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Abstract

We examine demand behaviour for intertemporal dependencies, using Span-

ish panel data. We present evidence that there is both state dependence and

correlated heterogeneity in demand behaviour. Our specific findings are that

food outside the home, alcohol and tobacco are habit forming whereas cloth-

ing and small durables exhibit durability. We conclude that demand analyses

using cross-section data that ignore these effects may be seriously biased.

On the other hand, the degree of intertemporal dependence is not sufficiently

strong to make composite ‘consumption’ significantly habit forming, as has

been suggested in some recent analyses.



1 Introduction.

The dynamics of consumption behaviour occupies a central position in many

debates in economics. Usually it is assumed that preferences are additive

over time but a number of recent papers have raised the possibility that

significant habit formation for ‘consumption’ may help resolve some ‘puz-

zles’. (see, for example, Campbell and Cochrane (1999), Carroll, Overland

and Weil (2000), Dynan (2000) and Fuhrer (2000)). As well as these ex-

plicitly macro perspectives, the degree of intertemporal dependence is also

important for the validity of any results using demand estimates that assume

intertemporal separability. For example, in the analysis of the effects of tax

changes (for example, the duty on alcohol and tobacco) short run effects can

be quite different from long run effects. When thinking about habits and

intertemporal dependencies in preferences, it is important to acknowledge

that ‘consumption’ is a composite of many goods which differ across agents

and some of which are durable and some of which may be habit forming. In

general the habituation of ‘consumption’ will depend on the mix of demands.

For example, smokers may exhibit more persistent consumption behaviour

than otherwise similar non-smokers simply because one of the goods they

consume is habit forming. In this paper we explicitly consider the extent of

intertemporal dependencies in demand behaviour.

There is a long tradition of allowing for habits in demands (see Brown-

ing (1991) for a discussion and references of the earlier literature). Amongst
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other things, the early phase of the literature was notable for the care-

ful theoretical treatment of rational, forward looking behaviour with one

by-product being the first use of λ-constant (or Frisch) analysis which un-

derlies widely used Euler equation methods. The early literature culminated

in Spinneweyn (1981) which gives methods to effectively convert some in-

tertemporally non-additive models into additive ones, by a suitable trans-

formation of variables.1 All empirical studies in this literature were based

on macro data which makes it difficult to interpret the results and to see the

implications for micro behaviour. One the other hand, we have only very

limited panel demand data so that micro-based approaches are difficult to

implement. Consequently there are very few micro-based studies examin-

ing habits for particular goods. Examples for single goods include tobacco,

Jimenez-Martin, Labeaga and Lopez (1998) and food, Dynan (2000). For

systems of demands, see Hayashi (1985) (who uses one wave following house-

holds for four periods) and for utility based demand systems see Meghir and

Weber (1996) and Carrasco, Labeaga and Lopez-Salido (2004). The con-

clusions from these studies are somewhat mixed but it is fair to say that

no one finds effects that are anywhere near strong enough to resolve the

problems for ‘consumption’ raised in the papers listed in the previous para-

graph. Nonetheless, there is some evidence of intertemporal dependencies

for individual goods and it is this that we address in this paper.

1The procedure is the analogue of using stocks and user costs instead of purchases and
prices in the neoclassical durables model.
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When considering persistent behaviour we have to be careful to distin-

guish between three possible sources of persistence in behaviour: persistence

of the environment, state dependence and heterogeneity. As is well known

the latter two both lead to persistence but their causes and implications are

very different. Consider, for example, smoking. It is clear that the proba-

bility of someone smoking in the current period t is dependent on smoking

behaviour in the past, but this could be because people are ‘smokers’ (het-

erogeneity) or because something induced them to start at some point and

then they continue (state dependence). To have any chance of distinguish-

ing between heterogeneity and state dependence we need panel data with

several periods of observation for each household. In our empirical analysis

we use Spanish data which gives demand information for between six and

eight quarters. Using the same data source, Christensen (2004) tests for

whether there are (correlated) fixed effects in demands and concludes that

there are and that ignoring these leads to bias in estimates of parameters of

interest, such as income elasticities. Here we explicitly test for the presence

of dynamic dependencies over and above those induced by heterogeneity.

Our approach is to first consider the dynamics of demands in a time se-

ries analysis which does not make explicit use of demand theory. We then

present empirical demand analysis to consider the specific contributions of

environmental persistence, state dependence and heterogeneity. Our broad

conclusions are that even when we allow for correlated heterogeneity ( a
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‘fixed effect’), there is evidence of state dependence. Conversely, even when

we allow for state dependence there is evidence of correlated heterogeneity.

We find that ‘food outside the home’ and ‘alcohol and tobacco’ are habit

forming and ‘clothing’ and ‘small durables’ are durable; the other two goods,

‘food at home’ and ‘non-durables and services’ do not display any significant

state dependence. These conclusions will not surprise any readers but they

have implications for short run and long run responses. Moreover they indi-

cate strongly that since the two habit forming goods represent a relatively

small proportion of total expenditure, it is unlikely that there are strong

habits for ‘consumption’ itself, whether or not we include the semi-durables.

2 The dynamics of expenditure patterns.

2.1 The data and the dynamics of demand

The data set is a rotating panel from the Spanish Family Expenditure Sur-

vey (Encuesta Continua de Presupuestos Familiares, ECPF). This survey

was conducted by the Spanish Statistics Office, and it was carried out from

1985, quarter I to 1996, quarter IV . Each household is retained for at most

eight quarters with one-eighth of the sample being renewed in each quar-

ter. The sample size of each wave is around 3,200 households. The ECPF

provides very detailed information on expenditure, income and household

characteristics; see Browning and Collado (2001) for a detailed description
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of the data set. The expenditure information is a mixture of diary infor-

mation (for regularly purchased goods) and retrospective information (for

infrequently purchased goods). For the purpose of this research, we con-

sider couples with and without children, in which the husband is in full-time

employment in a non-agricultural activity and the wife is out of the labor

force. The restrictions on labour force status are to minimise the effect of

non-separabilities between demand and labour supply. We only consider

families reporting full information for at least six consecutive quarters. Our

final sample consists of 2,449 households (18,188 observations). We aggre-

gate the data on expenditures into six composite commodities: food-in (food

at home); food-out (food outside the home); alct (alcohol and tobacco); clo

(clothing); nds (other nondurables and services) and sdur (small durables

such as books, toys, pillows, etc.).2

Our main concern is with the dynamics of demand patterns so we con-

centrate on an analysis of budget shares. Table 1 presents a fourth-order

vector autoregression (VAR(4)) for the levels of budget shares. We have

estimated each equation separately by OLS. For each good the right hand

side variables are the first four lags of all budget shares, except those for

‘nds’. The latter are dropped to accommodate adding-up and the equation

for ‘nds’ is also dropped. It will be seen that there are strong dynamic

2 In our data we do observe purchases of large durables but we do not observe the
stocks, so we simply assume that the demands for the six goods we model is independent
of the stock of large durables. This assumption has very little other than tradition and
convenience to recommend it.
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effects and high persistence. The high persistence could be due to a num-

ber of factors. First the environment the household faces (demographics,

lifetime wealth and expectations, etc.) is persistent which in itself induces

persistence.3 Second, there may be heterogeneity. Finally, there may be

state dependence - either habits or durability. In the next two sub-sections

we presents analyses which takes out first of these factors (persistence in

the environment) by running conventional Engel curves in levels in which

we condition on demographics and total expenditure.

2.2 A utility based demand levels system.

In this subsection we examine the dynamics of expenditure patterns taking

as a benchmark a conventional quadratic-log formulation (the Engel curve

form of the QAIDS (see Banks et al (1997)). We start from this since it is

nowadays the overwhelming choice of functional form to model demands on

micro data if we assume intertemporal separability. We are not primarily

interested in price effects so we absorb any price effects into a full set of

quarterly dummies, one for each of the 48 quarters of the survey (with one

dropped to accommodate the constant). The resulting form for the budget

share for good i by household h in period t, ωiht, is given by:

ωiht = αi + βi1 lnxht + βi2 (lnxht)
2 +

X
k
δikzkht + uiht (1)

3This is the fundamental idea that underlies the Euler equation approach to intertempo-
ral allocation. Namely that a function of the consumption of different goods (the marginal
utility of money) follows a martingale.
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where xht is total expenditure deflated by a price index and zkht is a list of

demographics and time and weekly dummies. Specifically: we include the

number of children and the number of adults in the household, and age and

age squared of the husband. The seasonal dummies are a set of 32 weekly

dummies that capture the period in the year in which the household is sur-

veyed.4 Our empirical strategy is to first present estimates of the coefficients

of (1) for our six goods on the pooled data, using conventional identifying

assumptions. Specifically, we instrument the two total expenditure terms

with log and squared log real income, so that the model is just identified.

Including expenditures on the two durable commodities (clothing and small

durables) is, of course, questionable since they exhibit some durability. We

note, however, that the results for the other goods are relatively indepen-

dent of the inclusion of these goods in the total expenditure measure and

we prefer to include them since their durability provides a useful check on

the validity of our testing methods.

The results for the Engel curve analysis are presented in Table 2. Af-

ter the rows for the coefficients we present a test for the joint significance

of the total expenditure coefficients and the distribution of implied income

elasticities. The results are typical for demand systems estimated on cross-

section data: ‘food at home’ and ‘alcohol and tobacco’ are necessities, and

4We have checked all of the results below using other specifications to capture time and
seasonal effects. Although some of the quantitative results are sensitive to the specification,
the broad qualitative results do not vary with the specification.

7



the other four goods are luxuries (at the median). The estimated ‘effects’

of the demographics are also conventional. Thus there is no internal evi-

dence from the cross-section information that there is any misspecification

and here the analysis would usually stop. However, given that we have mul-

tiple observations for each household we can examine the dynamics of the

residuals.

If there is unobserved, additive individual heterogeneity, the error term

in equation (1) can be written:

uiht = λih + εiht (2)

Since εiht may be serially correlated we have:

E (uihtuiht−s) = σ2iλ +E(εihtεiht−s) (3)

Thus the extent of residual autocorrelation reflects both the variation in

heterogeneity (the variance of the fixed effect) and the auto-correlation in

ε. If there was solely a fixed effect then the autocorrelations should be

constant, whereas if good i is habit forming then the autocorrelation should

decrease with s to a positive constant. For durable goods, the sign of the

autocovariances related to εiht will change with s,5 and therefore the size of

5 If an agent purchases a durable good today, her expenditure tomorrow will be lower
but it will increase again at some point when the durable is replaced.
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the autocorrelations will not necessarily be monotone with respect to s.

In Table 3 we present first to seventh-order autocorrelations of the resid-

uals from the Engel curves. We also present tests for first order and sec-

ond order serial correlation of the residuals proposed by Arellano and Bond

(1991). This test statistics are asymptotically normally distributed and they

indicate that there is positive first order and second order serial correlation

in the residuals. The fact that the seventh order autocorrelation is also

large suggests that there is some unobserved heterogeneity for all the goods;

this confirms the analysis of Christensen (2004) who finds a significant fixed

effect for most goods. As regards durability and habits, the results are incon-

clusive. It seems that for goods such as ‘food-out’ and ‘alcohol and tobacco’

the autocorrelations are larger than for the remaining goods, which might

indicate habits. For small durables and clothing the autocorrelations are

not monotone with respect to s, which might indicate durability.

2.3 A formal test for intertemporal separability.

The analysis of the previous subsection establishes that there are highly

significant dynamics over and above those usually allowed for in empirical

demand analysis. In the next section we present a detailed analysis taking

careful account of the possible presence of correlated heterogeneity. We fin-

ish this section with a formal tests for intertemporal separability using the

conditional demand approach of Browning and Meghir (1991). This test
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is based on the observation that if we have intertemporal separability then

the demands in any period, conditional on total expenditure, should be in-

dependent of demands in other periods. This gives a very simple test for

intertemporal separability by simply testing for the significance of lagged

budget shares in our budget share equations. Once we allow for this depen-

dence, we never found the squared total expenditure term to be ‘significant’

in any equations, so we drop it from our analysis. This already suggests that

‘getting the dynamics right’ is important since not doing so may introduce

spurious non-linearities. The augmented Engel curves take the form6:

ωiht = αi + βi lnxht + γiωiht−1 +
X

k
δikzkht + uiht (4)

In the absence of unobserved individual heterogeneity, we can test for in-

tertemporal separability by estimating the Engel curves (4) in levels and

testing whether βi is equal to zero in each of the equations. Under the

assumption that there are no fixed effects, we can use current and lagged

income and lagged total expenditures as instruments for the Engel curves in

levels. We estimate the equations by GMM, using as instruments log income

and its square, lags one to five of log total expenditure and its square, and

of log income and the square. The specification of the Engel curves include

demographics and the full set of quarterly and week dummies used in Table

6The form given here is purely for testing purposes. Since it has different right hand side
variables for different goods it can never satisfy adding-up and would not be a candidate
for a ‘structural’ demand system.
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1. The results from the estimates are presented in Table 4. If the assumption

of no fixed effect were correct, the results in Table 4 will indicate very strong

habits in ‘non-durables and services’, ‘food-out’ and ‘alcohol and tobacco’

and no durability or habits in ‘food-in’, ‘clothing’ and ‘small durables’. This

latter result is very implausible and is very likely driven by unobserved cor-

related heterogeneity: if there is the latter, then the lagged budget shares

are picking up the omitted heterogeneity term. Furthermore, the Sargan

test decisively rejects the instruments for ‘food-in’, ‘alcohol and tobacco’

and ‘small durables’, a further indication of dynamic misspecification. Thus

the conclusion we take from this analysis of levels is that even when we allow

for (first order) intertemporal dependencies, there is significant evidence of

further intertemporal dependencies.

3 Estimation and testing

3.1 Testing for weak instruments.

We turn now to testing for state dependence when there is unobserved het-

erogeneity. If there is unobserved heterogeneity, and without further as-

sumptions, the parameters of the Engel curves (4) are not identified. How-

ever, identification can be achieved by taking first differences to eliminate

the household specific effects and then using lagged values of the endogenous

variables as instruments. The main problem with this approach is that, in
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general, it is often difficult to predict changes in the explanatory variables

using the available set of instruments; that is, the correlation between the

instruments and the endogenous explanatory variables is close to zero. If

this is the case, the instruments are said to be weak and the model is under-

identified or close to be underidentified.7 Another alternative, proposed by

Arellano and Bover (1995), is to assume that the endogenous variables have

a constant correlation with the household specific effects. This additional

assumption, which is empirically testable, allows us to identify the model. If

this assumption holds, lagged first differences of the endogenous variables are

valid instruments for the Engel curves in levels. The estimation method sug-

gested by Arellano and Bover (1995) uses both sets of instruments: lagged

levels of the endogenous variables for the equation in first differences, and

lagged first differences of the endogenous variables for the equation in levels.

We adopt the Arellano and Bover procedure but first we carry out a

test for underidentification, due to Arellano, Hansen and Sentana (1999).

We focus on the linear instrumental variable model, and therefore, in this

setting the underidentification test is a test of weak instruments. Since this

is not a familiar test we present here a brief outline for the linear model:

w0iα = ui, E(ziui) = 0 (5)

7We have estimated the set of Engel curves in equation (1) in first differences and
the results point out to a potential poor instruments problem. We calculated very large
standard errors and implausible point estimates for the estimated elasticities.
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where wi is a (k+1)×1 vector and zi is an r×1 ( r ≥ k) vector orthogonal to

the disturbance term, the so called vector of instruments. The orthogonality

conditions can be written as the set of linear equations

E(ziw
0
i)α = 0 (6)

If the rank of the matrix E(ziw
0
i) is k, the system has a unique-up-to-scale

solution and the vector of parameters α is identified up to scale. The nor-

malization most commonly used is to set the first coefficient of α to one

so that α = (1, β0)0. However, if the rank of the matrix E(ziw
0
i) is smaller

than k, the system does not have a unique (up-to-scale) solution and it is

underidentified.

Suppose that the rank of E(ziw0i) is k − 1; that is, model (5) is underi-

dentified . Then, there exist two linearly independent vectors α and α∗ such

that

E(ziw
0
i)α = 0

E(ziw
0
i)α

∗ = 0

(7)

and all the solutions of system (6) can be written as linear combinations of

α and α∗. When the rank of E(ziw
0
i) is k, (that is, model (5) is identified),

system (7) does not have two linearly independent solutions and, therefore,

it is overidentified. Given this, testing the null hypothesis that the model

is underidentified against the alternative that it is identified is equivalent to
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testing whether the system of equations

w0iα = ui, E(ziui) = 0

w0iα
∗ = vi, E(zivi) = 0

(8)

is just identified against the alternative of overidentification. Notice that,

given that α and α∗ have to be linearly independent, to estimate this set of

equations it is not enough to impose a normalization on each equation but

we need to impose a further normalization to guarantee linear independence.

Following Arellano, Hansen and Sentana (1999), we set one of the rows of

(α, α∗) to (1, 0) and another row to (0, 1). Independently of the normaliza-

tion used, the effective number of parameters is 2k − 2 and therefore the

number of overidentifiying restrictions is 2(r − k + 1). The test of weak in-

struments consists of estimating the system of equation in (8) by GMM and

then testing the overidentifiying restrictions using the Sargan test. If the

Sargan test rejects the null, then, system (8) is overidentified and therefore

the original model (5) is identified. On the contrary, if the Sargan test does

not reject the null, then, system (8) is identified and therefore the original

model (5) is underidentified.
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4 Results

As discussed above, we use the GMM estimator proposed by Arellano and

Bover (1995) to estimate the set of Engel curves (4) without the quadratic

terms.8 The set of instruments is the following:

• For the equation in first differences we use log total expenditure and

the square lagged two to five, current log income and the square and

lags one to five of log income and the square

• For the equation in levels we use first differences of log total expendi-

ture and the square lagged one to four, first differences of log income

and the squared in the current period and the lags from one to four.

The results from these estimates are presented in Table 5. The Sargan test

does not reject the set of instruments at the 5% level for any of the goods

but clothing. This provides evidence in favour of the additional assumption

of constant correlation between log total expenditure and the individual ef-

fects and between log income and the individual effects. We also present the

weak instruments test proposed by Arellano, Hansen and Sentana (1999).

The test statistic depends on the normalization used, therefore, we use two

different normalizations to check the robustness of our results. Normaliza-

tion 1 corresponds to setting in one equation the coefficient of the budget

8We have also estimated the set of Engel curves including log total expenditure squared
but again none of the quadratic terms were significant. Therefore, there is no evidence
of non linearities between budget shares and log total expenditures as has been found in
other studies.
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share to one and the coefficient of log total expenditure to zero, and in the

other equation, the coefficient of the budget share to zero and the coefficient

of log total expenditure to one. Normalization 2 corresponds to setting in

one equation the coefficient of the budget share to one and the coefficient

of the lagged budget share to zero, and in the other equation, the coeffi-

cient of the budget share to zero and the coefficient of the lagged budget

share to one. Recalling that a large Sargan statistic is evidence in favour of

identification, the results indicate that there is no problem of weak instru-

ments for food-in, alcohol and tobacco, clothing and small durables. For

non-durables and services and food-out the result provide slight evidence of

weak instruments depending on the normalization used.

The estimated elasticities imply that food-in and alcohol and tobacco

are necessities whereas food-out, clothing and small durables are luxuries.

The elasticity of non-durables and services is very close to unity. Regarding

intertemporal separability, we find that lagged budget shares are significant

for food-out, alcohol and tobacco, clothing and small durables, whereas for

food-in and non-durables and services there is no evidence of state depen-

dence once we control for unobserved heterogeneity. The positive coefficient

of the lagged budget shares in the Engel curve for food-out and alcohol and

tobacco is consistent with habit formation in those commodities. The nega-

tive sign on the Engel curve for clothing and for small durables reflects the

durability of these two goods.
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5 Conclusions.

The degree of habit formation in commodity demands is important for many

policy questions. We have presented an empirical analysis of demand behav-

iour using panel data from Spain that indicates that there is significant cor-

related heterogeneity in demands for all goods (see also Christensen (2004)).

Once we take account of this heterogeneity, we find that ‘food outside the

home’ and ‘alcohol and tobacco’ are habit forming and ‘clothing’ and ‘small

durables’ are durable. There is no evidence of state dependence for ‘food

at home’ and ‘nondurables and services’. This suggests that a conventional

composite consumption measure that includes clothing and small durables

would not display very strong state dependence and certainly not enough

to resolve the macro puzzles mentioned in the introduction. On the other

hand, the results have significant implications for tax policies that change

the prices of goods such as alcoholic beverages, tobacco and eating out rel-

ative to other goods. In general, long term responses to these changes will

be larger (in absolute magnitude) than short run responses.
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6 Tables.

Table 1

VAR(4)

food-in food-out alct clo sdur

w(t-1) 0.2417∗∗∗ 0.2118∗∗∗ 0.2529∗∗∗ 0.0848∗∗∗ 0.1294∗∗∗

(0.0144) (0.0142) (0.0148) (0.0132) (0.0150)

w(t-2) 0.2077∗∗∗ 0.1889∗∗∗ 0.2217∗∗∗ 0.1705∗∗∗ 0.0649∗∗∗

(0.0139) (0.0131) (0.0168) (0.0129) (0.0114)

w(t-3) 0.1774∗∗∗ 0.1716∗∗∗ 0.1615∗∗∗ 0.0722∗∗∗ 0.0409∗∗∗

(0.0139) (0.0139) (0.0156) (0.0119) (0.0114)

w(t-4) 0.2524∗∗∗ 0.2253∗∗∗ 0.2084∗∗∗ 0.1989∗∗∗ 0.1842∗∗∗

(0.0133) (0.0145) (0.0161) (0.0134) (0.0150)

Food-in feedback from food-out∗∗∗, alct∗∗, clo∗∗∗, sdur∗∗∗

Food-out feedback from alct∗∗∗, clo∗∗∗, sdur∗∗∗

Alct feedback from food-in∗∗∗, food-out∗∗∗, clo∗∗∗, sdur∗

Clo feedback from food-in∗∗∗, food-out∗∗∗, alct∗∗∗, sdur∗∗∗

Sdur feedback from food-in∗∗∗, food-out∗∗∗, clo∗∗∗
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Table 2

food-in nds food-out alct clo sdur

lxtot -43.2021 -61.7144 84.2816∗∗ -65.5613∗∗∗ 52.6293 33.5669

(54.8988 ) (59.7230 ) (39.6140 ) (25.2667 ) (40.5175 ) (31.4366 )

lxtots 0.9600 2.8515 -3.1728∗∗ 2.4216∗∗ -1.8972 -1.1632

(2.0873 ) (2.2727 ) (1.5070 ) (0.9593 ) (1.5430 ) (1.1961 )

nch 2.3780∗∗∗ -1.2599∗∗∗ -0.6562∗∗∗ 0.1007 -0.1935 -0.3691∗∗∗

(0.1995 ) (0.2018 ) (0.1337 ) (0.0695 ) (0.1192 ) (0.0913 )

nad 1.5448∗∗∗ -1.9335∗∗∗ 1.1568∗∗∗ 0.5341∗∗∗ -0.6396∗∗∗ -0.6627∗∗∗

(0.2248 ) (0.2528 ) (0.1766 ) (0.0861 ) (0.1447 ) (0.0977 )

hage 1.1517∗∗∗ -0.1027 -0.3046∗ -0.2208∗∗∗ -0.0586 -0.4650∗∗∗

(0.1919 ) (0.2241 ) (0.1575 ) (0.0789 ) (0.1285 ) (0.0895 )

hage2 -0.0102∗∗∗ 0.0006 0.0025 0.0020∗∗ 0.0005 0.0045∗∗∗

(0.0021 ) (0.0025 ) (0.0018 ) (0.0009 ) (0.0014 ) (0.0010 )

const 399.8490 360.9525 -543.8067∗∗ 450.1072∗∗∗ -346.2537 -220.8484

(358.5995 ) (389.8414 ) (258.3829 ) (165.2332 ) (264.2957 ) (205.1685 )

Chi-sq(2) 555.97 219.29 6.60 47.18 26.97 75.23

p-value 0.0000 0.0000 0.0368 0.0000 0.0000 0.0000

Income elasticities

Q25 0.31 1.30 0.93 -0.32 1.11 1.33

Median 0.48 1.40 1.11 0.42 1.24 1.80

Q75 0.58 1.56 1.42 0.83 1.53 3.18

Note: all values are multiplied by 100.
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Table 3

Autocorrelations of residuals

food-in nds food-out alct clo sdur

1st-order 0.3749 0.3548 0.4100 0.5906 0.1180 0.1290

2nd-order 0.3528 0.3340 0.3920 0.5755 0.1631 0.1025

3rd-order 0.3428 0.3233 0.3867 0.5550 0.1139 0.0734

4th-order 0.3891 0.3522 0.4012 0.5565 0.1980 0.1558

5th-order 0.3077 0.2791 0.3498 0.5236 0.1041 0.1120

6th-order 0.2584 0.2608 0.3353 0.5004 0.1262 0.0731

7th-order 0.2847 0.2459 0.3461 0.5009 0.1143 0.0702

Test for 1st-order serial correlation 20.327 21.198 19.862 17.424 10.453 9.318

p-value 0.000 0.000 0.000 0.000 0.000 0.000

Test for 2nd-order serial correlation 19.410 19.936 19.219 17.308 13.702 8.836

p-value 0.000 0.000 0.000 0.000 0.000 0.000
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Table 4

food-in nds food-out alct clo sdur

lxtot -13.6345∗∗∗ -0.2970 0.1397 -0.2064 3.1898∗∗∗ 2.9384∗∗∗

(1.0623) (0.4470) (0.5044) (0.1298) (0.5317) (0.4510)

lagged budget 0.0008 1.0082∗∗∗ 0.9901∗∗∗ 0.5937∗∗∗ -0.0595 -0.1450

share (0.0579) (0.0543) (0.0914) (0.0787) (0.0712) (0.0950)

nch 1.0843∗∗∗ -0.2958∗ 0.1167 0.1806∗∗∗ -0.6532∗∗∗ -0.5204∗∗∗

(0.2584) (0.1513) (0.1184) (0.0550) (0.1950) (0.1417)

nad 0.7684∗∗∗ -0.1997 0.0475 -0.1192∗∗ 0.0362 -0.4017∗∗∗

(0.2106) (0.1364) (0.1012) (0.0527) (0.1647) (0.1192)

hage -0.0061∗∗∗ 0.0020 -0.0005 0.0011∗∗ -0.0006 0.0036∗∗∗

(0.0023) (0.0015) (0.0011) (0.0006) (0.0018) (0.0013)

hage2 187.5906∗∗∗ 12.2048∗∗ -2.2744 7.1016∗∗∗ -26.4115∗∗∗ -20.1491∗∗∗

(14.1638) (5.4014) (5.0855) (2.4682) (6.3137) (4.5041)

const 0.2164 -2.3806 -1.0619 -0.9870∗∗ -1.6425 -0.5331

(1.3972) (2.2214) (1.4350) (0.4047) (1.3779) (1.0093)

Sargan Test 53.10 11.26 8.60 62.74 8.60 19.02

df 9 9 9 9 9 9

p-value 0.0000 0.2581 0.4746 0.0000 0.4746 0.0251

Short run income elasticity

Q25 0.46 0.99 1.01 0.87 1.17 1.36

Median 0.60 0.99 1.01 0.93 1.28 1.79

Q75 0.69 0.99 1.03 0.96 1.53 3.05

Long run income elasticity

Q25 0.46 1.87 1.86 0.68 1.16 1.32

Median 0.60 2.14 2.50 0.84 1.27 1.69

Q75 0.69 2.57 3.93 0.91 1.50 2.79
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Table 5

food-in nds food-out alct clo sdur

lxtot -10.2905∗∗∗ -1.3736 2.8511∗∗ -1.3104∗∗∗ 5.5527∗∗∗ 4.6048∗∗∗

(1.9351) (1.9652) (1.3271) (0.5001) (1.5868) (1.0466)

lagged budget 0.0216 0.1107 0.3789∗∗∗ 0.1571∗∗ -0.1197∗∗ -0.3081∗∗∗

share (0.0464) (0.0984) (0.0997) (0.0694) (0.0542) (0.0628)

nch 0.4369 -0.1355 0.4533∗ 0.3985∗∗∗ -0.9362∗∗∗ -0.7650∗∗∗

(0.3289) (0.3543) (0.2320) (0.1019) (0.2891) (0.1952)

nad 0.5515∗∗ 0.7280∗∗∗ -0.2480 -0.2154∗∗∗ -0.0669 -0.5505∗∗∗

(0.2460) (0.2621) (0.1703) (0.0743) (0.1925) (0.1411)

hage -0.0039 -0.0079∗∗∗ 0.0022 0.0020∗∗ 0.0004 0.0051∗∗∗

(0.0027) (0.0029) (0.0019) (0.0008) (0.0021) (0.0015)

hage2 150.1821∗∗∗ 30.0620 -26.1584∗ 24.3895∗∗∗ -52.1436∗∗∗ -35.7823∗∗∗

(22.4692) (22.0534) (14.4013) (6.0485) (17.5138) (11.5477)

const 0.9234 2.0268 1.4061 -0.2085 -2.9939∗∗∗ -1.0845

(1.1858) (1.2626) (0.9619) (0.2461) (1.0672) (0.8604)

Sargan Test 100.45 89.27 74.67 67.45 104.66 92.73

df 81 81 81 81 81 81

p-value 0.0705 0.2479 0.6766 0.8594 0.0397 0.1757

Weak Instrument test

Normalization 1 274.02 268.06 213.48 246.03 289.22 283.31

df 164 164 164 164 164 164

p-value 0.0000 0.0000 0.0056 0.0000 0.0000 0.0000

Normalization 2 331.52 185.28 173.82 225.44 309.78 240.45

df 164 164 164 164 164 164

p-value 0.0000 0.1222 0.2850 0.0010 0.0000 0.0001

Short run income elasticity

Q25 0.59 0.94 1.17 0.16 1.30 1.57

Median 0.70 0.96 1.30 0.58 1.50 2.24

Q75 0.77 0.97 1.59 0.76 1.93 4.21

Long run income elasticity

Q25 0.58 0.93 1.28 0.01 1.27 1.44

Median 0.70 0.95 1.49 0.51 1.44 1.94

Q75 0.76 0.96 1.95 0.72 1.83 3.46
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