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Abstract

In this paper, a novel alignment method for silhouettes is proposed. This method is based on the establishment of correspon-
dences between landmarks on their boundaries and, in turn, on the establishment of correspondences of the boundary pieces in
between these landmarks. The method yields more correct correspondences than conventional methods that scale the arc-length
descriptions of silhouettes to align them. The selection of landmarks is investigated as to the robustness of their localization
and their perceptual relevance. Matching of silhouettes is then achieved by quantifying the dissimilarity of a pair of silhouette
boundaries, based on a novel dissimilarity metric. The matching procedure is evaluated, based on retrieval experiments, and
it is concluded that the precision of the results is higher than that obtained by conventional pointwise comparison methods.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A significant component of image content, as appreciated
by observers, is the shape of image contours. The ability
to identify and retrieve similar contours is important in a
wide spectrum of applications requiring content-based im-
age retrieval and object recognition. A research challenge
in any effort at automating this similarity matching process
is how to make it perceptually relevant by emulating the
corresponding behavior of human observers. It is expected
that meeting this challenge would also contribute toward a
more intuitive appreciation of content-based image retrieval
(CBIR) results by end-users.

∗ Corresponding author. Tel.: +30-2810-39-1600; fax: +30-
2810-39-1601.

E-mail address:orphanou@ics.forth.gr(S.C. Orphanoudakis).
1At the time of this research, the authors were with the

Institute of Computer Science, FORTH.

0031-3203/$30.00� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2004.06.003

In this paper, a silhouette is considered as “the outline of
a body viewed as circumscribing a mass” [1] and, thus, is
considered without holes. The paper focuses on the similar-
ity matching of silhouettes, as a cue for the content-based
retrieval of visual information. Thus, the problem we con-
sider is that of retrieving similar silhouettes, rather than that
of recognizing objects. Silhouettes can be obtained in many
different ways from images or image sequences. In obtaining
experimental results, silhouettes were assumed to be com-
plete and to have been fully extracted from images. Nev-
ertheless, all experimental results have been obtained and
evaluated in the presence of image noise, which has been
modelled as noise that affects the coordinates of points on
the silhouettes but not noise due self or partial occlusion.
Although discussed, treatment of occlusion is left for future
work.

The work presented in this paper is concerned with pro-
viding a strategy for the similarity matching and retrieval of
silhouettes that is relevant to visual perception. In order to

http://www.elsevier.com/locate/patcog
mailto:orphanou@ics.forth.gr
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achieve this goal, it is important that a similarity-based sil-
houette retrieval method is tractable and comprehensible by
end-users. In particular, the query formulation and query re-
finement processes should be more intuitive for these users.
For these reasons, we have adopted a local representation
of silhouettes based on an arc-length parameterization of its
boundary. This type of description appears to be more com-
prehensible to observers, more compatible with visual per-
ception than a global representation of a silhouette, and in
addition, supports the partial matching of silhouette bound-
aries. In the remainder of this section, an overview of the
proposed methodology will be presented along with relevant
notation used throughout this paper.

A silhouette is a binary image produced by a planar ge-
ometric projection of a solid object. The silhouette bound-
ary (SB) is a non-intersecting, closed 2D curve which can
completely represent the silhouette.

It is possible to define signature functions on planar
curves that uniquely determine the curve up to some group
of transformations[2,3]. The curvature function uniquely
determines a planar curve up to a Euclidean transfor-
mation and is defined as follows. Given a planar curve
C : R → R2 as a vector functionC(�) = [x(�), y(�)]T,
where T is the transpose operator and� the Euclidean
arc-length parameter, the curvature is calculated as

K(�) = x′y′′−x′′y′
(x′2+y′2)3/2 where x′ = �x(�)

��
[4]. The curva-

ture function will have extrema,Es, which correspond to
cusps of intrusions or protrusions of the curve. Positive
maxima,E+s, and negative minima,E−s, correspond to
convex and concave cusps, respectively. Inflection points,
Zs, where the curvature function is equal to zero, cor-
respond to loci that the curve is locally straight. The
extrema of the absolute value of the curvature func-
tion will be denoted as|E|s; thus |E|s are eitherEs or
Zs. Finally, �(�) is used to denote a source of inde-
pendent and identically distributed noise with standard
deviation�.

The basic idea behind this work is the following. The con-
ventional estimation of silhouette dissimilarity is based on
the alignment and pointwise comparison of their arc-length
parameterized representations (signatures). This comparison
is performed after a scaling of the shortest signature so that
both signatures exhibit the same length. It is argued that the
dissimilarity estimation, obtained with such a linear scaling
of two signatures, is not as precise as that obtained with an
alignment that preserves correspondences. To achieve such
an alignment, landmarks are used to repeatedly anchor the
arc-length parameterized descriptions of the two silhouettes.
Different types of landmarks are evaluated using two crite-
ria. First, landmark localization is evaluated with respect to
its robustness in the presence of noise and how this affects
silhouette alignment. Second, landmark types are evaluated
with respect to which one results in retrieval results that are
better matched to end-user expectations. The landmark types
that are evaluated are theEs andZs, because they can both

be used for the selection of intrinsically defined landmarks
on a silhouette. It is concluded thatEs yield better results,
with respect to both of the above criteria.

A conventional and a novel pointwise dissimilarity met-
ric for silhouettes are also considered and used for the re-
trieval of silhouettes from a large database.2 It is shown that
the proposed alignment method and the novel dissimilarity
metric improve the precision of the retrieval results com-
pared to traditional approaches. Both dissimilarity metrics
used are generic enough and representative of two broader
categories of dissimilarity metrics. This allows us to dis-
cuss the contribution of the proposed alignment method, in
the similarity-based retrieval of silhouettes, independently
of the dissimilarity metric used.

The remainder of this paper is organized as follows: Re-
lated work is discussed in Section 2. Robustness issues aris-
ing in the localization of landmarks are investigated in Sec-
tion 3. In Section 4, a landmark-based silhouette alignment
method is presented and its robustness to noise is evaluated
for different types of landmarks. In Section 5, the proposed
alignment method is employed in the similarity-based re-
trieval of silhouettes and a novel dissimilarity metric is in-
troduced. Ideas for future work are discussed in Section 6.
Section 7 is a summary.

2. Related work

There is an abundance of Cognitive and Computer Science
literature on content-based image retrieval and similarity-
based matching of boundaries. This section is focused on
previous work that is more closely related to the approach
presented in this paper. Two reviews of silhouette matching
can be found in Refs.[5,6].

2.1. Cognitive studies

The process of SB perception and recognition by humans
is performed in a coarse-to-fine, hierarchical manner[7,8].
That is, the larger structural features of a silhouette’s shape
tend to be more characteristic or salient than its details. Due
to this salience, it is henceforth assumed that the size of
some structure on the SB is perceptually significant in the
identification or discrimination of silhouettes within a data
set. Furthermore, a coarse-to-fine hierarchical representation
of shape is relevant to perception[9]. Regarding silhouettes,
this perceptual behavior has also been adopted in the field
of Computer Vision and has been described as “scale-tuned”
representation[10].

In Ref. [11], Attneave suggested that not all segments of
a silhouette provide the human visual system (HVS) with an
equal amount of information and that the HVS assigns more

2 For many of the experiments presented in this paper the
SQUID database has been used. More information can be found
at http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html.

http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html
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salience to the cusps of a silhouette. In addition to size, it
has been observed that this salience also derives from the
sharpness of a cusp[12]. The sharpness of cusps has also
been exploited in attempts to quantify the salience of SB
segments, for the recognition and similarity-based retrieval
of SBs[10,13]. Recently, the above observations, regarding
the increased salience of cusps relative to inflection points
and the correspondence of this salience to the sharpness of
a cusp, have been verified through psychophysical experi-
ments[14–16].

Cusps have been known to play a key role in the percep-
tual segmentation of silhouettes into parts[17]. It has also
been shown that their role in the recognition of silhouettes
is important[12]; a result that has been further confirmed by
measuring the performance of humans in a silhouette recog-
nition task[18]. The “minima-rule” [17] provides a func-
tional explanation for the majority of SBs, but there exist
cases (“elbows”) in which this rule does not hold[19] and
other approaches have been used to explain perceptual pars-
ing [10]. Thus, although that perceptual parsing has not been
fully explained up to now, one can argue that a perceptually
relevant decomposition of silhouettes into parts should be
delimited at cusps. Reports of psychophysical experiments
that support this conclusion can be found in Ref.[20].

2.2. Algorithmic approaches

2.2.1. Global matching
Global or statistical approaches, such as those based on

the use of moments[21] or Fourier descriptors[22], often
exhibit difficulties due to the inexplicability of the result or
the inability of the methods to capture perceptually relevant
information, at least with respect to natural intuition. In ad-
dition, it is difficult to modify such approaches in order to
achieve partial matching of silhouettes. For these two rea-
sons, it is even more difficult for an end-user to interact with
the result of a query for the purpose of query refinement.
Global approaches have been used to provide a point-to-
point alignment of silhouettes[23]. A successful approach
that uses local rather than global statistics to establish cor-
respondence among silhouettes can be found in Ref.[24].
However, these local statistics do not necessarily capture
perceptually significant features.

2.2.2. Signature based methods
Semi-local descriptors, e.g. local curvature, facilitate the

local description of the shape of a silhouette. In such cases,
an arc-length parameterized description (or signature) is
computed after parameterizing the curve. Given a certain pa-
rameterization, a signature can be computed that is invariant
to affine transformations of a curve[25,26,2]. Such a repre-
sentation exhibits an increased demand either for coordinate
accuracy or well localized landmark points, which relates
to the higher order of differentials that are used. The de-
rived signatures are typically compared by computing their
pointwise differences[27–29].

Shape BShape A

B:

A:

A':

Fig. 1. Left to right: Two SBs, their corresponding, idealized,
curvature functions, and the shortest one scaled.

In order for this type of comparison to be meaningful, it
is required that the signature points arealigned. A way to
deal with this problem is to establish one correspondence
among the two signatures, and use this correspondence as a
common origin for their comparison. This correspondence
can be inferred by selecting, out of all cyclic shifts of one of
the two signatures to be compared, the one that minimizes
the signature difference[28]. This search yields a computa-
tional complexity of O(N2), whereN is the length of the
descriptions, and also requires that signatures are linearly in-
terpolated in order to obtain the same length. However, this
alignment is sensitive to noise and can also lead to counter-
intuitive correspondences.

The sensitivity to noise of the above alignment can be
appreciated through an example. Ifc1, c2 are two rectangles,
the curvature functions would ideally exhibit 4E+s of equal
magnitude. However, in the presence of noise, this is not
necessarily the case. Similar problems are encountered in
other approaches, as in selecting the common origin to be
the point of the boundary that is the farthest away from its
centroid[30]. In Ref.[27], the extrema of a multivalued arc-
length parameterized description are selected, based on an
affine-invariant parameterization of the SB.

Most importantly, aligning signatures that are based on
just one correspondence typically yields counter-intuitive
alignments. The linearity of the interpolation that is applied
to signatures, so that they may have the same length, re-
sults in the comparison of signature segments that are not
delimited by corresponding SB sites. The case is illustrated
using Fig. 1: SBs A and B differ by a dent and, thus,
have different arc-lengths. LetSA and SB be their ideal-
ized curvature-based signatures andSA′ the linear interpo-
lation of SA, so that it matches the size ofSB . Supposing
that a common origin has been correctly established, a sim-
ple scaling (or “stretching”) of the shortest signature causes
non-corresponding signature points to be compared. In Ref.
[29], a method for matching curve segments was proposed
that corresponds to groupings of curve segments at a fixed
resolution, without explicitly segmenting the silhouette into
visual parts. More relevant to the approach presented in this
paper is the scale-space matching algorithm presented in
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Ref. [31]. In that work, the signature of annihilatedZs is
compared, leading to a match that is invariant to scale, ro-
tation, and translation. In this paper, it is argued that using
Es instead ofZs is a more robust choice.

2.2.3. Similarity measures
To date, a similarity measure for silhouettes that reflects

human visual perception is still unknown. A review of per-
ceptually relevant properties of similarity measures can be
found in Ref.[32].

A conventional approach to comparing silhouettes based
on their arc-length parameterized representations is the Pro-
crustes distance[33]. Due to its generality and its utilization
in the rest of this paper, this metric is presented in more
detail. The Procrustes distance is formulated as follows:
given two ordered sets of two-dimensional points,P ={pj }
andQ = {qj }, the squared Procrustes distance is given by

D2=min�
∑
j |pj −T�qj |2, where|·| andT� are the length

and rotation operators respectively. Invariance to the sim-
ilarity and Euclidean transformations is obtained by prior
normalization. By computingD, an alignment of the two
silhouettes is also availed that we henceforth callProcrustes
alignment.

Other pointwise similarity measures are the Kendall[34],
the Haussdorf[5], and the one proposed in Ref.[35], but
treat all points equally without considering their perceptual
significance. A metric exhibiting several perceptually rele-
vant properties is proposed in Ref.[36], but has the problem
of linear scaling discussed above. Information theoretic ap-
proaches to the similarity comparison of silhouettes, such as
[37], are considered in Section 5.1. Finally, elastic match-
ing approaches can be found in Refs.[32,38], however, this
paper is mainly concerned with estimating the similarity of
silhouettes rather than recognizing their deformations.

2.2.4. Contributions of this work
ln this paper, it is argued that the alignment method pro-

posed in Section 4 contributes to a better utilization of exist-
ing pointwise similarity metrics. This contribution is based
on the alleviation of the effect, which is due to the linear
scaling of arc-length parameterized silhouette representa-
tions (seeFig. 1). The proposed approach emphasizes the
need for explicitly establishing correspondences and for de-
limiting silhouette segments, in order to facilitate the ability
of explaining the results of comparisons and to support the
refinement of queries that yielded such results. In addition,
the proposed alignment is robust to noise and the way the
correspondences are established is relevant to visual percep-
tion.

3. Landmark selection and localization

In this section, the robustness of the localization of|E|s
in the Mean Curvature Motion scale-space (MCM) is eval-
uated, leading to the conclusion that this robustness is a

monotonically increasing function of their absolute curva-
ture value. An explanation for this phenomenon is provided
and two experiments that elucidate it are presented. Initially,
the scale-space analysis required for the localization of|E|s
is reviewed.

3.1. Scale-space analysis of silhouettes for landmark
selection

The pursuit of landmarks on SBs naturally leads to intrin-
sically defined singular points. Given the curvature-based
description of a SB, points at which the curvature is mini-
mized or maximized(|E|) are considered as natural candi-
dates. The MCM can be utilized to detect|E|s at any scale
of the SB. It performs anisotropic smoothing along curves

according to:�C(�,�)
��

= �2
C(�,�)
�t

= K(�)�n(�) whereC is

a Euclidean arc-length parameterized curve,�t and �n are its
tangential and inward normal direction, and� is the scale-
parameter. For this work, a linear Gaussian smoothing of
the x andy coordinate functions followed by a renormal-
ization according to the Euclidean arc-length has been im-
plemented[39]. Henceforth, the curvature function of a sil-
houette at scalen is denoted asKn, with n=1 representing
the original scale.

As the curve evolves in scale, the curvature functions
become simpler, since the number of extrema monotonically
decreases. It can be proven[40] that, as scale increases,
pairs of neighboring maxima and minima are annihilated.
Coarse scale structure of a SB is more persistent under linear
diffusion than fine scale structure and, thus,Es occurring at
a coarse scale of a SB correspond to the tips of its larger
intrusions or protrusions. The scale of annihilation of an
|E| is henceforth denoted as�. This scale represents the
persistenceof the structure corresponding to the specific|E|
under linear diffusion. Such a scale is of interest, due to
the significance of the size of an intrusion or protrusion in
the perceptually relevant identification or discrimination of
silhouettes within a data set (see Section 2.1).

The detected|E|s can be addressed in a coarse to fine
hierarchical order, given that in the linear scale-space new
|E|s are not created as scale becomes coarser[41]. This order
concerns the annihilations of|E|s at different scales and is
obtained by selecting the firstM of a descending ordering
of |E|s with respect to their� values. This hierarchy can be
represented as a tree structure(T) with SB segments as its
vertices and containment relationships as its edges. At the
root of the tree, one encounters the most persistent|E|s.

In Fig. 2, the tracking ofEs is demonstrated. As shown,
K1 is sensitive to noise and to the discretization of the
coordinates of the SB points, which occur on a grid. As
a result, spuriousEs occur and make cusps of the more
dominant intrusions or protrusions difficult to detect. When
Es that occur at coarse scales are backtracked (e.g. using
the algorithm in Ref.[42, Marching Cubes]), their initial
locations can be retrieved.
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Fig. 2. (a) A SB with the origin of its coordinates at≈ (25, 300). (b) TheK1 of the SB in (a): the arrangement of its points on a pixel
grid creates spuriousEs. (c) TheK1 of the SB in (a), after application of�(0.05) to its coordinates, (d) Snapshots of the evolution of the
noisy version of the SB in the MCM; marked are the locations ofEs. (e,f)K32 andK64 of the noisy version of the same SB.

3.2. Why is the localization ofEsmore robust than that of
Zs?

When trying to localize aZ, it is observed that the pres-
ence of noise can significantly alter the localization result.
For example, aZ that occurs on a straight SB segment can
be dislocated if a speckle of noise occurs on this segment:
at least twoZs are introduced on the SB, at different loci
than the locus of the originalZ. Consequently, a backtrack-
ing process will ultimately select one of these spuriousZs
instead of the original, which is no longer present. This ef-
fect is smaller forEs, because they typically persist much
longer under linear diffusion and their backtracking is ini-
tiated at a coarser scale, where their localization is more
robust. This increased robustness is due to the fact that the
effects of noise at coarse scales are alleviated.

The above arguments can be verified using Fig.2. It is
observed that the sharp SB cusps are still easily detected at
K64 and can be robustly backtracked up to the 1st SB scale.
By comparison,Zs are cluttered already atK32, when they
become detectable, and the probability of a mismatch is
higher. In fact, the coarser the scale of a mismatch the larger
the localization error, because the estimated locus of aZ is
then determined to occur at a different SB neighborhood than
the true one. The reason is thatEs andZs are annihilated in
a tree pattern (see Section 3.1) and, thus, the scale and locus

of a mismatch correspond to a tree node. When a mismatch
occurs, the result is destined to occur at a different branch
of the tree, rather than where the correct solution resides.
The mismatch node(V ) is the root of this branch as well
as the root of the branch where the correct locus occurs.
The closer to the root of the treeV is, the farther away the
backtracking result from the pursued location will occur,
since tree branches do not share nodes.

3.3. Empirical evaluation of localization robustness

In this subsection, two experiments are presented whose
purpose is to investigate the robustness of the localization of
potential SB landmarks, as a function of their curvature. In
the first experiment, the coordinates of SBs were corrupted
by noise. Then, the locations of theseEs were estimated
and the results were compared with the true locations. The
curvature of theseEs spanned across a wide range of val-
ues, which tended to zero at one of its sides. Thus the curve
shape at the loci ofEs for which curvature was almost zero
resembled, in practice, the shape encountered at loci ofZs.
Furthermore, because the persistence ofEs (andZs) is a
factor that influences the level of localization robustness,
the persistence of allEs was set to be equal in this experi-
ment. This control was possible by using ovals for the SBs
because, ideally, they exhibit the same number ofEs (=4).
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Fig. 3. Standard deviation of persistent extremum localization plotted as a function of noise level (a–d) and curvature (e–h). Circles
correspond toEs of relatively higher curvature and crosses toEs of lower curvature. The graphs in the top row correspond to ellipses with
eccentricities (a) 1.0078, (b) 1.0546, (c) 1.2336, and (d) 2. The graphs in the bottom row correspond to noise levels (values of�) (e) 0.0001,
(f) 0.0018, (g) 0.0078, and (h) 0.0336. Horizontal axes are in log-scale.

In the second experiment, simple SBs were employed for
a comparison of the robustness of the localization ofEs
againstZs, in order to generically demonstrate the increased
robustness of the localization ofEs. In this experiment, the
true locations of these points were unknown.

In the first experiment, the set of ellipses used featured a
variety of curvature values. This was achieved by varying the
eccentricity of these ellipses. The persistence of their 4Es is
equal, since (a) they are annihilated in pairs and (b) ellipses
are symmetrical. In the experiment, the ellipses were formu-
lated as[xe(�) ye(�)]T = 10[e−1 cos(�) e sin(�)]T, where
� ∈ [0,2�] and e represents eccentricity. Eccentricity was
exponentially increased from 1 to 2 in 20 steps. TheEs occur
at eccentric angles�∗={0, �/2, �,3�/4} and their curvature
values are�(�∗) ∈ {(10e3)−1, e3/10}. Thus,K(�∗) → 0.1
for e → 1 andK(�∗) ∈ {0,∞} for e → ∞. The noise was
applied perpendicularly to the curve, as:[xe(�) y(�)]T +
�(�)[−y′

e(�) x
′
e(�)]T, where prime denotes differentiation.

The standard deviation� of noise�(�) was exponentially
increased from 10−4 to 0.1 pixels, in 20 steps. TheEs
were then backtracked in the MCM, applying a new pseudo-
randomized� each time.

In Fig. 3, the standard deviation of the localization error
is plotted as a function of noise level and curvature. Crosses
representEs located on the “flat” parts, whereas circles rep-
resentEs located on the “sharp” parts of the ellipse. Each
data point is based on 103 localizations. In all graphs, un-
certainty is mapped onto the vertical axis and measured in
pixels. In the top row,� is mapped onto the horizontal axis.
The graphs correspond to ellipses of increasing eccentricity;

from a circle (leftmost) to a sharp oval (rightmost). Natu-
rally, uncertainty increases monotonically as a function of
�. The main observation is that the localization of highly
curvedEs is systematically less sensitive to noise than the
localization of less curvedEs. In the leftmost graph, the two
uncertainties are equal. The reason is that the ellipse was a
circle and, ideally, there were noEs. Thus the 4 most per-
sistent, but spurious,Es were detected as the pursued ones.
In the bottom row, curvature is mapped to the horizontal
axis. In the graphs, uncertainty is a monotonically decreas-
ing function of curvature, with the exception of the peak at
0.1. At this value, the noise-free oval was a perfect circle,
and since a perfect circle has a constant curvature function,
there exist no realEs to be detected. The detectedEs are
due to noise and spurious by construction. The level of un-
certainty at this peak is bounded by the circumference of
the circle.

In the second experiment, theM = 10 most persistentEs
and theM most persistentZs of some simple SBs were
backtracked 500 times, after applying�(� = 0.2) to their
coordinates. Beforehand, the loci of theseEs were estimated
in the same way, but without the presence of noise. InFig. 4,
the results of this experiment are shown with circles mark-
ing the loci detected without the presence of noise and dark
points marking the detected loci of the landmarks, when
noise was added. The mean errors were computed, assuming
that the noise free localizations were correct, and are given
in the figure caption. In this figure, it can be observed that,
almost always, the noisy localizations ofEs andZs cluster
around the noise-free correct localizations. The spread of
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Fig. 4. Results of the localization procedure for three simple SBs, showing that this procedure is more robust forEs than forZs. In (a), (b),
and (c) the results for the backtracking ofZs are shown, and in (d), (e), and (f) results are shown for the backtracking ofEs. Circles show
the result of the noise-free localizations of these points and intonated points mark the same localizations in the presence of noise. When
noise is present, the localization ofZs can be so erroneous that the result occurs at the locus of a differentZ and, thus, some crosses in
the right column cluster at regions where no circle is present. The mean errors were: (a) 9.409, (b) 48.207, (c) 19.33, (d) 2.006, (e) 2.114,
and (f) 1.67 pixels.

these clusters is broader at regions of relatively lower curva-
ture. In addition, for the localization ofZs, it is sometimes
the case that noise causes the localization to occur at a locus
far from the correct one. Such cases are shown in the bot-
tom regions of graphs (a) and (c). This is an effect caused
by a mismatch ofZs at a coarse scale in the backtracking
process, as described in Section 3.2.

It is concluded that when using an arc-length parameter-
ized SB representation and the MCM, the localization ofEs
is more robust to noise than that ofZs. Thus, all other fac-
tors being equal, the structure of a SB can be landmarked
with greater robustness if high-curvature landmarks are pre-
ferred over low curvature ones. It is argued that this conclu-
sion also holds forEs of the curvature function of invariant
arc-length parameterizations (e.g.[2,26]). In such parame-
terizations, sampling density is a monotonically increasing
function of curvature and, thus, the signal-to-noise ratio in
this neighborhood is greater or equal.

4. Landmark-based SB alignment

In this section, a method for the alignment of a pair of
SBs is proposed. This method is based on the establishment
of correspondences between landmarks on these SBs fol-

lowed by the piecewise, linear interpolation of SB segments
contained between corresponding landmarks. The number
of these landmarks is automatically determined. The result-
ing alignment of SBs yields more corresponding points than
alignments of SBs that are obtained by linearly stretching
their arc-length parameterized descriptions. When the most
persistentEs are used as landmarks, the performance of the
method is optimized with respect to the correctness of cor-
respondences and robustness to noise.

Since we treat SBs without knowledge of semantics about
the object that the SB portrays, the correctness of correspon-
dences is empirically judged. We used the following criteria
to evaluate this correctness: (a) similar segments that occur
in the same order on two SBs should correspond, and (b)
the corresponding points of these segments should occur on
similar local structures.

The proposed alignment method is defined for two SBs
andM landmarks on each as follows: theM cyclic shifts of
the landmarks of the 2nd SB are considered. For each shift,
the Procrustes distance of the shifted landmarks of the 2nd
SB to the original landmarks of the 1st SB is computed.
The shift that minimizes this distance is selected and the
particular landmark correspondences are established. The
SB segments contained between corresponding landmarks
are then also considered as corresponding and they are
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Fig. 5. Aligning in 3 different ways: (a) Procrustes-alignment, (b) most persistentZs, and (c) most persistentEs. Graph (d) shows a zoom into
x ∈ [0,120], y ∈ [20,150] of (a), and (e) shows a zoom into the same region of (c). Black line segments mark established correspondences.

interpolated using the same number of points for each. A
one-to-one correspondence is then established between these
interpolation points. The resulting arc-length parameteriza-
tion is piecewise linear.

The value ofM is derived by computing the alignments
for M = 4,5, . . . and selecting the value ofM that mini-
mizes the Procrustes distance of theseM landmark points.
Note that we have chosen not to normalize this distance with
the cardinality of the set of landmarks(M), since this nor-
malization was observed to result in over-fitting of the SBs.
This choice, in combination with the persistent nature of the
landmarks, retains the value ofM at a low level. This level
typically corresponds to the number of the largest structural
features of the two SBs and, in our experiments, was ob-
served to vary within the range of 3–20.

For the selection of landmarks, the most persistent|E|s
were evaluated. This prioritization of persistent landmarks
yields landmarks that correspond to the larger intrusions and
protrusions of the SBs to be compared. Three advantages
of this choice are the following. First, the number(M) of
them that is required to align the SBs is small, which results
in a reduced computational complexity due to the small
number of shifts that are considered. Second, the shape of
the SB region that corresponds to a scale-persistent|E| is
less sensitive to noise due to its relatively larger size and,
thus, the landmark localization process is expected to be
more robust. Third, prioritization based on larger structures
is perceptually more meaningful (see Section 2.1).

In Figs. 5and6, this alignment method is demonstrated
and its performance compared against the conventional
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Fig. 6. Aligning in 3 different ways. Conditions as inFig. 5: Dashed line segments mark established correspondences.

Procrustes-based SB alignment method, for which 200
sample points per SB were used. The figures demonstrate
that, as a result of this piecewise alignment, there are more
corresponding points in the landmark-aligned SBs than the
Procrustes aligned SBs. Comparing the efficacy ofEs and
Zs as landmarks for SB alignment on numerous SBs, it
was observed that a better alignment is achieved usingEs
for two reasons: (1) scale-persistentEs are better SB de-
scriptors than scale-persistentZs, at least for the number
of landmarks that tend to be selected by the above method
and (2) theE-based SB alignment exhibits increased ro-
bustness to noise. These two statements are discussed in
the next two paragraphs, respectively.

4.1. Quality of descriptors

An experiment was performed to investigate the quality
of description of a SB, obtained by either scale-persistentEs
or Zs. The landmarks were first detected and then used to
reconstruct the contour, using cubic splines. Original and re-
constructed SBs shared the same number of points. The SBs
were then compared by computing their Procrustes distance.
In this case, the correspondence of points between the SBs
is known by construction and there is no need for alignment.
Fig. 7 shows the response of the Procrustes measure for 3
reconstructions, as a function of the number of landmarks.
For comparison, these plots include the response when us-
ing landmarks that are obtained through uniform sampling
of the SB. The figure shows that theE-based reconstruction
is more similar to the original shape than theZ-based one.
This is typically the result for the range of 3–20 landmarks
that are commonly required for this alignment. The recon-
struction based on uniform sampling almost always yields
a smaller distance, but it is not preferred for alignment pur-
poses, as it yields less correspondences, when point corre-
spondence is unknown. The fluctuations in the responses for
|E|s are due to alignment mismatches at fine scale.

4.2. Robustness of alignment

The increased robustness of the localization ofEs over
Zs is observed to be inherited by the correspondingE-based

alignment. In an experiment, pairs of SBs were aligned af-
ter corrupting their point coordinates with different levels
of noise�. Fig. 8 shows the computed distance as a func-
tion of �, using the proposed alignment method. For each
noise level, the alignment was performed 100 times and the
results were averaged. For comparison, the experiment was
also performed for the condition where the SBs were aligned
using the conventional Procrustes approach, in which 200
samples of the SBs were used. The figure demonstrates that
the Z-based alignment is the most sensitive to noise, be-
cause dissimilarity tends to increase more rapidly as a func-
tion of noise level. Note that the increased noise sensitivity
of the localization process ofZs can lead to a particular mis-
correspondence of landmarks, which results in an erroneous
alignment of the SBs. InFig. 8(c), this can be observed by
the non-monotonic behavior of theZ-based distance: de-
pending on the noise level, very different alignments are
established. This behavior is a result of the coarse-scale
landmark mismatch in the localization ofZs, described in
the Section 3.

5. Similarity matching of SBs

In this section, the proposed alignment method is em-
ployed in the retrieval of SBs and compared to the linear
alignment of SBs, in terms of precision of the retrieval re-
sults. The purpose of this comparison is to demonstrate that
the proposed alignment method increases the precision of SB
dissimilarity estimation, when this dissimilarity is obtained
as an accumulation of local dissimilarities along arc-length.
Furthermore, a Minimum Description Length (MDL) dis-
similarity measure for piecewisely aligned SBs is proposed
and claimed to yield a more precise estimation of the visual
dissimilarity of SBs than the Procrustes metric, thus leading
to more precise results in the retrieval of SBs. In the defini-
tion of this metric the standard terminology of information
theory is used (see[43] as a reference).

To perform the above comparisons, a retrieval experiment
was performed under different conditions and the results ob-
tained were compared. Under all conditions used, the SBs
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Fig. 7. Curvature extrema are better descriptors than zero crossings. Top: The graphs show the Procrustes distance between original and
reconstructed silhouette, as a function of the number of points that were used for the reconstruction. WhenEs were used for reconstruction,
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#54 (left to right) of the SQUID database. Bottom: the silhouettes used in the experiment (#4, #42, and #54).
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were first aligned and then their dissimilarity was estimated.
To compare alignment methods we used the same similarity
metric and varied the alignment method. Similarly, to com-
paratively evaluate dissimilarity metrics we used the same
alignment method and varied the metric. Note that when
performing such comparisons, neither ground truth nor re-
sults from many observers are available. Also, depending
on the purpose of the visual search, one can be interested in
different aspects of visual similarity: e.g. overall structural
similarity, particular similarity of some detail, semantic sim-
ilarity after recognition of the SB, etc. For these reasons,
when comparing results from different methods, we assume
that overall structural similarity and structural similarity of
SB segments, whose correspondence has been established,
are prerequisites to overall visual similarity.

5.1. Description of the MDL metric

The Bayesian approach to model selection is based on the
Maximum A Posteriori (MAP) criterion[44],

m′ = arg max
m

P(d|m)P (m)
P (d)

, (1)

wherem ∈ M is a model from some limited model class and
d is the data. Information theory leads to an alternative, but
equivalent selection mechanism, where the optimal prefix
code that minimizes the mean code length must have length
l = −log2(Pi) [43]. Thus, the MDL method[45] may be
obtained by modifying (1) as follows:

m′ = arg min
m

− log
P(d|m)P (m)

P (d)
. (2)

Underlying the MDL approach is the notion of loss-less
coding, i.e. the original datad is to be transformed in a one-
to-one manner to a set of model parameters having length
− logP(m)/P (d) plus the deviation of the model from the
data, having length− logP(d|m). The code consists of iden-
tifying which shape is being used from the database and
how many points are used in the alignment

L(m)= − log(number of elements in database)

+ log∗(number of confident points).

The code is designed in such a way that all shapes in the
database are equally probable. The number of landmarks
is coded by the Universal Distribution of Integers[45],
log∗(i)= c + log(i)+ log(log(i))+ . . . , summing over all
positive terms.

The deviation from the model is given by the point to
point alignment. In order for the decompression (decoding)
to be successful, we will need to describe how the segments
of the curve in the database are to be sampled, and what the

deviations are from these sample points

L(d|m)=
∑
i

log∗(no. of samples in piecei)

+ log∗(10�)−
∑
j

log(G([Xj , Yj ]T,

[xj , yj ]T, �)).

The deviations are coded as a two-dimensional Gaussian
distribution,

G([Xj , Yj ]T, [xj , yj ]T, �)

= 1

2��2 exp

(
(Xj − xj )

2 + (Yj − yj )
2

2�2

)
.

The point[xj , yj ]T is coded by the inferred point[Xj , Yj ]T
from the shape in the database. The standard deviation has
been coded with a precision of 0.1.

5.2. Experiments

In this subsection, an experiment is presented whose pur-
pose is twofold. The first purpose is to determine whether
the proposed piecewise alignment method contributes to ob-
taining better retrieval results than those obtained by a stan-
dard linear alignment, when SBs are compared pointwisely.
To serve this purpose, SBs were aligned either linearly or
non-linearly, and their dissimilarity was estimated with the
same pointwise measure. The second purpose is to compare
the Procrustes and the MDL metrics, as to the precision of
results that they yield when applied to piecewisely aligned
SBs. Thus, SBs were aligned with the proposed method and
dissimilarity was estimated using either one of these two
metrics.

Each retrieval method was tested under separate condi-
tions and was comprised of the following two stages: (a)
alignment and (b) dissimilarity estimation. For stage (a), ei-
ther the Procrustes alignment or the piecewise method pro-
posed in Section 4 was utilized. For the latter method, either
Es orZs were used as landmarks. For the stage (b), either
the Procrustes distance or the MDL functional proposed in
Section 5.1 was employed; we refer to these dissimilarity
measures as the 1st and 2nd metric. Each combination of
alignment and dissimilarity estimation approaches was eval-
uated under different conditions. The conditions of the ex-
periment were:

• A: Procrustes alignment using 200 SB points and the 1st
metric,

• B: proposed alignment using most persistentZs as land-
marks and 1st metric,

• C: proposed alignment using most persistentEs as land-
marks and 1st metric,
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• D: proposed alignment using most persistentZs as land-
marks and 2nd metric,

• E: proposed alignment using most persistentEs as land-
marks and 2nd metric.

The experiment was performed using all 1100 SBs from
the SQUID database. In all conditions, the retrieval process
was the following: given a prototype, all the 1100 SB pairs
were aligned and their dissimilarity values estimated; thus
the prototype was also compared to itself. The dissimilarity
values were then increasingly sorted. Thus, the first match
was always the prototype. For ease of evaluation of the re-
trieval results, the retrieved silhouettes are presented after
applying a rotation on the plane to their coordinates. This
rotation is the one that minimizes the sum of squared dis-
tances of aligned silhouette points.

Overall, regarding the first three conditions (A, B, and C)
the most appealing results were obtained under condition
C. Fig. 9 shows results obtained under these conditions, for
SB #28. In A, top matches exhibited small topological dis-
tances in between points whose correspondence has been
established along the total arc-length of the compared SBs,
but did not necessarily exhibit structural similarity when lo-
cally inspected. For example, the 3rd and 4th matches (SBs
c:#154, d: #1023 in the 1st row) exhibit less structural simi-
larity than the succeeding ones, but yield a smaller distance
due to their overall similar shape. In B and C, the metric
was the same as in A but primary matches exhibited more
piecewise similarities. As shown inFig. 9, more of the re-
trieved SBs exhibit similar intrusions and protrusions for
conditions B and C than A. The results obtained in C exhib-
ited the greatest precision out of the three first conditions.
For example, SB #23 was just the 38th match in A, whereas
in C it was the 3rd (seeFig. 9(q)); it can be clearly argued
that this SB is more visually similar to the prototype (#28).
Notice that SB #23 is also more similar to SB #28 than all
matches from 3 to 7 of method A. Admittedly though, pre-
cision under condition C was less than 1 since, for exam-
ple, matches 4 and 5 are less similar to the prototype than
matches 6 and 7.

In Fig. 10, the results for D, E and are shown. The re-
sults of these two conditions were similar to those of B and
C, since the alignment method was the same. Again, the
utilization of Es as landmarks yielded better results. How-
ever, the 2nd metric was observed to yield results of greater
precision than the 1st. An example is the last row ofFig.
10. In that row, the retrieval precision is greater than that
of, corresponding, condition C for the 1st metric (shown in
Fig. 9, bottom row). For condition C, SB #684, which is
not very similar to the prototype, is sorted in the 4th place,
whereas for condition E, in the 6th. The above observations
have been consistently repeated numerous times for all pro-
totypes evaluated, in our experiments. InFigs. 11and 12,
more examples are given for conditions A and E.

It is concluded that when estimating dissimilarity of two
SBs, based on the pointwise comparison of their aligned arc-

length parameterized representations, the precision of cor-
responding retrieval results is improved, if the correctness
of the alignment is increased. This conclusion is based on
the fact that results obtained from conditions B and C out-
performed those from condition A; the only difference be-
tween these conditions was the alignment stage. The reason
is that the Procrustes-based alignment aims in the minimiza-
tion of point distances, but sacrificing correctness of corre-
spondences. Thus distances of non-corresponding points are
likely to be accounted in the dissimilarity estimation.

A motivating factor to evaluate retrieval precision for dif-
ferent landmark types was to test if any of these types would
systematically yield an intuitively better alignment and, in
turn, more precise retrieval results. We systematically ob-
tained more precise results when using the most persistent
Es as landmarks both for the 1st and 2nd similarity met-
rics, in condition pairs (B, C) and (D, E) respectively. We
attribute this precision to the generically better alignment
that was obtained forEs (see Section 4).

Regarding the dissimilarity estimation, it was observed
that the results obtained using the 2nd metric better matched
the expectations of observers. In particular, there was an
increase of the precision of retrieval, from condition C to
condition E as well as from B to D. These two pairs of con-
ditions differed only at the dissimilarity metric. From our
results, we conclude that the MDL metric leads to more pre-
cise results than the Procrustes. A reason for this is that the
2nd metric accumulates a small penalty for small disparities
of SB points whose correspondence has been established
and, in contrast, penalizes large disparities more. Thus, when
correctly aligned, two locally similar SB segments yield a
particularly small dissimilarity value.

6. Discussion

The two main reasons that caused this work to be focused
in the field of local methods for the comparison of SBs
instead of global ones, were: (a) the ability to explain the
retrieval results and (b) the ability of the alignment method
to facilitate partial matching and/or query enhancement.

Explaining the similarity results in terms of dissimilari-
ties along arc-length and in particular in terms of segments
appears to be an intuitive way to do so, since the perception
of silhouettes occurs in a parsed way (see Section 2.1). Us-
ing the proposed alignment and some dissimilarity metric, it
is possible to explain the dissimilarity estimation results as
the accumulation of the dissimilarities of segments instead
of points. For example inFig. 13, such a way is demon-
strated by averaging all the pointwise dissimilarities of two
segments whose correspondence has been established and
regarding this average as the dissimilarity value of these seg-
ments. The explanation as visualized appears to be mean-
ingful, because the alignment was fairly successful and,
thus, the averages approximate the perceptually judged dis-
similarities of segments for which correspondence has been
established.
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C, respectively. Estimated dissimilarity grows from left to right.
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9.

It has to be pointed out though that the SB segments ob-
tained by the proposed method do not correspond to parts,
as defined perceptually. We regard research in understanding
perceptual parsing as important for their retrieval, because
adjacent segments could be assembled into parts and form
predicates of a partial SB query. Thus one could search for
SBs that exhibit great similarity regarding two distinct SB
regions, which are segmented by an equal number of adja-
cent landmarks and arranged in the same order. A simpler,
but less automatic, way to do so is to perform this assembly
manually through a user-interface. For example, inFig. 13a
user could select the segments corresponding to the head of
the fish and search for SBs that exhibit increased similarity
just for the segments that correspond to these pre-selected
segments of the head. We regard that both the incorpora-
tion of cognitive knowledge in such an effort, as well as the
development of an appropriate graphical user-interface, re-
quire greater attention and have postponed such efforts until
a future paper. In terms of this research avenue, landmark
points have been proposed (most persistentEs) that are rel-
evant to the perceptual parsing of silhouettes, as this is sug-
gested to be mainly determined by cusps of large intrusions
or protrusions (see Section 2.1).

Clearly, the ability to locally compare SBs contributes
more to the facilitation of partial matching in a visually in-
tuitive way than global methods. Nevertheless, semi-global
approaches (e.g.[24]) exhibit a decreased dependence on
the establishment of correspondences, but are difficult to
intuitively generalize for partial matching and also cannot
explain the results in an intuitive way for end-users.

The ability to find corresponding landmarks as well as
segments in SBs can facilitate the computational optimiza-
tion of partial matching. In particular, when SBs are com-
pared in pointwise fashion and when one attempts to match
a given SB segment to some part of a whole SB the follow-
ing problem arises. The factor by which the description of
the given segment has to be scaled in order to match some
segment of the whole SB is unknown and, thus, one may
have to adopt a computationally complex solution. E.g. op-
timize a partial similarity metric over numerous scalings of
the given segment and different segmentations of the whole
SB. Instead, if point correspondences are assumed, the eval-
uated scalings can be restricted to those that (approximately)
align landmarks on the segment and the SB together.

7. Summary

In this paper, a method was proposed for the piecewise
alignment of SBs that yields more correct correspondences
than aligning the SBs by a linear scaling of the arc-length
parameterization of one of them. The method is based on the
correspondence establishment of landmarks and its perfor-
mance is optimized when most persistentEs are used, be-
cause their localization is more robust than that of other in-
trinsically defined points on the SB?s. These landmarks are
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Fig. 11. Top matches of condition A of the retrieval experiment presented in this section, for prototype #100. Arrangement of results as inFig. 9.
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Fig. 12. Top matches of condition E of the retrieval experiment presented in this section, for prototype #100. Arrangement of results as inFig. 9.
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Fig. 13. Calculation of dissimilarity per segment. The width of the line represents the level of similarity between the corresponding segments
of these two, aligned, SBs.

relevant to human visual perception and the results obtained
are intuitively comprehensible and explainable as well as
compatible to expectations of observers. It was also shown
that when using this alignment method to pointwisely com-
pare two SBs, more precise results are obtained than when
performing the same comparison but after linearly aligning
the SBs.

Naturally, the quantification of dissimilarity after the
pointwise comparison of SBs is important to the precision
of retrieval queries. The Procrustes and a MDL dissimilarity
metrics were tested to show that the latter is more precise.
Due to the generality of these metrics, it is asserted that
the proposed alignment method could contribute to meth-
ods that use more sophisticated arc-length parameterized
dissimilarity metrics.
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