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Abstract

A problem encountered in growth empirics is that the number of explanatory

variables is large compared to the number of observations. This makes it impossible

to condition on all regressors when determining if a variable is important. We inves-

tigate methods used to resolve this problem: Extreme bounds, Sala-i-Martin’s test,

BACE, general-to-specific, minimum t-statistics, BIC and AIC. We prove that the

problem in general is ill-posed and that the existing methods are inconsistent. We

propose a test and apply it to determine if "good policy" increases the effectiveness

of foreign aid on growth. The test rejects inference regarding good policy.
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1 Introduction

A problem encountered in growth empirics is that the number of explanatory variables

of GDP growth is large compared to the number of observations. For example, in the

literature on GDP growth more than hundred variables have been suggested to explain

growth, see e.g. Durlauf and Quah (1999) or Durlauf, Johnson and Temple (2004) for a

list of 145 variables. Even in cases where more observations than variables are available,

concerns for the precision of estimates will necessitate restricted models.

The aim of many empirical papers is to determine the importance of a variable of

interest. Most authors agree that a variable is important if it belongs in a regression

among other variables believed to be of importance. Naturally, importance of the variable

must be qualified in the economic context, for instance, to be of a certain size. In growth

empirics the regression with all variables believed to be of importance is often not feasible.

The infeasibility of this regression has made researchers employ various types of model

selection methods and it has inspired development of new methods.

One set of methods are Bayesian in spirit and builds on Leamer (1983). He argues that

a variable is important if it is significant and has the same sign in regressions involving

different subsets of the variables believed to be of importance. In that case he denotes

the variable robust. The method is known as extreme bounds analysis and it was first

implemented by Levine and Renelt (1992) in a growth context. Sala-i-Martin (1997a,

1997b) criticized the extreme bounds for sampling reasons since an insignificant variable

is likely to be found if enough regressions are run. Sala-i-Martin’s test for a robust variable

is based on calculating a distribution of the parameters to the variable of interest taken

over models. Sala-i-Martin, Doppelhoffer and Miller (2004) build directly on the Bayesian

model averaging method from which they derived an approach called "Bayesian averaging

of classical estimates". In these approaches, the robustness of the variable of interest is

determined by the average of the estimated parameter values for the variable in each of

the different models. Leamer’s approach can also be implemented by bootstrapping the

distribution of the minimal t-statistics over models, see White (2000) and Hansen (2003).

For all these methods, robustness of a variable is defined for a sample, but not linked

to the importance of the variable in the population. That is, when there is no sample

uncertainty. In this paper, the link for all these methods is derived.

Classical variable selection and model selection methods can also be employed to

determine the importance of a variable. Pure variable selection procedures determine if

the variable belongs in the model or not, whereas model selection criteria as a by-product

select a set of variables of which the variable of interest may be one. Criteria such as AIC

and BIC can be employed to choose the best model and the importance of the variable

is then determined by the chosen model. In the same vein, refined general-to-specific
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procedures suggested by Hoover and Perez (2004), Bleaney and Nishiyama (2002) and

Hendry and Krolzig (2004) can be applied. The classical methods are also analyzed in

this paper and compared with the Bayesian inspired methods.

We show with an impossibility theorem that determining the importance of a vari-

able in the regression of all variables believed to be of importance is an ill-posed inverse

problem,1 if the number of variables is larger than the number of observations.2 The

impossibility theorem explains why none of the methods work. Still, by deriving results

on the methods insight is obtained into their properties in general. Our result differs

from the usual consistency results of these methods because we explicitly account for

the ill-posedness of the problem. We reconcile the results with and without the ill-posed

inverse problem by providing identification conditions under which the methods perform

correctly. The main conclusion of all the identification results is that more information is

needed to conduct correct inference on the importance of the variable of interest.

The conditions of the impossibility theorem are used to construct a new approach to

determining the importance of the variable of interest. By the nature of an impossibility

theorem, the approach can only work when the conditions of the impossibility theorem are

not satisfied. These conditions, however, can be tested. We compare the new approach

with the existing approaches in a Monte Carlo study under various assumptions which are

necessary to identify importance of a variable. The results suggest that the new approach

has good finite sample properties.

An important application in empirical growth is determining the effect of foreign aid on

growth and the role of "good policy." Burnside and Dollar (2000) have shown that foreign

aid is most effective if accompanied by good policy. Easterly, Levine and Roodman (2004)

have disputed the findings of Burnside and Dollar. In view of other variables believed to

influence growth, we show that the influence of good policy on the effectiveness of aid on

growth cannot be determined without imposing additional information.

The outline of the paper is as follows. In section 2 we prove the impossibility theorem

and provide further conditions in order to identify importance of a variable. Then in

section 3, properties of the existing methods are derived. Section 4 describes a new test of

importance of a variable, and in section 5 the different methods are compared in a Monte

Carlo study. Section 6 considers the importance of good policy on the effectiveness of aid

on growth. Section 7 concludes the paper.

1See Carresco, Florens and Renault (2003) for general reference on ill-posed inverse problems. Discrete

cases are also denoted an ill-conditioned problems.
2It can also specifically be referred to as an undersized sample problem.
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2 Identification

In this section we prove that determining importance of the variable of interest in general

is impossible because the problem is ill-posed due to an undersized sample. As a conse-

quence, it is necessary to search for special cases or add additional information to make

the problem well-posed. Though the majority of the results in this section are known from

various contexts, we want to state the results (with proofs) for a better understanding of

the results in the next section on the existing methods and our suggestion on a new test

in section 4.

We first prove that the importance of a regressor in general is not identified. The

problem can be stated as follows. Let N be the number of observations andK the number

of variables believed to be important. The problem is to determine if X1 is important,

that is, whether X1 belongs in the regression or not. The remaining (K−1) regressors are
X2,..,XK. As it is usually done, we assume that all regressions are linear.3 The regression

with all regressors believed to be of importance is

E(y | X1,X2, ..,XK) = β1X1 + β2X2 + ..+ βKXK. (1)

The variable of interest, X1, belongs in the regression if β1 6= 0.
The following theorem4 shows that inference on β1 is impossible if only using the

information in (1). The reason is that the problem is ill-posed due to the undersized

sample.

Theorem 1 (Impossibility) Assume N < K and β2,.., βK 6= 0. Partition {X2, ..,XK}
into two sets A and B with (N − 1) and (K −N − 1) variables, respectively. If there does
not exist a set A such that E(Xj | X1, A) = 0 for all Xj ∈ B, then β1 is not identified

nor can it be bounded.

Proof. See appendix

The theorem has a lot in common with the omitted variable bias problem in a well-

posed setting but there is a difference. In the omitted variable bias problem, the coefficient

to x1 can be identified when E(Xj | X1, A) is known for allXj ∈ {X2, .., XK}\A if it differs
from a linear index. When the problem is ill-posed, knowing E(Xj | X1, A) only helps if

it is equal to 0.

The theorem rules out that combinations of regressions with fewer regressors than

observations can be used to infer the value of β1. In particular, the application of the

omitted variable rule, Goldberger (1998), and the Frisch-Waugh-Lovell theorem might at

3Alternatively, the results can be interpreted in terms of best linear predictions.
4In general about inference in unidentified linear regression models, see e.g. Scheffé (1959) and Rao

(1973).
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first look promising. To illustrate why these fail, consider the regression yi = β1x1i +

β2x2i+β3x3i+ui for N = 2. Then the omitted variable rule gives: γ1 = β1+β2c2+β3c3,

where γ1 is the coefficient to x1 in the regression of y on x1. In the case (N ≥ K), it is

possible to infer β2, β3, c2 and c3 from short regressions and β1 can thereby be inferred.

One method is to run the auxiliary regressions x2i = ρ2x1i + ν2i, x3i = ρ3x1i + ν3i and

yi = ρyx1i+ νyi, where bρ2 and bρ3 are estimates on c2 and c3. Both of these regressions are
possible in the undersized sample case. Finally, to estimate β2 and β3 the Frisch-Waugh-

Lovell theorem says that bνyi = bβ2bν2i + bβ3bν3i + bξi. The sample size appears sufficient to
run this regression. However, due to the undersized sample the original regressors are

linearly dependent, for instance x1· = a2x2· + a3x3· and by insertion it can be seen thatbν2· is linearly dependent on bν3·. Therefore, inversion to estimate the β’s is not possible.
This illustrates why an undersized sample leaves no backdoor regressions for recovering

the coefficients in the long regression.

While the impossibility theorem shows that importance of a single regressor cannot

be determined, it is possible to identify the importance of a set of regressors. It is not,

however, possible to say which ones of them are important. Knowing that at least one

regressor in a set is robust can be useful in practice. For example, if the set of regressors

consists of different (known) functions of one variable, then knowing that at least one

function of the variable is important means that the variable itself is important though

not in what functional form. To determine if at least one variable in a set is important,

the number of regressors in the set must be no less than the number of non-orthogonal

regressors plus one excluded from the regressions. The next theorem states the result.

Theorem 2 (Partial identification of variables of importance) Let r be the num-
ber of regressors in the set R ⊂ {X1, .., XK}. Partition the remaining regressors, {X1,..,

XK}\R , into C1 with (N − r) regressors and C2 with (K −N) regressors. If there exists

a set C2 such that E(Xj | X1, A) 6= 0 for at most (r − 1) of the regressors Xj ∈ C2, then

at least one of the regressors in R is important.

Proof. See appendix.
Partial identification is possible because the conditions in the theorem lead to an

overidentified system of equations.5

The impossibility theorem makes it clear that in order to make inference on β1 in

general it is necessary to include additional information than (1). This information could

be in the form of an economic model, which could exclude some of the regressors. It could

also be exclusion restrictions which would permit use of instrumental variables. Another

possibility is to impose priors on the coefficients. Then it would be possible to estimate β1
5The result is in line with results on testing in unidentified models, see Breusch (1986).
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using for example some method of regularization e.g. ridge regression, see Mittelhammer,

Judge and Miller (2000). Another regularization method is to condition on a subset of

principal components, see e.g. Stock and Watson (2002). These methods would make

estimation of β1 possible, but the consistency of such methods depends on eventually the

ill-posed inverse problem being eliminated.

One type of added information is assuming that (K − N) regressors in (1) are not

important. This is equivalent to assuming that at least (K −N) of the β’s are 0, but not

which ones of them. The next theorem provides sufficient conditions for identification of

the regression with only the variables of importance using a measure of model fit. The

theorem has been proved in different contexts so we mainly state it for easy reference to

the other results in the paper.

Theorem 3 (Identification assuming a true submodel) Assume A ⊂ {X1, ..,XK}
has at most N members and that A is the smallest subset such that

E(y | A) = E(y | X1, ..,XK).

Then E(V (y | A)) < E(V (y | B)) for any B such that A * B.

Proof. See appendix.
The theorem implies that a model selection criterion based on fit (in terms of E(V (y |

X))) may identify the correct model and, thus, inference on X1 can be performed. Many

of the existing methods are based on this criterion as it will be demonstrated in the next

section. It is important to stress that the added information regarding variables of no

importance cannot be tested.

3 Properties of existing methods

In this section we derive properties of extreme bounds, refinements of extreme bounds

and other model selection methods in the context of the ill-posed inverse problem caused

by an undersized sample. The impossibility theorem in Section 2 already demonstrates

that no method can work correctly in a general case. The reason why we derive the

results in the general case anyhow is to obtain useful insight into the properties of the

different methods. We also analyze a special case where the true model is among the

feasible regressions. This is the case for which consistency results of model selection

methods typically are derived. It is worth stressing that our results are equally applicable

in well-posed problems, for instance if the regression with all regressors believed to be of

importance cannot be estimated with sufficiently high precision.

The properties of the methods are derived for the population. Doing so provides the

methods with the best possible environment under which to perform well. The properties
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of the methods in the population are equivalent to asymptotic theory based on the number

of observations N →∞ while keeping the conditioning sets of variables fixed to resemble

that the problem is ill-posed in finite sample.

It is sufficient to analyze a case with four regressors to obtain the properties of the

methods. Adding more variables only increase the number of different regressions but

change nothing of substance. The regression with all variables believed to be of importance

is:

E(y | x1, x2, x3, x4) = β1x1 + β2x2 + β3x3 + β4x4. (2)

This regression is denoted the long regression. The problem is to determine if x1 belongs

in the regression, that is, if β1 6= 0. Without loss of generality, assume E(xk) = 0,

V (xk) = 1 and Corr(xk, xm) = ρkm for all k,m.

The resemblance of the ill-posed problem due to an undersized sample is done by

allowing regressions with two regressors at most. These are denoted short regressions. To

keep the discussion focussed on the ill-posed problem, assume there is no misspecification

and that all short regressions are linear.

The coefficient to x1 in a short regressions may be different from β1 due to omitted

variable bias. Let [mk] index the regression of y on xm and xk, and let βm;k = (βm, βk)
0.

For notational convenience k = 0 denotes no regressor e.g. [10] is the regression of y on

x1. Let γ
[1k]
1 be the coefficient on x1 in the linear regression of y on x1 and xk. Then

γ[12]1 = β1 +
ρ13 − ρ12ρ23
1− ρ212

β3 +
ρ14 − ρ12ρ24
1− ρ212

β4 = β1 + c0[12]β3;4,

γ
[13]
1 = β1 +

ρ12 − ρ13ρ23
1− ρ213

β2 +
ρ14 − ρ13ρ34
1− ρ213

β4 = β1 + c0[13]β2;4,

γ
[14]
1 = β1 +

ρ12 − ρ14ρ24
1− ρ214

β2 +
ρ13 − ρ14ρ34
1− ρ214

β3 = β1 + c0[14]β2;3,

γ
[10]
1 = β1 + ρ12β2 + ρ13β3 + ρ14β4 = β1 + c0[10]β2;3;4.

The last terms are the omitted variable biases.

We focus on two cases of general interest. The first one, denoted the generic case, is

the case with virtual no restrictions on the long regression. The generic case is:

Generic Case

β2 6= 0, β3 6= 0, β4 6= 0
β1 6= −c0[12]β3;4, and c0[12]β3;4 6= 0
β1 6= −c0[13]β2;4, and c0[13]β2;4 6= 0
β1 6= −c0[14]β2;3, and c0[14]β2;3 6= 0
β1 6= −c0[10]β2;3;4, and c0[10]β2;3;4 6= 0

(3)
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The inequalities are imposed in such a way that there is an effect of all regressors and

that they are correlated. The correlation implies that an omitted variable bias exists in

the short regressions.

The other case, denoted the special case, is chosen so that one of the short regressions

is equivalent to the long regression. Consistency of model selection methods is typically

established for this case. The special case is:

Special Case

β2 6= 0, β3 = β4 = 0

β1 6= −c0[13]β2;4, and c0[13]β2;4 6= 0
β1 6= −c0[14]β2;3, and c0[14]β2;3 6= 0
β1 6= −c0[10]β2;3;4, and c0[10]β2;3;4 6= 0

(4)

In the special case, x3 and x4 are not of importance in the long regression but they are

correlated with the other variables. Furthermore, the long regression is equivalent to the

short regression of y on x1 and x2.

In the following subsections we shortly describe different methods and their properties

in the generic and special case.

3.1 Extreme bounds

The extreme bounds analysis of Leamer (1983) and Levine and Renelt (1992) define

the variable x1 as robust if the estimate on the corresponding coefficients are significantly

different from 0 and have the same sign in all the short regressions with x1. Other authors

have slightly different definitions of robustness, see the next subsections. All authors agree,

however, that the idea of robustness is to determine if the variable is important. This

leads naturally to our definition of importance of a variable in the population. Therefore,

in this (and the following subsections) we derive the properties of methods that investigate

robustness to see if they correctly characterize the variable as important or not.6

The extreme bounds have been criticized by McAleer, Pagan and Volcker (1985),

Pagan (1987), Breusch (1990) and Granger and Uhlig (1990) in a well posed setting.

McAleer, Pagan and Volcker (1985) derive the probability that a variable is robust.

Breusch (1990) calculated the extreme bounds based on the long regression. Their results

are closely related to our results below. Granger and Uhlig (1990) derived the extreme

bounds over short regressions which have a reasonable fit (in terms of R2) relative to the

best and worst fitting models. McAleer(1994) reiterates the points made in McAleer et al

(1985) and criticizes Levine and Renelt (1992) for not reporting diagnostic tests. Despite

6The results can also simply be seen as finding the asymptotic distribution for N →∞ of the various

methods given the problem is ill-posed.
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criticism, the extreme bounds analysis continues to enjoy popularity, see e.g. Temple

(2000), de Haan and Sturm (2000) and Kalaitzidakis, Mamuneas and Stengos (2002).

The next proposition shows that the extreme bounds cannot correctly characterize x1
as important in neither the generic nor the special case.

Proposition 4 (Extreme bounds) In the generic case (3) the extreme bounds analysis
has the following properties in the population7:

Truth: β1 = 0

Correct sgn(c0[12]β3;4) 6= sgn(c0[13]β2;4) or sgn(c
0
[12]β3;4) 6= sgn(c0[14]β2;3)

Incorrect sgn(c0[12]β3;4) = sgn(c0[13]β2;4) = sgn(c0[14]β2;3)

Truth: β1 6= 0

Correct
β1 < −max(c0[12]β3;4, c0[13]β2;4, c0[14]β2;3) or
β1 > −min(c0[12]β3;4, c0[13]β2;4, c0[14]β2;3)

Incorrect −max(c0[12]β3;4, c0[13]β2;4, c0[14]β2;3) < β1 < −min(c0[12]β3;4, c0[13]β2;4, c0[14]β2;3)

In the special case (4) the properties are:

Truth: β1 = 0

Correct all cases

Truth: β1 6= 0

Correct
β1 < −max(0, c0[13]β2;4, c0[14]β2;3) or
β1 > −min(0, c0[13]β2;4, c0[14]β2;3)

Incorrect −max(c0[13]β2;4, c0[14]β2;3) < β1 < −min(c0[13]β2;4, c0[14]β2;3)

Proof. See appendix.

The proposition shows that the extreme bounds criterion is not a consistent proce-

dure in determining if a regressor is important in the long regression. In particular, if

sgn(c[12]β3;4) · sgn(c[13]β2;4) = 1, then the extreme bound analysis will give an incorrect
result when x1 does not belong in the long regression, but it will also give an incorrect

result when x1 belongs in the regression for a range of values of β1(6= 0). In practice,

there is nothing peculiar about a case where sgn(c[12]β3;4) · sgn(c[13]β2;4) = 1. It is all a
question of the correlation between the regressors and the true values of the parameters.

7The sgn() function is defined as sgn(z) =

⎧⎪⎨⎪⎩
−1 if z < 0

0 if z = 0

1 if z > 0
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The extreme bounds can be modified so that it is an almost everywhere consistent

procedure in the special case. The modification is a change of the decision rule to accept

that x1 is important when the estimate of β1 is significantly different from 0 in all short

regressions. Compared to extreme bounds, a (significant) sign shift does not disqualify a

variable from being important.

3.2 Sala-i-Martin’s test

Sala-i-Martin (1997a, 1997b) motivates his approach as an alternative to the extreme

bounds where sampling uncertainty is taken more into account. He considers a set-up in

which all the short regressions, m, have the same number of explanatory variables and

always include the variable of interest. In his general setup, where the estimates (bγ1)
across short regressions are not assumed to be normal, he suggests the statistic.8

CDF (0) =
mX
i=1

wiCDFi(0),

wherewi is the weight of short regression i andCDFi (0) =Max(Φ(bγ1/bσγ1), 1−Φ(bγ1/bσγ1))
is the largest of the areas to the left or to the right of zero in a normal distribution with

mean equal to the OLS estimator (bγ1) and variance equal to the variance of the OLS es-
timator (bσ2γ1). A variable is robust (denoted important) if CDF (0) is greater than 0.95.

Sala-i-Martin assumes conditional normality of y in all the short regressions. Then, the

weight of model j is defined as:

wj =
SSE

−N/2
j

mX
i=1

SSE
−N/2
i

,

where SSEj is the sum of squared errors in model j.

The next proposition shows that the test always characterizes the variable of interest

as important in the generic case:

Proposition 5 (Sala-i-Martin’s test) In the generic case (3) Sala-i-Martin’s test has
the following properties in the population:

Truth: β1 = 0 Truth: β1 6= 0
Correct none all cases

Incorrect all cases none

In the special case the test correctly determines the importance of the regressor.
8He also considers versions based on the average beta and average variance. In the general case they

have similar properties as the version analyzed here. The methodology has recently been applied by

Sturm and de Haan(forthcoming).
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Proof. See appendix.
In the special case in which one of the short regressions is equivalent to the long

regression, the test works because the correct specification is given a weight equal to one

because this regression has the best fit in the sense of minimizing E(V (y | xm, xk)), see
the proof. Hence, the working of the test in the special case relies on the identification

result in Theorem 3.

Finally, note that the test has properties similar to the modified extreme bounds test

defined in the end of the section 3.2.

3.3 BACE

The idea of Bayesian model averaging is implemented in a simplified version by Sala-i-

Martin, Doppelhoffer and Miller (2004).9 They call their version Bayesian Averaging of

Classical Estimates (BACE).

All short regressions are included in the averaging, also the ones without the variable

of interest. Let C∗ be the total number of short regressions. The posterior probability of

the j’th short regression, Mj, is:

P (Mj | y) =
P (Mj)N

−kj/2SSE−N/2j

C∗X
i=1

P (Mi)N−ki/2SSE−N/2i

, (5)

where P (Mi) is the prior probability of model i.10 The (classical) estimate, bβSDM

1 , of

β1 is the weighted average of the estimates from each model by the model posterior

probabilities: bβSDM

1 =
C∗X
i=1

bβi1P (Mi | y),

where bβi1 is the estimated value of β1 in short regression i.

In the next proposition it is shown that BACE selects models based on fit rather than

the importance of the variable of interest.

Proposition 6 (BACE) Define σ2[mk] = E(V (y | xm, xk)) and σmin = min
i,j
(σ[ij]). Let

S1 = {k ∈ {0, 2, .., K} | σ[1k] = σmin} be the set of indices for regressions that include x1
and achieve the smallest variance.

9See also Fernandez, Ley and Steele (2001a, 2001b)
10They suggest using

_
k/K as prior probability for each variable where

_
k is the average model size and

K the total number of possible regressors
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In the generic case (3) the BACE test has the following properties in the population:

Truth: β1 = 0 Truth: β1 6= 0
Correct if #S1 = 0 if #S1 = 1 or #S1 = K

Incorrect if #S1 = 1 or #S1 = K if #S1 = 0

Indeterminate∗ if 2 ≤ #S1 < K if 2 ≤ #S1 < K
∗ depends on model priors, see proof

where #{} is the cardinality of a set.
In the special case the test correctly determines the importance of the regressor.

Proof. See appendix.
In the generic case, the BACE does not work correctly. The reason is that BACE

selects the best fitting model(s) (in the sense of minimizing E(V (y | xm, xk))) among all
the short regressions, which in general provides a biased estimate of β1. In the special

case, the model with x1 and x2 does provide the best fit and in this model γ
[12]
1 is unbiased

for β1. Thus, the identification is obtained using Theorem 3.

3.4 General-to-specific

The basic general-to-specific procedure has been refined by Hendry and Krolzig (2004)

and Hoover and Perez (2004)11. The procedure starts with a general unrestricted model

(called GUM) that cannot be rejected by a host of misspecification tests. Then the

procedure searches over different paths, where models are restricted until all variables are

significant. In the process the host of misspecification tests are applied which may also

lead to backtracking on a path. In the end, a model is chosen that cannot be rejected

by misspecification tests12 and encompassing tests against other candidate models from

other paths.

Because of the undersized sample a general unrestricted model cannot be estimated.

Therefore, we perform general-to-specific on each short regression with the maximum

number of regressors. Among the models selected by the general-to-specific procedure

performed on these short regressions, the best one is chosen. The procedure13 is shortly

described below:14

11Hoover and Perez(1999) and Hendry and Krolzig(1999) also discuss refined versions of general-to-

specific, but in a time-series context.
12Denoted a congruent model, see eg Hendry (1995)
13The procedure is similar to a procedure suggested by Hansen(1999) in a time-series context.
14There is no reference to misspecification tests since none of the short regressions here are misspecified.
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a. Select a subset of Ks regressors, where Ks is the maximum number of

regressors included in any short regression.

b. Perform general-to-specific. Delete the variable with the lowest insignif-

icant t-statistics. Continue until all coefficients are significant.

c. Repeat a and b for all short regressions with Ks regressors.

d. Among the candidate models, choose one according to e.g. a model

selection criteria. Here, choose the model with the lowest standard error. In

case of a tie, x1 is denoted important if it is included in one of the models in

the tie.

The following proposition shows that the general to specific procedure determines

importance of the variable of interest based on the best fitting model:

Proposition 7 (General-to-specific) Let σmin = min
i,j
(σ[ij]). In the generic case (3)

the extended general-to-specific procedure has the following properties in the population:

Truth: β1 = 0 Truth: β1 6= 0
Correct σmin < min

k=2,..,K
σ[1k] σmin = min

k=2,..,K
σ[1k]

Incorrect σmin = min
k=2,..,K

σ[1k] σmin < min
k=2,..,K

σ[1k]

where σ2[mk] = E(V (y | xm, xk)).
In the special case the test correctly determines the importance of the regressor.

Proof. See appendix.
The result is similar to that of BACE. The general-to-specific procedure works in the

special case because it is based on the criterion which insures identification according to

Theorem 3.

3.5 Minimum t-statistic over models test

The minimum t-statistics over models test denotes the variable of interest as important

if the minimum t-statistics (in absolute value) taken over short regressions including x1

is statistical significantly different from 0.15 This is similar to the modified version of

the extreme bounds suggested earlier in this paper and in the spirit of the Sala-i-Martin

(1997a, 1997b) test. White (2000) and Hansen (2003) have under different conditions

shown that the bootstrap can be applied to approximate the distribution of the minimum

t-statistics. The following proposition provides the properties of the minimum t-statistics

over models test.

15Note, P (|ti| > c,∀i) = P
³
Min
i
|ti| > c

´
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Proposition 8 (Minimum t-statistics over models test) In the generic case (3) the
minimum t-statistics over models test has the following properties in the population:

Truth: β1 = 0 Truth: β1 6= 0
Correct none all cases

Incorrect all cases none

In the special case the test correctly determines the importance of the regressor.

Proof. See appendix.

In the generic case, the minimum t-statistics over models test will not be consistent

because it denotes the variable important in all cases. The reason why this happens when

β1 = 0 is that the coefficient on x1 is different from 0 in all the short regressions because of

the omitted variable bias. In the special case the regression of y on x1 and x2 is the correct

regression and, thus, provides the correct information with respect to x1. The other short

regressions all have the coefficient to x1 different from 0. It only takes one short regression

with acceptance of β1 = 0 to accept overall β1 = 0 but all short regressions with rejection

of β1 = 0 to reject overall β1 = 0. Thus, here the short regression of y on x1 and x2 in

effect determines the outcome.

3.6 Model selection criteria: BIC and AIC

Model selection criteria are designed to select a model based on some criterion which is

usually a penalized likelihood16. Then the significance of a particular variable can be

assessed in the chosen model.

One model selection criterion is BIC (Schwarz information criterion). It turns out

that the posterior probability of a model in the Bayesian averaging approach by Sala-i-

Martin, Doppelhoffer and Miller (2004) can be rewritten as a function of BIC assuming

conditional normality of y. BIC is given by:

BICj = N log
1

N
SSEj + log (N) kj ,

where σ2j is the maximum likelihood estimate of the variance of the error associated with

model j and kj is the number of parameters in model j.

The results in the next proposition show that BIC is similar to BACE and general-to-

specific since these methods (in the population) select a model based on the same measure

of fit.
16For an extended discussion see Burnham and Anderson(2002).
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Proposition 9 (BIC) In the generic case (3) BIC has the following properties in the

population:

Truth: β1 = 0 Truth: β1 6= 0
Correct min

i6=1,j 6=1
σ[ij] < min

k=2,..,K
σ[1k] min

i6=1,j 6=1
σ[ij] > min

k=2,..,K
σ[1k]

Incorrect min
i6=1,j 6=1

σ[ij] > min
k=2,..,K

σ[1k] min
i6=1,j 6=1

σ[ij] < min
k=2,..,K

σ[1k]

Indeterminate min
i6=1,j 6=1

σ[ij] = min
k=2,..,K

σ[1k] min
i6=1,j 6=1

σ[ij] = min
k=2,..,K

σ[1k]

where σ2[mk] = E(V (y | xm, xk)).
In the special case the test correctly determines the importance of the regressor.

Proof. See appendix.
The special case confirms that BIC is a consistent model selection criterion if the true

model is included in the set of models investigated.

Another model selection criterion is the Akaike information criterion, AIC, and its

corrected version, AICC. The AIC and AICC for a model j are given by:

AICj = N log
1

N
SSEj + 2kj

AICCj = AICj +
2kj (kj + 1)

N − kj − 1 .

The next proposition shows that AIC and AICC have properties similar to BIC

Proposition 10 (AIC and AICC) In the generic case (3) AIC and AICC have the

following properties in the population:

Truth: β1 = 0 Truth: β1 6= 0
Correct min

i6=1,j 6=1
σ[ij] < min

k=2,..,K
σ[1k] min

i6=1,j 6=1
σ[ij] > min

k=2,..,K
σ[1k]

Incorrect min
i6=1,j 6=1

σ[ij] > min
k=2,..,K

σ[1k] min
i6=1,j 6=1

σ[ij] < min
k=2,..,K

σ[1k]

Indeterminate min
i6=1,j 6=1

σ[ij] = min
k=2,..,K

σ[1k] min
i6=1,j 6=1

σ[ij] = min
k=2,..,K

σ[1k]

where σ2[mk] = E(V (y | xm, xk)).
In the special case the test correctly determines the importance of the regressor.

Proof. See appendix.
For the population the correction to AIC does not matter. Though AIC and BIC

both provide the correct answer in the special case, they do so in different ways. Under

the truth β1 = 0, BIC selects the regression of y on x2 with probability 1, whereas AIC
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selects both the regression of y on x2 and the regression of y on x1 and x2 with positive

probability.17 In both regressions, however, the coefficient on x1 equals 0. The reason is

that AIC in the population has a positive probability of selecting models that nest the

true model.

4 New test

The main result in section 3 is that none of the methods are consistent in the generic case.

This has to be the case in view of the impossibility theorem (Theorem 1). The conditions

of the impossibility theorem may not be true under all circumstances with an undersized

sample. In this section, we construct a test to determine the importance of the variable

of interest that builds directly on checking the conditions of the impossibility theorem.

The test is also applicable when N > K. In that case, none of the omitted variables

are linear combinations of the included variables and the impossibility theorem does not

apply. The conditions in the impossibility theorem are, however, sufficient to identify β1
which is well known from the omitted variable bias problem.18

The test involves two steps. The first step is finding a sufficient number of variables

that are orthogonal to a conditioning set with x1. The second step is to regress y on this

set of conditioning variables. A set of orthogonal regressors can be found (if it exists)

simply from the correlation matrix of the regressors. Such an approach avoids a curse of

dimensionality.

The following algorithm is a practical way to implement the test. Let Ks be the

number of variables allowed in a regression. (Ks < N).

1. Find all regressors correlated with x1 and insert them in the set I1. Stop if #I1 >

Ks.19 Let m = 1 and j = 1.

2. Let zj be the j’th variable in Im. Find the set of regressors, C, not in Im that is

correlated with zj. Set Im+1 = Im ∪ C. Stop if #Im+1 > Ks.

3. Set m = m+ 1 and j = j + 1. Repeat 2 if j ≤ #Im otherwise continue with 4.

4. Regress y on the regressors in Im and test if the coefficient on x1 is different from 0.

17This confirms the known result that AIC is inconsistent if the true model is nested in some of the

models investigated.
18In a well-posed linear regression problem with omitted variables, inclusion of the conditional expec-

tations of the omitted variables insures identification of β1 if the conditional expectations are different

from a linear index.
19# is the cardinality (number of elements) in a set

16



To find uncorrelated regressors (in 1 and 2), a simple test for a zero correlation between

two regressors can be used. For example, if joint normality between two regressors is

assumed and ρ is the correlation coefficient, then
√
n− 2ρ/

p
1− ρ2 follows a t-distribution

with (n− 2) degrees of freedom. In step 4 a t-test can be used.
The next theorem shows that the test defined by the steps 1 to 4 is consistent.

Theorem 11 (Test of importance) The test, T , specified by the steps 1 to 4 is a con-
sistent test of:

I. Importance of x1 can be determined

II. Under I, whether x1 is important or not.

Proof. See appendix.
Property I tests if the problem is ill-posed or can be made well-posed. Property I can

be tested by other approaches than the one outlined above the Theorem. For example,

instead of investigating the correlation matrix between the regressors, the problem of

finding orthogonal regressors can be formulated in a SURE system. After searching for

orthogonal regressors, the set of conditioning regressors, Im, may contain fewer members

than than Ks. This implies that the regression in 4 can be extended with extra variables.

In theory, it does not matter, but the finite sample properties may differ.

In the special case (4) in section 3, the new test should not be used. The test is not

designed to this particular situation, where the true model is one of the short regressions,

and many of the other existing methods are consistent in the special case as we have also

proved in Section 3.

5 Finite sample properties of tests

In this section we investigate the finite sample properties of the new test and some of the

methods considered in section 3. We focus on two setups which match the identification

conditions in Theorem 1 and 3.

The finite sample properties are investigated by a Monte Carlo study. The design of

the Monte Carlo study has four variables and a constant. The number of MC replications

is 10,000. All variables have zero mean and unit variance. The purpose is to determine

if the regressor x1 is important. The design has x1 and x2 correlated with a correlation

coefficient equal to 0.50, and they are uncorrelated with x3 and x4 which are also mutually

uncorrelated. They are drawn from a multivariate normal distribution. The constant is

equal to 2 and the random disturbance terms are iid N(0, 4).

In the tables 1,2 and 3 below, the first four methods use all subsets of regressors

with two variables (and a constant) at the most. The first four methods are calculated
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as described in section 3 with the exception that the model selection with General to

specific is done with BIC. For the Bayesian tests, we apply a "significance" test on the

unconditional posterior mean.

Tables 1 and 2 show for n = 25 and n = 50, respectively, a case where the true model

is not included among the short regressions but x3 and x4 are orthogonal on x1 and x2.

Hence, the conditions in the impossibility theorem fail. The coefficient vector on x2, x3
and x4 is (5, 5,−5)0. The first four tests have a Type I error (columns with β1 = 0)

close to 0, because all models with x1 fit worse than combinations of two of the three

other variables. The test of importance has a Type I error close to 5%. Sala-i-Martin’s

test includes x1 in all short regressions, and therefore some of the models produce biased

estimates. Sala-i-Martin’s test has a large probability of a Type I error because a high

weight is put on models with good fit. In those models the estimate of x1 is biased. The

EBA has a low rejection error because the EBA only rejects the null when all variables

have the same sign20.

Many of the tests have low power. For a fairly wide interval of values of β1, they

have zero power. This is in accordance with the propositions in section 3. The test of

importance has good power properties.

Table 1. Probability of denoting x1 important

Design: n = 25 and (β2β3β4) = (5, 5,−5)
True values of β1

Methods -10 -8 -6 -4 -2 0

AICC 0.9698 0.7905 0.3352 0.0396 0.003 0.0069

BIC 0.9698 0.7905 0.3352 0.0396 0.003 0.0069

GSP 0.9698 0.7905 0.3352 0.0396 0.003 0.0069

Bayes (uncond. posterior est.) 0.9122 0.6133 0.1668 0.0104 0.0001 0.0011

Sala-i-Martin’s test 0.9959 0.9663 0.7563 0.2868 0.0941 0.3051

EBA 0.9867 0.8844 0.4962 0.0748 0.002 0.0229

Test of importance 0.9963 0.9748 0.8679 0.5514 0.1589 0.0401

Note: All significance tests use a nominal level of 5%.

20The EBA is carried out on the bounds as done in the literature. This amounts to using a critical

value of 2 for the tests.
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Table 2.Probability of denoting x1 important

Design: n = 50 and (β2β3β4) = (5, 5,−5)
True values of β1

Methods -10 -8 -6 -4 -2 0

AICC 0.9939 0.8274 0.194 0.0026 0.0000 0.0003

BIC 0.9939 0.8274 0.194 0.0026 0.0000 0.0003

GSP 0.9939 0.8274 0.194 0.0026 0.0000 0.0003

Bayes (uncond. posterior est.) 0.9886 0.7535 0.1229 0.001 0.0000 0.0000

Sala-i-Martin’s test 1 0.9993 0.9483 0.4163 0.119 0.5517

EBA 1 0.997 0.8643 0.1685 0.001 0.0240

Test of importance 1 0.9998 0.9945 0.8803 0.3544 0.0456

Note: All significance tests use a nominal level of 5%.

Several of the tests have non-monotonic power. For example, Sala-i-Martin’s test has

the lowest power for β1 = −2. One reason for this is that for β1 = −2 the omitted variable
bias in the estimator of β1 in the best fitting model is about 0.

For some of the methods, the power decreases in some intervals of β1 as the sample

size increases. For example for β1 = −6, the general-to-specific method has power 0.3352
for n = 25 and 0.194 for n = 50. The same happens for the BACE methods. The reason

is that the best fitting model for β1 = −6 does not include x1, and when n increases this

model is selected with higher probability.

Despite the fact that the conditions in the impossibility theorem are not satisfied for

the design in tables 1 and 2 and, thus, the problem is well-defined, the existing methods

(considered in section 3) do not work properly. For most of the methods, their selection

are based on fit. Therefore, if the model with x1 and x3 provides the best fit, then the

estimate of the coefficient will be biased due to the omitted variable bias caused by x2.

The existing methods do not work correctly for an important regressor even if all the

regressors are orthogonal. Again, the cause is that the selection of model is based on fit.

Even though the estimate of the coefficient of x1 is not biased, the methods may choose

models where x1 is not included. This suggests a modification to the methods running all

short regressions. They can be made consistent when all the regressors are orthogonal by

only considering short regressions, which include x1.

Table 3 shows the result of a design similar to the special case in section 2 (β3 = β4 =

0). Thus, the long regression is included as one of the short regressions. As expected,

the methods perform well. Most of the methods from section 2 have better power than

the test of importance. Unfortunately, it is not possible to determine if the special case

is true, that is, if β3 = β4 = 0. Therefore, it may not be unreasonable to suspect that the
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test of importance performs less well in the special case since it is consistent in a wider

class of models.

Table 3. Probability of denoting x1 important

Design: n = 25 and (β2β3β4) = (5, 0, 0).

True values of β1

Methods -6 -4 -2 -1.5 -1 -0.5 0

AICC 1 1 0.9999 0.952 0.8126 0.1651 0.0473

BIC 1 1 0.9999 0.952 0.8126 0.1651 0.0473

GSP 1 1 0.9999 0.952 0.8126 0.1651 0.0473

Bayes (uncond. posterior est.) 1 1 0.9992 0.7595 0.458 0.0266 0.0027

Sala-i-Martin’s test 1 1 0.9999 0.9656 0.8491 0.1972 0.0626

EBA 0.9953 0.884 0.2936 0.006 0.0015 0.001 0.0251

Test of importance 0.9995 0.9961 0.9638 0.8686 0.7448 0.158 0.0548

Note: All significance tests use a nominal level of 5%.

6 Effectiveness of foreign aid

Many papers investigate the important question of the effectiveness of foreign aid on

growth. One question is if "good policies" by the receiving country significantly influ-

ences the effect of foreign aid. A leading example is the paper by Burnside and Dollar

(2000). They find that good policy has a significant impact on the effectiveness of foreign

aid. Their findings, however, have be questioned by, for instance, Easterly, Levine and

Roodman (2004) for data reasons. We investigate the question in view of the fact that

many other variables are found to be important for growth.

The set of variables believed to be of importance is determined as follows. Burnside

and Dollar (2000) have panel data for 56 countries from 1970-1993. Growth rates are

calculated as averages over four years. Their most extensive specification includes the

variables from the source Burnside and Dollar (2000) listed in table 4. They also include

time dummies. A number of other variables have been suggested in the literature (see

Roodman (2004) for a summary of the literature). These variables have been collected

by Roodman (2004) and the most important ones are listed in the table. Among the

variables included in the table are those used by Dalgaard, Hansen and Tarp (2004), who

suggest an alternative aid interaction model based on tropical area.

We use the new test to investigate the importance of good policy for aid effectiveness.

This is modelled as the interaction between the good policy index21 and aid. In total 10

21This index is calculated as:

1.28 + 6.85budget surplus− 1.4 ∗ inflation+ 2.16 ∗ opennes
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variables and time and country dummies are included. Thus, to falsify the conditions of

the impossibility theorem, 8 variables must be orthogonal on the remaining 10 variables

of which one is the interaction between aid and the good policy index.

Table 4: Variables used in aid-growth models
Variable Source

Growth rate of GDP per capita, 4 year averages Burnside & Dollar (2000)

Good Policy index Burnside & Dollar (2000)

Effective development aid as percentage of GDP Burnside & Dollar (2000)

Assassinations per capita Burnside & Dollar (2000)

Ethnic fractionalization Burnside & Dollar (2000)

Assassinations per capita*Ethnic fractionalization Burnside & Dollar (2000)

Institutional quality Burnside & Dollar (2000)

M2 as percentage of GDP (lagged) Burnside & Dollar (2000)

Initial log GDP per capita Burnside & Dollar (2000)

Aid*Good policy Burnside & Dollar (2000)

East Asian dummy Burnside & Dollar (2000)

Africa dummy Burnside & Dollar (2000)

Aid squared*policy Burnside & Dollar (2000)

Mean years of secondary schooling among those over 25 Roodman (2004)

(Log) Population Roodman (2004)

Population growth Roodman (2004)

Political instability (lagged) Roodman (2004)

Tropical area (as a fraction of total area) Roodman (2004)

Positive Shock to export prices Roodman (2004)

Negative Shock to export prices Roodman (2004)

Aid*tropical area Roodman (2004)

The new test involves multiple testing. Both relative conservative and liberal critical

values are investigated. The conservative critical value is selected by ignoring the multiple

testing problem, and using a 5% nominal level for each test of zero correlation. With this

critical value there are not sufficiently many regressors which were orthogonal.22 The

liberal critical value is based on the Bonferroni bound23. Assuming that there are 8

orthogonal regressors, the null is rejected if the p-value associated with the test is less

22Using the regular 5% cut-off corresponding to a critical value of 1.97, ten regressors are left after the

first round and as some of the regressors remaining are correlated with aid*tropics, the search ends.
23Note, usually the Bonferroni bound is conservative but here the Bonferroni bound is used in a two-step

procedure; The smaller critical value, the less likely orthogonal regressors can be found.
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than 0.05/80 corresponding to a critical value of about 3.47 in absolute value24. The

result is that based on the Bonferroni bound based critical value, there are not enough

orthogonal regressors.25

In conclusion, with either choice of critical values there is clear evidence that not

enough orthogonal regressors exist. Therefore, if many regressors are believed to be of

importance, then the empirical model in Burnside and Dollar (2000) cannot be used to

determine if aid is more effective when combined with good policy.

7 Conclusion

We considered the economic task of determining if a variable is important in a regression

with more variables believed to be of importance than observations. We found conditions

under which the undersized sample leads to an ill-posed inverse problem. The problem

can only be well-posed if there is a sufficient number of orthogonal regressors.

In light of the impossibility of the task, it came as no surprise that existing model

selection methods cannot resolve the ill-posed inverse problem. The analysis showed

that the majority of these methods are based on a measure of model fit. Therefore,

these methods do not work even when the problem is well-posed. The task can also be

interpreted as inferring the effect of a variable when the true model is (infinitely) larger

than models that can be estimated.

We derived consistency properties of commonly applied methods by explicitly taking

the ill-posed problem caused by an undersized sampled into account. The results are very

different from standard asymptotic results developed for the methods. In fact, when the

problem is ill-posed none of the methods are consistent. The analysis of the ill-posed

problem also provides insight into the properties of the methods when they are applied

to well-posed problems. This can be useful when the degrees of freedom is low.

Fundamentally, our results illustrate the importance of choosing a loss function ap-

propriate for the task at hand. The model selection methods build on loss functions that

are based on measures of model fit. These are appropriate when the true model can be

estimated. In the general case which is considered here, a loss function based on model

fit is problematic as proved by the impossibility theorem. A loss function based on failing

the conditions of the impossibility theorem seems more promising.

24Under the null there are 80 possible tests in which rejection could happen erroneously. Using a critical

value of 0.05/80 puts a bound on the type I error. Given that the test is two-sided, we choose 3.47 as

the critical value.
25In the first round, four regressors were found to be correlated with aid*good policy one of which is

aid*tropical area. This variable is correlated with an additional five regressors one of which is log GDP.

Finally in the third round one regressor is correlated with log GDP and the search stops.
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The identification results are used on the problem of determining if aid is more effective

when combined with good policy. We showed that this question cannot be answered by

using a model of the type suggested by Burnside and Dollar (2000) in the presence of

many variables believed to be important for growth without adding further information.

8 Appendix

Proof of Theorem 1 (Impossibility of determining importance). The defining

property of the undersized sample problem is a reduced rank of the regressor matrix.

Here, the rank is N (< K). The implication of a reduced rank is that N of the regressors

can span a space that includes the remaining (K −N) regressors.

With probability 1, any subset of N regressors can span the space. Consider regressor

1 to N . In the undersized sample,

Pr

⎛⎜⎝rank

⎡⎢⎣X11 .. XN1

: :

X1N .. XNN

⎤⎥⎦ = N

⎞⎟⎠ = 1, (6)

since it is assumed that the regressors in the population are not linear dependent. Let

Xk = (Xk1, .., XkN )
0 be the values of the k’th regressor. Using the first N regressors to

span the space, the remaining regressors can be written as:

X i =
NX
k=1

aikXk, i = N + 1, .., K,

where aik are random variables determined by the following system:

ai ≡

⎡⎢⎣a
i
1

:

aiN

⎤⎥⎦ =
⎡⎢⎣X11 .. XN1

: :

X1N .. XNN

⎤⎥⎦
−1 ⎡⎢⎣Xi1

:

XiN

⎤⎥⎦ i = N + 1, .., K. (7)

Because of the reduced rank,

E(y | X1, .., XN , XN+1.., XK) = E(y | X1, ..,XN),

where

E(y | X1, .., XN) =
NX
k=1

βkXk +
KX

i=N+1

E

Ã
(βi

NX
k=1

aikXk) | X1, .., XN

!
.

This can be rewritten as

E(y | X1, .., XN ) =
NX
k=1

Ã
βk +

KX
i=N+1

βiE
¡
aik | X1, .., XN

¢!
Xk (8)

=
NX
k=1

Ã
βk +

KX
i=N+1

βiµ
i
k

!
Xk,
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where µik = E (aik | X1, .., XN ). It can be seen that the coefficient on each Xk is a linear

combination of the coefficient, βk, from the long regression in the population and terms

from the constraint leading to the reduced rank. The system (8) has N equations with

K unknown parameters.

Recovery of β1 in the system (8) of conditional expectations is possible if

E(y | X1, .., XN ; β1, .., βK) 6= E(y | X1, ..,XN ; β
∗
1, .., β

∗
K)

for any choice of β∗1 6= β1 and β
∗
2, .., β

∗
K . Let the coefficient toXk be ck(= βk+

KX
i=N+1

βiµ
i
k).

Then the condition fails if an β∗1 6= β1 can be found so that ck = c∗k. In matrix form:

⎡⎢⎢⎣
1 µN+11 · · · µK1
. . .

...
. . .

...

1 µN+1K · · · µKK

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1
...

βN

βN+1
...

βK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= c, (9)

where c = (c1, .., cN )0. The degrees of freedom to determine β1 only depends on µ
N+1
1 , .., µK1

since there are no restrictions imposed on βN+1, .., βK from the equations involving β2, .., βN .

Thus, only if all µN+11 , .., µK1 are equal to 0, then β∗1 = β1 is a unique solution.

The values of µN+11 , .., µK1 are determined from the regressions of the omitted variables

on the included variables. Using (7) and denoting by dk the k’th row of the inverse matrix,

get:

µik = E
¡
aik | X1, ..,XN

¢
= dk · E (X i | X1, .., XN) .

Using (6), with probability 1, µik equals 0 if and only if E (X i | X1, .., XN) = 0. Thus,

without imposing restrictions on the β’s, β1 can only be recovered if E (X i | X1, .., XN) =

0 for all i = N + 1, ..,K.

The argument above is for the set of N included variables A = {X2, .., XN} together
with X1 and the set of (K − N) excluded variables B = {XN+1, .., XK}. The argument
can be repeated for any combinations of included and excluded variables. Therefore, for

a recovery of β1 there needs to exist at least one set A (and B) so that the corresponding

µ1’s all equal 0.

Proof: Theorem 2 (Partial identification of variables of importance). The result
(9) in the proof of theorem 1 can be used to show partial identification of importance for

a set of regressors. Consider identification of at least one of the regressors in the set
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R = {X1, .., Xr} as important (not which one of them). Suppose none of these regressors
are important, β1 = .. = βr = 0. Then from (9) get

⎡⎢⎢⎣
1 µN+11 · · · µK1
. . .

...
. . .

...

1 µN+1K · · · µKK

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

βr+1
...

βN+1
...

βK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= c,

The first r rows of this linear system can be solve for βN+1, .., βK if (K − N) ≤ r.

If (K − N) < r, then there are more equations (restrictions) than parameters. Only

if β1 = .. = βr = 0 is correct do these equations have a solution. This insures the

identification.

The number of excess variables (K −N) may be greater than r if enough of them are

orthogonal to the variables in the importance set R. For example, if µj1 = .. = µjr = 0 for

some j ∈ {N + 1, .., K}, then βj can be ignored. From the proof of theorem 1, µji = 0

if E (Xi | X1, ..,XN) = 0. Therefore, for identification less than r of the excess variables

must be correlated with the variables in R.

Proof: Theorem 3 (Identification assuming a true submodel). The result is a

generalization of e.g. Wooldridge (2002), p. 31, property CV.3. For any subset C ⊂
{x1, .., xK},

Ex1,..,xK (V (y | x1, .., xK)) = EC (V (y | C))− Ex1,..,xK (E(y | x1, .., xK)− EC(y | C))2 .

It follows that

1) If E(y | x1, .., xK) = EC(y | C), then E (V (y | x1, .., xK)) = E (V (y | C))
2) If E(y | x1, .., xK) 6= EC(y | C), then E (V (y | x1, .., xK)) < E (V (y | C)) . (10)

Therefore, if A is the smallest subset such that E(y | x1, .., xK) = EA(y | A), then 2)
holds for any set B which does not contain A as a subset.

Proof of Proposition 4 (Extreme Bounds). In the sample, x1 is robust if the

estimates of the coefficient to x1 in all the short regressions are significant and have

the same sign. In the population with no estimation uncertainty, the conditions for
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characterizing a variable as not important if and only if a coefficient to x1 is 0 (γ
[1k]
1 = 0

for some k) or there is a sign change (Sgn(γ[1k]1 ) 6= Sgn(γ
[1m]
1 ) for some k,m).26

In the generic case, (3), γ[1k]1 6= 0 for all k. Hence, x1 is denoted not important

if and only if there is a change of sign of the coefficients over the short regressions.

Under the truth β1 = 0, this is determined by the sign of the terms c0[12]β3;4, c
0
[13]β2;4

and c0[14]β2;3. Under the truth β1 6= 0, the true value of β1 is important. By noting that
the last condition for characterizing the variable as not important can be rewritten as

Min
k

³
γ
[1k]
1

´
< 0 < Max

k

³
γ
[1k]
1

´
, the result of the proposition is achieved by making a

substitution for the γ’s.

In the special case, (4), γ[12]1 = β1. Hence, under the truth β1 = 0, the condition for

not important is satisfied. Under the truth β1 6= 0, none of the γ1’s equal 0.

Proof of Proposition 5 (Sala-i-Martin’s test). In proving this and the following

propositions, the next property of conditional variances is useful

1) If E(y | x1, x2) = E(y | x2), then E (V (y | x1, x2)) = E (V (y | x2))
2) If E(y | x1, x2) 6= E(y | x2), then E (V (y | x1, x2)) < E (V (y | x2)) .

(11)

This is a special case of the result shown in the proof of Theorem 2.

The decision is based on whether CDF (0) =
mX
i=1

wiCDFi(0) is above or below 1− α,

where α resemblances a significance level. The Sala-i-Martin’s test does not have an

obvious analogue in the population, and therefore the population version is derived next

as a probability limit.

Firstly, consider CDF[1k] (0) = Max
³
Φ(bγ[1k]1 /bσ

γ
[1k]
1
), 1− Φ(bγ[1k]1 /bσ

γ
[1k]
1
)
´
. In the pop-

ulation γ is known and there is no uncertainty. If γ[1k]1 6= 0, then CDF[1k](0) = 1. If

γ
[1k]
1 = 0, then both the numerator and the denominator equal 0. Under suitable regular-

ity conditions bγ[1k]1 /bσ
γ
[1k]
1
→p Z, Z ∼ N(0, 1). Since Φ(Z) ∼ U , U ∼ Uniform[0, 1],

P (CDF[1k](0) < a | γ[1k]1 = 0) = P (Max(U, 1− U) < a) = 2a− 1, 0.5 ≤ a ≤ 1. (12)

Secondly, the weight can be rewritten as

wj =
SSE

−N/2
j

mX
i=1

SSE−N/2i

=
1

mX
i=1

³
1
N
SSEi

1
N
SSEj

´−N
2

, (13)

26In terms of the t-statistics and asymptotics, the decision rule can be determined the following way.

The t-statistics used for testing γ
[1k]
1 = 0 is given by bt[1k]1 = bγ[1k]1 /

q
V (bγ[1k]1 ), where ^indicates the

estimator, for instance the OLS estimator. The probability limit of the t-statistics is degenerate at

+∞ or -∞ when γ
[1k]
1 is positive or negative, respectively (consistency of t-test). For γ[1k]1 = 0 the

distribution of the t-statistics is N(0, 1) under regularity conditions. When the sample size approach ∞,
the significance probability should approach 0 and, thus, the probability of accepting approaches 1.
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where SSEj is the sum of squared residuals in regression j. In a regression of y on x1 and

xk
1

N
SSE[1k] →p E

³
(y − (x1γ[1k]1 + xkγ

[1k]
k ))2

´
= Ex1,xk(V (y | x1, xk)) ≡ σ2[1k]

under suitable regularity conditions. The first equality sign comes from the assumption

that all short regressions are linear.

The convergence of the terms
¡
1
N
SSE[1k]/

1
N
SSE[1i]

¢N
2 depends on the probability lim-

its of the numerator and denominator. When they are differentµ 1
N
SSE[1k]

1
N
SSE[1i]

¶N
2

→p

(
∞ if σ[1k] > σ[1i]

0 if σ[1k] < σ[1i]
.

If the probability limits of the numerator and denominator are equal, the ratio raised to

the power of N may converge to a random variable with a non-degenerate distribution.

In order to see this, note that for regular problems where the coefficient estimators are√
N consistent,

N

µ
log(

1

N
SSE[1k])− log(σ2[1k])

¶
→d W[1k],

where W[1k] has a non-degenerate distribution. A similar result holds for the regression

of y on x1 and xi

N

µ
log(

1

N
SSE[1i])− log(σ2[1i])

¶
→d W[1i].

By subtracting these two and taking the exponential the result is:µ 1
N
SSE[1k]

1
N
SSE[1i]

¶N
2

→d
¡
e(W[1k]−W[1i])

¢1/2
=
¡
eW[1k]/[1i]

¢1/2
. (14)

This is a non-degenerate distribution. Note that the case with one regression nested in

the other say k = 0, log
¡
1
N
SSE[10]/

1
N
SSE[1i]

¢N
is the LR test statistic. Under the null

hypothesis (equivalent to σ[1i] = σ[1i]), W[1k]/[1i] is a chi-square with 1 degrees of freedom

distributed random variable.

In the generic example, the weight in the population can be written as:

w[1k] = plim
N→∞

1

1 +
mX

i=2,i6=k

³
1
N
SSE[1k]

1
N
SSE[1i]

´N
2

.

The limit of the summation in the denominator is determined by the size of σ2[1k] relative

to σ2[1i]. Let #{} be the cardinality of a set. Then c = #{k | σ[1k] = min
i
(σ[1i])} is the

number of variances achieving the lowest value. The weight in the population can be

expressed the following way:

w[1k] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if σ[1k] > min

i6=k
(σ[1i])

1 if σ[1k] < min
i6=k
(σ[1i])

W ∗ if σ[1k] = min
i6=k
(σ[1i])

, (15)
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where W ∗ is a random variable determined as a function of random variables from (14).

Therefore, is has a non-degenerate distribution with support on a subset of (0, 1).

The value of CDF (0) can now be determined in the generic case, (3). In the generic

case, γ1k1 6= 0 for all k and, thus, CDF (0) =
mX
i=1

w[1i]1 = 1. Therefore, the variable x1 is

denoted important no matter if β1 = 0 or β1 6= 0 .
In the specific case, (4), γ[1k]1 6= 0 for all k if β1 6= 0. The conclusion follows as

above and x1 is denoted important. If β1 = 0 in the specific case, then γ
[12]
1 = 0 and

CDF (0) = w[12]CDF[12](0) +
4X

i=3

w[1i]CDF[1i](0). According to (15) the conditional vari-

ances determine the weights. In this case σ[12] < σ[1k], k > 2 according to 2) in (10)

since E(V (y | x1, x2, x3, x4)) < E(V (y | x1, xk)) and E(V (y | x1, x2, x3, x4)) = E(V (y

| x1, x2)) = σ[12] (= E(V (y | x2))). Therefore, w[12] = 1. In the population, the signifi-
cance level can be set at α = 0. Thus, using (12) the probability of denoting x1 as not

important is P (CDF (0) < 1 | γ[12]1 = 0) = 1.

Proof of Proposition 6 (BACE). The decision is based on the expected value of γ1
taken over models. The model posterior, (5), can be rewritten as

P (Mj | y) = 1

1 +
C∗X

i=1,i6=j

P (Mi)
P (Mj)

N (kj−ki)/2
¡
1
N
SSEi/

1
N
SSEj

¢−N
2

.

The population analog can be derived as the probability limit for N → ∞. In the
regression of y on xm and xk, 1

N
SSE[mk] →p Exm,xk(V (y | xm, xk)) ≡ σ2[mk], see the

proof of proposition 4. The BACE method includes all short regressions. For notational

convenience, let 0 in the index denotes no variable, for example, [30] is a regression of y

on x3. The model posterior in the population can be written as:

P (M[mk] | y) = plim
N→∞

1

1 +
4X

i=0

4X
j=i+1

P (M[ij])

P (M[mk])
N(k[mk]−k[ij])/2

³
1
N
SSE[ij]

1
N
SSE[mk]

´−N
2

.

The limit properties of
¡
1
N
SSE[ij]/

1
N
SSE[mk]

¢−N
2 can be determined in a similar manner

as done in the proof of proposition 5. Therefore,

µ 1
N
SSE[mk]

1
N
SSE[ij]

¶N
2

→d

⎧⎪⎨⎪⎩
0 if σ[mk] > σ[ij]

∞ if σ[mk] < σ[ij]

W[mk]/[ij] if σ[mk] = σ[ij]

,

whereW[mk]/[ij] is a random variable with a non-degenerate distribution and a support on
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a subset of (0,∞). This implies that

N(k[mk]−k[ij])/2
Ã
σ2[mk]

σ2[ij]

!N
2

→d

N→∞

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞ if σ[mk] > σ[ij]

0 if σ[mk] < σ[ij]

∞ if σ[mk] = σ[ij] and k[mk] > k[ij]

0 if σ[mk] = σ[ij] and k[mk] < k[ij]

W[mk]/[ij] if σ[mk] = σ[ij] and k[mk] = k[ij]

.

Assuming that all models have a positive prior, the model posterior is for m 6= 0 and

k 6= 0

P (M[mk] | y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if σ[mk] > min
i,j (6=m,k)

(σ[ij])

1 if σ[mk] < min
i,j (6=m,k)

(σ[ij])

0 if σ[mk] = min
j
(σ[j0])

Wp if σ[mk] = min
i,j (6=m,k)

(σ[ij]) > min
j
(σ[j0])

,

where Wp is a random variable with a non-degenerate distribution and a support on a

subset of (0, 1). For k = 0

P (M[m0] | y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if σ[m0] > min

i,j (6=m,0)
(σ[ij])

1 if σ[m0] = min
i,j (6=0,0)

(σ[ij]) > min
j 6=m

(σ[j0])

Wp1 if σ[m0] = min
i,j (6=0,0)

(σ[ij]) = min
j 6=m

(σ[j0])

,

where Wp1 is a random variable with a non-degenerate distribution and a support on a

subset of (0, 1).

The value of γ1 which is used for deciding the importance of x1 is determined as the

expected value over models:

γSDM
1 =

X
i,j

γ
[ij]
1 P (M[ij] | y).

The decision rule is:

Not important if γSDM
1 = 0

Important if γSDM
1 6= 0

In the generic case, (3), it is only necessary to consider regressions with two regressors

and the regression with x1. Firstly to show that no regressions with a single regressor

other than x1 have a smaller variance, it is shown that σ[1k] < σ[k0] for k > 1. Without

loss of generality, assume that E(y | x3, x4) = E(y | x4). If E(y | x1, x4) = E(y | x1),
then E(y | x1, x4) 6= E(y | x4) and, thus, σ[14] < σ[40] using (11). The case of E(y |
x1, x4) = E(y | x4), is ruled out by the assumptions of the generic case, (3). Finally, in
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the remaining cases E(y | x1, x4) 6= E(y | x4) and, thus, σ[14] < σ[40] using (11). Secondly,

σ[10] may have the smallest variance. In that case, σ[10] = σ[1k] for all k > 1.

In the generic case it is only known that E(V (y | x1, x2, x3, x4)) = E(V (y | x2, x3, x4))
when β1 = 0. This is not useful in determining which model(s) are selected. There are

four cases. If a short regression with x1 has a unique smallest variance, say, σ[1k], then

γSDM
1 = γ

[1k]
1 6= 0. In the case that none of the short regressions with x1 have the smallest

variance, then γSDM
1 is a linear combination of γ[ij]1 = 0, i, j > 2, and thus γSDM

1 = 0. If

several short regressions with x1 achieve the smallest variance and the regression with x1

does not, a linear combination of the γ[1k]1 ’s with their priors may or may not result in

γSDM
1 = 0. Finally, if the regression with only x1 achieves the smallest variance, then the

posterior probability of that model is 1 since this is the only regression with one variable

that can achieve the smallest variance. Note in this final case, σ[10] = σ[1k], for all k.

In the special case and under the truth β1 = 0, E (V (y | x1, x2, x3, x4)) = E (V (y | x2)).
Thus, only short regressions including regressor x2 will achieve the smallest variance. Since

γ[12]1 = γ[2j]1 = 0 for any j, it can be concluded that γSDM
1 = 0. Under the truth β1 6= 0,

the short regression of y on x1 and x2 has the smallest variance, σ[12]. For that regression,

γ[12]1 6= 0 and, thus, γSDM
1 6= 0.

Proof of Proposition 7 (General-to-specific). The general-to-specific procedure on

a short regression of y on xm and xk eliminates insignificant coefficients. In the population,

the significance of the coefficients is determined by the values of γ[mk]
m and γ

[mk]
k . A

regressor is only excluded if the corresponding coefficient is 0. Therefore, the variances

σ[mk] can be used to determine the amount of reduction since σ[mk] = σ[m0] if and only if

γ
[mk]
k = 0.

In the generic case it was shown in the proof of proposition 4 that the only candidates

for minimum variance are σ[mk], m,k ≥ 1 and σ[10]. Should there be a tie among several

models, the regressor x1 is denoted important if it was included in any of the models in

the tie. Therefore, x1 is denoted important if any σ[1k] achieves the lowest variance.

In the special case, the correctly specified regression is included in the short regressions.

Hence, that regression will have the lowest variance. Under the truth β1 = 0, the smallest

variance is σ[20]. This implies that σ[2k] = σ[20] for all k and σ[ij] > σ[20] for i, j 6= 2. The
only regression with the smallest variance and x1 is the regression of y on x1 and x2, but

γ
[12]
1 = 0. Under the truth β1 6= 0, the variance is uniquely minimized by σ[12]. In this

case, γ[12]1 6= 0.

Proof: Proposition 8 (Minimum t-statistics over models test).
The result follows from noting that the test will accept if any of the coefficients γ[1k]1

equals 0. In the generic case γ[1k]1 6= 0 for k = 2, .., K and γ[10]1 6= 0. In the special case,
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γ
[1k]
1 6= 0, k = 3, ..,K and γ

[10]
1 6= 0, but γ[12]1 = 0 if β1 = 0 and γ

[12]
1 6= 0 if β1 6= 0. Thus,

the test provides the correct answer.

Proof: Proposition 9 (BIC). The choice of model can be determined by the differences
in BIC. A model i is chosen over a model j if and only if

N(log
1

N
SSEi − log 1

N
SSEj) + log (N) (ki − kj) < 0

for all i, j 6= m, k.

The population equivalent or probability limit of 1
N
SSE[mk] is σ2[mk]. In case σ[mk]

equals σ[ij], the result in the proof of proposition 5 is applicable:

N(log
1

N
SSE[mk] − log 1

N
SSE[ij])→d eW[mk]/[ij],

where W[mk]/[ij] has a non-degenerate distribution. In the other cases where the vari-

ances are different, the term with the variances dominates the term with the number of

parameters.

Using this result, the differences in BIC values in the population are:

BIC[mk] −BIC[ij] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞ if σ[mk] > σ[ij]

−∞ if σ[mk] < σ[ij]

∞ if σ[mk] = σ[ij] and k[mk] > k[ij]

−∞ if σ[mk] = σ[ij] and k[mk] < k[ij]

eW[mk]/[ij] if σ[mk] = σ[ij] and k[mk] = k[ij]

.

Proof: Proposition 10 (AIC and AICC). The choice of model can be determined
by the differences in AIC. A model i is chosen over a model j if and only if

N(log
1

N
SSEi − log 1

N
SSEj) + 2(ki − kj) < 0

for all i, j 6= m, k.

The population equivalent or probability limit of 1
N
SSE[mk] is σ2[mk]. In case σ[mk]

equals σ[ij], the result in the proof of proposition 3 can be applied to give:

N(log
1

N
SSE[mk] − log 1

N
SSE[ij])→d eW[mk]/[ij],

where W[mk]/[ij] has a non-degenerate distribution. In the other cases where the vari-

ances are different, the term with the variances dominates the term with the number of

parameters.

31



Using this result, the differences in AIC values in the population are:

AIC[mk] −AIC[ij] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞ if σ[mk] > σ[ij]

−∞ if σ[mk] < σ[ij]

eW[mk]/[ij] + 2(k[mk] − k[ij]) if σ[mk] = σ[ij] and k[mk] > k[ij]

eW[mk]/[ij] + 2(k[mk] − k[ij]) if σ[mk] = σ[ij] and k[mk] < k[ij]

eW[mk]/[ij] if σ[mk] = σ[ij] and k[mk] = k[ij]

.

The corrected AIC is the same as AIC in the population since the correction term is

0 in the population.

Proof: Theorem 11 (Importance test). Assume that the regressors have mean 0.

Let XI be the regressors in Im. Then the coefficients in the linear regression of xj(/∈ Im)

on XI are

ϕ = (E(XIX
0
I))

−1
E(XIxj).

Assuming that E(XIX
0
I) has full rank, ϕ = 0 if and only if E(XIxj) = 0. That is,

E(xj | XI) = E(xj) for xj ∈ (Im)c if and only if corr(xj, xi) = 0 for all xi ∈ Im.
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