, the bestresponse maj
ping cannot be one-to-one. Therefore bestresponses are piece-wise constant around a give
strategy. One of the contributions of this paper is to demonstrate that with simultaneous
play, the determination of the stochastically stable states depends crucially on how best

responses remain piece-wise constant. In fact all the strict Nash equilibria in the underlying



stage game can be declared stochastically stable depending on the way piece-wise constal
bestresponses are speci¢ ed. This result holds even when we approximate a continuous stra
egy space, i.e. when we by-pass any arti¢, cial considerations that could be associated to the
discreteness ofthe players' strategy space. Furthermore, we show that if piece-wise constant
bestresponses are suA ciently asymmetric, the unique stochastically stable state consists o
all players playing one of their extreme strategies (which one depends on the way the asym-
metry goes). In this case the expected waiting time until the unique stochastically stable
state is reached is of the same order as the mutation rate, even in the limit as the popu-
lation size grows to in¢ nity. Hence, unlke in many models of random pairing interaction,
convergence may in fact be very rapid even though the mutation rate is small.

Our motivation is threefold. First, much research in both traditional and evolutionary
game theory has been devoted to discriminate between equilibria in games that exhibit mul-
tiple strict Nash equilibria. In coordination games many hold the belief that the Pareto
dominant equilibrium stands out as a focal point, and thus should be selected as the equilib-
rium. Other apply the concept of risk dominance introduced by Harsanyi and Selten (1988),
as the re¢ nement criterion. In general, the two concepts, Pareto eA ciency and risk domi-
nance, di¥%er. However, in symmetric pure coordination games they coincide. Kandori and
Rob (1995) show that for generalx n pure coordination games the Pareto eA cient equilib-
rium is selected as the unique stochastically stable state, when players are randomly matched
in pairs. In a recent article Robles (1997) considers a model which is similar in structure
to ours. That is, he studies a simultaneous play coordination game that also applies the
evolutionary dynamics of KMR. What Robles (1997) shows is that in coordination games
with simultaneous play and payo¥:s determinedabgrfaged strategies,’ the stochastically
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stable states are bounded away from the extreme strategies, including the Pareto eA cient
Nash equilbrium. Apparently, there is a stark contrast between random pairing and simul-
taneous play. But as we show, the results in Robles (1997) are accounted for by the way he
de¢ nes the piece-wise constant bestresponse mapping. The Pareto eA cient equilbrium ma:
be selected as stochastically stable as may any other strict Nash equilbrium, depending on
details of the bestresponse mapping.

Second, one of the criticisms of the relevance of the concept of stochastic stability is that
the speed of convergence may be very slow, indeed. The inclusion of a noise term meant
to capture for instance mutations or trembles, makes all the strict Nash equilibria occur
with positive probabilty. However, some may be more likely than others. If the long run
probability ofa (subset of) strict Nash equilibria does notvanish as the noise approaches zero,
these states are stochastically stable. The problem is, as pointed out by Elison (1993) among
others, that if the state initially is in a non-stochastically stable state, convergence may be
so slow that for all practical purposes, the stochastically stable states are never reached. In
fact, Bnmore, Samuelson and Vaughan (1995) have estimated that going from the payo%
dominant equilibrium to the risk dominant one in the KMR-model, has an expected wait of
1.7x107 periods, when the number of players d, the noise-rate i4/100, and the payo¥s
are such that at leasB of a player's opponents must play the risk dominant equilibrium
strategy to induce a switch in the agent in question's best reply. Our model which have
features in common with Elison's (1996) analysis of step-by-step evolution, shows that if
piece-wise constant best responses are suA ciently asymmetric, convergence is of the san
order as the mutation rate even in the limit as the population size grows to in¢ nity. Thus,
another important di¥%serence between random pairing and simultaneous play.
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Thirdly, apart from Robles (1997), the evolutionary lterature has not thoroughly anal-
ysed games with simultaneous play, even though Crawford (1991, 1997) forcefully argues for
introducing genuine simultaneous interaction into this literature. What seems relevant in
many models of economic theory, be it of oligopolies, macroeconomic coordination failure
models or models of individual consumers' demand for goods such as popular restaurant
seats or theater tickets (Becker, 1990), is an interaction structure characterized by simulta-
neous play rather than random pairing, anonymous or otherwise. In addition, agents reactto
some average of other agents' behaviour in these models. Hence, we argue that what is rele
vant for many economic applications is a simultaneous play interaction pattern with a payo¥%
structure determined in part by the mean of the current strategy distribution. However,
from a game theoretical perspective the equilibrium selection mechanism in these games is
rather discomforting, since all the strict Nash equilibria of the underlying stage game can be
selected as part ofthe setofstochastically stable states by an appropriate speci¢, cation of the
bestresponse mapping. Unless the bestresponse mapping generates suA ciently asymmet
piece-wise constant best responses in which case our model has strong predictive power, a
well as fast convergence to the predicted stochastically stable states.

A natural question that arises is how the best response mapping ought to be de¢ ned?
Robles postulates without any further argumentation that population averages, which lie
between two adjacent discrete strategy choices, should be transformed onto the nearestone @
these strategies. Thatis, ifa value ofthe average is,38lthe optimalindividual strategy
is to play4, whereas itis to play if the population average i8.49.1 In pure coordination

games, this way of de¢ ning the bestresponse mapping does notseem appealing. In this clas

IRobles (1997) breaks ties such ti&a50 is mapped ontat.
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of games, individual payo%s are positive if the player's choice of strategy equals the summary
statistic, otherwise individual payo%s are zero. The strategies are also totaly rankable in
the Pareto sense, such that coordinating on a higher value of the summary statistic give the
players a strictly higher payo% than coordination on a lower one. We argue that if players
look at their payo%s, the natural way of specifying the best response mapping is such that
any population average slightly above a discrete strategy, oughtto lead a playerto choose the
next higher strategy. This gives the player a higher payo% and involves no greater risk since
both actions are equally securédThese theoretical arguments suggest that a symmetric
de ¢ nition ofthe bestresponse mapping in pure coordination games is questionable. However,
how individuals are likely to perceive whatis a bestreply to a given statistic is an empirical
matter. After all, the perception of best responses is not a choice variable but intrinsic to
agents.

The paper is organised as follows. Section 2 serves for motivation and heuristics. It
presents the general idea by way of a simple example. Sections 3 and 4 turn the intuition
into formal analysis. Section 3 provides the general model, and section 4 states a general
possibility theorem saying that, in symmetric coordination games with simultaneous play and
an average payo¥ structure, any strict Nash equilbrium can be selected as part of the set of
stochastically stable states by an appropriate de¢ nition of piece-wise constantbestresponses
To ilustrate the theorem, we calculate numerically the set of stochastically stable states for
a given error rate and di%erent ways of de¢ ning piece-wise constant best responses. Secti

5 considers the rate of convergence and step-by-step evolution, while section 6 discusses th

2A secure action is an action whose lowest payo¥ is at least as large as the lowest payo¥% to any other
feasible action. (Van Huyck, Battalio and Beil, 1991).



results and suggests how the bestresponse mapping could be de¢ ned for di¥aerent classe

coordination games.

2 An Example

Consider a situation where a ¢ nite number of players, each having the same ¢ nite set of

strategies, play a simultaneous coordination game. Individual payo%s are determined by the

player's own action and a population-wide average ofthe opponent players' strategy choices.

For this class of games, we show that any strict Nash equilibrium of the underlying stage

game can be stochastically stable depending on how the best response mapping generate

piece-wise constantbestreponses. This wil be derived formally in the following sections but

before addressing the theoretical issues, we shallilustrate the point by a simple example.
Consider a symmetric pure coordination game with= 9 players andM = 5 linearly

ordered strategies for each of them. Llein,zz) be the payo¥% to an individual playing

strategym € {1,2,3,4,5} when the mean of the population's current strategy pro¢, le equals

7. Since there are more average numbgrthan strategiesn, the best response mapping,

B(m), cannot be one-to-one. Speci¢ cally, supposdehelsetB~(m) = [m—a, m+1—a)

is a half-open intervallfor some constané€ [0,1). In other words, we de¢ ne an integer-value

function which takesz € [m — a, m+ 1 —a) — m, such that the best response is piece-wise

3The opponents are taken in a wide sense, i.e. the player himself ¢, gures among the opponents. If the
players knew they could alter the population-wide average by their strategy choices, non of the results in
this paper would change in qualitative terms.



constant around a given integer-valuemof Hence,

wheneverm —a<pu<m+1-—a.

Introducing myopic bestresponses and mutation dynamics as in Kandoriand Rob (1995),
we follow Young (1993) in de¢ ning the stochastically stable states of the game as those
states which are the roots of the least resistant paths, where the resistance in this case is the
minimum number of players who must mutate in order to move from a state where everyone
plays m to a state where everyone plays # m. Denote the minimum resistance of going
from m to m’' by r,,,». It has been shown in Kandori and Rob (1995) that only adjacent
states need to be compared for obtaining the stochastically stable states in pure coordination
games. Thus, we have to compantg,,+1 andr,1.» wherem € {1,...,4}. Now assume the
integer-function de¢, nes pieces symmetrically; thad I&% This is the case in Robles (1997)
and as we willdemonstrate, the key to understand his equilibrium selection mechanism. Set
up the tree as below where the numbers above and below the arrows indicate the resistances

of going upward and downward, respectively.

Figure 1,a =1/2
2 2 3 5
1 &2 2 =2 3 &2 4 = 5
5 3 2 2

It is easily seen that statg@is stochastically stable since itis easier (i.e. requires fewer

mutations) to go from to 2 than the opposite way. Similarly f@rto 3. It also involves fewer



mutations to go frond to 4 than from4 to 5. The same applies forto 3. For comparison
assume instead that= g This makes more numbers go upnothan fora = % Setting

up a new tree, we observe that the stochastically stable state3 and 4.

Figure 2,a =5/9

1 2 2 4
1 =2 2 =2 3 =2 4 =2 5
3 3 2 2

This shows that just a small change in how the average is transformed onto a strategy
choice, signi¢, cantly alters the equilibrium selection. By changing the pieces slightly in favour
of going upward, (by increasing € [0,1)), the stochastically stable state(s) are biased
towards the Pareto eA cient outcome. The example suggests that by an even higher choice
ofa € [0,1), players would coordinate on the Pareto eA cient equilbrium. Similar arguments
apply for tending towards the least eA cient equilbriurt}.{ If the same game is played
with a random pairing interaction structure, Kandori and Rob (1995) show that the Pareto
eA cient equilbrium is stochastically stable. So clearly there is a di%erence between random
pairing and simultaneous play, butas the above example illustrates, the di%2erence seems to lie
in how each player's best response remains piece-wise constant in response to other player
averaged strategy pro¢ le, and not so much in the di¥%erence in the interaction structure
per se. The way of de¢ ning piece-wise constant best responses determines the equilibriumn

selection.



3 The Model

Following Robles (1997), we consider a ¢ nite populatidrof size N composed of players
ne N :={1,2,..,N}. Ateach timet = 1,2,... these individuals play simultaneously a
symmetric coordination game with linearly ordered strategiese M = {1,2,...,M}.*
Individual payo¥a,n(m,7(s)), depends on own actiom € M and the population-wide

mean,i(s):=+ Y. m# (players usingr), which is observablé. The (unobservable) state

meM

s = (s1,...,Sm) IS @ vector, whosenth element,s,,, represents the number of players using
strategym € M. Thus, the state space of the system is chosen equdPMopwhere M is the
strategy grid introduced above. We assume that,m) < n(m'/,m’) wheneverm < m/,
andw(m,m’) < mw(m’';m') wheneverm # m/'.

The stage game described above, exhiifsstrict Nash equilibria in which all players
choose the same strategy. In addition, the Nash equilibria are totally ranked in the Pareto
sense; when all players choose strategy 1 the least eA cient equilibrium is generated, and
Pareto optimum results when every player plays her highest strategy

Like Kandoriand Rob (1995) we assume that strategy adjustment is not instantaneous
but is subject to some friction. Specig cally, it is assumed that at etvetyl,2,... each
player takes an independent draw from a Bernoulli trial. With probalfiity- ) € (0,1)
this draw produces the outconm® not learn’and the player stays with her strategy. With

the complementary probabiliiy the draw produces the outconeatn” In this case the

4Scheling (1973) introduced the simultaneous play modelin economics. In biology theptaying the
¢ eld’is used to indicate interaction with a whole population, (Maynard Smith, 1978).

SRobles (1997) considers games where individual payo¥:s depend on own action and convex combinations
of the order statistics of the population's current strategy cong, guration. It should be noted though that the
results in our paper generalize, in a qualitatively way, to all convex combinations of order statistics as long
as all order statistics have positive weight.



playeris able to observe the average ofthe population's current strategy pro¢, le and switches
to a best response to the perioéverage®. We assume that she believes her opponents to
stay with their strategies and that her choice has a negligible e¥%ect on the average. Hence
her myopic best response is to match the current value of the mean.

We assume the existence of a partition of the real intefligh]into neighbourhoods

(vicinities) V4, ..., Vi of 1,..., M respectively such that the best response

B(p) := arg max (-, 1)

is constant on eachr,, m = 1,..., M. We shall therefore speak of piece-wise constant best

responses. For tractabilty we assume that

Vi =[L,LM|N[m—a,m+1—a)

for somea € [0,1). In other words,

wheneverm —a<m<m+1-—a.
In addition to the myopic best-response dynamics, idiosyncratic behaviour is modelled
in the following way. For allt, each playem € N is subject to some probability > 0 of

mutating”in which case the player chooses any strategy M in a purely arbitrarily

St is without importance that the player observes the average and not thesssatee the payo¥ to the
player depends on this average and not on how many players who are playing the di¥%erent strategies.
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manner with positive probabilty on eaclh € M. These events, which occur after the
best-response adjustments, are assumed to be independent across players and over time.
The composition of myopic bestresponses and mutations generates a discrete-time Markov
process over the ¢ nite state spagewhose transition matrix is denotel(e) = (pss(€)).
An elementp,y () represents the transition probabilty of moving to statet time ¢ + 1
conditional on being in state at time t. The mutation-free"dynamics itself corresponds
to P(0).
The presence of mutations implies that every transition has positive probability. It is a
standard result that such Markov chains have a unique stationary probability distribution.
Let p(e) denote the unique invariant distribution &fe)for eache > 0. The aim is to
characterize the limit

p* = lim p(e).

e—0

Based upon arguments in Freidlin and Wentzell (1984), Foster and Young (1990) have shown
that this limit exists and they called it the stochastically stable distribution. Callthe support
of this limit distribution the set of stochastically stable states and dende it

As a ¢ rst step towards computing the set of stochastically stable states we will ide ntify
the set of the recurrent classes und¥0). Denote this sefl’ and lete,, be the state where

all players play strateg.

Proposition 1 Using the arithmetic mean as a summary statistic, the set of recurrent
classes in the unperturbed gamelis= {{ei1},{ea},...,{ea}} for any integer-value func-
tion [-],: R — Z, de¢ned by[-],(r) :== [r], = z wheneverr € [z —a,z+1 —a), z being

11



an integer and: € [0,1).

Proof. |Ifs =e, thenw = m. Therefore B(m) = m, irrespectively of[-],, a € [0,1).

Hence,e, € I. If s # e, but [E(s')], = m, then there are individuals who do not play a
bestresponse to the current stateLet allthose players revise their strategy choices. Since

they will all change their strategy tm, e, is reached in one step. Combined with the fact

thate,, is an absorbing set this implies th&ltis a transient state and therefose¢ I'. m

In order to determing:*, we need to know the relative size of the transition probabilities,
pss(€), that are converging to zero. Since mutations are independent across players and
over time, the elements d?(e) are polynomials ire. In fact, the leading terms oy (¢)
have the forme"**), wherer(s, s') is the number of mutations needed to move frerto
s'. Hence, the number of mutations corresponds to the ordeg)(of the corresponding
transition probabilty. The stochastically stable states are precisely those states which can
be reached from any other state with the fewest number of mutations. In addition, since
1(0) is the limit distribution ofP(0), it puts zero probabilty on every transient state. We
may therefore restrict attention to the recurrent states to determine the set of stochastically
stable states@.

We now consider moving between two distinct recurrent stadgsand e,,,, m # m/,
em,» €y €L. For each pair of distinct recurrent states ande,,, m # m/, an mmni-
path is a sequence of states= (s!,s?,...,s7) which begins ine,, and ends ine,, for
m # m/. The resistance of this path(c), is the sum of the resistances of its edges, that is
r(o) = Y971 r(st, s1) wherer(s*, s*+1) € Ny U {oo} is the number of mutations required

to move from states* to states**!. Letr,,, be the least resistance over aln/-pathso.

12



In fact,

Tmmy = Mgisl—¢,, sa=c¢ , 7.(0-).

A tree rooted at vertexy' (ane,,-tree), is a set ol — 1 directed edges, each for one
recurrent state, such that from every vertex di%erent framthere is a unique directed
path in the tree tan'. The weight on the directed edge — m' iS r,,m. The resistance ofa
rooted tree T, is the sum of the resistances,, on the M — 1 edges that composes it. Let
T(en) be the set ot,,—trees. Following Young (1993), we de¢ ne the stochastic potential
of the recurrent state,, by

;= min T ”
Vi TeT (e,,) E (emsen)ET mm

We now state the theorem for determining the stochastically stable states (Young, 1993,

Theorem 4).

Theorem 2 The stochastically stable statesc O, are exactly the state(s) with minimum

stochastic potential.

4 Equilibrium Selection

In this section we characterize the set of stochastically stable states for the average payo¥
games described in section 3. Since the stochastic potenti] efI" is de¢ ned to be the
minimum resistance over all trees rootednatstandard tree constructions determine which

en has the lowest stochastic potential.

13



When a playen € NV learns, her myopic bestresponse is to match the integer-discretised
mean of the population's current strategy pro¢, le. Hence, to assess the likelihood of a move
from the statee,, to e,,, we need to ¢ nd the mininum number of mutations required to
change the average from to m’. Since large jumps in an individual strategy change the
average more then smalljumps, having players mutate to extreme strategies is often the ¢ rst
step along a minimum resistance pathl K m < m’' < h < M, then evidently there are
more strategies abover thanm'. This means that one mutation tohas a larger impact
on the average when the stateejg, than when the state is,,. Therefore, the number of
mutations needed to destabilize equilibrigy upwards must be less than or equal to the
number of mutations needed to destabilize equilibriegnin the same direction. A similar
argument applies to the number of mutations needed to make the transition from a higher
to a lower state€. Furthermore, a slight modi¢ cation of Proposition 3.2 in Robles (1997),
allowing for a general speci¢ cation of piece-wise constant bestresponses, implies thatto ¢ nd
the minimum resistance path fromy, we only need to consider adjacent recurrent states,

i.e. en,_1 ande,,1. Therefore, to ¢ nd the resistance for the transiggn— e,,.1, we need
to ¢ nd the number of players, de¢ nedms,,+1, who must mutate td/ such that the best

reply for anm-player, who learns, is to play a strategym+ 1. Hence ,K,, ,,+1 must satisfy

Emmit pp W Emmit)yyy > gy 1 — a. Now, de¢ neKy,my1 as the minimum number of
players who must play/ for the above expression to be satis¢ ed. Cle&tly,,,; depends
ona. In fact, K, my1(a) := min {Km,mﬂ t K1 > %} Similarly, for the transition

émi1 — em,We need to ¢ nd the minimum number of players who must mutateirtarder

foran(m+1)-player's bestresponse to be to play a strat€gy, assuming th€m+1)-player

"This is what we state formally in Lemma 8.

14



aN
m

receives a learning draw. This is de¢ ned B$41m(a) := min {Kmﬂ,m t K1m >
For completeness s&y a1 = K, y=00°
The following proposition yields a simple characterization of the resistance between two

states inl.

Proposition 3 rmmii1(a) = Kmmii(a) andrppim(a) = K, (a).
Proof. Appendixm

The next proposition states the conditions égyto be supported by the stochastically
stable states. It asserts that is a (part of) the stochastically stable states if and only
if more mutations are required to move the state fremto e,_; and frome,, t0 e,11
than the other way around. In other words, each inward resistance must be less than the

corresponding outward one.
Proposition 4 e, € © % rp_1m(a) < rmm-1(a) andryiim(a) < rpmei(a).
Proof. The proof follows with a slight modi¢, cation from Robles (1997, Proposition .2).

From the de¢ nitions oK, m+1(a) and K., ,,(a) it follows that the resistance between
two states i depends on how bestresponses are piece-wise constant. The next proposition
gives necessary and suA cient conditions for the lowest and highest strategies, respectively

to be stochastically stable.

80ne potential problem is that it might be possible ¥, .,+1 players who mutate td/, to raise the
mean above the new staig + 1, but not exactly tom + 1. Lemma 3.1 in Robles (1997) shows that in that
case players can mutate to a stratégy M and reachm +1 and thatk,, ,+1 — 1 players is not suA cient
to increase the mean ta + 1.

15



Propositon 5 Leta € [0,1). i) If a € [0, ] thene, € ©, i) if a € [1 - LM T)
theney € ©. If in addition N > M — 1 and ii) a € [0, 553+ thene; € © uniquely, or if

V) a € [1 — 255 1) theney € © uniquely.

Proof. Anecessary and suA cient condition faf ¢ © is that the number of mutations
required to move the state fromy, to ey,_; is strictly less than the number of mutations
required to move the state the opposite way. This follows from Proposition 4. In fact, using

Proposition 3, and the de¢ nitions Efy_1,1(a) and K, 5, 1(a), a necessary and suA cient

(1—a)N

w—ar—- From this expression itis easy to establish ii).

condition forey ¢ © i
The corresponding argument concerning i) is essentially identical.

To prove uniqueness, allthatis required is thé 1 ar < Ky forexr to be unique,
andK,,; < 71,2 for e; to be unique. Then condition ii) and iv) follows from the de¢, nition

of KandK. m

In Robles (1997), where the integer-value function is de¢, ned symmetrically, tel the
stochastically stable states are bounded away from the extreme strategies for most parameter

cong¢ gurations. The following corollary gives conditions for this to happen.
Corollary 6 LetN >5, M >3 anda=3. Thenile ¢ O, i) ex ¢ O.
Proof. The proof follows from Proposition &

We are now ready to state the main theorem, saying that in symmetric coordination
games with simultaneous play and an average payo% structure, all the strict Nash equilibria
of the underlying stage game can be decleared stochastically stable by an appropriate choice
of how the population-wide average is transformed into a discrete strategy choice.
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Theorem 7 IfN > 5 and M > 3, any of the recurrent states, € I" for m € M can be

selected as stochastically stable by appropriate choiceelo, 1).

Before we prove the theorem, we need to prove that the number of mutations needed to
destabilze equilibriure,, upwards (downwards) is less (larger) than or equal to the number

of mutations needed to destabilize equilibriwp,; in the same direction.

Lemma 8 Ifl1 <m < M, thenr,, mi1(a) < Tmiimiz(a) andrpomii(a) < rmprm(a).

Proof. From Proposition 3 we know that the resistances can be expressed in teiis of

andK's. Then, we haveK,, m;1(a) = min{Km,mH C K1 > (}\;f)riv} and

. 1-a)N + -
Km+1,m+2(a) = min {Km+1,m+2 Ko ime2 > N}_(fn)H)} . He nceKm,m+1(a) < m+1,m+2(a)-

Similarly, K., 5 i1 (a) = min { Kpyomi1 : Kmipomer > 7225} and
K (a) = min {Kpi1m 0 Kiiim > 2L} Therefore K, o i1(a) < K, (a), and the

—=m-+1lm

Lemma is establishedm

Proof. (Theorem 7). From Proposition 5 we know that we can seleas a stochastically

stable state by choosinge [0, X£X=1]. Callthe upper bound of this interval. >From the

same propositioney is stochastically stable whem € [1 — 24221 1) . Denote the lower

bound of this interva&™. It is easy to verify that! < «™ whenN > 5, M > 3.

Observe that for alin : 1 < m < M, rpmi1(a) IS non-increasing i € [0,1). This
follows directly from the dey¢, nition OKm,m+1(a)- In fact, for a givena = @, a smallincrease
in a implies a change iy, m1(a) € {—1,0}, for 1 <m < M. Similarly, a smallincrease in

a implies a change im,,41,,(a) € {0,1}, for 1 <m < M.
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To select any,, € © choosea € [0,a!]. If m =1, thene, € ©. If m > 1, then choose
slightly abovea'. As noted above, this increasedrimplies a change iy, m.1 € {—1,0} and
iN 741,m € {0,1}, and from Lemma 8 it follows that the changes in the resistanggs;
(rm+1,m) @are monotonically non-decreasing (non-increasing). If the increaselranges the
resistance such that the conditions given in Proposition 4 are satis¢ edetheno. If
not, then continue to increaseuntil they are. Ifm = M, then we have to increase until
a™ < a < 1. Note thata™ < 1 forall N > 5, M > 3. In fact, lim « = &1 < 1 and

M—o0

lim o™ = % < 1. fm < M, it follows from Lemma 8 that the conditions will be satis¢ ed

N—oo

for a < a™ and the proofis completam

To illustrate how the probability distribution accumulates on the di%erent Nash equilibria
of the underlying stage game, we can solve for the stationary distribution as a function of
the discretisation parametarand the mutation rate directly. The results foe = 0.01
and selected values afin a game withNV = 5 players each havind/ = 3 strategies are

summarized in Table 4.1. (We explain how probabilties are calculated in the appendix.)

Table 4.1. Long-run probabilities

18



€1 €2 €3

a=+| — | — |-967
a=15| — |.488].479
a==| — |.965| —

a=-=>1.479 | 488 | —

a=+1976| — | —

A —’indicates less thar05 probability.

5 Rate of Convergence

In this section we argue that the way best responses to the summary statistic remain piece-
wise constant has important consequences for the expected waiting time required to reach
the stochastically stable states. Speci¢ cally it is argued that if the best response mapping
is suA ciently asymmetric, i,a.is close to zero or one, then the expected wait to reach the
stochastically stable states is relatively short, even if the mutation rate is smal. Moreover,

in the limit whena approaches zero or one, the expected wait remains of the same order
as the mutation rate even when the population size grows to in¢ nity. Hence, convergence
is fast also in the second sense discussed in Elison (1993, pp. 1060-1063). This is due tc
the fact that the system can easily escape the basin of attraction of each Nash equilibrium
except the unique stochasticalle stable siater e,.

The observation that evolution is more rapid when it may proceed via a series of small
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steps between intermediate recurrent states is analysed in Elison (1996). Elison gives the
following biological example to provide intuition: Consider two di¥%erent environments in
which three major genetic mutations are necessary to produce the more ¢ t anfroal
animalz. In the ¢ rst environment each single genetic mutation on its own, provides an
increase in ¢ tness that allows the mutants to take over the population. In the second, all
three genetic mutations must occur simultaneously to create the animal with a higher ¢ thess
thanzx. If mutations are rare phenomena, the expected waiting time to see amilmaing
created is much larger in the latter case. Hence, the large cumulative change fmm
seems more plausible when gradual changes are possible.

As the analysis in section 4 shows, the minimum resistance paths in coordination games
with simultaneous play are constructed between adjacentrecurrentclasses. Therefore, evolu-
tionary changes occur step-by-step. As a result, the expected wait to reach the stochastically
stable state from any given state in Elison's step-by-step model and in the present one is
the samé’.

To show that convergence is fast when the best response mapping is SuA ciently asym-
metric we follow Elison (1996) and de¢ neax,cs W(s,0,¢) as the maximal expected wait
until a state belonging to the sétis ¢rst reached given that play begins in state S
when the mutation rate is > 0. If the expected wait is small, convergence is fast @&nhd
can be regarded as a good prediction of play, even in the medium run.

From the de¢ nition of resistance, i.e. from Proposition 4, it follows &ar e); can be

reached via a chain of single mutations wheis close to zero or one. More importantly, this

9Kaarbxe (1998) shows that it is easy to construct examples of simultanous play coordination games
where Elison's analysis is not applicable.
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result holds also when the population size approaches in¢ nity. As a result, the convergence
rate is independent of the population siz&¥, and convergence is fast also in the second

sense discussed in Elison (1993).

Propositon 9 Ifja € [0,+] or i) a € [1 — %,1), max,es W(s,0,¢) is of ordere™! as

¢ — 0. Moreover, in the limit whem approaches zero or one, this result holds true when the

population size subsequently grows to in¢ nity.

Proof. The proof follows from the de¢ nition of the resistancesf_fz\lf,l,M =1 we know
that the resistance of going upward from any other state is also one. This follows from the
fact that theK's are non-decreasing and is proven formally in Lemma 8. Hedqig& O is

reached with just one mutation. Correspondingly for casemi).

6 Discussion

Theorem 7 demonstrates that in coordination games with simultaneous play and payo%s

determined byaverage strategiesany of the strict Nash equilibria of the stage game

can be stochastically stable. Which equilbria depend solely on the way the best response

mapping transforms the average of other players' strategy pro¢, le onto a discrete strategy.

This implies that when di¥%erent game structures are compared, one should be careful in

ascribing di¥%aerences in the equilbrium selection to the game as such. What is crucial is

how best responses remain piece-wise constant. If for instance, piece-wise constant bes
responses are de¢ ned symmetrically the stochastically stable states are bounded away fron

the extreme strategies. This leads Robles (1997) to conclude that there is a stark contrast
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in equilibrium selection between coordination games with random pairing and games with
a simultaneous play interaction structure. He reaches this conclusion because Kandori and
Rob (1995) show that the stochastically stable state is Pareto eA cient in pure coordination
games where players are randomly matched in pairs. However, this is not in contrast to
simultaneous play, but merely a result of the speci¢s, ¢ way Robles de¢ nes piece-wise constan
best responses. It should be noted, though, that as the number of players incre¥{ses,
i.e. the lower bound om € [0,1) that makesey, € ©, goes to one. This indicates that
for a given de¢ nition of piece-wise constant best responses, it becomes increasingly diA cult
to coordinate on eA cient outcomes when the number of players is large. This result ¢ ts
intuition as well as much research (see e.g. KMR, Van Huyck, Battalio and Beil (1990,
1991) and Crawford (1995)).

A natural question arises though. Namely, how are individuals most likely to perceive
a € [0,1), and hence their best responses? Note that this question is not tantamount to
asking how an experimenter would de¢ ne the best response mapping. He can choose an
integer value function to his liking (and hence determine payo%s), but that does not imply
a speci¢s ¢ behaviour of players. Their best replies depend on their perception of what is a
bestresponse to a given statistic. Unfortunately, we know of no experiments like the ones in
Van Huyck, Battalio and Beil (1991) where the payo%s (hence best replies) are determined
by some averages, that could shed light on this issue. Intuitively, however, it is diA cult to
understand why the bestresponse mapping should be de¢ ned and percieved as symmetric |
pure coordination games. In this class of games, individual payo%s are positive if the player
match the current average, otherwise individual payo¥s are zero. Hence, all actions are
equally secured (see footno®). The strategies are Pareto ranked, such that coordinating
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on a higher value of the summary statistic gives the players a strictly higher payo%¥ than
coordinating on a lower one. Thus why should a population-wide average od48yinduce

a player to play strategyinstead o6? In particular since playin§ gives the player a higher
payo¥ and in addition involves no greater risk than playingThough the experiments in

Van Huyck etal (1991) do not cover this case, some indication in favour of this argument can
be found in the experiments concerning the median as the payo% relevant summary statistic.
In one treatmentthey considered a case where all disequilibria outcomes give a payo¥ of zerc
(the period game). This resembles our pure coordination game with an average payo¥
structure if the median is interpreted as a proxy for the average. In that experiment, they

¢, nd that everyone playing their highest strategy is likely to be the equilbbrium outcome.
Thus agents may perceive as close to one even though an experimenter has de¢ ned it
di%aerently.

It is also worth pointing out that pure coordination games are potential games, and
Mondererand Shapley (1996) show that for potentialgames with an average payo% structure,
the unique strategy prog, le that maximises the potential, is the Pareto eA cient one. This too,
clearly lends support to our claim that for an experimenter an asymmetric way of de¢, ning
the best response mapping is not something that should be dismissed. In fact, it actually
accords with theoretical results as well as empirical equilibrium observations.

For more general coordination games we also expect that if the payo3s the players get
when missing the summary statistic di¥aer for di%aerent strategies, both de¢ ning and perceiv-

ing the best response mapping symmetrically is highly unlikely to be a focal point.
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Appendix

Proof of Proposition 3. We shallshow that the transitons m+1forl <m < m+
1 < Mcan happen afteK,,,.1(a) mutations and not fewer. The corresponding argument
concerning any transitiom +1 —-mfor1 <m <m+1 < M is essentialy identical and
omitted.

First, note that aftek,, ,.1(a) mutations toM, the bestresponse for an-player, who
learns, is to play strate gy +1.(This follows trivially from the de¢, nition 0K, »11(a)). Call

the state that results if, starting at, K,...+1(a) players mutate taV, for s!. Suppose

[7(s')]o = m+ 1. Since itis assumed that at eveiry= 1,2,... each player enjoys a strictly

positive probability of learning, let all players revise their strategy choices. From the best-
response dynamics it follows that all players adjust to strategy 1 ande,,,; is reached

with K, my1(a) mutations. If[z(st)] > m + 1, then there exists mutations to< M such

that [r(s')] = m + 1. (See footnote 9). Here' is the state that results if, starting af,
Kmmyi(a) players mutate td. Again let all players learn. SincB(z(s’)) = m+1, they all
adjust toe,, 1. Hence,e,, is reached With?m,mﬂ(a) mutations.

We now show thaﬁm,mﬂ(a)—l mutations are not suA cientto reael,;. Let the state
which results afteRm,mH(a) — 1 mutations bes?. From the de¢ nition oFm,mH(a), it fol-
lows that the bestresponse for anplayer, who learns, is to play:.. Now, let anM-player
receive the learning draw. Her best response is by de¢ nition torplayg well. Call the
resulting state after théd/-player has played her best response sarSince i(s®) < n(s?),

em41 IS NOt reachable frone,, with K, ,,.1(a) — 1 mutations m
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Calculation of the Stationary Distribution. The composition of myopic bestresponses
and mutations generates an irreducible and aperiodic Markov chain over the ¢ nite state space
S. We now show how to compute the unique invariant distributj(s), € > 0, for the games
described in this paper.

To simplify the computation burden, we assume that each player N/ enjoys the
probability of revising her strategy choice with probability one, i(e= 1. We refer to this
as the deterministic best-response dynamics. It is called deterministic since every player
switches to a best reply in every periddTherefore, from any initial state, the determin-
istic best-response dynamics implies a transition to the sdgtevherem € M is the best
reply toz(s). This transition happens before the mutation dynamics. The probability of the
one-period transitios = (i1, ..., im, ..y i) = 8" = (44, ..oy il -, 39y ), IS then the probability
of the transitione,, — s’ via the mutation dynamics, whetB(z(s)) = m.

When a player mutates, we simply assume she chooses any strategyM with a

time-invariant positive probability which is distributed uniformly over all possible choices.

Hence,

Pl = 2 (6n100) Gt eutotmn) 2= 9 ()™

0<im (0)<im
i1 (rm)+...+fM (r,,l):r(m):im—im (0)
im (0)+X; T (Tt ) =i,

where,i,(0)is the number of players playing strategwho do not mutatey(m) is the

10The assumption is not crucial for the point emphasized in Table 4.1. First, each player's probability
of revising her strategy choice can be chosen arbitrarily close to 1. Secondly, the least resistance paths are
always constructed with transitions between adjacent recurrent sets. Hence, assuming all players learn every
period does not change the number of mutations in the least resistance paths.
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number of players who play: and mutate,(iggo)) is the binomial coe A cien((im_ifn%))”m!)

and (; r(m)

() ...iM(r(m))) is the multihomial coeA cien(-.1 r(m)! )

i1 (rm)L.aar (r(m))!

To illustrate the above formula, IeW = 3 and N = 5.In this game there are 21 states.

Now assumes = 1, s = (1,4,0) and s’ = (1,2,2). In states, n =2 and [z(s)]. = 2. Hence,

B(m) =2, andey is reached via the deterministic best-response dynamics. For a given value
of ¢, the probability of the transitos — s’ is then the probability of the transitiosy — s

by the mutation dynamics. Hence,

e = () 02)0 9@ () (11.2)0 -2 @)+ (122) )

— 30(1 —¢)? (%)3 +60(1— ) (%)4 +30 (%)5 .

When the transition matrixP(e), is calculated, the stationary distributigite) is found
by power iteration onP(e) until it converges. (See e.g. Stewart (1994) for a systematic and

detailed treatment of the numerical solution of Markov chains.)
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