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Abstract

Multi-Scale Singularity Trees (MSSTs) represents the deep structure of images in scale-space and
provide both the connections between image features at different scales and their strengths. In this
report we present and evaluate an algorithm that exploits the MSSTs for image matching. Two versions
of the algorithm is presented: an exact and an approximation. Several experiments are conducted to
empirically evaluate the MSST matching algorithm under image distortions. Further, the performance
of the MSST matching algorithm is measured on three databases: the ORL face database, magazine
covers, and the COIL database. Finally the performanceis compared with algorithms based on the Scale
Invariant Feature Transform (SIFT), and the Position of Catastrophes (CAT).

1 Introduction

The quantification of the differences or distances between images, and choosing the two closest images is
called image matching, and image matching is a fundamental task in a content-based image retrieval system.
The typical application is that the user presents the system with an image, and the system returns a ranked
list of some image from a database that are similar. Such application is becoming increasingly popular, and
examples of usages are: paper and television news archives, security systems, and home image databases.

This report has chosen to focus on two related works, algorithms based on the Position of Catastrophes
(CAT) [1] and on the Scale Invariant Feature Transform (SIFT) [2]. These are all based on scale invariant
features, where SIFT is the most developed on successful.

In [1], a set of catastrophes in scale-space and their reconstruction coefficients were used as an image
representation, which we call Position of Catastrophes (CAT). In this report we only discuss Gaussian scale-
space, which we just call scale-space, and the history of which is discussed in [3]. The image matching
problem was then translated into comparing sets of points in high dimensional space. The distances be-
tween point sets were calculated using the Earth Mover Distance (EMD) [4]. As the authors realized, some
catastrophes are more stable than others, hence in [5] unstable catastrophes were discarded from the image
representations. They argued that catastrophes are more stable in an area with a lot of structure. The amount
of structure contained in a spatial area around catastrophes can be estimated by the total variation norm.
More in depth discussion of the stability of catastrophes based on perturbation theory and noise propagation
was presented in [6]. Such stability measures are an integral part of the EMD algorithm.

In [2] and accompanying articles, a set of Scale Invariant Feature Transform (SIFT) were presented
for image matching. The SIFT features are calculated in scale-space as extremal points of differences of
Gaussian blurs. These are approximations of the scale normalized (spatial) Laplacian, and their extremal
points correspond to the points of blob-detection [7]. Out of all detected points, the SIFT algorithm selects
robust points by eliminating low-contrast points and edge points. Then local histogram of the gradient vector
is sampled non-linearly in a small number of orientation and magnitude bins. The SIFT is a set of features
for which an accompanying matching algorithm has been proposed [8]: Best-Bin-First (BBF). In this work
we will use the Earth Movers Distance instead, since it appears to have comparable performance on the
SIFT features.

None of the above mentioned image matching algorithms includes the information on relations or link-
ing between catastrophes in their image representations as opposed to the Multi-Scale Singularity Trees
(MSSTs) introduced in [9]. These novel trees and powerful multi-scale image descriptors represent the deep
structures of images and the relations of image features at different scales. Two kinds of MSSTs have been
proposed: Extrema-Based MSSTs and Saddle-Based MSSTs. The difference between the two MSSTs are
that in the extrema-based, the catastrophes are linked with extrema, while in the saddle-based, the catas-
trophes are connected with saddles. A study of the transitions of MSSTs under image perturbations [10]
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suggested that Saddle-Based MSSTs are more stable and potentially powerful as multi-scale image descrip-
tors.

In this report we will investigate the usefulness of Saddle-Based MSSTs for image matching. The image
matching algorithm, which will be described in detail in this report, uses only the information contained in
the energy matrices of MSSTSs, which are where the strengths of the linking between catastrophes are stored.
The topology of MSSTs may be derived from the energy matrix, and therefore the matching results using
the algorithm indicates the amount of image information that is captured by the linking of MSSTs.

2 Multi-Scale Singularity Trees

A Saddle-Based MSST is fully described by the saddles at the first-scale image, the catastrophes, and the
invariant energy matrix. Each element in an energy matrix is the energy calculated between a pair of saddles
at the first-scale image. The energy matrix of an MSST then contains the energies between all pairs of
saddles in the image.

In scale-space, increasing the scale parameter simplifies the image. Saddles and extrema disappear or
appear at annihilation and creation catastrophes, respectively, and the only generic catastrophe is pairwise
annihilation or creation [11]. Since all saddles and extrema except one extremum in an image eventually
disappear at annihilation catastrophes, saddles may all be uniquely associated with annihilation catastrophes
in scale-space.

The probability of two annihilation occurring at same scale is zero, and we may thus rank saddles
according to the scales of their associated annihilation catastrophes. This we do in a coarse to fine ordering.
The linking for each catastrophe c; in an MSST can be decided by looking for the saddle s;, which is
presents at the scale of the catastrophe ¢;, and calculate an energy measure. The catastrophe ¢; is then linked
to the catastrophe c; that is associated with the saddle s; with lowest energy.

The energy between a pair of saddle s; and saddle s; at the first scale image, ranked according to the
scales of their associated catastrophes, is the element E;; of the energy matrix.

oI(v(p))
Eij = velﬁfé / \/ |2 | oy 2dp, (1)

where I : Q — RT is an intensity image, v : [0, P] — 2 is a path in the image parameterized by p, such
that v(0) = s; and y(P) = s, I's,s; is the set of all possible paths the two saddles s; and s;, and « is a
weighting factor between space and image intensity. Note that (1) is independent of the parameterization,
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Figure 1: A magazine cover, its deep structure, and it’s energy matrix. Maximal-paths, minimal-paths, and
saddle-paths are displayed in red, green, and blue, respectively. The zero-crossings of the first derivatives I,
and I, at the first-scale image are shown in light blue and yellow, respectively.

In this report the o = 1 is set so that the energy matrix only depends on the intensity of the image and
is theoretically invariant under all image transformations that act on space, but not on the intensity of I.
Substituting o = 1 in Eq. (1) gets

oI(~(p))
Op

P
E;; = ’YEI%‘lsf; . /0 ‘ dp. 3)
In plain English, the energy E;;, where oo = 1 is the minimum sum of image intensity differences along
any possible paths from s; to s;. This is demonstrated in Fig. 1, which shows a magazine cover, the zero-
crossings of the first derivatives overlayed on top of the first scale image, the deep structure, and the energy
matrix. The first scale image appears flipped because it is viewed from behind so that the coordinate axises
agree with the right hand rule. The energy matrix is symmetric with zeros along its diagonal, and all its
elements are non-negative.

3 Coping with Creations

In 2D, creations are generic but the tree structure as discussed above assume that only annihilations occurs.
In order to preserve the tree structure of the MSSTs and to simplify the matching algorithm, creations and
loops in scale-space images are systematically removed. It has been shown in [12] that although creations
are generic, they might not be easily detected. Creations that form loops are short-lived, hence if we do
not sample scale-space fine enough along scale, then they may pass undetected. On the other hand, most
creations that do not form loops are followed closely by annihilations and slight perturbations will merge
them. Therefore we handle creations as follows:

1. Creations that occurs in critical-paths, where those paths can be traced down to the first-scale image,
are pairwise removed with the next annihilations on that path in the direction that moves to the first-
scale image. The top-most annihilations catastrophes on those paths are the catastrophes associated
with the saddles at the first-scale image.
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Figure 2: Creations are systematically ignored. Critical-paths that originate from creations are indicated by
yellow. Left and right panels show part of a deep structure before and after removals. Pairwise removals of
creation-annihilation pairs are indicated by color changes of the paths from yellow to blue.

2. Creations that eventually end at annihilations and form loops in scale-space with no connection to
saddles at the first-scale image are ignored.

In Fig. 2 is shown an example of loop removals and pairwise removals of creations and annihilations on
paths that can tracked back to the first-scale image. The figure shows examples of pairwise removals of
multiple creations and annihilations in critical-paths such that the highest annihilation in each saddle-path
is kept as the catastrophe associated with the saddle at the first-scale image. Likewise the figure shows that
creations resulting in loops are ignored.

4 Matching Algorithm

The distance between two images is calculated as a sum of the squared differences of the corresponding
elements in the normalized MSSTs’ energy matrices,

D(1,J) = (Ei(i,j) — Es(i, ), (4)

,J

where I and J are two images to be matched, and E; and E; are the corresponding energy matrices. Since
D is a linear combination of £, then D observes the same invariance as E, i.e. D is invariant under all
transformation of space, such as scaling, translation, and rotation. Because the ordering of catastrophes in
scale effects the location of rows and columns in energy matrices. A swap of ordering between catastrophe
c; and catastrophe c; in scale-space, corresponds to a swap of row 7 and row j, and column 7 and column 5 in
the energy matrix. In order to compute the minimal differences of these matrices taking into account also the
possible catastrophe reordering, the matching algorithm is based on the minimum under possible swapping.
In the following we will present two algorithms: the exact and the approximative matching algorithm.
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4.1 Exact Matching

Figure 3: The schematic diagram of the exact matching algorithm.

4.1 Exact Matching

The exact matching algorithm, shown schematically in Fig. 3, looks, among all permutations of the ordering,
for the catastrophe ordering that minimizes the distance in (4). Catastrophes corresponding to large scale
structures in images are usually located high in scales. Because the saddles are ranked according to the scales
of their associated catastrophes, part of the energy matrix that corresponds to large scale image structures
are located on the top left of the energy matrix.

We cannot assume that all catastrophes in one image will exist in an image to be matched. Hence, we
must be able to discarded or delete catastrophes in the matching process. This is achieved in the exact
matching algorithm by permutes a slightly larger sub-matrix than used in the distance calculation. For an
energy matrix with s catastrophes, the exact matching algorithm permutes the top-left sub-matrix with ¢
catastrophes, ¢ < s. Then, the computation of the distance is performed only on the p catastrophes, p < g,
allowing catastrophes that are not fit very well to be discarded.

Because the searching space grows exponentially fast, only a small numbers of top catastrophes can be
used. The experiment in the next section shows that 6 catastrophe is the most appropriate and 8 catastrophe
sets the practical limit.

Catastrophes, which are far apart in scale are less likely to have come form compatible image structure.
However, the scale-space of a flat image with i.i.d. noise will show a rich catastrophe structure, which is
completely unstable, in the sense that drawing another noise example from the i.i.d. noise will result in a
completely different set of catastrophes. Luckily, given a noise-level of the image, the statistical variance
of the catastrophe localization may be estimated [5, 6] and this may be used as a weighted penalty in the
catastrophe swapping.

We thus propose a matching cost based on Bayes’ Maximum A Posteriori,

PUIDP()

P(I]J) = PO

®)

where P denotes the a posteriori, the error, the prior, and the evidence probability distributions. When only
interested in the maximum of (5), then the evidence may be ignored to give,

rr :argmjixP(J]I)P(I). (6)
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4.2 Approximate Matching

Further, since the logarithm is a strictly monotonic function, the maximum of (6) is equivalent to minimum
of
I* :argmjin—logP(ﬂI) —log P(I) (7)

Since the distance measure between energy matrices is a squared measure, we may rewrite it as a logarithm

of a Gibbs distribution,
D(I
—log P(J|I) = % + log k, (8)

where k = ) exp w is the normalization factor calculated from all possible images K, and 7 is some

temperature variable. The variable k is constant for constant 7. In a similar manner we will design a prior
probability distribution. One possibility is to use

il log o; —logo;
~log P(I) = Y willog o —log oy )
1,JES K

where we constantly keep track of the original scale o; of every catastrophe, and relate this to the scale of the
catastrophe it has been swapped with, o;. The weighting factor w; may be used to control the movement of
catastrophes, such that setting w; high will imply that a catastrophe is unlikely to move. Finally the constant
c is a normalizing constant. Writing the cost of swapping catastrophe i and j as,

F(i < j) =2|logo; —logojl, (10)

we find that F" has two nice properties. Firstly it is scale invariant, i.e. scaling o with some constant » implies
that
F(i < j) = 2|log no; — logno;| = 2|log o; — log . (11)

Secondly, we only need not use the sequence of swappings performed for catastrophe 4 to have reached place
of catastrophe j, we need only the absolute logarithmic difference to its starting point. This is an advantage
algorithmically. The current implementation sets w; = 1 meaning that all catastrophes can move arbitrarily
far in scale.

4.2  Approximate Matching

To increase the number of catastrophes used in the distance calculations and to reduce the computational
time, we have devised the approximated matching algorithm, which is shown schematically in Fig. 4. Th
approximate matching algorithm uses a moving window strategy: starting from the top-left of the energy
matrix, the approximate algorithm places a moving window on top of ¢ catastrophes. Then, using the exact
matching algorithm, the approximate matching algorithm looks for the best catastrophe ordering among all
possible permutations within the window. Once the ordering has been found, the moving window is moved
to the right and down to the next position. The top most catastrophe in the window is assumed that it locates
at the correct position. The approximate matching algorithm continues in the same manner until all or a
given number of catastrophes are processed. By keeping the window size small, more of catastrophes can
be used in the distance calculation than in the exact matching algorithm.

\ersion: September 27, 2005 7



Figure 4: The schematic diagram of the approximate matching algorithm.

5 Experiments

Several experiments have been performed on three image databases to investigate various aspects of the two
proposed matching algorithms and compare these with matching algorithms from the literature. The image
databases used are the ORL face database [13], the magazine cover database, and the Columbia Object
Image Library (COIL) database [14]. The experiments are grouped as follows:

1. The matching of images of faces in the ORL face database. We investigate the effect of each tunable
algorithm parameters namely the number of catastrophes and the number of deletion (¢ — p). The
comparison between the exact matching algorithm and the approximate algorithm using different
number of catastrophes. The matching results using randoms points instead of the saddles are also
presented to demonstrate the richness of saddles. Finally, the performance of the matching method on
the database is presented and compared with two other methods.

2. The magazine cover database is used in the matching of transformed and noisy images. A magazine
cover is scaled, rotated, and added with random noise and the distance between the distorted image
and the original image is computed. This experiment demonstrates the effect of each image transfor-
mations and noise on the distance measured. Finally, the performance of the matching method on the
database is presented and compared with two other methods.

3. The matching of images selected from the COIL database. Images of real-life objects viewed at
different angles are used in the experiment. The experiment demonstrates how robust the matching
method against scaling and 3D view point changes. The performance of the matching method on the
database is presented and compared with two other methods.

5.1 ORL Face Database

In Fig. 5 is shown images of 10 individuals selected from the ORL face database. For each person, 10
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5.1 ORL Face Database

Figure 6: There are 10 images for each individual. Images are captured for each individual with various
facial expressions, different hair styles, with/with out glasses, etc. The red box indicates the key image for
the set.

images are captured as shown in Fig. 6 for person number four in the selected group.

The matching results of the exact matching algorithm using different number of catastrophe are shown
in Fig. 7. The matching performance increases with the number of catastrophes used increases. For this
particular image database the matching performance starts to level out when 8 catastrophes are used. The
matching results using random points instead of saddles is also presented for comparison. The deletion
number of 1 was used in the experiment.

In Fig. 8 is shown the impacts of deletions. The positive effects of deletions only start to be visible when
at least 6 catastrophes are used in the distance calculation. With lower number of catastrophes, the deletions
might actually worsen the matching result. This is because, for a very small number of catastrophe, the
amount of image information contained in each catastrophe is proportionally large and it offsets the positive
effects of letting go unfitted catastrophes.

When more than 6 catastrophes are used in the distance calculation, the exact matching algorithm be-
comes very slow. Using the approximate matching algorithm, more catastrophes can be included in the
distance calculation. In Fig. 9 is shown the matching performance of the exact matching algorithm com-
pared with the approximate matching algorithm using different number of catastrophes. The approximate
matching algorithm uses window size of 6 and 1 deletion.

In Fig. 10 is shown the time used in second, plotted in logarithmic scale, for the exact matching algorithm
and the approximate matching algorithm to complete the distance calculations on the ORL face database in
order to produce the results in Fig. 9. The computation time used for exact matching algorithm increases sig-
nificantly when more than 6 catastrophes is used. The computation time used for the approximate algorithm
on the other hands grows linearly with the number of catastrophes. The approximate matching algorithm
uses window size of 6 and 1 deletion. Note that using 10 catastrophes, the performance of the approximate
matching algorithms already beats that of the exact matching algorithm using 8 catastrophes, and spends
less than 2—10 the computation time in comparison to the exact matching algorithm.

The matching results of our algorithm compared with the SIFT key-points (SIFT) and the positions of
catastrophes (CAT) are shown in Fig. 11. The SIFT key-points and catastrophe positions in CAT are matched
using the Earth Mover Distance (EMD). The mass of each feature point is set equally to % where n is the
number of feature points. In this particular experiment, our algorithm performs relatively poor compared
with the other two methods.
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5.1 ORL Face Database
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Figure 7: Matching results of the exact matching algorithm on the ORL face database using different number
of catastrophes.
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Figure 8: The effects of the deletion on the matching results. The results are produced using exact matching
algorithm.
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5.1 ORL Face Database
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Figure 9: Matching results of the approximate matching algorithm compared with that of the exact matching
algorithm using different number of catastrophes. For the approximate matching algorithm, the window size
of 6 catastrophes is used and both use 1 deletion.
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Figure 10: Computation time used by the exact matching algorithm compared with that used by the approx-
imate matching algorithm to produce the results in Fig. 9.
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5.2 Magazine Database

2 [ 3 [ 4 [ 5 | 6 [ 7 [ 8 [ 9 | 10 [Ke
106-1 || 87% | 765% | 66.67% | 60% | 56.8% | 52.671% | 47% | 42.5% | 39.22% || 54%
10-7-1 || 89% | 80% | 69.67% | 63.5% | 58.4% | 53% | 47.43% | 43.63% | 39.89% | 54%
CAT || 97% | 96% | 92.33% | 90.5% | 854% | 81.83% | 77.5/% | 73.63% | 69.22% | 82%
SIFT || 100% | 100% | 100% | 99.75% | 97% | 94.5% | 92.86% | 91.38% | 89.33% || 91%

Figure 11: Matching results of three different methods on the ORL face database. Our method uses 10
catastrophes, 1 deletion, and with the window size of 6 and 7 respectively. The first column are the percent-
ages of the second image being matched correctly, the second column are the percentages of the second and
the third images being matched correctly, etc. The first image is the inquiry image and is always matched
correctly. The last column gives the results of matching all faces only to the key image of each image set
(the first sample). The matching results of SIFT and CAT are also provided for comparison.

The Journal of

Photeranty

Figure 12: The original 11 magazine covers in the magazine cover database. Various kinds of objects can
be found including typed letters, man-made objects, natural scenes, and artificial graphics.

5.2 Magazine Database

In Fig. 12 is shown the 11 magazine covers in the Magazine cover database. Various kinds of objects can be
found including typed letters, man-made objects, natural scenes, and artificial graphics. We will use these
images to evaluate the proposed algorithm’s behavior under various image distortions. Three kinds of image
distortions will be discussed: rotation, scaling, and noise.

In Fig. 13 is shown the Piggy magazine cover rotated at different in plane rotation angles starting from
0° to 90° counterclockwise. In Fig. 14 is shown the Piggy magazine cover scaled at different scaling factor
starting from 0.5 to 1.0. Fig. 15 shows the Piggy magazine cover with noise added at different levels starting
from 1% to 10%. 1% noise means that each pixel in the image is added with random number drawn from
[—0.01, 0.01], when the pixels in the image are valued between |0, 1]

The results of matching distorted images of different kinds to their original images are shown in Fig. 16,
Fig. 17, and Fig. 18. It is noteworthy to mention that the impact of image rotation is periodic. The error
is at the highest point, when the image is rotated at approximately 45°. In contrast, the error is very small,
when the image is rotated at multiples of right angles. This is due to the fact that digital images are sampled
on rectangular grids, and when the energy map calculation is implemented using rectangular grids, then the
result inevitably will be most inaccurately at rotation angles near 45°.

Total of 10 images are produced from each of every magazine covers in the magazine cover database by
performing the mixed uniform scaling and rotation. The original image is rotated at various angles then the
rotated images are scaled so that the width of the images remain constant. In Fig. 19 is shown an example
of images produced from the Archeology magazine cover. The set of 11 x 10 transformed magazine covers
are then used in the matching experiment. The Matching results of our method using different number of
top catastrophes compared with the other two methods are shown in Fig. 20. SIFT and our method perform
very well with SIFT performing slightly better. CAT performs poorly because positions of catastrophes are
not invariant to severe translation, rotation, and scaling.
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5.2 Magazine Database

Figure 13: The Piggy magazine cover at different rotation angles from 0° to 90°. The original image is
indicated by its red border.

Figure 14: The Piggy magazine cover at various levels of scaling from 0.5 to 1.0. The original image is
indicated by its red border.

Figure 15: The Piggy magazine cover at various levels of noise added. The original image is indicated by
its red border.

Version:; September 27, 2005 13



5.2 Magazine Database
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Figure 16: The effect of rotation. The distances between rotated images at different rotation angles and the
original image.
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Figure 17: The effect of uniform scaling. The distances between scaled images at different scaling factors
and the original image.
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5.2 Magazine Database
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Figure 18: The effect of random noise. The distance between the images with random noise added at
different levels and the original image.

ARCHAEGLOGY

Figure 19: For each and every 11 original magazine covers, 10 image are generated by performing mixed
rotation and scaling at various levels. The original magazine cover is first rotated then it is scaled so that the
width of the image remains constant.

2 [ 3 [ 4 [ 5 | 6 [ 7 [ 8 [ 9 | 10 [ Ke
86-1 || 98.18% | 97.73% | 96.36% | 925% | 90% | 85.01% | BL56% | 77.05% | 72.42% | 76.36%
10-6-1 || 100% | 99.55% | 98.18% | 96.82% | 95.09% | 93.18% | 90.13% | 85.9% | 80.51% || 81.82%

CAT || 57.27% | 49.09% | 39.09% | 31.82% | 28.73% | 27.12% | 24.81% | 22.61% | 20.71% || 24.55%
SIFT 100% 100% | 99.70% | 99.77% | 99.45% | 99.24% | 99.22% | 97.05% | 95.15% | 100%

Figure 20: Matching results of three different methods on the transformed magazine cover database. Our
method uses 8, and 10 top catastrophes, 1 deletion, with the window size of 6 catastrophes. The first column
are the percentages of the second image being matched correctly, the second column are the percentages of
the second and the third images being matched correctly, etc. The first image is the inquiry image and is
always matched correctly. The last column gives the results of matching all distorted magazine covers only
to the key image of each set (the original image). The matching results of SIFT and CAT are also provided
for comparison.
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5.3 COIL database

Figure 22: The 10 selected views of an object from the COIL database. The key view is the view of 20° and
is indicated by its red border.

5.3 COIL database

The Columbia Object Image Library (COIL) database consists of images of various real-life objects captured
at different 3D view points. The objects are rotated at intervals of 5°. The images are also subjected to
scaling.

Fig. 21 shows the 10 selected objects from the COIL database. For each object, images of 10 different
3D view points between 0° and 45° are drawn from the database. In Fig. 22 is shown the 10 selected views
of an object in the COIL database. The key image is indicated by its red border.

In total, 10 x 10 images selected from the COIL database are used in the experiment. The matching
results of our algorithm, SIFT and CAT are shown together for comparison in Fig. 23. All three methods
performs very well especially SIFT, with our method slightly lagging behind.

6 Discussions and Conclusions

For our method, the matching of ORL face database is slightly harder than the matching of the magazine
cover database and the COIL database. This is due to the high similarity between sets of objects. Faces all

| 2 [ 3 [ 4 | 5 [ 6 [ 7 | 8 [ 9 | 10 [ Key

86-1 || 96% | 925% | 90% 84% | 78.8% | 72.67% | 68.14% | 62.38% | 58.56% | 70%
10-6-1 || 96% | 92% | 88.67% | 83.25% | 77.2% | 70.83% | 64.28% | 59.38% | 55.11% || 72%
10-8-1 || 97% | 93% 87% | 83.25% | 78% | 73.17% | 67.71% | 63.25% | 58.33% | 76%
CAT || 100% | 99% 97% 95% | 90.6% | 85.67% | 81.29% | 76.13% | 71.78% | 89%
SIFT || 100% | 100% | 100% 100% | 100% | 99.83% | 99% | 98.13% | 96.33% || 100%

Figure 23: Matching results of different methods on the COIL database. Our method uses 8, 10, and 10
top catastrophes with window size of 6, 6 and 8 catastrophes, respectively. All of which use 1 deletion.
The first column are the percentages of the second image being matched correctly, the second column are
the percentages of the second and the third images being matched correctly, etc. The first image is the
inquiry image and is always matched correctly. The last column gives the results of matching all views of
all objects only to the key view of each object. The matching results of SIFT and CAT are also provided for
comparison.
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look quite similar, and they become even more similar, when they are blurred.

The possibility of trading accuracy for performance is naturally provided for our method. Catastrophe
located at lower scales can be simply discarded, if response time is the most critical factor with the price of
lower recognition rates.

For small database, using only a few top catastrophes are enough for our matching method to produce
good matching results. As the number of catastrophes used in the calculation of the distance increases, the
method will have a better chance of discriminate in a large database, but it will also be more sensitive to
image distortions and occlusions.

The algorithm is currently in its very first steps. There are many possibilities of improvements. One
possibility is the adaptive approximate algorithm, where the window size can grow or shrink adaptively,
while keeping the scale difference between the highest and the lowest catastrophes in the window under
a tunable level. The adaptive approximate algorithm will not only reduce the computational time but also
likely to improve the matching results, since it will give options to the algorithm to delete catastrophes
located high in scale, when appropriate.

The accuracy of the energy map generation is a very crucial part for good matching results. As Fig. 16
and Fig. 17 show, the accuracy of the current implementation, can still be largely improved, and we expect
this to substantially improve the matching results.

It is interesting to note that, in every experiments performed in this report, SIFT and CAT use every
piece of information they can collect form the images for their calculation of the matching distances. SIFT
uses in general more than 100 x 128 numbers to represent an image. CAT uses in general more than than
50 x 3 numbers. Due to the limitations of our relatively naive searching in a large space, our method uses
only up to 10 x 10 numbers in the experiments. In spite, we find that the matching results are comparable.

Earth Mover Distance (EMD) [4] is a very powerful and flexible method for point-set matching, as we
hopefully demonstrated by applying it for the matching of SIFT key-points and the positions of catastrophes.
Using Multidimensional Scaling (MDS) [15], it is theoretically possible to embedded the MSSTs’ energy
matrices into sets of points in a high-dimensional euclidean space, where the distances between those points
approximates the energies. We then can use EMD to compute the distance just like what we did on SIFT
key-points and catastrophes’ positions. This will allow the utilization of the whole energy matrix and the
matching results should be improved considerably.

For image matching and similar applications, the knowledge of only the connections of image features
at different scales is insignificant. What is significant, is the knowledge of the strength of these connections.
Fortunately, MSSTs provide us with both. With these unique advantages, we believe that MSSTs will also
be found useful for many other applications. Currently, we are investigating the usefulness of MSSTs for
detecting and locating sub-objects in images
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