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Some simple ML-estimators in stochastic
differential equations.

by Erling B. Andersen
University of Copenhagen

Abstract: For many stochastic differential equations, often met in financial theory, its is
the drift and the dispersion which are the principal parameters of the model. In such cases
it is shown that the parameters can be estimated by ordinary methods from normal dis-
tribution theory.
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1. Introduction

A general stochastic differential equation for a stochastic process W(t) is defined as

where f and g are known functions of their arguments and B(t) is a Brownian motion or a

dW(t ) f t ,W(t ) dt g t ,W(t ) dB( t ) ,

Wienerprocess.

There has been considerable interest over the last decade in estimation problems connected

with parametrized stochastic differential equations.

The basic approach has been to parametrize the stochastic process itself, i.e. to assume that

W(t) depends on a vector of parametersθ = (θ1, ... ,θk), such that the stochastic differential

equation becomes

(1)dW(t |θ ) f t ,W(t |θ ) dt g t ,W(t |θ ) dB( t ) ,

For this parametric representation of a stochastic differential equation several estimation

procedures has been suggested. From an applied point of view, most of these are rather

complicated and involve advanced results from the theory of diffusion processes. Cf. e.g.

Kessler and Sørensen (1999) for important results and references.

In this paper, we consider a subclass of stochastic differential equations, which, although

simple in structure, covers several interesting cases from applications to financial theory.



2

Consider thus the alternative formulations to (1)

(2)dW(t ) α f ( t )dt σg( t )dB( t ) ,

where f(t) and g(t) are known functions of t, or

(3)dW(t ) α f t ,W(t ) dt σg t ,W(t ) dB( t ) ,

where again f and g are known functions of their arguments.

The purpose of this paper is to demonstrate, that for simple choices of the functions f and

g in (2) and (3), it is possible to derive simple estimators forα andσ. In addition the

distributional properties of these estimators are easily derived from ordinary normal

distribution theory.

For simplicity, we shall mainly consider the equidistant case, where the process is

observed at times t = 1, t = 2, t = 3 and so on. Theresults are easily extended to cases

with non-equidistant observation points in time. For the case in Section 2 it is demonstra-

ted, how this can be done.

We shall call the parameterα in (2) or (3) the drift and the parameterσ in (2) or (3) the

dispersion of the process.

2. Constant drift and constant dispersion

If f(t) = 1 and g(t) = 1, we shall say that the process has constant drift and constant

dispersion. In this case Equation (2) takes the form

(4)dW(t ) αdt σdB(t ) ,

or
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⌡
⌠
t

0

W(s)ds α⌡
⌠
t

0

ds σ⌡
⌠
t

0

dB( t ) .

The last integral is an Ito-integral, but in this case the function to be integrated is constant,

such that the solution is B(t) - B(0). Hence the solution to (4) is

since B(0) = 0, by the definition of a Brownian motion.

W(t ) W(0) α t σ B(t ) B(0) W(0) α t σB(t ) ,

Suppose now, that W(t) has been observed at times t = 1, 2, ... , n, andthat the observed

values are w(1), w(2), ... , w(n). With w(0) = 0, we can then form the new observations

y1, ... ,yn as

or

yi w( i ) w( i 1) α ( i ( i 1 ) ) σ b( i ) b( i 1) ,

(5)yi α σ b( i ) b( i 1) , i 1, ... ,n .

where b(i) is the realized value of the Brownian motion B(i) at time i.

The random variables Y1,...,Yn corresponding to the observed y’s thus have the common

distribution

(6)Y i ∼ N α ,σ2 .

The variance of Yi follows from the fact, that for a Brownian motion the variance at time t

is var[B(t)]=t, and the covariance between time t and time s, t < s, is

Accordingly

cov B( t ) ,B(s) t .
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In addition the Y’s are independent, since Yi = W(i) - W(i-1) = α + σ( B(i) - B(i-1) ) and

var B( i ) B( i 1) i ( i 1) 2( i 1) i ( i 1) 1 .

a Brownian motion has independent increments.

If we write w(i) = wi, the transformation from (y1, ... ,yn) to (w1, ... ,wn) is one-one and

the differential element is

Hence with the proper substitutions

dy1...dyn

dw1...dwn

1.

This means that the likelihood function for the y’s is equal to the likelihood function for

fY y1, ... ,yn fW w1, ... ,wn .

the w’s. The estimation ofα andσ and the distridutional properties of these parameters

can thus be derived from the distribution of Y1, ... ,Yn, which is a set of independent,

identically and normally distributed random variables.

The ML-estimator ofα is thus

(7)α̂ y 1
n

n

i 1
yi

w(n) w(0)
n

w(n)
n

,

since w(0) = 0. The ML-estimator ofσ2 is

(8)σ̂2 1
n

n

i 1
yi y

2 1
n

n

i 1









w(i ) w(n)
n

2
,

where

The distribution of the estimators follows from (6). Thus

w( i ) w( i ) w( i 1) .
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and the distribution of ˆσ is described by

α̂ ∼ N










α , σ2

n

where s2 is the unbiased estimator forσ2. Hence

nσ̂2

σ2

n 1
n

s2 n

σ2

(n 1)s2

σ2
,

For non-equidistant time points t1, ... ,tn, the observations are w(t1),w(t2),...,w(tn). With

nσ̂2

σ2
∼ χ2(n 1) .

w(t0) = 0, we again base the estimations on the differences

or

yi w( ti ) w( ti 1) α ( ti ti 1) σ b( ti ) b(ti 1) ,

(9)yi w( ti ) α ti σ b( ti ) ,

where

From (9) follows that

w( ti ) w( ti ) w( ti 1) , ti ti ti 1 , b( ti ) b( ti ) b( ti 1) .

and

E Yi α ti

since

var Y i σ2 ti ti 1 2 ti 1 σ2 ti ti 1 σ2 ti ,

In addition the Y’s are independent since a Brownian motion has independent increments.

cov B(ti ) ,B( ti 1 ti 1 .
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The log-likelihoodfunction is accordingly

The ML-estimates forα andσ2 are easily derived from ln L as

lnL n
2

ln(2π ) n
2

ln(σ2) 1
2

n

i 1
ln t i 1

2

n

i 1

w( ti ) α ti
2

σ2 ti

(10)α̂ i
w( ti )

i
ti

w( tn) w0

tn 0

w(tn w0

tn

and

(11)σ̂2 1
n

n

i 1

w( ti ) α̂ ti
2

ti
.

Since w(t0) = 0

(12)α̂
w(tn)

tn
,

and inserting (12) in (11)

In order to derive the distribution of ˆσ we rewrite (11) as

σ̂2 1
n

n

i 1

1
ti











w(ti )
w( tn)

tn
ti

2

.

Here

σ̂2 1
n

n

i 1













w(ti )

ti

α̂ ti

2

.
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while

var












W(ti )

ti

1
ti

ti σ
2 σ2 ,

E












W(ti )

ti

1

ti

ti α ti α ,

This means that we can perform the classical splitting of sum of squares, necessary to

obtain the distribution of the unbaised estimate forσ2. Her we get

By the addition theorem for theχ2-distribution

Q
n

i 1













w(ti )

ti

α ti

2

n

i 1













w(ti )

ti

α̂ ti α̂ ti α ti

2

n

i 1













w(ti )

ti

α̂ ti

2

( α̂ α )2tn Q1 Q2 .

while obviously

Q

σ2
∼ χ2(n) ,

Hence by Cochrans theorem

Q2

σ2
∼ χ2(1) .
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or

Q1

σ2

1

σ2

n

i 1













w(ti )

ti

α̂ ti

2

∼ χ2(n 1).

The results for non-equidistant observed time points are thus similar to those for equi-

nσ̂2

σ2
∼ χ2(n 1) .

distantly observed time points.

3. The drift a function of t and constant dispersion

For these cases, we assume, that the drift is an integrable function f(t) of t, and that the

dispersion is constant, i.e. the stochastic differential equation is given by

By integration we then get

dW(t ) α f ( t )dt σdB(t ) .

i.e. with F(t) being the integral

W(t ) W(0) α⌡
⌠
t

0

f (s )ds σ B(t ) B(0)

and since B(0) = 0

F( t ) ⌡
⌠
t

0

f (s)ds ,

W(t ) W(0) αF(t ) σB(t ) .

Taking differences, we get with t = i = 1, 2, 3, ...



9

where as before∆F(i) = F(i) - F(i-1). The Y’s are independent, since the B-differences are

Yi W( i ) W(i 1) W( i ) α F( i ) σ B( i ) ,

independent. With the zi = ∆F(i) being known ’explanatory variables and

the model is thus equivalent to an origo regression model with explanatory variables

B( i ) ∼ N(0,1) ,

z1, ... , zn, and the estimates and the distributional properties follow from ordinary

regression analysis theory. This means that the ML-estimators are given by

and

α̂ i
zi y ( i )

i
z 2

i

,

For the special case f(t) = t, we get

σ̂2 1
n

















i
y 2

i
i

zi yi

i
z 2

i

.

or the midpoint of the interval from t-1 to t.

F( t ) ⌡
⌠
t

t 1

sds t 2

2
( t 1)2

2
t 1

2
,

4. The drift and the dispersion proportional to t

In this case, we consider the stochastic differential equation

Here it pays to study directly the differences

dX(t ) µtdt σ tdZ( t ) .
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From known properties of Brownian motions, cf. Øksendahl (1998), Section 3.2, follows

⌡
⌠
t

t 1

dW(t ) W(t ) W(t 1) W(t ) α ⌡
⌠
t

t 1

sds σ ⌡
⌠
t

t 1

sdB( t )

α







t 1
2

σ ⌡
⌠
t

t 1

sdB( t )

(13)E













⌡
⌠
t

t 1

sdZ(s) 0 .

Hence by Iso’s isometry

Accordingly the independent observations yi = w(i) - w(i-1) have distributions

var













⌡
⌠
t

t 1

sdZ(s) E



























⌡
⌠
t

t 1

sdZ(s)

2

E













⌡
⌠
t

t 1

s2ds

⌡
⌠
t

t 1

s2ds 1
3

t 3 ( t 1)3 t ( t 1) 1
3

.

with zi = i - 1/2 and ci = i(i-1) - 1/2.

Y i ∼ N αzi ,ci σ
2 ,

The model is thus equivalent to a weighted origo-regression model with weights 1/ci and

’explanatory variables’ zi. The ML-estimates forα andσ2 are, therefore,

α̂ i

1
ci

yi zi

i

1
ci

z 2
i



11

and

σ̂2 1
n

















i

1
ci

y 2
i

i

1
ci

zi yi

i

1
ci

z 2
i

5. The drift and the dispersion proportional to W(t)

Consider finally the model

(14)dW(t ) αW(t)dt σW(t)dB( t ) .

where both the drift and the dispersion are proportional to the process itself. This model

can also be written as

In order to evaluate the left hand side, we must apply Ito’s lemma to the function lnW(t),

dW(t )
W(t )

αdt σdB(t ) ,

cf. Øksendahl (1998), Section 5.1, Example 5.1.1. From Ito’s lemma, we get

(15)d lnW(t ) dW(t )
W(t )

1
2











1

W(t )2
dW(t ) 2

But according to Ito’s identities and (14)

Thus from (15)

dW(t ) 2 α2W(t )2(dt )2 σ2W(t )2 dB( t ) 2

2αW(t)σdtdB( t ) σ2W(t )2dt .

If we, therefore, use the observed values

d lnW(t ) dW(t )
W(t )

1
2

σ2dt 







α 1
2

σ2 dt σdB(t ) .
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of the logarithmically transformered variables as observations, with the new trendparameter

yi lnw( i ) lnw( i 1)

we get the ML-estimates

α1 α 1
2

σ2 .

and

α̂1 y ,

for α1, and forσ2 .

σ̂2 1
n

n

i
yi y

2
.

The estimate for the origionalα becomes

α̂ α̂1
1
2

σ̂2 .

6. References

Kessler, M. and Sørensen, M. (1999): Estimating equations based on eigenfunctions for a

discretely observed diffusion process.Bernoulli. 5, 299-314.

Øksendahl, B. (1998):Stochastic Differential Equations. An Introduction with Applications.

Fifth Edition. Berlin: Springer Verlag.




