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Abstract

This paper uses revealed preference inequalities to provide tight nonparametric bounds
on consumer responses to price changes. Price responses are allowed to vary nonpara-
metrically across the income distribution by exploiting micro data on consumer expen-
ditures and incomes over a finite set of discrete relative price changes. This is achieved
by combining the theory of revealed preference with the semiparametric estimation of
consumer expansion paths (Engel curves). We label these expansion path based bounds
as E-bounds. Deviations from revealed preference restrictions are measured by prefer-
ence perturbations which are shown to usefully characterise taste change.
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1 Introduction

A common situation in applied economics is that we have a set of observations on agents

in a fixed environment with particular realised economic variables and we wish to predict

their behaviour in the same environment but with new values for the economic variables.

For example, we observe demands at particular sets of prices and total expenditures and

we wish to predict demands at a new set of prices and total expenditure. With no other

structure, the observed behaviour is totally uninformative about the new situation and literally

anything that is logically possible is an admissible prediction. One way around this is to use

a parametric model and interpolate (or extrapolate). An alternative is adopt a theoretical

position on what generates the observed behaviour and to use the theory and the previous

observations to make predictions. Usually this leads to bounds on predicted behaviour rather

than point predictions. Then the relevant questions become: how plausible is the theory and

how tight are the bounds? In this paper we derive bounds on predicted demand behaviour

from observations on expansions paths for a finite set of prices and the imposition of the

basic (Slutsky or revealed preference) integrability conditions from economic theory. The

plausibility of the latter derives from them being, effectively, the observable restrictions from

assuming transitivity which is the bedrock of consumer theory in economics. Moreover, the

theory implies testable restrictions so it is potentially rejectable. We develop methods to

give the tightest possible bounds on demands given observed expansion paths and the basic

(nonparametric) theory, if the latter is not rejected by the former. We find that the data and

the theory give surprisingly tight bounds if we consider new situations that are within the

span of the observed data.

To introduce our methodology, imagine facing a set of individual consumers with a se-

quence of relative prices and asking them to choose their individual demands, given some

overall budget that each can expend. If they behave according to the axioms of revealed pref-

erence their vector of demands at each relative price will satisfy certain well known inequalities

(see Afriat (1973) and Varian (1982)). If, for any individual, these inequalities are violated

then that consumer can be deemed to have failed to behave according to the optimisation

rules of revealed preference. This is a very simple and potentially powerful experimental set-

ting for assessing the applicability RP theory. If, as in an experiment, one can choose the

budget at which individuals face each price vector then Proposition 1 of Blundell, Browning

and Crawford (2003) shows that there is a unique sequence of such budgets, corresponding to

the sequence of relative prices, which maximises the chance of finding such a violation. This

is the Sequential Maximum Power path. If experimental data are not available then the Blun-

dell, Browning and Crawford study also shows how to use expansion paths (Engel curves) to

mimic the experimental choice of this optimal sequence. Thus providing a powerful method
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of detecting RP violations in observational as well as experimental studies. In this paper we

show that these expansion paths, together with revealed preference theory, can also be used

to provide tight bounds on demand responses for observational data of the type collected in

consumer expenditure surveys.

To construct bounds we extend the analysis introduced in Varian (1983) by considering

expansion paths for given relative prices rather than demands at some point. We label these

‘expansion path based bounds’ as E-bounds. The advantages of the E-bounds method devel-

oped here are that it can describe the complete demand response to a relative price change

for any point in the income distribution without recourse to parametric models of consumer

behaviour and it gives the tightest possible bounds, given the data and the theory. The

measurement of such price responses are at the centre of applied welfare economics, they

are a vital ingredient of tax policy reform analysis and is also key to the measurement of

market power in modern empirical industrial economics. Robust measurement is therefore a

prerequisite of reliable analysis in these fields of applied microeconomics.

In our empirical analysis the relative price variation occurs over time and we consider

consumer behaviour as it is recorded in standard repeated consumer expenditure surveys

such as the US Consumers Expenditure Survey and the UK Family Expenditure Survey. The

later is the source for our empirical analysis. We observe samples of consumers, each of a

particular household type, at specific points in time. Assuming consumers are price-takers,

we can recover expansion paths by estimating Engel curves at each point in time. We present

E-bounds for own and cross price responses using these expansion paths.

Since the expansion paths are estimated, albeit by nonparametric techniques, they are

subject to sampling variation. Consequently, violations of the revealed preference conditions

may simply reflect estimation error rather than rejections by the individuals in the population

under study. We allow for sampling variation in the estimated expansion paths and consider

whether perturbations to preferences can be found that allow revealed preference theory to

be maintained while lying within standard confidence intervals. For our data we find that

preferences are consistent with RP theory over sequences of time periods but rejections do

occur. Where such rejections occur the estimated perturbations provide a natural metric

against which to measure taste change.

The E-bounds on demand responses we construct are found to be informative. The ad-

vantage of adding in more relative price variation is carefully explored, both theoretically and

empirically. We show that it is the combination of the new prices and the quantity choice

implied by the new expansion path that determines whether the new observation is informa-

tive. We discuss precisely how such information tightens the bounds. Empirically we show

the value of allowing for sampling variation and of introducing perturbations. Bounds on de-

mands are improved and we are also able to detect slow changes in tastes. These bounds on
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demand responses and the changes in tastes are found to differ across the income distribution.

Freeing-up the variation in relative price responses across the income distribution is one of

the key contributions of this research. Historically parametric specifications in the analysis of

consumer behavior have been based on the Working-Leser or Piglog form of preferences that

underlie the popular Almost Ideal and Translog demand models of Deaton and Muellbauer

(1980) and Jorgenson, Lau and Stoker (1982). Even though more recent empirical studies

have suggested further nonlinear income terms, (see, for example, Hausman, Newey, Ichimura

and Powell (1995), Lewbel (1991), Blundell, Pashardes and Weber (1993), Banks, Blundell

and Lewbel (1998)), responses to relative prices at different incomes for these parametric

forms remain unnecessarily constrained.

The remainder of the paper is as follows: In section 2 we examine bounds on demand

responses and develop a method for generating the best bounds. Section 3 introduces the idea

of preference perturbations as a way of imposing the RP inequalities and for characterising

changing tastes. In section Section 4 we apply these ideas to describe the demand responses for

three broad commodities using the individual household level data in the Family Expenditure

Survey. In section 5 we go on to allow for perturbations in preferences and taste change.

Section 6 concludes.

2 Expansion Path Bounds on Demands

2.1 Defining E-bounds.

We shall be concerned with predicting demands given particular budgets. To this end, we

assume that every agent responds to a given budget (p, x), where p is a J-vector of prices

and x is total expenditure, with a unique, positive demand J-vector:

Assumption 1. Uniqueness of demands: for each agent there exists a set of demand
functions q(p, x) : RJ+1

++ → RJ
++ which satisfy adding-up: p

0q(p, x) = x for all prices p and

total outlays x.

For a given price vector pt we denote the corresponding J-valued function of x as qt (x) (with

qjt (x) for good j) and refer to this vector of Engel curves as an expansion path for the given

prices. We shall also have need of the following assumption:

Assumption 2. Weak normality: if x > x0 then qjt (x) ≥ qjt (x
0) for all j and all pt.

This rules out inferior goods. Adding up and weak normality imply that at least one of the

inequalities in this assumption is strict and that expansion paths are continuous.

The question we address is: given a budget {p0, x0} and a set of observed prices and
expansion paths {pt,qt (x)}t=1,..T , what demands are consistent with these observed demands
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and utility maximisation? Since we are working with a finite set of observed prices, we

characterise consistency with utility maximisation in terms of revealed preference axioms.

Since we are requiring that demands be single valued (and not correspondences) we work with

the Strong Axiom of Revealed Preference (SARP) rather than the more usual Generalised

Axiom (GARP).1 To state SARP we need to define what we mean by revealed preference.

If at prices pt the agent chooses qt and we have p0tqt ≥ p0tqs then we say that qt is directly
revealed weakly preferred to qs: qtR0qs If we have a chain qtR0qu, quR0qv, ...qwR0qs then

we say that qt is revealed weakly preferred to qs: qtRqs. Given this, SARP is defined by the

following:

Definition 1 SARP: qtRqs and qt 6= qs implies not qsR0qt for all s, t.

This definition does not rule that we might have the same demand for two different price

vectors.

The basic idea behind our analysis is shown in figure 1 for a two good, two expansion path

example. In this example, the two expansion paths are shown as q1 (x) and q2 (x). These

intersect the new budget line {p0, x0} at q1 (x̃1) and q2 (x̃2) respectively. We term these

points intersection demands; the two assumptions on demand above ensure that a unique

intersection demand exists for any {p0, x0} and qt (x). By design we have that any point
q0 satisfying p00q0 = x0 is weakly directly revealed preferred to all intersection points. We

also show the two observed budget lines for the intersection demands (labelled {p1, x1} and
{p2, x2} respectively). As drawn, the two intersection demands satisfy SARP since neither is
revealed weakly preferred to the other. The final step is to display the set of points on the new

budget line {p0, x0} that are consistent with these intersection points and with SARP. This
is shown as the interval labelled S (p0, x0); this set includes the intersection demands and,

for two goods, it is closed. We term this set the support set for {p0, x0}. Any point on the
new budget that is in the support set S (p0, x0) satisfies SARP for the intersection demands

and any point outside fails. For example, a point q0 within the interior of the support set

is weakly revealed preferred to the intersection demands, it is distinct from them but the

intersection demands are not directly weakly preferred to q0. Conversely, consider a point

q0 that is not in S (p0, x0). In this case SARP fails immediately since q1 (x̃1)R0q0 (which

implies q1 (x̃1)Rq0), q1 (x̃1) 6= q0 and q0R0q1 (x̃1). Finally, the intersection points satisfy

SARP and hence are in the support set.

1Varian (1982) provides a discussion of the relationship between SARP and GARP; in brief, SARP requires
single valued demand curves, whilst GARP allows for set-valued demand correspondences (so that SARP
implies GARP).
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Figure 1. Defining the support set.
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Given figure 1 and the definition of intersection demands qt (x̃t) by p00qt (x̃t) = x0, it

is straightforward to define the support set algebraically.2 Given a budget {p0, x0} the set
of points that are consistent with observed expansion paths {pt;qt (x̃t)}t=1,...,T and utility
maximisation is given by the support set:

S (p0, x0) =

½
q0 :

q0 ≥ 0, p00q0 = x0
{p0,pt;q0,qt (x̃t)}t=1,...,T satisfy SARP

¾
This differs from the support set definition given in Varian (1982) in two major respects.

The Varian definition was based on T observed demand bundles whereas the present definition

makes use of T expansion paths. Furthermore this support set is defined using expansion paths

evaluated at specific budget levels; the intersection demands. We refer to the intervals defined

by expansion paths in this way as E-bounds - expansion curve based demand bounds. These

bounds on demands for the new budget are best in the sense that tighter bounds cannot be

found without either observing more expansion paths, imposing some additional theoretical

structure over and above utility maximisation (such as quasi-homotheticity or separability)

or assuming a functional form for preferences. This is set out in the following proposition

(the proof is given in the Appendix):

Proposition 1 If demands are weakly normal S (p0, x0) ⊆ S0 (p0, x0) where S0 (p0, x0) =

2In all that follows we assume that the observed prices {p1, ...,pT } are relatively distinct in the sense that
pt 6= λps for all s, t and any λ > 0.
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{q0 : p00q0 = x0, q0 ≥ 0 and {p0,pt;q0,qt (xt)}t=1,...,T satisfies
SARP, and xt 6= x̃t for some t}.

Thus there do not exist alternative bounds (derived from the same data) which are tighter

than the E-bounds. The E-bounds therefore make maximal use of the data and the basic

nonparametric theory in predicting in a new situation. The properties of the support set are

given in the following proposition:

Proposition 2 (1) S (p0, x0) is non-empty if and only if the data set {pt, qt (x̃t)t=1,...T}
satisfies SARP. (2) If the data set {pt,qt (x̃t)}t=1...T satisfies SARP and p0 = pt for some t
then S (p0, x0) is the singleton {qt (x̃t)}. (3) S (p0, x0) is convex.

The first statement establishes that there are some predicted demands for {p0, x0} if and
only if the intersection demands satisfy SARP. The second statement shows that the support

set is a single point if the new price vector is one that has been observed. Our decision to

consider SARP rather than GARP is largely to give this property; for GARP we would have

an interval prediction even for an observed price. The convexity is useful when it comes to

solving numerically for E-bounds. Note that, contrary to what figure 1 suggests, with more

than two goods the support set is not necessarily closed.

The empirical analysis below requires that we compute E-bounds for given data but the

definition of S (p0, x0) is not particularly suited to empirical implementation as it stands. The

second set we define gives a set of conditions that allow us to do this in a simple way using

linear programming (LP) techniques. If {pt,qt (x̃t)}t=1,...,T satisfies SARP we define:

SLP (p0, x0) =

½
q0 :

q0 ≥ 0, p00q0 = x0,
p0tq0 ≥ p0tqt (x̃t) , t = 1, 2...T

¾
(1)

The set SLP is closed and convex. We now show that these this set is the same as the support

set, except (perhaps) on the boundary of the latter.3 If we denote the closure of S by cl (S)

then we have:

Proposition 3 (1) cl (S (p0, x0)) = SLP (p0, x0). (2) SLP (p0, x0) \S (p0, x0) = {q ∈ SLP (p0, x0) :

p0tq = x̃t and q 6= qt (x̃t) for some t}

As we have seen, for two goods S (p0, x0) is closed so that it coincides with SLP (p0, x0) but for

more than two goods the set on the right hand side of the second statement is non-empty (so

long as S (p0, x0) is non-empty). SLP (p0, x0) gives us a feasible algorithm for displaying E-

bounds. We first define intersection demands and test for SARP on the intersection demands.

If the intersection demands pass SARP, we can then display bounds for each good. For

example, to find the supremum predicted value for good j we maximise qj0 subject to the

constraints in (1). This is a standard linear programming problem.
3If we had considered GARP rather than SARP then we would have S = SLP .
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2.2 When is a new observation informative?

We turn now to a consideration of when and howmore observations on expansion paths lead to

an improvement in our bounds. We consider the situation in which we have T observed prices

{p1,p2, ...pT}. Take a hypothetical budget {p0, x0} and suppose that the corresponding
intersection demands satisfy SARP; denote the support set by ST (p0, x0). Now add one

more observed price and expansion path, {pT+1,qT+1 (x)}, find the corresponding intersection
demand qT+1 (x̃T+1) and compute the new support set ST+1 (p0, x0). Trivially the support

set cannot increase; that is ST (p0, x0) ⊇ ST+1 (p0, x0).4 For some pT+1 this will be a strict

inclusion (ST (p0, x0) ⊃ ST+1 (p0, x0)). We ask when the new observation will lead to a strict

shrinkage of the support set. The first result is trivial but is worth formally recording.

Proposition 4 If pT+1 = p0 6= pt for t = 1, ...T , ST (p0, x0) is non-empty and qt (x̃t) 6=
qs (x̃s) for some t and s then ST (p0, x0) ⊃ ST+1 (p0, x0).

This shows that if the newly observed price just happens to coincide with p0 then the new

support set will be smaller. The proof of this proposition, along with part 2 of proposition 2,

establishes that if the intersection points are distinct (which they will almost surely be) then

we only point identify a prediction if the new price p0 is equal to one of the observed prices.

More interesting is the case in which pT 6= p0. To present the characterisation for this, we
need one more definition:

Definition 2 The budget plane {pT+1, x̃T+1} intersects with ST (p0, x0) if there exists some

q0 ∈ ST (p0, x0) such that p0T+1q0 = x̃T+1.

We now present necessary and sufficient conditions for strict shrinkage of the support set.

Proposition 5 ST+1 (p0, x0) ⊂ ST (p0, x0) iff the new budget plane {pT+1, x̃T+1} intersects
with ST (p0, x0).

The following three good example serves to illustrate this proposition and to emphasise the

point that, if the intersection condition does not hold then a new observation will be unin-

formative regardless of how close the new price vector is to the hypothetical price vector.

Consider the following data for three goods and three periods:

{p1,p2,p3} =

⎡⎣ 0.64 0.19 0.90
0.26 0.77 0.89
1 1 1

⎤⎦
{q1,q2,q3} =

⎡⎣ 1.895 1.768 0.399
1.571 1.141 1.901
1.267 1.545 1.850

⎤⎦ (2)

4This includes the case in which the original T observations satisfy SARP (so that ST is non-empty) but
the expanded set does not satisfy SARP, in which case ST+1 is the empty set.
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and take the hypothetical budget given by (p10, p
2
0, p

3
0) = (0.5, 0.5, 1) and x0 = 3.5 Suppose

now that we observe a new price p4 with an intersection demand:

q4 = (1, 1, 2)
0 (3)

We ask: what values of p4 lead to a strict contraction of the support set? With the values

given it is easy to show that any:

p4 = p0 −

⎡⎣ ε
ε
0

⎤⎦ (4)

does not give a strict contraction for any ε > 0. Thus we can take an new price vector that

is arbitrarily close to the hypothetical prices but does not lead to an improvement in the

bounds. Conversely, any price vector:

p4 = p0 +

⎡⎣ 0ε
0

⎤⎦ (5)

gives a strict contraction for any ε > 0, even if ε is large. That is, new prices that are far

from the hypothetical prices may give a strict contraction.

3 Changing Tastes and Revealed Preference Violations

The discussion so far has concentrated on the case in which there are no SARP violations

at the intersection demands. Now we consider sampling variation in the estimation of the

expansion paths. This will allow us to detect significant deviations from revealed preference.

Moreover, where rejections occur, our approach also allows us to characterise changing tastes.

The starting point is the suggestion by Varian (1985) for testing optimising behaviour in

the presence of measurement errors in demands. However, here the measurement error is

replaced by estimation error via the stochastic nature of the estimated expansion paths. The

significance, or not, of violations will depend therefore on the precision of the estimated Engel

curves at the specific income levels corresponding to the intersection points.

The idea is to allow local perturbations to preferences that describe the degree of taste

change through a shift in marginal utility. This is achieved by perturbing the intersection

demands so that they conform to SARP and then to recover the bounds on demand responses

under this restriction. We can then construct a significance test for these perturbations. Since

this can be implemented at any point in the income distribution, if rejections occur, we can

assess the direction of taste change and how tastes change for rich and poor. Slowly changing

5Note that values for the quantities have been rounded and do not exactly satisfy the intersection demand
condition p00qt = x0.
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tastes would be reflected by a systematic evolution of these perturbations. Again these could

differ across individuals with different incomes.

Let Σ (p) denote the set of all quantity datasets which are SARP-consistent with a given

price dataset {pt}t=1,...,T

Σ (p) = {{qt}t=1,...,T : {pt,qt}t=1,...,T satisfies SARP}

Note firstly that for any prices p, Σ (p) is not empty since, for example setting qjt = 1 for all

j, t will satisfy SARP. Secondly Σ (p) will generally be non-convex6.If the intersection demand

data violate SARP then

{eqt (ext)}t=1,...,T /∈ Σ (p)

Suppose we now define the perturbed intersection demands

qj∗t = ejteqjt (ext) (6)

where ejt is a (multiplicative) perturbation to demand for the j’th good in the t’th period.

The ejt can be interpreted as a tilting of the marginal rate of substitution Uj/Ul. For example

the marginal conditions between good j and good l are tilted by ejt/e
l
t and become

Uj

Ul

ejt
elt
=

pj
pl
.

In order to estimate the perturbed intersection demands we note that

ejt − 1 ≡
qj∗t − eqjt (ext)eqjt (ext) (7)

and solve for the ejt directly in the following nonlinear, constrained minimum distance problem

min
{ejt}j=1,...,Jt=1,...,T

{L
³©

ejt
ªj=1,...,J
t=1,...,T

´
=

j=JX
j=1

i=JX
i=1

t=TX
t=1

¡
ejt − 1

¢ ¡
Ω−1t

¢ij ¡
eit − 1

¢
} (8)

subject to

ejt = qj∗t /eqjt (ext)
{q∗t}t=1,...,T ∈ Σ

qj∗t ≥ 0

p00q
∗
t = x0 ∀ t.

6For example let

{p1,p2}=
½∙

8
3

¸ ∙
7
2

¸¾
, {q1,q2} =

½∙
5
10

¸ ∙
4
6

¸¾
, {bq1, bq2} = ½∙ 26

¸ ∙
5
3

¸¾
then {pt,qt}t=1,2 and {pt, bqt}t=1,2 both satisfy SARP and hence {q}t=1,2 ∈ Σ (p) and {bqt}t=1,2 ∈ Σ (p).
However, if we set qt = 1

2qt +
¡
1− 1

2

¢ bqt then {pt,qt}t=1,2 violates SARP and {qt}t=1,2 /∈ Σ (p) .
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This finds the nearest set of nonnegative intersection demands (defined by the distance func-

tion (8)) which are consistent with SARP. The weights
¡
Ω−1t

¢i,j
are the i, j 0th elements of

the inverse of the perturbations in (7). If the intersection demands satisfy SARP then the

objective function will be minimised at zero. The support set can then be defined using the

perturbed intersection demands.

The distance function evaluated at optimal perturbation values is a test statistic for the

null hypothesis of the revealed preference conditions. We construct a bootstrap confidence

interval for this statistic.

4 Empirical Analysis

4.1 Data

In this analysis we take three broad consumption goods: food, other nondurables, and services

and examine the E-bounds on demand responses. For this we draw on 25 years of British

Family Expenditure Surveys from 1975 to 1999. In many contexts these three consumption

goods represent an important grouping as the price responsiveness of food relative to services

and to other non-durables is of particular interest. For example, the price responsiveness at

different income levels is a key parameter in the indirect tax debate. Although food is largely

free of value added tax (VAT) in the UK, the discussions over the harmonisation of indirect

tax rates across Europe and the implications of a flat expenditure tax raised uniformly across

all consumption items requires a good understanding of food demand responses across the

income distribution. It is also important in general discussions of cost of living changes across

the income distribution. Relative food prices saw some abrupt rises as the tariff structure and

food import quotas were changed in Europe early in the period under study. To study further

disaggregations of goods with any precision some form of separability has to be assumed.

Although separability restrictions in revealed preference are of interest they are beyond the

scope of this study and here we keep to this leading three good example.

The Family Expenditure Survey is a repeated cross-section survey consisting of around

7,000 households in each year. From these data we draw a relatively homogeneous sub-sample

of couples with children who own a car. This gives us between 1,421 and 1,906 observations per

year and 40,731 observations over the entire period. We use total spending on non-durables

to define our total expenditure variable. Figure 2 shows the mean budget shares for these

goods over the period7. As can be seen, the mean budget share for food exhibits a large fall

whereas services are rising steadily over our data period.

Annual price indices for these commodities are taken from the annual Retail Prices Index.

7Precise details of the categories are available from the authors.
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Nondurables are treated as the numeraire good and prices are normalised so that the price of

non-durables is always one and so that the mean of each of the prices over the period 1975 to

1999 is also one for each good. Figure 3 shows the price data for the three commodity groups

over the period under analysis. We see a steadily rising price for services relative to food and

non-durables.

Figure 2. Mean budget shares, 1975 to 1999
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Figure 3. Price indices, 1975 to 1999
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4.2 Estimating Expansion Paths

Consumers observed in the same time period and location are assumed to face the same rel-

ative prices. Under this assumption, Engel curves for each location and period correspond

to expansion paths for each price regime. Blundell and Duncan (1998) have shown the at-

traction of nonparametric Engel curves when trying to capture the shape of income effects on

consumer behaviour across a wide range of the income distribution. As in Blundell, Brown-

ing and Crawford (2003) we adopt a shape invariant specification for pooling over different

demographic types of households. This semiparametric specification for Engel curves turns

out to be a parsimonious, yet accurate, description of behaviour. We also account for the

endogeneity of total expenditure using the control function approach (see Blundell and Powell

(2003)).8

Let di represent a (D × 1) vector of household composition variables relating to household
i. Our specification takes the form

wi
j = gj (lnxi − φ(d0iα)) + d

0
iγj + εij (9)

where wi
j is the expenditure share for household i on good j. To account for the endogeneity

of lnx we specify

lnxi = z
0
iπ + vi (10)

where z are a set of variables which include the demographic variables di and earned income

as an excluded instrument. The control function approach assumes:

E(εij| lnxi,di, vi) = 0 (11)

so that semiparametric regression using an augmented equation (9) that includes vi will

produce consistent estimates of gj, α and γ (see Newey, Powell and Vella (1999)).

4.3 Empirical E-Bounds on Demand Responses

The substantial relative price variation seen in figure 3 can be also be seen in the dated points

in figure 4. The dotted figure shows the convex hull of observed relative prices (the other

features shown in the figure will be explained below). The relative prices show a dramatic

change in the mid to late-1970’s. To map out the E-bounds we consider variations in relative

prices around a central p00 = [1, 1, 1]
0 . In particular, we choose a sequence in which the price

of food varies around this central value by ±10% in 41 steps of half of one percent. That is we
vary the p0 vector from p0 = [0.9, 1, 1]

0 to p0 = [1.1, 1, 1]
0. The line of crosses in figure 4 shows

8This is analysed in Blundell, Chen and Kristensen (2003) and compared to a the fully nonparametric
instrument variables (NPIV) case. It is found to account quite well for the endogeneity of total expenditure
in comparison to a full NPIV approach.
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this particular sequence of the p0 vector as we vary the price of food, holding other prices

constant. Note that this passes through a dense part of the relative price distribution where

we might expect to be able to produce quite informative bounds of likely demand responses.

The path also starts and finishes in areas of very sparse price information where, without

extrapolation, we would not expect to have much to say about likely demand responses.

Figure 4. Scatter plot of the relative price data: 1975 to 1999

Our first step is to estimate the E-Bounds on demand responses to own price changes for

food at some base level expenditure. This base level is set to be the median of the sample

distribution of total expenditure (= $96.68). To construct the E-bounds at each new price

vector we first check the revealed preference conditions for the data {pt,qt (x̃t)}. For the first
bounds we present, we only include a subset of observations that do not violate RP, ignoring

sampling variation in the expansion paths used to construct qt (x̃t). Based on this sample we

construct support sets for each of the 41 grid points for the food prices.

In figures 5a to 5c we present the resulting E-bounds for own and cross price responses

using the reduced set of observations. As can be seen from a comparison of Figures 4 and

5, the bounds on the demand curve are particularly tight when the p0 vector is in the dense

part of the observed price data. Outside the convex hull of the data the E-Bounds widen and

we cannot rule out extreme responses (such as households not buying food if the price rises

by more than 5%). These figures show the power of E-Bounds. Through the use of revealed
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preference inequalities and without appealing to parametric models or extrapolation we have

been able to construct tight bounds on own and cross price elasticities.

Figure 5a. Own price demand bounds for Food
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Figure 5b. Cross-price demand bounds for Non-durable
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Figure 5c. Cross-price demand bounds for Services
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5 Revealed Preference Restrictions and Taste Change

5.1 Constrained E-Bounds

By perturbing preferences we can impose the RP restrictions across all the intersection de-

mands used to construct the E-Bounds. Here we allow for perturbations that minimise the

distance function (8) developed in section 3. At each {p0, x0} this imposes the revealed pref-
erence conditions using (8) and weighting the minimum distance procedure by the pointwise

variance covariance matrix of the estimated expansion paths (evaluated at the intersection

demands values).

The resulting demand curve bounds are illustrated in figure 6 along with, for comparison,

the bounds recovered by dropping SARP rejections in figure 5a (the dashed lines). As can be

seen, there is an improvement/narrowing of the bounds when all of the observations are used

and constrained to be revealed preference consistent, compared to the case in which some

data points are just dropped. Nevertheless, the improvement is quite small in the central

part of the demand curve where the existing bounds were already fairly tight. Note also that

there is no reason for the new bounds to lie everywhere inside the old bounds. The perturbed

intersection demands can lead to the bounds widening at some relative price points. The

general pattern of the bounds are similar however, with typically wider bounds the further

the new price vector is from the most dense part of the observed price distribution.
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Figure 6. Constrained E-Bounds for Food
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5.2 Preference Perturbations and Taste Change

In figure 7 we present a graphical display of the perturbation terms ejt . Each sub-panel records

the perturbation to each good for each observation. Since there are 25 intersection demands

(one on each annual expansion path) there are 25 adjustments. Also shown are the pointwise

95% bootstrapped confidence intervals at 1975, 1977, 1979 and 1981. These show the signifi-

cance of the deviation from RP conditions in the early period. That is there does not appear

to be a stable set of preferences that represent the consumer choices in this data for the whole

period.

Examining the pattern of the perturbations we see that rather than being random, as

might be expected if the violations were the result of classical measurement error or truly

random behaviour, they appear to follow a reasonably systematic pattern. Slowly changing

tastes would be reflected by a systematic evolution of these perturbations. The perturbation

to food for example is positive (and significant) to begin with requiring an upward adjustment

of around 15% to begin with and then indicate a systematic shift in preferences away from

food in the early period of the data. The adjustment gets progressively smaller until by

1980 almost no adjustment at all is needed (the multiplicative perturbation is close to one).

The adjustments to non-durables goods are also trending, exhibiting a steady increase over

time. For all goods the adjustments is greatest (and significant) for the earlier (pre 1980)

observations.
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Figure 7. RP Perturbations
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Figure 8. The Perturbations to Food Demands by Budget
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Interestingly this broad pattern of perturbations is maintained across different percentiles

in the income (total budget) distribution. Figure 8 shows the relative perturbations for food

at the same new price vector for three different budgets: the 25th and 75th percentiles of the

empirical distribution as well as the median (already illustrated in the top panel of figure 7).

In all cases there is a drift of relative preferences away from food in the early period. More

so for those on higher incomes. This could also be reflecting a relative increase in the quality

of other goods over this period.

5.3 Improving E-Bounds

Given the information on the pattern and significance of the perturbations we might expect

that, taken together, the period from 1980 would not strongly reject the RP conditions. To

assess this we construct a general test for the RP restrictions over this period using the min-

imised distance function (8).We compute a bootstrap CV for this statistic and find that this

corresponds to a p-value of 0.16, confirming that the post 1980 period does not reject the RP

conditions (see the Appendix for details). Given the consistency with RP, we can reasonably

use the post 1980 data to recompute the bounds on the demand curve. This is presented in

figure 9. Using fewer observations does widen the bounds as expected, particularly over the

price range 0.96 to 0.98 however elsewhere the bounds are very close showing that restricting

the data to a shorter period of revealed preference consistent consecutive demand observations

does not cause the bounds to deteriorate greatly over the ±21
2
% range.

Figure 9. Demand Bounds for Food: 80 to 99 and 75 to 99
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5.4 Price Responses Across the Income Distribution

The demand bounds on price responses that we have estimated so far have been constructed

at the median income (expenditure). But we might expect demand responses to vary with

income levels. Figure 10 shows how the demand bounds vary according to the total budget.

Three sets of bounds are calculated corresponding to the 25th, 50th and 75th percentiles of

the x0 distribution (the solid lines for the median are identical to the dashed lines in the

preceding figure over this range).

We note that the bounds are wider as the total budget increases; this is a result of the

budget expansion paths “spreading out” as the budgets increase. At low expenditure levels

the bounds are very tight indeed. It will be clear from this figure that there is not a single

elasticity that summarises price response behaviour. Indeed the elasticity appears to be highly

variable both along each demand curve and also across income levels. However, we can give

an indication of the range of price responses. For example, if we consider a 1% drop in the

relative price of food from the baseline 1985 price vector, then for the 25 percentile group the

corresponding elasticity is −0.51 at the midpoint of the bounds. At the median income the
response elasticity is −1.01 and at the 75 percentile it is −1.52. Indeed, at median income
the elasticity measured this way is generally greater than unity and even higher at the 75

percentile. However the range is also large with a range of 0.0 to −1.02 at the 25 percentile
and 0.0 to −3.05 at the 75 percentile.

Figure 10. Demand Bounds for Food By Budget Percentile (log-log)
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Elasticities in excess of unity for food may be unusual but it should be noted that we have

included food consumed outside the home in our broad definition of food. Moreover, the range

of price responsiveness highlights the local nature of our nonparametric analysis. The price

responsiveness are local to both income and relative prices. Unlike in the Stone-Geary model,

for example, there is no reason why price elasticities should not be increasing or decreasing

with income. For some broad aggregates like food a price elasticity which is increasing with

income would seem sensible while for more disaggregated food items - rice and potatoes, for

example - the reverse could equally well be true.

6 Summary and Conclusions

The aim of this paper has been to bound demands at a new set of relative prices and total

expenditure using revealed preference inequalities alone. We have shown how to derive bounds

on predicted demand behaviour from observations on expansions paths for a finite set of prices

and the imposition of the basic (Slutsky or revealed preference) integrability conditions from

economic theory. We find that these E-bounds give surprisingly tight bounds especially if we

consider new situations that are within the span of the observed data. Our approach allows

allow price responses to vary nonparametrically across the income distribution by exploiting

micro data on consumer expenditures and incomes over a finite set of discrete relative price

changes. We have introduced the concept of preference perturbations, local to each income

percentile, which characterise the degree of congruence with RP conditions and provide a

useful metric for describing taste change.
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Appendix: Proofs of Propositions
Proof of Proposition 1.
Let S0 (p0, x0) denote the support set

S0 (p0, x0) =

⎧⎨⎩q0 :
p00q0 = x0, q0 ≥ 0 and

{p0,pt;q0,qt (x)}t=1,...,T satisfies SARP
and xt 6= x̃t for some t

⎫⎬⎭
where the qt (x) data are demands on expansion paths at arbitrary budget levels. Suppose
that there exists some demand vector q0 ≥ 0 and p00q0 = x0 such that q0 ∈ S (p0, x0) but q0 /∈
S0 (p0, x0) . Then by definition of S0 (p0, x0) it must be the case that {p0,pt;q0,qt (x)}t=1,...,T
contains a violation of SARP. That is there is some element of {qt (x)}t=1,...,T (call it qt (x))
such that either qt (x)Rq0 and q0R0qt (x) or q0Rqt (x) and qt (x)R0q0. Consider the first
case where q0R0qt (x). If demands are weakly normal then the corresponding intersection
demand qt (ext) used to define S (p0, x0) must be such that qt (ext)R0qt (x). But qt (x)Rq0
and hence qt (x)Rqt (ext) and there is a contradiction of SARP. Now consider the second case
where qt (x)R0q0. Since q0 ∈ S (p0, x0) we know that by definition p0tq0 ≥ p0tqt(x̃t) and hence
qt (x)R

0qt(x̃t). Therefore we have another contradiction of SARP. Hence q0 /∈ S0 (p0, x0)⇒
q0 /∈ S (p0, x0) .¥

Proof of Proposition 2.
(1) S (p0, x0) is non-empty if and only if the data set {pt,qt (x̃t)}t=1,...T satisfies SARP.
If {pt,qt (x̃t)}t=1,...T fail SARP than so does {p0,pt;q0,qt (x̃t)}t=1,...,T for any {p0;q0} so that
the support set is empty. Conversely, if {pt,qt (x̃t)}t=1,...T pass SARP then these points satisfy
the conditions for inclusion in S (p0, x0) which is thus non-empty.
(2) S (p0, x0) is the singleton qt (x̃t) if p0 = pt and the data set {pt,qt (x̃t)}t=1,...T satisfies
SARP.
Let p0 = pt and suppose there is a q0 ∈ S (p0, x0) with q0 6= qt (x̃t). We have p00q0 = x0. By
construction qt (x̃t)R0q0 which implies qt (x̃t)Rq0. Since q0 satisfies SARP and q0 6= qt (x̃t)
we have not (q0R0qt (x̃t)) which is equivalent to p00q0 < p00qt (x̃t) = p0tqt (x̃t). Since both
sides of this strict inequality are equal to x0 this gives a contradiction.
(3) S (p0, x0) is convex.
Let the support set contain q̌0 and q̃0. The convex combination λq̌0 + (1− λ) q̃0 for λ ∈
[0, 1] satisfies the non-negativity constraint and p00 (λq̌0 + (1− λ) q̃0) = λx0 + (1− λ)x0 =
x0. Finally, we have p0tq̌0 ≥ p0tqt(x̃t) and p0tq̃0 ≥ p0tqt(x̃t) so that p0t (λq̌0 + (1− λ) q̃0) ≥
p0tqt(x̃t).¥

Proof of Proposition 3.
If {pt,qt}t=1,2...T fails SARP then both sets are empty and the proposition holds trivially. In
the following we shall assume that {pt,qt}t=1,2...T passes SARP. We shall first show SLP ⊇ S,
then part 2 of the proposition and then cl (S) ⊇ SLP .
SLP (p0, x0) ⊇ S (p0, x0).
Take any q0 ∈ S (p0, x0). We have q0 ≥ 0 and p00q0 = x0 and {pt,qt}t=1,2...T satisfies SARP.
Thus we only need to check the last condition in SLP . Since p00q0 = x0 = p00qt we have
q0R

0qt which implies q0Rqt. The definition of SARP then gives p0tqt < p0tq0 which is the
condition in the definition of SLP (p0, x0).
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For part 2 of the proposition we have:

SLP \ S =

⎧⎨⎩
q0 : q0 ≥ 0,p00q0 = x0,

p0tq0 ≥ p0tqt (x̃t) , t = 1, 2, ...T
{p0,pt,q0,qt (x̃t)}t=1,...T fails SARP

⎫⎬⎭
If q0 = qt (x̃t) q0 ∈ S so that we only need to consider q0 6= qt (x̃t) for all t. This and the
failure of SARP implies either:
(A) qt (x̃t)Rq0 and p00q0 ≥ p0tqt (x̃t) for some t. The first statement requires that there
is some s such that qs (x̃s)R0q0 which implies p0sqs (x̃s) ≥ p0sq0. Combining this with the
condition p0sq0 ≥ p0sqs (x̃s) gives p0sq0 = p0sqs (x̃s) as in the statement in the proposition.
or:
(B) q0Rqt (x̃t) and p0tqt (x̃t) ≥ p00q0. In this case the latter statement and p0tq0 ≥ p0tqt (x̃t)
give the statement in the proposition.
cl (S) ⊇ SLP .
We have just shown that it is only boundary of SLP that are not in S. Thus the closure of S
contains SLP .¥
Proof of Proposition 4.
Since pT+1 = p0 we have that ST+1 is a singleton (by part 2 of proposition 2). Since ST is
convex and there are two distinct intersection points in ST , there are a continuum of points
in ST . Hence ST strictly includes ST+1.¥

Proof of Proposition 5.
1) We first show that intersection of the budget plane {pT+1, xT+1} with ST (p0, x0) implies
that ST+1 (p0, x0) ⊂ ST (p0, x0) . The definition of intersection between the new budget plane
{pT+1, xT+1} and ST (p0, x0) implies that qT+1R0q0. Since q0 ∈ ST (p0, x0) the definition of
an intersection demand implies q0R0qT+1. This gives a violations of SARP in the dataset
{pt,qt}t=0,...,T+1. Therefore q0 /∈ST+1 (p0, x0) and hence ST+1 (p0, x0) ⊂ ST (p0, x0).

2) We now show that ST+1 (p0, x0) ⊂ ST (p0, x0) implies intersection of the budget plane
{pT+1, xT+1} with ST (p0, x0) . Suppose ST+1 (p0, x0) ⊂ ST (p0, x0). This implies that there
exists at least one q0 ∈ ST (p0, x0) such that q0 /∈ST+1 (p0, x0). In the following R0 de-
notes "not R0". Since {pt,qt}t=0,...,T satisfies SARP, and since q0R0 {qt}t=1,...,T by the de-
finition of intersection demands, this implies that {qt}t=1,...,T R0q0. Since q0 /∈ST+1 (p0, x0)

the dataset {pt,qt}t=0,...,T+1 violates SARP. Given {qt}t=1,...,T R0q0 this violation must result
from qT+1R

0q0 ⇒ xT+1 ≥ p0T+1q0. Hence q0 must lie in the intersection of the convex set
ST (p0, x0) and the closed half-space p0T+1q0 ≤ xT+1. If there exists some q0 ∈ ST (p0, x0) such
that p0T+1q0 < xT+1 then there must also exist some q0 ∈ ST (p0, x0) such that p0T+1q0 = xT+1
and therefore the new budget plane {pT+1, xT+1} intersects with ST (p0, x0).¥
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