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Sommaire

Ce mémoire présente un article sur un agent pouvant jouer à la version "No-Press" (sans

messages) du jeu de société Diplomacy. Diplomacy est un jeu de négociation à 7 joueurs où

chacun des joueurs essaie de conquérir la majorité des centres d’approvisionnement d’Europe

au début du 20e siècle.

L’article présente, en premier lieu, un ensemble de données contenant plus de 150 000

jeux joués par des humains. Cet ensemble de données a été compilé suite à la signature d’un

partenariat avec un site externe. Les jeux, qui ont été joués sur cette plateforme, ont tous

été convertis dans un nouveau format standardizé et ont ensuite été rejoués pour s’assurer de

leur qualité. L’article présente aussi un engin de jeu, avec une interface web, permettant à

des humains de jouer contre les modèles qui ont été développés.

De plus, l’article présente un modèle d’apprentissage supervisé où l’agent apprend à

reproduire le comportement de tous les joueurs dans l’ensemble de données par maximum de

vraisemblance. Un agent qui apprend à jouer par renforcement (en jouant contre lui-même) a

aussi été entraîné. L’article se conclut en faisant une analyse de ces modèles et en comparant

la performance des agents contre des agents utilisant des règles complexes.

Mot-clés: Diplomacy, négociation, jeu, apprentissage supervisé, apprentissage par ren-

forcement, apprentissage profond
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Summary

This thesis presents an article on an agent which can play the "No-Press" version (without

messages) of the Diplomacy board game. Diplomacy is a 7-player negotiation game where

each player tries to conquer the majority of the supply centers in Europe at the beginning of

the 20th century.

The article first presents a novel dataset of more than 150 000 human games. This

dataset was compiled following the signing of a partnership with an external site. The

games, which were played on this platform, were all converted into a new standardized

format and then replayed to ensure their quality. The article also presents a game en-

gine, with a web interface, allowing humans to play against the models that have been trained.

Moreover, the article presents a supervised learning model where an agent learns to

reproduce the behavior of all players in the dataset by maximum likelihood. An agent that

learns by reinforcement (by playing games against itself) has also been trained. The article

concludes by doing an analysis of these models and comparing their performance against

complex rule-based agents.

Keywords: Diplomacy, negotiation, game, supervised learning, reinforcement learning,

deep learning
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Chapter 1

Introduction

Diplomacy is a negotiation board game that was developed in 1959 by Allan B. Calhamer.

Seven powers, namely Austria, England, France, Germany, Italy, Russia, and Turkey, try to

conquer a majority of the supply centers of Europe at the beginning of the 20th century.

Diplomacy is an interesting domain for artificial intelligence for several reasons:

• Large action space. There can be up to 34 units on the board (one for each supply

center), with each unit having an average of 26 possible actions, giving an average

branching factor of 1.29 ∗ 1048. Compared to Go (branching factor of 200 [5]), or chess

(branching factor of 35 [5]), Diplomacy is several orders of magnitude more complex,

making techniques such as search and rollout much more difficult to implement.

• No randomness. As opposed to games like Risk [21] (which uses dice) or Hanabi

[3] (which uses shuffled cards), Diplomacy has no elements of randomness and is

purely a skills game.

• Negotiation. Players want to act in their best interests, yet to win the game, they

must also negotiate and cooperate with other players. Negotiation can be done either

explicitly through messages, or implicitly through the orders that players submit

simultaneously. Alliances between players are usually short-lived and betrayal and

deception is common.
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• Language emergence and grounding. Diplomacy can be an interesting testbed

for language emergence. For instance, are agents able to create a new language

among themselves to play better than agents that are not able to communicate?

Moreover, the conversations need to be grounded in the game context, otherwise the

players will not be able to understand each other.

• Imperfect and incomplete information. Orders are submitted by all players

simultaneously, therefore players are not aware of what other players will do when

deciding what orders to play. Moreover, messages exchanged between players are

private, and can only be seen by its sender and recipient. Finally, the players’ strategy

are not fully known and may change during the game.

• Coalition formation. A successful strategy usually requires that players col-

laborate with other players to strengthen their attacks or defenses. Coalition

formation is a key component of the game, even though alliances are usually short-lived.

• Machine theory of mind. Players need to reason over the intentions of their

opponents. Is this person genuinely interested in helping me, is he lying, or is it part

of a bigger strategy where I might risk being betrayed? Trust reasoning, where one

evaluates if others are trustworthy or not, is also a key component of understanding

the intention of others.

• Multiple (and long) time scales. Players need to be able to form a long-term

strategy on how they plan on winning the game, and a short-term execution strategy

that fits within their bigger plan. Players must also be able to adapt their plans

quickly if the game unfolds in a unexpected direction.

• Cooperating and competitive. Diplomacy requires both cooperation and

competition. Players are self-interested, but need to build short-term alliances
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to reach their long-term objectives. This mix of cooperative and competitive

environments makes computing the value of a board state much more difficult,

because a player that is almost eliminated, but has strong allies might still survive

and win the game (or at least be part of a draw).

• Simultaneous communications. Players must learn to have simultaneous

dialogues between different powers and take into account what was said in other

conversations to have consistent and meaningful dialogues.

This thesis only focuses on the No Press version of Diplomacy (without messages), therefore

some of these challenges have not been explored. Even though there are no messages, players

can still negotiate and signal each order through their orders.
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Chapter 2

Machine Learning Basics

In this chapter, I will briefly introduce the machine learning concepts required to understand

the article presented thereafter. The goal of the article is to develop an agent (i.e. a bot)

that can learn to play the game Diplomacy. What is the meaning of learning in this context?

An agent learns to perform some task T if its performance P improves after getting some

experience E.

For Diplomacy, the task T is playing the game, the performance P can be either the log

likelihood, the accuracy of the orders on the validation set, or the average number of supply

centers at the end of a game, and the experience E are the human games used to train the

model.

2.1. Supervised Learning

In supervised learning, a dataset of points (x, y) is used for learning. x is the input to

the model (i.e. the board state for Diplomacy) and y is the label or target (i.e. the human

orders). The supervised algorithm is trying to learn a model that maximizes the conditional

probability p(y|x), and can therefore predict, to the best of its ability, a sequence of orders

(i.e. one order per unit) that human players would play in that particular situation.

A player needs to submit simultaneously one order for each unit it has on the board.

For instance, at the beginning of the game, France has a fleet in Brest (F BRE), an

army in Paris (A PAR), and an army in Marseilles (A MAR). The model needs to be

able to predict all three locations simultaneously. Coordination is very important among
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the units, because what one might do in Marseilles will likely depend on what one does in Paris.

The supervised algorithm needs to be able to predict the joint probability of the orders

across all locations given the board state, namely p(y1, y2, ..., yn|x). Using the chain rule, we

can break down this probability as:

p(y1, y2, ..., yn|x) = p(y1|x)p(y2|y1, x)...p(yn|y1, y2, ..., yn−1, x)

where y1 = BRE, y2 = PAR, y3 = MAR in the above example. We can model this joint

probability distribution using a recurrent neural network, as discussed later.

2.1.1. Overfitting and Underfitting

Fig. 2.1. Underfitting vs Overfitting.

One important concept in machine learning is generalization. Generalization is the ability

to predict the correct output on data points drawn from the same distribution as the training

set that were not used to train the model. For instance, in Diplomacy, we want the model to

be able to predict the correct human orders, even on a board state that the model has never

seen.
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To be able to measure the generalization error, the dataset is usually split in three parts,

namely the training set, the validation set, and the test set. The model is trained using the

training set, the hyper-parameters are tuned using the validation test, and the generalization

error is computed using the test set.

Models can also be regularized, by adding modifications that have the goal of reducing the

generalization error on the test set, but not the training error. An example of regularization

is dropout [35], where a certain proportion of inputs and hidden layer neurons are dropped

during training. The capacity of the model can be controlled using the hyper-parameters.

For instance, the number of hidden layers is one example of a hyper-parameter.

We want to choose hyper-parameters that give a good generalization error. If the capacity

of the model is too low, the model will not be able to represent the target distribution and

will likely have a high error on both the training and test set (i.e. underfitting scenario

above). If the capacity of the model is too great, the training error will likely be very small,

but the model probably will not be able to generalize well to unseen examples because it

learned the noise on the data (i.e. overfitting scenario above). We want to choose a set of

hyper-parameters that gives an appropriate capacity for the model, and that minimizes the

loss calculated on the validation set.

2.1.2. Maximum Likelihood Estimation

To train our model, we want to maximize the conditional likelihood of the model, which

correlates to predicting the correct human orders for each point in the training set. This

corresponds to the minimization of the KL divergence:

θML = argmax
θ

P (Y |X;θ)

= argmax
θ

m∏
i=1

p model
(
y(i)|x(i);θ

)
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= argmax
θ

m∑
i=1

log p model
(
y(i)|x(i);θ

)
≈ argmax

θ
Ex∼p̂ data log p model (y|x;θ)

= −argmin
θ

Ex∼p̂ data log p model (y|x;θ)

Maximizing the likelihood corresponds to minimizing the KL divergence between p̂ data

and p̂ model , which also corresponds to minimizing the cross-entropy.

2.1.3. Deep Feedforward Networks

Fig. 2.2. Deep Feedforward Network / Neural Network

The feedforward neural network is the simplest neural network, where information flows

from the inputs (x) to intermediate layers (h) and then to the outputs (y). The hidden layer

is also called a fully-connected layer, because each node in the previous layer (i.e. x) is

connected to every node in the current layer (h).

The value of h1 can be computed as follows: h1 = ReLu(x1w1 + x2w2 + x3w3 + c). The

entire neural network above can be written in matrix form using: ŷ = wT2 h1 + b. It is

important to use a non-linear activation after each hidden layer, to break the linearity of the

network. The rectified linear activation function (ReLU) is one of the most commonly used

activation function, and can be expressed as max(0, x).
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2.1.4. Stochastic Gradient Descent

Most loss functions of a neural network with non-linearities are non-convex. To optimize

a non-convex function, stochastic gradient descent is commonly used.

J(θ) = Ex,y∼p̂ data L(x, y,θ) =
1

m

m∑
i=1

L
(
x(i), y(i),θ

)
g =

1

m′
∇θ

m′∑
i=1

L
(
x(i), y(i),θ

)
θ ← θ − εg

where L is the loss per example L(x, y,θ) = −log p(y|x;θ).

Gradient descent computes the gradient of the loss with respect to each parameter, and

then takes a step of size ε in the opposite direction of the gradient (i.e. to minimize the loss).

Gradient descent is computationally expensive, because it computes the loss over all the

points in the dataset. More commonly, a mini-batch of size m′ is used, and the loss is only

computed over the points in that mini-batch. If the mini-batch has a size of 1, the procedure

is referred to as stochastic gradient descent.

2.1.5. Convolutional Neural Networks

Fig. 2.3. Convolutional Neural Network

A convolutional neural network (CNN) is a neural network specialized for grid-like inputs

(e.g. images). It uses a kernel that is applied repeatedly to the different regions of the image.

CNNs have several advantages over fully-connected layers, namely sparse interactions, tied
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weights, and equivariance to translation. Sparse interactions refer to the fact that the kernel

is smaller than the inputs, therefore not all outputs are connected to all inputs, making

CNNs much more computationally efficient than fully-connected layers. Tied weights refer to

the fact that the same kernel is applied to multiple locations, therefore reducing the number

of parameters a CNN has. Equivariance to translation refers to the fact that applying a

translation before doing a convolution is similar to doing the convolution then applying the

translation.

2.1.6. Recurrent Neural Networks

Fig. 2.4. Recurrent Neural Network

Recurrent neural networks are a specialized type of neural networks for sequential data.

RNNs can scale to long sequences by sharing the same parameters for every time step. They

also have a recurrence, where hidden layer ht takes as input its previous value ht−1. One

of the main difficulties with RNNs is learning long-term dependencies. Applying the same

weight matrix at every time step (with a recurrence in the form of h(t) = W>h(t−1)) is

equivalent to raising the eigenvalues of the weight matrix to the power of the number of time

steps (i.e. h(t) =
(
W t
)>
h(0) = Q>ΛtQh(0)). Eigenvalues larger than 1 converge to infinity,

while eigenvalues smaller than 1 converge to 0. RNNs have therefore a lot of difficulty

remembering information over a large number of time steps because of this problem.
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One common solution is to use a Long Short-Term Memory (LSTM) network. LSTMs

are able to remember information over long periods of time by using a context, that is passed

between time steps. There is no non-linear activation or weights applied to the context.

Information can be added or removed from the context by using the input and forget gates.

The LSTM is then able to decide what to output at every time step from the context by

using an output gate.

2.1.7. Attention Mechanisms

Fig. 2.5. Attention Mechanism

Attention mechanisms [2] allow a hidden layer to compute how much it wants to attend

to each of the previous time step in a memory (using a softmax) and then do a weighted

linear combination of those memory time steps. With attention, a network can decide to

attend more heavily on important information that happened many time steps in the past,

and therefore bypass the long-term dependencies problem that recurrent neural networks have.

2.2. Reinforcement Learning

Reinforcement learning is a method where an agent interacts with an environment, and

learns to improve its behaviour over time. As shown in Figure 2.6, an agent performs an

action in an environment, and then receives a reward and the next state. In Diplomacy, the

action is the orders for all the units of a power, the reward is, for example, the number of

supply centers conquered during the turn, and the next state is the new board state after all

players have moved.

11



2.2.1. Markov Decision Process

A Markov Decision Process (MDP) is a tuple (S, A, P , R) that provides a framework to

analyze reinforcement learning. S refers to a finite set of states in which the agent can be, A

is a finite set of actions that the agent can perform in those states, Pa(s, s′) represents the

probability of a transition from state s to state s′ when action a is performed in state s, and

Ra(s, s
′) is the immediate reward that can be expected by the agent after performing action

a in state s when the next state is s′.

Fig. 2.6. Agent-Environment Interaction

The goal of the agent is to maximize the sum of the rewards it receives over all time steps,

namely Gt = Ra0(s0, s1) + Ra1(s1, s2) + ... =
∑T

t=0Rat(st, st+1). To have convergence, we

need to have a fixed number of time steps or use a discount factor γ. The sum of discounted

reward becomes Gt =
∑T

t=0 γ
tRat(st, st+1).

The rewards received by an agent are dependent on the actions the agent performed. The

ultimate goal of a reinforcement learning agent is to learn a policy that maximizes the sum

of the discounted reward the agent will receive. There is a trade-off between exploring new

states to hopefully find a better policy and get more rewards in the future, and exploiting

where the agent executes its current policy to maximize the immediate reward.
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2.2.2. Value Function and Q-Values

The value of a state V (s) (under policy π) is the expected sum of discounted

rewards an agent is expected to receive from state s if the agent executes policy π.

Vπ(s) =
∑

s′ Pπ(s)(s, s
′)(Rπ(s)(s, s

′) + γVπ(s
′)). The q-value of a state Qπ(s,a) is the expected

sum of discounted rewards an agent is expected to receive if it starts in state s, then

performs action a, and follows policy π thereafter Qπ(s, a) =
∑

s′ Pa(s, s
′)(Ra(s, s

′)+γVπ(s
′)).

2.2.3. Solving the RL Problem - Policy Iteration

The optimal policy should follow the action that maximizes the Q(s,a) value at every

time step, namely π(s) := argmaxaQ(s,a) = argmaxa {
∑

s′ Pa (s, s
′) (Ra (s, s

′) + γV (s′))}.

A simple algorithm to solve the reinforcement learning problem is policy iteration, which

iteratively computes the value of all states (i.e. value update), and then computes the best

action to take at every state given those new values (i.e. policy update). The algorithm

stops when the policy has converged.

2.2.4. Bootstrapping

Bootstrapping refers to using the value of a future state in the computation of

the value of the current state. For instance, the two-step return can be written as

V (s) = R(s, s′) + γR(s′, s′′) + γ2V (s′′). The Monte Carlo returns refer to the computation

of the value function with no bootstrapping (i.e. by summing up all the discounted rewards

received on a trajectory).

2.2.5. Solving the RL Problem - Policy Gradient

The RL problem can also be solved using a gradient step (policy gradient method).

∇θJ(θ) = Eτ∼πθ(τ) [∇θ log πθ(τ)r(τ)]
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∇θJ(θ) ≈
1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ (ai,t|si,t)

)(
T∑
t=1

r (si,t, ai,t)

)
θ ← θ + α∇θJ(θ)

The intuition is that we want to maximize the likelihood of actions that gave us a

good reward. Performing a lot of those small updates should improve our policy over time.

REINFORCE (plain policy gradients) suffers from high variance. A common variance-

reduction technique is to subtract a fixed baseline (e.g. moving average of returns across all

states). Another common technique is to use an actor-critic method, where the log probability

of the action is multiplied by the advantage (Q-value - value of the state). The intuition is

that we have a critic that can compute the value of an estimate and we want to maximize

the likelihood of actions that gave us more rewards than the critic anticipated. The gradient

formula becomes:

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ log πθ (ai,t|si,t) (Q (si,t, ai,t)− V (si,t))

Overall, reinforcement learning is a very powerful technique to make an agent improve

over time. One of its main drawbacks is that RL requires a lot of samples (i.e. millions of

trajectory) to be able to learn successfully. Diplomacy has a long sequence of states with

multiple orders per state. It is currently very difficult for RL algorithms to correctly determine

what actions or sequence of actions cause the final game result (win/loss), which explains

why a large number of samples are required to see an improvement in performance.
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Chapter 3

The Diplomacy Game

3.1. Game Overview

Diplomacy is a 7-player game, where each player tries to conquer 18 out of the 34 supply

centres on the map. The seven powers, namely Austria, England, France, Germany, Italy,

Russia, and Turkey, start with either 3 or 4 units on the board. Units can either be armies or

fleets. Armies can move on land and on coastal provinces, while fleets can move on water

provinces and on coastal provinces.

The game starts in Spring 1901, and every power submits the orders for all their units at

the same time. Orders become public and visible to all when they are adjudicated. For each

year, there are a maximum of 5 possible phases, namely Spring Movement, Spring Retreats,

Fall Movement, Fall Retreats, and Winter Adjustments.

To conquer a province, a unit needs to get support from adjacent units. An attack is

successful only if the attack strength (unit attacking + number of units supporting the

attack) is greater than the defense strength (unit defending + number of units supporting the

defense). It is only possible to have a single unit on a province, so if an attack is successful,

the dislodged unit is given a chance to retreat to an adjacent province during the retreat

phase. Once per year, during the Winter phase, new units can be added or removed. If a

power has more supply centers than units, it can build additional units on the provinces it

had at the beginning of the game, but only if the power still controls them and they are

unoccupied. If a power has more units than supply centers, it needs to remove some units
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from the board to have the same number of units and supply centers.

Hold. A hold order (e.g. the army in Paris holds - A PAR H ) can be submitted during

movement phases to defend a province. It is also the default order that is submitted when a

power does not submit any orders for a unit.

Move. A move order (e.g. the army in Paris moves to Burgundy - A PAR - BUR; the

fleet in Mid-Atlantic moves to Spain (South Coast) - F MAO - SPA/SC ; the army in London

moves to Norway via convoy A LON - NWY VIA) can be submitted during movement

phases to attack an adjacent province. Army units can move to adjacent land and coastal

provinces, while fleet units can move to adjacent water provinces or to adjacent coastal

provinces following a coast.

It is also possible for army units to move over several water provinces in a single turn by

being convoyed by fleets. The convoyed army would submit an order that specifies its current

province, the province it wants to move to, and a ‘VIA’ flag that indicates its intention to

move via convoy. If there is a path where fleets issued the matching convoy orders, the army

will be able to move to its destination.

Because there can only be one unit on a given province at a given time, a unit can bounce

(i.e. the move order can fail) if two units move to the same province, or if a unit moves to a

province but does not have enough attack strength to dislodge the unit on that province.

Units are not allowed to swap provinces directly (i.e. A PAR - BUR, A BUR - PAR would

fail), but can swap using a third province. It is common for units to bounce voluntarily, as it

can be used to defend 3 provinces with 2 units. For instance, if France issues A PAR - BUR,

A MAR - BUR, it can defend PAR, MAR and BUR with only 2 units.

Support (hold). A support hold order (e.g. the army in Paris supports the unit in

Burgundy - A PAR S A BUR) can be submitted during movement phases to increase the
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defense strength of a unit. A support hold order can be used to support any unit that is not

moving. For instance, it is fairly common to create support chains where one unit issues a

support move order, and a second unit issues a support hold on the first unit (i.e. A GAS S

A MAR - SPA, A PAR S A GAS ). The support hold order is invalid if the supported unit

moves, or if another unit attacks the unit issuing the support order (i.e. the order is ‘cut’). A

unit can only support a unit in a province it could move into. For instance, F TUS S A VEN

is invalid, because the fleet in Tuscany could not move to Venezia.

Support (move). A support move order (e.g. the army in Paris supports the army

in Marseilles moving to Burgundy - A PAR S A MAR - BUR) can be submitted during

movement phases to increase the attack strength of a unit. For the order to be valid, the

unit issuing the order must be able to move to the destination of the move order, and the

supported unit needs to issue a matching move order. For instance, A PAR S A MAR -

BUR is valid, because the army in Paris is able to move to Burgundy. As for support hold

orders, a support move order becomes invalid if the unit issuing the order is attacked (i.e.

the support is ‘cut’).

Convoy. A convoy order (e.g. the fleet in North Sea convoys the army in London to

Norway - F NTH C A LON - NWY ) can be submitted during movement phases by fleets to

allow an army to move over several water provinces. The convoy order must match exactly

the ‘move via’ order, and the fleet must not be dislodged during the turn for the convoy

order to remain valid.

Retreat. During retreat phases, a dislodged unit is allowed to retreat to an adjacent

province by submitting a retreat order (e.g. the army in Paris retreats to Burgundy - A PAR

R BUR). The retreat destination must be adjacent, unoccupied, not a standoff location (i.e.

where a bounce occurred), and must not be the location where the attacker moved from. If

two units retreat to the same province, or if no retreat locations are available, the dislodged
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unit is disbanded and removed from the board.

Build Army / Fleet. During adjustment phases, if a power has more supply centers

than units, it can build units to have the same number of units and supply centers by issuing

build order (e.g. Build a fleet in Brest - F BRE B ; Build an army in Rome - A ROM B).

Units can only be built on one of the original supply center of that power if it still controls it

and it is unoccupied.

Disband. During retreat and adjustment phases, it is possible to remove a unit from the

board by issuing a disband order (e.g. the army in Paris disbands - A PAR D). A disband

order is the default order if no orders are submitted for a dislodged unit during the retreat

phase. For adjustment phases, if a power has more units than supply centers, extra units

need to be disbanded, or they will be automatically disbanded according to a specific set of

rules.

Waive. During adjustment phases, it is also possible for a power to skip its builds by

issuing a waive order (i.e. WAIVE ). A waive order is the default order in adjustment phases

if the power has more supply centers than units. A power could waive builds to keep them

for the future, or to signal it could be interested in drawing the game.

3.2. Communication in a No Press Game

In a No Press game, there are no messages, but players can still communicate with one

another by using orders as signals [37]. In this section, I suggest some commonly used signals,

mediated through orders, that communicate both strategic and tactical information. These

signals are not part of the official rulebook, but are very commonly used in No Press games.

An order is considered valid if there is at least one scenario under which it could be

executed successfully. It is important to understand how syntactically-correct but invalid
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orders are treated. A no-check game is a variant where syntactically-correct but invalid

orders can be submitted and viewed by other players (e.g. Russia: A STP S A PAR - LON

and there are no units in Paris). Physical games are usually no-check games. In contrast, in

a check game, only syntactically-correct valid orders are accepted, and invalid orders are

ignored. I argue that, for reproducibility, all computer games should be check games and

that, by default, any orders that cannot be successfully executed under any scenario should

be discarded.

Declaring war. A player can effectively declare war by positioning its units in an offensive

manner, by attacking another power, or by supporting an attack on another power.

Suggesting moves. A player can suggest a move by supporting or convoying the suggested

move. For a support or convoy order where the destination is owned or occupied by a third

power, the support might actually suggest the formation of an alliance against that third

power. A support or convoy order used for signaling would be expected to be resubmitted at

the next turn, but that is often not the case. For no-check games, a player could issue a

support order for non-adjacent units or non-existent units to suggest making an alliance (e.g.

Russia could do A STP S A PAR - LON to suggest France should attack England, even

though PAR and STP are not adjacent to LON).

Proposing peace. Peace can be proposed by doing a support-hold on a foreign unit (e.g.

Italy: A VEN S A TRI to propose peace to Austria). Even if the foreign unit moves and

the support-hold is void, the foreign unit should be able to understand the underlying

intention. For no-check games, peace can also be proposed by convoying a foreign unit to

SWI (Switzerland is neutral and impassable).

Proposing draws. A draw can be proposed by convoying one unit of each power to SWI,

by support-holding a unit of each power, or by simply deciding to waive builds.
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Résumé. Diplomacy est un jeu non-stochastique à sept joueurs, dans lequel les agents

acquièrent des ressources à travers un mélange de travail d’équipe et de trahison. La

dépendance à la confiance et à la coordination fait de Diplomacy la première référence

multi-agents et non-coopérative pour résoudre des dilemmes sociaux séquentiels complexes

dans un environnement riche. Dans cet ouvrage, nous nous concentrons sur la formation d’un

agent qui apprend à jouer à la version No Press de Diplomacy, où il n’existe pas de canal de

communication dédié entre les joueurs. Nous présentons DipNet, un modèle de politique basé

sur un réseau de neurones pour No Press Diplomacy. Le modèle a été entraîné sur un nouvel

ensemble de données de plus de 150 000 parties jouées par des humains. Notre modèle est

formé par apprentissage supervisé (SL) à partir de trajectoires expertes, qui sont ensuite

utilisées pour initialiser un agent d’apprentissage par renforcement (RL) qui joue contre des

versions de lui-même. Les agents SL et RL démontrent des performances du niveau de l’état

de l’art en battant les agents à base de règles.

Mots clés : Diplomacy, négociation, apprentissage supervisé, trahison, jeu, apprentissage

par renforcement, théorie de l’esprit

Abstract. Diplomacy is a seven-player non-stochastic, non-cooperative game, where agents

acquire resources through a mix of teamwork and betrayal. Reliance on trust and coordination

makes Diplomacy the first non-cooperative multi-agent benchmark for complex sequential

social dilemmas in a rich environment. In this work, we focus on training an agent that

learns to play the No Press version of Diplomacy where there is no dedicated communication

channel between players. We present DipNet, a neural-network-based policy model for No

Press Diplomacy. The model was trained on a new dataset of more than 150,000 human

games. Our model is trained by supervised learning (SL) from expert trajectories, which is

then used to initialize a reinforcement learning (RL) agent trained through self-play. Both

the SL and RL agents demonstrate state-of-the-art No Press performance by beating popular

rule-based bots.

Keywords: Diplomacy, negotiation, supervised learning, betrayal, game, reinforcement

learning, theory of mind

1. Introduction

Diplomacy is a seven-player game where players attempt to acquire a majority of supply

centers across Europe. To acquire supply centers, players can coordinate their units with

other players through dialogue or signaling. Coordination can be risky, because players can

lie and even betray each other. Reliance on trust and negotiation makes Diplomacy the first

non-cooperative multi-agent benchmark for complex sequential social dilemmas in a rich
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environment.

Sequential social dilemmas (SSD) are situations where one individual experiences conflict

between self- and collective-interest over repeated interactions [22]. In Diplomacy, players

are faced with a SSD in each phase of the game. Should I help another player? Do I betray

them? Will I need their help later? The actions they choose will be visible to the other

players and influence how other players interact with them later in the game. The outcomes

of each interaction are non-stochastic. This characteristic sets Diplomacy apart from previous

benchmarks where players could additionally rely on chance to win [3, 4, 24, 28, 39].

Instead, players must put their faith in other players and not in the game’s mechanics (e.g.,

having a player role a critical hit).

Diplomacy is also one of the first SSD games to feature a rich environment. A single

player may have up to 34 units, with each unit having an average of 26 possible actions.

This astronomical action space makes planning and search intractable. Despite this, thinking

at multiple time scales is an important aspect of Diplomacy. Agents need to be able to

form a high-level long-term strategy (e.g. with whom to form alliances) and have a very

short-term execution plan for their strategy (e.g. what units should I move in the next turn).

Agents must also be able to adapt their plans, and beliefs about others (e.g. trustworthiness)

depending on how the game unfolds.

In this work, we focus on training an agent that learns to play the No Press version

of Diplomacy. The No Press version does not allow agents to communicate with each

other using an explicit communication channel. Communication between agents still occurs

through signalling in actions [37, 3]. This allows us to first focus on the key problem of

having an agent that has learned the game mechanics, without introducing the additional

complexity of learning natural language and learning complex interactions between agents.

We present DipNet, a fully end-to-end trained neural-network-based policy model for

No Press Diplomacy. To train our architecture, we collect the first large scale dataset of

Diplomacy, containing more than 150,000 games. We also develop a game engine that is
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((a)) Orders submitted in S1901M ((b)) Map adjacencies.

Fig. 4.1. The Standard Diplomacy Map

compatible with DAIDE [27], a research framework developed by the Diplomacy research

community, and that enables us to compare with previous rule-based state-of-the-art bots

from the community [38]. Our agent is trained with supervised learning over the expert

trajectories. Its parameters are then used to initialize a reinforcement learning agent trained

through self-play.

In order to better evaluate the performance of agents, we run a tournament among

different variants of the model as well as baselines and compute the TrueSkill score [15]. Our

tournament shows that both our supervised learning (SL) and reinforcement learning (RL)

agents consistently beat baseline rule-based agents. In order to further demonstrate the effect

of architecture design, we perform an ablation study with different variants of the model, and

find that our architecture has higher prediction accuracy for support orders even in longer

sequences. This ability suggests that our model is able to achieve tactical coordination with

multiple units. Finally we perform a coalition analysis by computing the ratio of cross-power

support, which is one of the main methods for players to cooperate with each other. Our

results suggest that our architecture is able to issue more effective cross-power orders.
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2. No Press Diplomacy: Game Overview

Diplomacy is a game where seven European powers (Austria, England, France, Germany,

Italy, Russia, and Turkey) are competing over supply centers in Europe at the beginning

of the 20th century. There are 34 supply centers in the game scattered across 75 provinces

(board positions, including water). A power interacts with the game by issuing orders to army

and fleet units. The game is split into years (starting in 1901) and each year has 5 phases:

Spring Movement, Spring Retreat, Fall Movement, Fall Retreat, and Winter Adjustment.

Movements. There are 4 possible orders during a movement phase: Hold, Move, Support,

and Convoy. A hold order is used by a unit to defend the province it is occupying. Hold

is the default order for a unit if no orders are submitted. A move order is used by a unit

to attack an adjacent province. Armies can move to any adjacent land or coastal province,

while fleets can move to water or coastal provinces by following a coast.

Support orders can be given by any power to increase the attack strength of a moving unit

or to increase the defensive strength of a unit holding, supporting, or convoying. Supporting

a moving unit is only possible if the unit issuing the support order can reach the destination

of the supported move (e.g. Marseille can support Paris moving to Burgundy, because an

army in Marseille could move to Burgundy). If the supporting unit is attacked, its support is

unsuccessful.

It is possible for an army unit to move over several water locations in one phase and attack

another province by being convoyed by several fleets. A matching convoy order by the con-

voying fleets and a valid path of non-dislodged fleets is required for the convoy to be successful.

Retreats. If an attack is successful and there is a unit in the conquered province, the unit

is dislodged and is given a chance to retreat. There are 2 possible orders during a retreat

phase: Retreat and Disband. A retreat order is the equivalent of a move order, but only

happens during the retreat phase. A unit can only retreat to a location that is 1) unoccupied,

2) adjacent, and 3) not a standoff location (i.e. left vacant because of a failed attack). A

disband order indicates that the unit at the specified province should be removed from the
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board. A dislodged unit is automatically disbanded if either there are no possible retreat

locations, it fails to submit a retreat order during the retreat phase, or two units retreat to

the same location.

Adjustments. The adjustment phase happens once every year. During that phase, supply

centers change ownership if a unit from one power occupies a province with a supply center

owned by another power. There are three possible orders during an adjustment phase: Build,

Disband, and Waive. If a power has more units than supply centers, it needs to disband

units. If a power has more supply centers than units, it can build additional units to match

its number of supply centers. Units can only be built in a power’s original supply centers

(e.g. Berlin, Kiel, and Munich for Germany), and the power must still control the chosen

province and it must be unoccupied. A power can also decide to waive builds, leaving them

with fewer units than supply centers.

Communication in a No Press game. In a No Press game, even if there are no messages,

players can communicate between one another by using orders as signals [37]. For example,

a player can declare war by positioning their units in an offensive manner, they can suggest

possible moves with support and convoy orders, propose alliances with support orders,

propose a draw by convoying units to Switzerland, and so on. Sometimes even invalid orders

can be used as communication, e.g., Russia could order their army in St. Petersburg to

support England’s army in Paris moving to London. This invalid order could communicate

that France should attack England, even though Paris and St. Petersburg are not adjacent to

London.

Variants. There are three important variants of the game: Press, Public Press, and No

Press. In a Press game, players are allowed to communicate with one another privately.

In a Public Press game, all messages are public announcements and can be seen by

all players. In a No Press game, players are not allowed to send any messages. In all

variants, orders are written privately and become public simultaneously, after adjudication.

There are more than 100 maps available to play the game (ranging from 2 to 17 players),

though the original Europe map is the most played, and as a result is the focus of
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this work. The final important variation is check, where invalid orders are discarded,

versus no-check where only valid orders are submitted. This distinction is important,

because it determines the inclusion of a side-channel for communication through invalid orders.

Game end. The game ends when a power is able to reach a majority of the supply centers

(18/34 on the standard map), or when players agree to a draw. When a power is in the lead,

it is fairly common for other players to collaborate to prevent the leading player from making

further progress and to force a draw.

Scoring system. Points in a diplomacy game are usually computed either with 1) a draw-

based scoring system (points in a draw are shared equally among all survivors), or 2) a

supply-center count scoring system (points in a draw are proportional to the number of supply

centers). Players in a tournament are usually ranked with a modified Elo or TrueSkill system

[15][25][40][36].

3. Previous Work

In recent years, there has been a definite trend toward the use of games of increasingly

complexity as benchmarks for AI research including: Atari [23], Go [33][34], Capture the

Flag [17], Poker [4][24], Starcraft [39], and DOTA [28]. However, most of these games

do not focus on communication. The benchmark most similar to our No Press Diplomacy

setting is Hanabi [3], a card game that involves both communication and action. However

Hanabi is fully cooperative, whereas in Diplomacy, ad hoc coalitions form and degenerate

dynamically throughout the evolution of the game. We believe this makes Diplomacy unique

and deserving of special attention.

Previous work on Diplomacy has focused on building rule-based agents with substantial

feature engineering. DipBlue [11] is a rule-based agent that can negotiate and reason about

trust. It was developed for the DipGame platform [10], a DAIDE-compatible framework [27]

that also introduced a language hierarchy. DBrane [19] is a search-based bot that uses

branch-and-bound search, with state evaluation to truncate as appropriate. Another work,

most similar to ours, uses self-play to learn a game strategy leveraging patterns of board
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states [32]. Our work is the first attempt to use a data-driven method on a large-scale dataset.

Our work is also related to the learning-to-cooperate literature. In classical game theory,

the Iterated Prisoner’s Dilemma (IPD) has been the main focus for SSD, and a tit-for-tat

strategy has been shown to be a highly effective strategy [1]. Recent work [12] has proposed

an algorithm that takes into account the impact of one agent’s policy on the update of the

other agents. The resulting algorithm was able to achieve reciprocity and cooperation in

both IPD and a more complex coin game with deep neural networks. There is also a line of

work on solving social dilemmas with deep RL, which has shown that enhanced cooperation

and meaningful communication can be promoted via causal inference [18], inequity aversions

[16], and understanding consequences of intention [30]. However, most of this work has only

been applied to simple settings. It is still an open question whether these methods could

scale up to a complex domain like Diplomacy.

Our work is also related to behavioral game theory, which extends game theory to account

for human cognitive biases and limitations [6]. Such behavior is observed in Diplomacy when

players make non-optimal moves due to ill-conceived betrayals or personal vengeance against

a perceived slight.

4. DipNet : A Generative Model of Unit Orders

4.1. Input Representation

Our model takes two inputs: current board state and previous phase orders. To represent

the board state, we encode for each province: the type of province, whether there is a unit

on that province, which power owns the unit, whether a unit can be built or removed in that

province, the dislodged unit type and power, and who owns the supply center, if the province

has one. If a fleet is on a coast (e.g. on the North Coast of Spain), we also record the unit

information in the coast’s parent province.

Previous orders are encoded in a way that helps infer which powers are allies and enemies.

For instance, for the order ’A MAR S A PAR - BUR’ (Army in Marseille supports army

in Paris moves to Burgundy), we would encode: 1) ’Army’ as the unit type, 2) the power
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owning ’A MAR’, 3) ’support’ as the order type, 4) the power owning ’A PAR’ (i.e. the

friendly power), 5) the power, if any, having either a unit on BUR or owning the BUR supply

center (i.e. the opponent power), 6) the owner of the BUR supply center, if it exists. Based

on our empirical findings, orders from the last movement phase are enough to infer the

current relationship between the powers. Our representation scheme is shown in Figure 4.2,

with one vector per province.

4.2. Graph Convolution Network with FiLM

To take advantage of the adjacency information on the Diplomacy map, we propose

to use a graph convolution-based encoder [20]. Suppose xlbo ∈ R81×dlbo is the board state

embedding produced by layer l and xlpo ∈ R81×dlpo is the corresponding embedding of previous

orders, where x0bo, x0po are the input representations described in Section 4.1.

We will now describe the process for encoding the board state; the process for the previous

order embedding is the same. Suppose A is the normalized map adjacency matrix of 81× 81.

We first aggregate neighbor information by:

ylbo = BatchNorm(AxlboWbo + bbo) (4.1)

where Wbo ∈ Rdlbo×d
l+1
bo , bbo ∈ Rdl+1

bo , ylbo ∈ R81×dl+1
bo and BatchNorm is operated on the last

dimension. We perform conditional batch normalization using FiLM [29, 31], which has

been shown to be an effective method of fusing multimodal information in many domains [9].

Fig. 4.2. Encoding of the Board State and Previous Orders.
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Batch normalization is conditioned on the player’s power p and the current season s (Spring,

Fall, Winter).

γbo, βbo = f lbo([p; s]) zlbo = ylbo � γbo + βbo (4.2)

where fl is a linear transformation, γ,β ∈ Rdl+1 , and both addition and multiplication are

broadcast across provinces. Finally we add a ReLU and residual connections [14] where

possible:

xl+1
bo =

ReLU(z
l
bo) + xlbo dl = dl+1

bo

ReLU(zlbo) dlbo 6= dl+1
bo

(4.3)

The board state and the previous orders are both encoded through L of these blocks, and

there is no weight sharing. Concatenation is performed at the end, giving henc = [xLbo, x
L
po]

where hienc is the final embedding of the province with index i. We choose L = 16 in our

experiment.

4.3. Decoder

In order to achieve coordination between units, sequential decoding is required. However

there is no natural sequential ordering. We hypothesize that orders are usually given to

a cluster of nearby units, and therefore processing neighbouring units together would be

effective. We used a top-left to bottom-right ordering based on topological sorting, aiming to

prevent jumping across the map during decoding.

Suppose it is the index of the province requiring an order at time t, we use an LSTM to

decode its order ot by

htdec = LSTM(ht−1dec , [h
it

enc; o
t−1]) (4.4)
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Then we apply a mask to only get valid possible orders for that location on the current

board:

ot = MaskedSoftmax(htdec) (4.5)

Fig. 4.3. DipNet Architecture

5. Datasets and Game Engine

Our dataset is generated by aggregating 156,468 anonymized human games. We also

develop an open source game engine for this dataset to standardize its format and rule out

invalid orders. The dataset contains 33,279 No Press games, 1,290 Public Press games,

105,266 Press games (messages are not included), and 16,633 games not played on the

standard map. We are going to release the dataset along with the game engine1. Detailed

dataset statistics are shown in Table 4.1.

The game engine is also integrated with the Diplomacy Artificial Intelligence Development

Environment (DAIDE) [27], an AI framework from the Diplomacy community. This enables

us to compare with several state-of-the-art rule-based bots [38, 11] that have been developed

1Researchers can request access to the dataset by contacting the first author. An executive summary

describing the research purpose and execution of a confidentiality agreement are required.

32



on DAIDE. DAIDE also has a progression of 14 symbolic language levels (from 0 to 130)

for negotiation and communication, which could be potentially useful for research on Press

Diplomacy. Each level defines what tokens are allowed to be exchanged by agents. For

instance, a No Press bot would be considered level 0, while a level 20 bot can propose peace,

alliances, and orders.

6. Experiments

6.1. Supervised Learning

We first present our supervised learning results. Our test set is composed of the last 5%

of games sorted by game id in alphabetical order. To measure the impact of each model

component, we ran an ablation study. The results are presented in Table 4.2. We evaluate

the model with both greedy decoding and teacher forcing. We measure the accuracy of each

unit-order (e.g. ‘A PAR - BUR’), and the accuracy of the complete set of orders for a power

(e.g. ‘A PAR - BUR’, ‘F BRE - MAO‘). We find that our untrained model with a masked

decoder performs better than the random model, which suggests the effectiveness of masking

out invalid orders. We observe a small drop in performance when we only provide the board

state. We also observe a performance drop when we use the average embedding over all

Tab. 4.1. Dataset statistics

Survival rate for opponents

Win% Draw% Defeated% AUS ENG FRA GER ITA RUS TUR

Austria 4.3% 33.4% 48.1% 100% 79% 62% 55% 40% 29% 15%

England 4.6% 43.7% 29.1% 47% 100% 30% 16% 49% 33% 80%

France 6.1% 43.8% 25.7% 40% 26% 100% 22% 45% 59% 77%

Germany 5.3% 35.9% 40.4% 44% 26% 39% 100% 61% 27% 80%

Italy 3.6% 36.5% 40.2% 15% 65% 56% 61% 100% 56% 25%

Russia 6.6% 35.2% 39.8% 25% 52% 77% 38% 63% 100% 42%

Turkey 7.2% 43.1% 26.0% 9% 78% 71% 56% 23% 31% 100%

Total 39.9% 60.1% 37% 59% 65% 49% 51% 50% 64%
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Tab. 4.2. Evaluation of supervised models: Predicting human orders.

Model Accuracy per unit-order Accuracy for all orders

Teacher forcing Greedy Teacher forcing Greedy

DipNet 61.3% 47.5% 23.5% 23.5%

Untrained 6.6% 6.4% 4.2% 4.2%

Without FiLM 60.7% 47.0% 22.9% 22.9%

Masked Decoder (No Board) 47.8% 26.5% 14.7% 14.7%

Board State Only 60.3% 45.6% 22.9% 23.0%

Average Embedding 59.9% 46.2% 23.2% 23.2%

locations as input to the LSTM decoder (rather than using attention based on the location

the current order is being generated for).

To further demonstrate the difference between these variants we focus on the model’s

ability to predict support orders, which are a crucial element for successful unit coordi-

nation. Table 4.3 shows accuracy on this order type, separated based on the position

of the unit in the prediction sequence. We can see that although the performance of

different variants of the model are close to each other when predicting support for the

first unit, the difference is larger when predicting support for the 16th unit. This in-

dicates that our architecture helps DipNet maintain tactical coordination across multiple units.

Tab. 4.3. Comparison of the models’ ability to predict support orders with greedy decoding.

Support Accuracy

1st location 16th location

DipNet 40.3% 32.2%

Board State Only 38.5% 25.9%

Without FiLM 40.0% 30.3%

Average Embedding 39.1% 27.9%
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6.2. Reinforcement Learning and Self-play

We train DipNet with self-play (same model for all powers, with shared updates) using an

A2C architecture [23] with n-step (n=15) returns for approximately 20,000 updates (approx.

1 million steps). As a reward function, we use the average of (1) a local reward function

(+1/-1 when a supply center is gained or lost (updated every phase and not just in Winter)),

and (2) a terminal reward function (for a solo victory, the winner gets 34 points; for a draw,

the 34 points are divided proportionally to the number of supply centers). The policy is

pre-trained using DipNet SL described above. We also used a value function pre-trained on

human games.

The opponents we have used to evaluate our agents were: (1) Random. This agent

selects an action per unit uniformly at random from the list of valid orders. (2) GreedyBot.

This agent greedily tries to conquer neighbouring supply centers and is not able to support

any attacks. (3) Dumbbot [26]. This rule-based bot computes a value for each province,

ranks orders using computed province values and uses rules to maintain coordination.

(4) Albert Level 0 [38]. Albert is the current state-of-the-art agent. It evaluates the

Tab. 4.4. Diplomacy agents comparison when played against each other, with one agent

controlling one power and the other six powers controlled by copies of the other agent.

Agent A (1x) Agent B (6x) TrueSkill A-B % Win % Most SC % Survived % Defeated # Games

SL DipNet Random 28.1 - 19.7 100.0% 0.0% 0.0% 0.0% 1,000

SL DipNet GreedyBot 28.1 - 20.9 97.8% 1.2% 1.0% 0.0% 1,000

SL DipNet Dumbbot 28.1 - 19.2 74.8% 9.2% 15.4% 0.6% 950

SL DipNet Albert 6.0 28.1 - 24.5 28.9% 5.3% 42.8% 23.1% 208

SL DipNet RL DipNet 28.1 - 27.4 6.2% 0.3% 41.4% 52.1% 1,000

Random SL DipNet 19.7 - 28.1 0.0% 0.0% 4.4% 95.6% 1,000

GreedyBot SL DipNet 20.9 - 28.1 0.0% 0.0% 8.5% 91.5% 1,000

Dumbbot SL DipNet 19.2 - 28.1 0.0% 0.1% 5.0% 95.0% 950

Albert 6.0 SL DipNet 24.5 - 28.1 5.8% 0.4% 12.6% 81.3% 278

RL DipNet SL DipNet 27.4 - 28.1 14.0% 3.5% 42.9% 39.6% 1,000
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probability of success of orders, and builds alliances and trust between powers, even without

messages. To evaluate performance, we run a tournament and compute TrueSkill scores for

these models [15]. Games in the tournament are structured with one power controlled by

one agent and the other six controlled by copies of another agent. We report the results of

the first agent in Table 4.4. From the TrueSkill score we can see both the SL (28.1) and RL

(27.4) versions of DipNet consistently beat the baseline models as well as Albert (24.5), the

previous state-of-art bot. Although there is no significant difference in TrueSkill between SL

and RL, the performance of RL vs 6 SL is better than SL vs 6 RL with an increasing win

rate.

6.3. Coalition Analysis

In the No Press games, cross-power support is the major method for players to signal

and coordinate with each other for mutual benefit. In light of this, we propose a coalition

analysis method to further understand agents’ behavior. We define a cross-power support

(X-support) as being when a power supports a foreign power, and we define an effective

cross-power support as being a cross-power order support without which the supported attack

or defense would fail:

X-support-ratio =
#X-support
#support

, Eff-X-support-ratio =
#Effective X-support

#X-support

The X-support-ratio reflects how frequently the support order is used for coopera-

tion/communication, while the Eff-X-support-ratio reflects the efficiency or utility of

cooperation. We launch 1000 games with our model variants for all powers and compute this

ratio for each one. Our results are shown in Table 4.5.

For human games, across different game variants, there is only minor variations in the

X-support-ratio, but the Eff-X-support-ratio varies substantially. This shows that when

people are allowed to communicate, their effectiveness in cooperation increases, which

is consistent with previous results that cheap talk promotes cooperation for agents with
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aligned interests [7, 8]. In terms of agent variants, although RL and SL models show similar

TrueSkill scores, their behavior is very different. RL agents seem to be less effective at

cooperation but do have more frequent cross-power support. This decrease in effective

cooperation is also consistent with past observations that naive policy gradient methods fail

to learn cooperative strategies in a non-cooperative setting such as the iterated prisoner

dilemma [13]. Ablations of the SL model have a similar X-support-ratio, but suffer from

a loss in Eff-X-support-ratio. This further suggests that our DipNet architecture can help

agents cooperate more effectively. The Masked Decoder has a very high X-support-ratio,

suggesting that the marginal distribution of support is highest among agent games, however,

it suffers from an inability to effectively cooperate (i.e. very small Eff-X-support-ratio). This

is also expected since the Masked Decoder has no board information to understand the effect

of supports.

Tab. 4.5. Coalition formation: Diplomacy agents comparison

X-support-ratio Eff-X-support-ratio

Human Game No Press 14.7% 7.7%

Public Press 11.8% 12.1%

Press 14.4% 23.6%

Agents Games RL DipNet 9.1% 5.3%

SL DipNet 7.4% 10.2%

Board State Only 7.3% 7.5%

Without FiLM 6.7% 7.9%

Masked Decoder (No Board) 12.1% 0.62%

7. Conclusion

In this work, we present DipNet, a fully end-to-end policy for the strategy board game

No Press Diplomacy. We collect a large dataset of human games to evaluate our architecture.

We train our agent with both supervised learning and reinforcement learning self-play. Our

tournament results suggest that DipNet is able to beat state-of-the-art rule-based bots in
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the No Press setting. Our ablation study and coalition analysis demonstrate that DipNet

can effectively coordinate units and cooperate with other players. We propose Diplomacy

as a new multi-agent benchmark for dynamic cooperation emergence in a rich environment.

Probably the most interesting result to emerge from our analysis is the difference between the

SL agent (trained on human data) and the RL agent (trained with self-play). Our coalition

analysis suggests that the supervised agent was able to learn to coordinate support orders

while this behaviour appears to deteriorate during self-play training. We believe that the

most exciting path for future research for Diplomacy playing agents is in the exploration of

methods such as LOLA [13] that are better able to discover collaborative strategies among

self-interested agents.
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Chapter 4

Conclusion

In this thesis, I introduced a supervised and a reinforcement learning model that can play the

board game No Press Diplomacy. The model was trained using a new dataset of more than

150,000 human games and a newly-developed game engine. The proposed DipNet model is

able to beat state-of-the-art rule-based bots. Moreover, the model demonstrates an ability to

coordinate units and cooperate with other players.

DipNet uses a combination of graph convolutions, conditional batch normalization, an

attention mechanism, and a masked decoder. The model has the best performance when it is

trained to replicate the orders of all the players in both Press and No Press games.

Even though the model is able to win against rule-based agents, a lot of research will

be required to reach super-human performance. Some interesting research directions might

include 1) having agents create a language between themselves to beat agents that cannot

communicate, 2) having agents learn strategies that can be applied to different maps, 3)

having agents negotiate with humans in natural language, or 4) having agents detect when

other players are being deceitful.
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