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1
Origins

As a former passionate chess player I often wondered about how the perfect
game of chess would be. Would white win because of the advantage of mak-
ing the �rst move, or would it not be enough? Maybe it was the interest in
nonlinear phenomena in nature and their physical description which led me to
the belief that there is not only one ultimate and perfect game of chess - but
many. And they will all lead to a draw.

The idea was that maybe, if one could make a diagram of all the possible
perfect games of chess, and trace them move by move on a sheet of paper, the
resulting structure would have a \fractal" appearance. Every time a player
makes just the smallest error, the game will inevitably fall o� the drawish path
and end into a disastrous defeat. Nevertheless, there will be an innumerable
number of games leading to a draw and these innumerable games will have in-
numerable di�erent histories and endings. A pat, an ending with a King versus
a King, or a perpetual check. Only the extrinsic rules of human impatience -
like the \50 moves rule", or the \three times perpetual check rule" - will let
the games end. If these rules were not invented, the perfect games would still
be played if started at the beginning of the universe, and they would contain
the most strange appearances and the most simple oscillatory patterns.

Equally, if one could make a diagram of all the possible molecular combi-
nations which would not end in some kind of thermal equilibrium or energetic
death, their resulting patterns (if they were drawable!) would also have a self-
similar and fractal shape and show the most strange and peculiar structures -
including, well, yes, life and pulsars.

How can it be that carbon atoms are necessary for everything we know
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as life? Maybe it is just a coincidence; a particular local realization of a yet
drawish game on the universal chess board. Or, maybe, it is the only possible
variant, the perfect game with only one outcome, whatever that will be. But
in any case, the sole necessity of carbon atoms in the architecture of living
organisms contains information: the information that they work best. Neither
iron-, silicium- nor sulfur atoms can combine the way carbon atoms can; the
way nucleotides and amino acids can; the way cells can.

However, just because these materials are of particular interest for the evo-
lutionary process, it is not automatically given that life has started with them.
The initial accumulation of complex structures which could overcome a defeat
in time, could equally well consist of other materials than proteins, sugars and
heterocyclic bases. They could have been sulfur structures, or, as in the theory
of Cairns-Smith, simple clay crystals that grow and break continuously and
carry along defects with them, which, in turn, would survive and be successful.

But the very mechanisms that washes away all these possibilities which
could have worked biochemically - sulfur structures or clay crystals - must con-
tain some criteria accessible for a structural scienti�c investigation, since this
\shaking" or \natural selection" only leaves behind the atoms and molecules
that are the most exible and exchangeable. One immediate thought is that,
if exchangeability and exibility are the decisive criteria for a winning design,
it is so because the all-important property is not the substance, but the form.
And form is information. One of the main dogmas, the sine qua non of evolu-
tion, is the continuity of information between the generation, regardless of the
material which carries the message.

How should we characterize this intricate drawish path called evolution?
In the modern history of theories for the origin of life, the emphasis has been
almost exclusively on \mechanistic" viewpoints where the investigations have
focused on the material only. Experiments and chemical plausibility were the
main weapons for their formulation. This led to the formulation of evolutionary
theories of \the primordial soup" due to Stanley Miller, or to the theory of the
\prebiotic pizza" due to G�unther W�achtersh�auser or to the complex mechanics
of an \RNA world".

But in the last few decades, more \structuralistic" approaches have been
developed, where the emphasis not so much has been on the actual chemical
setup, but on the architectonic principles, the mathematical distribution func-
tions, the self-organization and the emergent networks of interactions upon
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Figure 1.1: \What! You are giving up your Queen? Cheer madness!" \Hmm..., I thought
it was a draw."

which natural selection acts.

1.1 Is the world an in�nite soup?

The still dominating scienti�c theory for the origin of life was formulated in the
middle of the 20th century. It was a time, where the chemical and biochemical
sciences went from one triumph to another, and it was therefore only natural
also to reach for an answer of the most ultimate question a scientist from
these �elds can ask: How did it all begin? What de�nes life and under which
circumstances can it arise?

As every true chemist would do, the answers were sought to be found from
the knowledge and methods a chemist has and uses: Huge asks were �lled
with diverse chemicals and gases one thought were typical ingredients in the
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atmosphere on earth several billions of years ago (such as methane, ammonia,
water and carbon dioxide) and they became then exposed to intense outer
inuences such as violent changes in the temperature, shaking and lightning
and thunder. When the subsequent identi�cations of the remaining chemicals
showed traces of organic material, one felt to be on safe ground: the theory
of a Prebiotic Soup was born. Of course, there were lots of loose ends and
unanswered questions, but these were seen as secondary problems which, in
time, could be explained without any further troubles.

But time has shown that these loose ends were so loose that they instead
became used as starting points for completely new and di�erent theories for
the origin of life. The primary problems were the following:

� The amount and type of organic material in the lightning generated slimy
pond was highly limited. Although several di�erent amino acids were
formed (in small concentrations), many \vital" molecules such as ribose,
nucleotides (especially pyrimidines) and lipids refused any acquaintance
with the \broth".

� Even though there were formed many organic substances, subsequent
reactions destroyed them again. Especially the ultraviolet light from the
sun works as an e�ective killer of most organic material.

� Every system of organic molecules, which in a most super�cial sense could
be de�ned as an autonomous life form, needs to have a high degree of
internal dependencies where the molecules presuppose each other. This
\hens and eggs"- problem show itself most clearly in the mutual inter-
dependency of nucleic acids and proteins. The �rst can store hereditary
informations, while the last reads and expresses this information through
enzymatic activity. None of them can function without the other.1

� This last fact points towards theories which include a kind of co-evolution
of molecules, but even that is utmost problematic according to several
investigations. These investigations, which necessarily had to be more
abstract in nature and have been done with the help of computer models
and mathematical calculations, tell that the biggest problem is stability

1The idea of an \RNA world", where RNA functions as both an information carrier and
enzyme, has been suggested as a road away from this problem, and, in fact, the RNA-world
theory is gaining more and more advocates.
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(at least when the starting point is common mass action reaction kinet-
ics, where concentration changes are described by di�erential equations).
The smallest perturbation can tip the balance towards the ordinary heat
death.

1.2 Or is it a giant chess board?

Since this result seems to be in contradiction with our empirical knowledge,
the error might be our way of looking at the problem or maybe the way we
make our models.

First of all there is this problem with the di�erential equations. Chemists
like to use di�erential equations because their molecules normally are in large
concentrations, so that the mathematical description of in�nitesimal concen-
tration changes is appropriate. But in molecular evolution, the variation in
architecture among the similar molecules is often much higher than their in-
dividual concentrations. This di�erence becomes even more signi�cant under
the operation of natural selection since the di�erences in success of di�erent
molecules might be easier describable (at least on a computer) on a discrete
landscape of possibilities, where every single \molecule", or \species" acts on
a set of discrete rules and is traced separately through the phase space. The
recent explosion in the use of cellular automata and genetic algorithms on this
kind of problems supports this suspicion. The discretization of the in�nite soup
makes it easier to focus on the combinatorics - like on a giant chess board.

Such a more structural-dynamical approach has brought together scientists
from many di�erent �elds, such as game theorists, chaos theorists, neurologists,
people in population dynamics, economy and also physical chemists with inter-
est in phase transitions and dissipative structures. This new, cross-disciplinary
�eld has by some people been called the science of complexity because it tries
to describe so many di�erent and complex phenomena - from evolution to the
stock market - from the same point of view. If such \general" models exist,
and they have been shown to exist, they are maybe some good candidates for
a new understanding of the structural-dynamical principles of the living world.
Of course, the approach is very general, but still, there are common trends.
Especially when looking at some of the statistical distributions of such phe-
nomena, one often �nds similar behavior in very di�erent systems - normally
expressed as power law relationships, which are the proper and characteristic
mathematical equations for self-similar structures and fractals in nature. How-
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ever, the question is still open, whether these similar statistical properties -
the power laws - of such a large and heterogeneous group of real phenomena
are a result of a common, fundamental and yet unknown mechanism (we could
call it an URO - an unidenti�ed random object), or they just are some peculiar
stochastic e�ects without any common mechanisms, and maybe describable by
some (yet unknown) kind of (generalized) central limit theorem.

The present thesis tries to continue on this path. It develops some new mod-
els which are general enough to encompass previously used models in evolution
such as the NK model due to Kau�man and Johnson and the Lotka-Volterra
equations in ecological theory. The emphasis is on one side on the actual be-
havior of the models, but on the other side, the emphasis is also on the resulting
distribution functions of these models and their relation to critical systems and
percolation theory (So, between the lines there will be an ongoing discussion
for and against the appropriateness of describing natural phenomena through
distribution functions only).

1.3 Outline of thesis

The thesis consists of three parts. The �rst part deals with the generation
of networks of molecules which are selectively neutral. We will investigate a
model, which was developed by Mark Newman and myself during my stay at
the Santa Fe Institute in New Mexico in the summer 1997. Without the bright
ideas of Professor Mark Newman, this model would newer have been a part of
the present thesis and I thank him for the opportunity to participate in this
(still ongoing) project.

The second part consists of a new model of self-organizing food webs in
species communities. Although many stimuli from friends and colleagues (Mark
Newman and Axel Hunding) have moulded the model into the present form
and sharpened my ideas about it, the main core of the model is homemade. It
is never easy to learn about and get absorbed into an entirely new discipline of
science, but in the case of ecological modeling and food web theory, it has been
an exiting and fruitful experience, and to my surprise (but still only partial
knowledge), there seems not to exist any previous model which lets food webs
develop themselves from totally random initial conditions as this present model
does.

The third part discusses the properties of the two models in terms of critical
phenomena, percolation theory and the notion of self-organized criticality. We



1.3 Outline of thesis 7

will make some analytical investigations of a percolation threshold in the model
for neutral evolution, and we will also discuss whether the food web model can
be said to be self-organized critical. There will emerge a partial yes to this
question, but the last chapter will caution the reader not automatically to
identify any power law relationships in the models with criticality nor self-
organization. Formulated in terms of a simple model of evolution, we will
�nd that such self-similar distribution functions are also a result of simple
tabulation e�ects and stochastic regularities.





Part I

Neutrality in Evolution





Introduction

When browsing through shelves of popular books on evolution, one can be
quite sure that the neutral theory of molecular evolution is not mentioned at
all. And if it's mentioned anyway in one of the books, then only as a dim fact
from the category of technicalities, not worth to bother about any further.

But history has shown that this is not true, and the real reason for the
missing popularizations of the neutral theory is to be found in its mathematical
and abstract nature. When an author would do the work and explain it to the
reader, he might fear that the only result would be a severe headache - for
him and the reader. Instead, the shelves are �lled with the traditional neo-
Darwinian body of theory, and the reader sees them explained as if they were
the sole truth about matters of gene substitutions, advantageous mutations,
and adaptive processes. All these phenomena are all regarded as a consequence
of one force: Natural Selection, which inevitably will improve the �tness of the
organism or the population.

In reality, this picture is too naive, at least in two points: The �rst observa-
tion from the neutral theory due to Motoo Kimura says that a population with
many di�erent genetic con�gurations among its members will be much more
susceptible to random genetic drift (followed by extinction or �xation) rather
than to adaptive mutations: In the next chapter in section 2.6 on page 23 we
will de�ne random genetic drift and show that even slightly deleterious muta-
tions can have a �nite probability of becoming �xed in the population. The
other major point of the neutral theory is the problem of polymorphisms, that
is, the fact that a typical population of one species consists of many individuals
with di�erent genetic makeups.

This fact is not solely explainable by some kind of \balancing" or \stabiliz-
ing" selection (this concept will be explained in appendix B), as maintained by
the neo-Darwinian (or selectionist) point of view. Polymorphism is on the con-
trary a purely stochastic e�ect, representing a transient ensemble of an ongoing
dynamical process of mutational input and a concomitant random extinction or
�xation of genes. Rather than describing gene substitution and polymorphisms
by two di�erent mechanisms (successful mutations and balancing selection), the
insights from the neutral theory explains that they are but two facets of the
same phenomenon - namely neutrality (Kimura and Otha, 1971).
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The consequences for the overall perception of evolution and evolutionary
theory are profound: the deterministic slant in the neo-Darwinian theory is
replaced by a general recognition that chance plays a major part in evolution,
and that random genetic drift might be equally important as is natural selection
for the continuous evolution of new and diversi�ed species.

There are other important consequences of neutrality: one is the fact that
neutrality can help populations to become more robust against environmental
changes, an idea already mentioned by Kimura (Kimura, 1983), although the
argument was without any support form his equations. Neutral mutations in
this context are de�nied as mutations in genes which do not change the �tness
of the organims.

In e�ect, neutral mutations have the tendency to create a broad ensemble
of equally �t mutants in the population, which in turn can function as an
e�ective bu�er against changes in living conditions, because there is a greater
probability that some of the mutants are immune to such changes. Or even
better: if one or several more advantageous mutants are found, the population
ampli�es quickly around the best mutant by normal adaptive selection.

In essence, this argument relies on the idea that neutrality induces quicker
and better evolutionary optimization so that it can help populations to attain
higher �tnesses. In this sense, neutrality and random genetic drift might be
a much more edifying principle for evolution than expected. It is precisely
this idea, which will be the central theme of the following two chapters. We
will develop a new model for neutral evolution, which is able to substantiate
these ideas in terms of simulations and explicit relations between �tness and
neutrality (and other parameters) of an evolving population.

A natural questions would be: The idea of selective neutrality has a long
history, so why hasn't this been done before? The primary reason is that,
despite many decades of hard work, we still have a rather poor understanding
of the way in which genomic sequences map onto molecular structures, and
hence onto a �tness measure (the \�tness" of a molecule is seen as a function
of its \form": its ability to perform certain functions in the working organism
in order to reproduce successfully). This is not only the case for molecules,
but also for entire organisms, where the fundamental problem is that of cal-
culating the mapping from a genotype to a phenotype. Although most of the
new mutations are mainly deleterious, most changes in an organisms genome
have no immediate e�ect on its reproductive success, because the mutations
are quickly removed from the population. The bad mutations contribute nei-
ther to the rate of substitution nor to the amount of polymorphisms within
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populations. But the problem remains: how to assign �tness values to the
di�erent mutants 2?

Our solution is that of abstraction: We will construct a mathematical model
of neutral evolution which sidesteps the problem of incorporating the chemistry
of real molecules in our calculations, so that the properties of the system can
be investigated more quickly and in better detail than it is possible with, for
example, RNA structure calculations. We will use a variant of the NK model
proposed by Kau�man (Kau�man and Johnsen, 1991; Kau�man, 1993), which
has the pleasant property of generating in�nite complex combinations of �tness
values, so that we can expect it to mimic real biological systems in some regimes
of the model parameters.

In the model, structures (our phenotypes) appear as contiguous sets or
\neutral networks" of sequences possessing the same �tness. We will analyze
the properties of the generated �tness landscape, and show that for appropriate
choices of the parameters, this model can be used to mimic real biological
systems such as RNA's and proteins. We also �nd that evolving populations
can reach beyond low local �tness peaks by utilizing the properties of these
percolating nets. All this is done in chapter 3.

Before this however, chapter 2 will be a short repetition of the standard cat-
echism in neo-Darwinian theory, that is, a brief discussion of some of the most
fundamental mathematical aspects of natural selection. It is divided in two
major categories, namely the deterministic approach to population dynamics
through di�erential equations, and the second (more realistic) stochastic ap-
proach of random genetic drift and neutrality. Also two models representing
more recent development of these two complementary discoveries, are shortly
discussed: The quasi species model by Manfred Eigen and the NK model due
to Stuart Kau�man.

2in the literature, genetic mutants are called alleles when one talks about organisms;
nucleotides when talking about RNA or DNA, and amino acids in the case of proteins.
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2
Law and Chance in

Molecular Evolution

2.1 Natural Selection

Natural selection is de�ned as the di�erential reproduction of structurally dis-
tinct individuals within a population. The individuals might be species, organ-
isms, molecules, clays or other agents in the universe (or even the universes
themselves), and the di�erences between the individuals might be caused by
variable genetical, conformational or some other (variable) structural units - as
long as they carry the information needed for the individual to survive. If the
individuals of a population would not di�er from one another in such traits,
they would not be subject to natural selection.

Reproduction is the ability of these information carriers to make copies of
themselves by creating some kind of auto-catalytic growth. In molecular evolu-
tion one normally talks about \replication" instead of reproduction, since the
information contained in these molecules (such as RNA or viruses) is directly
used for the synthesis of a copy of themselves.

2.2 Fitness

The \di�erential reproduction", can then be quanti�ed by a number w, called
\�tness", which tells us something about the ability of an individual to sur-
vive and reproduce. Of course, this quanti�cation can only be measured as
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a relative increase or decrease of abundance of this individual compared to
other individuals. It can never be an absolute measure of evolutionary success.
Nevertheless, it is a nice trick, because it makes it possible for us to formulate
simple theories, which are useful for the understanding of the dynamical change
in genetic con�gurations within populations undergoing natural selection.

2.3 Selection equations

We can look at the simplest class of such deterministic models derivated from
these assumptions: We assume that the �tness of an individual i with ni copies
can be expressed by a single number wi. The growth of this individual in time
can then be expressed by the auto-catalytic di�erential equation

dni(t)

dt
= wini(t) (2.1)

so that the Malthusian growth rate wi can be viewed equivalent to the �tness
of the individual (as a �rst order approximation). But since mutations have
created many di�erent information carriers, we have a population of such in-
dividuals with di�erent �tnesses. What is the relative success of individual i
compared to all the others? First we de�ne the relative population variables1

xi(t) =
ni(t)P
k nk(t)

; 0 � xi � 1;
X
k

xk(t) � 1

so that the change of xi in time is determined by

dxi
dt

=
d
h

niP
nk

i
dt

=

P
nk
�
dni
dt

�� ni
�
d
P

nk
dt

�
(
P

nk)
2

=
niP
nk
wi � ni

(
P

nk)
2

X
wknk

= xi

"
wi �

X
k

wkxk

#
(2.2)

1see also appendix C
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where the sum within the brackets is the (time dependent) average �tness of
the population

�w(t) =
NX
k

wkxk(t) (2.3)

The equation 2.2 is called the �rst order continuous time selection equation, or
�rst order replicator equation and is equivalent to the Lotka-Volterra equation
used in ecological population dynamics (see part II).

The second order continuous time selection equation or second order repli-
cator equation is analogous to equation 2.2, except that the �tness wi of an
individual is de�ned as the linear addition of all contributions in the population
vector with which the individual interacts:

wi(x) =
NX
j

aijxj (2.4)

where the aij's are the elements of an interaction matrix which de�nes the
strength and type of interactions among the individuals (remember that the
\individuals" not need to be organisms; they could also be di�erent alleles on
a chromosomal locus or other enities subject to natural selection).

In many cases this de�nition of an individual �tness is seemingly a more
reasonable assumption, since the �tness of an individual not only may be de-
pendent on its own growth rate, but also on the gain of interaction with other
individuals in the population (for instance sexually reproducing organisms have
diploid genomes with two interacting alleles at each locus. The �tness is then
a function of the kind of interaction of the two alleles at that chromosomal
locus, see appendix B for examples of that.). In this case, the second order
replicator equation becomes

dxi
dt

= xi

 
NX
j

aijxj �
NX
ij

aijxixj

!
(2.5)

The replicator equation 2.5 has also been used to model prebiotic evolution
of primitive RNA replicators. The theory, known as the hypercycle equa-
tion, was due to Manfred Eigen and Peter Schuster (Eigen and Schuster, 1997;
Eigen et al., 1981). The hypercycle equation is a special variant of 2.5, where
the indices i = 1; 2; :::; n are counted modulus n, so that x0 = xn. The xi's are
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RNA fragments that catalyse each other's replication in a closed feedback loop
in order to accumulate molecular information.

The two selection equations 2.2 and 2.5 go back to the pioneers of popula-
tion genetics, Robert A. Fisher (Fisher, 1930), J. B. S. Haldane (Haldane, 1932)
and Sewall Wright (Wright, 1967; Provine, 1986). They used their discrete
counterparts as the fundamental equations for the gene frequencies in a popu-
lation, so that, when the selective di�erences were small, and the generations
were overlapping, the continuous versions could be used as a simplifying ap-
proximation. In appendix B these rather general equations are exempli�ed
for the case of one locus and two alleles, leading to the important concept of
Hardy-Weinberg equilibrium. The di�erent modes of selection; codominance,
overdominance (that is \balancing" seletion) and complete dominance are also
discussed there.

This kind of \population thinking" has been the backbone of the neo-
Darwinian synthesis, and it has been extremely successful. It has cleared
the understanding of the conditions under which slightly advantageous mu-
tant alleles at some locus in the genetic makeup of an organism might invade
a population. The mathematical analysis has concerned the e�ects of popula-
tion size, homozygotic or heterozygotic selection, linkage of genes, sex, e�ects
of recombination, etc.. The success has led to the general belief that the fun-
damental unit of selection are the genes, and that the resulting organisms,
the phenotypes, just are necessary vehicles for the genetic information to be
transmitted through time.

2.4 The fundamental theorem

In addition, Robert A. Fisher could show (Fisher, 1930) that the mean �tness
of a population subject to natural selection always is increasing - so that the
population always is \in progress" so to speak. From equation 2.5 we can see2

2This is maybe not so easy to \see" anyway, but in appendix C there is another formu-
lation of, how to arrive at a general replicator equation: the rate of increase of one species
is given by the di�erence in its own �tness and the average �tness of the whole population.
Therefore is the right hand side sum within the brackets of both the equations 2.2 and 2.5
always representing the average �tness of the population.
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that the mean �tness �w(t) at time t is

�w(t) =
NX
ij

aijxixj (2.6)

Di�erentiating the mean �tness with respect to time yields

d �w

dt
=

d

dt

 
NX
ij

aijxixj

!
=
X

aij
dxi
dt

xj +
X

aijxi
dxj
dt

(2.7)

We can simplify the above equation by introducing a matrix notation, so
that

P
j aijxj = (Mx)i and

P
ij aijxixj = x �Mx. If we now assume that

aij = aji (which is physically resonable most of the time for alleles at a
diploid chromosomal locus: there is no preferred position in this case. See
also appendix B), then both sums in equation 2.7 are equal and, following
(Hofbauer and Sigmund, 1988), we obtain

1

2

d �w

dt
=

X
i

dxi
dt

(Mx)i

=
X
i

xi [(Mx)i � x �Mx] (Mx)i

=
X
i

xi(Mx)2i �
 X

i

xi(Mx)i

!2

(2.8)

=
X
i

xi [(Mx)i � x �Mx]2 � 0

since the last equation never can be negative. But looking at the terms in 2.8,
we see they represent the variance of the �tness wi =

P
j aijxj of the individual

i. So, Fisher could not only conclude that the average �tness of a population
increases for each generation, but also that the increase is directly proportional
to the additive genetic variance in �tness. This he termed \the fundamental
theorem of natural selection"3.

3In the history of science, only the �rst fact, namely the increase in average �tness (the
everlasting progress of humanity...) has become canonical, even though it rests on the second
fact, namely the increase in variation, meaning that many species in the population very
well might have a constant, or even decreasing �tness. It is only the increase in the number
of \races" which is evolutionary important. However, racist arguments have always found
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Although the di�erent versions of equations 2.2 and 2.5 have had a profound
impact on the perception of evolution as a primarily deterministic process,
their derivations lie on a shaky ground (Hofbauer and Sigmund, 1998). First
of all, the ansatz'es in the equations 2.1 and 2.4 would imply exponential
growth for the whole population. Second, for diploid organisms the second
order replicator equation relies on the concept of Hardy-Weinberg equilibrium,
which in turn relies on the implicit assumption of random sampling, equal
birth and death rates and on an in�nite population of the genes. All of these
assumptions are fairly idealized (if not wrong) and therefore many population
geneticists refuse to use eq. 2.5 in their work. Fourth, the fundamental theorem
relies on constant �tness values of the genes - which additionally have to be
independent of their frequency. For many traits such constancy does not hold
(Smith and Szathm�ary, 1995).

2.5 Selection-mutation equations

Yet another argument against the selection equations is that there until now
not has been introduced any kind of mutational input. In the classical pop-
ulation genetics, mutations (such as point mutations, insertion, deletions or
recombinations) were regarded as subordinate to the force of selection and the
evolution of populations. Although mutations were seen necessary for the con-
tinuous variation upon which the evolutionary \progress" could operate, their
role was that of \noise" with only inferior and unimportant consequences for
the selection of species.

However, today we know that mutation is a property which is regulated to
the smallest possible detail, and that it is of fundamental importance for the
structure and evolution of populations. Sequence analysis of viral genomes has
shown that the target of selection is not a singular wild type sequence, but a
cloud of equally �t mutants. These mutants have shown to be so abundant that
even normal diluted test tube fractions of viral genomes shows that their wild
type is below experimental detectability (Domingo et al., 1978). An average
RNA virus has a genome of size 104. Still, a population solely consisting

awkward formulations and justi�cation for the superiority of the white man, and even Fisher
himself, in his classical book The genetical theory of natural selection (Fisher, 1930) (which
is the all-important bible in population genetics) used a modi�ed racist scheme for the
improvement of the Anglo-Saxon pale-face. For an illuminating essay on this subject, see
The Smoking Gun of Eugenics by Stephen Jay Gould in (Gould, 1995).
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of (equally abundant) mutants of this RNA virus would yield the wild type
sequence at each position with an accuracy of 0:9999. This is illustrated in
�gure 2.1 on page 23. The lesson is that mutants are produced not only as
error copies of the wild type, but also through self-replication. And selection
will bias the distribution of mutants accordingly. The \unit of selection" is
therefore not the individual, but the whole cloud of mutants moving erratically
on a complex �tness landscape.

The �rst experiments in evolution were carried out by Spiegelman in the
late 1960's (Mills et al., 1967; Mills et al., 1973). The replication system of
the RNA bacteriophage Q� was isolated, whereafter large concentrations of
nucleotide triphosphates were mixed with the 4200 bases long single stranded
Q� genome. The newly copied RNA strands were equally infectious as the old
ones, but when this process was repeated many times, the RNA strands lost
their infectious property in favor of growing quicker (and their length became
drastically reduced). This happened because of the arti�cial selective pressure
on the RNA strands through the seriel procedure.

But the Q� replicase showed also to be able to produce totally new strands
of RNA without the help of the genome (Sumper and Luce, 1975; Biebricher et al., 1981a;
Biebricher et al., 1981b; Biebricher, 1986). This evolution in novo could hap-
pen because the enzyme has a strong aÆnity towards certain tetranucleotides,
which randomly gathered on the surface of the enzyme in the right order. Thus,
oligomerization was possible.

2.5.1 The quasi species

One deterministic implementation of these �ndings is the theory of the Molec-
ular quasi species due to Manfred Eigen and co-workers (Eigen et al., 1988;
Eigen et al., 1989), which primarily is formulated in the language of RNA
viruses such as Q� replicase. The starting point is the replicator equation 2.2
with the additional assumption that the production of RNA virus xi also de-
pends on the sum of frequencies of erroneous copying from (and to) all the
other viruses

dxi
dt

= xi [wii � �w(t)] +
X
k 6=i

wikxk (2.9)

so that the wik are the o�-diagonal elements of the mutation matrix W and
the wii are the diagonal elements representing perfect self-replication.
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Solving this set of coupled di�erential equations is quite involved. But one
simple example is still very illuminating: Assume that the wild type is ten times
�tter than all the other mutants, which in turn are selectively neutral compared
to each other. Then, for an increasing mutation probability, computer simu-
lations (Swetina and Schuster, 1982) show that the population encounters an
error threshold beyond which the cloud of mutants looses the information about
their wild type. This is of course an irrecoverable situation for the whole viral
quasi species, because the wild type population will drop o� to zero and the
virus will no longer be able to infect its host and survive. The situation is
comparable with a phase transition, a melting point through an accumulation
of errors. But just close below the error threshold the virus has the best condi-
tions for evolution: Here the wild type is stable, and at the same time there is
a maximal number of mutants which can adapt quickly to a change in its envi-
ronment. Experiments with Q� replicase (Mills et al., 1967; Biebricher, 1986)
show that natural mutants indeed operate just below the error threshold. In
many cases selection may even favor a mutant with a lower �tness than the
best adapted one, if the surrounding mutants have a comparably higher se-
lection value than it is the case for the best adapted individual (Eigen, 1992).
This interesting behavior is of course an important complement to the classical
picture of evolution and a strong modi�cation of the neo-Darwinian dictum of
\survival of the �ttest".

Although the theory of the molecular quasi species represents an important
step towards a greater appreciation of chance e�ects and neutrality in molecular
evolution, it is still using the classical apparatus of deterministic mass action
kinetics. It is however questionable, and this question has even been raised
by Manfred Eigen himself (Eigen et al., 1989), how far conventional chemical
kinetics can be used for problems in evolutionary theory. The main doubt is
that while normal chemical reaction kinetics only involves a small number of
di�erent molecules each of them present in a very large amount, the situation
for molecular evolution is quite the opposite: the number of di�erent RNA
mutant sequences (or protein mutant sequences) is enormous, while the amount
of each of them often is only one or just a few4. The fundamental assumption of
the use of continuous di�erential equations is that of an in�nitesimal di�erence
in concentration change in time, an assumption only usable when there is a
very large number of such identical mutants (preferably somewhere around

4Actually, the number of possible mutants in an ordinary sequence of RNA or protein is
far greater than the number of molecules in the whole universe (see appendix A).
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Figure 2.1: The de�nition of a wild type is the consensus sequence of a mutant distribution
(one could also say that the wild type is the average sequence of a population of many
di�erent (polymorphic) sequences, but when there only are discrete symbols, the average is
not allways well-de�ned). So, the wild type represents the center of the quasi species, even
though it might not exist itself. Inspired after (Eigen, 1992).

Avogadros number). This is seldomly the case.
When this is not the case, it might be better to model such systems by

discrete cellular automata-type of models, where each individual is assigned
its �tness value and is traced separately through the dynamics. This of course
implies an enormous amount of computational capacity, but modern computers
make it possible.

2.6 Random Genetic Drift

One simple example of the e�ect of randomness in �nite populations is that
of random genetic drift. It was Sewall Wright (Wright, 1932) who �rst devel-
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oped the concept of random genetic drift in small separated populations as a
source of variability upon which normal selection can act. Later on Kimura
and Otha attributed a much higher signi�cance to random genetic drift, even
for the mechanism of evolution, and for the fundamental aspects of genetic
architecture in �nite populations. Kimura's conclusion (Kimura, 1968) was
that the concept of neutrality and random drift was a real alternative to the
prevailing selectionist point of view at that time.

Imagine a situation in which all members of a (�nite) population of N
diploid organisms have the same �tness so that they are selectively neutral (as
in the case of the quasi species model without the wild type). At any given
locus in the genome of the organisms there are two alleles A1 and A2 with the
frequency p and (1� p) respectively. For simplicity, imagine further that there
is only one locus in each individual, so that there are 2N genes in total. The
probability Pn1 that the sample contains exactly n1 genes of type A1 is given
by the binomial probability distribution

Pn1 =

�
2N

n1

�
pn1(1� p)2N�n1 (2.10)

If there initially is an equal amount of the two alleles (p = 1
2
and n1 = n2), then,

using eq. 2.10, there is a high probability that the allele frequency has changed
in the next generation (for N = 5, the probability to have the same frequency
of alleles in the next generation is P5 = 0:25). For an increasing number of
generations, the probability to have both alleles coexisting in the population,
decreases therefore rapidly, and once the frequency of an alleles reaches 0 or 1,
it is either extinct or �xed. For long enough time, this is inevitable. Figure 2.2
on the facing page shows that for an increasing population, this fate can be
postponed, but never escaped.

2.6.1 Fixation

It is now interesting to ask how important this e�ect is - compared to the
force of selection. Lets assume that the relative �tnesses of the genotypes
A1A1; A1A2 and A2A2 are 1; 1 + s and 1 + 2s respectively. The number s > 0
represents a selective advantage of allele A2 over A1 (the co-dominant mode
of selection, see appendix B). Classical Darwinian theory would expect that
the advantageous allele A2 overtakes the population inevitably. But Kimura
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Figure 2.2: Changes in allele frequencies by random genetic drift in three populations with
di�erent sizes. The smallest population reached �xation of one alleles - and extinction of
the other (shown) - after 38 generations. The largest population was not �xed yet after 500
generations.

(Kimura, 1962) has shown that the probability of �xation is \only"

P =
1� e�4Nsp

1� e�4Ns
(2.11)

where N is the e�ective population size and p the initial frequency of allele
A2. When the selective advantage s ! 0, we can set e�x � 1 � x and the
equation reduces to P ' p. This means that for neutral alleles, the �xation
probability equals its frequency in the population. Since random genetic drift
in non-directional, this result it understandable, because a low frequency of a
neutral gene gives a lower probability of �xation.

But now to the interesting part: Let us now assume that a new, selec-
tively advantageous, mutant has appeared in the population. Initially, it has a
frequency of p = 1

2N
. Inserting this in eq. 2.11, we obtain

P =
1� e�2s

1� e�4Ns
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If we assume that s is small, this becomes

P =
2s

1� e�4Ns

so that, for a large population and s > 0, we can approximate

P � 2s (2.12)

This is a highly signi�cant result (Li and Graur, 1991). For a selective ad-
vantage of s = 0:01 of one emerging mutant in a population, its probability
to survive (and push the population towards higher �tness) is only 2%. In
fact, 98% of all advantageous mutations (with a relative selective advantage
of 1%) will be lost by chance. Even slightly deleterious mutants have a �nite
probability of becoming �xed in the population (Otha, 1972).

In conclusion, random genetic drift has a very strong impact on the evo-
lution of populations, so strong that it in many cases makes natural selection
helplessly insigni�cant. For well adapted highly �t species, the probability to
�nd a new advantageous mutation is small. In such a case, one might expect
that if the species population �nds a good mutant anyway, this mutant only
has a small selective advantage compared to the wild type. As we have seen
in eq. 2.12, this does not necessarily do any good. Therefore, highly adapted
populations with a high �tness need to employ the neutral mutants much more,
in order to search and �nd a really good mutant somewhere in the �tness land-
scape, so that the probability of �xation of such a \really good mutant" is
maximized. This will be the main subject of the next chapter.

2.7 The �tness landscape

The metaphor of a �tness landscape has now been used several times without
any further explanations. Normal biologists would expect a �tness landscape to
be a complex parameter space where all components de�ning the �tness of an
organisms, such as fertility, fecundity, birth and death rates, etc., can be varied
upon. In the present case, however, the term \�tness landscape" is used in a
much more restricted way, as �rst proposed by (Wright, 1967; Wright, 1982).

As an example, we can look at the evolution of RNA's. All RNA molecules
consist of the four nucleotides adenine, uracil, guanine and cytosine, which
constitutes the size of an alphabet A with four letters. The number of com-
binations in which these four components can align to a molecule, often of
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1000 = 0:73 0000 = 0:34

1100 = 0:51
0100 = 0:97

1010 = 0:13 0010 = 0:22

1110 = 0:10 0110 = 0:29
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1101 = 0:05 0101 = 0:36

1011 = 0:16 0011 = 0:38

1111 = 0:47 0111 = 0:87

Figure 2.3: Diagram of a sequence space for a string of length N = 4 an alphabet A = 2.
Each combination of 0's and 1's is assigned a random �tness value, so that a population
moving adaptively in such a space, either can be trapped in a local �tness peak (indicated
with circles), or �nd the global (most �t) peak - in this case it is positioned in the front
upper right. Modi�ed after (Kau�man, 1993).

considerable length, such as N = 1; 000, is enormous. This set of all possible
RNA molecules of length N constitutes an ensemble, called the sequence space,
having a size of AN . Each point in this high-dimensional sequence space rep-
resents one RNA molecule. At each site of one of the molecules there could
be three other nucleotides, meaning that this molecule has (A � 1)N possi-
ble one-point mutants. The distance measured in point-mutations from the
original sequence is called the Hamming distance, and is explained further in
appendix A. Each of the mutants has assigned a speci�c random �tness value,
so that a population represented by a unique wild type with a unique place
in the sequence space can be regarded to make an adaptive walk in �tness
landscape searching for the optimal combination of nucleotides - the peaks in
the landscape.

A particular simple example is shown in �gure 2.3. In this case the alphabet
only consists of two possibilities 0 or 1, which could represent purines and
pyrimidines, respectively. The topology of this sequence space is very di�erent



28 Law and Chance in Molecular Evolution

from the alps. It is a four dimensional boolean hypercube, where each point is
connected to four neighbors, or mutants, each with a di�erent �tness value.

2.8 The NK model

The de�nition of NK-systems was initially used as a simpli�ed model for the ge-
netic regulatory system acting in cell di�erentiation (Kau�man, 1969). But the
NK model can also be viewed as a generalization of the spin glass models used
in statistical physics (Fischer and Hertz, 1991). It was also thought that the
generality of the model could reect evolution of a species population, where
random mutations of individual genes make the species walk on their underly-
ing random �tness landscape (Kau�man and Johnsen, 1991; Kau�man, 1993).

In this setup, an entire species of an unspeci�ed organism is represented by
a string of N genes (obviously a very simple one: haploid, with only a single
copy of chromosomes) with a given con�guration. Since evolutionary selection
mainly works on a spectrum of many mutants within a population (so that
diversity is maintained) this assumption of representing a whole species in just
one sequence seems at a �rst glance quite unreasonable. But (Gillespie, 1984)
has shown that if selection proceeds much faster than mutations occur, then
one may represent a population by a dominant type, and ignore diversity. This
dominant type, in our case the string ofN genes, which is both a genotype and a
phenotype, will then perform an adaptive walk on the �tness landscape, whose
ruggedness is dependent on the way we choose the �tnesses of the individual
genes.

The de�nition of the NK model is as follows: Consider a sequence of N loci,
which could represent genes (alleles) in an organism, the number of nucleotides
within a RNA molecule, or the number of positions in the primary sequence of
proteins. Each locus i can be occupied by di�erent sorts of such entities. This
constitutes an alphabet of size A. In the case of RNA, A becomes the four
possible nucleotides fA,C,G,Ug, and in the case of proteins, A could be the 20
amino acids that can occupy each position in a protein sequence.

Also, each locus i interacts with K other loci in the sequence (called
epistatic interactions)- they could be the neighbors or else-wise chosen, see
�gure 2.4 on the facing page. In RNA's, the bases are mostly only interacting
with one other base, forming a Watson-Crick base pair, but they can also in-
teract with other bases in order to generate a tertiary structure. Proteins have
normally more complex types of interactions, so that K may be higher than
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Figure 2.4: Schematical representation of the assignment of random �tness values to each
of the AK+1 possible con�gurations of links for one gene. For each place in the row of N
genes, there is one unique lookup table like the one shown for the gene at position 6. Here
A = 2;K = 3 and N = 13. Modi�ed after (Barnett, 1997).

unity.
Thus, the entire sequence can exist in AN di�erent con�gurations, and we

call this ensemble the sequence space. In order to �nd a de�nite �tnessW of the
whole sequence, each locus i contributes with the �tness wi, which of course
is dependent on the K other loci with which it interacts. This means that
each locus can have AK+1 di�erent values of wi. These contribute additively
to W , but with how much? Since it is a hopeless enterprise to know the exact
strength of epsitatic interactions - how good they are and how bad - we can as
well chooses the values in the column \FITNESS" of �gure 2.4 at random in
the interval 0 � wi < 1, so that

W =
1

N

X
i

wi (2.13)

It is now possible to picture the dynamics of the system: For K = 0, the
species population will climb to the global maximum in the �tness landscape
by successive point mutations in the genes which maximize wi and thusW . For
larger K though, the internal constraints on wi, due to the K partners, create
unbridgeable valleys so that the species might get trapped on a local peak.
For K = N � 1 the �tness landscape is maximally rugged with uncorrelated
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�tness values at each point in the landscape (as in �g. 2.3 on page 27). In
this case the traditional NK system becomes equivalent with Derrida's random
energy model (Derrida, 1981; Gardner and Derrida, 1989) which was used to
analyze an A-state Potts model. We will return to this case later on in part III,
when we investigate the percolation properties in such an uncorrelated �tness
landscape.

2.9 Summary and Conclusion

In order to appreciate the coming chapter better we have made a short intro-
duction of some of the most fundamental aspects of population biology and
described some of the most well-known mathematical models in evolutionary
theory:

After a verbal de�nition of natural selection and �tness, we have quanti�ed
these ideas in di�erent versions of a replicator equation, which are the main
tools for a modeling approach to natural selection, and fundamental for the
fundamental theorem. The introduction of mutation in the selection equations
led to the formulation of the quasi species which showed that the unit of se-
lection not so much is the individual gene, but the network of mutants created
through the mutational input, and therefore one can say that this emergent
network of quasi species is selected as a whole.

This, in turn, led to the investigation of neutral mutations and the impor-
tant force of random drift, which in many cases showed to be much stronger
than natural selection itself. Finally, we looked at the topology of a possible
�tness landscape upon which molecular species might evolve, and also on the
NK model as a possible modeling candidate for the evolution of populations.
In the next chapter we will extend and combine these e�orts into a new model.



3
E�ects of selec-
tive neutrality

3.1 Introduction

The idea of Kimura (Kimura, 1955; Kimura, 1983) was that if a mutation in
a gene does not change the functionality, eg. its functional form, and leaves
the viability of itself and its host unchanged, the mutation can be regarded as
neutral. In the presence of a large number of di�erent genetic architectures,
Darwinian selection is more or less indi�erent, as long as the resultant pheno-
types are good for the organisms survival and reproduction. In fact, there are
believed to be many such neutral mutations, which get pumped constantly into
the gene pool, where after random genetic drift purges the unlucky alleles from
it. Kimuras idea was that this highly dynamical process, this constant ux of
alleles, causes neutral mutations to accumulate. Compared to that, the forms
- the three-dimensional structures - remain remarkably stable over millions of
years.

It has however been diÆcult to model this e�ect in a simple way, mainly
because it is not obvious how to assign �tness values to the overwhelming
number of possible mutants. How should we know, which mutation is neutral
and which not? First the phenotype, that is, the body and legs of an animal, or
the three-dimensional conformation of a RNA-molecule, and their reproductive
success, can give us a clue about a de�nite �tness value.

Thus, the �tness expresses itself as a function of the phenotypes, but when
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neutrality expresses itself in the absence of a physiological e�ect, how can we
distinguish neutrality from nothing? Somehow, this problem of telling what is
the e�ect of what, and the lack of a unique scheme for �tness assignment, has
been the major obstacle for the mathematical modeling of neutrality.

The pondering about this problem in the last decades or two, mainly by
Peter Schuster and his group (Schuster, 1994; Schuster et al., 1994), has led to
the general recognition that we �rst need to understand the mapping procedure
from a genotype towards a structure. The process leading from a genetic
con�guration to a functional form has to be investigated carefully before we
can tell something about the evolutionary e�ects of neutrality.

There have been several approaches to this problem. One simple case in
which neutral evolution has been investigated in some detail is that of RNA
structures (Schuster et al., 1994; Gr�uner et al., 1996a; Gr�uner et al., 1996b; Huynen et al., 1996;
Reidys et al., 1997). However, the calculations are so far limited to the sec-
ondary structures of RNA, and even these are relying on many restrictive ap-
proximations, so that the studies have to be taken more as a qualitative guide
to the behavior of systems undergoing neutral evolution than as an accurate
representation of the real world.

Also, simple models for protein folding (Li et al., 1996) and experiments
for protein evolution (Dean, 1998; Wilks et al., 1988) have show that selective
neutrality and the problem of �tness assignment in genotype-structure map-
pings are increasingly important concepts, both in evolutionary theory and in
biotechnology, and that there is a strong need for a general and simple mathe-
matical model which is capable to explain such e�ects on a more generic basis.

This does not mean that there not has been done anything to develop math-
ematical models of neutral evolution. On the contrary, there have been devel-
oped several genetic algorithms (Pr�ugel-Bennett and Sharpio, 1994; Mitchell, 1996)
which give some insight into the type of e�ects one may expect neutral evolution
to produce. Especially the papers by (van Nimwegen et al., 1997a; van Nimwegen et al., 1997b)
have developed some promising tools to investigate \metastability" and the
\epochal" nature of evolution in the presence of selective neutrality. In these
papers the neutrality is investigated by a reduction in dimensionality, where
the \genes" need to be aligned in blocks, in order to obtain neutral regions
(although there are no percolating networks), so that it is possible analytically
to calculate important properties such as average �tnesses, �tness uctuations,
population distributions and the length of the epochs. But still, these investi-
gations are not suÆciently general in order to assure that they apply to other
biological systems as well.
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In the next section we will develop a simple model system, which we believe
is suÆciently general to mimic most biological systems under the inuence of
selective neutrality.

3.2 Model for neutral evolution

The model presented here and in (Newman and Engelhardt, 1998) is a gener-
alization of the NK model from section 2.8 on page 28.

Again, we consider a sequence of N loci, representing the building blocks
for a genetic code. The alphabet A of the letters at each position is variable
- depending on what system we want to investigate (A = 4 for RNA's and
A = 20 for proteins). And again, like in section 2.8, each locus i interacts with
K other loci in the sequence, so that there to each locus belongs a \lookup
table" like in �gure 2.4 on page 29 in order to �nd the �tness value wi.

Links Fitness

.....

.....

.....

.....

.....

.....

.....

.....

......

......

......

......

......

......

......

......

0101 0 � wi < F
0 1 0 1 0 1 1 1 0 0 1 0 1

Figure 3.1: A repetition of �gure 2.4 on page 29 with the modi�cation that wi is now an
integer value, so that it suddenly becomes much more probable that two di�erent con�gu-
rations have the same wi and thus the same �tness W .

However, in the case of the present model for neutral evolution, we choose
the wi's to be integers in the range 0 � wi < F (so that there in the column
\Fitness" of �gure 2.4 are integers from zero to F , see �gure 3.1. Thus, if
F = 2 for example, each contribution wi is either zero or one. The �tness of
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the entire sequence is therefore

W =
1

N(F � 1)

X
i

wi (3.1)

so that the �tness of all sequences fall in the range from zero to one, and there
are NF �N + 1 possible �tness values in this range.

For F ! 1 the system degen-

0

4 � 104

2 � 105

0 0.2 0.4 0.6 0.8 1

Figure 3.2: The number of sequences as a
function of �tness. K = 1 (full line), and for
K = N � 1 (dashed line). N = 20; A = 2 and
F = 2.

erates into the normal NKmodel, and
the NK model is therefore a special
case of this model. The parameter
F increases neutrality when it is de-
creased. The parameter K increases
the ruggedness of the �tness landscape
when it is increased.

In this formulation we have a mo-
del with a tunable degree of neutral-
ity and a unique assignment of a �t-
ness value to each possible sequence
in the enormous ensemble of sequen-

ces. Since we have de�ned the total �tness of the genotype W to be within the
range 0 � W < 1, most sequences have a �tness around W = 0:5, see �gure
3.2. In the case of K = N � 1 all possibles �tness values are uncorrelated:
a mutation in one gene means that the con�guration of all other genes also
changes - there is no correlation between �tnesses due to successive point mu-
tations. In this case the central limit theorem applies, and the �tnesses are thus
Gaussian distributed (in the limit of large N). For K � N the distributions
vary a lot, depending on the random initial assignments of wi, but in �gure 3.2
we show that an average of many �tness landscapes for K = 1 with di�erent
initial conditions shows that the distribution also approaches the Gaussian.

The idea is now that if there exist two sequences with the same �tness, they
are regarded to be equivalent to molecules that fold into the same structure
and perform the same function, or to molecules with di�erent structures, but
still give the approximative same contribution to the reproductive success of
the host organism. With this simple modi�cation, we have introduced the
e�ects of genotype-structure mapping into a NK-like �tness landscape. Into
the model we have incorporated the fact that selective neutrality arises as a
result of the many-to-one nature of the sequence-to-structure maps found in
real biological systems.
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In the next section we will analyze the properties of this discretized �tness
landscape, and show that for appropriate choices of the parameters N;K;A
and F this model can be used to mimic real biological systems such as RNA's
and proteins.

3.3 The structure of neutral �tness landscapes

We can now look how these neutral networks appear in the present model. In
biological evolution the most common types of mutations are point mutations
- eg. a mutation of a single symbol at a locus. We therefore de�ne a neutral
network as the set of sequences that all have the same �tness and that are
connected together via such point mutations.

For large molecular structures, it is a well known fact that single digit
mutations almost never result in a conformational change of the molecule,
and that most point mutations therefore are e�ectively neutral (Dean, 1998;
Wilks et al., 1988; Schuster et al., 1994; Schuster, 1994). Thus, our neutral
networks correspond to the tertiary structures of such biological molecules, or,
in the organismal case, they correspond to the phenotypes.

Because most of the sequences have
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Figure 3.3: The number of neutral net-
works as a function of �tness. K = 1 (full
line), and for K = 19 (dashed line).

a �tness aroundW = 0:5, we would ex-
pect that the largest networks have a
�tness close to W = 0:5, and this is in-
deed the case. Typically, the is a large
number of small networks with low or
high �tness values, and then there is
a small number of very large networks
with intermediate �tness values.

Figure 3.3 shows this e�ect. In con-
trast to the previous �gure 3.2 on the
facing page, where we have plotted the
number of sequences as a function of
�tness, we here plot the number of neu-
tral networks, connected by one-point mutations, as a function of �tness for
two extreme values of K. For K = 1 the number of networks is again approxi-
mately Gaussian distributed, but for K = 19 the number of networks decreases
drastically for intermediate �tness values, because it is here the giant clusters
of percolating networks form. Also for intermediate values of K we see that
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the largest networks appear naturally where the largest fraction of sequences
has the same �tness value. Thus, the topology of the neutral �tness landscape
depends strongly on K - the degree of \epistatic" interactions among the in-
dividual components. In addition, for larger K's there appear to be larger
networks than for low K. This might be due to the better \mixing" of the
networks in the sequences space, because the �tness landscape becomes more
and more uncorrelated.
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Figure 3.4: The number of neutral networks as a function of N for K = 1; F = 3 and
A = 2 (diamonds) and A = 4 (crosses). The best straight line �ts are SN = 1:7N and
SN = 2:3N respectively (the data are averages of ten runs).

occurrence

We �nd the total number of neutral networks SN to grow exponentially
as aN with increasing N . In �gure 3.4 we show this dependency for K = 1
in the case of a binary alphabet and a four-letter alphabet. For a neutral
landscape with F = 3, we �nd a ' 1:7 in the two letter case and a '
2:3 in the four letter case. Interestingly, this has also been observed in the
RNA studies by (Hofacker, 1994; Schuster et al., 1994; Baskaran et al., 1996;
Schuster and Stadler, 1997) with the values a = 1:6 and a = 2:35 respectively.

Figure 3.5 shows the histogram of the sizes of neutral networks for N = 20
and various values of K. If we want to compare this result with the known
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Figure 3.5: The frequency of occurrence of neutral networks as a function of their size. The
curves have K = 1 (diamonds), K = 2 (crosses), K = 3 (triangles) and K = 19 (circles).
The parameters for this �tness landscape are N = 20; A = 2; F = 2, and the curves are
averages of one hundred runs. The line for K = 2 has an approximate exponent of �0:7,
and for K = 19 the exponent for the values below a size of 1000 is �1:5.

data from RNA secondary structures, we have to look at the line corresponding
to K = 1. The nucleotides in RNA's interact on average with only one other
nucleotide: many of them form aWatson-Crick base pair with their complemen-
tary base; a few do not form a Watson-Crick base pairs since they are placed in
the loops of the hairpins; and another few nucleotides interact with more than
one nucleotide in order to generate the proper three dimensional structure. So,
on average, we can expect K to be unity for RNA's. In �gure 3.5 the curve
for K = 1 appears to be convex, so that the distribution of network sizes falls
of faster than a power law. Again, this has also been observed in the RNA
studies by (Gr�uner et al., 1996a). But as the other lines in �gure 3.5 indicate,
this RNA-behavior is not generic. For larger K the curve attens and becomes
quickly concave. For K = 2 the curve is almost a straight line, indicating a
power law decay. This might be due to some divergence of the scale parameter
governing the distribution, a resemblance to critical phenomena, which will be
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discussed in part III1.
Since our investigations show excellent agreement with previous investiga-

tions of mapping of genotypes into �tness values for RNA secondary and/or
tertiary structures, it is very suggestive to expect the properties of our neu-
tral networks to be a general analogue to the mechanism of genotype-structure
mapping, and applicable for many systems undergoing neutral evolution.

Sequence space

common
structure

Figure 3.6: A schematical two-dimensional representation of the high-dimensional sequence
space upon which a common structure (here shown as tRNA) percolates. The lines are
thought to correspond to sequences which are connected through point mutations and have
the same �tness.

3.4 Percolating neutral networks

The largest neutral networks percolate: They �ll the sequence space more
or less uniformly in such a way that every sequence in the sequence space is

1It is interesting to note that Kau�man in (Kau�man, 1993) links the situation for K
close to two with the point where a phase transition from disorder to order is found (that is:
a drastic decrease in the median cycle length of a normal NK attractor).
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only a few point mutations away from the percolating network. We can also
de�ne the percolating neutral networks as \common structures" because they
contain far more sequences than the networks of an average size. This de�nition
of a common structure is due to (Gr�uner et al., 1996a), and we will also use
it here (Newman and Engelhardt, 1998). In �gure 3.6 we show a schematical
representation of how to imagine the structure and size of such percolating,
common neutral networks.

The number of common structures covers only a fraction of all networks, but
they contain by far the most sequences. This tendency increases for increasing
N , so that the fraction of sequences in common networks tends to one in
the limit of large N . This �nding has profound evolutionary implications:
Large molecular species, such as proteins, will tend to fold into just a few
forms, because these are the most probable to �nd. Almost any mutation away
from a non-percolating an statistically improbable structure will result in the
conformational rearrangement to a percolating, common structure. Natural
selection will not be able to retain any other structures than the small fraction
of the common ones. This has also been observed in simple models of protein
folding (Li et al., 1996).

In turn, many mutations in the sequences of such percolating networks
will be selectively neutral. The evolutionary fate of such macromolecules is
therefore largely determined by random drift. If we for instance would re-
turn to a biological macromolecule (it could be a human protein) after one
million years, it will be likely that the exact con�guration of the aligned
amino acids has changed dramatically, while the form and function of the
molecule has remained the same. Waiting another million years, the con�g-
uration has changed again, while the form only very unlikely has been im-
proved. Then, assuming that the rate of amino acid substitutions will be
approximately constant over time for proteins of comparable length, we arrive
at the interesting theoretical reiteration of the well known molecular clock hy-
pothesis (Zuckerkandl and Pauling, 1965) due to the experimental �ndings of
(Zuckerkandl and Pauling, 1962; Margoliash, 1963) in proteins among various
mammalian lineages.

In any case, the results here suggest that our conclusions about the emer-
gence of biological networks and common molecular structures might be appli-
cable for other systems undergoing neutral evolution as well.
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Sequence space Shape space

Figure 3.7: Schematical representation of the mapping from sequences to structures and
vice versa. In order to search for the most common structures, one only needs to move a
small Hamming distance away from an arbitrarily chosen reference sequence, because the
percolating common structures are abundant everywhere in the sequence space. The thick
lines represent this correspondence. The thinner lines show that we could have started
anywhere and still �nd the same behavior. Inspired after (Schuster, 1996).

3.5 Covering radius

In addition to the concept of percolating neutral networks, there is another
important measure for the problem of genotype to structure mapping, and this
is the �nding of a very small covering radius, leading to an e�ective shape
space covering (Schuster, 1996). Starting from an arbitrarily chosen reference
sequence, one only needs to screen the nearest neighboring mutants in order to
�nd any of the common structures. The needed Hamming distances to do so is
very small compared to the entire sequence space. The process of evolutionary
searching towards a (common) target structure is therefore much easier than
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Figure 3.8: The fraction of all structures that can be reached by neutral di�usion and
d point mutations as a function of the Hamming distance d. The relevant parameters are
N = 10; A = 4 and K = 1, and the four lines correspond to: F = 2 (diamonds); F = 3
(crosses); F = 4 (triangles) and F = 5 (circles). Averaged over ten simulations.

previously expected. In �gure 3.7 we have drawn a schematical picture of this
phenomenon.

To test this phenomenon we also have made some simulation, and some of
the results are shown in �gure 3.8. The lines represent how easy it is for a given
random starting sequence to reach any existing structure through the e�ect of
percolation and a small number of point mutations. So, here the y-axis shows
not only the fraction of common structures reachable, but the fraction of all
possible structures reachable. We can therefore de�ne a covering radius rcov
as the Hamming distance traveled from an initial random sequence in order to
reach more than 90% of all structures. For instance, the upper line represents
maximal neutrality, and shows that with only three mutational steps away from
any initial sequence - of course they need to be the right ones - it is potentially
possible to reach 95% of all structures! The important optimizational process,
used both in natural evolution and in biotechnology, is heavily facilitated by
this kind of neutrality.
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3.6 Evolution of populations

Next, we have studied the dynamics of populations evolving on our �tness
landscape. The investigations are partitioned in two steps: �rst we look at
the dynamics of a random hill climber, which approximates the ensemble of
sequences of a whole population to be just one sequence - the wild type.

Second, we investigate the evolution of true populations on our �tness land-
scape. Technically, we make use of �tness proportionate selection, so that each
sequence (or organism) in the population is replicated into the next genera-
tion with a probability proportional to its �tness, so that the total population
size remains constant. Introducing a mutation rate q per locus, we �nd very
interesting behavior of \epochal" evolution.

3.6.1 The random hill climber

The \random hill climber" approximation due to (Kau�man and Johnsen, 1991)
is - as previously mentioned in section 2.8 on page 28 - only valid when the
time-scale for mutations is much longer than the time-scale on which selection
operates. Thus, a random hill climber is a representation of a population by
one single dominant strain. It tries point mutations consecutively, and if the
new �tness is higher than before the mutation is accepted, and if not, its re-
jected. So, a random hill climber can never decrease in �tness (a hackneyed
version of the fundamental theorem, see section 2.4 on page 18), and it there-
fore performs an adaptive walk in sequence space until it reaches a local �tness
optimum.

In the case of the neutral landscape however, the random hill climber
also accepts a neutral step which does not increase its �tness. As a result,
the \population" will move di�usively on a neutral network until it �nd a
mutation which takes it onto a network of higher �tness. This process continues
until it reaches a non-percolating network, at which point it is con�ned to the
surrounding of that network only, and the hill climber can then only climb to
the local maximum within that region.

Figure 3.9 shows how the evolution of a random hill climber proceeding
in time. The time needed to reach a new network of higher �tness increases
exponentially for increasing �tness, and ultimately it reaches a maximal value
determined by the �tness of the highest local peak where it cannot come any
higher.
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Figure 3.10: Upper dashed curve: The maximum �tness attain of a random hill climber
as a function of F . Lower solid curve: The �tness of the most �t percolating network in the
system as a function of F . The percolating networks is in this case de�ned as the networks,
or common structures, with a more than average number of sequences in them (excluded all
networks of size one). The other parameters are N = 20; A = 2 and K = 4.

This step-like behavior - or, as dubbed by (van Nimwegen et al., 1997a),
\epochal" behavior - of an evolving population has also been seen in labo-
ratory experiments on the evolution of bacteria (Lenski and Travisano, 1994;
Sniegowski et al., 1997), although their explanation for this phenomenon is
another. One could also draw similarities of the situation in �gure 3.9 with
the notion of \punctuated equilibrium", described by Gould and Eldredge
in their paper about their observations of a similar kind in the fossil record
(Eldredge and Gould, 1972; Gould and Eldredge, 1993). It is in the apparent
periods of stasis where populations \di�use" around in the neutral networks,
and it is only because they are able to utilize these networks in a productive
way, they can reach such high �tness values. Thus, neutrality helps populations
to attain higher �tnesses.

In �gure 3.10 it is investigated how high the random hill climber can climb
on average (upper curve), and this is then compared to the average �tness of
the most �t percolating net (lower curve). It shows quite clearly that the two
curves follow each other closely in form. The climber has typically as little
better �tness than the networks, because when the networks stop to percolate,
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Figure 3.11: In a landscape with a maximal degree of neutrality, we show the highest
�tness reached of a random hill climber as a function of the number of epistatic interactions,
K. The other parameters are N = 20; A = 2 and F = 2.

the hill climber still can climb onto the highest local peak in that region.
This tell us that the highest �tness
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Figure 3.9: The �tness of a random hill
climber as a function of time. The parame-
ters are N = 76;K = 10; A = 2 and F = 2.

attainable on a landscape with neutral-
ity depends directly on the �tness of the
most �t percolating networks. The higher
degree of neutrality, the �tter percolat-
ing nets we �nd, and the better is the
chance for the random hill climber to
�nd a good peak in the landscape. Again,
this idea has been mentioned in the lit-
erature before, but seeing it so clearly
in a simple model like this, makes the
argument that neutrality aids popula-
tions to �nd high peaks in the �tness

landscape much more convincing. Another interesting observation is done
in �gure 3.11, where it is shown that the increase in epistatic interaction not
necessarily means that the random hill climber �nds even better �tness peaks.
For K above 4 � 5 the internal constrains of the \genes" make the landscape
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Figure 3.12: The solid line (corresponding to the left hand side y-axis) shows the evolution
of a population of 500 sequences in time with a mutation rate of q = 0:0001 and the parameter
space: N = 20; A = 2;K = 4 and F = 2. The dotted line (right hand side y-axis) represents
the diversity of the population at each stage. The diversity is de�ned as the fraction of
non-aligned sequences compared to the wild type.

too rugged and the relative di�erences between peaks and valleys decreases.
This is also the case for the percolating networks (simulations not shown here):
for large K there exist only percolating networks with �tness values relatively
close to the mean of the distribution.

3.6.2 Fitness proportionate selection

In this section we show the results of simulations with true populations evolv-
ing on the neutral �tness landscape. A population of M sequences (all with
the same initial con�guration) is put into the system, and each sequence repli-
cates itself into the next generation proportional to its �tness. The replication
process is prone to errors at a rate q per locus. This means that each locus
has a probability q to change the symbol it contains (the allele) into a new
randomly chosen one.

In �gure 3.12 we have shown the temporal evolution of such a population.
Initially all members have the same sequence con�guration, but in time, mu-
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tants of all di�erent kinds will emerge: an ensemble of quasi species is created.
In the periods of stasis, the population then performs a di�usive search in

the landscape, where many mutants with the same �tness get produces. Of
course, bad mutants with lower �tness values will also be produced, but they
will be selected against in order to maintain the wild type. The average �tness
value for such a population will therefore typically be a little lower than the
�tness of the wild type, around which the mutant sequences - the quasi species
- are distributed.

But also bene�cial mutations will arise. If such a �tter mutant is lucky
enough to replicate itself successfully in the beginning (when there is only one
or a few of such favorable strains in the population), and not goes extinct again
by random drift (which actually is the most probable outcome, see section 2.6
on page 23), it will quickly overtake the whole population because the selective
force will pull the whole population onto the better �tness level (and a bet-
ter structure) represented by that favorable mutant. The result is a stepwise
improvement in the average �tness of the population like it was the case for
the random hill climber. The speed at which such a population evolves is very
dependent on the rate of di�usion on the neutral networks, which in turn is de-
pendent on the value of the mutation rate q: for larger q than in �gure 3.12, the
probability to �nd �tter percolating networks increases, which in turn results
in a more smooth curve for the average �tness, but still, for reasonable values
of q, evolution is characterized by a punctuated equilibrium where long periods
of apparent stasis are interspersed with rapid changes of the three-dimensional
structure of the whole species population.

The dotted line in �gure 3.12 is a crude measure of the diversity of the pop-
ulation. At each time step the wild type is calculated as the consensus sequence
of the mutant distribution (see �gure 2.1 on page 23 for a de�nition), where
after the fraction of non-aligned symbols compared to that wild type is de�ned
as the diversity of the population. When the population �nds a �tter neutral
networks, the �gure 3.12 shows very clearly how the sequences are spread out
like a rubber band getting dragged over an obstacle: The diversity increases
drastically in the short periods of change but beyond the transition point it
decreases quickly again. In the periods of di�usion, however, the diversity
increases and decreases again, depending on the structure of the underlying
�tness landscape.

For large average �tness values, the probability to �nd mutants with lower
�tnesses becomes so high that the selective force which suppresses them is
unable to do so anymore: at this point, further improvement in �tness becomes
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impossible, and there might even be error threshold e�ects like in the quasi
species model by Manfred Eigen as shown in (Swetina and Schuster, 1982).

Simulations on a population of RNA fragments by (Fontana and Schuster, 1987;
Huynen et al., 1996) have show similar results. In this case, Fontana and co-
workers solved the problem of �tness assignment by choosing a target structure
(tRNA), which enabled them to de�ned a �tness measure as the distance from
that target. The evolution of the population was then de�ned as the arti�cial
selection towards their target and showed similar epochal behavior as in our
case.

3.7 Summary

By studying this simple model of neutral evolution, we have been able to �nd
a lot of properties, which we believe to be general enough to apply for many
di�erent systems undergoing evolution with selective neutrality. The main
arguments and conjectures in this chapter were the following:

� There exists neutral networks, de�ned as sequences with the same �tness
and connected through one-point mutations, which are believed to repre-
sent the set of possible three-dimensional structures such sequences can
fold into.

� The distribution of �tness values among the AN sequences is approxi-
mately Gaussian with the mean in the middle of the N(F � 1) �tness
levels.

� The distribution of neutral networks is also approximately Gaussian for
low epistatic interactions. But for larger K, the number of neutral net-
works with intermediate �tness values decreases quickly, because of the
formation of giant percolating clusters which contain a large fraction of
all sequences.

� The overall number of neutral networks SN grows exponentially according
to SN = aN , where a is some constant, and with appropriate choices of
F and A, the �ndings are in excellent agreement with previous RNA
secondary structure calculations and believed also to be valid for other
evolving systems as well (such as proteins and maybe even organisms).
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� Typically there are many networks containing only very few sequences
and a few networks which contain a large fraction of all sequences. This
�nding becomes even more pronounced with increasingK. ForK = 2 the
distribution follows a nontrivial power law (with exponent �0:7), and for
K = N � 1 the distribution follows another power law with an exponent
around �1:5 (only for the small networks).

� The large clusters of percolating networks are de�ned as common struc-
tures, and �ll the sequences space more or less uniformly, so that any
common structure can be reached within a small Hamming distance from
any random sequence. In addition, the covering radius, de�ned as the
Hamming distance traveled in order to �nd more than 90% of all net-
works, is very low in a �tness landscape with maximal neutrality (for
A = 4; N = 10 and K = 3 it is below d = 3), and it increases with
increasing F (corresponding to decreasing neutrality).

� The evolution of a random hill climber is characterized by a step-like
behavior, and the maximal �tness attained by such a random hill climber
is directly dependent on the �tness of the most �t percolating networks,
which in turn is dependent on the degree of neutrality. The lower F , the
higher is the peak found by the random hill climber. Neutrality helps
populations to attain higher �tnesses.

� Real population evolve similar to the random hill climber. A cloud of
mutants searches on the neutral networks di�usively, until a bene�cial
mutant on a network of higher �tness is created, where after it even-
tually is able to drag the whole population onto this level by normal
Darwinian selection. This process continues in this manner of \punc-
tuated equilibrium" with long periods of stasis interspersed by rapid
changes. This behavior has also been observed in experiments of bacte-
rial evolution,(Lenski and Travisano, 1994; Sniegowski et al., 1997) and
in genetic algorithms (van Nimwegen et al., 1997a). The �tness of the
population is however limited by error threshold e�ects, because the ra-
tio between neutral and deleterious mutants decreases exponentially with
increasing �tness, so that the mutation rate puts an e�ective limit on the
ability of selection to suppress the bad mutants.

There are a lot of additional properties which not have been investigated
yet, including the detailed structure and size of neutral networks as a func-
tion of the variable topologies of the �tness landscape depending on the degree
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of neutrality and the epistatic interactions. Better percolating measures and
investigations of covering radii could be developed, and also details of the pop-
ulation dynamics, especially in the high-�tness regime; the length of epochs,
error threshold quanti�cations, general entropy meassures instead of a crude
diversity number, etc...all of which hopefully will be addressed in a forthcoming
work. However, in part III, there is an analytical investigation of a percola-
tion threshold of the system described here in the case of a maximally rugged
landscape.

3.8 Conclusion

We have introduced a new model of evolution on a �tness landscape possessing
a tunable degree of neutrality. We have investigated the general static and
dynamic properties of this landscape and have found a number of phenomena
also seen elsewhere: in RNA sequence-to-structure mapping; in simple protein
models; in experimental work on evolving bacteria; in protein evolution, and
in genetic algorithms designed as to exhibit neutral behavior. The phenomena
repeatedly observed in all these studies are well described in this general and
abstract model and include the existence - or the generation of percolating
networks, the formation of \common structures", the easiness of �nding such
common structures from an arbitrary starting point, the utilization of neutral-
ity in order to �nd high peaks in the �tness landscape, and the epochal nature
of evolving populations in such settings.

The overall picture of these investigations is very much in harmony with
the neutral theory suggested by Kimura and Otha. But in addition, we see the
importance of random drift even more clearly in the view of these emerging
molecular networks. The percolating networks create a new dynamics where
they form a superimposed structured space of ows, canals and intricately
complex streams of neutral mutants, through which the process of adaptation
and optimization is speeded up and highly improved. The vast number of
possible combinations of symbols, all equally good for the organism, form such
a dynamical network, which like a stream penetrates the �tness landscape , or
in Kau�mans words \searches for the adjacent possible" (Kau�man, 1996) and
thereby increased the chance to survive and seems to push the unit of selection
on a higher, more complex level.

In the next part we will move to such a higher level of natural selection,
namely to the level of species interactions. Again we will �nd that the interac-
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tions create interconnected and percolating networks, the so-called food webs,
which are essential for the survival of the species.



Part II

Complexity in Evolution





Introduction

Natural selection operates on all levels of organization. But it also creates new
levels of organization. In the preceeding part we have seen how the emergence
of percolating neutral networks can shift the unit of selection from a molecular
level to a morphological level. So, there seems to be a trend towards higher
complexity.

Some of the most complex interactions in biology are the interactions be-
tween species: their competition, their spatial distribution, their diverse ge-
netic con�gurations, their exchange of matter, and so on. Anyway, also at
this level there will inevitably emerge some percolating networks: the so-called
food webs. Obviously, these food webs will have to percolate, because the
main purpose of the generation of food webs is their transfer of energy among
the species (what is called the food chains). Species need something to eat
in order to survive. Only a small fraction of these species are autotrophs, or
basal species - that is - species which are able to transform inorganic material
to usefull energy and use only that for their survival. All the other species,
including us, depend on the consumption of organic material already available
through these autotrophs.

This second part of the thesis deals with the generation and structure of
such emerging food webs. We will introduce the �rst model which is able
to simulate the spontaneous self-organization of food webs. At least to the
knowledge of the present author, there has not been any model in the literature
of ecology and food web theory which let's food webs generate themselves
from scratch. The model presented in the second half of the next chapter and
investigated in the following chapter will do the job. In fact, the model is a
type of replicator equation (a Lotka-Volterra system) with only some minor
but crucial changes in the governing equations.

But in order to keep the pedagogical line, we �rst introduce the kind of
approach ecological theories have taken in history and discuss their problems
and successes.
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4
Ecological complexity

This chapter will start with a short account of the ideas, models and problems
encountered in history of ecological modeling. The Lotka-Volterra equation
(which, in fact, is a �rst order replicator equation which the reader already
has met in section 2.3 on page 16) is introduced and its stability problems are
explained. This will give us an idea of what kind of dynamical behaviour we
can expect for randomly wired ecosystems.

Then, before introducing the new food web model, we have compiled and
listed the most important properties observed in real ecological communities
and also properties observed in the statistical distributions from the fossil
record (these lists include lots of references to the literature). After that,
the model is presented and some preliminary investigations are made in order
to get an idea of how the system behaves qualitatively, before we in the next
chapter investigate its more quantitative behaviour.

4.1 A short history of ecological modeling

In the midst of this century, the ecologists Elton (Elton, 1958) and MacArthur
(MacArthur, 1955) tried to draw conclusions about the stability of ecosystems
from the new knowledge obtained from the �eld of population dynamics. Sim-
ple models of predators and their prey had already been formulated by Lotka1

1Initially A. J. Lotka formulated a hypothetical chemical reaction, which he said
could exhibit periodic behavior in the chemical concentrations (Lotka, 1910). In 1921
Bray (Bray, 1921) found temporal oscillations in his experiments with the hydrogen peroxide-
iodate ion reaction, wherein he made explicit reference to Lotka's work. But this historically
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and Volterra (Lotka, 1925; Volterra, 1926), suggesting highly uctuating but
stable communities. Also some experimental work in the 1930's (Gause, 1934)
manifested the initial dogma: that small and simple communities were less sta-
ble than large and complex ones (although there was no evidence for the last as-
sumption (Pimm, 1991)). On the basis of that, Elton's seminal book (Elton, 1958)
formulated some of the most important issues which ecologists should start to
study: population stability and variability, population recovery, invasion and
its consequences, and general community structures such as food webs (Elton, 1927;
Elton, 1958).

But most of the discussion was concerned with the problem of stability, and
when Gardner and Ashby published a short paper in 1970 (Gardner and Ashby, 1970),
which later was rigorously formalized and extended by May (May, 1971; May, 1973),
it came as a surprise to the community of ecologists that a general linear sta-
bility analysis of variably connected components in an ecosystem showed de-
creasing stability for larger and more densely connected systems than for small
and loosely connected systems. The old wisdom was turned on its head.

4.2 Concerns about stability

May (May, 1973) suggested that many attributes of ecological communities
could be examined through an analysis of the type and strength of interaction
between species. Thus, what had to be investigated, was the species connec-
tance as given by a random interaction matrix2.

In particular, people before May based their investigations on the Lotka-
Volterra equations, which in the two-species form can be written:

dN

dt
= N(a� bP )

dP

dt
= P (cN � d) (4.1)

where a; b; c and d are positive constants. Here, N stands for the prey popula-
tion, and P for their predators.

important work was disbelieved and dismissed because it was thought to violate the second
law of thermodynamics.

2In ecological literature a \random interaction matrix" for Lotka-Volterra type equations
normally refers to the community matrix, which, in fact, is the Jacobian, evaluated at the
equilibrium point.
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One of the nice things about equation (4.1) is the fact that the per capita
growth rate (the factors in the brackets) is a linear function of the popula-
tion variable, and thus corresponds to a �rst approximation of a Taylor series
expansion around the equilibrium point in a broad class of more general mod-
els (May, 1973)3.

4.2.1 Local stability

But equation 4.1 has also some major drawbacks. One point is the unbounded
growth of the prey population in the absence of predator, as expressed by the
�rst equation in 4.1. We will return to this later on, when we instead introduce
a logistic growth rate for the species.

The second point is the most important. These kind of Lotka-Volterra equa-
tions are structurally unstable: When making a linear stability analysis around
the non-trivial steady state, we �nd that the oscillatory solution of eq. 4.1 is not
a stable limit cycle where any small perturbation tends to zero asymptotically
with time. Rather, the oscillatory behavior is neutrally stable (implying purely
imaginary eigenvalues), and therefore any small perturbation away from the
neutrally stable solution results in large-amplitude displacements of all species
in the entire system4. Elton (Elton, 1958) just assumed this to be consistent
with the observed uctuations in real populations, without testing this result
for a larger number of species, and presumably without giving the problem of
perturbations much thought.

Now how, then, could May conjecture that larger and more complex systems
were less stable than small systems if he knew that, in fact, such Lotka-Volterra
type equations already are structurally unstable?

May looked at the general n-species version of the Lotka-Volterra equations:

dNi

dt
= Ni

 
�i �

NX
j=1

�ijNj

!
(4.2)

3May states further that it is for this reason that the competitive exclusion principle,
which forbids the stable coexistence of two or more species making their livings in identical
ways (limits on niche overlap), has been so successful in the ecological literature. See also
the discussion below on neutral stability.

4Such systems are called conservative systems because it is possible to construct
a potential function for them. The explicit mathematical consequences are discussed
in (Engelhardt, 1994; Murray, 1989; Hofbauer and Sigmund, 1998)



58 Ecological complexity

where the �'s and �'s are constants de�ning the type and strength of the
interactions. In particular, if some species Ni have positive �i and �ij values,
they are again termed preys, and if the constants are negative, the species are
predators feeding on the prey. He then performed the standard linear stability
analysis of the non-trivial steady state by evaluating the community matrix A,
and found that the roots of the characteristic equation satisfy:

NX
i

�i = trace(A) = 0 (4.3)

But asymptotic stability requires trace(A) < 0, which only can mean two
things: either all eigenvalues are purely imaginary, which implies neutral sta-
bility as in the two-component case, or at least one of the eigenvalues has a
positive real part, in which case the system is not just structurally unstable
but really, that is, exponentially unstable.

Even more general, May argued that a general system of di�erential equa-
tions in the form:

dNi

dt
= Fi(Ni) [Gi(N1; N2; :::; Nj; :::; Nm; j 6= i)] (4.4)

with i = 1:::m, where the function F (Ni) always can be factorized out, and
where the function Gi is independent of Ni, will imply that the diagonal ele-
ments in the community matrix aii are zero, leading (again) to either structural
or exponential instability.

4.2.2 Randomly wired ecosystems

Additional statistical investigations on the community matrix with a random
number of entries had been done numerically by Gardner and Ashby (Gardner and Ashby, 1970).
Their conclusions, based on computer simulations with 4; 7 and 10 variables,
where that such systems could be expected to be stable up to some critical
level of connectance, and beyond this point go suddenly unstable (because of
a high probability to �nd positive eigenvalues which diverge exponentially). In
appendix D we give a nice little analytical example of, why it is so probable
to �nd some positive feed back loops (and thus positive eigenvalues for the
governing di�erential equations) in such interconnected systems.

On the basis of that, May (May, 1972) could show analytically that for a
given connectance C, de�ned as the fraction of non-zero entries in the commu-
nity matrix A, and a variance �2 of such matrix elements (with zero mean),
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the probability P (N;C; �) that the system is stable will be such that

P (N;C; �)! 1 if �
p
NC < 1 (4.5)

P (N;C; �)! 0 if �
p
NC > 1 (4.6)

Thus, assuming a connectivity independent of N , there will be a sharp phase
transition for N !1.

The standard deviation � is expressing the average interaction strength
common to all interactions. Typically, computer simulations work with a uni-
form distribution of random numbers between �1 and 1, which means that
the variance �2 = 1=3, and � = 1=

p
3 measures the normal deviation of two

interacting entries5.
In conclusion, the investigations on local stability around a hypothetical

steady state for the entire ecosystem have proved insuÆcient in order to un-
derstand the relative stability of self-organizing ecologies observed in nature.
Lately, it has also been questioned, whether local stability is an adequate ac-
count for systems exposed to perpetual extinctions, invasions, time-dependent
interaction strength and an ever changing environment (Sol�e and Manrubia, 1997;
Brown, 1994; Hall and Ra�aelli, 1993).

4.2.3 Permanence

In the case of of the two dimensional Lotka-Volterra equation 4.1, it was possi-
ble for Volterra to derive a clever potential (Liapunov) function and thus settle
the question of global stability.

But it soon became clear that a construction of a Liapunov function is in-
appropriate when dealing with a large number of interacting species, or just
when dealing with another mathematical model. Surely, from a dynamic point
of view, the behavior of population frequencies is not only limited to asymp-
totically stable steady states de�ned by Lotka-Volterra models. Rather, there
exists a broad range of other models with other complex behaviors - from oscil-
latory movements (for N � 2) to chaotic or strange attractors (for N � 3). Of

5In experimental situations � is mostly unknown, and people have assumed it to be
constant (Paine, 1988). Then, assuming that an ecosystem is stable and that such general
Lotka-Volterra equations describe them well, the product NC will be constant. The result
is a hyperbolic relationship between N and C. We will later touch upon this in section 4.3
and 5.1.1.
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course, biological considerations imply that solutions to 4.1 on page 56 or 4.2
only are meaningful in the positive cone Rn

+ , and that crossing the boundary
ÆRn

+ corresponds to a situation where at least one species becomes extinct.
Thus, it is reasonable to expect that there exist some non-trivial permanent
trajectories in the phase space, even though the local equilibrium solution is
linearly unstable.

One possible requirement, which has become popular under the name per-
manence (Jansen, 1987; Law and Blackford, 1992), would be to have repelling
boundaries ÆRn

+ in the phase space, so that each orbit of the species trajectories
never leaves the system. When one species comes dangerously close to ÆRn

+ -
that is to extinction, the concept of permanence expects a change to positive
growth rates for that species. To be realistic, one also requires that no orbit
should tend to an in�nite population density6.

If the conditions for permanence are ful�lled, no species will go extinct
in the presence of selection and conversely, if some originally missing species
is introduced through mutation or invasion, it will spread. In contrast to
the notion of local stability, the condition of permanence is a global criterion
because it applies to orbits starting from every point at which species are
present, and not just for species which are inside the boundaries. Even though
local stability is lost, the global condition of permanence might still be valid.

But still, extinctions and unsuccessful invasions are frequent in real ecosys-
tems, so why should such systems bother to ful�ll the criteria of permanence?
Virtually all plant and animal species that have ever lived on the earth are ex-
tinct (Raup, 1986). For this reason alone, extinction must play an important
role in the evolution of life. Every model, which tries to explain species evolu-
tion, must therefore incorporate extinctions. This we will do in section (4.4) -
but �rst we will look more carefully at the properties of real ecosystems.

4.3 Observable properties of species communities

The complexity and openness of ecosystems is hardly rivaled by any other nat-
ural occurring system (apart form the nervous and immune system, maybe).
They consist of many individual parts (from hundreds to billions); they main-
tain themselves far from thermodynamic equilibrium by uptake and trans-
formation of energy; they exchange matter across arbitrary complex spatial

6For a more explicit mathematical treatment of the concept of permanence,
see (Hofbauer and Sigmund, 1988; Hutson and Schmitt, 1992).
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boundaries; they are adaptive and have an irreversible history; they converge
and diverge in genetic constitution, and they form hierarchic patterns and their
populations exhibit an enormous variety of nonlinear dynamical properties.

Experimental �eld work tends to use only small-scale, short-term investi-
gations of relatively simple systems, maybe reecting the modern time-scale
of scienti�c impatience and demands for publication. What is often missed
by such studies is the long term e�ect of altered feeding links, slow popula-
tion changes as a result of reorganizations, extinction modes, and a general
appreciation of the dynamical, non-static nature of ecological communities as
observed through the fossil record.

4.3.1 Ecological time scale

Therefore, in order to characterize ecosystems qualitatively, it is important
to look at both the small and the large time scale. One the smallest time
scale one primarily has to focus on the most prominent features such as the
relationship of individual organisms with their environment, the structure of
interactions and diversity of species, and the uxes of energy (information on
who eats whom). The following table summarizes the most common features,
which have been cataloged empirically (Hall and Ra�aelli, 1993).

Table 4.1: Observable properties on the ecological time

scale.

De�nition Description Data

Food web size,

N
Total number of elements in the

web.

Typically between 50 � 100

Trophic link, L A trophic link is established

when there is an interaction be-

tween two species.

See linkage density.

Connectance,

C
The connectance is the propor-

tion of realized trophic links.

Thus, C = L=N2, where L is the

total number of trophic links.

Hyperbolic relationship be-

tween C andN , but maybe de-

creasing for larger webs.
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Linkage den-

sity, L

Instead of measuring C, people
have started to favor plots show-

ing the number of trophic links
L vs. N .

Numbers from 2�5 are all con-

sistent with the data. Since

the relationship between C
and N was thought to be hy-

perbolic, L = NC was thought

to be constant. Now L is

believed to increase for large

webs (Cohen et al., 1990).

Basal species,

Nb

Those species that have preda-

tors but no prey.

Independent of N but with

high variance in the data

(Briand and Cohen, 1984;

Cohen and Briand, 1984).

Top species, Nt Those species that have no

predators.

High variance, and the

ratio Nt=Nb ' constant
(Evans and Murdoch, 1968;
Je�ries and Lawton, 1985).

Number of om-

nivores, No

Omnivores are organisms which

feed on more than one trophic

level. An unequivocal de�ni-

tion is still missing, so in the

following investigations we have

de�ned omnivores as preda-

tors also having a Malthusian

growth rate, see section (4.5.2).

Less common in real webs than

in randomly generated webs

(Pimm, 1982).

Food chain

length, `
Food chains run from each top

predator through the interme-
diate species down to the basal

species. The food chain length

is de�ned as the number of links

in this path and is one less than

the number of species in the

chain.

Typically short, from 3

to 6. Very few feed-
ing loops (Pimm, 1982;

Cohen et al., 1986).

4.3.2 Time scales of speciation and extinction

On the larger time scale of speciation and extinction, as de�ned by (Stenseth and Maynard Smith, 1
one has made the following observations by looking primarily at the fossil record
(data mainly after (Sol�e and Manrubia, 1997)):



4.3 Observable properties of species communities 63

Table 4.2: Observable properties on the speciation-

extinction scale.

De�nition Description Data

Extinction pat-

terns, P (f)
The time series of the num-

ber of extinction of a taxonomic
unit (typically family or gen-

era) as observed in the fossil

record. P (f) is the correspond-
ing power spectrum (calculated

as the Fourier transform of the

autocorrelation function)

Typically P (f) /

f��, where � ' 1
(Sol�e and Manrubia, 1997)

Extinction

distributions,

S(m)

The distribution of extinctions

of size m
Follows a power law decay:

S(m) / m�� with an expo-

nent � ' 2 (Newman, 1996;

Sol�e and Bascompte, 1996).

Lifetime distri-
butions, S(t)

Distribution of lifetimes of fam-
ilies or genera

Again a power law decay
S(t) / t��, where the expo-

nent � ' 2 (Raup, 1991).

Static struc-

tures, Sg(N)

The number of genera, formed

by N species, shows fractal

properties

Power law distribution

Sg(N) / N��b , �b ' 2

(Burlando, 1990). The �rst

investigations of this came

from Willis (Willis, 1922),

who found an exponent � 1:5.

Van Valens

constant ex-
tinction law,

St

States that a species might dis-

appear at any time, irrespective
of how long it already has ex-

isted. Thus, there is an ex-

ponential decay in the number

of surviving species throughout

time (Van Valen, 1973)

Van Valen measured N(t) =

N(0)e�qt, with q = 0:13,
but when narrowing down the

sampling window, and looking

at the survivorship curves, one

�nds pronounced stasis inter-

spersed with major extinction

events (Raup, 1986).

All these are fairly many observations, and it has over the years seemed
as a Sisyphean labor, if not impossible, to construct a single model system,
which was able to reproduce and interpret all these properties. No set of
equations has been able to span the range of complex behaviors observed,
while simultaneously being numerically tractable (not to speak of analytical
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tractability).

One approach to cut through this pandemonium of diÆculties has been the
idea of self-organized criticality (SOC). In essence, it refers to the tendency
of large dynamical systems to evolve spontaneously towards a critical state
characterized by spatial and temporal self-similarity, which then expresses itself
in a variety of power law-relationships of the variables. From a conceptual point
of view, this approach is very imaginative and inspiring. But from a modeling
point of view, one can have an insecure suspicion that SOC just might be a
helpless etiquette, which tries to explain, but in fact just scratches the surface
of overt facts, leaving us in the dark with the true dynamical mechanisms
responsible for such a self-organization7. However, many characteristics which
de�ne SOC systems will also show up the the model we are going to de�ne in
the following section.

4.4 A model for self-organizing food webs

This model is a relatively simple model which has a rich variety of dynamical
properties of the kind described in the previous section. In particular, it is the
�rst model which lets many ecological properties, such as food webs, preys and
predators, top and basal species, etc. organize themselves.

The key features are the following:

1. Most important, the strength and type of interactions among species
changes in time. Thus, from a modeling point of view, one needs to let
the constants, de�ning the interactions in equation 4.2 on page 57, be
dependent of time:

dNi

dt
/

NX
j=1

�ij(t)Ni (4.7)

Moreover, the matrix elements �ij(t) incorporate two distinct properties
which we can separate in two:

a An interaction matrix Aij(t), de�ning who is interacting with whom,
so that, when there is an interaction, for instance species 3 feeding

7We will discuss self-organized criticality more extensively in part III.
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on species 7 (A37), it is turned on (A37 = 1)8, and, if there is no
interaction, it remains zero.

b An extra matrixBij(t) for the interaction strength de�nes how strong
this interaction is. So, the values of Bij(t) are de�ned as real num-
bers between [0; 1].

The interactions will then be de�ned as the products of the two matrix
elements:

dNi

dt
/

NX
j=1

Aij(t)Bij(t)Ni (4.8)

2. Traditionally, the growth rate of a species is thought to be dependent on
its own population size, as expressed by the factor Ni outside the brackets
in equation 4.2, reecting standard Malthusian growth (the Ni�i term),
and population-proportional depletion (the Ni

P
j �ijNj term). This is

quite unrealistic (Murray, 1989) because it implies an unbounded growth
of the prey population in the absence of predators. Normally, theoretical
ecologists replace such a linear growth rate with a more realistic logistic
growth rate:

dNi

dt
/

NX
j=1

Aij(t)Bij(t)Ni(��Nj) (4.9)

where � is the carrying capacity, which says that the populations are
more or less limited by the capacity of the environment to carry them,
so that when the population reaches �, the growth and death rates are
about equal9.

3. The �nal idea to introduce, apart from time-dependent interactions and
logistic growth, is the fact that all species need to optimize their en-
vironmental interactions and therefore need to adapt to di�erent, often

8Note that A73 is not a�ected, because we assume no causal connection between one
species feeding on an other and that other being a�ected of the �rst. This might seem
contra-intuitive, but in real ecosystems many species are not a�ected by the exploitation
of other species on higher trophic levels. And also, the interactions might not always be
competitive or bene�cial, but more or less neutral.

9One could of course argue that the carrying capacity also changes when some species go
extinct or other get introduced in the ecosystem competing for the same niche. Nevertheless,
we will restrict ourselves to a constant �.
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conicting demands in order to survive. Each favorable interaction (it
could be tasty food) has some adaptational costs (good legs). Thus, we
introduce an adaptational load or foraging load, which in the simplest
approximation can be set inversely proportional to the number of species
with which a species interacts.

Now we can extend eq. (4.9) to become

dNi

dt
=

1

Ki

NX
j=1

Aij(t)Bij(t)Ni(��Nj) (4.10)

where

Ki =
NX
j=1

Aij; 1 � Ki � N (4.11)

is the total number of interactions of the species i, that is, Ki is the
speci�c linkage density L from the previous section.

This concept of a foraging load, 1=Ki, is something new. It makes the as-
sumption that a species - in a stable environment where there is plenty of
all kind of food - will specialize for only one or a few food sources in order
to minimize the adaptational cost10. But the crux here is that environ-
ments are not stable. In an ecosystem, where old species go extinct and
new species get introduced; where interactions change and external per-
turbations are frequent, a one-eyed specializing strategy might prove fatal
on a larger time scale. In the presence of extinctions and re-population
by new species, a balanced strategy might instead prove bene�cial.

4. How do we remove and introduce new species? The following updating
rules are easily implemented:

a When in eq. (4.10), at a time t, a population goes extinct such that
Ni(t) � 0, all non-zero entries in the interaction matrix A are set
to zero, that is Aij = 0, and Aji = 0 (so that all species which have
interacted with species i are a�ected).

10This is of course an idealization because there often are many food sources which do not
need further adaptational investments, see the discussion.
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b All entries Bij and Bji are re�lled with new random numbers be-
tween [0; 1] (so that a new species, which will be introduced here,
will have new kind of interaction strengths with the other species).

c Introduce a random number (uniform between 1 and N) of 1's in the
column of Ai (Ai1; Ai5; Ai8 and Ai9 for instance). The other species
in the system will �rst encounter it, when they themselves change
their interaction (the entries A1j; A5j::: are not a�ected).

d random mutations in the entries Aij and Bij with values pa and pb
respectively are introduced in order to reecting the time depen-
dence of the interactions.

It is easily seen that a system with this setup will be a�ected by at least
two di�erent time scales: one is the ecological time scale, where specialization,
building of percolating nets for food transfer and permanent trajectories in
phase space are important. The other time scale appears, when the criteria
of permanence is not ful�lled: extinctions, introduction of new species and
external perturbations dominate the dynamics, and diverse distributions of
extinction patterns etc. can be investigated.

4.5 Preliminary qualitative investigations

However, the above model is still very complicated, when one wants to make
exhaustive statistics on the emerging properties as discussed in section 4.3.
This is of course due to the intrinsic sti�ness of the coupled di�erential equa-
tions, which calls for sophisticated and time consuming integrators11, and the
still limited computer power when N becomes large.

4.5.1 Time-development and stability

When integrating eq. (4.10), with random numbers occupying the matrices
A and B, one encounters the following picture (see �gure (4.1)): On a large
time scale the overall population dynamics becomes quite uctuating, where
small changes in the interactions result in abrupt changes in the growth rate.
Some species are able to �nd a constant population value, often around the
carrying capacity, but the most trajectories are dominated by large-amplitude

11The integrator used is a general sti� 4th order Runge-Kutta method, called Rosenbrock-
method, see (Press et al., 1992).
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Figure 4.1: Qualitative behavior of eq. (4.10) with N = 16; � = 1 and a probability
pa = 0:001 for a mutation at a site in interaction matrix A and pb = 0:002 for a mutation in
B per unit time. Six of the sixteen population trajectories are plotted, and one can see that
the dynamics is dominated by large-scale large-amplitude uctuations. Some of the species
go extinct, other �nd a temporary equilibrium around the carrying capacity �, and still other
uctuate unpredictably in phase space. In general, the larger probability for change in the
matrix elements A and B, the more uctuations there will be.

oscillations, and nobody can be safe from extinction. The trajectories with a
negative growth rate
indexgrowth rate!negative will eventually reach extinction, where after a new
species is introduced with di�erent interactions and interaction strength, and
an initially low population. With good fortune these will grow, depending
on the survival of their food sources, de�ned as the interactions in matrix A.
This means that extinctions often occur in bursts. When some key species go
extinct, they might pull many of the other species along with them, leading
to a cascade of extinction events. After that, the system needs some resilence
time in order to become stable again, if possible.

The steady state N� = 1 for � = 1 for all i seems for the most cases to be
structurally unstable, but often the system settles in another, nontrivial quasi
steady state, which, in turn, can go unstable again, as shown in �gure (4.2).
In this �gure there are not introduced any external perturbations. Rather, it
is an intrinsic instability which ampli�es itself throughout the whole system.
Without the requirement of repelling boundaries, the notion of permanence
would be a reasonable description of the dynamics of equation 4.10. However,
on a macro-evolutionary scale, global stability is non possumus, and that's
also the reason, why there is such thing as evolution. The step from short-
term population dynamics to long-term evolutionary dynamics can only be
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Figure 4.2: Another situation. The system has been stable for a while, but suddenly an
instability ampli�es itself, and the trajectories form large-amplitude oscillations. However,
after some extinctions, the system settles itself again in a quasi-stable state.

introduced, when diverse stability criteria are violated permanently. It is also
a well known fact (Pimm, 1991) that real species communities have long-term,
large-amplitude changes in abundance, all though they seem quite stable on a
shorter time scale.

4.5.2 Self-organizing food webs

The connectance C (or linkage density L) of the system is here, in contrast
to the general Lotka-Volterra models, not constant, and not even a variable.
It is self-organized in a true sense. The speci�c linkage density Ki, de�ned in
eq. (4.11), is initially set to a random number between 1 and N12.

Because of the described dynamics, the system will then quickly disconnect,
so that K on average is low, eg. - the individual species which have few but
good food sources (few 1's in A but high values in B) will have larger growth
rates than their partners with many food sources13. This can be seen in the in-
sert of �gure 4.4 on page 71. However, since everybody in the system competes
for an optimal foraging strategy, the structure of the interactions have the ten-
dency to become very ordered. Thus, this is the �rst model, which lets food
webs organize themselves. We have not imposed any limitations or require-

12It is reasonable to expect this number to be fairly below N , since most species initially
only would be capable of interacting with a few other ones - at least with far less species
than there are existing in the whole ecosystem. See section (5.1.2) for further details.

13This is due to the larger variance of dni=dt when Ki is low
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Figure 4.3: The self-organized food web. The arrows indicate the ow of energy and the
circles represent autotrophs. See text for further explanation.

ments on how the species should interact. In the beginning of a simulation the
matrices A and B are �lled randomly, which normally results in heavily wired
structures with lots of loops and circular food chains. But after only a short
time of integration, the system undergoes a sudden transition towards well-
ordered interactions where basal species and top species appear accordingly.
The system self-organizes towards a percolating net of species community.

As an example, look at �gure 4.3. It shows the resulting food web (the
structure of the matrix A) of the simulation in �gure 4.1 on page 68 at time
t = 500.

What is seen in this �gure, is the inter-dependencies of all sixteen species
from the previous example, structuring themselves in optimal percolating food
webs in order to maintain their growth rates and thus escape extinction. Out
of the sixteen species, six are self-activating (having a 1 in the trace of A),
which is indicated by the loops in the �gure. The arrows show the ow of
energy, that is: they show who is eating whom: For instance will an arrow
from 9 to 1 indicate that 9 is the food source of 1, in the same way as 6 is the
food source of 9 (and 8; 14 and 10). Seven of the sixteen species are not fed
upon (species 3; 7; 15; 16; 1; 11 and 2), and consequently they are termed top
species as de�ned in section (4.3). Four species (numbers 5; 6; 4 and 12) are
not feeding upon any other species, and are only existing because of their self-
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activation. Instead of de�ning them solely as cannibals, we de�ne them as the
autotrophic basal species feeding on external sources like the sun and soil. At a
�rst cast this might seem a misinterpretation, but it is actually equivalent with
the introduction of a positive (Malthusian) birth rate (Na) into the normal
Lotka-Volterra equation (4.1). Besides the top and basal species, one can see
all kind of intermediate species: species with di�erent numbers of predators and
preys or species with a positive growth rate in addition to predation (species
8 and 10). These last two species we de�ne as omnivores (note that species 11
is not an omnivore).
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Figure 4.4: Self-organization of the food chains. The average food chain length is plotted
against time. The system undergoes a rapid transition from randomly wired structures
to ordered, percolating webs. N = 130; pi = 0:002 and pf = 0:004. Insert: The time
development of the average linkage density shows that for most of the species it is favorable
to have a low number of trophic links in order to optimize their growth rate. Although
the dynamical changes of the populations keep on to make new links due to introduction of
new species and mutations, the tendency is clear: Randomly wired ecosystems disconnect
quickly in order to maximize individual advantages. Note again the sudden transition from a
randomly wired system (large K) to an ordered system (low K) at time ' 50. N = 16; pi =
0:001 and pf = 0:002.

Another interesting feature of the model is the decoupling into di�erent
sub-webs: in our example there is one big web with 10 species, and two small
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webs. This is quite plausible and also observed in real species communities as
a result of specialization.

The food chains are normally de�ned as all the possible paths from a top
species down to a basal species. In our example there are seven top species
which have a total of 11 trophic links until they reach the basal species. Al-
though crude, one approximate measure of the average food chain length is
thus

` =
Ltot �Nb � Lo

Nt

(4.12)

where Ltot is the total number of links in the system, Nb and Nt the number of
basal and top species respectively, and Lo is the number of links which belong
to omnivores. This de�nition of the food chain length is a lower limit, since
the trophic interactions of intermediate species, which feed more than one top
species, but themselves are feeding on less, not are counted multiple times (for
instance: the total number of trophic links counted for both top species 1 and
11 linked to the intermediate species 9 is 3 and not 4). Using eq. (4.12) on
�gure (4.3), we �nd ` = 11=7.

When �lling the interaction matrix A with random entries in the beginning
of a simulation, the food chain length is typically very large (rather it's not even
a chain; it is a heavily entangled structure without any direction). But due to
the dynamics, the structure decouples and becomes ordered very quickly. The
main part of �gure (4.4) shows an example of the development of the food web
structure in terms of the food chain length versus time.

It is now easy to see the result of a possible perturbation of the system. If
one species, say species 9, encounters a change in interaction strength (muta-
tion in B), or a change/removal of a food source (mutation in A), or it just
drops down to a dangerous low population level by the intrinsic dynamics, it
will, after an eventual extinction, also remove the basis of food supply of the
species 1 and 11. Maybe 11 will survive because of its connection to species
4, but number 1 will surely die. In this situation, the species population dies
instantly, because it is removed by the algorithm and substituted with a new
species. One could, in principle, modify this stringent rule with more rea-
sonable assumptions such as di�erent transition times, population-dependent
mutations, and introduction of additional features (spatial, temporal, genetical,
etc), but the fundamental aspects of ecological self-organization as suggested
by this model would be blurred by a wealth of conicting mechanisms. So, for
these initial investigations, we will try to keep the model simple.
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Figure 4.5: Evolution of the average �tness in the discretized system. The number of
species in this simulation is N = 32, and pa = pb = 0.

4.6 A toy model of the model

An even simpler model - one without the troublesome coupled di�erential equa-
tions - could be desirable. This could then allow us to make even more extensive
statistical measurements of the di�erent properties in the model. In order to
do so, we can replace the di�erential dni=dt with a unique �tness function fi,
which de�nes the �tness of the whole species, and is calculated as:

fi =
1

Ki

NX
j=1

AijBij (4.13)

This simpli�ed version of equation 4.10 on page 66 is updated in discrete time
steps, where the species with the lowest �tness value is removed in accordance
to the rules given above in section (4.4,4)14. In this description the model is
very easy to implement on a computer. Note that there is no population here.
Every species is solely characterized by one �tness value. There is no such
thing as a time scale at which one species population decreases towards an
eventual extinction. Instead we remove the lowest �t element at every single
discrete time step.

The dynamics of this system is very much alike the dynamics of the inte-
grated version. Moreover, we can see here, how the system optimizes towards

14Actually, this version of the model was the �rst investigated by the author - but that's
the way science goes: you get ideas from colleagues (Mark Newman, Axel Hunding), and
then you get ambitious.
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Figure 4.6: The average linkage density in the same simulation as in �gure 4.5

larger �tness values in connection to the self-organization of the food webs
�gure 4.5. The average �tness increases rapidly because the dynamics always
removes the lowest �t species. After a build-up period, sudden catastrophes
of extinctions destruct the self-organized structure (a basal species goes ex-
tinct, for instance, resulting in a cascade of extinction of the species linked to
it), and the system will rebuild itself again towards a new, ordered, food web
structure. The average linkage density, L, follows the average �tness closely, as
seen in �gure (4.6). When there is an extinction of an important basal species
(because of an invasion of a �tter variant) with lots of trophic links feeding
on it, it generally triggers many extinctions. The ecosystem becomes disor-
dered and many of the most specialized species disappear, until the system has
reorganized itself again.

In summary, this toy model, which replaces the population densities with
an unique �tness function, has many of the same characteristics as the full
system, formulated in eq. 4.10. The main new idea in these two models is the
inclusion of the 1=Ki-factor. Although the toy model - equation 4.13 - in many
case is in quantitative agreement with the full system, we will in the following
investigations concentrate on the di�erential version - equation 4.10 - because
it's more realistic and also because it is more in harmony with the tradition of
Lotka-Volterra type equations for ecological modeling and the investigations of
replicator dynamics in general.
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4.7 Discussion

Compared to the complexity of ecological system, the presented model is kept
as simple as possible. Still, the qualitative behavior of the population densities
is very unpredictable and complex. There is no parameter tuning in the equa-
tions, and it is therefore possible to say that the emerging structures are truly
self-organizing. The system drives itself towards a critical state, characterized
by a self-organized connectivity, directional percolating food webs with top and
basal species, punctuated extinction patterns, etc. - all in order to keep the
individual species populations in the game of evolution.

It should be noted that the model from equation 4.10 on page 66 can be
rewritten, so that it with some modi�cations becomes the Lotka-Volterra equa-
tion:

dNi

dt
=

1

Ki

NX
j=1

AijBijNi(��Nj)

=
Ni

Ki

 
NX
j=1

AijBij��
NX
j=1

AijBijNj

!

so that, if we remember that the general N species Lotka-Volterra equation 4.2
from page 57 is

dNi

dt
= Ni

 
�i �

NX
j=1

�ijNj

!
;

then, the constants � and � become equal to

�i =
�

Ki

NX
j=1

AijBij

�ij =
AijBij

Ki

From this point of view, the present model is a special version of the general
Lotka-Volterra equation, although with the important di�erence of an intro-
duction of the factor 1=K.

The introduction of the 1=K-factor does maybe not need an explanation
in terms of a foraging load (Mark Newman, private communication). It might
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be enough to argue that if individual species depend on a number of other
species, such as herbivores on several plants, or predators on many preys, they
experience each individual contribution to their diet as comparatively less im-
portant - inversely proportional to the number of utilized food sources - 1=K.
For instance: if a predator eats ten preys for its livelihood, and one of the preys
goes extinct, the predator only looses 1=10th of its �tness, since the individual
contributions to the predators �tness are 1=10. But if a predator only eats
one prey, it is very vulnerable, because it dies if that prey becomes extinct. In
the literature, the normal modeling approach has been to expect an additive
�tness. The more sources you can �nd, the larger �tness you get. But indi-
vidual species only need a �nite amount of energy input in order to live. This
�nite amount of energy can be obtained in di�erent ways: either you specialize
for only one or a few food sources, or you generalize for many food sources
where each source contributes only partially to the total energy required. Both
strategies have their advantages: In the short term specializers might have an
advantage if their resource is very abundant (lessons from optimal foraging the-
ory) (Emlen, 1966; MacArthur and Pianka, 1966; Schoener, 1971), or if their
resource provides not only food, but also protection, mating possibilities, etc.
(Colwell, 1986). Generalizers do better in the long run, because extinctions
of their resources do not a�ect their survival in the same degree. Thus, one
would expect a longer average lifetime of generalizers, although there might be
less of them. In section 5.4 we will show that this is indeed the case. Also,
one would expect that species, within a web, which interact with many others
should do so weakly (small bij's), while those which interact strongly should
do so with but a few species. Also this will be shown to be true.

The present model is of course an extremely idealized version of the possible
dynamical interactions in real ecological communities. Individual species surely
develop many additional characteristics that cannot and will not be included
in the algorithm. The tension between specialization and generalization could
for instance be relaxed by speci�c choices of the mutations probabilities pa
(reecting observations of \partial preference", see (Futuyma, 1986, chap.9)),
or the 1=K-factor could be weighted with the population densities, changeable
carrying capacities, etc..

Since every simulation is di�erent due to the randomness of the initial con-
�guration and the randomness of the invading species, this model could at
a �rst glance seem as a paradise for people who do not want their results
reproduced. However, the emerging properties have of course a statistical sig-
ni�cance which then can be compared to the experimental data. This will be
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the subject of the next chapter.
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5
A closer look

on the data

In the following chapter we will analyze more deeply, how the N coupled dif-
ferential equations construct their own network of interacting and evolving
populations, and we will try to �nd some statistical results of the emerging
properties of this model. Let us recapitulate that we investigate the coupled
di�erential system

dNi

dt
=

1

Ki

NX
j=1

AijBijNi(��Nj); Ki =
NX
j=1

Aij (5.1)

where Ki is the total number of interactions of species i.

First we will look at the short time scale and investigate properties such
as the connectivity, the linkage density, the food chains and the number of
species on di�erent trophic levels. Then we go on and investigate the extinction
dynamics, the resulting distribution functions of lifetimes, survivorship curves,
etc. Finally, after a summary, we compare our results with the experimental
data obtained from the investigations of real food webs and from the fossil
record.

5.1 Food web statistics
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Figure 5.1: The linkage density ` as a function of time. The system reaches a very stable
period at t ' 3000, but looses it ultimately again. N = 150

5.1.1 Linkage density

As noted in section 4.2.2 on page 58, May (May, 1972) obtained some analytical
expressions for the relation between a given connectivity C and system size N .
Assuming that Lotka-Volterra type equations describe ecosystems well, one
expects a constant linkage density L = NC, and thus a hyperbolic relationship
between C and N . As can be seen in �gure 5.1 the linkage density uctuates
from around 1:2 to 3 for a quite large system with N = 150 species. And this
range in which the linkage density uctuates does not change for increasing or
decreasing N . Thus, as expected from the normal Lotka-Volterra equations.
this model also has a constant linkage density (and therefore a hyperbolic
relationship between C and N).

For the present model, the linkage density is also more or less constant,
although there seems to be a small trend towards lower numbers for increasing
system size, see the lower curve of �gure 5.2 on the next page. But this trend
is so small, especially when considering the large variance in the data1, that is

1The number of samples used in order to obtain just one point in the �gure (and also the
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seems plausible to interpret the average linkage density, L, as constant around
1:5 for all N .

The average food chain length, `, as shown in the upper curve of �gure 5.2,
follows the linkage density quite closely. The experimental literature has an
average linkage density of � 2� 5 and an average food chain length of � 3� 6.
Considering that these data are obtained for ecosystems of sizes 30 to 120,
where the largest variance is found, the predictions of the present model are
quite fair.
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Figure 5.2: The linkage density (lower curve) and average food chain length (upper curve).
The simulations show that larger systems does not mean longer food chain lengths and larger
linkage densities. On the contrary, there is all small trend towards lower values for both for
large N . Insert: the number of isolated webs in the system grows with N .

5.1.2 Top species

The top species are de�ned as species which feed on other species, but are
not themselves fed upon. I the model this only means that one has to count

following �gures) is at least 25:000. For a lower value the results become even worse than it is
the case already. Also, in all following simulations we have set the probabilities of mutations
in interaction strength (matrix elements in B), pb, and interaction partner (matrix elements
in A), pa, to 0:0002 and 0:0001 respectively.



82 A closer look on the data

the number of species which have all zeroes in their column of matrix A, see
eq. 4.10. The newly introduced species after an extinction event are necessarily
top species since no other species in the community has yet had the possibility
to utilize them as a food source. First after some time, mutations and later
introduced species can eventually change these top species to intermediate or
basal species. Figure 5.3 shows how the system develops though a transient
period of an increasing number of top species until it reaches saturation.
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Figure 5.3: The build-up of top species in the beginning. N = 400, pf = 0:001 and
pi = 0:0002.

But how does the number of top species depend on system size? The main
part of �gure 5.4 on the next page shows that the number of top species on
average is proportional to system size in such a way that at least N=2 of all
species are top species most of the time. Although the governing equation does
not give any direct indications of the fact that having other species dependent
on you is unfavorable for your growth rate (it's only a sum of the species you
self depend upon), the dynamics shows nevertheless strong preference towards
the strategy of being on top of the others. This also makes the structure of the
food web very \bushy" in the sense that there are many \twigs" (links) going
outwards from relatively few autotrophic basal species.

5.1.3 Basal species

The basal species however accumulate much slower through time. One reason of
course is that new invaders have a large probability of having many interactions



5.1 Food web statistics 83

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450
1

2

3

4

5

6

7

100 150 200 250 300 350 400 450

0 50 100 150 200 250 300 350 400

n
u
m
b
e
r
o
f
to
p
sp
e
ci
e
s

N

N
b

N

N
o

4

12

20

Figure 5.4: Number top species as a function system size N . Best line �t for top species:
Nt � 0:6N . Insert upper left: average number of basal species. Insert lower right: the
average number of omnivores is highly variable but low for all system sizes.

in the beginning. A more realistic assumption would be that the number of
feeding links for a invader is a uniform distributed random number between one
and M , where M � N . Thus, we actually have changed eq. 4.11 on page 66
to

Ki =
NX
j=1

Aij; 1 � Ki � M (5.2)

where M = 20 for the simulations in this chapter. This is reasonable because
in most cases new species only can interact, or feed upon, a small fraction of
the whole community. The exact setting of M is however a matter of taste or
convention, but the lower we set M , the shorter transient periods there are in
the system - mainly because the basal species with only one interaction (in the
trace of matrix A) are emerging more frequently the lower M is.

All the simulations show that the number of basal species is much lower on
average than the number of top species. This is also known from experimental
data.

Allthough it is diÆcult to obtain high quality data, as can be seen in the
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Figure 5.5: The number of basal species as a function of the number of top species. The
�t satis�es Nb = 0:19Nt + 3.

upper left of �gure 5.4. The reason is that the transient time for the average
number of basal species increases rapidly for large N , but when plotting the
number of top species against the number of basal species, as in �g. 5.5, one
can adjust for the bias in transient times for di�erent system sizes. The �gure
show that the number of top and basal species follow each other roughly linearly
for increasing system sizes. This means that for each basal species there are
approximately a constant number of top species associated with it, on average.
It follows that the other properties, such as chain length and linkage density
remain roughly constant for increasing N (as we have seen already).

5.1.4 Omnivores

The average number of omnivores, as de�ned in sec. 4.5.2 on page 69, re-
mains low for all N . Although it still needs some more investigations, the
simulations indicate that if the number of omnivores is high, the systems be-
comes more prone to extinctions. This has also been a subject in the liter-
ature (Pimm and Lawton, 1977; Pimm and Lawton, 1978), where it has been
argued that systems with many trophic levels (more than three) get strongly
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destabilized in the presence of omnivory. Later Yodiz (Yodiz, 1984) showed
that the rarity of omnivore links in real webs could be accounted for by the
lack of animals that feed on both plant and animal tissues. In any case, the
model predictions agree with the experimental data that omnivores are rare,
but (again) quite variable (Hall and Ra�aelli, 1993).

5.1.5 Linkage strength

One of the motivations behind the splitting up of the matrix elements of sec-
tion 4.4 on page 64 was that we then were able to investigate and quantify
two distict properties immanent to species interactions: the A0

ij-elements tell
us who interacts with whom and with how many, and the Bij-elements tell
us about the strength of these interactions. We expected that this strength
changes, depending on which species we look at. Basal species which only
\interact" in one link with themselves (rather: the autotrophic basal species
which utilize external sources such as the sun and the soil) and species with
only a few links are expected to have strong interactions (large values in B),
against which the top species - normally with many links - are expected to
have weaker connections.

All simulations show that this is correct. On average the basal species have
an interaction strength Sb = 0:60, while the top species, on average, have an
interaction strength St = 0:47 (remember that the random numbers thrown
into B are uniformly distributed between zero and one). This means that
there is a relatively strong selection process on the kind of interactions on the
species, especially the basal species.

5.2 Extinction statistics

In this section we �rst investigate the survival of the species in the model in
terms of survivorship curves and power spectra of extinction patterns. Then,
we make a histogram of the extinction distributions, which yields an exponen-
tial dacay, but with the important recognition that such distributions are a
result of an intrinsic self-organization.
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5.2.1 Van Valens constant extinction law

If one measures the rate at which the whole group of species in the system
present at a given time disappears over the subsequent time, one can obtain a
feeling of the episodic character of the extinction events.
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Figure 5.6: Ten individual survivorship curves showing the percentage of survived species
within a given time interval. N = 100. The insert shows the same �gure in semi-logarithms
indicating an exponential decay. The smooth line is an average over 100 runs.

It has for some time been believed that there exists a continuous rate of
\background" extinctions (Van Valen, 1973), known as Van Valens constant
extinction law. Empirical samplings showed that this law could be expressed
by an exponential decay with

N(t) = N0e
�qt (5.3)

where N0 and N(t) are the number of survivors at some initial time and at time
t, respectively, and q (with a best �t value of q = 0:13 (Raup, 1986)) is the prob-
ability of extinction of a species per million years. But when one looks at the
data through smaller time intervals it has been possible to identify the appar-
ent continuous background extinction rate as an episodic pattern (Raup, 1986),
where long periods of stability without extinctions are interrupted by extinc-
tion events on all scales. The graphical representation of this process is called



5.2 Extinction statistics 87

a survivorship curve, and it is shown for the present model in �gure 5.6. If one
uses longer time intervals for the empirical sampling points (Van Valen, 1973),
the episodic character disappears and the linear interpretation of eq. 5.3 be-
comes valid.

Our model is consistent with all these experimental investigations. Ex-
tinctions happen in bursts, separated by periods of stasis. Averaging over
many simulation (just with di�erent seeds for the random number generator),
it is also possible to obtain an approximate exponential decay consistent with
eq. 5.3, and with q ' �0:004, where q is the probability of extinction within
one time unit. In the initial transient periods, where the system still is in an
unorganized structure, the frequency of extinctions is much higher, although
the episodic pattern remains. The exponential decay is in this case given by
the value q ' �0:01.

5.2.2 Extinction patterns

The extinction pattern in the present model exhibits what is called \1/f-noise",
see �gure 5.7 on the following page. 1=f -noise is a commonly used label for a
certain type of time correlations found in many di�erent real-world time series
such as the ow in the river Nile, pressure variations in them air caused by
music, sunspot activity, uctuations in the electrical resistance of a conductor,
etc... in spatially extended systems, this behaviour leads to self-similar fractal
structures (Bak et al., 1987; Jensen, 1998).

\1=f" refers to the fact that low frequency power spectra of such systems
display a power law behaviour P (f) / f�� over a long range of time scales.
The \special" thing with 1=f -noise is that there exists no general theory that
explains its occurence (although self-organized criticality has tried to be a can-
didate, see part III).

Figure 5.7 shows the Fourier transform of the autocorrelation function of a
time series of extinction events for a particular simulation of the model with
mutation probabilities in the matrix elements Aij and Bij of pa = 0:0001 and
pb = 0:0002 respectively. In this double logarithmic plot, the straight line has a
slope of � = 1, consistent with the \1/f"-label. We therefore expect long time
correlations in the extinction events, probably because of long time stability
of certain food web structures leading to some scale free cascades of extinction
when a basal species or an intermediate species population drops to zero.
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Figure 5.7: The extinction pattern shows a power law decay with an exponent � = 1. It is
calculated as the Fourier transform of the autocorrelation function, and the data point are
collapsed in windows of ten. N = 50

5.2.3 Extinction distributions

The extinction distributions are, in contrast, exponentially decaying. In �g-
ure 5.8 we have shown extinction distributions for various system sizes, and
for N = 350 the distribution is markedly di�erent from all the others. The
reason for this is that the simulation still hasn't left its transient phase (which
typically is much longer for large systems). This means that the extinctions
still are so frequent at every time step that there are almost no small size
extinctions2. The food web is still \under construction".

But from this observation, it is possible to conjecture that the food webs
(and the thereof resulting extinction patterns) self-organize to a critical state
characterized by an exponential decay in the distribution functions and a power
law decay in the power spectrum of the extinction patterns.

2For the other simulations in the �gure with other N , the same e�ect appears when the
simulations aren't run long enough
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Figure 5.8: The extinction distributions for various system sizes. From the fastest exponen-
tially decaying curve one the most left to the right we have: N = 50; N = 100; N = 150; N =
200 and 350. The situation for N = 350, which not yet has reached its self-organized critical
state is described in the text. The straight dashed line indicates an exponential decay with
q = 0:03.

5.3 Generalizers vs. specializers

In the conclusion of the last chapter it was mentioned that we expect a di�er-
ence in average lifetimes between specializers and generalizers. It was argued
that since specializers are more vulnerable to perturbations and extinctions in
the system, they are exchanged with new species more frequently than gener-
alizers. When looking at the data this is shows to be true. but there are also
some minor surprises.

First of all, evaluating the average lifetimes, it becomes evident that invad-
ing species with a low number of links (the specializers) are far more abundant
than species with many links3. This is clear, because we already know that the
average linkage density L is normally quite low. But for how long, on average,
do the individual species survive when they are classi�ed by their number of
connections?

The results are shown in the histograms of �gure 5.9. Remember that an in-

3The typical scenario is of course that most of the invaders will get kicked out of the
system at once, and their lifetimes are therefore equal zero. Only species with a lifetime
longer than Æt = 1 will count in the statistics.
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Figure 5.9: The average life time of species as a function of their number of links. Species
with a low number of links can be classi�ed as specializers, and species with a high number
of links as generalizers. Three histrograms are shown corresponding to three populations
with N = 150 (full line), N = 200 (dashed line) and N = 250 (dotted line).

vading species never can have more than 20 links in the beginning (a restriction
imposed by the creator in order to minimize the transients in the beginning
of a simulation). The �gure shows three di�erent histograms representing a
simulation with the system sizes N = 150; N = 200 and N = 250 respectively.
The �rst clear observation is therefore that smaller systems have longer aver-
age lifetimes, indicating greater stability. Thus, for systems with N = 50 the
normal lifetimes are several thousand timesteps, while for N = 400 or more
they are around ten or less. Smaller ecosystems imply longer lifetimes.

The next observation from �gure 5.9 is that generalizers in fact do live
longer that specializers. There cannot be very many of them, but when are
successfull, they do great. The reason is that extinctions of their resources
does not a�ect their survival in the same degree as it does for the specializers.
But one surprise is constantly present in the model: species with exactly two
trophic links do comparably better than both species with only one trophic link
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or species with three. Moreover, for smaller systems, this trend becomes even
more prominent, so that for N = 100 or less, the average lifetime of species
with two links is longer than all other species. This is a peculiarity, for which
we not yet have found a good explanation.

5.4 Lifetime distributions

However, evaluating average lifetimes for a process which contains a distribu-
tion of lifetimes on all scales might seem as a vulgar thing to do. Instead, it
would be more sensible to plot the total lifetime distributions on a log-log graph
and extract information from that. The result is shown in �gure 5.10 where
we have plotted the overall distribution of lifetimes of all species for a system
of size N = 150. The �gure shows a very clear power law decay S(t) = t��

with an exponent � = 1:5.

Lifetimes

n
u
m
b
er
o
f
sp
ec
ie
s

1

10

100

1000

10000

1 10 100 1000

Figure 5.10: The full line shows a histogram of lifetime distribution of the species in a
population of size N = 150. The dashed �t has an exponent � ' 1:5. The dotted line shows
another distribution with N = 150 and an approximate exponent of 3.

This is an interesting result, �rst of all because it indicates scale free be-
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havior: the duration of life appears on all scales, from the geological second of
human life to the seemingly eternal life spans of cockroaches. But it is also inter-
esting because it is compatible with the experimental results by (Raup, 1991),
where the exponent � was measured to be around 2. Furthermore, it turns out
that the size of the exponent � in our simulations is dependent on N . For a
systems size of N = 100, � becomes ' 1:3, and for a system size N = 200, we
have � � 2 and for N = 350 � ' 3 (of which only the last case is shown in �g.
5.10).

5.5 Summary

In this chapter we have investigated the statistical properties of the model
de�ned in the previous chapter. The results are the following:

� The system undergoes a spontaneous reorganization from an initially ran-
domly wired ecosystem to a well-de�ned food web.

� Loops become very rare so that the links which connect the species be-
comes directional. This directional path from an autotrophic basal species
to the top species, the food chain length as well as the linkage density is
typically small.

� The linkage density of the species and the average food chain length cor-
related very little with system size. Instead, if N is large, the system will
typically split up in separate subsystems, so that the relative stability is
maintained within that part of the community. This means that the ini-
tial N coupled di�erential equations become a set of coupled di�erential
equations each of them containing only a fraction of the N species.

� The number of species feeding on more than one trophic level, the so-
called omnivores, is small.

� The interaction strength de�ned as the absolute value of the matrix el-
ements Bij is, on average, much stronger for basal species (0:60) and
species with only a few trophic links, than for top species (0:47) which
typically have more links to fed on.

� The extinction statistics follows very well the constant extinction law of
Van Valen, showing an episodic pattern in the survivorship curves with
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an average that has an exponential decay. Extinctions happen in bursts,
separated by periods of statis.

� The temporal extinction pattern follows another power law, called \1=f"-
noise with an exponent � very close to unity. Thus, the temporal extinc-
tion pattern is self-similar and long time correlated.

� The extinction distribution follows an exponential decay. However, as
long as the system still is in its transient period, the extinction distribu-
tion deviates strongly from an exponential form.

� The lifetime distributions follow a power law shape, and the exponent
changes dependent on the system size. For N = 150 the exponent is
� ' 1:5 and for N = 250 it is � ' 3.

� The model ecosystem develops di�erent classes of species, which can be
classi�ed in specializers and generalizers. As expected, the generalizers
live longer on average, because they are more stable against changes in
the food web structure: If a generalizer looses one of its food sources, it
still can survive by feeding on the other, but a specializer, which normally
only has one or a few species to feed upon, will encounter a huge risk of
getting extinct in this case.

5.6 Comparison with experimental data

Now we �nally come to the interesting question: how sensible are the predic-
tions of the model? Generally speaking, the properties for the food web statis-
tics are in very good harmony with the experimental data. We have compiled
a similar table as before containing the best numbers from the experimental
data and the results from the present simulations.

Table 5.1: Comparison of model an real life, part I.

Property Model predictions Data

Linkage den-

sity, L

Constant between 1:5 and

2 for all N with moderate

variation. From this fol-

lows that the connectance

C = L=N is a hyperbolic

function for increasing N .

Numbers from 2 � 5 are all con-

sistent with the data. The con-

stancy of the linkage density has

been a major believe, but some

studies (Cohen et al., 1990) show a

slight increase for large webs.
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Basal species,

Nb

Remains comparatively low

- around 5% of the com-

munity, but highly variable.
Not very dependent on N .

Independent of N and with

high variance in the data

(Briand and Cohen, 1984;
Cohen and Briand, 1984).

Top species, Nt Generally more than 50%

of the species are top

species, and Nt=Nb '

constant.

High variance, and the ra-

tio Nt=Nb ' constant
(Evans and Murdoch, 1968;

Je�ries and Lawton, 1985).

Number of om-

nivores, No

Surprisingly few. Probably

destabilizing.

Less common in real webs

than in randomly generated

webs (Pimm, 1982). Destabi-

lizing (Pimm and Lawton, 1977;

Pimm and Lawton, 1978).

Food chain

length, `
(lower bound)

Average food chain lengths

are relatively independent
of N (all thought with

a small trend towards

smaller ` for increasing

size), with average values

between 1:5 � 3, but very

variable between 1:3 � 10.

Typically short, from 3 to 6. Very

few feeding loops (Pimm, 1982;
Cohen et al., 1986).

Van Valens

constant ex-

tinction law,

N(t)

N(t) = N(0)e�qt for aver-

age values (or large sam-

pling windows), but when

narrowing down the sam-

pling window, and looking

at the survivorship curves,

one �nds pronounced stasis

interspersed with major ex-
tinction events

Same e�ect in the observations

(Van Valen, 1973; Raup, 1986).

Extinction pat-

terns, P (f)
P (f) / f��, where � ' 1 P (f) / f��, where � ' 1

(Sol�e and Manrubia, 1997)

Extinction

distributions,

S(m)

The distribution of extinc-

tions of size m follows an

exponential decay and is

dependent on system size.

Follows a power law decay:

S(m) / m�� with an expo-

nent � ' 2 (Newman, 1996;

Sol�e and Bascompte, 1996).

Lifetime distri-

butions, S(t)
Follows a power law decay

with varying exponent de-

pendend on N .

Power law decay S(t) / t��, where
the exponent � ' 2 (Raup, 1991).
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One of the most important points is the low average value of L. Many
data sets support the prediction of a low linkage density (average values of
L = 1:9 in the catalogues of (Cohen et al., 1986) and (Briand, 1983); 2:2 in
insect webs (Schoenly et al., 1991), and 3:5 in pelagic webs (Havens, 1992)).
But it has frequently been argued that the detectability of feeding links in
real ecologies is very low, so that the actual value of L might be substan-
tially higher (Cohen and Newman, 1988; Kenny and Loehle, 1991). One study
(Goldwasser and Roughgarden, 1997) has even tried to estimate the e�ect of
sampling intensity on varying food web properties, with the conclusion that
the detection of trophic links (among other food web properties) is in strong
correlation with the sampling intensity. However, it is not clear whether these
infrequent links are ecologically relevant, or whether they just express partial
preference of resource utilization without vital importance (Futuyma, 1986;
Pimm, 1991).

Regarding the high number of top species, there actually exist no good
estimates of an average number. The numbers of top species obtained in
some of the newer data sets show ranges from zero top predators for the
data from the Coachella Valley (Polis, 1991) to 65% in some insect food webs
(Schoenly et al., 1991). The number of basal species is always lower than
the number of top species. In most cases their percentual share is low (4%
in the Ythan estuary (Hall and Ra�aelli, 1991), 9% in the Yorkshire pond
(Warren, 1989), 13% in Little Rock Lake (Martinez, 1991)), but it also can be
high (50% in pelagic webs (Havens, 1992)) or highly variable (2�31% in insect
webs (Schoenly et al., 1991)). Most of these data are taken from (Hall and Ra�aelli, 1993).

5.7 Discussion and conclusion

Unfortunately, the experimental data on food web properties are very sketchy.
Moreover, many ecologists express a big distrust towards the observed patterns
- either because they think that the drawing up of webs is biased by subjective
and casual sampling procedures (Paine, 1988), or simply because limitations
in the data might result in artifacts (Polis, 1991; Lawton and Warren, 1988;
Winemiller, 1990; Kenny and Loehle, 1991). This is quite a big problem. If the
observed patterns were not very sensitive to incompleteness of the data, then
the data could be used with some con�dence, but if the incompleteness causes
misinterpretations, then it might be that several existing theories may be at-
tempting to explain properties that do not exist at all (Lawton and Warren, 1988;
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Goldwasser and Roughgarden, 1997). Many of the clever theoretical construc-
tions, including the one in this thesis, would hang like skyhooks in the air,
without any roots in nature.

However, in relation to the present model formulation, it is also possible
to give this problem a positive slant: if the incompleteness of the data mainly
is a result of high actual variations, and not because of subjective or casual
experimentalists, then it might be that the present model has captured an
essential feature of real food web - namely the large actual variations. From
all simulations in this chapter, the most striking feature has been the need for
very many sampling points in order to obtain reliable average numbers. So the
model actually reects the data in this respect.

In conclusion, the food web model presented here looks as if it could be-
come a good canditate for dynamical understanding of the spontaneous self-
generation of food webs. Most of the here sampled data points to the conclusion
that there might be some reality behind the approach. Naturally, there are a
huge range of problems and properties which not have been investigated here,
but they will hopefully be addressed in some forthcomming works.



Part III

Criticality in Evolution





6
Percolation, Fractals

and Criticality

In this �nal part, we try to give a heuristic account of why the two models
discussed so far might be linked to the emerging theories of percolation theory,
critical phenomena and the idea of self-organized criticality. After introducing
the main concepts of percolation theory and the theory of critical phenomena
(regrettably most super�cially), we make an analytical calculation of a perco-
lation threshold in the model for neutral evolution and discuss the potential of
the model to exhibit self-similar patterns. Then we discuss the food web model
in terms of self-organized criticality an �nd it to be a good candidate for such
a notion.

In the �nal chapter we lead the attention to possible problems with the
uncritical identi�cation of power laws to self-organized phenomena. By formu-
lating a simple model for evolution - with some quite restrictive assumption -
we �nd power law behavior without any connection to neither self-organization
nor criticality. It is argued that one has to be very careful with identifying
scale invariance with only one fundamental physical process, because random
stochastic e�ects also are able to do the job.
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6.1 Percolation theory

Percolation theory is becoming increasingly important for the understanding of
non-equilibrium dynamics and critical phenomena in nature. As soon as many
components are present in a random system and the richness of the intercon-
nections of these components can be varied, we have a kind of percolation
problem.

But what is percolation, and what is a percolation threshold? The basic
idea can be explained by a simple example of bond percolation on a square
lattice.

� � � �
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Figure 6.1: Illustration of bond percolation on a square lattice. If the density p of bonds
is below pc, many small clusters are formed. If p > pc it becomes very probable that a giant
cluster occupying a large fraction of all sites forms. At p = pc however, there exist clusters
of all sizes.

Consider an in�nitely large lattice (of which there are shown three in �g-
ure 6.1) upon which an unidenti�ed random object (URO) has thrown bonds,
or bridges, between the sites, so that neighboring sites which are connected
through these bridges form what is called clusters. All sites within one cluster
are thus connected to each other by one unbroken chain of bridges which go
from neighbor to neighbor to neighbor to etc...

For a low density p of bonds - they could represent electrical wires - only
small, �nite and localized clusters are formed with no chance to lead any current
from one border to the other. The system is an insulator. But for a critical
number of bonds, suddenly a percolating cluster forms which can transport
the current throughout the system, and suddenly you have a conductor (in
�gure 6.1 there are shown three clusters for p = pc of which one is in�nitely
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large and spans the whole system). For even larger p the system typically has a
only a few but very large clusters, called giant clusters or \common networks"
as they were de�ned in the model of neutral evolution in part I.

So, the basic idea of percolation is the existence of a sharp transition at
which the long-range connectivity of the system appears (or disappears), and
this transition occurs abruptly when some generalized density in this system
reaches a critical value pc, the percolation threshold. The importance of perco-
lation theory emerges from the fact that the change from having a �nite cluster
to having an in�nite clusters is the geometric analog of a phase transition, and
thus, many thermodynamical properties can be explained by this geometrical
viewpoint of individual molecules connecting and dispersing. What is often
visible from the outside is a sharp change in the properties of a substance: The
transition from a liquid to a solid, gelation, transition from a conductor to a
superconductor, from a paramagnet to a ferromagnet, etc.. (Yeomans, 1992).
As soon as there is a singularity in the free energy of a system or one of its
derivates, the system might encounter a percolation threshold at the micro-
scopic level of molecules within a certain geometry.

It is not the purpose of this thesis to give a detailed description of per-
colation and its exact solutions for several lattice types (The reader should
refer to (Stau�er and Aharony, 1994) for a good introduction to the subject).
It is however interesting to note that many important quantities (such as the
mean cluster size or the probability for an arbitrary site to belong to an in�nite
cluster) decay as power laws close to the percolation threshold.

6.2 Critical phenomena

These power law decays are examples of critical phenomena also seen in thermal
phase transitions where quantities of interest go to zero or in�nity by simple
power law decay.

Historically, scientists have focused mainly on equilibrium systems were
many-particle system have shown that correlation functions and distribution
functions typically decay exponentially at distances or times longer than a
�nite correlation length � or correlation time � . Only at critical points they
have observed in�nite correlation length and times, often resulting in \scale
invariance" and \self-similarity" as a side-e�ect to a power law decay (which
refers to the fact that power laws, unlike exponentials, lack a characteristic
length that sets the scale for the decay (Grinstein, 1995)).
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Since chemists and physicists are so familiar with equilibrium systems, they
have a sense of an abnormal and fragile situation when confronted with critical
phenomena. This is maybe so because under normal laboratory conditions
(where equilibrium is seen as a kind of \ground state") phase transitions only
can be achieved by �ne-tuning some thermodynamic variables (for example the
temperature) to their critical value. But when looking at the natural world,
the opposite is true: scale invariance is recognized to be truly abundant, or
even ubiquitous. When looking at trees, rivers, mountains and costal lines, or
at the less poetic resistors, cheese, luminosity of stars and extinction patterns
in evolution, they all show some kind of power law behavior, sometimes termed
as \fractals" (Mandelbrot, 1977) or \1/f-noise", and always scale invariant and
self-similar in nature.

How can it be that scale invariance is so abundant in the real world, while
almost all our theoretical machinery on equilibrium systems (which satisfy
detailed balance for an underlying Hamiltonian) predict exponential decays, at
least when there is no parameter tuning? As you might have guessed, recent
investigations answer this question with the growing interest in non-equilibrium
systems, that is, open systems which are driven externally so that they never
achieve equilibrium. The equations representing such non-equilibrium systems,
of which the Langevin equation is a much analyzed member, are much more
capable of scale invariant behavior, see an excellent survey in (Grinstein, 1995).

The recent interest in scale invariance and the huge e�ort of scientists in
many diverse �elds to �nd power law scalings in their data must be seen in
the light of this ubiquitousness of scale invariance in the real world. But, as it
will become clear soon, the sole existence of power law distributions in various
data does not necessarily tell that there is a generic reason for them.

Sometimes it is possible to get a feeling that all these scale invariant power
laws mean something. It has at least happened quite often for the present
author that a lecture on some interesting phenomena ends in the triumphant
revelation of a power law. Either it is found in simulations, in some experiments
or in an analytical work, but in any case, you sit there, somewhere in the back
of the auditorium, and marvel about why this should be so signi�cant and
wonder about this inscrutable mystery of life.

Physicists seek for uni�cation of their theories, and it is therefore quite un-
derstandable to ask if there might be any fundamental \force" which produces
all these power laws by nothing but one (physical) process. If it were possi-
ble to have a glimpse of this one-and-only force, this URO, and maybe even
name it by its own name, you would be guaranteed a lot of attention from the
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scienti�c community.

6.3 Self-organized criticality

The idea of Self-organized Criticality (SOC) is one of such candidates. It must
clearly be recognized as one of the more interesting conceptual ideas by which
to understand the observed scaling phenomena in complex systems.

Initially self-organized criticality was introduced by Bak, Tang and Wiesen-
feld (Bak et al., 1988; Bak et al., 1987) in order to understand 1/f-noise, but
it became quickly the main hypothesis which also tried to explain the general
ubiquity of scale-invariant phenomena in nature. So, self-organized criticality
was applied to a wide set of dynamical systems far from thermodynamic equi-
librium such as sandpiles (Frette et al., 1996; Feder, 1995), earthquakes, solar
ares (Luand and Hamilton, 1991), vortex-creep in type-II superconductors,
traÆc jams, biological evolution (Bak and Sneppen, 1993; Flyvbjerg et al., 1993;
Bak et al., 1994; Sneppen et al., 1995; Sneppen, 1995), extinctions in the fossil
record (Sol�e et al., 1997) and recently for neuronal assemblies (Jung, 1997) in
the human brain.

But what is the philosophy behind SOC? The initial description (Bak et al., 1987;
Bak and Sneppen, 1993) was somewhat vague in its reference to the \tendency
of large dynamical systems to organize themselves into a poised state far out of
equilibrium with propagating avalanches of activity of all sizes". This poised,
or critical, state is an attractor for the dynamics so that the scaling properties
of the attractor are independent of the parameters of the model.

In recent years, however, it has become more and more clear that the true
di�erence between the mechanism of SOC and other \ordinary" model systems
for scale invariance (such as the Langevin equations) is a fundamental separa-
tion of time scales. Conventional non-equilibrium systems relax on a time scale
comparable to or longer than they are perturbed. By contrast, self-organized
critical systems are imagined to relax far more rapidly than they are perturbed
(or driven). In fact, as pointed out by (Grinstein, 1995), complete scale invari-
ance over all times (or lengths) is only obtained in the limit where the ratio
between the perturbation time to the relaxation time goes to in�nity. For all
situations, where this ratio is large but �nite, there will exist a correlation
length � beyond which the decay becomes exponential.

When pondering about the fractal structure of a mountain, it may be dif-
�cult to believe that such a seemingly eternal massive is far away from equi-



104 Percolation, Fractals and Criticality

librium. But never the less, this is the case. The in�nitely small perturbations
through the tectonic motions and other geological forces will eventually lead
to a abrupt disaster of unknown size. This separation of time scales is charac-
teristic for all systems described by SOC1

With these characteristics in mind, we can go on and pose a hard question:
Are the two models investigated in the previous parts self-organized critical?
We will start to look at the neutral networks and make some analytical investi-
gations of the percolation threshold. In section 6.6 on page 115 we turn to the
question whether the food web model from part II can be called self-organized
critical.

6.4 Critical neutral networks?

In the case of the model for neutral evolution we have found two power law
distributions of the size of the networks: In �gure 3.5 on page 37 the exponent
for the frequency of networks of a certain size in the case of K = 2 was equal to
�0:7, while for the totally uncorrelated system with K = N � 1 it was around
�1:5 (but only for the networks below a size of 1000 sequences). Why is there
such a discrepancy between these two values for the exponents? Are there two
di�erent mechanisms at work? At present, we have no answer to this question.
However, there are some important points to note:

� As already mentioned in a footnote in section 3.3 on page 35, the nor-
mal NK model exhibits a distinct change in behavior of the attractor
when changing K from three (chaotic motion) to two (ordered motion)
(Kau�man, 1993). This indicates that there might exist a true phase
transition close to K = 2.

� For the uncorrelated system with K = N � 1 every �tness value is com-
pletely random compared to all the other, and it is therefore more sug-
gestive to attribute the scale free behavior of network sizes to a stochastic
e�ect. In fact, since in this case the number of sequences with a certain
�tness follows the Gauss distribution of �gure 3.2 on page 34 and the
number of networks with a certain �tness follows an \inated" Gaussian
of �gure 3.3 on page 35, it should be a manageable job analytically to

1The reader of modern classical literature may now be able to recognize Self-organized
Criticality as a known �gure, or doctrine, in the Zen-trophic tradition. Brought down to its
most simple form it says: \Shit happens", (and that in all sizes!).
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verify the power law shape. Whether this really is possible remains to be
seen in a forthcoming work, but it is important to note that power laws
also are easily produced by random processes, and in the next chapter
we will show a particular example of that.

� The all-important separation of time scales is not relevant for the static
structure of the neutral �tness landscape. But for populations moving on
such landscapes there is a clear separation of time scales, as seen in �g-
ure 3.12 on page 45. First, the population di�uses slowly on the neutral
networks, and when it encounters a successful mutant, the whole popu-
lation moves quickly onto that �tter network by the normal Darwinian
selection process. But it is questionable whether any critical behavior
emerges from this, because the length of the epochs correlates with the
number of reachable networks which in turn is an exponentially decreas-
ing function for increasing �tness.

6.5 Percolation threshold for the neutral evolution

model

We now turn to some analytical results for the present model for neutral evo-
lution. The idea is to de�ne a percolation threshold at a critical �tness Wc,
where the networks stop to be these giant clusters and instead become con�ned
to local points in the �tness landscape (so that a population no longer can use
them for di�usive searching). This is from an evolutionary point of view an
important transition, because it puts a general limit on the positive e�ects of
neutrality. Maybe it is easier to make this point clear when the reader (again)
has a look on the �gures 3.2 and 3.3 on the pages 34 and 35 respectively. These
were the �gures of the distribution of sequences as a function of their �tness
and the distribution of the networks as a function of their �tness. The last
�gure has this \inated" appearance because of the formation of giant clusters
which span the whole sequence space, but at a certain point on the right hand
side of this \inated" Gaussian, the distribution of networks again follows an
exponential tail. This suggests that there somewhere in this region is a sharp
phase transition in the same way as for bond percolation.

We utilize the fact that in the case of K = N � 1 all �tness values are
independent of each other: a mutation in one gene means that the con�gura-
tion of all other genes also changes (see �gure 3.1 on page 33). There is no
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correlation between �tnesses due to successive point mutations, and in such an
uncorrelated landscape all con�gurations are independent and the �tnesses are
thus Gaussian distributed (in the limit of large N). Therefore, we can try to
calculate the mean and variance of the general distribution function.

6.5.1 Probability distribution for the uncorrelated system

Let us initially assume that the �tness of the whole sequence is

Wu =
X
i

wi (6.1)

where Wu means that we have not normalized with the number of possible
�tnesses N(F � 1). Now, since the neutrality parameter F is an uniformly
distributed discrete number between zero and (F �1) on each wi, we can apply
the central limit theorem and �nd the mean � as a mean of the progression of
natural numbers - since they are chosen independently at random (like from a
dice with F faces):

� =
1

F

F�1X
n=0

n (6.2)

where n is just an integer. This sum is a known series for natural numbers,
namely:

1 + 2 + 3 + 4 + :::+ n =
n(n+ 1)

2

which evaluates to

� = hWui = 1

F

F (F � 1)

2
=

(F � 1)

2
(6.3)

This is an expected result: the mean of (F�1) independent equidistant natural
numbers is just in the middle. The variance can be found by

�2 = hW 2
u i � hWui2 = 1

F

F�1X
n=0

n2 �
 
1

F

F�1X
n=0

n

!2

(6.4)
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where the �rst sum on the right hand side is another series for natural numbers2,
namely:

12 + 22 + 32 + 42 + :::+ n2 =
n(n + 1)(2n+ 1)

6

so that, if we set n = F � 1, the variance becomes

�2 =
F (F � 1)(2F � 1)

6F
�
�
1

2
(F � 1)

�2

=
(F 2 � 1)

12
(6.7)

2If we could not read this nice formula from a book, we should do the following: a)

Use the solvable generating function S = 1

F

PF�1
n=0 e

�n; b) which has an appropriate second

derivate @2S
@�2 = 1

F

P
n2e�n, so that, c) when we let � ! 0, the second derivate becomes the

sum in which we are interested in: @2S
@�2 = 1

F

P
n2. Now: how to solve S and �nd the second

derivative? First we recognize S = 1

F

PF�1
n=0 e

�n to be the geometric progression, so that

S =
1

F

e�F � 1

e� � 1
(6.5)

Instead of di�erentiating this expression directely, we can expand it as a Taylor series:

S =
1 + 1

2
�F + 1

6
�2F 2 + :::

1 + 1

2
� + 1

6
�2 + :::

Before taking the second derivative, we expand the bottom 1+ 1

2
� + 1

6
�2 = � in (1 + �)�1 =

1� �+ �2 +O(�3), and collecting the parts, we obtain something like

S = O(1) +O(�) + 1

12
�2 � 1

4
�2F +

1

6
�2F 2 +O(�3)

where only parts in the second order of � are important. Finally we can di�erentiate S with
respect to � twice and take the limit

lim
�!0

@2S

@�2
=

1

6
� 1

2
F +

1

3
F 2 =

1

F

F�1X
n=0

n2 (6.6)

which is equal to our desired sum.
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The mean and variance are enough to describe the whole probability distribu-
tion because it can be approximated by the Gaussian:

p(Wu) =
1p
2��2

e�
(Wu��)

2

2�2

But since we only have calculated the mean and variance in the case of equa-
tion 6.1 and not in the normalized version:

W =
1

N(F � 1)

X
i

wi

we multiply the mean � and the variance �2 with N in order to keep the
normalization

� =
1

2
N(F � 1) (6.8)

�2 =
1

12
N(F 2 � 1) (6.9)

and replace Wu with W

W =
1

N(F � 1)
Wu

so that we with a little algebra arrive at

p(W ) =

s
6

�N(F 2 � 1)
e�(W� 1

2
)2[ 6N(F�1)

F+1 ] (6.10)

which is the general density function in the case of the uncorrelated �tness
landscape K = N �13.Note that the density function has a little untraditional
normalization, so that the integral under the bell curve is not unity but 1

N
, see

�gure 6.2.
Note also, that this equation is independent of the number of symbol classes,

A, from which we choose a given letter. A is only relevant for size of the
underlying con�guration space from which to choose. It does not play a part
in the actual assignment of a certain �tness on a certain sequence. It is therefore
not involved in the probability p(w).

3 We can try to check this result for W = 1=2 and F = 2, which is the height of the
Gaussian in the middle (in the case of maximal neutrality): Since there are

�
N
W

�
ways to
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Figure 6.2: The density function of equation 6.10 for three values of N - full line N = 12;
dashed line N = 20 and dotted line N = 80 (A = 2 and F = 2). Also indicated are the
thresholds where percolation disappears.

have the �tness W , the probability to be in the middle is

p(w = 1=2) =
1

2N

�
N

N=2

�
where we have divided by the number of possible states. Using Stirling's approximation
N ! �

p
2�N2NNe�N , we obtain:

p(w = 1=2) =

p
2�NNNe�N

2N (
p
�N(N

2
)N=2e�

1

2
N )2

=

p
2p
�N

which is equivalent to eq.6.10 with F = 2. In general there are
�
N
w

�
ways to have the �tness

w. The probability that two neighbors in the sequence space xi and xj have the same �tness
for F = 2 is thus

p(two neighbors same w) = p =

NX
w=0

p(xi = w)p(xj = w)

=
1

22N

NX
w=0

�
N

w

�2

=
1

22N

�
2N

N

�
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6.5.2 De�ning a percolation threshold

The biologically most interesting thing to know, is the threshold at which per-
colation stops. Figure 6.2 shows the Gaussian of equation 6.10 in the case of
maximal neutrality. Selection pushes the population towards the right expo-
nential tail, but somewhere on that path the percolating networks disappear,
simply because at high �tnesses there is a low probability to �nd a one-point
mutant neighbor with the same high �tness.

In order to have percolation, one would assume that there at least has to be
one neighbor from where the networks enters, and another neighbor from where
it leaves. So, on average, there has to be at least two neighbor mutants with
the same �tness. But this argument does not assume that we already are on
a percolating network in the beginning: it just hits randomly in con�guration
space including the sites which are not on the neutral network. Instead we
will employ the Bethe lattice approximation (see (Stau�er and Aharony, 1994)
for an introduction): Assume that we are on a neutral network, which we can
call the origin. Then, there are N(A � 1) � 1 one point mutant neighbors,
which themselves again have N(A � 1) � 1 new neighbors emanating. Since
each of these belongs to the network with probability p, there will, on average,
be (N(A � 1)� 1)p occupied neighbors to which the percolating path can be
continued. If the number (N(A � 1) � 1)p is less than unity, the probability
of �nding an in�nite path from the origin decreases exponentially. But the
threshold, where percolation remains is thus

p(Wc) ' 1

N(A� 1)� 1
(6.11)

Below this threshold value there will be compact clusters of neutral networks
which will enable populations to search higher �tness levels di�usively. Above
this critical point however, percolation will break down and positive selection
is con�ned to climb only towards one of the closest local peaks in the �tness
landscape.

Using Stirling's approximation, we get

p =
1

22N

"p
4�N(2N)2Ne�2N

(
p
2�NNNe�N )2

#
=

1p
�N

So, for increasing N the probability of �nding a neutral neighbor decreases slowly with the
square root of the system size.
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The equality sign in equation 6.11 would hold only if there were no loops
in the network lattice (like in Bethe lattices). However, since the dimension
of the system is large, the number of possible loops is very small, and we will
therefore neglect this correction in the following.

6.5.3 Solution for the critical �tness

We can now �nd an expression for the critical �tness: Inserting eq. 6.10 on
page 108 in 6.11 one obtains:

e�(Wc�
1
2
)2[ 6N(F�1)

F+1 ] =
1

N(A� 1)� 1

r
�N(F 2 � 1)

6
(6.12)

which can be solved for Wc in order to obtain an expression for the critical
�tness on the right hand side of the Gaussian:

Wc =

vuut(F + 1) ln
h
6(N(A�1)�1)2

�(F 2�1)N

i
12N(F � 1)

+
1

2
(6.13)

Figure 6.3 shows three solutions of this equation, where the critical �tness is
plotted as a function of N in the cases of A = 2; 3 and 4.

We can make a qualitative examination of this somewhat involved relation
between the critical �tness where neutrality disappears and the other parame-
ters in the model: When looking at the relation between Wc and N in eq. 6.12
one obtains something like

(Wc � 1=2)2 � 1

N
ln
p
N (6.14)

which tells us that the factor 1
N

dominates for large N and small F . So, we
should expect that percolation stops very quickly for large sequences, but this
only appears to be so, because the actual shape of the Gaussian is also inversely
proportional to N (as mentioned before, the bell curve shrinks with larger N

because of the normalization: the integral
q

6
�N(F 2�1)

R
e�(W� 1

2
)2[ 6N(F�1)

F+1 ]dW

has to be multiplied by N to give unity). So, in reality, the relation between
W and N is

Wc �
q
ln
p
N
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Figure 6.3: Relation between the critical �tnessWc and sequence size N for three di�erent
sizes of the alphabet (F = 2).

One could be tempted to attribute an evolutionary signi�cance to this (posi-
tive) dependency: The most �t percolating network depends positively on the
system size, so that evolution imposes a selective force on increasing sequence
sizes (or increasing genomes) in order to attain �tter percolating networks.
But a simple calculation tells us that it actually is not signi�cant: organisms
have already had around three billion years to increase their genome, but the
e�ective gain through neutrality would only be � 3, which cannot be regarded
as a really signi�cant selective force. In addition, although long sequences are
good for ensuring neutral percolating clusters, their maximal �tness is typically
lower (relatively) than the corresponding �tnesses for the shorter sequences - at
least in the situations where F is low. This can be seen in the next �gure 6.4,
where we have plotted the critical �tness from equation 6.13 as a function
of neutrality for three di�erent values of N . This �gure shows clearly that,
although percolation reaches higher �tness values for low N , it breaks down
when F increases. Only for very long sequences percolation remains possible.
In any case, a high degree of neutrality helps populations to obtain higher
�tness values.
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Figure 6.4: Relation between the critical �tness Wc and neutrality F for three di�erent
sizes of the sequences (A = 4). The full line corresponds to N = 20; the dashed line
corresponds to N = 80, and the dotted line to N = 150.

6.5.4 Comparison with simulations

In section 3.6.1 on page 42 we investigated how the �tness of the most �t
percolating network behaved with decreasing neutrality, and as a result, we
found in �gure 3.10 that the maximal �tness reached by a random hill climber
follows quite closely the �tness of the most �t percolating networks. In order
to obtain the �gure, we de�ned a percolating network as a network which is
larger than the average network size; e.g. it needs to contain more sequences
than a network of average size. These we called \common structures".

However, in the case of an uncorrelated �tness landscape with K = N � 1,
we know from �gure 3.5 on page 37 that the frequency of occurring networks
with a certain size follows a power law - at least for the small networks. Unfor-
tunately this means that an average network size typically is very low - often
only containing 3� 5 sequences. If we would use this de�nition we would call
networks with only, say, 10 sequences percolating. This is obviously not true.
Therefore, we will instead de�ne a percolating common network as a network
which contains more than a thousand sequences (which, in fact, is exactly the
point at which the power law of the distribution function from �gure 3.5 on
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page 37 breaks o�).
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Figure 6.5: The maximum �tness of the most �t percolating network with N = 20, K = 17
and A = 2, as a function of the neutrality parameter F (circles). The dashed line is the
analytical approximation (going to in�nity for F = 1 since in this case all �tnesses are equal).
Wc is unde�ned for F > 6.

With this rede�nition we �nd in �gure 6.5 a veri�cation of the analytical
calculations: In the �gure we have plotted the analytical solution of eq. 6.13
as a function of F with A = 2, N = 20 and K = 174 (full dashed line; same as
previous �gure, except for the parameter A which now is equal 2) and the simu-
lation for the �ttest percolating network (solid line and circles). The simulation
is in surprisingly good agreement with the analytical approximation. It shows
clearly that there in fact exists a percolation threshold at which the common
networks stop to percolate through the sequence space, and it shows that this
threshold de�nes a critical �tness Wc which increases for increasing neutrality.
Of course, for F = 1 the analytical solution goes to in�nity because all �tness
values are the same: the landscape is completely at. For F larger than 6, there

4Note that it is not K = N � 1 = 19 because the needed number of stored ran-
dom numbers for the �tness assignment in the computer simulations reaches overow
when > 217. There exists a trick to overcome this problem, and in a forthcoming work
(Newman and Engelhardt, 1999) it will be done correctly. However, the �tness landscape
for K = 17 is not much di�erent from a landscape with K = 19.
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is no percolation at all, and the model becomes more or less equal to the stan-
dard rugged NK landscape investigated earlier (Flyvbjerg and Lautrup, 1992;
Bak et al., 1992).

6.5.5 Conclusion

All in all, the analytical investigations presented here suggest that the initial
idea of �gure 6.2 on page 109 is true: The random hill climber moves di�usively
on a neutral network until it �nds a network of higher �tness, at which point
it shifts to that network. This process continues until there no longer are
any percolating networks to di�use upon. From that point on, the climber is
con�ned to the local region occupied by the non-percolating network, so that it
only can get as high as is possible by the local maximumwithin the region. This
represents the threshold where percolation stops and only adaptive selection
remains. Figuratively, this process can be imagined by a car trying to reach
the top of the Alps: as long as there exist asphalted roads, the car can move
\di�usively". But the higher it gets, the more impassable trails and dead ends
emerge. Eventually, only one thing remains possible: get out and climb as
good as you can.

6.6 Critical food webs?

The extinction patterns and life time distributions of species embedded in the
self-organizing food webs of part II have all the characteristics of self-organized
criticality:

� As we have seen, the intrinsic dynamics of food webs can create large
avalanches of extinction: if a basal species goes extinct because of some
unknown misfortune, it generally drags a large portion of species which
feed upon it with it. This might even generate a domino e�ect, because
the introduction of the new species which replaces the niche from the
extinct ones, may destabilize the system as a whole - at least for a while.

� There exists a clear separation of time scales in the food web dynamics:
for long periods nothing happens because the system is in a quasi stable
steady state and the noise is too small to perturb the balance signi�cantly.
But as soon as one species goes extinct - typically has its population
density been diminished only very slowly over a long period of time - it
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creates chaos for many other species linked to it. The separation of time
scales is clear in this case.

� The food web self-organizes critically in order to maximize the probabil-
ity for survival of the individual species. This can also be seen in the
relatively constant ratio of basal species and top species and the linkages
between the species which are totally di�erent from randomly generated
webs.

� There is no parameter tuning expect for an arbitrarily set mutation rate,
which is the source for destabilizations and sudden extinctions. The
mutation rate has thus the function of a slow driving which keeps the
system far away from equilibrium, just like standard SOC models.

In conclusion, the evidence so far suggests that the food web model is a
good candidate for a self-organized critical phenomenon. However, in the next
�nal chapter we will look at some probabilistic caveats in criticality.



7
Probabilistic

Caveats in Criticality

It has been mentioned before that the sole existence of power law distributions
in data of taxon life times and fossil extinction events and other enumera-
tional facts in related biological data might be caused by a very simple random
mechanism, rather than the more sophisticated mechanisms of self-organized
criticality and coevolutionary avalanches. For instance, we have found two dif-
ferent power laws in the distribution functions of the size of neutral networks
in the model from part I: one of them containing true correlations in the �tness
values among neighboring sequences, and another without any such correlation
(the case of K = N � 1).

In the following we will investigate such caveats in criticality and in the
notion of self-organization with the formulation of a simple model. It is for-
mulated in the context of a model for large-scale evolution with a resulting
power law distribution for taxon life times and an exponential distribution for
the extinction events. The reader might remember that it is precisely these
distributions we found in the ecological food web model from part II.

We discuss whether this result implies some unknown fundamental mech-
anism (a mystical URO) or whether it is a rather natural tabulation e�ect of
independent random numbers (a \non-mystical URO") without any critical-
ity and with only a minimal relation to the notion of self-organization. If so,
such random processes might equally well account for the observed data for
life times and extinction events in the fossil record.
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7.1 Background

The need to quantify various biological data in terms of clear and simple enu-
merational relations seems to be a necessary requisite if one seeks for possible
physical principles that could underlie the processes under consideration. The
more fundamental a physical mechanism of this kind is claimed to be, the wider
a range of complex biological phenomena is expected to behave in accordance
with it.

In particular biological large-scale phenomena like extinction events in the
fossil record and distributions of taxon life times have been subject to much
recent debate whether there might be some fundamental (and even essential)
principles at work leading to the observed regular distribution functions. Some
of the �rst ideas in this direction came from taxonomic analysis by Willis
(Willis, 1922), who observed that the distribution of the number of genera,
by numbers of species, follows a power law with a varying exponent, mostly
around a value of 1:5.

Also the investigations by Zipf (Zipf, 1949) on distributions of words in hu-
man texts and language, showed inverse power law dependencies (also called
Zipf's law), which Zipf himself attributed to the principle of least e�ort, be-
cause languages, from his point of view, are means of transmitting infor-
mation, and therefore should have an optimal structure. Even though this
view has been challenged by numerous studies, showing that random texts
equally well give rise to these inverse power law distributions (Yule, 1924;
Simon, 1955; Mandelbrot, 1961), the urge remains to ascribe fundamental and
even meaningful principles to these enumerational facts (Mantegna et al., 1994;
Tsonis et al., 1997). For instance have the oligonucleotide frequency distribu-
tions in non-coding DNA recently been subject to speculations whether their
zip�an character (which in fact not is zip�an but log-normal (Perline, 1996;
Borodovsky and Gusein-Zade, 1998)) in some way is signi�cant for the func-
tioning of the genetic code (Flam, 1994; Yam, 1995).

It seems indeed desirable to apply a conceptual framework to the apparent
structured data of a broad range of biological distributions. But when one
is confronted with the choice between a purely probabilistic argument and an
argument which goes beyond the probabilistic approach, even if it not seems
necessary, it should be self-evident that one should refrain from using such
auxiliary assumptions and concepts as much as possible. That does of course
not mean that these new ideas, which often are introduced in a broader sense,
are irrelevant to such kind of phenomena. It only means that one should be
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careful when identifying apparently structured data with fundamental mecha-
nisms, because the structure in the data actually might be the result of some
(maybe unknown) statistical regularities of essentially random processes.

One of the more interesting conceptual ideas by which to understand the
observed scaling phenomena in complex systems, has been the mechanism of
self-organized criticality introduced in section 6.3 on page 103.

The main practical argument for validating SOC has been the identi�cation
of power laws with a well de�ned exponent, ranging typically between 1 and 2.
As mentioned, such scaling laws are characteristic for systems at a critical point,
but unlike normal phase transitions, SOC-systems do not need the tuning of
an external parameter in order to become critical.

But it became clear that the argument of scale invariance and hence power
laws not was immanent to critical systems only. Various models (Newman and Roberts, 1995;
Roberts and Newman, 1996; Sol�e and Manrubia, 1996; Sol�e and Bascompte, 1996;
Sol�e et al., 1997), written in the context of extinctions events in the fossil
record, but surely wider applicable, showed that power laws equally well could
be obtained from a competition between exponential functions. Such systems
are therefore not critical. It was concluded (Newman, 1996; Newman, 1997)
that there was no evidence in the distributions of fossil extinction events to
support the notion of self-organized critical behavior in evolution.

In the following we might argue even worse that the emergence of power
laws not only can be independent of criticality, but also can be independent of
self-organization. In fact, we will show that a power law with an exponent 2
can be generated by a particular simple way of counting independent random
numbers. It follows that one has to think about, whether the observation of
scale invariance in various empirical distributions equally well might be caused
by the particular counting procedure of the observer. For the sake of argu-
ment, we will embed our model in a particular simple picture of understanding
evolving agents in an ecosystem.

7.2 A very simple model

Imagine an ecosystem consisting of one agent (it could be the �rst living or-
ganism on earth). The survival of this agent is de�ned by one �tness value,
or stress level, which is chosen randomly. During time, there will emerge an-
other organisms with another random stress level value, but if this new value is
greater than the �rst, it will replace it. If not, it will coexist with the �rst and
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try to get the best out of the situation. This process continues for many time
steps, and each time, a new agent �nds a way to get a higher stress level, than
some previous agent (or agents) have managed to survive with, it will replace
them in the ecosystem. This means that every time a new agent improves the
lowest stress level(s) considerably, it will also be the cause of a major extinction
event. It might even be so that it wipes out the rest of the population, but
then, history will just start all over again (with the following organisms having
better chances to survive, though).

This already de�nes the model. We can picture the process as follows:

0 1 2 3 4 5 6 7 8 time

Figure 7.1: Schematical �gure of the process. At time t = 0 a random number emerges
and survives as long as there are no new numbers with a higher value. For this particular
example it only survives one time step.

The idea is that the threshold at which a species goes extinct is equal to
the stress level

pstress(i) � pthreshold(i) (7.1)

In order to formalize this process, we assume an array of random numbers
rt; t = 0:::tend, associated to each agent emerging at every new time step. This
number then represent the stress levels of the agent in the ecosystem. The time
t = 0 represents our divine starting point, which we just assume will happen.
Since the best samplings of life times and extinction events in the fossil record
is found for families and not for species, we could identify out agents with them
instead.

7.3 Analytical results

Since there is no memory in the system and since random numbers are uncor-
related by de�nition, it is possible to make a simple mathematical analysis of
this \random evolution model".
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We can start to ask for the life time of a particular agent i, expressed by the
stress levels, or �tness value rit. For a start, we assume that the probabilities r
are uniform distributed between [0; 1], which expresses that the closer rit gets
to unity, the higher possibility there is for a long life time of the particular
agent i associated to r. Likewise the probability for this agent to get extinct
due to an introduction of a new agent with higher rj > ri is (1 � ri). As an
example, the frequency of an agent with a life time of size one is the product
of a start ri, and an extinction (1� ri).

Now we can ask for the overall frequency P of life times with size s, which
is precisely

P =

Z 1

0

(1� r)rs�1dr (7.2)

since we have to integrate over the whole distribution of possible starts. After
straight forward integration this gives

P =
1

s
� 1

s+ 1

=
1

s(s+ 1)

which already for s > 10 is indistinguishable from a power law with expo-
nent �2. Figure 7.2 shows a computer simulation together with the analytical
solution.

From equation 7.2 we see that the frequency P actually is equal to a par-
ticular Beta function:

P = B(s; 2) (7.3)

which converts to the gamma function via

B(s; 2) =
�(s)�(2)

�(s+ 2)

It is a well known property of the gamma function (Simon, 1955) that as m!
1, and for any constant k,

�(s)

�(s+ k)
� s�k
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Figure 7.2: Histogram of the frequency of lifetimes. The full line is the analytical solution.

and therefore we have for the speci�c system above, as s!1:

P = �(2)s�2

The equation 7.3 (including a constant) has been coined a Yule distribution
(Yule, 1924; Simon, 1955) after G. Udny Yule who constructed a probability
model to explain the distribution of biological genera by number of species
which was sampled by Willis (Willis, 1922). However, it is important to note
that the emergence of the Yule distribution is a result of the stochastic reg-
ularities of a speci�c random process without any auxiliary assumptions of
self-organization or criticality. The existence of power laws in systems driven
by some kind of self-organization with or without criticality does therefore not
necessarily allow conclusions about such an underlying mechanism to be the
epitome of complex biological systems. On the contrary, the existing empirical
data and their �tting to frequency distributions, might suggest more random
e�ects than it is hoped for.

One might speculate whether the above analysis holds for other than uni-
form deviates of random numbers, for instance exponential or Gaussian devi-
ates. In order to see that, we can generalize the above by de�ning the proba-
bility p(r0) of a general random number r0 di�erent from a uniform distribution
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to become higher than r as: Z 1

r

p(r0)dr0

and the probability to go below r as:Z r

�1

p(r0)dr0 = 1�
Z 1

r

p(r0)dr0

which holds by normalization. Then, the transformation for equation 7.2 be-
comes:

P (s) =

Z 1

�1

"Z 1

r

p(r0)dr0
�
1�

Z 1

r

p(r0)dr0
�s�1

#
p(r)dr (7.4)

But by realizing that the di�erential

d

�Z 1

r

p(r0)dr0
�
= �p(r)dr

we can rewrite eq. 7.4 as

P (s) = �
Z 0

1

"Z 1

r

p(r0)dr0
�
1�

Z 1

r

p(r0)dr0
�s�1

#
d

�Z 1

r

p(r0)dr0
�

and substitute x =
R1
r
p(r0)dr0 to get

P (s) =

Z 1

0

x(1� x)s�1dx

giving the result from equations 7.2 and 7.3 since B(2; s) = B(s; 2). This
means that it does not matter how the random numbers are distributed. The
power law remains stable for all situations.

7.3.1 Expectation values and lifetimes

In order to �nd an equation for the expected average number hkit of extinctions
at a given time t in the array, we can start to observe that at t = 0 (the divine
point) there can be no extinction:

hkit=0 = 0
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At time t = 1 we can use equation 7.2 on page 121 for the expected life time
s of one agent, to �nd the average number of extinctions at t = 1:

hkit=1 = hkit=0 +
1

t(t + 1)
=

1

2

At time t = 2 we obtain

hkit=2 = hkit=1 +
1

2(2 + 1)
=

2

3

and so on. This means that the average (non-cumulative) number of extinctions
at time t = T becomes

hkit=T =

TX
t=0

1

t(t + 1)
=

T

T + 1
(7.5)

so, for t ! 1 the average number of extinctions per time is 1. This means,
that most of the agents will disappear within a very short time, and only the
very most �t agents, with a stress value close to 1, will survive. However,
it is important to note that these average values for the expected number of
extinctions is di�erent from the probabilities p(k; t) of having an extinction of
size k at time t.

In the same way, we can calculate the expected number of surviving agents
hsit at each time step. Initially, the �rst is always expected to survive:

hsit=0 = 1 (7.6)

but for the next step, the average number of surviving agents is found by using
equation 7.5:

hsit=1 = 1� t

t + 1
=

1

2

from which it follows that the average cumulative number of surviving agents
hSi at time t = T is:

hSit=T = 1 +
TX
t=1

�
1� t

t+ 1

�

=
TX
t=0

1

t+ 1

� lnT +  (7.7)
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for large T , where  � 0:5772 is Eulers constant.
Very naturally, the size of the surviving population will grow in�nitely even

though the extinctions might wipe out the rest of the population. Diversi�ca-
tion is only limited by the requirement of well adapted, high stress values, and
these will inevitably emerge in a suÆcient long time interval.

7.3.2 Extinction distributions

We have found the distribution of lifetimes P (s) to be power law distributed
(equation 7.2 on page 121), and we have found the average number of surviving
agents until an arbitrary time T (equation 7.7). We have also found the ex-
pectation value for the average number of extinctions per time in equation 7.5,
which now allows us a shortcut argument in order to �nd the frequency of
extinctions of di�erent sizes k at a de�nite sampling time.

In the limit t!1, we have all surviving species with a �tness value very
close to one, rs ! 1. This means that we for the moment can disregard these
when calculating the probabilities for extinctions of size k at time t!1.

As an example, we can assume that the probability p(k;1) of an extinction
of size k = 1, only is dependent on the previous �tness number rt�1. Then the
probability becomes

p(k = 1; t =1) =
1

2

since the probability for one random number to be below another is 1
2
. The

probability of an extinction of size k = 2 will then become the product of the
last two �tness numbers rt�1 and rt�2 to be below rt:

p(k = 2; t =1) =

�
1

2

�2

Thus, in the limit t!1, which is the limit we want, we �nd the frequencies
of extinctions distributed as

P (k) =
1

2k
= e�k ln 2 (7.8)

In �gure 7.3 we have plotted the result: is shows the relative frequency of
extinction as a function of their size for di�erent sampling times (measured as
the distance from the starting point) together with the analytical result. This
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Figure 7.3: Semi-log plot of the extinction frequencies for sampling times ts = 10; ts = 100
and ts = 1000 all converging towards the the analytical solution (straight line with long
dashes).

means that there is a natural transient period before the distribution becomes
exponential.

So, in summary, our model predicts a power law distribution of taxonomic
life times with an exponent �2, and for the distribution of extinction sizes, the
model predicts an exponential decay with a characteristic factor of ln 2.

7.3.3 Extinction patterns

Unfortunately, the world is not that simple anyway. Although we have found
equivalent distribution functions as in the food web model from part II, we
�nd di�erent extinction pattern statistics. While in the food web model the
power spectrum showed 1/f-noise 1, the same analysis applied to this present
random model reveals \f-noise", that is, not correlation, but anti-correlation.
Intuitively this is understandable: in the food web model there was strong
correlation in the sense that if an important basal species became extinct, it

1If the extinctions were white noise, the power spectrum would be at.
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Figure 7.4: The Fourier transform of the autocorrelation function shows increasing correla-
tions for large frequencies, thus, anti-correlation. The straight dashed line follows P (f) / f .

pulled also a large number of other species into extinction because they were
feeding on it. In the present model however, a large extinction results in a
strong reduction of existing species and a relatively peaceful subsequent time
with low threshold values.

7.4 Conclusion

For a particular simple random model of evolution, we have shown that it is
possible to obtain very reasonable results when compared to the data of the
fossil record. We do not claim that this model is especially more realistic than
other models of evolution, but we do claim that the empirical evidence not yet
allows us to discriminate between co-evolutionary e�ects, as supposed by self-
organizing critical models, and statistical regularities of essentially independent
random numbers.

It is a subtle question whether our described process actually reects some
sort of self-organization. At �rst glance, it is obvious that, since the extinc-



128 Probabilistic Caveats in Criticality

tions thrive the stress levels towards higher and higher values, there is some
sort of organizational principle of the agents. It is a selective pressure which
forces all living agents to have high �tness values, which , in time, will be-
come more and more diÆcult to beat for the newcomers. In this sense, the
probability of an agent to go extinct, will decrease as its life time increases.
So, the cockroaches indeed have a high probability of outliving human beings.
But this organizational principle has nothing to do with possible interactions
between cockroaches and humans. Actually, they both live quite independent
of each other, and will (hopefully) die independent of each other. Likewise in
our model, the agents are totally independent of each other. The apparent
organization comes about only when tabulated and measured by an observer.
In this sense, there is no self-organization, but only statistics.

In order to stress this point even further, we could formulate a model as
follows: Imagine a multi-faced dice (say, N faces). Roll it, and write down the
number (between 1 and N). Roll the same dice as many times, until you get
a number which is greater that the one you wrote down. Tabulate the waiting
time and begin again. This process gives immediately the desired power law
distribution of the waiting times and the exponential distribution of extinction
events, since it is equivalent to our model when N !1.

We have shown that it is possible to produce power laws with an exponent of
�2 by random numbers put together in a random fashion. The emergence of a
power law only depends on some instantaneous properties of the system, which
(in a quite challenging sense) only describes the way we look at the data. But
this then means that scale-free phenomena observed in nature not necessarily
calls attention towards some self-organizing or critical mechanism at work on a
fundamental level. And �nally, when this is so, the discussion of power laws in
models of complex biological phenomena seems bound to be transferred to the
examination of the possible discrepancies between the actually observed facts
and the predictions of the theory. Some might put this in a rather popular way
and say: what is measured are the crumbs in the bakery and not the cookies.

As mentioned in the beginning of the thesis, the question is still open,
whether these similar statistical properties - the power laws - of such a large
and heterogeneous group of real phenomena are a result of a common, funda-
mental and yet unknown mechanism, or just a statistical peculiarity. In any
case: in order to understand the principles of evolving systems, it is impor-
tant to investigate from every possible point of view. Although the general
approach to the understanding of evolutionary dynamics through distribution
functions is exiting, the most fruitful approach is probably still the formulation
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of more speci�c models on more speci�c problems. As we have seen in the �rst
two parts, the general aspects of criticality and self-organization can emerge
anyway.
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A
Hamming Distances

The Hamming distance d(i; k) of two sequences xi and xk counts the number
of digits (or symbols) in which they di�er. So, for a given reference sequence
xi, the number of possible mutants Sd(i;k) = Sd with only one symbol di�erent
- the one-point mutants - is given by the sequence length N times the number
of other symbols (A� 1) which are able to occupy the loci in the sequence. In
general, the number of mutant sequences is therefore given by

Sd =

�
N

d

�
(A� 1)d

where N is the sequence length and A the number of possible symbol classes
at each locus. In normal NK-systems one has binary sequences A = 2, and in
the case of RNA one has A = 4 corresponding to the four di�erent nucleotides.
Summing over all possible Hamming distances 0 � d � N

S =
NX
d=0

�
N

d

�
(A� 1)d = AN

gives the total number of possible sequences.
Haemoglobin, for instance, is a very modestly sized protein with 141 amino

acids, corresponding to a sequence of 423 nucleotides (disregarding introns
within the genetic sequence). Still, this sequence has 4423 possible con�gura-
tions and allready 1; 269 di�erent one-point mutant neighbors.
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B
Hardy-Weinberg Law

Darwin had a problem with his concept of \blending inheritance": He believed
that o�springs blend the traits inherited from their parents into each other, so
that distinct features like colors or special forms blend into an average feature,
resulting in the loss of variability. The rediscovery of Mendel's work showed
that hereditary traits are a kind of immortal atoms, which are reshu�ed in
each new generation, permitting variability to be maintained. The subsequent
work of Hardy and Weinberg showed that the frequencies of these \atoms", the
alleles sitting at the chromosomal loci, are maintained through the generations.

The simplest situation is that of two di�erent genes sitting at a chromosomal
locus in a diploid organism, so that the �tness of the genotype is determined by
the type of interaction between the genes (alleles). For instance, the two alleles
A1 and A2 could code for brown and blue eyes respectively. Then, the genotype
is called homozygous if the same allele appears twice (A1; A1) or (A2; A2) and
heterozygous when both are present (A1; A2). By convention the genotypes
(A1; A2) and (A2; A1) cannot be distinguished, so it does not matter which of
the two genes stems from the father and which from the mother. However, one
allele may suppres the e�ect of the other, in which case it's called dominant
and the other recessive.

In general, we can assume that the frequencies of the alleles A1; A2; :::; An
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are given by p1; p2; :::; pn, and the frequencies of the genotypes, eg. the gene
pairs (Ai; Aj), by pij. Then, the frequency of allele pi can be found as the sum
of the contributions from the father and the mother -

pi =
1

2

X
j

pij +
1

2

X
j

pji (B.1)

where, the factor 1
2
expects that there has to be one contribution from each

parent. If we then assume random mating in the population, we can de�ne the
frequency of the genotype p0ij in the next generation as

p0ij = pipj (B.2)

saying that the frequency of combination p0ij equals the product of the proba-
bilty pi to have Ai and pj to have Aj. Using eq.(B.1), we can �nd the frequency
of allele i in the next generation (pi') as

p0i =
1

2

 X
j

p0ij +
X
j

p0ji

!
=
X
j

pipj = pi (B.3)

This is the Hardy-Weinberg law saying that the frequency of the genes remains
unchanged thoughout the generations.

B.1 Modes of selection

In the following, we shall use examples of discrete dynamics in the case of one
locus with two alleles. Let us assume that the frequency of allele A1 is p, and
the frequency of allele A2 is q = 1� p. We attribute a de�nite �tness value to
each of the three genotypes, so that

genotype A1A1 A1A2 A2A2

�tness w11 w12 w22

frequency p2 2pq q2

Assuming that the genes are in Hardy-Weinberg equilibrium, we �nd the
frequency of allele A2 in the next generation as

q0 =
pqw12 + q2w22

p2w11 + 2qpw12 + q2w22
(B.4)
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The extend of change in the frequency of allele A2 per generation is de�ned as
�q = q0 � q. Then, the rate of change becomes 1

�q =
pq[p(w12 � w11) + q(w22 � w12)]

p2w11 + 2pqw12 + q2w22
(B.5)

Depending on how we choose the �tnesses w11; w12 and w22, we �nd quite
di�erent modes of how selection operates.

B.1.1 Directional selection
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Figure B.1: Frequency of an advantageous allele with s = 0:01. Upper curve shows th
codominant mode, and the lower cruve show the complete dominant mode. Note that in
both cases the initial growth rate is very small and thus succeptible to chance e�ects like
random genetic drift.

In the simplest case of directional selection, or codominant selection, it is
expected that the heterozygote A1A2 has a �tness which is in-between the

1use that p0 � p = �(q0 � q), in order to realize that �q = pq0 � qp0
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�tnesses of the two homozygotes. Assuming a selective advantage s of allele
A2, this can be written as

genotype A1A1 A1A2 A2A2

�tness 1 1 + s 1+2s

and eq. (B.5) becomes

�q =
spq

1 + 2spq + 2sq2

which is illustrated in the upper curve of �gure (B.1) for s = 0:01.

B.1.2 Complete dominance

If we instead assume that the presence of an allele is dominanting completely,
then the heterozygote is as �t as the most �t homozygote:

genotype A1A1 A1A2 A2A2

�tness 1 1 + s 1 + s

Using eq. (B.5) we �nd

�q =
sqp2

1 + sq2

which is shown in the lower curve of �gure (B.1) for s = 0:01. Note that
complete dominant selection is slower than the codominant mode, since the
inferior allele can be carried along in the heterozygote without a�ecting the
�tness of the genotype. Ultimately, however, the inferior allele is lost.

B.1.3 Balancing selection

A more interesting situation appears when the most �t gamete is the heterozy-
gote. De�ning t < s, we have

genotype A1A1 A1A2 A2A2

�tness 1 1 + s 1 + t
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Figure B.2: When the heterozygote is the most �t genotype, selection operates in the
overdominant mode and �nds a stable equilibrium where both alleles coexist. s = 0:01; t =
0:005. This type of balancing selection has been the main argument for explaining the high
degree of polymorphisms found in real populations, see the discussion in the beginning of
part I.

in which case the change in frequency of A2 becomes

�q =
pq(2sq � tq � s)

1 + 2spq + tq2

In contrast to the two previous situations, in which one allele always will
become eliminated, we here �nd a coexistence between the two alleles, see �g-
ure. This kind of selection, called overdominant belongs to a class of stabilizing
or balancing selection. The equilibrium point qe for allele A2 can be solved to
be

qe =
s

2s� t
(B.6)
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C
The Replicator

Equation and
Lotka-Volterra systems

The general replicator equation is formulated as follows: the rate of increase of
a species population _xi

xi
, which, in a darwinian sense, is succesfull - compared

to other species populations - is given by the di�erence in it's �tness fi(x) and
the average �tness of the population �fi(x) =

P
i xifi(x) so that:

_xi = xi
�
fi(x)� �fi(x)

�
(C.1)

(Note that, implicitely, it has been assumed here that the degree of succes of
species i is proportional to it's own increase.)

One particular interesting and much analyzed situation is, when the �tness
of a species i is expected to be a linear function of the population vector such
that

fi(x) =
NX
j

aijxj (C.2)

so that equation C.1 becomes

_xi = xi

 
NX
j

aijxj �
NX
ij

aijxixj

!
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or in matrix notation

_xi = xi [(Ax)i � x �Ax] (C.3)

This replicator equation (or continuous time selection equation) C.3 is a
cubic function in x, but it is possible to show that equation C.3 in n variables
is equivalent to the quadratic Lotka-Volterra equation in n� 1 variables:

Consider the transformation

xi =
yiPN

j yj
; i = 1; ::; n

with yn � 1 so that

yi =
yi
yn

=
xi
xn

; i = 1; ::; n

It is possible (Hofbauer and Sigmund, 1998) to add a constant cj to the j-th
column of matrix A without changing equation C.3. This means that we can
change the last row of the n � n matrix A to solely consist of zeroes without
loss of generality. Then the transformation reads:

_yi =
_�
xi
xn

�
=

_xi
xn
� _xnxi

x2n

=
xi
xn

[(Ax)i � x �Ax]� xi
xn

[(Ax)n � x �Ax]

=

�
xi
xn

�
[(Ax)i � (Ax)n]

Since we appropriately have set (Ax)n = 0, we obtain:

_yi = yi(Ax)i = yi

 
nX

j=1

aijxj

!
= yi

 
nX

j=1

aijyj

!
xn

And since xn allways is strictly positive, we can change the time scale of inte-
gration and thereby remove the term xn. Then, using yn = 1, we arrive at the
general Lotka-Volterra equation in n� 1 dimensions:

_yi = yi

 
ain +

n�1X
j

aijyj

!



D
The Probability to Find
an Autocatalytic System

Imagine a soup of N di�erent molecules. 1 The probability that the molecule
i increases the growth rate of an other molecule j can be de�ned as p(i! j).
Then, the probability that j does the same to i at the same time, that is,
creating a positive feedback loop, is p(i ! j)2 (since for our simple case it's
enough to say that p(i j) = p(i! j) = p).
Now, how many of such pairs can we �nd? This must be a number like

N(N � 1)

2
�= N2

2

for large N . Thus, the chance to �nd such a minimal autocatalytic loop is

1

2
(Np)2(1� p)N�2

where the last part says that the rest of the system doen't catalyse anyting.
Equally, the chances for �nding 3-loops, 4-loops and so on, are

1

3!
(Np)3((1� p)N�3;

1

4!
(Np)4(1� p)N�4 ::::::::

1

N !
(Np)N

1The intial title to this small note was \Solution to the mystery of life, independent of
G�odel".
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The over all chance to �nd some kind of M�unchausen-system must then be

ptot =
NX
j=1

Npj

j!
(1� p)N�j

For N � 1 and p� 1 we can expand the last term in this sum according to

(1� p)N = 1�Np +
N(N � 1)

2
p2 � N(N � 1)(N � 2)

3!
p3::::::

' 1�Np +
N2

2!
� N3

3!
p3::::::

= e�Np

Setting x = Np we obtain

ptot '
1X
j=1

xj

j!
e�x

= e�x(ex � 1)

= 1� e�x

So, the total probability of �nding a seemingly most improbable M�unchausen-
e�ect is given by this simple expression. For p� 1=N , that is x� 1, we have
ptot ' 1� e�1 ' x. However, if p is large enough, or conversely, if the soup is
large enough so that

p � 1

N
;

then we have Np � 1, and we can now see that

ptot � 1 (D.1)

In words it says: since for a large enough system, the number of possible
combinations increases so fast that even a most improbable event will �nd
it's way to existence by the brute force of probabilistics. In it's philosophical
variant it says: If the universe is in�nite, everything will be in it, somewhere.
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E�ects of neutral selection on
the evolution of molecular species

M. E. J. Newman
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501. U.S.A.

Robin Engelhardt
Center for Chaos And Turbulence Studies, Dept. of Chemistry,

University of Copenhagen, Universitetsparken 5, Copenhagen �, Denmark

Abstract

We introduce a new model of evolution on a �tness landscape pos-
sessing a tunable degree of neutrality. The model allows us to
study the general properties of molecular species undergoing neu-
tral evolution. We �nd that a number of phenomena seen in RNA
sequence-structure maps are present also in our general model. Ex-
amples are the occurrence of \common" structures which occupy a
fraction of the genotype space which tends to unity as the length
of the genotype increases, and the formation of percolating neutral
networks which cover the genotype space in such a way that a mem-
ber of such a network can be found within a small radius of any
point in the space. We also describe a number of new phenomena
which appear to be general properties of neutrally evolving systems.
In particular, we show that the maximum �tness attained during
the adaptive walk of a population evolving on such a �tness land-
scape increases with increasing degree of neutrality, and is directly
related to the �tness of the most �t percolating network.

Published in Proc. R. Soc. London B (1998),265 (1402), pp. 1333-1338.
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Model for neutral evolution
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Robin Engelhardt
Center for Chaos And Turbulence Studies, Dept. of Chemistry,

University of Copenhagen, Universitetsparken 5, Copenhagen �, Denmark

Abstract

We make an analytical investigation of the model for neutral evo-
lution (Newman and Engelhardt, 1998) in the case of a maximally
rugged �tness landscape. While the existence of neutral networks,
called common structures, helps populations to attain higher �tness
values through di�usive searching, there exists, at a certain critical
�tness, a percolation threshold at which the population no longer
can utilize these neutral networks. We investigate this threshold
in terms of the neutrality and other parameters of the system, and
compare the results to simulations.

In preparation.
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A new model for food webs

Robin Engelhardt
Center for Chaos And Turbulence Studies, Dept. of Chemistry,

University of Copenhagen, Universitetsparken 5, Copenhagen �, Denmark
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University of Copenhagen, Universitetsparken 5, Copenhagen �, Denmark

M. E. J. Newman
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501. U.S.A.

Abstract

We introduce a new model for the spontaneous generation of food
webs in ecological communities. Using a modi�ed Lotka-Volterra
scheme including extinctions and introductions of new species, we
�nd a spontaneous self-organization of the most important proper-
ties in food web models such as well-de�ned directional food chains;
top species, intermediate species and autotroph basal species; rela-
tively constant, but uctuating linkage densities, omnivores, species-
speci�c interaction strength and a decoupling of the system into
sub-webs. We also �nd a di�erence in the average lifetime of gener-
alizers which feed upon many species (preys) and specializers which
feed upon only a few preys. While the specializers are far more
abundant than the generalizers, the latter have a longer lifetime,
on average.

Also the extinction dynamics is investigated in terms of Van Valens
constant extinction law, extinction patterns exhibiting \1/f-noise",
extinction distributions and lifetime distributions which show ex-
ponential and power law decay, respectively. The data from the
model is compared to existing data from experimental food webs
and to the fossil record. They all show good agreement with this
new model for the spontaneous organization of species communi-
ties.

Two papers. In preparation.
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Stochastic e�ects and Extinction-
and lifetime distributions

Robin Engelhardt
Center for Chaos And Turbulence Studies, Dept. of Chemistry,

University of Copenhagen, Universitetsparken 5, Copenhagen �, Denmark

Abstract

The sole existence of power law distributions in data of taxon life
times and fossil extinction events and other enumerational facts
in related biological data might be caused by a very simple ran-
dom mechanism, rather than the more sophisticated mechanisms
of self-organized criticality and coevolutionary avalanches. In order
to discuss such caveats, We formulate a model for random large-
scale evolution with a resulting power law distribution for taxon
life times and an exponential distribution for the extinction events.
We discuss whether this result is a rather natural tabulation e�ect
of independent random numbers without criticality with only min-
imal relation to the notion of self-organization. We argue that this
process equally well might account for the observed data for life
times and extinction events in the fossil record.

In preparation.
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Patterns Selection in Bistable Systems

S. M�etens,
G. Dewel,

P. Borckmans,
Cervice de Chimie-Physique,

Center of Nonlinear Phenomena and Complex Systems,
and Nonlinear Chemistry Unit,

C.P. 231, universit�e Libre de Bruxelles,
1050 Bruxelles, Belgium

Robin Engelhardt
Center for Chaos And Turbulence Studies, Dept. of Chemistry,

University of Copenhagen, Universitetsparken 5, Copenhagen �, Denmark

Abstract

Pattern selection in reaction-di�usion systems exhibiting bistabil-
ity of homogeneous steady states is discussed. In agreement with
recent experimental results, we obtain new bifurcation diagrams in-
volving large amplitude structures that arise from the coupling of
the spatial modes with a quasi-neutral homogeneous mode.

Published in Europhys. Lett.(1997), 37(2),pp.109-114
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Glossary

1/f-noise "One-over-f noise", occasionally called "icker noise" or "pink noise",
is a type of noise whose power spectrum P(f) as a function of the fre-
quency f behaves like: P (f) = 1=fa , where the exponent a is very close
to 1 (that's where the name "1/f noise" comes from). If we mix visible
light with di�erent frequencies according to 1/f distribution, the resulting
light may be pinkish. Mixtures using other distributions should have dif-
ferent colors. For example, if the distribution is at, the resulting light is
white (so noise with P (f) =constant power spectrum is called "white
noise")

allele An alternative form of a gene at a locus.

advantageous mutation A mutation that increases the �tness of the or-
ganism or structure which carries the mutation.

amino acid Organic molecule which is the subunit building block for pro-
teins.

auto-catalysis The ability of substances to catalyze the production of them-
selves. So, when the product of a chemical reaction also is a catalyst of
the reaction, auto-catalysis takes place.

bacteriophage A virus that multiplies in bacteria.

balancing selection A mode of selection, also called overdominance, or sta-
bilizing selection, where the heterozygote has a higher �tness than
either homozygote.

base see nucleotide.

base pair A base pair is a pairing of two nucleotides through a hydrogen-
bond according to the Watson-Crick base pairing rules between a purine
and a pyrimidine.

bifurcation When a non-linear dynamic system develops twice the possible
solutions that it had before it passed its critical level. A bifurcation
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cascade is often called the period doubling route to chaos because the
transition from an orderly system to a chaotic system often occurs when
the number of possible solutions begins increasing, doubling each time.

carrying capacity The maximum number of individuals in a population of
a given species that can be sustained in a speci�ed habitat.

central limit theorem This is \The Law of Large Numbers", and states that
as a sample of independent, identically distributed random numbers ap-
proaches in�nity, its probability density function approaches the normal
distribution.

chaos A deterministic non-linear dynamic system that can produce random
looking results. A chaotic system must have a fractal dimension, and
exhibit sensitive dependence on initial conditions.

chromosome In prokaryotes, the DNA molecule containing the genome. In
eukaryotes, a linear DNA molecule complexed with proteins forming a
thread-like structure containing the genetic information.

codominance The \normal" mode of selection, also called positive -, or di-
rectional -, or genic selection, where the �tness of one allele is larger
than the other so that the �tness of the heterozygote is the mean of
the two homozygotes.

complexity theory The theory that processes with a large number of seem-
ingly independent agents can spontaneously organize themselves into a
coherent system.

consensus sequence A sequence that represents the most prevalent nucleotides
or amino acids at each site in a population of sequences.

correlation : The degree to which factors inuence each other.

critical state A situation where the values of control parameters reach a cer-
tain level where the nature of a non-linear dynamic system changes. The
system can bifurcate, or make the transition from stable to turbulent
behavior.

deleterious mutation A mutation that lowers the �tness of the organism
or structure which carries the mutation.
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diploid A chromosomal complement that contains two copies of each chro-
mosome.

DNA (deoxyribonucleic acid): The molecule that encodes genetic informa-
tion. DNA is a double- stranded molecule held together by weak bonds
between base pairs of nucleotides. The four nucleotides in DNA
contain the bases: adenine (A), guanine (G), cytosine (C), and thymine
(T). In nature, base pairs form only between A and T and between G
and C; thus the base sequence of each single strand can be deduced from
that of its partner.

dominance The property of an allele to manifest its entire phenotypic e�ect
in the heterozygote.

enzyme A protein that catalyzes a speci�c chemical reaction.

error threshold A critical value of the mutation rate, above which errors
accumulate leading to the complete loss of information.

exponential law A mathematical expression in which a quantity is multi-
plied or divided by the same factor in equal intervals. For example, a
population grows exponentially when it doubles every n years.

�tness A measure of the relative survival and reproductive success of an
individual or a genotype.

�xation The situation achieved when an allele reaches a frequency of 100%
in a population.

Fourier transform The mathematical technique for changing the time-domain
representation of a signal (its waveform) into a frequency-domain repre-
sentation (its spectrum).

fractal An object in which the parts are in some way related to the whole.
That is, the individual components are "self-similar". An example is
the branching network in a tree. While each branch, and each succes-
sive smaller branching is di�erent, they are qualitatively similar to the
structure of the whole tree.

fractal distribution A probability density function that is statistically self-
similar. That is, in di�erent increments of time, the statistical charac-
teristics remain the same.
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Gaussian distribution A system whose probabilities are well described by
the normal distribution, or bell shaped curve.

gene A sequence of genomic DNA or RNA that is essential for a speci�c
function.

genetic algorithms Models that optimize rules by mimicking the Darwinian
Law of survival of the �ttest. A set of rules are chosen by those that work
the best. The weakest are discarded. In addition, two successful rules can
be combined (the equivalent to genetic cross-overs) to produce o�spring
rules. The o�spring can replace the parents, or they will be discarded
if less successful than the parents. Mutation is also accomplished by
randomly changing elements. Mutation and cross-over occur with low
probability, as in nature.

genetic drift The uctuation of allele frequencies from generation to gener-
ation caused by chance events.

genotype The sum of all the genetic information present in an organism.

haploid A cell or organism having a single set of unpaired chromosomes.

Hardy-Weinberg-equilibrium A condition under which the overall geno-
typic frequencies in a diploid population are constant in time.

heterozygote A diploid individual with di�erent alleles at the locus in
question.

homozygote A diploid individual with identical alleles at the locus in ques-
tion.

hypercycle equations Set of equations governing a cyclic coupling pattern
relating individual reproduction cycles.

inverse power law A special kind of power law with an exponent close to
�1, also called Zipf's law.

limit cycle An attractor for non-linear dynamic systems which has periodic
cycles or orbits in phase space. An example is an undamped pendu-
lum which will have a closed circle orbit equal to the amplitude of the
pendulum's swing.
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locus The site on a chromosome where a particular gene is located.

mass action kinetics A thermodynamic relationship that lays down the quan-
tities of di�erent reaction partners that can coexist with one another in
equilibrium.

molecular clock The belief that, in any given gene or DNA segment, mu-
tations accumulate in an approximately constant rate in all evolutionary
lineages as long as the gene or DNA segment retains its original func-
tion.

natural selection The di�erential reproduction of structurally distinct in-
dividuals within a population.

neo-Darwinism The theory of evolution according to Darwin and expanded
by the laws of genetics and population biology (such as the Hardy-
Weinberg law and the fundamental theorem) in the �rst half of the
20th century.

neutral mutation A mutation that does not change the �tness of the or-
ganism, and thus has no selective advantage.

neutral networks A network of genetic or nucleotide-con�gurations con-
nected my one point mutation. In the case of RNA we identify one
neutral network in the space of possible sequences as one particular re-
alization of a structure and thus of a molecular phenotype.

neutral theory The idea that evolution at the molecular level is primarily
determined by mutational input and random genetic drift, rather than
by natural selection.

nucleic acid DNA or RNA

nucleotide A molecule composed of a nitrogen base, a sugar and a phosphate
group. The basic building blocks of nucleic acids.

phenotype The morphological result of the expression of the genes in an
organism. So it is the organism itself with all its characteristics. When
we talk about \RNA-phenotypes", we just mean the spatial structure
of the RNA's.

point mutation A mutation of just one base pair in RNA or DNA.
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polymorphism The coexistence of two or more alleles at one locus.

power law A mathematical expression of the form f(x) = xa characteristical
for self-similar and fractal phenomena. Power law relationships have
no characteristic scale for their decay (or increase) - they are scale-free.
This means that the resulting \patterns" looks similar at all scales.

power spectrum The presentation of the square of the amplitudes of the
signal of a time series as a function of the frequency of the signal. The
power spectrum is proportional to the Fourier transform of the auto-
correlation function.

protein A molecule composed of one or more polypeptide chains.

purine A type of nitrogen base present in nucleotides and composed of two
joined ring structures, one �ve-membered and the other six-membered.
The purines in DNA or RNA are adenine and guanine.

pyrimidine A type of nitrogen base present in nucleotides and composed
of a single six-membered ring. The pyrimidines in DNA or RNA are
cytosine and thymine and cytosine and uracil respectively.

Q� virus An RNA bacteriophage with a single stranded genome, whose
host is the bacterium E.coli.

recessive The lack of phenotypic expression of an allele in the heterozy-
gote.

replication Molecular biologists use the word replication to describe the pro-
cess by which a new strand of nucleic acid is synthesized on a template,
where he speaks of DNA or RNA replication. When speaking about
larger structures like a cell, one talks about reproduction, not repli-
cation. Intermediate structures, like viruses or even proteins, do only
replicate when the information contained in them is directly used for the
synthesis of a copy of themselves.

reproduction Good old sex used by larger, multicellular organisms, in con-
trast to replication.

RNA Ribonucleic acid. A macromolecular polymer of linked nucleotides in
which the sugar residue is ribose. Single stranded.
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scaling How the characteristics of an object change as you change the size
of your measuring device. For a three dimensional object, it could be
the volume of an object covered as you increase the radius of a covering
sphere. In a times series, it could be the change in the amplitude of the
time series as you increase the increment of time.

secondary structure In proteins and nucleic acids, the structure of the
molecule brought about by the formation of hydrogen bonds between
amino acids or nucleotides, respectively.

self-similarity When small parts of an object are qualitatively the same, or
similar to the whole object. In certain deterministic fractals, like the
Sierpinski Triangle, small pieces look the same as the entire object. In
random fractals, small increments of time will be statistically similar to
larger increments of time.

self-replicating RNA Self-replicatingRNA's, are the most promising auto-
catalytic entities which have been discovered experimentally. Joyce,
Szostak and others have used a technique of molecular evolution to pro-
duce anRNAmolecule which functions as a polymerase and moves along
a sequence of RNA and add the appropriate nucleic acids on the right
places. The resulting ampli�cation cycle is carried out in a plastic test
tube that provides a kind of membrane to keep it in one place and has
a channel through which energy and nutrients are introduced. The pro-
cess can even undergo Darwinian selection, but it ultimately runs down,
because the enzyme catalysts in the system are not themselves repli-
cated.

sequence space A multidimensional hypercube used for the theoretical rep-
resentation of all possible variants of a sequence.

species A basic taxonomic category for which there are several de�nitions.
The most use de�nition is that of a group of actually (or potentially)
inter-breeding individuals that is reproductively isolated from other
such groups.

strange attractor An attractor in phase space, where the points never repeat
themselves, and orbits never intersect, but they stay within the same
region of phase space. Unlike limit cycles or point attractors, strange
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attractors are non-periodic, and generally have a fractal dimension.
They are a picture of a non-linear, chaotic system.

taxon A taxonomic group of any rank (e.g. species, genus, kingdom).

tertiary structure In proteins and nucleic acids, the three-dimensional
structure of the molecule brought about by its folding upon itself.

virus A non-cellular biological entity that can reproduce only within a host
cell. Viruses consist of nucleic acid covered by protein; some animal
viruses are also surrounded by membrane. Inside the infected cell, the
virus uses the synthetic capability of the host to produce progeny virus.

wild type The best adapted genotype of a species and representing the ma-
jority of the individuals of the species. In the molecular quasi species,
the wild type is equivalent to the consensus sequence, that is, The se-
quence of nucleotides or proteins containing the most prevalent allele
or amino acid at each site.

Zipf's law Zipf's law, named after the Harvard linguistic professor George
Kingsley Zipf (1902-1950), is the observation that frequency of occurrence
of some event P , as a function of the rank i when the rank is determined
by the above frequency of occurrence, is a power law function Pi � 1=ia

with the exponent a close to unity.
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model of, 119{129
modeling of, 55{60
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Eigen, M., 18, 21, 47
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probability to �nd positive, 58

Eldredge, N., 43
Elton, C., 55{57
Emlen, J. M., 76
energy transfer
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Evans, F.C., 62
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