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Abstract 1 

Drug nanocarriers surface chemistry is often presumed to be uniform. For instance, the 2 

polymer surface-coverage-density and distribution of ligands on nanoparticles are 3 

described with averaged values obtained from quantification techniques on a particle 4 

population. However, these averaged values may conceal heterogeneities at different 5 

levels, either because of the presence of particle sub-populations or because of surface 6 

inhomogeneities, such as patchy surfaces on individual particles.   7 

Characterization and quantification of chemical surface heterogeneities are tedious tasks, 8 

which are rather limited by currently available instruments and research protocols. 9 

However, existence of heterogeneities could contribute to some non-linear effects 10 

observed during nanoformulation optimization process, could contribute to problems 11 

related to nanocarrier production scale-up and could correlate with unexpected biological 12 

outcomes. On the other hand, these heterogeneities, while usually unintended and 13 

detrimental to nanocarrier performance, may, in some cases, be sought as adjustable 14 

properties that provide NPs with unique functionality.   15 

In this review, results and processes related to these issues are compiled, and perspectives 16 

and possible analytical developments are discussed. 17 

 18 

Key words: PEG, heterogeneity, nanoparticle, liposomes, ligand, ligand clustering, 19 

patchy nanoparticle, phase separation  20 

 21 
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Introduction 1 

The accumulation of drug nanocarriers at pathological sites such as tumors and brain 2 

parenchyma, in spite of the “enhanced permeability and retention” (EPR) effect 1, 3 

intensive optimization of formulation and the addition of targeting ligand, is deceptive. 4 

Only a few percent of the injected dose is effectively accumulated at the targeted site 2-4, 5 

while 90 to 99% is distributed in non-targeted organs, potentially contributing to adverse 6 

effects. This issue is particularly critical for the delivery of active compounds to central 7 

nervous system as the blood brain barrier acts as a formidable obstacle to nanoparticles 8 

(NPs) entry. Different reasons have been suggested for the specifically low accumulation 9 

and retention of nanoparticle formulations, which critically affects therapeutic efficacy. 10 

Considering the complexity of the biological processes, our knowledge about the 11 

interaction between different tissues and the surface of nanoparticles is still incomplete, 12 

leading to an inaccurate predication of NPs fate in vivo. The limited diffusion of NPs in 13 

tissues and across biological barriers has been also underestimated 3. Another set of 14 

explanations can be regrouped around the concept of particle heterogeneity. For example, 15 

key physicochemical properties such as size, shape, elastic modulus and surface 16 

chemistry have been shown to have differential effects on protein opsonization and 17 

particle distribution in healthy tissues and tumors, as well as on toxicity 5-8. More recent 18 

studies have shown that size dispersity and surface chemistry heterogeneity can directly 19 

modulate NP distribution in vivo 9, 10. These observations can be attributed to the extreme 20 

sensitivity of biological systems “to sense” specific surface architecture of foreign nano-21 

objects at the molecular level, with an unmatched resolution  11. 22 
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Particle heterogeneity can be classified according to two organization levels: at the 1 

suspension level, i.e. subpopulation of particles within a same batch exhibiting different 2 

properties and chemistry; or at the nanoparticle level, i.e. non-homogenous distribution of 3 

physicochemical properties in the core or at the surface of a single particle (Figure 1). 4 

With suspension heterogeneity, different nanocarrier populations within the same batch 5 

behave differently in terms of the therapeutic efficacy. As a consequence, the effective 6 

dose of nanocarrier having the optimal characteristics will be over- or under-estimated. 7 

Additionally the effective dose of optimal nanocarrier will be also highly sensitive to 8 

batch to batch variability. Additionally, the NP sub-populations which are not effective 9 

may be detrimental, and could trigger toxicity or unwanted immune system reactions 10 

from the host. The single particle heterogeneity has also the potential to alter the specific 11 

interactions between the nanocarrier surface and proteins 12, or membrane 13, 14 in vivo, 12 

causing unexpected therapeutic outcomes.   13 

Every day, new and more complex nanocarriers are being tested in research labs and 14 

clinical settings. The frequent use of responsive smart materials and bio-mimetic delivery 15 

strategies contributes to the constantly increasing complexity of the newly developed 16 

formulations. This also translates into complex synthesis, purification and formulation 17 

steps, which tremendously complicates their characterization and  compliance with 18 

regulatory guidelines 15. However, little concern is raised about the challenges from 19 

defects and heterogeneities of these complex nanostructures. Most fabrication processes 20 

do not allow rigorous control over homogeneity, because of complex and difficult to 21 

control physical mechanisms, such as phase separation, kinetic control of the assembly, 22 

mixing homogeneity and purification. The control of homogeneity at nanoscale is non-23 
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trivial, and higher number of reaction/fabrication steps increases the probability of defect 1 

and inhomogeneity.  2 

Certainly one of the most illustrative examples of how suspension heterogeneity 3 

affects biological outcomes is the impact of particle size dispersity. Small NPs (<150 nm) 4 

are reported to be more effective than large NPs in cancer therapeutic 16. However, in 5 

several cases, it has been shown that relatively large NPs may serve as better drug 6 

carriers. For example, after studying different micelle batches with hydrodynamic 7 

diameters ranging from 22-300 nm (mean diameters determined by DLS), Wang et al. 8 

showed that the optimal size for blood circulation time and tumor accumulation was 100-9 

160 nm 17. However, larger micelles (100-160 nm) had poorer tumor penetration than the 10 

small ones (30 nm), highlighting the necessity for attentive size control 17. 11 

Thus, nanoparticle batch size heterogeneity can also significantly influence 12 

biodistribution and targeting. The role of particle size on in vivo efficacy has been 13 

recently discussed 10, 18. In the case of PRINT® NPs (“Particle Replication In Non-14 

wetting Templates”), particle size appeared to be the main factor in NP tumor 15 

accumulation in vivo rather than the specific ligand density or particle shape 18. Another 16 

example is Poly(lactic-co-glycolic) NPs (PLGA NPs) produced by emulsion-solvent 17 

evaporation technique, which notoriously results in a heterogeneous size distribution. In 18 

an experimental study, a PLGA NP batch carrying a plasmid encoding luciferase protein 19 

was fractionated over a 100 nm pore-size filter, resulting two NP fractions having a mean 20 

diameter of 70 and 200 nm.  It was shown that luciferase transfection efficiency was 27-21 

fold higher with smaller NPs (mean diameter 70 nm) compared to larger NPs (mean 22 

diameter 200 nm). This result was obtained despite surface charges, DNA release and cell 23 
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entry were found near identical for the two NP fraction of the same batch 19. Considering 1 

these examples, a polydisperse NP suspension may induce different biological outcomes 2 

with respect to its size distribution.   3 

Although surface heterogeneity could be an issue in terms of the particle batch 4 

performance, in some recent studies the NP’s surface was intentionally manipulated to 5 

induce heterogeneities 20, 21.  The aim is to take advantage of these heterogeneities to 6 

modify NP’s interactions with biological media, modify drug release profile or promote 7 

the formation of ordered particle-based superstructures.  8 

 9 

Figure 1 (A) Schematic representation of the heterogeneity at the suspension level (left) 10 

and at the single particle level (right). In both cases averaged value can be obtained for 11 

each physicochemical property. (B) Some examples of NP surface heterogeneities 12 

influencing global biological performance and particles fate; at the nanoparticle 13 

suspension or the single particle level: (top right) homogenous ligand density; (top left) 14 

surface ligand clustering; (bottom right) homogenous material surface; (bottom left) 15 

material phase separation on surface produces domains of different composition.  16 

 17 
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The heterogeneity of physicochemical properties within a nanocarriers population is an 1 

emerging issue and concern. In this review, recent results regarding the chemical 2 

heterogeneity are discussed (see Figure 2 for selected examples of particle heterogeneity 3 

imaging). Size heterogeneity will be discussed only with the perspective of its role in the 4 

variation of chemical composition and topology, since size fractionation could be related 5 

to distinct chemical compositions. The focus will be on chemical heterogeneity: core 6 

composition, hydrophilic corona layer heterogeneity and ligand density heterogeneities. 7 

The discussion of this review will focus on the methods to highlight this heterogeneity, 8 

some consequences on in vivo performances, the potential source of this heterogeneity 9 

and how to minimize or in some cases optimize it.  10 
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 1 

Figure 2 Examples of nanoparticle heterogeneity:  (1) TEM images of representative 2 

formulations showing the clusters of ligand on the micelle surface. Scale bars show100 3 

nm. Reprinted with permission from Poon et al. 22 ; (2) TEM images of internal structure  4 

heterogeneity of PS/PI block polymer particles. Scale bars are 200 nm. Dark gray 5 

regions are PI domains stained with OsO4. Adapted with permission from Grundy et 6 

al.23; (3) Confocal optical microscopy of phase separation in  PCL/PLGA microcapsule 7 

shell under slight osmotic pressure. The shell fluorescence is from Nile red (in PCL-rich 8 

phase), reprinted from 24 with permission; (4) Intermediate state of phase separation in 9 

the microcapsule shell (PCL and PLGA): structure of a patchy microcapsule. SEM image 10 

Reprinted with permission from reference.24; (5) Imaging an oscillatory phase 11 

separation. Z-stack projections of height-resolved fluorescence images of a giant 12 

unilamellar vesicle consisting of POPC:SM:Ch (1:1:1) labeled with 0.5% Rhodamine-13 

DPPE, Scale bar shows 5 µm. Reprinted from 25 with permission; (6) Confocal 14 

microscopy image of hybrid lipid/polymer giant unilamellar vesicles (HLP-GUV) with 15 

irregular, star-shaped DPPC-rich domains in PBdPEO:DPPC (6 : 4) GUVs cooled to 16 

room temperature; Scale bar shows 10 mm. Reprinted with permission from Nam et al. 17 
26, (7) Fast Fourier Transform filtered TEM images obtained for selectively stained 18 

hybrid polymersomes prepared at different binary compositions showing the nanoscale 19 
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morphology, reprinted from LoPresti et al.27; (8) Illustration of size heterogeneity: TEM 1 

micrographs of the polymersomes solution (a) before AF4 separation; (b) aſter 2 

separation and (c) the separated micelle solution. Scale bars show 200 nm. Reprinted 3 

from Robertson et al. 28 with permission. 4 

 5 

1. Particle suspension heterogeneity 6 

When heterogeneity is found at the suspension level, discrete particles subpopulation 7 

with distinct physicochemical properties and chemical composition can be identified 8 

within the suspension. Although this subject has not been studied extensively, some 9 

studies have reported subpopulation heterogeneity based on particle suspension 10 

fractionation. Particle fractionation has been mainly based on the size or the density of 11 

NPs essentially because the available techniques mainly operate based on particle mass or 12 

volume differences. As developed below, strong correlations between particle size and 13 

chemical composition were often described. Note that the size dispersity is not discussed 14 

in this review as a heterogeneity on its own. However, it is one of the important sources 15 

of creating surface or chemical heterogeneity in NP suspensions. Therefore, we discuss 16 

the relation between the size dispersity and chemical/surface heterogeneities, and the 17 

subsequent effect of such heterogeneities on the NP performance. 18 

1.1. Effect of particle size on NP chemical composition 19 

Recent reports have highlighted higher-than-expected variations in nanocarrier 20 

chemical composition correlated to their size polydispersity with important consequences 21 

on the performance. The influence of size polydispersity on the chemical composition 22 

and active delivery properties of lipid NPs encapsulating siRNA have been recently 23 

investigated 29. Two similar lipid NP batches with similar bulk properties (chemical 24 

composition, hydrodynamic diameter, surface charge, and encapsulation levels) were 25 
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tested. The lipid NPs were fractionated on a size exclusion chromatography (SEC) 1 

column and fractions were analyzed for the chemical composition, lipid/encapsulated 2 

siRNA ratio and in vitro efficacy of gene silencing activity of siRNA. While one batch 3 

was found monodisperse (a uniform lipid composition across fractions), the second one 4 

showed a significant dispersity for all the parameters tested. In vitro gene silencing 5 

activity of the bulk batches and SEC fractions was evaluated. The two NPs batches 6 

without fractionation displayed overlapping dose-response curve. In contrast, fractions of 7 

the two batches showed significant differences for their in vitro activity, highlighting the 8 

importance of heterogeneity assessments 29. 9 

In the case of polymeric NPs, the polymer composition and Mw can vary with NP 10 

size as demonstrated by Pirok et al. The authors developed a two-dimensional liquid 11 

chromatography (LC/LC) system, which combines hydrodynamic chromatography (HC) 12 

and SEC. The HC was used to fractionate a mixture of polystyrene and polyacrylate 13 

(PS/PACR) polymeric NPs based on their size, and SEC analyzed polymers composition 14 

of each NP fraction 30. PS and PACR NPs were effectively separated in different 15 

fractions, but the technique showed a lack of resolution to separate PACR NPs of 16 

different size. The subsequent polymer SEC analyses gave insights on the polymer Mw 17 

and Mw distribution in the different NP fractions. Larger particles generally were 18 

composed of larger polymer chains, while Mw distribution was found to be modulated 19 

according to particle size 30. The significance of these differences in polymer composition 20 

on different biological response remains to be established. 21 

Preparation of NPs is often associated with the use of surfactant to control the size 22 

and stability of the resulting suspension. The amount of surfactant on particle surface 23 
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influences several surface properties. It has been shown that the particle size influences 1 

the amount of surfactant poly(vinyl alcohol) (PVA) adsorbed on PLGA nanoparticles 9. 2 

Biological outcomes, such as cellular uptake and distribution for those particles could be 3 

explained not only in terms of size differences but also in terms of surface chemical 4 

composition differences 9, 31.  5 

Surfactants have been also used as NP surface modifiers. For instance, Poloxamine 6 

908 and Polysorbate 80 physioadsorbed on NPs were shown to induce a change in blood 7 

circulation time and organ biodistribution when a concentration threshold was reached 32. 8 

These changes has been attributed to selective adsorption of plasma proteins on the NPs 9 

surface, enabling some sort of tissues targeting 33. The existence of coating heterogeneity 10 

and its influence on NPs fate had not been investigated, even though the unstable nature 11 

of physioadsorbed coating in vivo can make it prone to shedding. 12 

 13 

1.2. Effect of particle size on drug loading  14 

For drug nanocarriers, bulk chemical composition heterogeneity can be the result of 15 

differential drug encapsulation in different particle sub-population. The relationship 16 

between particle size, drug loading (DL) and encapsulation efficiency (EE) had been 17 

previously addressed for particle suspensions with distinct size distributions. For protein-18 

loaded microspheres which were size-fractionated by centrifugation, the loading 19 

efficiency was similarly found to depend on the microparticles size 34. Gefitinib content 20 

in the collected polymeric microspheres was found to vary at least 3 times between the 21 

smaller MPs (<20 µm) and the larger ones (>100µm) 35. This phenomenon has not been 22 

shown yet for NPs (size <1µm) but it could be expected according to this study.  23 
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1.3. Surface charges heterogeneity in a particle suspension 1 

Evidence of chemical heterogeneity in particle suspension has also been demonstrated 2 

from diffusive measurements in complex matrices. NP suspension, prepared by 3 

polyelectrolyte assembly with near neutral surface charge, were shown to contain NP 4 

sub-populations with higher diffusion coefficient in mucus than the average NP 5 

population 36. The difference in the diffusion coefficient was attributed to heterogeneity 6 

of surface charge. The authors explained that the process of self-assembly of 7 

polyelectrolyte polymers into NPs lead to surface charges that are not uniformly 8 

distributed. The result was surface domains with different charges, leading to different 9 

interactions with the mucin network 36. This hypothesis is supported by results showing 10 

that the spatial organization and charge distribution composition on peptide, even with 11 

similar overall charge, can modulate their diffusion in a mucin gel 37. 12 

 13 

1.4. Nanoparticle corona heterogeneity in a suspension 14 

The surface of nanocarriers is usually constituted by a hydrophilic polymer corona, 15 

which plays a major role in colloidal stability, anti-fouling, pharmacokinetic and 16 

biodistribution. Polyethylene glycol (PEG) is by far the most used polymer for this 17 

purpose 38. Therefore, the discussions in this section are mainly about this polymer. 18 

However, most of the principles discussed below can be applicable to other surface-19 

tethered polymers.  20 

1.4.1. PEG particle surface coverage  21 

 The antifouling efficacy of a PEG layer is related to its surface density, which is often 22 

characterized by a surface-density average value for a NP population 38. PEG chain could 23 
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be in either a mushroom conformation or brush conformation depending on the coverage 1 

density and the length of PEG chains 39, 40. PEG coverage-density heterogeneity may 2 

appears as (1) heterogeneity in the NP suspension when a sub-population of NPs has sub-3 

optimal PEG coverage, (2) heterogeneity on the surface of individual nanocarriers, i.e. 4 

“bald spots” or low density zone due to fluctuation of PEG coverage, or (3) heterogeneity 5 

in corona thickness arising from the Mw dispersity of the surface-tethered polymers 6 

(Figure 3).  7 

 The variability of surface polymer density within the NP suspension has been shown 8 

to affect biodistribution of PEGylated NPs and liposomes in vivo 41, 42. The presence of 9 

subpopulations with lower PEG coverage density also influences the overall therapeutic 10 

efficacy of the encapsulated drug. In addition, it can affect the NP diffusion in biological 11 

media 43 and ligand targeting efficacy 44, 45.  12 

 13 

Figure 3. PEG surface layer heterogeneities, from left to right: uniform density on the 14 

surface, variable PEG surface densities (PEG/nm2); “bald spots”, mixed molecular 15 

weight PEG brushes. 16 

 17 

1.4.2. PEG surface heterogeneity and subpopulations 18 



15 

 

Surface composition is challenging to characterize particularly homogeneity of 1 

surface coverage 11. The averaged PEG chain surface density (PEG chain/nm2) is 2 

calculated from NP ensemble averaged measurements 38. Although not extensively 3 

studied, the PEG heterogeneity in PEGylated polymeric particle populations has been 4 

documented by Moghimi and coworkers 46, 47. Using hydrophobic interactions 5 

chromatography (HIC), the authors were able to characterize the heterogeneity of a 6 

population of polystyrene microspheres (MPs) after PEG grafting. Since the level of 7 

surface hydrophobicity relates to the PEG grafting density, suspensions of MPs, with 8 

different surface hydrophobicities, were found to behave differently regarding 9 

macrophage uptake, protein binding and circulation time in blood 47.   10 

Besides surface density heterogeneity, the polymers corona thickness could be 11 

modulated by the molecular weight distribution. When PEG chain length is increased, an 12 

increase in the distance between tethered polymer chains is observed resulting in a 13 

decrease in coverage density due to the excluded volume effect. A lower coverage 14 

density decreases the antifouling efficacy of the PEG layer 48. To maintain surface anti-15 

fouling efficacy, several studies have proposed mixed/heterogeneous PEG layers. Indeed, 16 

it has been shown, on flat surfaces modified with a PEG 5kD, that the addition of  a short 17 

"underbrush" layer of 2kD PEG leads to a decrease in non-specific protein absorption 49-18 

51. Studies on liposomes demonstrated the benefit of this approach on the circulation time 19 

52, 53. Colloidal stability of gold NPs has been improved using mixed-molecular-weights 20 

PEG layer as well 54. Likewise, “hetero-brush” PEG surface (with 2kD “underbrush” and 21 

5 to 20kD PEG chains “over brush”) on peptide nanospheres show greater proteins 22 
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resistance and serum stability than “homo-brush” PEG surface with 2kD or 5kD chains 1 

55.  2 

The quantification of PEG chains with different Mw values on the same NPs is a 3 

challenging task that is yet to be overcome.  This is important to ensure that the optimal 4 

ratio between PEG chain lengths is maintained through the preparation process, and that 5 

the surface is covered by a uniform mixing of the different chain lengths to avoid 6 

possible phase separation phenomenon 48.  7 

1.5. Ligand surface distribution in suspension 8 

Heterogeneity in ligand-modified surfaces may appear either with a variable number 9 

of ligand per nanocarriers or with a non-uniform spreading or clustering of ligands on the 10 

surface of a single particle (Figure 1B). The latter will be addressed in section 2.  It is 11 

well established that ligands multivalency improves the affinity of ligand-modified 12 

carriers toward targeted cells 56, cell internalization 57 and drug encapsulating efficiency 13 

58. Quantitative determination of ligand density, although an indispensable step toward 14 

optimization, is suffering from lack of accurate techniques to quantify ligand number on 15 

individual particles. The quantification is often performed based on the knowledge of 16 

particle concentration, particle total surface area and core diameter38, 59. 17 

Numerous studies tried to address the question of the optimal ligand number and 18 

density to achieve high specific endocytosis and/or tumor accumulation 18, 60, 61. However, 19 

these studies rarely took the heterogeneity of ligand number per particle (ligand-to-20 

nanoparticle ratio) into account. They often exclusively used the average values for this 21 

characterization. The average value, however, does not recognize the distribution of 22 

ligand number and its eventual dependence over other physicochemical parameters such 23 
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as particle size. Another concern is the sensitivity of the ligand grafting reaction to 1 

surface heterogeneity such as surface roughness which could modulate coupling reaction 2 

rate and reaction kinetics 62. 3 

The number of ligand present on nanocarriers can vary, even on narrowly-dispersed 4 

structures such as Polyamidoamine (PAMAM) dendrimers 63. The most disturbing 5 

observation is that the most abundant species are, in many cases, the unmodified 6 

dendrimers without grafted ligand 62. Another issue is that the average value could be 7 

very different from the median or mode values, as shown in Figure 4, pointing out that 8 

the information provided by an average value alone is not always as reliable as it is 9 

perceived 63.  10 

To the best of our knowledge no other similar analysis has been conducted for ligand 11 

modified nanoparticle or liposomes, even though similar issues might occur. Indeed, 12 

separating NPs according to their ligand number density is technically challenging, and 13 

so far the above example with dendrimers is the only one reported. 14 

 15 
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Figure 4 (A) Peak fitting method quantifies the distribution of dendrimer−ligand species 1 

resolved in the HPLC elution traces. (B) Dendrimer−ligand distributions. Adapted from 2 

reference 63with permission.  3 

 4 

2. Single particle heterogeneity 5 

2.1. Hydrophilic corona heterogeneity at the single particle level 6 

As mentioned earlier, another type of PEG coverage-density heterogeneity can be 7 

deleterious to nanocarriers performance: heterogeneity on the surface of individual 8 

nanocarrier, e.g., “bald spots” or low density regions due to fluctuation of PEG brush 9 

coverage. Low PEG surface densities are prone to protein adsorption 64. Thus, these 10 

surface heterogeneities can lead to accelerated opsonisation and mononuclear phagocytic 11 

system (MPS) uptake and elimination6. 12 

 It has been reported that gelatin NPs observed by atomic force microscopy (AFM) 13 

topographic imaging show rougher surface when modified with PEG. This roughness 14 

suggests that PEG chains are not distributed homogeneously on the surface 65. 15 

Differences in stiffness between PLA and PEG have been used to visualize surface 16 

heterogeneity caused by PEG/PLA phase separation at the surface of NPs 66, 67.  Other 17 

indirect evidences of PEG surface heterogeneity have been provided by XPS analyses. In 18 

PEG-g-PLA NPs, shift in the carbon peaks positions suggests existence of areas with 19 

different charge accumulation on the NP surface, which in turn supports the presence of 20 

PEG enriched regions 66. 21 

At this point, there is a clear lack of accessible and direct techniques to allow surface 22 

PEG quantification and characterization at the individual particle level that hinders 23 

complete understanding of the possible role of heterogeneity on nanocarriers performance 24 

and further process optimizations. 25 
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 Similarly, uneven distribution of PEG chains on the surface of liposomes has been 1 

reported due to phase separations of PEG-lipids 68, 69. It has been suggested that longer 2 

PEG chains interact via van der Waals forces and interchain hydrogen bonding, causing 3 

chain entanglement that leads to enriched PEG domains 68. PEGylated lipid also 4 

influences hydrocarbon chain packing, favoring a temperature dependent phase 5 

separation 69. Potentially, it cannot be overlooked that a similar effect could happen when 6 

forming solid NPs, nucleic acid-PEGylated polymer assembly or during PEG grafting. 7 

These points are discussed further in the origin of heterogeneity section.   8 

Spatial organization and assembly of lipids were at the origin of heterogeneity in 9 

liposome suspension. Heterogeneity in liposome surface organization was found 10 

responsible for the existence of two liposome populations having distinct stability 11 

properties and affinity for surfaces. The heterogeneity was attributed to differences in the 12 

number of surface hydrophobic active sites which leads to spontaneous leakage of 13 

content and increase in the affinity for hydrophobic surfaces 70. 14 

 It is well known that different curvature radius of spherical nanocarriers affect PEG 15 

chains layer packing 6. In the case of gold non-spherical particle (AuNPs), coverage 16 

heterogeneity could arise from faces, corners and edges which could either induce a local 17 

non-optimal packing of the PEG layer, or local variation of the grafting efficiency 71. 18 

2.2. Ligand distribution on a single particle 19 

As discussed earlier, ligand multivalency plays a major role in targeted system 20 

affinity. The interplay between ligand and surface chemistry is another important 21 

parameter because it could influence targeting efficacy. For example surface PEGylation 22 

may decrease ligand affinity 72 73.  Xu et al. have shown that nanodomains located on a 23 
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lipoplex particles carrying plasmid DNA can affect transfection efficacy. The authors 1 

demonstrated that targeting was improved when specific ligands (folate) were located in 2 

cholesterol-rich lipid domains on the NPs surface. PEGylation of lipoplexes usually 3 

results in a decrease of plasmid DNA transfection efficacy. PEGylation of lipoplexes 4 

with DSPE-cholesterol conjugate results in PEG chains to be located mainly in the 5 

cholesterol-rich domains. In this case, the transfection efficacy was not affected 74. The 6 

question, whether this effect was mediated by the change in physical properties of the 7 

carrier surface, such as ligand clustering, remains unanswered.  8 

In another study, clustered or patchy presentation of ligands has also been shown to 9 

influence the targeting efficacy 22. Clustering of ligands bound to the polymer end-groups 10 

was observed in a micellar system constituted by dendritic polymers. Clustered ligand 11 

presentation increases the efficacy of NPs due to their enhanced uptake, which is resulted 12 

from the higher avidity and longer residence time in cell membrane 22. Tumor targeting 13 

of polymer-based nanovesicles was improved both in vitro and in vivo using vesicles 14 

made of lipid/polymer blends  75. The authors attributed this improvement to the 15 

“dilution” effect of the PEG brush density at vesicles surfaces when lipid/polymer 16 

composition was modulated. PEG brush can presumably have a negative effect on ligand-17 

receptor recognition under certain conditions. On the other hand, Dao et al. showed 18 

recently by Fluorescence Resonance Energy Transfer (FRET) analysis and Small-Angle 19 

Neutron Scattering (SANS), that phase separation between polymer and lipid occurs in 20 

hybrid polymer-lipid vesicles, which can lead to the formation of nanodomains that 21 

impacts the biological activity of NPs 76. Surface clustering of the folate ligand enhances 22 

cellular internalisation of NPs compared to a dispersed more homogenous distribution 77. 23 
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 1 

3. Engineered heterogeneity 2 

Although heterogeneity is generally perceived as a negative factor in nanomaterial 3 

performance, in some cases, such as for ligand clustering discussed above, it has been 4 

studied as another adjustable surface property. Indeed, some reports have shown that NPs 5 

with patchy polymeric surfaces favor cell internalization, modulate drug release and drive 6 

particle auto-assembly. In these cases, the surface has engineered heterogeneity. 7 

3.1. Chemically anisotropic nanoparticles and superstructures 8 

Engineered NP heterogeneity results in anisotropic particles that can be categorized 9 

as Janus, multi-compartment and patchy particles as illustrated in Figure 5. Patchy 10 

particles have domains of varying properties on their corona, whereas in Janus NPs, two 11 

distinct phases are separated either in the corona or in the core. 12 

 13 
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Figure 5. Schematic representation of Janus, patchy and multi-compartment NPs. The 1 

different possible combinations of these structures are also depicted. Adapted from Du 2 

and O’Reilly  20 with permission. 3 

 4 

Multi-compartment particles are similar to patchy particles with the difference that the 5 

multiple phase-separated domains are present in the core of the NP rather than in the 6 

corona. Combinations of these three types of inhomogeneity produce a large spectrum of 7 

complex anisotropic particle structures. In this section we review some of the most recent 8 

designs of these novel classes of NPs. For more information on fabrication and assembly 9 

of these NPs refer to Pawar and Kretzschmar (2010) 78, Du and O’Reilly (2011) 20, Liu et 10 

al. (2015) 79, Ravaine and Duguet (2017) 21. 11 

Mixtures of polymer and lipids have been proposed for membrane and lipo-12 

polymersomes preparation. The mixing of these two types of materials creates new 13 

hybrid vesicles for drug delivery if the preparation conditions are well adjusted 14 

(temperature, ratio and speed). For the preparation of hybrid lipo-polymersomes, Nam et 15 

al. used phase separation upon mixing and demixing of lipids and diblock polymer to 16 

generate surface domains. The resulting surfaces have varying domains in hybrid lipo-17 

polymersomes 26. 18 

As evident in the numerous reviews published on this subject, the production of patchy 19 

particles is now efficiently done. However, non-random patterning of NPs, except for 20 

Janus surface patterning, is not as convenient. In an interesting study aimed at controlling 21 

surface patterns, Choueiri et al. in 2016 used thermodynamically driven segregation of 22 

polymer ligands, from a uniform polymer brush into surface pinned micelles, by 23 

changing the solvent quality 80. This methodology appeared to be effective in controlling 24 
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the dimensions of the patches, their spatial distribution and their surface density. 1 

Although the initial mechanism results in reversible formation of the patches, their shape 2 

and configuration can be frozen using photo-crosslinking. The formation and shape of 3 

these particles are illustrated in Figure 6. In a similar study, Ye et al.  experimentally and 4 

theoretically showed that the number of patches is inversely proportional to the 5 

concentration of patch-forming blocks 81.  6 

 7 

Figure 6. (a) Schematic representation of the solvent-mediated formation of the surface 8 

patches on NP surface. (b) Electron tomography reconstruction image of a 60 nm 9 

nanoparticle with three patches of polystyrene with a grafting density of 0.02 chains per 10 

nm2. TEM image of a gold NP carrying photocrosslinked thiol-terminated polystyrene-11 

co-polyisoprene patches. Scale bars in b and c are 20 nm. Adapted from Choueiri et al. 12 

(2016) 80 with permission. 13 

 14 

Multicompartment micelles can be produced, using linear ABC triblock terpolymer via a 15 

step-wise reduction of the degree of conformational freedom and dynamics 82. In the first 16 

step, the triblock terpolymer self-assembles into a core-shell geometry when exposed to a 17 

non-solvent for the B block. This step leaves A and C blocks in the corona. During the 18 
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next step, exposure to a non-solvent for the A block triggers the collapse of block A, 1 

leading to higher-level assembly of the subunits into the final superstructure as shown in 2 

Figure 7.  3 

 4 

Figure 7. Mechanism of the directed hierarchical self-assembly of triblock terpolymers in 5 

solutions. The scale bar is 50 nm. Reprint from Groschel et al. (2012) 82 with permission. 6 

 7 

Under suitable conditions, the colloidal polymerization of these self-assembled NPs can 8 

be used to produce segmented superstructures 82. Similar multicompartment micelles 9 

were used to produce anisotropic colloidal polymers with segmented structure 83. An 10 

interesting sequel of this work was recently published by Lobling et al. in 2016 where 11 

these NPs (with C corona and A/B cores) were used to produce nanostructures with 12 

controlled patch morphology (see Figure 8) 84. The ratio of the blocks length 𝑁𝐶/𝑁𝐴 was 13 

found to control the transition from micelle geometry to sphere, cylinder, sheets and 14 

vesicles, while length of the B block, 𝑁𝐵, controls the patch morphology from spherical 15 
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to cylindrical, bicontinious and lamellar. The result is a large library of patchy-1 

multicompartment nanostructures as shown in Figure 8.  2 

 3 

Figure 8. Sub-classifying patchy-multi-compartment nanostructures based on micelle 4 

geometry and patch morphology. The scale bars are 200 nm. Reprinted from Lobling et 5 

al. (2016) 84 with permission. 6 

 7 

Massignani et al. reported the fabrication of novel polymersomes using poly(2-8 

(methacryloyloxy) ethylphosphorylcholine)-co-poly(2-9 

(diisopropylamino)ethylmethacrylate) (PMPC–PDPA) and poly(ethylene glycol)-co-10 

poly(2-(diisopropylamino)ethyl methacrylate) (PEG–PDPA) diblock copolymers 11 

comprising an hydrophilic block (PMPC, PEG) and a pH-sensitive block (PDPA). When 12 

the copolymers are mixed in different ratios, they result in polymersomes, having surface 13 
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phase separation as evidenced by staining and visualization by TEM. The patchy 1 

PMPC/PEG surfaces show differences in cell internalization rates, relative to the surface 2 

polymer 85. 3 

3.2. Applications of the engineered heterogeneity  4 

The increasing attention towards the production of chemically anisotropic particles is 5 

fueled by the numerous potential applications of this novel class of materials. Self-6 

assembly of polymers into desired nano- and micro-patterned structures can be employed 7 

in biomedical, electronic and energy applications. Perhaps the most intriguing application 8 

is the formation of self-propelled nano/micro particles which can be used for efficient 9 

micro/nano mixing. In this section, while focusing on biomedical applications, we review 10 

some of the recent literature on chemically anisotropic particles. 11 

Verma et al. showed that 6 nm nanoparticles, coated with a shell of hydrophobic and 12 

anionic ligands regularly arranged into ribbon-like domains of alternating composition 13 

penetrate cell membranes without evidence of membrane disruption. On the other hand, 14 

particles with identical hydrophobic content but without structural order in the ligand 15 

shell do not penetrate cell membranes. The authors concluded that structural organization 16 

of surface chemical groups plays a key role in regulating cell-membrane penetration 13. 17 

The self-propelling property of Janus particles has been studied experimentally and 18 

theoretically by Howse et al. By coating half of the surface of polystyrene MPs with 19 

platinum, the authors showed that at short times, the particles trajectory was 20 

predominantly ballistic with velocities in the 𝜇m/s range, while at longer times the 21 

motion was random. This example interestingly illustrates how Janus structures (or 22 
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potentially other chemically anisotropic particles) can be employed for designing 1 

chemical locomotive systems 86.   2 

With the ultimate objective of improving the delivery of macromolecular therapeutics 3 

to the cellular cytoplasm, Imam et al. (2017) studied the effect of lipid membrane phase 4 

separation on membrane fusion. They demonstrated that phase separated vesicles 5 

transferred their content into the cellular cytoplasm four times more efficiently than 6 

homogeneous vesicles 87. Heterogeneous surfaces could potentially be used as tools to 7 

understand cellular functions 88, modify NP biodistribution 89 and increase antifouling 8 

properties 90, 91. Many more applications of chemically anisotropic particles in drug 9 

delivery was reviewed by Tran et al. in 2014 92.   10 

 11 

4. Analytical methods to characterize heterogeneity: recent developments 12 

Few methodologies are available to assess heterogeneity since the development of 13 

proper analytic tools for this purpose is still at its infancy. The techniques may vary 14 

depending on whether heterogeneity at the suspension level or at the single particle level 15 

is characterized.   16 

4.1. Detection of heterogeneity in particle suspension 17 

4.1.1. Fractionation of particle suspensions 18 

Several studies have reported the use of fractionation of particle suspension by size, 19 

density or surface properties to assess their chemical compositions, efficacy and fate in 20 

vivo.  Several fractionation methods have been reported: fractionation based on particle 21 

size with Size Exclusion Chromatography (SEC) 63, Asymmetric flow field flow 22 

fractionation (AF4) 93 94, 95 or centrifugation 96.  Centrifugation fractionation can be based 23 
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on particle density with isopycnic centrifugation 97, 98, or sedimentation velocity 1 

analytical ultracentrifugation 99-101. Least common is fractionation based on affinity 2 

chromatography since separation cannot be achieved for nanoscale objects 47.  3 

Heterogeneity in size and shape has been also highlighted in studies on NPs 4 

purification since NP subpopulation could be detected during purification procedures 28, 5 

102. Fractionations based on other properties than size and density, such as ligand number, 6 

are rarely reported except for the study by Mullen et al. discussed above in section 1.5 63. 7 

Following fractionation, NP subpopulations can be analyzed using conventional 8 

techniques to determine for instance, chemical composition, ligand numbers or other 9 

physicochemical parameters. These results could be confronted to average values 10 

obtained from the entire NP population to draw conclusions on NP batch heterogeneity. 11 

4.1.2. Direct analysis of nanoparticle suspensions 12 

Techniques that rely on a direct analysis of the NPs are useful for identifying 13 

heterogeneities within a suspension. For example, observation of thousands of liposomes 14 

by confocal microscopy along with fluorescent signal processing, can identify  lipid 15 

composition heterogeneity between liposomes of the same batch 103. The technical and 16 

practical aspects of individual liposome visualization by confocal microscopy as 17 

proposed by Larsen et al. 103 is more detailed in section 4.2.  The lipid composition was 18 

reported to vary significantly (ten-fold) between liposomes, which can impart drastic 19 

effects on their physicochemical properties. Such composition heterogeneity could not be 20 

identified using conventional techniques that rely on averaged properties over the entire 21 

particle population. Despite the valuable information obtained using such direct 22 

observation, high throughput screening of particles is often impossible. Therefore, it is 23 
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important to assess the possibility of using other characterization techniques for detecting 1 

heterogeneities. 2 

Electrophoretic methods (EM) are able to screen small NPs and identify size and 3 

charge heterogeneity based on their electrophoretic mobility. The mobility depends on 4 

NP charge, size, shape and surface functionalization. This technique can be divided in 5 

two main categories: gel-based and gel-free separation.  6 

Doane et al. applied the gel electrophoresis (GE) method to quantify the 7 

electrophoretic mobility of PEGylated gold NPs (Au NPs) according to the PEG-ligand 8 

molecular weight and hydrodynamic radius. Since different PEG molecular weights 9 

produce different gel migration patterns, this technique was applied to characterize and 10 

separate NPs according to their PEG-ligand molecular weight difference104. A similar 11 

approach was applied by Daou et al to separate PEGylated quantum dots according to the 12 

PEG-ligand molecular weight 105. Gel electrophoresis has also been applied to separate 13 

Au NPs modified by monofunctional methoxy-PEG according to the PEG-ligand surface 14 

density 106. However, GE is rather limited by the size range, typically only NPs smaller 15 

than 25 nm can be resolved due to the gel pore sizes. 16 

Capillary electrophoresis is extensively used to study several physicochemical 17 

parameters of a population of nanoparticles and nanoparticle-biomolecule conjugates 107-18 

109. By coupling capillary electrophoresis with laser-induced fluorescence detection, 19 

Duffy et al. were able to detected individual sulfated polystyrene particles loaded with a 20 

fluorescent dye. Using this approach, chemical heterogeneity, surface interactions, 21 

double-layer ion distribution, size and 𝜁-potential can be studied at the single particle 22 

level, and separation based on these parameters can be undertaken 110. Rezenom et al. 23 
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reported that a small number of individual particles can be characterized, and the 1 

detection efficiency in this technique ranged from 38 to 57% for different particle sizes 2 

111.   3 

Polystyrene particles (PS) functionalized by amino, carboxylate, and sulfate were 4 

separated and characterized by capillary electrophoresis-UV according to their difference 5 

in surface charge 108. The separation was achieved for significant surface charge 6 

difference between functionalized PS particles (more than 20-30 mV difference in 7 

surface potential and charge inversion); whereas, charge difference inside the same batch 8 

of NPs is usually less significant (SD about +/-10 mV). Therefore, optimization is 9 

necessary before this technique could be used to resolve heterogeneity inside a 10 

suspension of NPs. An important point is that samples in capillary electrophoresis are in 11 

an electrolyte solution. Therefore, NPs stability in solution must be carefully monitored 12 

109, 112.  Other critical points to be considered are the improvement of resolution, 13 

reproducibility and current lack of reference nanomaterials to be used as standard in 14 

analytic methods 109. 15 

Industrial applications of colloidal particles, such as inks and paints, usually 16 

require samples concentration far above the concentration and turbidity limits that the 17 

light scattering techniques can operate in. In addition, in large scale production of 18 

nanoparticles it is preferred to measure the properties (especially NP size and 𝜁-potential) 19 

in real time so that a control system can respond and eliminate any defected sub-20 

populations, thereby decreasing the heterogeneity in the final product. Electroacoustic 21 

spectroscopy, a technique that operates based on electrokinetic phenomena at megahertz 22 

frequencies, is an ideal characterization method for concentrated nano- and micro-particle 23 
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suspensions and industrial slurries 113. This technique is not limited by the turbidity since 1 

the measurements are based on sound rather than light propagation. O’Brien et al. (2003) 2 

used electroacoustic spectroscopy to successfully determine the size and zeta potential of 3 

a highly concentrated silica NP suspension (43 wt%) while the suspension was being 4 

pumped through a flow circuit 114. Many interesting industrial applications of this 5 

technique in nanoparticle characterization were reviewed by Hunter 113. In addition, 6 

electroacoustic spectroscopy can be used for characterization of NPs while they are 7 

embedded in opaque non-Newtonian media. Adibnia and Hill (2014) used electroacoustic 8 

spectroscopy to show that NPs embedded in hydrogel distribute heterogeneously, and 9 

reflect different diffusive patterns within sub-populations of NPs 115.  10 

Tunable resistive pore sensing allows the analysis of size and zeta potential of 11 

individual particles in a suspension. In this technique a resistance pulse is generated over 12 

time each time individual particles pass through a pore. The pulse profile can be 13 

interpreted using appropriate theories to extract the particle size, shape, charge and 14 

concentration 116. Evidently, the pore size dictates the size range of the particle to be 15 

analyzed. Therefore, size tunable pore sensors were introduced to tune the pore 16 

dimensions typically using mechanically stretching elastic pores 117. Using an appropriate 17 

theoretical model, Kozak et al. (2012) extracted the electrophoretic component of the 18 

particle motion in the pore, and successfully evaluated the 𝜁-potential and size of 19 

individual polystyrene particles 117. Vogel et al. implemented a high-resolution tunable 20 

resistive pulse technique to measure size and 𝜁-potential of biological samples such as 21 

mixed anionic, cationic liposomes and extracellular vesicles in plasma on a single particle 22 

analysis basis (see Figure 9). They also studied the in-situ immobilization of DNA on 23 
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magnetic particles by measuring individual particles 𝜁-potential 118. Tunable resistive 1 

pulse sensing can also be used to investigate adsorbed protein layers on nanoparticles by 2 

individual particle size measurement 119, which is not possible using conventional 3 

techniques such as dynamic light scattering due to the formation of agglomerates. It 4 

should be noted that the sensitivity and throughput of resistive pulse sensing is still 5 

improving, especially with the integration of micro- and nano-fabrication technologies 6 

120. 7 

 8 

Figure 9. (A) Zeta potential vs particle size of bare polystyrene (CPN100), carboxylated 9 

polystyrene particles (CPC70, CPC100), magnetic particles (Bio-Adembeads) and 10 

magnetic particles modified with DNA. The mix of all 5 particle types (in yellow) 11 

resembles very well the particle distributions when particle types are measured 12 

separately. From reference Vogel et al. 118 (adapted and use with permission) (B) 13 

Principle of TRPS, schematic representation of a pore; right down: pulse signal 14 

generated by each individual particles. Adapted and use with permission from 15 

Sommerville et al.121.  16 

 17 

Flow cytometry can be used as a screening technique to quantitatively examine 18 

the adsorption of fluorescent proteins onto PEGylated microparticles (MP) surfaces. 19 

Observation of different population of fluorescent MP can demonstrate MP batch 20 

heterogeneity 122. However, until recently the technique was not transferable to nano-21 

sized objects, due to detection limitations. Recent developments have resulted in several 22 
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report of optimized “in house” equipment able to analyze nanoparticles and nanovesicles 1 

123, 124. The possibilities opened by these recent developments in the identification of NP 2 

subpopulation as a function of size, adsorbed proteins and surface properties are 3 

enormous 125-127.  4 

Microfluidics has been used for nanoparticle separation and characterization. 5 

Microfluidic devices offer a convenient, single step and most importantly continuous 6 

particle separation, which is now very well-established for micron-sized particle sorting 7 

128. The electrophoretic mobility and particle size of individual Hepatitis B Virus capsids 8 

were measured in two nanofluidic 45 nm wide pores in series using resistive pulse 9 

sensing 129. The nanofluidic fluorescence-based detection and characterization of small 10 

lipid vesicles on a single particle basis was done in a nano flow cytometer 130. The device 11 

could count the number of fluorescent synthetic lipid vesicles down to a vesicle 12 

concentration of 170 fM also detecting binding reactions occurring at the surface of 13 

individual vesicles. This potentially could allow the detection of heterogeneities in 14 

vesicle subpopulations and identify specific biomolecules on the surface. 15 

 16 

4.2. Detection and analysis of heterogeneity at the single particle level 17 

Unfortunately, until now there are not many techniques allowing the study of NPs 18 

surface individually with high spatial resolution and high throughput. Surface 19 

heterogeneity at the single particle level is currently assessed by imaging techniques such 20 

as TEM, SEM, AFM and fluorescent microscopy.  21 

Transmission and Scanning electronic microscopy (TEM and SEM) are the methods 22 

of choice to visualize particle heterogeneity at the population or single particle level. Size 23 
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and shape can be readily resolved providing that the particles are stable enough. Some 1 

insights into chemical heterogeneity can be detected if materials have different electronic 2 

density or could be stained with heavy metal salts. However, features such as PEG 3 

surface coverage cannot be readily analyzed. The limitations of imaging techniques are 4 

related to tedious and time consuming image analysis to obtain enough statistical power. 5 

The surface heterogeneity of Poly(lactide-co-glycolide) (PLGA) NPs coated with a 6 

mixture of lecithin and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-N-7 

polyethylene glycol (PEG) with NH2 or O-CH3 end-terminal groups was visualized by 8 

TEM. NPs visualization was carried out by grafting carboxylated quantum dots (QDs) to 9 

the PEG NH2 terminal group on NPs surface.  Similarly, patchy surface of MPs 10 

conjugated by gold NPs (AuNPs) was observed by TEM and SEM 131 . In both case the 11 

formation of patches on the surface of particles was demonstrated by Electronic 12 

Microscopy (EM). According to the authors this heterogeneity is related to the difference 13 

in segregation of DSPE-PEG according to difference in end-terminal group (NH2 vs 14 

OCH3). Even though this kind of technique provides a lot of information about surface 15 

heterogeneity, it should not be forgotten that the functionalization of the surface by QDs 16 

or AuNPs could create more surface heterogeneity due to the non-uniformity of chemical 17 

coupling reaction. Similar MPs were also synthesized using DSPE-PEG conjugated by 18 

fluorescent dye. Similarly, the patchy surface was observed on the MPs surface by 19 

confocal microscopy 131.   20 

Surface heterogeneity of individual liposomes with diameters between 50 nm to 1.5 21 

µm was reported by high-throughput confocal fluorescent microscopy. The labeled 22 

liposomes were prepared with a pair of fluorescent lipid analogues with identical fatty 23 
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acid tails (phospholipid DHPE and fatty acid C16 respectively) attached to two different 1 

fluorescent dyes. The molar ratio of the two labels was analyzed by confocal fluorescent 2 

microscopy on individual liposome by measuring their intensity ratio. Variable label 3 

molar ratio were recorded for individual liposomes, reflecting lipid composition 4 

heterogeneity 103. However, because of the low resolution of confocal microscopy in the 5 

submicron range, it does not allow visualizing individual liposome surface with high 6 

enough detail.  7 

The ratio of lipid to proteins of proteoliposome with mean diameter of 100 nm was 8 

determined by confocal fluorescent microscopy. High throughput analysis of 9 

proteoliposome was performed by labeling the transmembrane proteins with Cy3 or Cy5 10 

and the lipid phase with Oregon green DHPE3. The analyses of thousands of 11 

proteoliposomes allowed the heterogeneity in distribution of transmembrane protein in 12 

proteoliposomes to be characterized. Three subpopulations of proteoliposomes with 13 

different transmembrane protein compositions could be identified 132. This could have 14 

implications in formulation of targeted liposome for drug delivery using surface proteins 15 

as targeting ligand.  16 

Atomic force microscopy (AFM) is a reliable approach to obtain information about 17 

the nanoscale heterogeneity on the surface of coated or functionalized material. AFM is 18 

frequently used to characterize NP size distribution 133-135. However, to the best of our 19 

knowledge, in very few articles, AFM was used to study the surface properties related to 20 

the surface heterogeneity. The shape, size and core-shell structure of superparamagnetic 21 

iron oxide nanoparticles (SPION) modified by pullulan (a polysaccharide used to 22 

increase biocompatibility of SPION) was investigated by AFM. In this study, the authors 23 
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demonstrated that the particle structures is constituted of an inner magnetite core and an 1 

outer polymeric shell of pullulan 136. The nanoscale spatial resolution of AFM provides 2 

important information about nanoparticles surface. As previously mentioned in section 3 

2.1, heterogeneous distribution of PEG was observed in AFM topographic mode 65 or 4 

AFM “phase imaging” mode 66, 67 . 5 

Stan et al. applied AFM and atomic force spectroscopy (AFS) in contact and tapping 6 

mode on flat gold substrates functionalized by PEG thiol in aqueous PEG solution. In this 7 

study, the morphology and PEG heterogeneity of surface coverage and the mechanical 8 

properties of the PEG surface coatings were measured by AFS 137. Additionally, the data 9 

gathered by AFM and AFS provided enough statistical evidence to calculate the length 10 

and density of PEG brush. The authors reported a significant heterogeneity in PEG 11 

surface coverage, forming sparse and brush-like islands.  It is important to mention that 12 

this study was performed on flat gold surfaces, and it is yet to be applied to spherical gold 13 

NPs. A similar study was performed by Nnebe et al. on PEG chain layer grafted on silica 14 

by tapping-mode AFM. Analyses of compression forces applied by the AFM probe on 15 

the surface PEG layer reflected the grafting density and the PEG layer thickness, which 16 

could reveal heterogeneity in surface chemistry 138. 17 

Atomic force microscopy scanning electrochemical microscopy (AFM-SECM) was 18 

employed by Huang et al. to visualize the PEG corona labeled by ferrocence 139. 19 

Additionally, AFM-SECM could allow the visualization of the gold core of individual 20 

NPs.  In this technique, by generating a specific tip current, a microelectrode probe 21 

allows electrochemical detection of the PEG labeled by ferrocence (Fc-PEG redox label) 22 

immobilized onto a 20 nm gold NP surface. The intensity of this specific current relies on 23 
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the concentration of ferrocence or any other redox label on the surface of the gold NPs, 1 

while AFM tapping mode determine the location on individual NPs. In other words, 2 

AFM-SECM allows the determination of the statistical distribution of PEG density in the 3 

surface of gold NPS by analyzing individual NPs. In this study, for each image a 4 

histogram showing the distribution of the number of Fc-PEG chains per nanoparticle 5 

probed was generated. AFM-SECM could be useful to detect the surface heterogeneity 6 

within the same batch of NPs as the redox-labeled macromolecule resolution was found 7 

to be around 20 nm. However, AFM-SECM is not a universal technique as it could be 8 

applied only to NPs with conducting substrate. Additionally, the use of AFM-SECM 9 

requires the functionalization with redox label, limiting the range of application of this 10 

technique.  11 

Structural disorders and packing efficiency of the phospholipid bilayer of giant 12 

multilamellar liposomes (diameter in the order of hundred microns) were visualized by 13 

Confocal Raman Microspectroscopy. The combination of Raman spectroscopy and 14 

microscopy allows for the mapping of the surface composition of the material with a 15 

superior resolution in the sub-micron range 140. The authors investigated three regions in 16 

the vibrational spectrum (C-C stretching, C-H deformation and C-H stretching) to reveal 17 

phase and lateral packing heterogeneity in the phospholipid membrane. It should be 18 

mentioned that confocal Raman microspectroscopy currently cannot be applied to 19 

submicron particles because of the low spatial resolution of the technique.   20 

A combination of different techniques is a successful approach to unveil never-seen-21 

before surface details at the nanoscale. A good example is the combination of super-22 
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resolution fluorescence microscopy (SRFM) with TEM techniques to investigate 1 

structure heterogeneity of soft NPs 141. 2 

 Core−shell architectures of hard and soft core/shell NP stained by fluorescent dye or 3 

AuNPs or AgNPs were visualized by SRFM (fluorescent probe) or TEM (metallic NPs). 4 

Microscopy data allows determining the 2D radial distribution of metallic NPs or 5 

fluorophores, therefore allowing the 3D reconstruction of the internal structure of the  6 

core/shell NPs 141. This technique enables quantifying the different compartment volumes 7 

in a single microgel, and to access the quantitative evaluation of structural heterogeneity 8 

of a NP ensemble. Moreover, temperature-induced changes of the responsive soft shell 9 

labelled with AgNPs could be observed at the single microgel level 141. 10 

Combination of AFM and infrared (IR) spectroscopy was shown to provide the high 11 

topographic spatial resolution of AFM in combination with the thermal, chemical 12 

analysis and compositional imaging capabilities of IR spectroscopy, showing great 13 

potential for NP investigation 142. More generally, the effective characterization of 14 

particle surface homogeneity can only result from combination of methods as shown by 15 

F. Stellacci and coworkers 143. 16 
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 1 

Table 1. Methods reported for (1) Analysis at the nanoparticle suspension level (2) Analysis at single particle level.  2 

 3 

Technique Application Advantage Limitation Reference 

Analysis on suspension 

Confocal fluorescent 

microscopy 

Direct observation of 

batches 

Visual identification 

of heterogeneities 

Low throughput screening 

Limited resolution for 

submicron particles 

Staining of surface by 

Fluorescent dye 

[103], [131]  

Capillary electrophoresis Single particle 

separation and 

characterization  

Separation along with 

screening 

Not applicable to uncharged 

particles, Relatively low 

detection efficiency 

[107], [108], [109], [110], 

[111]  

Electroacoustic spectroscopy NP size and charge 

characterization 

High throughput 

screening, Applicable 

to highly 

concentrated samples, 

Continuous online 

characterization 

Not applicable to low-density 

particles, Properties are 

measured continuously but   

averaged for the population at 

each time point 

[113] , [114] 

 

Flow cytometry Investigating batch 

heterogeneity 

Surface 

characterization is 

possible 

Not applicable to single 

particle characterization 

[123], [124] 

Tunable resistive pore 

sensing 

Single particle 

characterization 

Reliable one-by-one 

characterization of 

size, surface, and 

electrical properties 

Sensitivity and throughput is 

still improving 

[117],  [118], [119] 
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Micro- and nano-fluidics NP separation and 

characterization 

Single step 

continious approach. 

Nanofluidics 

applicable to single 

particle analysis 

Low throughput screening 

 

[128], [129], [130] 

Analysis at the single particle level 

Transmission electronic 

microscopy (TEM) 

 

Direct observation of 

NP batches 

Visualisation of intact 

NPs 

Staining of surface Sensitivity 

of NPs to electrons 

[131] 

 

Electrochemical atomic 

force microscopy 

Probing surface of 

individual 

nanoparticles 

High spatial 

resolution 

 

Surface functionalization by 

redox label 

[139] 

Atomic force microscopy 

(AFM) 

All types of solid 

particle (in air) 

Ease of application Resolution: Limited by AFM 

tip,  

Unable to determine the 

detailed characteristics of the 

morphology 

[143] 

 

Raman microspectroscopy chemical composition 

mapping of particles 

surface 

Mapping chemical 

composition of  

single particle 

Limited resolution for 

submicron particles 

 

[140]  

 

Super-resolution 

fluorescence microscopy 

(SRFM) 

Direct observation of 

NP batches 

Visualisation of intact 

NPs 

Staining of surface is necessary 

Diffraction-limited 

[141] 
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 1 

4.3. Data presentation and statistical considerations in heterogeneity assessment 2 

Parameter heterogeneity statistical assessment is of paramount importance, but a 3 

complex issue. In this section, discussion is limited to some basic issues, readers 4 

interested in more information are invited to consult suggested textbook and references 5 

cited in the following sections 144.  6 

Data distribution and central tendency values 7 

NP physicochemical properties can follow different statistical distributions (Figure 8 

10). Central tendency measurements, arithmetic mean, median or mode, are often used as 9 

descriptors of NP properties, but they are insufficient to get insight into heterogeneity 63. 10 

Indeed, the same mean could be the result of very different types of statistical 11 

distribution, as illustrated by Figure 10 A and B. Further, central tendency values can be 12 

misleading when considering outlier values in their calculation. The same argument 13 

applies to standard deviation values; if standard deviations give good insight on 14 

heterogeneity in the case of Gaussian distributions, it may not be as informative for less 15 

conventional distributions. This calls for the correct determination of the data distribution 16 

of measurements.  For instance, the Poisson distribution appears to be a better fit for 17 

ligand distribution data than the Gaussian distribution, particularly when the number of 18 

ligand is low (Figure 10 C).62, 145   19 

 20 
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 1 

Figure 10. Statistical distributions: (A) Normal and bimodal distributions; (B) Normal 2 

and skewed distributions with central tendency values (Mean: solid line; Median: dotted 3 

line, Mode: dashed line, σ: standard deviation of the color-associated distribution), In A 4 

and B: Mean=40 for all the distribution, while mode and median are varying with the 5 

type of distribution. In the case of normal distribution: Mean=Median=Mode (C) Poison 6 

distributions-with different Poisson parameter λ (mean and variance); (D) 3D plot, a 7 

possible representation of a nanoparticle population for which 3 different parameters are 8 

known for each NP individually.  9 

Statistical considerations regarding multiple parameters analysis  10 

If we consider different parameters, for example size, ligand density and surface 11 

charge for the same NP suspension, the three central tendency values can give the 12 

impression that most NPs have their three parameter values close to the multivariate 13 

mean. However, this may only be the case when the parameters are both independent and 14 

follow unimodal, narrow distributions. Hence, it may be that only a small fraction of the 15 

NP suspensions displays these values for the three parameters. It is also possible that 16 

clusters of NP suspensions arise when parameters correlate (see Figure 10 D). Unless the 17 
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three parameters are measured simultaneously on the same particle and for a 1 

representative number of particle from the suspension, it cannot be assumed that an 2 

“average” nanoparticles exist 146. 3 

In conclusion, the end-goal is to be able to determine which fraction of the suspension 4 

is having the desired targeted values for all the key parameters. In other words the goal is 5 

to determine which part of the NP distribution leads to the desired biological outcomes. 6 

Collecting information about parameter distributions, in addition to central tendency 7 

values, is important to ensure a critical number of particles have the desired properties. 8 

Ideally, this information would be gained from measurements obtained on individual 9 

particles or from careful sub population samplings. Otherwise, it would be important to 10 

find ways of estimating the percentage of NP populations having parameter values within 11 

specific interval limits, something that can be envisioned under reasonable assumptions 12 

about distributions and correlations.   13 

 14 

5. Perspectives 15 

5.1. Factors impacting suspension heterogeneity  16 

The intended or unintended presence of non-uniform surface and domains on NPs 17 

usually results from the following reasons: 1) dispersity of materials properties such as 18 

size and chemical composition; 2) phase separation between two or more components of 19 

the same particle, typically lipids and/or polymers; 3) non-homogenous mixing of 20 

materials or reactants; and finally 4) incomplete chemical reactions. 21 

Role of materials heterogeneity 22 
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In a bottom-up strategy (usual for lipid and polymer NP assembly), the structuration 1 

at the higher level of organization (the particle) strongly depends on material properties 2 

and dispersity. The materials could show dispersity in chain/block size as well as 3 

dispersity in chemical composition. The latter could result from non-homogenous 4 

monomer distribution; local fluctuation along the chain, or in the case of phospholipid 5 

materials, different fatty acids chain lengths. It is hypothesized that dispersity could affect 6 

the structuration as well as the heterogeneity of the next level of organization.  7 

For instance, it has been shown that in some conditions a mix of block copolymer 8 

with a fraction of hydrophobic homopolymer as low as 10% w/w can trigger a change in 9 

particle morphology from vesicles to spheres 147. This could be an issue with copolymers 10 

that are not completely purified and characterized, such as block copolymers resulting 11 

from coupling reactions 148.  12 

On the other hand, some other studies reported contradictory results. As it was 13 

reported by Lebouille et al., polymer composition and size dispersity does not have a 14 

significant influence on NPs size when prepared in a fast mixing process 149. However, 15 

the effect of polymer dispersity on slow mixing processes has not been elucidated.  16 

Relationship between polydispersity and self-assembly/phase separation of block 17 

copolymers has been reviewed recently 150. As mentioned in this review, poly dispersity 18 

index (PDI) is a poor descriptor of dispersity breadth as it depends on a number-average 19 

molecular mass. Calculated molar mass dispersity (MMD) is a better descriptor of the 20 

breadth of chain distribution 150. MMD influences almost every aspect of self-assembly, 21 

from microphase separated domains size to interface thickness and temperature at which 22 

ordered/disordered transition occurred. The influence of MMD modulation is interpreted 23 



45 

 

in terms of change in entropy of the system: 1) A decrease in entropic penalty associated 1 

with the fact that less chain stretching is required as the long chains fill the bulk of the 2 

domains while the short chains adopt relaxed conformations at interphase; 2) An increase 3 

in configurational entropy when smaller chains present in a domain with a broad MMD 4 

are pulled into the other phase separated domains. The relative contributions of these two 5 

phenomena depend on the broadness of the molecular weight distribution. This is an 6 

important issue for the industrial development of nanomaterials because industrially 7 

produced block copolymers possess higher variability than controlled laboratory 8 

produced copolymers. Polydisperse copolymers can out-perform narrow dispersed block 9 

copolymers as they can lead to new morphologies and larger nanodomains 151. 10 

Control of nanomaterial assembly: phase separation 11 

Self-assembly of block polymer at nanoscale is a common way to prepare complex 12 

structures with different morphologies. When diblock polymers or polymer blends are 13 

dissolved in a mixed phase (organic solvent phase), upon solvent withdrawal the mixed 14 

phase could be demixed and form a two-phase system if blocks are chemically 15 

incompatible. Block copolymers cannot separate in macroscopic scale, but they segregate 16 

locally, in microscale. The block segregation is enthalpy driven by repulsive forces 17 

between unlike chains. Phase organization strongly depends on the speed and direction of 18 

solvent removal. Different morphologies and structures could be produced if parameters 19 

of the phase separation process are slightly modified. In particular, the volume fraction of 20 

one block is an important factor in determining which structure will be adopted. 21 

Interaction parameter between blocks χ (which is temperature dependent) and the degree 22 

of polymerization of a block N are as the other effective parameters since their product 23 
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represent the segregation strength between blocks 152, 153. For instance, a mix of closely 1 

related polyesters could lead to specific structuration: phase separation of PLGA and PCL 2 

at the wall of a polymer capsule creates PCL domains on the capsule’s surface  24. 3 

The self-assembly of material leads to the formation of only a few type of 4 

nanostructure. Recently, it has been argued that this limitation is due to a lack of 5 

information “programmed” into the starting material 154. For instance, the nature and size 6 

of the building blocks can be seen as information to direct assembly of domains with 7 

specific shape and size 154. It is expected that the addition of information to guide 8 

materials assembly may improve colloid homogeneity or engineered heterogeneity. 9 

These considerations on phase separation and organization of polymer materials can 10 

also be considered with hybrid materials, mixture of lipids and polymer or other additives 11 

such as cholesterol or surfactant molecules. 12 

Control of materials assembly: mixing 13 

Most preparation methods involve a thermodynamic and kinetic control of material 14 

assembly147, 155, and the mixing time plays a major role if particle assembly and 15 

organization depends on both polymer precipitation and phase separation.  16 

Chemical engineers are well aware of the challenges related to the mixing at different 17 

time and length scales to achieve chemical reaction homogeneity and reliable end-18 

products. Complete mixing at very short length scale, which is necessary to obtain 19 

nanoscale structures, is very difficult to achieve due to the dependence of perfect mixing 20 

to time. Incomplete micromixing coupled with non-linear chemical reactions, 21 

autocatalysis or assembly can yield to extremely variable outcomes 156.  22 



47 

 

In the context of polymer nanocarrier assembly by nanoprecipitation processes, size 1 

and size dispersity was found to be directly related to the speed and homogeneity of 2 

mixing of the solvent and anti-solvent phases. Several technological solutions have 3 

proposed such as Nanoflash micromixing and microfluidic approaches to resolve the 4 

issue of complete mixing 157-160.  These issues become more important at the scale up 5 

step, as efficient mixers are difficult to scale up. 6 

However, when a microfluidic mixing method such as the staggered Herringbone 7 

mixing nanoprecipitation (SHMN) is compared to classical batch nanoprecipitation (BN), 8 

it is found that the process with the fastest mixing time (SHMN) produces smaller NPs 9 

with less batch-to-batch variability than BN 161. On the other hand, size polydispersity 10 

index is greater for SHMN than BN, suggesting that size control remains a complex issue 11 

161.  12 

Heterogeneity due to incomplete chemical reaction and purification 13 

Nanocarrier preparation involves several chemical reaction steps, including synthesis 14 

using the raw materials and surface modification by coupling reaction to add ligands and 15 

polymers to modify the surface. Heterogeneity could arise from incomplete chemical 16 

reaction, unavailability of reactive groups due to steric and conformation hindrances, 17 

slow reaction kinetic and difficulties to purify and homogenize the resulting modified 18 

particles. When reaction involves polymerization, inhomogeneity could arise from 19 

initiation, propagation and termination of chains 162. 20 

Polymer-stabilized colloids can be produced by surface modification by polymer 21 

grafting. The grafting method plays an important role in the degree of homogeneity of the 22 

polymer-grafted surface. Two grafting strategies are available, the “grafting to” approach, 23 
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which is grafting polymer chains on the surface; and “grafting from” approach, which 1 

consists of direct polymerization of pendant chains from the NP surface. The “grafting 2 

from” approach has been credited for higher grafting density, thereby more homogenous 3 

surface coverage 163. However, as demonstrated by a simulation study, the “grafting to” 4 

approach yields to NPs with a more isotropic polymer coverage and a more homogenous 5 

surface than the “grafting from” strategy 163. On the other hand the grafting efficiency of 6 

the “grafting to” approach is a rather low, and leads to lower ligand density. Noteworthy, 7 

a recent study showed no differences in the two conjugation approaches regarding surface 8 

heterogeneity 164. 9 

  The challenges related to precisely conjugate a ligand on a scaffold have been 10 

addressed in a recent review 145. One of the main issues when synthesizing multivalent 11 

functional conjugates is the heterogeneity of the end-product which is often a complex 12 

mixture of  imaging dye, targeting ligand and active compound, all grafted on a polymer 13 

scaffold. Grafting of multiple molecules on the scaffold can lead to large numbers of 14 

different possible combinations. This was recently elegantly demonstrated in the case of 15 

stepwise conjugations of targeting ligand, active molecule and tracking dye to G5 16 

PAMAM dendrimers which lead to over 4000  combinations of possible conjugates 145.  17 

Surface grafting heterogeneity in Au NPs functionalized with thiolated DNA has been 18 

studied by localized surface plasmon resonance. Variations of about 10% in DNA 19 

coverage were observed in particle suspensions, a significantly higher dispersity than 20 

what was expected from a Poisson distribution (usually used for discrete data 21 

distribution). This large variation in surface coverage was attributed to the heterogeneity 22 

of particle surface properties resulting from a difference in reaction rates between 23 
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particles 165. Another well studied case in the nanocarrier domain are dendrimer 1 

formulations, which are a complex mix of different dendrimer generations, with slightly 2 

dispersed arborescent structures, displaying different pharmacokinetics and toxicological 3 

properties 166-168. 4 

5.2. Innate heterogeneity vs. acquired heterogeneity 5 

When introduced in a biological media, nanocarriers experience immediate 6 

opsonisation, i.e., adsorption of proteins on their surface. This process has a strong 7 

impact on toxicity, immunotoxicity, biodistribution, particle-cell interactions and drug 8 

targeting. It is now well accepted that nanocarrier fate largely depends on the amount and 9 

type of bound/adsorbed proteins at the surface of the carrier. The quantity and type of the 10 

proteins adsorbed on a NP surface depend on a number of factors related to the 11 

nanocarriers properties including chemical composition of the surface 12, 169, size 6 and 12 

topography of the surface 170, as well as factors related to the protein composition and 13 

duration of exposure 171. The formation of the protein corona introduces a new source of 14 

heterogeneity that is only partially related to the properties of the pristine NPs.  15 

As discussed above, a hydrophilic PEG corona can prevent protein fouling to 16 

some extent. But it can also affect protein adsorption kinetics and therefore the time 17 

evolution of the corona composition41, 172. On the other hand, PEG surface heterogeneity 18 

such as “bald spot” can induce rapid and local protein adsorption on a NP surface, 19 

triggering complement and/or immune system recognition cascade6.  20 

Opsonisation is a dynamic process as protein adsorption is the result of interplay 21 

between protein affinity and relative abundance. Moreover, complex phenomenon such 22 

as protein denaturation and cooperative binding can take place. Protein adsorption is 23 
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therefore highly complex and non-linear phenomena which makes prediction of the 1 

corona composition extremely difficult. 2 

When protein corona is analyzed, one can only report an average protein 3 

composition. But this averaged composition do not necessarily reflect the real 4 

composition on individual particles, as recently discussed by Forest and Pourchez 146. 5 

Different protein distributions for the same average protein composition are 6 

schematically illustrated in Figure 11. It can be envisioned that these different 7 

distributions can produce very different outcomes regarding toxicity, ligand recognition, 8 

biodistribution and drug delivery efficacy. 9 

 10 

Figure 11. Possible scenarios after proteomic analysis of the protein corona of a 11 

suspension of 10 NPs with the same average composition. Adapted from 146 with 12 

permission. 13 

 14 
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Precise characterization of the protein corona heterogeneity requires analytical 1 

techniques able to quantify the protein corona composition at the single particle level. 2 

Some attempt have been reported using differential centrifugal sedimentation, showing 3 

that the protein corona composition depends strongly on NP size, with larger particles 4 

being more prone to protein adsorption 173. Spatial localization of proteins on NP surface 5 

has been characterized using a combination of antibody-labelled gold NPs, differential 6 

centrifugal sedimentation and various imaging techniques as well174. The spatial 7 

organization of epitope (adsorbed transferrin) at the surface of the NPs was found to be 8 

random, consistent with a random protein adsorption for this protein 174.  9 

Protein adsorption on mesoporous silica NPs was investigated on individual particle by 10 

stochastic optical reconstruction microscopy (STORM) 175. STORM has a spatial 11 

resolution in the 20 nm range allowing quantification and visualization of adsorbed 12 

proteins. The study showed that protein adsorption was highly heterogeneous inside the 13 

same NP suspension and evolved with time. The authors speculated that small differences 14 

in surface chemistry were resulting in different protein adsorption pattern amplifying 15 

particle diversity and resulting in the coexistence of particles with very different protein 16 

layers 175. In spite of these recent advances, at this time the technical challenges related to 17 

corona heterogeneity investigation are still ahead of us.  18 

  19 

Conclusions and outlook 20 

In this review we intent to raise awareness about the importance of nanomaterial 21 

heterogeneity and its so far known consequences, especially in the biomedical field. We 22 
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provide some guidelines to identify and to analyze it, and we explore the possibility of 1 

controlling it through experiments aimed at creating heterogeneous systems. 2 

It could be understood, in a bioengineering and regulatory perspective, that 3 

obtaining homogenous NPs is important to obtain predictable, reproducible and fully 4 

functional NP batches. Indeed, variations in key chemical surface properties such as PEG 5 

coverage and ligand grafting density are contributing to the reduction of the effective 6 

dose of drug nanocarrier with the optimal properties within the same particle suspension. 7 

As discussed by Forest and Pourchez in their paper “the myth of the average 8 

nanoparticle”, a ligand functionalized PEGylated nanocarrier displaying the average size, 9 

ligand and PEG densities may not exist in the actual NP batch as the average values may 10 

hide extreme values for each of these parameters 146. A similar issue is arising from 11 

synthesis of multivalent functional conjugates, comprising tracking dye, targeting ligand 12 

and active grafted on a polymer scaffold 145.  13 

Even though nanocarriers heterogeneity is a known problem, it is difficult to 14 

tackle as most measurements are still performed on a NPs ensemble, instead of on 15 

subpopulations/fractions or individual particles. There is an urgent need to develop 16 

methods to study particle sub-population heterogeneity and single particle heterogeneity. 17 

It can be expected that present and future developments of combination of analytical 18 

techniques and computational modelling of NPs structures could provide with new 19 

insights into the heterogeneity phenomena. Lately, strong efforts towards reaching this 20 

goal have been made with the development of the “Nanotechnology Characterization 21 

Laboratory” in the USA (https://ncl.cancer.gov/) and recently in the EU 22 

https://ncl.cancer.gov/
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(http://www.euncl.eu/). These laboratories contribute to standardized procedures to fully 1 

characterize nanomaterials.  2 

On the other hand, heterogeneous (and eventually irregular) surfaces, such as 3 

patchy surfaces, may provide unprecedented properties for drug delivery. Heterogeneity 4 

can be beneficial if it is implemented in a controlled fashion among the entire NP 5 

population. Otherwise, it often results in unpredictable and adverse effects in different 6 

applications. The current trend toward biomimetic strategies boosts the interest for 7 

nanocarriers with surface heterogeneity. Indeed, biological membranes are complex 8 

mixtures of lipids proteins and proteoglycans, forming at the same time a very well 9 

structured and heterogeneous interface, which fulfills complex functions. Biomimetic 10 

strategies include the addition of a plasmatic membrane on NP surface 176, 177, elaboration 11 

of mimetic of  lipoprotein 178, or pathogen mimetics amongst other179. 12 

In concrete terms, a practical course of action should include a more scrutinized 13 

determination of the statistical distribution of data to get an in-depth understanding of the 14 

NP batch characteristics. This can be done using existing analytical techniques, using 15 

extensive sample fractionation to get information on sampled subpopulations, improving 16 

resolution of analytical techniques (such as flow cytometry), combining techniques in 17 

order to get better insights into chemical data, and to get simultaneous information on the 18 

same NPs. At the same time we ought to be able to make more connections between this 19 

newly documented NP heterogeneity and biological outcomes, such as targeting, 20 

biodistribution, ability to diffuse in biological media and therapeutic efficacy. 21 
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