
Université de Montréal

Recurrent Neural Models and Related Problems in Natural Language
Processing

par Saizheng Zhang

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

avril, 2019

c© Saizheng Zhang, 2019.

Résumé
Le réseau de neurones récurrent (RNN) est l’un des plus puissants modèles d’ap-

prentissage automatique spécialisés dans la capture des variations temporelles et
des dépendances de données séquentielles. Grâce à la résurgence de l’apprentissage
en profondeur au cours de la dernière décennie, de nombreuses structures RNN
innovantes ont été inventées et appliquées à divers problèmes pratiques, en par-
ticulier dans le domaine du traitement automatique du langage naturel (TALN).
Cette thèse suit une direction similaire, dans laquelle nous proposons de nouvelles
perspectives sur les propriétés structurelles des RNN et sur la manière dont les mo-
dèles RNN récemment proposés peuvent stimuler le developpement de nouveaux
problèmes ouverts en TALN.

Cette thèse se compose de deux parties: l’analyse de modèle et le traitement de
nouveaux problèmes ouverts. Dans la première partie, nous explorons deux aspects
importants des RNN: l’architecture de leurs connexions et les opérations de base
dans leurs fonctions de transition. Plus précisément, dans le premier article, nous
définissons plusieurs mesures rigoureuses pour évaluer la complexité architecturale
de toute architecture récurrente donnée, quelle que soit la topologie du réseau. Des
expériences approfondies sur ces mesures démontrent à la fois la validité théorique
de celles-ci, et l’importance de guider la conception des architectures RNN. Dans
le deuxième article, nous proposons un nouveau module permettant de combiner
plusieurs flux d’informations de manière multiplicative dans les fonctions de tran-
sition de base des RNN. Il a été démontré empiriquement que les RNN équipés du
nouveau module possédaient de meilleures propriétés de gradient et des capacités
de généralisation plus grandes sans coûts de calcul et de mémoire supplémentaires.

La deuxième partie se concentre sur deux problèmes non résolus de la TALN:
comment effectuer un raisonnement avancé à sauts multiples en compréhension de
texte machine, et comment incorporer des traits de personnalité dans des systèmes
conversationnels. Nous recueillons deux ensembles de données à grande échelle,
dans le but de motiver les progrès méthodologiques sur ces deux problèmes. Spé-
cifiquement, dans le troisième article, nous introduisons l’ensemble de données sc
HotpotQA qui contient plus de 113 000 paires question-réponse basées sur Wiki-
pedia. La plupart des questions de HotpotQA ne peuvent résolues que par un
raisonnement multi-saut précis sur plusieurs documents. Les faits à l’appui néces-
saires au raisonnement sont également fournis pour aider le modèle à établir des
prédictions explicables. Le quatrième article aborde le problème du manque de
personnalité des chatbots. Le jeu de données persona-chat que nous proposons

ii

encourage des conversations plus engageantes et cohérentes en conditionnant la
personnalité des membres en conversation sur des personnages spécifiques. Nous
montrons des modèles de base entrâınés sur persona-chat sont capables d’ex-
primer des personnalités cohérentes et de réagir de manière plus captivante en se
concentrant sur leurs propres personnages ainsi que ceux de leurs interlocuteurs.

Mots clés: réseaux de neurones récurrents, apprentissage profond, traitement
automatique du langage naturel, compréhension en lecture, système de dialogue

iii

Summary
The recurrent neural network (RNN) is one of the most powerful machine learn-

ing models specialized in capturing temporal variations and dependencies of sequen-
tial data. Thanks to the resurgence of deep learning during the past decade, we
have witnessed plenty of novel RNN structures being invented and applied to vari-
ous practical problems especially in the field of natural language processing (NLP).
This thesis follows a similar direction, in which we offer new insights about RNNs’
structural properties and how the recently proposed RNN models may stimulate
the formation of new open problems in NLP.

The scope of this thesis is divided into two parts: model analysis and new
open problems. In the first part, we explore two important aspects of RNNs: their
connecting architectures and basic operations in their transition functions. Specif-
ically, in the first article, we define several rigorous measurements for evaluating
the architectural complexity of any given recurrent architecture with arbitrary net-
work topology. Thoroughgoing experiments on these measurements demonstrate
their theoretical validity and utility of guiding the RNN architecture design. In the
second article, we propose a novel module to combine different information flows
multiplicatively in RNNs’ basic transition functions. RNNs equipped with the new
module are empirically showed to have better gradient properties and stronger
generalization capacities without extra computational and memory cost.

The second part focuses on two open problems in NLP: how to perform advanced
multi-hop reasoning in machine reading comprehension and how to encode person-
alities into chitchat dialogue systems. We collect two different large scale datasets
aiming to motivate the methodological progress on these two problems. Particu-
larly, in the third article we introduce HotpotQA dataset containing over 113k
Wikipedia based question-answer pairs. Most of the questions in HotpotQA are
answerable only through accurate multi-hop reasoning over multiple documents.
Supporting facts required for reasoning are also provided to help the model to
make explainable predictions. The fourth article tackles the problem of the lack
of personality in chatbots. The proposed persona-chat dataset encourages more
engaging and consistent conversations by forcing dialog partners conditioning on
given personas. We show that baseline models trained on persona-chat are able
to express consistent personalities and to respond in more captivating ways by con-
centrating on personas of both themselves and other interlocutors.

Keywords: recurrent neural networks, deep learning, natural language pro-

iv

cessing, reading comprehension, dialogue system

v

Contents

Résumé . ii

Summary . iv

Contents . vi

List of Figures . x

List of Tables . xii

Acknowledgments . xvi

1 Introduction . 1
1.1 Architectural Analysis and New Structure Design of RNNs 2
1.2 Open Problems in Machine Reading Comprehension and Dialogue

System . 4

2 Background and Related Work . 7
2.1 From Artificial Neural Networks to Deep Learning 7
2.2 Recurrent Neural Networks . 10

2.2.1 Vanilla Recurrent Neural Network 12
2.2.2 Backpropagation Through Time (BPTT) 12
2.2.3 Gradient Vanishing/Exploding Problems 13
2.2.4 Gates and Memory Cells . 13
2.2.5 Sequence-to-sequence Models 16
2.2.6 Attention Mechanism . 17
2.2.7 External Memory . 18
2.2.8 Making RNNs deeper . 21

2.3 Learning Neural Natural Language Representations 21
2.3.1 Neural Language Model . 23
2.3.2 Word Embedding and Beyond 25
2.3.3 Neural Reading Comprehension 27

vi

2.3.4 Neural Dialogue System . 32

3 Prologue to First Article . 36
3.1 Article Detail . 36
3.2 Context . 36
3.3 Contributions . 37

4 Architectural Complexity Measures of Recurrent Neural Networks 38
4.1 Introduction . 38
4.2 General RNN . 39

4.2.1 The Connecting Architecture 39
4.2.2 A General Definition of RNN 42

4.3 Measures of Architectural Complexity 42
4.3.1 Recurrent Depth . 42
4.3.2 Feedforward Depth . 44
4.3.3 Recurrent Skip Coefficient 46

4.4 Experiments and Results . 47
4.4.1 Tasks and Training Settings 47
4.4.2 Recurrent Depth is Non-trivial 48
4.4.3 Comparing Depths . 50
4.4.4 Recurrent Skip Coefficients 51
4.4.5 Recurrent Skip Coefficients vs. Skip Connections 53

4.5 Conclusion . 54
4.6 Proofs . 55

5 Prologue to Second Article . 61
5.1 Article Detail . 61
5.2 Context . 61
5.3 Contributions . 62

6 On Multiplicative Integration with Recurrent Neural Networks 63
6.1 Introduction . 63
6.2 Structure Description and Analysis 65

6.2.1 General Formulation of Multiplicative Integration 65
6.2.2 Gradient Properties . 65

6.3 Experiments . 66
6.3.1 Exploratory Experiments . 66
6.3.2 Character Level Language Modeling 70
6.3.3 Speech Recognition . 71
6.3.4 Learning Skip-Thought Vectors 72
6.3.5 Teaching Machines to Read and Comprehend 74

6.4 Relationship to Previous Models . 75

vii

6.4.1 Relationship to Hidden Markov Models 75
6.4.2 Relations to Second Order RNNs and Multiplicative RNNs . 76
6.4.3 General Multiplicative Integration 77

6.5 Conclusion . 77

7 Prologue to Third Article . 79
7.1 Article Detail . 79
7.2 Context . 79
7.3 Contributions . 80

8 HotpotQA: A Dataset for Diverse, Explainable Multi-hop Ques-
tion Answering . 81
8.1 Introduction . 81
8.2 Data Collection . 83

8.2.1 Pipeline . 83
8.2.2 Implementation Details . 86

8.3 Processing and Benchmark Settings 87
8.4 Dataset Analysis . 90
8.5 Experiments . 94

8.5.1 Model Architecture and Training 94
8.5.2 Results . 95
8.5.3 Establishing Human Performance 99

8.6 Related Work . 100
8.7 Conclusions . 101

9 Prologue to Fourth Article . 102
9.1 Article Detail . 102
9.2 Context . 102
9.3 Contributions . 103

10 Personalizing Dialogue Agents: I have a dog, do you have pets
too? . 104
10.1 Introduction . 104
10.2 Related Work . 106
10.3 The persona-chat Dataset . 107

10.3.1 Personas . 109
10.3.2 Revised Personas . 109
10.3.3 Persona Chat . 110
10.3.4 Evaluation . 110

10.4 Models . 112
10.4.1 Baseline ranking models . 112
10.4.2 Ranking Profile Memory Network 112

viii

10.4.3 Key-Value Profile Memory Network 113
10.4.4 Seq2Seq . 114
10.4.5 Generative Profile Memory Network 114

10.5 Experiments . 115
10.5.1 Automated metrics . 115
10.5.2 Human Evaluation . 117
10.5.3 Profile Prediction . 119

10.6 Conclusion & Discussion . 121
10.7 Dialogues between Humans and Models 122

11 Conclusion . 127

Bibliography . 128

ix

List of Figures

4.1 (a) An example of an RNN’s Gc and Gun. Vin is denoted by square,
Vhid is denoted by circle and Vout is denoted by diamond. In Gc, the
number on each edge is its corresponding σ. The longest path is
colored in red. The longest input-output path is colored in yellow
and the shortest path is colored blue. The value of three measures
are dr = 3

2
, df = 3.5 and s = 2. (b) 5 more examples. (1) and (2)

have dr = 2, 3
2
, (3) has df = 5, (4) and (5) has s = 2, 3

2
. 44

4.2 (a) The architectures for sh, st, bu and td, with their (dr, df) equal to

(1, 2), (1, 3), (1, 3) and (2, 3), respectively. The longest path in td are

colored in red. (b) The 9 architectures denoted by their (df , dr) with

dr = 1, 2, 3 and df = 2, 3, 4. We only plot the hidden states within 1 time

step (which also have a period of 1) in both (a) and (b). 49
4.3 (a) Various architectures that we consider in Section 4.4.4. From top to

bottom are baseline s = 1, and s = 2, s = 3. (b) Proposed architectures

that we consider in Section 4.4.5 where we take k = 3 as an example.

The shortest paths in (a) and (b) that correspond to the recurrent skip

coefficients are colored in blue. 52

6.1 (a) Curves of log-L2-norm of gradients for lin-RNN (blue) and lin-MI-

RNN (orange). Time gradually changes from {1, 5, 10}. (b) Valida-

tion BPC curves for vanilla-RNN, MI-RNN-simple using Eq. 6.2, and

MI-RNN-general using Eq. 6.4. (c) Histogram of vanilla-RNN’s hidden

activations over the validation set, most activations are saturated. (d)

Histogram of MI-RNN’s hidden activations over the validation set, most

activations are not saturated. 68
6.2 (a) MSE curves of uni-skip (ours) and MI-uni-skip (ours) on semantic

relatedness task on SICK dataset. MI-uni-skip significantly outperforms

baseline uni-skip. (b) Validation error curves on attentive reader models.

There is a clear margin between models with and without MI. 74

8.1 An example of the multi-hop questions in HotpotQA. We also
highlight the supporting facts in blue italics , which are also part of
the dataset. 82

8.2 Screenshot of our worker interface on Amazon Mechanical Turk. . . 87

x

8.3 Types of questions covered in HotpotQA. Question types are ex-
tracted heuristically, starting at question words or prepositions pre-
ceding them. Empty colored blocks indicate suffixes that are too
rare to show individually. See main text for more details. 91

8.4 Our model architecture. Strong supervision over supporting facts is
used in a multi-task setting. 95

xi

List of Tables

4.1 Test BPCs of sh, st, bu, td for tanh RNNs and LSTMs. 49
4.2 Test BPCs of tanh RNNs with recurrent depth dr = 1, 2, 3 and feedfor-

ward depth df = 2, 3, 4 respectively. 50
4.3 Test accuracies with different s for tanh RNN and LSTM in MNIST/pMNIST. 52
4.4 our best model compared to previous results on MNIST/pMNIST. . . . 53
4.5 Test accuracies for architectures (1), (2), (3) and (4) for tanh RNN on

MNIST/pMNIST. 54

6.1 Test BPCs and the standard deviation of models with different scales of

weight initializations. 69
6.2 Top: test BPCs on character level Penn-Treebank dataset. Middle: test

BPCs on character level text8 dataset. Bottom: test BPCs on character

level Hutter Prize Wikipedia dataset. 70
6.3 Test CERs and WERs on WSJ corpus. 71
6.4 Skip-thought+MI on Semantic-Relatedness task (top), Paraphrase De-

tection task (middle) and four different classification tasks (bottom). . . 73
6.5 Multiplicative Integration (with batch normalization) on Teaching Ma-

chines to Read and Comprehend task. 75

8.1 Data split. The splits train-easy, train-medium, and train-hard are
combined for training. The distractor and full wiki settings use dif-
ferent test sets so that the gold paragraphs in the full wiki test set
remain unknown to any models. 88

8.2 Retrieval performance comparison on full wiki setting for train-medium,
dev and test with 1,000 random samples each. MAP and are in %.
Mean Rank averages over retrieval ranks of two gold paragraphs.
CorAns Rank refers to the rank of the gold paragraph containing
the answer. 90

8.3 Types of answers in HotpotQA. 92

xii

8.4 Types of multi-hop reasoning required to answer questions in the
HotpotQA dev and test sets. We show in orange bold italics
bridge entities if applicable, blue italics supporting facts from the
paragraphs that connect directly to the question, and green bold
the answer in the paragraph or following the question. The remain-
ing 8% are single-hop (6%) or unanswerable questions (2%) by our
judgement. 93

8.5 Retrieval performance in the full wiki setting. Mean Rank is aver-
aged over the ranks of two gold paragraphs. 97

8.6 Main results: the performance of question answering and support-
ing fact prediction in the two benchmark settings. We encourage
researchers to report these metrics when evaluating their methods. . 97

8.7 Performance breakdown over different question types on the dev
set in the distractor setting. “Br” denotes questions collected using
bridge entities, and “Cp” denotes comparison questions. 98

8.8 Ablation study of question answering performance on the dev set
in the distractor setting. “– sup fact” means removing strong su-
pervision over supporting facts from our model. “– train-easy” and
“– train-medium” means discarding the according data splits from
training. “gold only” and “sup fact only” refer to using the gold
paragraphs or the supporting facts as the only context input to the
model. 99

8.9 Comparing baseline model performance with human performance on
1,000 random samples. “Human UB” stands for the upper bound on
annotator performance on HotpotQA. For details please refer to
the main body. 100

10.1 Example Personas (left) and their revised versions (right) from the
persona-chat dataset. The revised versions are designed to be
characteristics that the same persona might have, which could be
rephrases, generalizations or specializations. 108

10.2 Example dialog from the persona-chat dataset. Person 1 is given
their own persona (top left) at the beginning of the chat, but does
not know the persona of Person 2, and vice-versa. They have to get
to know each other during the conversation. 111

10.3 Evaluation of dialog utterance prediction with various mod-
els in three settings: without conditioning on a persona, conditioned
on the speakers given persona (“Original Persona”), or a revised per-
sona that does not have word overlap. 116

xiii

10.4 Evaluation of dialog utterance prediction with generative
models in four settings: conditioned on the speakers persona (“self
persona”), the dialogue partner’s persona (“their persona”), both or
none. The personas are either the original source given to Turkers
to condition the dialogue, or the revised personas that do not have
word overlap. In the“no persona” setting, the models are equivalent,
so we only report once. 116

10.5 Evaluation of dialog utterance prediction with ranking mod-
els using hits@1 in four settings: conditioned on the speakers per-
sona (”self persona”), the dialogue partner’s persona (”their per-
sona”), both or none. The personas are either the original source
given to Turkers to condition the dialogue, or the rewritten personas
that do not have word overlap, explaining the poor performance of
IR in that case. 117

10.6 Human Evaluation of various persona-chat models, along with
a comparison to human performance, and Twitter and OpenSubti-
tles based models (last 4 rows), standard deviation in parenthesis.
. 118

10.7 Profile Prediction. Error rates are given for predicting either the
persona of speaker 0 (Profile 0) or of speaker 1 (Profile 1) given the
dialogue utterances of speaker 0 (PERSON 0) or speaker 1 (PER-
SON 1). This is shown for dialogues between humans (PERSON
0) and either the KV Profile Memory model (“KV Profile”) which
conditions on its own profile, or the KV Memory model (“KV w/o
Profile”) which does not. 120

10.8 Profile Prediction By Dialog Length. Error rates are given for
predicting either the persona of speaker 0 (Profile 0) or of speaker 1
(Profile 1) given the dialogue utterances of speaker 0 (PERSON 0) or
speaker 1 (PERSON 1). This is shown for dialogues between humans
(PERSON 0) and the KV Profile Memory model averaged over the
first N dialogue utterances from 100 conversations (where N is the
“Dialogue Length”). The results show the accuracy of predicting the
persona improves in all cases as dialogue length increases. 120

10.9 Example dialog between a human (Person 1) and the OpenSubtitles
KV Memory Network model (Person 2). 122

10.10Example dialog between a human (Person 1) and the Seq2Seq model
(Person 2). 123

10.11Example dialog between a human (Person 1) and the Key-Value
Profile Memory Network with Self Persona. 124

10.12Example dialog between a human (Person 1) and the Generative
Profile Memory Network with Self Persona. 125

xiv

10.13Example dialog between a human (Person 1) and the Language
Model trained on the OpenSubtitles 2018 dataset (does not use per-
sona). 125

10.14Example dialog between a human (Person 1) and the Language
Model trained on the Twitter dataset (does not use persona). . . . 126

xv

Acknowledgments

When I was reading Prof. Yoshua Bengio’s famous denoising autoencoder paper

during my first undergraduate research project in 2011, I never thought that I

will become his student in the following years. That paper strongly motivated

me to find my research path towards neural networks (later well-known as deep

learning) and finally drove me to pursue the Ph.D. under Yoshua’s supervision. As

a researcher, I am impressed by Yoshua’s humility and curiosity to the unknown,

although he is already a widely respected researcher in the field. As Yoshua’s

student, I am very grateful for his insightful advices on my research, and more

importantly, the freedom and patience given to me that allow me to explore my

own research interests. A famous Chinese proverb says, “Give a man a fish and you

feed him for a day; teach a man to fish and you feed him for a lifetime”. I would

like to thank Yoshua to be my guide during the past five years, from whom the

most precious thing I learned is not the machine learning knowledge, but how to

be enthusiastic and stay brave when facing challenges.

I would like to thank my friend and co-author Yuhuai Wu from University of

Toronto, with whom I wrote my first two NIPS papers which became the first part

of this thesis. The days and nights spent with him chatting about research and life

will become one of my most memorable experiences. I also would like to thank my

friend Jake Zhao from New York University, from who I learned how to become

ambitious and steadfast towards the goal that I am pursuing.

As a member of the big Mila family, I would like to thank all the friends I

met there with whom I had a wonderful and unforgettable time: Zhouhan Lin,

Yikang Shen, Harm de Vries, Laurent Dinh, Pengfei Liu, Mohammad Pezeshki,

Min Lin, Jie Fu, Kyunghyun Cho, Alexandre de Brébisson, Sandeep Subramanian,

Alex Lamb, Caglar Gulcehre, Orhan Firat, Taesup Kim, Anirudh Goyal, Benjamin

Scellier, Asja Fischer, Junyoung Chung, Yuchen Lu, Guillaume Alain, Dong-hyun

Lee, Chen Xing, Dmitriy Serdyuk, Li Yao, Gerry Che, Kyle Kastner, Iulian Vlad

Serban, Jae Hyun Lim, Thomas Mesnard, Dzmitry Bahdanau, Akram Erraqabi,

Nicolas Ballas, Prof. Aaron Courville and Prof. Roland Memisevic.

xvi

I am also very thankful to all my friends who are my collaborators outside Mila

and offered me plentiful help in my research: Hongyuan Mei from John Hopkins

University, Zhilin Yang and Prof. Ruslan Salakhutdinov from Carnegie Mellon

University, Peng Qi from Stanford University, Jason Weston, Douwe Kiela, Arthur

Szlam and Abdel-rahman Mohamed from Facebook AI Research, Xiang Zhang and

Sungjin Ahn from Element AI, Xingdi Yuan, Tong Wang and Adam Trischler from

Microsoft Research, Vinod Nair from Deepmind.

Finally, I would like to thank my parents and my wife Ying Zhang for their

selfless support to my career. It was their love that helped me overcome all the

obstacles during my Ph.D. life.

xvii

1 Introduction

With the resurgence of deep learning (DL) during the past decade, the recurrent

neural network (RNN), as one of the critical members of neural network models,

gradually drew attention from the machine learning research community because

of its strong modeling capacity for sequential learning problems. Since 2014, RNNs

soon took the center stage in a series of natural language processing (NLP) scenar-

ios, including machine translation (Cho et al., 2014; Sutskever et al., 2014; Bah-

danau et al., 2014), dialogue system (Vinyals and Le, 2015; Sordoni et al., 2015;

Serban et al., 2016b) and machine reading comprehension (Hermann et al., 2015;

Rajpurkar et al., 2016; Devlin et al., 2018). At the time, although the empirical

success of the RNN was so significant that it reshaped the problem formulation and

methodology in several subfields of NLP, relatively fewer research was conducted

on the systematic understanding of RNNs’ architectural basics and computational

fundamentals. This becomes the motivation of the first part of this thesis (Chapter

3 to Chapter 6 (Zhang et al., 2016; Wu et al., 2016)), in which we attempt to

offer new insights on understanding the RNN’s architectural properties in a generic

perspective as well as exploring new functional designs inside the RNN’s internal

computational procedure. On the other hand, as the recently introduced advanced

recurrent neural modules redefined the pipeline of NLP research, we are now able

to explore new natural language scenarios which were infeasible before. The sec-

ond part of this thesis (Chapter 7 to Chapter 10 (Yang et al., 2018a; Zhang et al.,

2018)) is motivated by this trend, in which we dive deep into two open problems

about multi-hop reasoning in machine reading comprehension and personality en-

coding in dialogue systems. For both problems we collect new datasets and build

corresponding baselines, hoping that our proposed testbed can promote the further

research development in these two directions.

1

1.1 Architectural Analysis and New Structure

Design of RNNs

The original RNN (Rumelhart et al., 1985; Jordan, 1997; Elman, 1990), also

known as “vanilla RNN”, has relatively simple structure in which a hidden state ht

at the current time step t is computed based on the current input xt and the previ-

ous hidden state ht−1 via a set of linear transformations {W,U,b} and elementwise

nonlinearity σ:

ht = σ(Wxt + Uht−1 + b). (1.1)

The vanilla RNN is also a single hidden layer RNN. In the following decades,

various new connecting architectures were proposed based upon the vanilla RNN:

Schmidhuber (1992); El Hihi and Bengio (1996) introduced different forms of stack-

ing in RNNs where hidden layers are stacked on top of each other; Schuster and

Paliwal (1997) proposed the bidirectional RNNs which conduct recurrent computa-

tion in both forward and backward direction over the input sequence; Raiko et al.

(2012); Graves (2013); Lin et al. (1996); El Hihi and Bengio (1996); Sutskever and

Hinton (2010); Koutnik et al. (2014) explored the use of skip connections (short-

cuts) among different hidden states and Hermans and Schrauwen (2013) proposed

deep RNNs which are stacked RNNs with skip connections; Pascanu et al. (2013a)

suggested adding more nonlinearities in RNNs’ transition functions to make RNNs

“deeper” in the recurrent direction. Despite all the empirical success achieved so

far, few of these research attempted to analyze RNN connecting architectures in

a systematic way with generic and rigorous formulations. This leads to several

drawbacks: (1) It is hard to quantitatively measure the complexity of different

connecting architectures: even the concept of “depth” is not clear with current

RNNs. (2) The lack of correct definition of connection architectures limits previ-

ous researchers to only consider the simple“deep”RNNs while leaving vastly field of

connecting variations unexplored. In the first paper (Chapter 3 and Chapter 4), we

attempt to rigorously analyze the connecting architectures of RNNs by introducing

a generic graph-theoretic formulation under which we could further evaluate the

architectural complexity of an RNN via three novel measures: recurrent depth, feed-

forward depth, and recurrent skip coefficient. These measures reflect the fact that

RNNs may undergoes multiple transformations not only feedforwardly (from input

2

to output within a time step) but also recurrently (across multiple time steps) in

sophisticated ways. Compared with previous research, the recurrent depth can be

viewed as a general extension of the work of Pascanu et al. (2013a), the feedforward

depth can be considered as an accurate measure of the input-output nonlinearness

for different stacked RNNs, and the recurrent skip coefficient plays the role of quan-

tifying the complexity of various skip connections in RNNs. Notably, the recurrent

skip coefficient is strongly related to vanishing/exploding gradient issues and helps

dealing with long term dependency problems. Our experimental results on five

different datasets validate the usefulness of the proposed definitions and measure-

ments where they help answering the question of “What is the depth of an RNN?”

under the generic scenario and are able to provide guidance for the design and

inspection of new connecting architectures for particular learning tasks.

Besides the connecting architecture, another crucial structural aspect of the

RNN is its transition function which describes the computational procedure associ-

ated with each unit in the network. As we discussed before, the vanilla RNN adopts

a very simple formulation in its transition function. Hochreiter and Schmidhuber

(1997) invented the long short term memory (LSTM) in which they introduced the

gating mechanism and memory cells, while Cho et al. (2014) further simplified the

gating structures and proposed gated recurrent unit (GRU). Moreover, there is a

recent resurgence of new structural designs for RNNs’ transition functions (Chung

et al., 2015; Kalchbrenner et al., 2015; Jozefowicz et al., 2015), most of which are de-

rived from vanilla RNNs, LSTMs or GRUs. Despite of their structural differences,

they share a common computational building block either in their hidden-to-hidden

or gating computations, described by the following equation:

φ(Wx + Uz + b). (1.2)

This computational building block serves as a combinator for integrating informa-

tion flows from different sources x and z by an additive operation“+”. Such additive

operation are widely adopted in various state computations in RNNs (LSTMs and

GRUs) including hidden state and gate/cell computations. In our second paper

(Chapter 5 to Chapter 6), we consider an alternative in which the additive in-

tegration is replaced by a multiplicative one. Specifically, we propose to use the

3

Hadamard product “�” to fuse information from x and z:

φ(Wx�Uz + b). (1.3)

We name the above information integration design as Multiplicative Integration

(MI). MI naturally derives the gating effect between Wx and Uz where they dy-

namically rescale each other. We empirically show that RNNs with MI enjoy better

gradient properties due to such gating effect and most of the hidden units are non-

saturated. From an engineering perspective, MI is one of the few improvements that

directly touches the essential transition function of an RNN with (1) adaptability

towards any recurrent models (e.g. LSTMs and GRUs), (2) no extra computational

cost as it brings almost no extra parameters and (3) no extra engineering beyond

implementing the RNN model itself. In Chapter 6 we will see that the general

form of MI is by design performing at least as well as the standard RNN transition

function. Our experimental results demonstrate that MI can provide a substantial

performance boost over many of the existing RNN models.

1.2 Open Problems in Machine Reading

Comprehension and Dialogue System

One of the extraordinary intelligent skills of human is the ability of reasoning

and inference over abstract symbols, especially natural languages. Such ability

is also considered as a crucial step towards artificial general intelligence (AGI).

Machine reading comprehension (MRC) and question answering (QA) tasks pro-

vide measurable ways to verify the reasoning ability of intelligent machines, in

which correctly answering the question requires the machine to perform sophisti-

cated understanding and reasoning process over the given related natural language

materials. Recently, the emergence of many large-scale QA datasets has sparked

much progress in this direction. However, existing datasets have several limita-

tions that hinder further advancements: (1) The most popular dataset SQuAD

(Rajpurkar et al., 2016) only concentrates on testing single-step (or single-hop)

reasoning ability where most of the questions can be addressed by matching the

question with a single sentence in a single context paragraph. Machines trained on

4

this dataset end up with some keyword-matching like mechanisms and can hardly

reason over a larger context. TriviaQA (Joshi et al., 2017b) and SearchQA

(Dunn et al., 2017) attempted to make the setting more challenging by collect-

ing multiple documents as the context whilst most of the questions can still be

answered by matching the question with a few nearby sentences in one single para-

graph. (2) Datasets designed for multi-hop reasoning like WikiHop (Welbl et al.,

2018a) and ComplexWebQ (Talmor and Berant, 2018) are constructed on exist-

ing knowledge bases (KBs), which implies that they are constrained by the schema

of the KBs used and therefore have very limited question-answer diversity. (3)

Given a question, all the existing datasets provide the answer as the only distant

supervision while the machine has no idea what supporting facts lead to that an-

swer. This makes it difficult for explaining the machine’s prediction and tracing the

underlying reasoning process. The HotpotQA 1 dataset introduced in the third

paper (Chapter 7 to Chapter 8) tries to address the above challenges by forcing

the question staying in natural language form, requiring reasoning over multiple

facts in multiple documents (we name it as multi-hop reasoning), and not being

constrained by existing KBs. It also explicitly highlights in-document supporting

sentences for each question, which denote where the answer is actually derived,

and thus help guiding the model to perform meaningful and explainable reasoning.

Specifically, we collected the data via Amazon crowdsourcing service, where quali-

fied workers are shown multiple context documents extracted from Wikipedia and

asked explicitly to raise questions requiring reasoning over these documents. The

entire data collection pipeline is carefully designed and we hope that this pipeline

as a byproduct can also sheds light on future work in this direction. During the

experiments, we show that the multi-hop reasoning questions in HotpotQA is

challenging for the latest MRC systems and the supporting facts enable models to

improve performance and make explainable predictions.

Question answering is in fact a single turn communication between the ques-

tioner and the respondent. A more generic scenario is a conversation (dialogue) in

which interlocutors conduct multiple turns of communication which require more

complicated context understanding over the entire dialogue history. Despite the

past success in NLP research, the communication between a human and a machine

1. The name comes from the first three authors’ arriving at the main idea during a discussion
at a hot pot restaurant.

5

is still in its infancy especially for the general chit-chat setting. Although the re-

cently introduced neural based approaches have had sufficient capacity to generate

meaningful responses with accessing sufficiently large datasets, these models’ weak-

nesses are obvious after even a very short conversation with them (Serban et al.,

2016a; Vinyals and Le, 2015). Chit-chat models are known to have several issues

include: (1) Inconsistent personality problem where they are typically trained over

dialogues each with different speakers; (2) Explicit long-term memorizing ability is

absent as they are typically trained to respond given only the recent dialogue history

(Vinyals and Le, 2015); (3) They often produce not very captivating “safe” answers

which are non-specific, like “I don’t know” (Li et al., 2015). As a result, these

models produce an unsatisfying overall experience to human interlocutors. Despite

the fact that a large amount of human dialogues concentrate on socialization, per-

sonal interests and chit-chat (Dunbar et al., 1997), the low quality of conversations

makes the chit-chat setting often being ignored as an end-application comparing

with task-oriented scenarios. We believe the above problems are partially due to

there being no good publicly available dataset for general chit-chat model learning.

In the fourth paper (Chapter 9 to Chapter 10), we make a step towards more engag-

ing chit-chat dialogue agents by endowing them with a configurable but persistent

persona (profile) which are multiple sentences of textual description. Comparing

with persona-free settings, models with augmented memory can explicitly store

these personas and use them to produce more personal, specific, consistent and

engaging responses. We present the persona-chat dataset to facilitate the train-

ing of such models. persona-chat collects text based dialogues between different

crowdworkers who were randomly paired, each asked to both mimic a given persona

(randomly assigned, and created by another set of crowdworkers) and try to know

each other during the conversation. Models trained on such utterances can leverage

the personas from both speakers to perform better next utterance prediction. Our

experiments show that, comparing with existing resources, persona-chat enables

models to express better consistency and more engagingness during a conversation.

We hope that persona-chat will aid training agents that can ask questions about

users’ profiles, remember the answers, and use them naturally in conversation.

6

2 Background and Related
Work

2.1 From Artificial Neural Networks to Deep

Learning

Modern Artificial Neural Networks (ANNs) are a huge class of parameterized

function approximators which capture the underlying relations among inputs (and

outputs). Originated from the Perceptron in 1950s (Rosenblatt, 1958), ANNs have

experienced rapid evolution in the past few decades both in theory and in prac-

tice. Some remarkable events include Minsky’s criticism towards the Perceptron

(Minsky and Papert, 1969), the introduction of the backpropagation algorithm for

training multi-layer ANNs (Werbos, 1974; Rumelhart et al., 1985) and the recent

methodological renaissance of ANNs called “Deep Learning” (Bengio, 2009; LeCun

et al., 2015).

Generally speaking, ANNs can have various computational dependencies de-

scribing different functional behaviors and internal logic. In supervised learning,

an ANN can be defined by some parameterized function F : X → Y that explicitly

models the dependencies between input x ∈ X and output y ∈ Y :

y = F (x; θ). (2.1)

Here θ is a set of learnable parameters. In most ANNs, F adopts “linear trans-

formation + elementwise nonlinearity” as the basic computational building block

which we denote as f . In the simplest case (perceptron), the original F consists of

only one such building block f and Eq. 2.1 becomes

y = F (x; θ) = f(x; θf) = σ(Wx + b), (2.2)

where matrix W describes the linear transformation, σ is the elementwise nonlin-

7

earity, θf = {W,b}. Eq. 2.2 is equivalent to the scalar version that

yi = σ(
∑
j

wi,jxj + bi), (2.3)

where yi and xj are the i th and j th dimension of y and x respectively, wi,j is the

(i, j) th element of W. wi,jxj and σ are analogical to the “connection (synapse)”

and “neural activation” in biological neural networks, and Eq. 2.3 describes the

entire connecting behaviors of “neuron” yi to other “neurons” xj.

An important property of f is that, under mild conditions, given enough number

of different {fi}, a linear combination of {fi} can approximate arbitrary complex

functional dependencies with arbitrary precision, and this claim is also known as

the “universal approximation theorem”(Hornik et al., 1989; Cybenko, 1989).

ANNs have rich topological architectures. Given the above f as the basic com-

putational building block, the “topology” roughly includes two aspects: (1) How

the relations between output yj and input xi are organized inside f , which we refer

to as “ intra-f topology”. (2) How different fs (or “layers”) connect to each other,

which we refer to as “inter-f topology”.

The simplest intra-f topology is “fully-connected” which is the matrix multipli-

cation described in Eq. 2.2, where all dimensions of y depend on all dimensions of

x. A more interesting intra-f topology is ”convolutional” (Fukushima, 1980; LeCun

et al., 1998; Krizhevsky et al., 2012), in which x and y are reorganized so that they

contain 2D (or higher dimensional) information and the linear transformation in f

becomes the convolution operation (W then becomes convolutional kernels). The

convolution operation forces yi to only depend on a local input subset {xm,n} and

such dependency is shared over different 2D (or higher dimensional) locations in x-

y space. Besides, the convolution operation is often combined with some “pooling”

operation to further extract and summarize the local information. The resulting

module is called convolutional neural network (CNN). CNNs are quite successful

in natural image understanding problems as natural images have tons of repeated

low-level patterns over the 2D space.

The simplest inter-f topology is “multi-layer feed-forward”, in which the func-

tion approximator F is defined by stacking different building block f on top of each

other:

y = F (x; θ) = fm ◦ · · · ◦ f1(x). (2.4)

8

Here θ = {Wi,bi}mi=1, the intermediate results {hi|hi = fi ◦ · · · ◦ f1(x), i =

1, · · · ,m} are called “hidden layers” and m is the number of layers or the “depth”

of the network. Obviously, the word “feed-forward” simply illustrates the unidirec-

tional way of connecting different fi which is from bottom (input) to top (output).

An important property of multi-layer feed-forward neural networks is about the fea-

ture hierarchy (Bengio, 2009; Bengio et al., 2013): Different layers extract different

levels of features from the inputs, the higher the layer, the more abstract/general

the corresponding representations is. This property is widely examined in CNNs

for image understanding problems where lower layers often extract low-level visual

patterns such as edges and corners, and activations in higher layers often reflect

high-level visual concepts such as different parts of an object (Zeiler and Fergus,

2014). Furthermore, it has been theoretically proved that the multi-layer network’s

expressive power significantly benefits from increasing the network depth (Mont-

ufar et al., 2014; Telgarsky). Another important inter-f topology is “recurrent”

(Rumelhart et al., 1985; Jordan, 1997; Elman, 1990). Unlike the feed-forward case,

the recurrent neural network (RNN) has an extra recurrent direction on which the

same functional dependency of f is repeated iteratively. This recurrent direction

is also denoted as the “time” direction because RNN is able to exhibit dynamic

temporal behaviors and is usually used for modeling sequential data.

The computational and topological richness of ANNs may be a double-edged

sword, because successfully learning/optimizing such complicated nonlinear mod-

els can be very costly and sometimes impossible. Unlike classic statistical leanring

methods such as Support Vector Machines (SVMs) (Cortes and Vapnik, 1995; Vap-

nik) whose optimization procedure is convex with unique global optima, the loss

surface of an ANN is highly non-convex and often has a lot of bad local extrema

(e.g. minima or saddle points (Dauphin et al., 2014; Choromanska et al., 2015)).

As a result, almost all the feasible optimization techniques for training ANNs are

gradient-based, and there is no guarantee for these greedy techniques to find the

global optima. Furthermore, in early days, the lack of enough training data makes

ANNs easily overfit whilst the absence of high-performance computational resources

prevents researchers from exploring and exploiting larger models. As a result, the

potential capacity of “large” and “deep” ANNs on large scale problems are under-

estimated for decades before the “Deep Learning” resurgence.

The “Deep Learning” trend originated from the invention of “pretraining” tech-

9

niques which significantly alleviated the difficulty of training/optimizing deep neu-

ral networks (Hinton and Salakhutdinov, 2006; Bengio et al., 2007). Since then,

a huge amount of theoretical and empirical work drew the community’s attention

back to the buried treasure of deep neural networks. Specifically, those works in-

clude but are not limited to (1) several landmark models in image classification/de-

tection like very deep CNNs (Krizhevsky et al., 2012; Simonyan and Zisserman,

2014; Szegedy et al., 2015; He et al., 2015) and R-CNNs (Girshick et al., 2014);

(2) hybird and end-to-end speech recognition systems (Graves et al., 2013; Hinton

et al., 2012); (3) various neural-based approaches for natural language processing

(NLP) problems such as word embedding and neural machine translation (Mikolov

et al., 2013a; Sutskever et al., 2014; Bahdanau et al., 2014); (4) deep reinforce-

ment learning (Mnih et al., 2015; Silver et al., 2016); (5) deep generative models

such as variational autoencoders and generative adversarial networks (Kingma and

Welling, 2013; Rezende et al., 2014; Goodfellow et al., 2014); (6) optimization/-

training techniques such as dropout (Srivastava et al., 2014), batch normalization

(Ioffe and Szegedy, 2015), ADAM (Kingma and Ba, 2014), etc. In sum, “Deep

Learning” is not a brand new idea since its foundation is still based on the clas-

sic neural networks, but it is now pushing the neural network research a big step

forward with not only deeper models but also deeper ideas.

2.2 Recurrent Neural Networks

As briefly discussed in the previous section, recurrent neural networks (RNNs)

are a class of ANNs in which the same functional dependency is repeated iteratively

on its recurrent direction, resulting in an inner representation (inner state) compu-

tation at each recurrent (time) step. More formally, given the input sequence {xt},
the inner representation ht at recurrent step t is computed using some function f

that

ht = f(xt,ht−1; θ). (2.5)

Eq. 2.5 implies several important properties about the RNN: (1) The RNN is able

to model the temporal order of elements in the input sequence, because if the order

of xt in the input sequence is changed, the inner representation ht is also changed

10

correspondingly. (2) The RNN can handle input sequences with variable lengths

as f(·) can repeat for arbitrary number of times. (3) At every recurrent step, the

same functional dependency f is conducted implying that RNN can model the

latent temporal structure of the input in a homogeneous and consistent way across

time. (4) In the ideal case, ht depends on all the past inputs {xk}t−1
k=−∞ and can

memorize the information back to recurrent step −∞.

RNN is “Turing-Complete” if f and θ are chosen properly in the sense that

in theory it can simulate arbitrary complex computational programs (Siegelmann,

1999). This is analogical to the “universal approximation theorem” in the feed-

forward network.

There is an interesting topological similarity between the RNN and the feed-

forward network: if we start from h0, unroll Eq. 2.5 for m steps and consider ht

as the main variable while taking xt as the parameters of fk at recurrent step k,

Eq. 2.5 then becomes

ht = f ∗m ◦ · · · ◦ f ∗1 (h0) (2.6)

where f ∗k (·) = f(· ; xk, θ). Eq. 2.6 implies that an RNN unrolled for m steps

has exactly the same formulation as a m-layers feed-forward network described in

Eq. 2.4. From this point of view, an RNN can be considered as a deep feed-forward

network with (1) variable depth, (2) same functional dependency repeated at each

layer and (3) extra input plugged-in at each layer.

There are at least two fundamental aspects related to an RNN’s practical perfor-

mance: (1) The ability of capturing nonlinear temporal dependencies of the input

sequences. Actually, the complexity of temporal dependencies of an input sequence

can be highly varied: the traveled distance of an object moving in constant speed

linearly depends on the traveled time, while the price change in a stock market

has complicated relations to its past history. In any case, the f(·; θ) in an RNN is

expected to be flexible enough so that there exists some parameter configuration θ∗

that f(·; θ∗) is “close enough” to the true underlying dependencies. (2) The ability

of memorizing and processing information in various temporal scales. Dependen-

cies inside the input sequence can be either short term or long term. For example,

given a paragraph in char-level as the input sequence, characters within one word

have very short term intra-word dependencies on each other (dependency length

less than the length of the word) while characters in different words may have

inter-word long term dependencies due to the word-level or phrase-level relations

11

(dependency length is roughly the average length of words × length of sentences).

An ideal f should have the property that even all the inputs {xt} are mixed up

implicitly inside the recurrent computation after many time steps, the network can

still extract useful information from any past recurrent step. Unfortunately, cur-

rent RNN models all suffer from the problem of learning long term dependencies

known as “gradient vanishing/exploding”, while there are still structural solutions

to alleviate such forgetting effect.

2.2.1 Vanilla Recurrent Neural Network

The vanilla RNN is the most simple RNN structure. In the standard formulation

of the vanilla RNN, Eq. 2.5 becomes the “linear transformation + elementwise

nonlinearity” functional dependency:

ht = σ(Wxt + Uht−1 + b) (2.7)

where θ = {W,U,b}, W is the input-to-hidden matrix, U is the hidden-to-hidden

matrix and b is the bias vector. Compared with the fully-connected feed-forward

network in Eq. 2.2, the only difference in Eq. 2.7 is the additional matrix U which

bridges the current inner state ht to its previous state ht−1.

2.2.2 Backpropagation Through Time (BPTT)

Similar to the feed-forward network, the RNN can be optimized by gradient-

based backpropagation algorithm which is called backpropagation through time

(BPTT) (Rumelhart et al., 1985; Werbos, 1990). As its name implies, BPTT

propagates the gradient signals through the recurrent (time) direction. Here we

take the vanilla RNN as an example. In vanilla RNN, given the total loss ∆ =
∑T

1 δt

where δt is the partial loss at recurrent step t and the input sequence {xk}Tk=1, the

full gradient { ∂∆
∂M
}M=W,U,b with respect to any parameter M is calculated by

∂∆

∂M
=
∑

1≤t≤T

∂δt
∂M

, (2.8)

where each ∂δt
∂M

involves the following Jacobian matrix that forms the gradient

propagation path from the current recurrent state ht to the previous recurrent

12

state ht−n for 1 ≤ n ≤ t− 1:

∂ht
∂ht−n

=
∂ht
∂ht−1

· · · ∂hk=t−n+1

∂ht−n
=

t∏
k=t−n+1

UTdiag(σ′k), (2.9)

where σ′k = σ′(Wxk + Uhk−1 + b) and diag(σ′k) is a diagonal matrix with the

diagonal elements being elements in σ′k. From Eq. 2.9 we can find that the gradients

are propagated iteratively in the recurrent direction in the order of ht−1, ht−2, · · · ,
ht−n.

2.2.3 Gradient Vanishing/Exploding Problems

The gradient vanishing/exploding problem is mainly about the extreme behav-

iors during the RNN training where gradient norms may exponentially decrease to

zero or increase to infinity and prevent the RNN from further learning. (Hochreiter,

1991; Bengio et al., 1994; Pascanu et al., 2013b). Those behaviors can be clearly

illustrated in Eq. 2.9 in which the gradient ∂ht
∂ht−n

is computed by multiplying n

matrices {UTdiag(σ′k)}nk=t−n+1 together. Assume that |σ′k| is bounded by some

constant α, then the spectral norm nσ = ||diag(σ′k)|| satisfies nσ ≤ α. Now if the

spectral norm nU = ||U|| satisfies nU < 1
α

, we have

|| ∂ht
∂ht−n

|| =
t∏

k=t−n+1

||UT || · ||diag(σ′k)|| ≤ (nαnU)n, (2.10)

where nαnU < 1. Obviously, if n is large enough, the right side of the inequality

will shrink to zero which implies that || ∂ht
∂ht−n

|| also shrinks to zero. The above

analysis reveals the gradient vanishing case while similar conclusion can be made

for the exploding case also. In other words, although ht functionally depends on

ht−n for any n, such dependency becomes untraceable when n is large.

2.2.4 Gates and Memory Cells

Although gradient vanishing/exploding is an inherent problem of RNN models,

there exists several structural alternatives suffering much less from such negative

impact compared with the vanilla RNN ((Hochreiter and Schmidhuber, 1997; Cho

et al., 2014)). The main idea of these alternatives is to introduce (1) gate and (2)

13

a naive memory structure called memory cell inside RNN’s basic computational

building block f .

A gate is a function g that consists of a linear transformation and an elementwise

sigmoid function 1
1+e−x with output range in [0, 1]. A gate g is usually multiplied

elementwise with another activation f to get g�f , so that it can rescale f ’s different

dimensions {fk} by corresponding ratios {gk}, where gk = 1 means fully flowing in

of fk and gk = 0 means fully blocking out of fk. According to its functionality, the

gate can dynamically control the information that flows through recurrent states

and thus can further adjust the gradient propagation.

A memory cell is often made up of some extra states that can encode the past

information and keep the encoded information unchanged for a controllable length

of time. A simple example is the memory cell in long short term memory (LSTM).

LSTM is a variant of RNN which contains gates and memory cells (Hochreiter

and Schmidhuber, 1997). The motivation behind LSTM is to use memory cells to

store information through time and to use gates to control the information flows.

An LSTM maintains three gates (an input gate gi, a forget gate gf and an output

gate go), a memory cell c, an input context vector z and a hidden state h. Given an

input sequence {xt}, the computational dependencies of LSTM at recurrent step t

are defined as follows:

git = σ(Wixt + Uiht−1 + bi), (2.11)

gft = σ(Wfxt + Ufht−1 + bf), (2.12)

got = σ(Woxt + Uoht−1 + bo), (2.13)

zt = φ(Wxt + Uht−1 + b), (2.14)

ct = git � zt + gft � ct−1, (2.15)

ht = got � ϕ(ct). (2.16)

Here φ(·) and ϕ(·) are different elementwise nonlinearities. zt = φ(Wxt+Uht−1+b)

is similar to the activation in the vanilla RNN while in LSTM it serves as the

encoded input information for ct to memorize. In Eq. 2.15, git controls the ratio of

how much the current input information should be memorized by ct and gft controls

the ratio of how much previous information should be forgotten. Specifically, if

gft = 1, ct will memorize all the information from its previous state ct−1, if gft = 0,

14

ct will forget all the information from ct−1. We have the similar claim for git and the

encoded input information. In fact, Eq. 2.15 implicitly illustrates LSTM’s ability

of alleviating gradient vanishing/exploding problem: Instead of directly computing

the next hidden state by “linear transformation + elementwise nonlinearity” as in

Eq .2.7, the encoded input context vector zt is additively combined into the memory

cell ct and we have

ct =
t∑

k=−∞

(
t∏

m=k+1

gfm)� gik � zk, (2.17)

which shows that encoded input information zk at every recurrent step k has a

non-ignorable additive contribution to the current ct. Moreover, if we look at the

gradient flow ∂ct
∂ct−n

, a major part of it is (the full expression of ∂ct
∂ct−n

is much more

complicated)
t∏

k=t−n+1

diag(gfk). (2.18)

The above term suffers much less from the vanishing problem if the forget gate gfi
is close to 1. In practice, gfi ’s bias bf is often initialized as some positive vector

such as 1 so that the ratio value of gfi is relatively large at the beginning of training

and the gradient vanishing effect is then diminished.

In addition to LSTM, there is another popular gated RNN model called gated

recurrent unit (GRU) which has similar behaviors as LSTM but with less param-

eters (Cho et al., 2014). GRU can be considered as a simplified LSTM, which

only maintains two gates (an update gate gu and a reset gate gr). Given an in-

put sequence {xt}, the computational dependencies of GRU at recurrent step t are

defined as follows:

gut = σ(Wuxt + Uuht−1 + bu), (2.19)

grt = σ(Wrxt + Urht−1 + br), (2.20)

zt = φ(Wxt + U(grt � ht−1) + b), (2.21)

ht = (1− gut)� ht−1 + gut � zt. (2.22)

From Eq.(2.22) we can see that GRU’s hidden state h plays similar role as

the memory cell c in LSTM: the update gate gu works as the input gate gi in

LSTM and (1− gu) works as the forget gate gf in LSTM. However, LSTM has no

15

restriction between gi and gf while GRU forces these two gates summing up to 1.

The reset gate gr is a new functionality compared with gates in LSTM. When gr is

close to 0, GRU is forced to drop all the historical information passed through the

previous hidden state, which helps eliminating redundant information useless for

the future prediction. As a whole, the reset gate is mainly responsible for capturing

short-term dependencies in data distribution while the update gate tends to put

more focus on long-term dependencies.

Chung et al. (2014) made empirical performance comparisons between LSTMs

and GRUs on a wide range of tasks and they found GRUs to be comparable to

LSTMs.

2.2.5 Sequence-to-sequence Models

A wide range of learning scenarios can be formed as a mapping problem that

takes a sequence as the input and outputs another sequence. For instance, in a

French-to-English translation task, a French sentence will be mapped (translated)

to the corresponding English sentence, where the input is a sequence of French

words and the output is a sequence of English words.

From an RNN perspective, such sequential learning scenario can be modeled

by the so called neural sequence-to-sequence model introduced in neural machine

translation (Cho et al., 2014; Sutskever et al., 2014). A neural sequence-to-sequence

model consists of an encoder RNN fenc and a decoder RNN fdec. Given an input

sequence x = {x1, x2, · · · , xn}, the encoder RNN reads each xt, perform recurrent

computation iteratively and outputs a final encoder representation r summarizing

the entire x:

r = fenc(x) (2.23)

r is usually the last hidden state of the encoder RNN. Given the output target y =

{y1, y2, · · · , ym}, the decoder RNN models a target distribution P (y|x) conditioned

on x by taking r into consideration:

P (y|x) = fdec(y, r)

=
m∏
t=1

P (yt|r,y1:t−1). (2.24)

16

Eq.2.24 shows the mechanism of fdec where, in each recurrent step t, the decoder

RNN generates a conditional distribution P (yt|r,y1:t−1) to predict yt.

In practice, the input sequence x can be very long, especially in tasks like

machine translation and machine reading comprehension. In these tasks, the fixed

encoder representation r can hardly capture all the proper information from x. As

a result, there exists a huge information loss of input context during the decoding

process which leads to significant performance drop (Bahdanau et al., 2014) .

2.2.6 Attention Mechanism

One solution for the encoder information loss problem in sequence-to-sequence

models is attention mechanism first proposed for neural machine translation (Bah-

danau et al., 2014). The intuition behind is simple: to generate target symbols in

different decoding steps, the decoder RNN’s focus on input information should be

different. Specifically, at each decoding step t, instead of conditioning on the fixed

input representation r, the decoder first computes a group of attention weights

{wt,i} over the entire input sequence {xk}:

wt,i =
exp(et,i)∑n
k=1 exp(et,k)

, (2.25)

where et,i depends on the last decoder hidden state hdect−1 and the encoder hidden

state henci at step i:

et,i = ϕ(hdect−1, h
enc
i). (2.26)

Then we can obtain a time-varying context vector ct by combining current attention

weights and input hidden states as a weighted sum:

ct =
n∑
i=1

wt,ih
enc
i , (2.27)

where ct serves as the dynamic summarization over the entire input sequence at

time t, now the target distribution P (y|x) becomes:

P (y|x) =
m∏
t=1

P (yt|ct,y1:t−1). (2.28)

17

From the above equations we can clearly verify that, the attention mechanism

allows flexible concentration on different part of input sequence when predicting

different yt and thus achieves higher input information utilization. Intuitively, the

attention mechanism mimics the information flow of human attention: assume

that we are translating French sentence “J’ai une pomme” (“I haven an apple”) into

English, when generating the word“apple”, we search over {“J’ai”, “une”, “pomme”}
and focus on the French word “pomme”, while the rest of the input “J’ai une” are

mostly neglected by our brain.

As a concise and effective approach of integrating different pieces of information,

the original attention mechanism has been extended to different variants, including

bi-directional attention(Seo et al., 2017), self-attention (Parikh et al., 2016; Lin

et al., 2017) and a fully attentive model called transformer built upon self-attentive

structures (Vaswani et al., 2017). Notably, transformers significantly outperform

previous deep architectures in machine translation. Moreover, Devlin et al. (2018)

recently introduced a language representation model called BERT which achieved

state-of-the-art performances in almost all the standard natural language processing

(NLP) tasks such as language inference and sentence classification. Surprisingly,

BERT is a pre-trained deep bi-directional transformer merely adding an output

layer without any task-specific structure design. All these examples demonstrate

the strong vitality of the attention mechanism.

2.2.7 External Memory

In Section 2.2.4, we discussed the memory cell in LSTM/GRU designed for

memorizing long-term information. However, its structural simplicity limits its

performance on complicated memorizing tasks such as machine reading compre-

hension. In this section we consider two advanced memory structures: end-to-end

memory network (EMN) (Sukhbaatar et al., 2015a) and neural turing machine

(NTM) (Graves et al., 2014). Both of them have some external memories with

read-and-write protocols and RNN based controllers. These newly introduced func-

tionalities allow the recurrent model to perform more stable information storage

with more flexible memory access.

18

End-to-end Memory Network

The end-to-end memory network (EMN) can be considered as an end-to-end

continuous form of the original memory network (MN)(Weston et al., 2014). The

idea behind MN and EMN is that, given any input set {xi}Ni=1 to be stored, each xi

is converted into a memory vector mi with dimension d in continuous space and we

obtain an external memory matrix M with size of N × d. When reading, a query

representation q is generated (by some query generation function f in controller)

and a context vector c is then retrieved from M through either discrete (hard)

retrieval in MN:

c = arg max
i

s(q,mi) (2.29)

where s is some scoring function, or continous (soft) retrieval in EMN:

c =
∑
i

wimi (2.30)

where weights {wi} is computed by a softmax function:

wi =
exp(qTmi)∑
j exp(qTmj)

(2.31)

Some representation o is then computed based on c to produce the final output.

MN and EMN also allow multi-hop reasoning by iteratively generating multiple

(qk, ck) pairs in K (predefined) steps. In the k-th step, qk and ck are computed

based on previous qk−1 and ck−1 via query generation function f in the controller

qk = f(qk−1, ck−1) (2.32)

and performing Eq.2.29 to Eq.2.31. The final output is then generated based on

the last content vector cK .

Compared with memory cell vector in LSTM/GRU which has fixed dimension,

the external memory matrix M in MN/EMN is (1) extendable and flexible in

memory size, (2) suitable for almost any type of input data, as one only needs an

embedding function to convert input x into the corresponding memory vector m,

(3) more stable in the sense of input information storage, as mi will not be modi-

fied unless some writing-mechanism is introduced, (4) an attentive memory access

19

protocol (in EMN) which allows more efficient and explainable input information

utilization.

Neural Turing Machine

The neural turing machine (NTM) is another advanced recurrent model. Like

MNs/EMNs, the NTM also has an external memory matrix M, but in this case M

is not independent input embeddings outside the NTM’s computational structure.

Instead, M has fixed size and is accessible only internally by the NTM controller.

The NTM has both a reading-mechanism and a writing-mechanism. Suppose

that Mt has size of N × d and its values may change over time. In the reading-

mechanism, a reading weight vector wr
t with size of N is emitted based on a gen-

erated reading head at time t, which satisfies: (1) each element wri,t is non-negative

and (2) ||wr
t ||1 = 1. The read context vector rt is then computed as the weighted

sum of all the memory slots mi,t in current Mt:

rt = MT
t wr

t =
∑
i

wri,tmi,t. (2.33)

rt is then sent to the controller for further processing.

The writing-mechanism in the NTM is inspired by the input gate and forget gate

in the LSTM, where the two gates are now generalized as erase and add actions.

Specifically, at time t, the controller emits a writing weight vector ww
t , an erase

vector et with its elements ranging in [0, 1] and an add vector at, the memory slot

mi,t−1 in Mt−1 at time t− 1 is then modified as:

mi,t = mi,t−1 � [1− wwi,tet] + wwi,tat (2.34)

Eq.2.34 shows that, the weight wwi,t controls how much the mi,t is concentrated

among all slots in Mt, while et and at are fine-grained modifications on different

dimensions of mi,t once it is concentrated.

From both EMNs and NTMs, we can find that the attention mechanism plays

a very important role in memory accessing. In fact, in the sequence-to-sequence

model, the encoded input sequence can be considered as an external memory while

the decoder serves as the controller which queries the input encoding at every time

step t using an attention mechanism.

20

2.2.8 Making RNNs deeper

Pascanu et al. (2014) raised another important aspect of RNNs: the depth .

Unlike the feed-forward network in which the “depth” is simply defined as the num-

ber of nonlinearities between the input and output, it is not very clear what the

“depth” means in RNNs and how to make RNNs “deeper”. The authors first tried

to discuss the concept of “depth” for RNNs, they then introduced three different

ways to extend the depth of RNNs: (1) by stacking, (2) by adding extra nonlinear-

ities between hidden layer and output layer and (3) by adding extra nonlinearities

inside RNNs’ transition functions (between two consecutive hidden states). They

empirically evaluated their proposed deeper RNNs on several sequential learning

tasks and showed the effectiveness of increasing the depth of RNNs. However, RNN

architectures discussed in this work are quite limited and the authors did not give

a rigorous analysis of the depth in an RNN, since the RNN’s topological connecting

architecture can be arbitrary. In Section 4 we will give much more detailed analysis

about RNN connecting architectures and the meaning of “depth” under the most

general conditions.

2.3 Learning Neural Natural Language

Representations

What is natural language? A language is said to be natural when it is evolved

naturally through daily use in a human society, reflecting human’s broad and com-

plicated consciousness towards the real world. Unlike formal/constructed languages

such as computer programming languages which have pre-defined rigorous rules,

natural languages are less regular and more flexible.

Natural language processing (NLP) is mainly about how computers process

and understand natural language. Because of the essence of natural language, the

research scope of NLP also strongly overlaps with domains like linguistics and psy-

chology. Obviously, natural language runs counter to the nature of regularness

and well-ordering rooted in computers, and that makes NLP a quite challenging

21

problem. In early days, researchers made efforts in building hand-crafted rule-

based NLP systems and proposing complex, structured ontologies to encode natu-

ral language into computer-readable forms((Winograd, 1971; Schank and Abelson,

1977)). Many are optimistic that a broad set of NLP tasks, such as machine trans-

lation(Hutchins et al., 1955) and chatbot(Weizenbaum, 1966), can be solved to

some extent, through careful design of a set of complete rules. Unfortunately, none

of these early tries successfully fulfilled their expectations, since the researchers

strongly overestimated the robustness of rule-based systems when facing real, com-

plicated natural language scenarios.

During the late 1980s, statistical machine learning (ML) appeared as the game

changer in this field (Manning et al., 1999). ML approaches provide probabilistic

views of natural language data: dependencies between different language compo-

nents are no more hard-coded but are modeled in a soft way with degree of uncer-

tainty. The ability to model uncertainty makes ML approaches much more robust

in complex NLP problems especially when non-standard expressions and errors are

heavily involved in the input data. Moreover, Compared with rule-based systems

built upon human experts’ knowledge and heuristics, ML approaches enable fully

automatic learning on the raw natural language data, which allows the system to

keep improving itself as more data are provided, thus it can capture the true under-

lying data distribution more accurately and generalize better on unseen examples.

During this period, methods such as the hidden Markov model (HMM) (Charniak

et al.), the decision tree (Màrquez and Rodŕıguez, 1998) and different kinds of

Bayesian models (McCallum et al., 1998; Stolcke and Omohundro, 1994) were pro-

posed for solving various tasks including part-of-speech tagging, language modeling

in speech recognition, parsing, document classification, machine translation and so

on.

In the beginning of this thesis, we already discussed the recent resurgence of

deep neural networks starting from the early 2010s. Not surprisingly, this deep

learning trend also brought fresh blood to the NLP community, during which the

deep representation learning and end-to-end learning paradigm dominated in the

field and deep learning based models achieved state-of-the-art results in almost all

the major NLP tasks. Generally speaking, deep representation learning aims to

take advantage of the deep neural networks to automatically extract hierarchical

representations from the raw natural language input. Such learning process can

22

be done in either supervised or unsupervised way, and the learned rich represen-

tations are then fed into downstream tasks. Furthermore, the end-to-end learning

paradigm strongly simplifies the problem formulation and modeling pipeline of the

NLP tasks. It abandons all the intermediate feature and model engineering, allow-

ing a more concise architecture as long as the input and output of the problem are

clearly defined. In the following sections, we will examine how these deep learning

techniques reshaped several major aspects of NLP.

2.3.1 Neural Language Model

As we discussed before, natural language data can be modeled in probabilistic

ways, among which a simple setup is the language model (LM) (Manning et al.,

1999). Given a piece of natural language content such as a sentence, an article or

even the entire Wikipedia, one can form it as a sequences of words {w1, w2, · · · , wL}.
An LM assigns a joint probability distribution p(w1, w2, · · · , wL) over the entire

sequence, this is achieved by decomposing p(w1, w2, · · · , wL) into the product of all

the successive conditional distributions:

p(w1, w2, · · · , wL) =
L∏
i=1

p(wi|w1, · · · , wi−1). (2.35)

From another point of view, Eq.2.35 shows that LM should have the ability of

predicting the current word based on all the preceding words.

N-gram Language Model

A classic statistical LM is the N-gram language model (N-gram LM). In N-

gram LM, we make the Markov assumption that the current word only depends on

previous N − 1 words, and Eq.2.35 becomes:

p(w1, w2, · · · , wL) =
L∏
i=1

p(wi|wi−N+1, · · · , wi−1). (2.36)

The conditional distribution p(wi|wi−N+1, · · · , wi−1) in N-gram LM is count-based,

which is simply calculated from corresponding frequency counts in the original word

23

sequence:

p(wi|wi−N+1, · · · , wi−1) =
N{wi−N+1,··· ,wi−1,wi}

N{wi−N+1,··· ,wi−1}
, (2.37)

where N{··· } denotes the count of subsequence {· · · } appearing in the original train-

ing sequence. Eq.2.37 implies an inherent problem of the naive count-based N-gram

LM: it will assign the probability of zero to an unseen sequence, which is quite often

the case. We call this problem the data sparsity problem. In practice, we also need

to introduce some smoothing strategy to force the N-gram LM to assign non-zero

probabilities over the entire space of all the possible sequences, so that the data

sparsity problem is a bit alleviated (Büttcher et al., 2016).

However, there are several inherent drawbacks of N-gram LM: (1) It suffers

from the curse of dimensionality that, the possible word sequences increase ex-

ponentially as the dependency length N increases linearly. This causes the data

sparsity problem mentioned before and smoothing techniques have quite limited

performance when the potential sequence space becomes huge. (2) It is unable to

grasp various syntactic and semantic meanings behind words and sentences since

only N-gram exact string match counts in Eq.2.37. (3) The Markov assumption is

an inaccurate approximation which may result in failures of capturing long-term

dependencies and is unable to discover complex non-linear sequential dependencies

among words.

Neural Language Model

The neural language model (NLM) addresses all the above issues in N-gram

LM. There are two different kinds of NLM: feed-forward neural language model

(feed-forward NLM) (Bengio et al., 2003) and recurrent neural language model

(recurrent NLM) (Mikolov et al., 2010). Feed-forward NLM has two significant

structural differences compared with N-gram LM. Firstly, for each unique word w

in the input vocabulary, a feed-forward NLM assigns a real-valued vector ew to w.

This vector is trainable, it works as a computable distributed feature representation

of w, or in other words, the embedding of w. Secondly, the conditional distribu-

tion p(wi|wi−N+1, · · · , wi−1) is modeled by a feed-forward NN fNN(·), in which the

current word wi further depends on embeddings of previous N − 1 words:

p(wi|wi−N+1, · · · , wi−1) = fNN(ewi−N+1
, · · · , ewi−1

). (2.38)

24

During learning, both these embeddings and the feed-forward NN keep being im-

proved to better fit the language distribution. The introduced distributed embed-

dings and NN based probabilistic function strongly alleviate the curse of dimen-

sionality problem, enabling much better interpolation and extrapolation for unseen

examples. Moreover, if two words are semantically similar, their embeddings are

close in the feature space, illustrating that these embeddings can encode word

semantics to some extent.

The recurrent NLM discards the explicit word-level Markov assumption in N-

gram LM and feed-forward LM. In recurrent NLM, the recurrent transition func-

tion fRNN(·) manages to iteratively encode every word in a sequences with arbi-

trary length. Given a sequence {w1, · · · , wL} and corresponding embedding vectors

{ew1 , · · · , ewL}, the history up to step t− 1 in that sequence is summarized in its

hidden state ht−1:

ht−1 = fRNN(ewt−1 ,ht−2). (2.39)

The p(wi|wi−N+1, · · · , wi−1) is then computed based on ht−1. Here we should em-

phasize that, compared with the feed-forward NLM, the recurrent NLM is better

at learning sequential data due to its recurrent nature.

To sum up, NLMs have strong capacities of modeling complex language de-

pendencies with better generalization abilities. One should notice that the recently

proposed killer model BERT discussed previously can be considered as an advanced

variant of the original NLM, which are trained on significant larger corpus.

2.3.2 Word Embedding and Beyond

In this section, we will dive deep into the distributed word embedding vectors

proposed but not fully examined in Bengio et al. (2003). Generally speaking, a word

embedding is a representation technique that maps words into vectors with their

semantic meanings encoded in the corresponding vector space. A word embedding

model is usually learned through unsupervised language modeling on some corpus.

Since the embedding vector is the compressed distributed representation of the

word, its dimension is much smaller than the vocabulary size of the corpus. Nowa-

days, the trained word embedding serves as the standard building block of input

representation for lots of downstream NLP tasks including parsing, classification,

language generation and so on.

25

The word2vec model is the most popular word embedding model (Mikolov et al.,

2013a,b). The motivation of word2vec is to reduce the computational complexity in

standard NLMs by implementing simpler structure with less nonlinearities, at the

same time preserving the quality of the learned distributed word representations.

Specifically, word2vec adopts a log-linear function and the non-linear hidden layer

in the original NLM is removed. There are two new architectures proposed in

word2vec: continuous skip-gram model (CSG) and continuous bag-of-words model

(CBOW) (Mikolov et al., 2013a).

In CSG, given the current word, the model predicts its neighbors. More for-

mally, given the corpus C = (w1, w2, · · · , wNC) with vocabulary V , CSG aims to

maximize the log probability of observing wt’s surrounding words within a fixed

context window size c given wt:

NC∑
t=1

∑
−c≤k≤c,k 6=0

log p(wt+k|wt). (2.40)

The conditional distribution p(wt+k|wt) is defined as:

p(wt+k|wt) =
exp(eTwtowt+k)∑
w∈V exp(eTwtow)

. (2.41)

ew is the word embedding of w while ow is the output word representation of w.

Compared with the CSG model, the CBOW model has similar architecture and

learning objective while it predicts the current word wt given wt’s neighbors.

The trained word2vec representations have several interesting syntactic/seman-

tic properties: (1) Naive similarity. Given two words w1 and w2 with similar mean-

ing, their embedding vectors e(w1) and e(w2) are close in embedding space. For

example, the cosine distance between e(cat) and e(dog) is much smaller than the

cosine distance between e(cat) and e(car). (2) Subtractive similarity. Given two

word pairs (w1, w̃1) and (w2, w̃2) where ·̃ implies some syntactic or semantic relation,

we have that the subtraction e(w̃1)−e(w1) is close to the subtraction e(w̃2)−e(w2)

in cosine distance, or in other words, e(w̃2) is close to e(w̃1)− e(w1) + e(w2). For

example, we have e(slowly) is closest to e(quickly)−e(quick) + e(slow) where the

adjective-adverb relation is captured. Another example is that e(queen) is closest

to e(king)−e(man)+e(woman) where the title and gender information is encoded.

26

(3) Additive similarity. Given words w1, w2 and w3, if the meaning of w3 can be

obtained by semantically combining w1 and w2, then in embedding space we often

have that the closest embedding of e(w1) + e(w2) is e(w3). For example, e(Hanoi)

is the closest embedding to e(V ietnam)+e(capital). In short, the above properties

all demonstrate word2vec’s strong capacity of representing different aspects of word

characteristics.

Inspired by word embedding models, researchers made further extensions and

developed new embedding models for higher level language components. Le and

Mikolov (2014) proposed the paragraph vector, which adopts the same model ar-

chitecture as word2vec but used it for encoding paragraphs. Kiros et al. (2015)

developed a sentence-level embedding called skip-thought vector, which is obtained

by training an RNN encoder-decoder model. The idea is similar to the skip-gram

model in word2vec but where the current sentence is encoded as a vector which is

further used to predict surrounding sentences. Lin et al. (2017) presented a self-

attentive sentence embedding model where the embedding becomes a matrix with

each row representing an attention over a different part of the sentences. More-

over, from the embedding point of view, powerful models such as ELMO (Peters

et al., 2018) and BERT (Devlin et al., 2018) can also be considered as embedding

functions which take arbitrary word sequences as input and output hierarchical

representations.

2.3.3 Neural Reading Comprehension

Given a piece of natural language article, how can we examine whether a person

understands the article context? Because “understanding” is a subjective mental

activity that cannot be explicitly investigated outside the person’s own conscious-

ness, some indirect measurement is required. One efficient way is to ask questions

about the article to that person. Since the question can be at any level addressing

any aspect of that article, the person is said to “understand the article” if he is able

to answer all the related questions. The same claim holds for machines. In simpler

scenarios such as syntactic parsing, machines can only “understand” the context up

to a given task-specific level, which is the “word-level syntax” in this case. Only

when the machine reading comprehension (MRC) task was introduced, one has

the possibility of fully testing a machine’s capacity for general understanding of

27

natural language. On the other hand, MRC is quite challenging because it requires

the machine to effectively integrate different levels of NLP skills in both syntactic

and semantic aspects. In the following, we will briefly go over the history of MRC

and discuss the recent progress in this field including new data sources and new

models, especially those related to deep learning approaches.

History

As a subfield of NLP, the development pathway of MRC systems strongly over-

laps with the historical progress of the broader NLP world discussed in the begin-

ning of this section. Before advanced machine learning approaches become popular,

MRC did not attract much attention from AI researchers and there were only a few

attempts towards address this problem (Lehnert, 1977; Schank and Abelson, 1977).

Unsurprisingly, most of these early tries were rule-based systems built upon simple

hand-crafted syntactic/semantic features with very limited generalization capac-

ity. One of the representative work during this period was from (Hirschman et al.,

1999), where the authors built a bag-of-words pattern matching system comprising

various linguistic processing. They also released the first MRC dataset, although

the size of the dataset is very small (120 stories in total for validation and test set).

Things started to change in the early 2010s, when larger datasets with training

examples were proposed and statistical machine learning models finally came to the

stage of MRC. The most famous dataset during this period is MCTest (Richardson

et al., 2013). MCTest has 660 children-level fictional stories as the reading con-

text with more than 2000 related questions, and the answer is in a multi-choice

form which offers a clear metric. Besides, MCTest is the first MRC dataset col-

lected using a scalable crowd-sourcing method and it is a reference for data collect-

ing methodology for later large-scale MRC datasets. MCTest inspired the design

of bunch of statistical MRC models (Wang et al., 2015; Yin et al., 2016) which

achieved considerable improvements over their rule-based predecessors. However,

the drawbacks of these traditional statistical models are clear: the linguistic feature

engineering is still a necessity to get meaningful input representations, while the

existing off-the-shelf linguistic tools often have generalization problems on compli-

cated MRC tasks (Chen, 2018).

MRC finally reached the era of neural reading comprehension (NRC) on 2015,

when Hermann et al. (2015) proposed the attentive reader together with a large

28

scale MRC dataset later referred to as the CNN/DailyMail dataset. The attentive

reader was the first to adopt a neural attention based model with the end-to-end

learning process (inspired by Bahdanau et al. (2014)) and it strongly outperformed

the previous non-neural models. Besides, the CNN/DailyMail dataset embraced a

tricky cloze-style 1 answer form allowing an extreme cheap data collection. How-

ever, the dataset has several inherent limitations making it a less satisfying testbed,

as pointed out in (Chen et al., 2016; Chen, 2018). In 2016, Rajpurkar et al. (2016)

built the Stanford question answering dataset (SQuAD) which became the most

popular NRC dataset in the following two years. SQuAD gathered more than

100,000 question-answer pairs from Wikipedia articles enabling large-scale end-to-

end training. Since its release, we witnessed a bloom of neural models quickly

pushing the boundary of NRC close to human-level performance. In the following,

we will further discuss in detail about this important dataset, the neural architec-

tures inspired by it and the future of NRC. Here, we first give a formal description

of the NRC problem. NRC aims to train a deep neural network model whose in-

puts are paragraph content c and a question q and output is an answer a. Different

from tasks like open domain question answering (QA) where the question can be

arbitrary, in NRC the q is required to be answerable solely depending on c. The ca-

pacity of the system is evaluated on how accurate the generate answer a is matched

with the ground truth answer a∗. In detail, the evaluation depends on the form of

the answer. In a common case, a∗ is a span of words exactly matching with some

subsequence in the given content. The system performance is then evaluated by

exact match (EM) and F1 score. For other answer forms like multiple choices or

cloze-style, the performance is exactly the accuracy of making the correct choice

or filling in the correct words.

SQuAD: Dataset and Models

The Stanford question answering dataset (SQuAD) is without a doubt a mile-

stone in the field of NRC. The original SQuAD contains more than 100,000 ques-

tions extracted from 23,215 paragraphs of 536 Wikipedia articles which has a broad

coverage of different topics. It has several notable features: (1) It is the first

large-scale MRC dataset with fully human-generated high quality data. It takes

1. A cloze-style test is a language test that certain words in a sentence are removed and the
participant is asked to fill in these the missing words.

29

advantage of crowd-sourcing techniques through launching a careful designed data

collection pipeline on the Amazon Mechanical Turk platform. (2) It is the first

MRC dataset where the question is in fluent natural language. (3) To offer a fea-

sible evaluation metric, the answer adopts the form of the span of words in the

corresponding paragraph. As we already discussed, this allows both the accuracy-

style metric like exact match (EM) and softer measures like F1 score which is more

suitable for long answers. SQuAD is also quite diverse in the sense of answer types

and reasoning types: The answers vary from nouns like person/data/location to

adjective/verb phrases and clauses. The reasoning required for answering ques-

tions also includes syntactic/lexical variation and multiple sentence reasoning. In a

word, because of its scale, data quality and data diversity, SQuAD stood out from

its competitors at the time it was released.

SQuAD is over-complicated for standard shallow models as already shown from

the unsatisfying performance of the baseline model in its original paper. However,

it soon became the hottest testbed for deep learning models and significantly drove

ahead the deep architecture design for the MRC problem. Most of these architec-

tures have a similar processing pipeline: First, a passage contextual information

encoder gcenc(·) and a question encoder gqenc(·) are applied given the input passage

c and question q. Then, some integrating mechanism fint(·) combines the infor-

mation flow from both c and q, conducts various multi-level neural operations and

finally outputs the start and end positions of the answer (ps, pe) in c:

(ps, pe) = fint(g
c
enc(c), g

q
enc(q)). (2.42)

Tracing back to the evolution of these architectures, most efforts have been made

on fint(·). Wang and Jiang (2016) proposed Match-LSTM + Answer-pointer which

was the first deep model that achieved significant progress on this task. Seo et al.

(2017) improved the performance by a large margin through a bi-attentional struc-

ture called BiDAF, which was then widely used as a basic building block of many

successors. Since BiDAF, many other researchers made further architectural exten-

sions by developing more complicated attention mechanisms such as co-attention,

self-attention and other variants (Xiong et al., 2016; Clark and Gardner, 2017;

Huang et al., 2017). The ensemble approach and the involvement of reinforcement

learning techniques also helped on pushing the performance boundary close to the

30

human upper bound (Hu et al., 2017). Finally, the famous BERT architecture, as

we mentioned several times before, unbelievably surpassed the human performance

and thus declared the end of the glorious SQuAD era (Devlin et al., 2018).

Post-SQuAD Era: What is Next?

However, solving SQuAD is far from solving the general MRC problem. In fact,

SQuAD has limitations in several respects: First of all, it is over-simplified that

the answer is restricted in the span-of-words form. A more generic case should

be free-text form which has no constraints on how the answer is phrased. More

importantly, the majority of the questions can be answered solely depending on

matching with one sentence in a single paragraph, which we refer to as single-

hop reasoning. This limited the dataset’s scope when evaluating more intricate

reasoning skills.

To overcome the problems of SQuAD, many new datasets have been collected in

2018. Up to the date of writing this thesis, the notable datasets includes: SQuAD

2.0, which is an advanced version of the original SQuAD with extra newly collected

50,000 unanswerable examples (Rajpurkar et al., 2018); TriviaQA, which consists of

question-answer pairs accompanied with multiple supporting documents, although

often the information from one document is already enough to answer the given

question (Joshi et al., 2017b); QAngaroo, which is the first dataset evaluating a

system’s multi-hop reasoning capacity (Welbl et al., 2018b). In other words, to

answer the question correctly the system must combine evidence from at least

two passages and perform multi-step reasoning over them. However, because the

data collection in QAngaroo is based on pre-existing knowledge base (KB) schema,

the question is not in natural language form and its type diversity is significantly

restricted; HotpotQA, which also facilitates multi-hop reasoning like QAngaroo,

but this time the question is pure natural language without any KB constraints

and is accompanied by accurate supporting facts which enables the system making

explainable predictions. As one of the major works of this thesis, we will give a

thorough investigation of HotpotQA in Section 8.

31

2.3.4 Neural Dialogue System

Dialogue system has flexible definitions depending on the diverse scenarios con-

sidered. In the scope of this thesis, we consider a dialogue system as a machine

learning model that can conduct conversations with humans. We only care about

the natural language aspect where the input and output are textual responses, while

ignoring modes such as speech recognition and synthesis, emotional expression and

other human-computer interaction issues. This makes our discussion focusing on

two hardest components of the dialogue system: natural language understanding

(NLU) and natural language generation (NLG).

Dialogue systems hold a special and crucial status in the history of AI. In Alan

Turing’s 1950 paper “Computing Machinery and Intelligence” (Turing, 2009), the

famous Turing test was proposed which is broadly considered as the first and the

most influential approach to evaluate the intelligence of a non-human system. To

answer the essential question “Can a machine think?”, the Turing test suggests a

simple idea: Let the machine being tested and a human participant both talk to a

third human evaluator in a text-only conversational environment. Without knowing

which is which, the evaluator is asked to judge the identity of the machine from

these two conversational partners only based on the textual responses generated

from them. The machine is said to behave intelligently if the human evaluator

cannot tell the machine from the human participant. Apparently, Turing test is a

subjective metric totally relying on the judgment of the human evaluator. However,

because the concept of intelligence is too complicated to have an accurate and

quantitative measurement, Turing test is so far the most feasible way of examining

the general intelligence of a machine. Obviously, on can think the Turing test

as a machine-human dialogue and the machine here exactly matches with all the

characteristics of a dialogue system defined in the scope of this thesis. In other

words, a successful dialogue system is at least a clear sign of approaching the final

goal of artificial general intelligence (AGI).

History

A dialogue system is also referred to as a chatbot. We will use both names in-

terchangeably in the rest of this thesis. The first chatbot was called ELIZA built in

1960s, originally aiming for illustrating how superficial the machine-human inter-

32

action can be (Weizenbaum, 1966). It consists of several simple executable scripts

with mainly keyword matching and substitution tricks, pretending to focus and un-

derstand its dialogue partner’s words but indeed not. Opposite to the expectation

of its creator, many candidates talked to ELIZA really thought that it can indeed

express its “personal feelings” and emotions. This phenomenon was even become

a psychological term named the ELIZA effect, revealing the unpredictable social

influence of chatbots on humans. The progress has been almost halted after then

because of the AI winter of the 1970s. The practical success of expert systems in

late 1980s pulled the interests back towards chatbots and one of the turning points

was the launching of the Loebner Prize competition 2, which awards chatbots that

are most human-like when conducting conversations. Many sophisticated chatbots

came into view since then. One of the notable systems during this period is the

Alicebot (Wallace, 2009), inspired by the original ELIZA. The Alicebot adopted

Artificial Intelligence Markup Language (AIML) which is an XML based schema

framework for encoding multi-level rules and heuristics. Alicebot won the Loebner

Prize three times while AIML became a standard framework that many successors

used it for constructing their own rule-based submodules. As happened in most

NLP tasks already discussed, the dialogue system was also reformed by statisti-

cal data-driven approaches since late 1990s. Through this line of research we see

Markov approaches which model dialogues as sequences of either words or deci-

sions (Hutchens and Alder, 1998; Singh et al., 2000; Young et al., 2013), traditional

ML methods that formulate different dialogue system components as classification

problems (Gorin et al., 1997; Reithinger and Klesen, 1997), and most importantly,

the union with neural end-to-end learning methodology which empower superior

model construction both in scale and in quality (Vinyals and Le, 2015; Sordoni

et al., 2015; Serban et al., 2016b).

Neural Dialogue Models for General Chitchat

As introduced earlier, the standard text-based dialogue system consists of two

parts, the NLU part which processes and converts the current dialogue input into

internal representations via dialogue state tracking and action modeling, and the

NLG part which outputs responses in either generative or retrieval ways. In a

neural dialogue system, NLU, NLG and even their sub-components (for example,

2. http://www.aisb.org.uk/events/loebner-prize

33

the dialogue state tracker in (Mrkšić et al., 2015)) can be parameterized as neural

networks. In most situations however, the entire system is modeled as a variant of

the simple neural sequence-to-sequence model ready for end-to-end training (Cho

et al., 2014; Vinyals and Le, 2015). In detail, given the current dialog history

Ht−1 = (x1, r1, ..., xt−1, xt−1) where ri and xi stand for responses of the model

and the other dialogue partner respectively, an encoder RNN fenc(·) first converts

the current response xt into some intermediate representation. It is then merged

with the last inner dialogue state st−1 (summarizing the previous dialogue history)

by a dialog state tracking network fH(·) (usually another RNN or more advanced

external memories) to produce the current state inner st. The latest model response

rt is then generated by another RNN decoder fdec(·) based on st. Formally, the

whole process in the t-th round can be formularized using the following equation:

rt = fdec(fH(fenc(xt), st−1)). (2.43)

Depending on the practical purpose, chatbots can be categorized as goal-oriented

systems and non-goal-oriented ones which are also called chitchat bots. As its name

denotes, the goal-oriented system is designed to help the human partner attain-

ing some specific goal such as flight/hotel booking and product technical support

(Aust et al., 1995; Young et al., 2013; Wen et al., 2016). Existing goal-oriented

chatbots are often hybrid ones incorporating discrete predefined slot/action space

while utilizing statistical/neural procedures modeling the intermediate features for

user intention and responding policy. Because the goal-oriented system’s applica-

tion scenarios are often controlled environments with clear boundaries and limited

outliers, its practical implementation and commercialization are rather feasible. On

the other hand, chitchat systems are facing the open domain understanding prob-

lem as the user responses can cover arbitrary topics with arbitrary phrasings during

a casual conversation. Early systems like Alicebot (Wallace, 2009) attempted to

manually cover a wide range of topics and daily conversation tricks by hand-crafted

AIML scripts which is hardly extendable. Thanks to the explosion of public in-

formation posted in social media, forums and video websites, researchers collected

bunch of large scale chitchat data sources including Twitter Corpus (Ritter et al.,

2010), Reddit Corpus (Schrading et al., 2015), Ubuntu Dialogue Corpus (Lowe

et al., 2015), OpenSubtitles (Tiedemann, 2012) and so on. Taking advantages from

34

both corpora richness and the representative capacity of neural architectures, a

new trend of end-to-end chitchat models quickly dominated the field (Hutchens

and Alder, 1998; Singh et al., 2000; Young et al., 2013). Distinct from its coun-

terparts like retrieval or rule-based models, end-to-end models can generate more

tailored and coherent responses by projecting the dialogue history into comprehen-

sive continuous feature space. However, the performance evaluation of a chitchat

bot is quite challenging compared with its goal-oriented cousin which can at least be

measured by whether it completes the goal through the conversation. For chitchat

bot, automatic metrics in other NLP domains like BLEU in machine translation

or ROUGE in document summarization are almost unacceptable, as empirically

proved in (Liu et al., 2016). This is mainly because the language diversity and con-

text variation are so severe in a conversation that there even does not exist a ground

truth response. The alternative is to take human-feedback based subjective evalu-

ations derived from the Turing test methodology, which may be expensive and not

quite scalable (Serban et al., 2015). Another open problem for end-to-end chitchat

bots is about how to introduce and encode long term external information (knowl-

edge) beyond the current dialogue history to improve the conversation consistency

and engagingness. One remarkable idea is to assign personalities to chatbots so

that they can better mimic manlike emotions and reactions and thus can smooth

the conversation. Along this direction, researchers explored implicit ways of em-

bedding personalities through learning from dialogues (Li et al., 2016b; Joshi et al.,

2017a). In Section 10, we will investigate a recent dataset called persona-chat pro-

posed by the author, allowing end-to-end models to explicitly model personalities

in natural language form and legitimate a more engaging dialogue. Besides, an ef-

ficient crowd-sourcing based dialogue evaluation pipeline will be further examined

on this dataset.

35

3 Prologue to First Article

3.1 Article Detail

Architectural Complexity Measures of Recurrent Neural Networks.

Saizheng Zhang1, Yuhuai Wu1, Tong Che, Zhouhan Lin, Roland Memisevic, Rus-

lan Salakhutdinov, Yoshua Bengio. Advances in Neural Information Processing

Systems (NIPS), 2016.

Personal Contribution. The idea of exploring RNN connecting architectures

came from several discussions among Yuhuai Wu, Zhouhan Lin and me. Yuhuai

Wu and I further developed the rigorous graph-theoretic framework together with

three architectural complexity measures. I proposed the original proofs of two main

theories while Tong Che made several crucial polishments on them and finished the

remaining proofs. I conducted the experiments on language modeling datasets and

sequential MNIST dataset, Yuhuai Wu and Zhouhan lin contributed to the rest.

Roland Memisevic, Ruslan Salakhutdinov and Yoshua Bengio offered several critical

suggestions about the general framework formulation and experiments.

3.2 Context

This work systematically analyzes the connecting architectures of recurrent neu-

ral networks (RNNs). Specifically, we first present a rigorous graph-theoretical

framework describing the connecting architectures of RNNs in general. We then

propose three architecture complexity measures of RNNs: (a) the recurrent depth,

which captures the RNN’s over-time nonlinear complexity, (b) the feedforward

depth, which captures the local input-output nonlinearity (similar to the “depth” in

feedforward neural networks (FNNs)), and (c) the recurrent skip coefficient which

1. Equal contribution.

36

captures how rapidly the information propagates over time. Our experimental re-

sults show that RNNs might benefit from larger recurrent depth and feedforward

depth. We further demonstrate that increasing recurrent skip coefficient offers

performance boosts on long term dependency problems.

In this work, we purely concentrate on the graph aspect of RNN connecting ar-

chitectures, where we assume that all the hidden nodes share the same formulation

of the transition function. This homogeneous assumption aims to disentangle other

performance related factors. While there do exist other critical aspects that could

influence the performance of an RNN, especially the computational operations in

its transition function: Gating mechanism introduced in LSTMs and GRUs can

dynamically control the information that flows through recurrent states and thus

can further adjust the gradient propagation (Hochreiter and Schmidhuber, 1997;

Cho et al., 2014); The initialization of hidden-to-hidden transition matrix also have

significant impact on the RNN learning process (Le et al., 2015; Arjovsky et al.,

2015). Besides, the recently introduced normalization techniques such as recurrent

batch-normalization (Cooijmans et al., 2016) and layer-normalization (Ba et al.,

2016) also play important roles in boosting the performance of RNNs.

3.3 Contributions

This work is the very first attempt to rigorously analyze the connecting archi-

tecture of RNNs. It introduced a general formulation of RNN architectures under

which we could further evaluate the architectural complexity of an RNN via three

novel measures: recurrent depth, feedforward depth, and recurrent skip coefficients.

It also answered the question of “What is the depth of an RNN?” under the most

general scenario. Empirical evidence from our experiments implied that these mea-

sures are able to provide guidance for the design and inspection of new recurrent

architectures for a particular learning task.

37

4
Architectural Complexity
Measures of Recurrent
Neural Networks

4.1 Introduction

We focus on an important theoretical aspect of recurrent neural networks (RNNs):

the connecting architecture. Ever since Schmidhuber (1992); El Hihi and Bengio

(1996) introduced different forms of “stacked RNNs”, researchers have taken ar-

chitecture design for granted and have paid less attention to the exploration of

other connecting architectures. Some examples include Raiko et al. (2012); Graves

(2013) who explored the use of skip connections; Hermans and Schrauwen (2013)

who proposed the deep RNNs which are stacked RNNs with skip connections;

Pascanu et al. (2013a) who pointed out the distinction of constructing a “deep”

RNN from the view of the recurrent paths and the view of the input-to-hidden

and hidden-to-output maps. However, they did not rigorously formalize the notion

of “depth” and its implications in “deep” RNNs. Besides “deep” RNNs, there still

remains a vastly unexplored field of connecting architectures. We argue that one

barrier for better understanding the architectural complexity is the lack of a gen-

eral definition of the connecting architecture. This forced previous researchers to

mostly consider the simple cases while neglecting other possible connecting varia-

tions. Another barrier is the lack of quantitative measurements of the complexity

of different RNN connecting architectures: even the concept of “depth” is not clear

with current RNNs.

In this work, we try to address these two barriers. We first introduce a general

definition of a recurrent neural network, where we divide an RNN into two basic

ingredients: a well-defined graph representation of the connecting architecture, and

a set of transition functions describing the computational process associated with

each unit in the network. Observing that the RNN undergoes multiple transfor-

mations not only feedforwardly (from input to output within a time step) but also

recurrently (across multiple time steps), we carry out a quantitative analysis of

38

the number of transformations in these two orthogonal directions, which results in

the definitions of recurrent depth and feedforward depth. These two depths can be

viewed as general extensions of the work of Pascanu et al. (2013a). We also explore

a quantity called the recurrent skip coefficient which measures how quickly informa-

tion propagates over time. This quantity is strongly related to vanishing/exploding

gradient issues, and helps deal with long term dependency problems. Skip connec-

tions crossing different timescales have also been studied by Lin et al. (1996); El Hihi

and Bengio (1996); Sutskever and Hinton (2010); Koutnik et al. (2014). Instead of

specific architecture design, we focus on analyzing the graph-theoretic properties of

recurrent skip coefficients, revealing the fundamental difference between the regular

skip connections and the ones which truly increase the recurrent skip coefficients.

We empirically evaluate models with different recurrent/feedforward depths and

recurrent skip coefficients on language modelling and sequential MNIST tasks. We

also show that our experimental results further validate the usefulness of the pro-

posed definitions.

4.2 General RNN

RNNs are learning machines that recursively compute new states by applying

transition functions to previous states and inputs. It has two ingredients: the

connecting architecture describing how information flows between different nodes

and the transition function describing the nonlinear transformation at each node.

The connecting architecture is usually illustrated informally by an infinite directed

acyclic graph, which in turn can be viewed as a finite directed cyclic graph that

is unfolded through time. In this section, we first introduce a general definition of

the connecting architecture and its underlying computation, followed by a general

definition of an RNN.

4.2.1 The Connecting Architecture

We formalize the concept of the connecting architecture by extending the tra-

ditional graph-based illustration to a more general definition with a finite directed

multigraph and its unfolded version. Let us first define the notion of the RNN

39

cyclic graph Gc that can be viewed as a cyclic graphical representation of RNNs.

We attach “weights” to the edges in the cyclic graph Gc that represent time delay

differences between the source and destination node in the unfolded graph repre-

sentation.

Definition 4.2.1.1. Let Gc = (Vc, Ec) be a weighted directed multigraph 1, in

which Vc = Vin∪Vout∪Vhid is a finite set of nodes, and Vin, Vout, Vhid are not empty.

Ec ⊂ Vc × Vc × Z is a finite set of directed edges. Each e = (u, v, σ) ∈ Ec denotes

a directed weighted edge pointing from node u to node v with an integer weight σ.

Each node v ∈ Vc is labelled by an integer tuple (i, p). i ∈ {0, 2, · · ·m− 1} denotes

the time index of the given node, where m is the period number of the RNN,

and p ∈ S, where S is a finite set of node labels. We call the weighted directed

multigraph Gc = (Vc, Ec) an RNN cyclic graph, if

(1) For every edge e = (u, v, σ) ∈ Ec, let iu and iv denote the time index of

node u and v, then σ = iv − iu + k ·m for some k ∈ Z.

(2) There exists at least one directed cycle 2 in Gc.
(3) For any closed walk ω, the sum of all the σ along ω is not zero.

(4) There are no incoming edges to nodes in Vin, and no outgoing edges from

nodes in Vout. There are both incoming edges and outgoing edges for nodes in Vhid.

Condition (1) assures that we can get a periodic graph (repeating pattern)

when unfolding the RNN through time. Condition (2) excludes feedforward neural

networks in the definition by forcing to have at least one cycle in the cyclic graph.

Condition (3) simply avoids cycles after unfolding.

The cyclic representation can be seen as a time folded representation of RNNs,

as shown in Figure 4.1 (a). Given an RNN cyclic graph Gc, we unfold Gc over time

t ∈ Z by the following procedure:

Definition 4.2.1.2 (Unfolding). Given an RNN cyclic graph Gc = (Vc, Ec, σ),

we define a new infinite set of nodes Vun = {(i + km, p)|(i, p) ∈ V, k ∈ Z}. The

new set of edges Eun ∈ Vun × Vun is constructed as follows: ((t, p), (t′, p′)) ∈ Eun
if and only if there is an edge e = ((i, p), (i′, p′), σ) ∈ E such that t′ − t = σ, and

t ≡ i(modm). The new directed graph Gun = (Vun, Eun) is called the unfolding of

1. A directed multigraph is a directed graph that allows multiple directed edges connecting
two nodes.

2. A directed cycle is a closed walk with no repetitions of edges.

40

Gc. Any infinite directed graph that can be constructed from an RNN cyclic graph

through unfolding is called an RNN unfolded graph.

Lemma 4.2.1.1. The unfolding Gun of any RNN cyclic graph Gc is a directed

acyclic graph (DAG).

Figure 4.1(a) shows an example of two graph representations Gun and Gc of a

given RNN. Consider the edge from node (1, 7) going to node (0, 3) in Gc. The fact

that it has weight 1 indicates that the corresponding edge in Gun travels one time

step, ((t + 1, 7), (t + 2, 3)). Note that node (0, 3) also has a loop with weight 2.

This loop corresponds to the edge ((t, 3), (t+ 2, 3)).

The two kinds of graph representations we presented above have a one-to-one

correspondence. Also, any graph structure θ on Gun is naturally mapped into

a graph structure θ̄ on Gc. Given an edge tuple ē = (u, v, σ) in Gc, σ stands

for the number of time steps crossed by ē’s covering edges in Eun, i.e., for every

corresponding edge e ∈ Gun, e must start from some time index t to t + σ. Hence

σ corresponds to the “time delay” associated with e.

In addition, the period number m in Definition 4.2.1.1 can be interpreted as

the time length of the entire non-repeated recurrent structure in its unfolded RNN

graph Gun. Strictly speaking, m has the following properties in Gun: ∀k ∈ Z, if

∃v = (t, p) ∈ Vun, then ∃v′ = (t + km, p) ∈ Vun; if ∃e = ((t, p), (t′, p′)) ∈ Eun, then

∃e′ = ((t + km, p), (t′ + km, p′)) ∈ Eun. In other words, shifting the Gun through

time by km time steps will result in a DAG which is identical to Gun, and m is

the smallest number that has such property for Gun. Most traditional RNNs have

m = 1, while some special structures like hierarchical or clockwork RNN (El Hihi

and Bengio, 1996; Koutnik et al., 2014) have m > 1. For example, Figure 4.1(a)

(unfolded graph representation Gun) shows that the period number of this specific

RNN is 2. It is clear that if there exists a directed cycle ϑ in Gc, and the sum of σ

along ϑ is positive (or negative), then there is a path which is the pre-image of ϑ

in Gun whose length (summing the edge σ’s) approaches +∞ (or −∞). This fact

naturally induces the general definition of unidirectionality and bidirectionality of

RNNs as follows:

Definition 4.2.1.3. An RNN is called unidirectional if its cyclic graph represen-

tation Gc has the property that the sums of σ along all the directed cycles ϑ in

41

Gc share the same sign, i.e., either all positive or all negative. An RNN is called

bidirectional if it is not unidirectional.

4.2.2 A General Definition of RNN

The connecting architecture in Sec. 4.2.1 describes how information flows among

RNN units. Assume v̄ ∈ Vc is a node in Gc, let In(v̄) denotes the set of incoming

nodes of v̄, In(v̄) = {ū|(ū, v̄) ∈ Ec}. In the forward pass of the RNN, the transition

function Fv̄ takes outputs of nodes In(v̄) as inputs and computes a new output.

For example, vanilla RNNs units with different activation functions, LSTMs and

GRUs can all be viewed as units with specific transition functions. We now give

the general definition of an RNN:

Definition 4.2.2.1. An RNN is a tuple (Gc,Gun, {Fv̄}v̄∈Vc), in which Gun = (Vun, Eun)

is the unfolding of RNN cyclic graph Gc, and {Fv̄}v̄∈Vc is the set of transition func-

tions. In the forward pass, for each hidden and output node v ∈ Vun, the transition

function Fv̄ takes all incoming nodes of v as the input to compute the output.

An RNN is homogeneous if all the hidden nodes share the same form of the

transition function.

4.3 Measures of Architectural Complexity

In this section, we develop different measures of RNNs’ architectural complex-

ity, focusing mostly on the graph-theoretic properties of RNNs. To analyze an RNN

solely from its architectural aspect, we make the mild assumption that the RNN

is homogeneous. We further assume the RNN to be unidirectional. For a bidirec-

tional RNN, it is more natural to measure the complexities of its unidirectional

components.

4.3.1 Recurrent Depth

Unlike feedforward models where computations are done within one time frame,

RNNs map inputs to outputs over multiple time steps. In some sense, an RNN

42

undergoes transformations along both feedforward and recurrent dimensions. This

fact suggests that we should investigate its architectural complexity from these two

different perspectives. We first consider the recurrent perspective.

The conventional definition of depth is the maximum number of nonlinear trans-

formations from inputs to outputs. Observe that a directed path in an unfolded

graph representation Gun corresponds to a sequence of nonlinear transformations.

Given an unfolded RNN graph Gun, ∀i, n ∈ Z, let Di(n) be the length of the longest

path from any node at starting time i to any node at time i+ n.

From the recurrent perspective, it is natural to investigate how Di(n) changes

over time. Generally speaking, Di(n) increases as n increases for all i. Such in-

crease is caused by the recurrent structure of the RNN which keeps adding new

nonlinearities over time. Since Di(n) approaches ∞ as n approaches ∞, 3 to mea-

sure the complexity of Di(n), we consider its asymptotic behaviour, i.e., the limit

of Di(n)
n

as n→∞. Under a mild assumption, this limit exists. To perform a prac-

tical calculation of this limit, the next theorem relies on Gun’s cyclic counterpart

Gc, where the computation is much easier:

Theorem 4.3.1.1 (Recurrent Depth). Given an RNN and its two graph repre-

sentation Gun and Gc, we denote C(Gc) to be the set of directed cycles in Gc. For ϑ

∈ C(Gc), let l(ϑ) denote the length of ϑ and σs(ϑ) denote the sum of edge weights

σ along ϑ. Under a mild assumption 4,

dr = lim
n→+∞

Di(n)

n
= max

ϑ∈C(Gc)

l(ϑ)

σs(ϑ)
. (4.1)

Thus, dr is a positive rational number.

More intuitively, dr is a measure of the average maximum number of nonlinear

transformations per time step as n gets large. Thus, we call it recurrent depth:

Definition 4.3.1.1 (Recurrent Depth). Given an RNN and its two graph rep-

resentations Gun and Gc, we call dr, defined in Eq.(4.1), the recurrent depth of the

RNN.

In Figure 4.1(a), one can easily verify that Dt(1) = 5, Dt(2) = 6, Dt(3) = 8,

Dt(4) = 9 . . . Thus Dt(1)
1

= 5, Dt(2)
2

= 3, Dt(3)
3

= 8
3
, Dt(4)

4
= 9

4
. . . ., which eventually

3. Without loss of generality, we assume the unidirectional RNN approaches positive infinity.
4. See a full treatment of the limit in general cases in Theorem 4.6.0.1 and Proposition 4.6.0.1

in Section 4.6.

43

Figure 4.1 – (a) An example of an RNN’s Gc and Gun. Vin is denoted by square, Vhid is denoted
by circle and Vout is denoted by diamond. In Gc, the number on each edge is its corresponding
σ. The longest path is colored in red. The longest input-output path is colored in yellow and the
shortest path is colored blue. The value of three measures are dr = 3

2 , df = 3.5 and s = 2. (b) 5
more examples. (1) and (2) have dr = 2, 32 , (3) has df = 5, (4) and (5) has s = 2, 32 .

converges to 3
2

as n→∞. As n increases, most parts of the longest path coincides

with the path colored in red. As a result, dr coincides with the number of nodes

the red path goes through per time step. Similarly in Gc, observe that the red cycle

achieves the maximum (3
2
) in Eq.(4.1). Usually, one can directly calculate dr from

Gun.

It is easy to verify that simple RNNs and stacked RNNs share the same recurrent

depth which is equal to 1. This reveals the fact that their nonlinearities increase

at the same rate, which suggests that they will behave similarly in the long run.

This fact is often neglected, since one would typically consider the number of layers

as a measure of depth, and think of stacked RNNs as “deep” and simple RNNs as

“shallow”, even though their discrepancies are not due to recurrent depth (which

regards time) but due to feedforward depth, defined next.

4.3.2 Feedforward Depth

Recurrent depth does not fully characterize the nature of nonlinearity of an

RNN. As previous work suggests (Sutskever et al., 2014), stacked RNNs do outper-

form shallow ones with the same hidden size on problems where a more immediate

input and output process is modeled. This is not surprising, since the growth rate of

Di(n) only captures the number of nonlinear transformations in the time direction,

not in the feedforward direction.

The perspective of feedforward computation puts more emphasis on the specific

paths connecting inputs to outputs. Given an RNN unfolded graph Gun, let D∗i (n)

be the length of the longest path from any input node at time step i to any output

node at time step i+n. Clearly, when n is small, the recurrent depth cannot serve

44

as a good description for D∗i (n). In fact. it heavily depends on another quantity

which we call feedforward depth. The following proposition guarantees the existence

of such a quantity and demonstrates the role of both measures in quantifying the

nonlinearity of an RNN.

Proposition 4.3.2.1 (Input-Output Length Least Upper Bound). Given an

RNN with recurrent depth dr, we denote

df = sup
i,n∈Z

D∗i (n)− n · dr. (4.2)

The supremum df exists and thus we have the following upper bound for D∗i (n)

D∗i (n) ≤ n · dr + df .

The above upper bound explicitly shows the interplay between recurrent depth

and feedforward depth: when n is small, D∗i (n) is largely bounded by df ; when n

is large, dr captures the nature of the bound (≈ n · dr). These two measures are

equally important, as they separately capture the maximum number of nonlinear

transformations of an RNN in the long run and in the short run.

Definition 4.3.2.1. (Feedforward Depth) Given an RNN with recurrent depth

dr and its two graph representations Gun and Gc, we call df , defined in Eq.(4.2),

the feedforward depth 5 of the RNN.

To calculate df in practice, we introduce the following theorem:

Theorem 4.3.2.1 (Feedforward Depth). Given an RNN and its two graph rep-

resentations Gun and Gc, we denote ξ(Gc) the set of directed paths that start at an

input node and end at an output node in Gc. For γ ∈ ξ(Gc), denote l(γ) the length

and σs(γ) the sum of σ along γ. Then we have:

df = sup
i,n∈Z

D∗i (n)− n · dr = max
γ∈ξ(Gc)

l(γ)− σs(γ) · dr,

5. Conventionally, an architecture with depth 1 is a three-layer architecture containing one
hidden layer. But in our definition, since it goes through two transformations, we count the
depth as 2 instead of 1. This should be particularly noted with the concept of feedforward depth,
which can be thought as the conventional depth plus 1.

45

where m is the period number and dr is the recurrent depth of the RNN. Thus, df

is a postive rational number.

For example, in Figure 4.1(a), one can easily verify that df = D∗t (0) = 3. Most

commonly, df is the same as D∗t (0), i.e., the maximum length from an input to its

current output.

4.3.3 Recurrent Skip Coefficient

Depth provides a measure of the complexity of the model. But such a measure is

not sufficient to characterize behavior on long-term dependency tasks. In particu-

lar, since models with large recurrent depths have more nonlinearities through time,

gradients can explode or vanish more easily. On the other hand, it is known that

adding skip connections across multiple time steps may help improve the perfor-

mance on long-term dependency problems (Lin et al. (1996); Sutskever and Hinton

(2010)). To measure such a “skipping” effect, we should instead pay attention to

the length of the shortest path from time i to time i+n. In Gun, ∀i, n ∈ Z, let di(n)

be the length of the shortest path. Similar to the recurrent depth, we consider the

growth rate of di(n).

Theorem 4.3.3.1 (Recurrent Skip Coefficient). Given an RNN and its two

graph representations Gun and Gc, under mild assumptions 6

j = lim
n→+∞

di(n)

n
= min

ϑ∈C(Gc)

l(ϑ)

σs(ϑ)
. (4.3)

Thus, j is a positive rational number.

Since it is often the case that j is smaller or equal to 1, it is more intuitive to

consider its reciprocal.

Definition 4.3.3.1. (Recurrent Skip Coefficient) 7. Given an RNN and its

two graph representations Gun and Gc, we define s = 1
j
, whose reciprocal is defined

in Eq.(4.3), as the recurrent skip coefficient of the RNN.

6. See Proposition 4.6.0.3 in Section 4.6.
7. One would find this definition very similar to the definition of the recurrent depth. There-

fore, we refer readers to examples in Figure 4.1 for some illustrations.

46

With a larger recurrent skip coefficient, the number of transformations per time

step is smaller. As a result, the nodes in the RNN are more capable of “skipping”

across the network, allowing unimpeded information flow across multiple time steps,

thus alleviating the problem of learning long term dependencies. In particular, such

effect is more prominent in the long run, due to the network’s recurrent structure.

Also note that not all types of skip connections can increase the recurrent skip

coefficient. We will consider specific examples in our experimental results section.

4.4 Experiments and Results

In this section we conduct a series of experiments to investigate the following

questions: (1) Is recurrent depth a trivial measure? (2) Can increasing depth yield

performance improvements? (3) Can increasing the recurrent skip coefficient im-

prove the performance on long term dependency tasks? (4) Does the recurrent skip

coefficient suggest something more compared to simply adding skip connections?

We first show evaluations on RNNs with tanh nonlinearities, and then present

similar results for LSTMs.

4.4.1 Tasks and Training Settings

PennTreebank dataset: We evaluate our models on character level language

modelling using the PennTreebank dataset Marcus et al. (1993). It contains 5059k

characters for training, 396k for validation and 446k for test, and has a alphabet

size of 50. We set each training sequence to have the length of 50. Quality of fit is

evaluated by the bits-per-character (BPC) metric, which is log2 of perplexity.

text8 dataset: Another dataset used for character level language modelling

is the text8 dataset 8, which contains 100M characters from Wikipedia with an

alphabet size of 27. We follow the setting from Mikolov et al. (2012) and each

training sequence has length of 180.

adding problem: The adding problem (and the following copying memory

problem) was introduced in Hochreiter and Schmidhuber (1997). For the adding

problem, each input has two sequences with length of T where the first sequence

8. http://mattmahoney.net/dc/textdata.

47

are numbers sampled from uniform[0, 1] and the second sequence are all zeros

except two elements which indicates the position of the two elements in the first

sequence that should be summed together. The output is the sum. We follow the

most recent results and experimental settings in Arjovsky et al. (2015) (same for

copying memory).

copying memory problem: Each input sequence has length of T + 20, where

the first 10 values are random integers between 1 to 8. The model should remember

them after T steps. The rest of the sequence are all zeros, except for the last 11

entries in the sequence, which starts with 9 as a marker indicating that the model

should begin to output its memorized values. The model is expected to give zero

outputs at every time step except the last 10 entries, where it should generate (copy)

the 10 values in the same order as it has seen at the beginning of the sequence.

The goal is to minimize the average cross entropy of category predictions at each

time step.

sequential MNIST dataset: Each MNIST image data is reshaped into a

784× 1 sequence, turning the digit classification task into a sequence classification

one with long-term dependencies (Le et al., 2015; Arjovsky et al., 2015). A slight

modification of the dataset is to permute the image sequences by a fixed random

order beforehand (permuted MNIST). Results in Le et al. (2015) have shown that

both tanh RNNs and LSTMs did not achieve satisfying performance, which also

highlights the difficulty of this task.

For all of our experiments we use Adam (Kingma and Ba, 2014) for optimization,

and conduct a grid search on the learning rate in {10−2, 10−3, 10−4, 10−5}. For tanh

RNNs, the parameters are initialized with samples from a uniform distribution.

For LSTM networks we adopt a similar initialization scheme, while the forget gate

biases are chosen by the grid search on {−5,−3,−1, 0, 1, 3, 5}. We employ early

stopping and the batch size was set to 50.

4.4.2 Recurrent Depth is Non-trivial

To investigate the first question, we compare 4 similar connecting architectures:

1-layer (shallow) “sh”, 2-layers stacked “st”, 2-layers stacked with an extra bottom-

up connection “bu”, and 2-layers stacked with an extra top-down connection “td”,

as shown in Figure 4.2 (a). Although the four architectures look quite similar, they

48

Figure 4.2 – (a) The architectures for sh, st, bu and td, with their (dr, df) equal to (1, 2),
(1, 3), (1, 3) and (2, 3), respectively. The longest path in td are colored in red. (b) The
9 architectures denoted by their (df , dr) with dr = 1, 2, 3 and df = 2, 3, 4. We only plot
the hidden states within 1 time step (which also have a period of 1) in both (a) and (b).

have different recurrent depths: sh, st and bu have dr = 1, while td has dr = 2.

Note that the specific construction of the extra nonlinear transformations in td is

not conventional. Instead of simply adding intermediate layers in hidden-to-hidden

connection, as reported in Pascanu et al. (2013a), more nonlinearities are gained

by a recurrent flow from the first layer to the second layer and then back to the

first layer at each time step (see the red path in Figure 4.2 (a)).

We first evaluate our architectures using tanh RNN on PennTreebank, where

sh has hidden-layer size of 1600. Next, we evaluate four different models for text8

which are tanh RNN-small, tanh RNN-large, LSTM-small, LSTM large, where the

model’s sh architecture has hidden-layer size of 512, 2048, 512, 1024 respectively.

Given the architecture of the sh model, we set the remaining three architectures to

have the same number of parameters.

Table 4.1 shows that the td architecture outperforms all the other architectures

Dataset Models, Archs sh st bu td

PennTreebank tanh RNN 1.54 1.59 1.54 1.49

tanh RNN-small 1.80 1.82 1.80 1.77
text8 tanh RNN-large 1.69 1.67 1.64 1.59

LSTM-small 1.65 1.66 1.65 1.63
LSTM-large 1.52 1.53 1.52 1.49

Table 4.1 – Test BPCs of sh, st, bu, td for tanh RNNs and LSTMs.

49

for all the different models. Specifically, td in tanh RNN achieves a test BPC of

1.49, which is comparable to the BPC of 1.48 reported in Krueger and Memisevic

(2015) using stabilization techniques. Similar improvements are shown for LSTMs,

where td architecture in LSTM-large achieves BPC of 1.49, outperforming the BPC

of 1.54 reported in Mikolov et al. (2012) with MRNN (Multiplicative RNN).

It is also interesting to note the improvement we obtain when switching from

bu to td. The only difference between these two architectures lies in changing the

direction of one connection (see Figure 4.2 (a)), which also increases the recurrent

depth. Such a fundamental difference is by no means self-evident, but this result

highlights the necessity of the concept of recurrent depth.

4.4.3 Comparing Depths

From the previous experiment, we found some evidence that with larger recur-

rent depth, the performance might improve. To further investigate various implica-

tions of depths, we carry out a systematic analysis for both recurrent depth dr and

feedforward depth df on text8 and sequential MNIST datasets. We build 9 models

in total with dr = 1, 2, 3 and df = 2, 3, 4, respectively (as shown in Figure 4.2 (b)).

We ensure that all the models have roughly the same number of parameters (e.g.,

the model with dr = 1 and df = 2 has a hidden-layer size of 360).

Table 4.2 displays results on the text8 dataset. We observed that for a fixed

feedforward depth df , increasing the recurrent depth dr does improve the model

performance, and the best test BPC is achieved by the architecture with df = 2

and dr = 3. This suggests that the increase of dr can aid in better capturing the

over-time nonlinearity of the input sequence. However, for a fixed dr, increasing df

only helps when dr = 1. For a recurrent depth of dr = 3, increasing df only hurts

models performance. This can potentially be attributed to the optimization issues

df , dr dr = 1 dr = 2 dr = 3

df = 2 1.88 1.84 1.83
df = 3 1.86 1.84 1.85
df = 4 1.94 1.89 1.88

Table 4.2 – Test BPCs of tanh RNNs with recurrent depth dr = 1, 2, 3 and feedforward
depth df = 2, 3, 4 respectively.

50

when modelling large input-to-output dependencies.

With sequential MNIST dataset, we next examined the effects of df and dr when

modelling long term dependencies. In particular, we observed that increasing df

does not bring any improvement to the model performance, and increasing dr might

even be detrimental for training. Indeed, it appears that df only captures the local

nonlinearity and has less effect on the long term prediction. This result seems

to contradict previous claims (Hermans and Schrauwen, 2013) that stacked RNNs

(df > 1, dr = 1) could capture information in different time scales and would

thus be more capable of dealing with learning long-term dependencies. On the

other hand, a large dr indicates multiple transformations per time step, resulting in

greater gradient vanishing/exploding issues Pascanu et al. (2013a), which suggests

that dr should be neither too small nor too large.

4.4.4 Recurrent Skip Coefficients

To investigate whether increasing a recurrent skip coefficient s improves model

performance on long term dependency tasks, we compare models with increasing

s on the adding problem, the copying memory problem and the sequential MNIST

problem (without/with permutation, denoted as MNIST and pMNIST). Our base-

line model is the shallow architecture proposed in Le et al. (2015). To increase the

recurrent skip coefficient s, we add connections from time step t to time step t+ k

for some fixed integer k, shown in Figure 4.3 (a), right panel. By using this specific

construction, the recurrent skip coefficient increases from 1 (i.e., baseline) to k and

the new model with extra connection has 2 hidden matrices (one from t to t + 1

and the other from t to t+ k).

For the adding problem, we follow the same setting as in Arjovsky et al. (2015).

We evaluate the baseline LSTM with 128 hidden units and an LSTM with s = 30

and 90 hidden units (roughly the same number of parameters as the baseline). The

results are quite encouraging: as suggested in Arjovsky et al. (2015) baseline LSTM

works well for input sequence lengths T = 100, 200, 400 but fails when T = 750.

On the other hand, we observe that the LSTM with s = 30 learns perfectly when

T = 750, and even if we increase T to 1000, LSTM with s = 30 still works well and

the loss reaches to zero.

For the copying memory problem, we use a single layer RNN with 724 hidden

units as our basic model, and 512 hidden units with skip connections. So they

51

Figure 4.3 – (a) Various architectures that we consider in Section 4.4.4. From top to
bottom are baseline s = 1, and s = 2, s = 3. (b) Proposed architectures that we consider
in Section 4.4.5 where we take k = 3 as an example. The shortest paths in (a) and (b)
that correspond to the recurrent skip coefficients are colored in blue.

have roughly the same number of parameters. Models with a higher recurrent skip

coefficient outperform those without skip connections by a large margin. When

T = 200, test set cross entropy (CE) of a basic model only yields 0.2409, but with

s = 40 it is able to reach a test set cross entropy of 0.0975. When T = 300, a

model with s = 30 yields a test set CE of 0.1328, while its baseline could only

reach 0.2025. We varied the sequence length (T) and recurrent skip coefficient (s)

in a wide range (where T varies from 100 up to 300, and s from 10 up to 50), and

found that this kind of improvement persists.

For the sequential MNIST problem, the hidden-layer size of the baseline model

is set to 90 and models with s > 1 have hidden-layer sizes of 64.

Results in Table 4.3 show that tanh RNNs with recurrent skip coefficient s larger

than 1 could improve the model performance dramatically. Within a reasonable

range of s, test accuracy increases quickly as s becomes larger. We note that our

model is the first tanh RNN model that achieves good performance on this task,

RNN(tanh) s = 1 s = 5 s = 9 s = 13 s = 21
MNIST 34.9 46.9 74.9 85.4 87.8

RNN(tanh) s = 1 s = 3 s = 5 s = 7 s = 9
pMNIST 49.8 79.1 84.3 88.9 88.0

LSTM s = 1 s = 3 s = 5 s = 7 s = 9
MNIST 56.2 87.2 86.4 86.4 84.8

LSTM s = 1 s = 3 s = 4 s = 5 s = 6
pMNIST 28.5 25.0 60.8 62.2 65.9

Table 4.3 – Test accuracies with different s for tanh RNN and LSTM in MNIST/pMNIST.

52

Model MNIST pMNIST

iRNNLe et al. (2015) 97.0 ≈82.0
uRNNArjovsky et al. (2015) 95.1 91.4
LSTMArjovsky et al. (2015) 98.2 88.0
RNN(tanh)Le et al. (2015) ≈35.0 ≈35.0

stanh(s = 21, 11) 98.1 94.0

Table 4.4 – our best model compared to previous results on MNIST/pMNIST.

even improving upon the method proposed in Le et al. (2015), see Table 4.4. In

addition, we also formally compare with the previous results reported in Le et al.

(2015); Arjovsky et al. (2015), where our model (referred to as stanh) has a hidden-

layer size of 95, which is about the same number of parameters as in the tanh model

of Arjovsky et al. (2015). Table 4.4 shows that our simple architecture improves

upon the uRNN by 2.6% on pMNIST, and achieves almost the same performance

as LSTM on the MNIST dataset with only 25% number of parameters (Arjovsky

et al., 2015). Note that obtaining good performance on sequential MNIST requires

a larger s than that for pMNIST. LSTMs also showed performance boost and much

faster convergence speed when using larger s, as displayed in Table 4.3, top panel.

LSTM with s = 3 already performs quite well and increasing s did not result in any

significant improvement, while in pMNIST, the performance gradually improves as

s increases from 4 to 6. We also observed that the LSTM network performed worse

on permuted MNIST compared to a tanh RNN. Similar result was also reported

in Le et al. (2015).

4.4.5 Recurrent Skip Coefficients vs. Skip Connections

We also investigated whether the recurrent skip coefficient can suggest some-

thing more than simply adding skip connections. We design 4 specific architectures

shown in Figure 4.3 (b). (1) is the baseline model with a 2-layer stacked architec-

ture, while the other three models add extra skip connections in different ways.

Note that these extra skip connections all cross the same time length k. In par-

ticular, (2) and (3) share quite similar architectures. However, the way in which

the skip connections are allocated make a big difference on their recurrent skip

coefficients: (2) has s = 1, (3) has s = k
2

and (4) has s = k. Therefore, even though

(2), (3) and (4) all add extra skip connections, the fact that their recurrent skip

53

Architecture, s (1), 1 (2), 1 (3), k
2 (4), k

MNIST k = 17 39.5 39.4 54.2 77.8
k = 21 39.5 39.9 69.6 71.8

pMNIST k = 5 55.5 66.6 74.7 81.2
k = 9 55.5 71.1 78.6 86.9

Table 4.5 – Test accuracies for architectures (1), (2), (3) and (4) for tanh RNN on
MNIST/pMNIST.

coefficients are different might result in different performance.

We evaluated these architectures on the sequential MNIST and pMNIST datasets.

The results show that differences in s indeed cause big performance gaps regardless

of the fact that they all have skip connections, see Table 4.5. Given the same k,

the model with a larger s performs better. In particular, model (3) is better than

model (2) even though they only differ in the direction of the skip connections.

It is interesting to see that for MNIST (unpermuted), the extra skip connection

in model (2) (which does not really increase the recurrent skip coefficient) brings

almost no benefits, as model (2) and model (1) have almost the same results.

This observation highlights the following point: when addressing the long term

dependency problems using skip connections, instead of only considering the time

intervals crossed by the skip connection, one should also consider the model’s re-

current skip coefficient, which can serve as a guide for introducing more powerful

skip connections.

4.5 Conclusion

In this work, we first introduced a general formulation of RNN architectures,

which allows one to construct more general RNNs, and provides a solid framework

for the architectural complexity analysis. We then proposed three architectural

complexity measures: recurrent depth, feedforward depth, and recurrent skip co-

efficients, each capturing the complexity in the long term, complexity in the short

term and the speed of information flow. We also find empirical evidence that

increasing recurrent depth might yield performance improvements, increasing feed-

forward depth might not help on long term dependency tasks, while increasing the

recurrent skip coefficient can largely improve performance on long term dependency

54

tasks. These measures and results can provide guidance for the design of new recur-

rent architectures for a particular learning task. Future work could involve more

comprehensive studies (e.g., providing analysis on more datasets, using different

architectures with various transition functions) to investigate the effectiveness of

the proposed measures.

4.6 Proofs

To show theorem 4.3.1.1, we first consider the most general case in which dr is

defined (Theorem 4.6.0.1). Then we discuss the mild assumptions under which we

can reduce to the original limit (Proposition 4.6.0.1). Additionally, we introduce

some notations that will be used throughout the proof. If v = (t, p) ∈ Gun is a node

in the unfolded graph, it has a corresponding node in the folded graph, which is

denoted by v̄ = (t̄, p).

Theorem 4.6.0.1. Given an RNN cyclic graph and its unfolded representation

(Gc,Gun), we denote C(Gc) the set of directed cycles in Gc. For ϑ ∈ C(Gc), denote

l(ϑ) the length of ϑ and σs(ϑ) the sum of σ along ϑ. Write di = lim supk→∞
Di(n)
n

. 9

we have :

— The quantity di is periodic, in the sense that di+m = di,∀i ∈ N.

— Let dr = maxi di, then

dr = max
ϑ∈C(Gc)

l(ϑ)

σs(ϑ)
(4.4)

Proof. The first statement is easy to prove. Because of the periodicity of the graph,

any path from time step i to i + n corresponds to an isomorphic path from time

step i+m to i+m+ n. Passing to limit, and we can deduce the first statement.

Now we prove the second statement. Write ϑ0 = argmaxϑ
l(ϑ)
σs(ϑ)

. First we prove

that d ≥ l(ϑ0)
σs(ϑ0)

. Let c1 = (t1, p1) ∈ Gun be a node such that if we denote c1 = (t1, p1)

the image of c1 on the cyclic graph, we have c1 ∈ ϑ0. Consider the subsequence

S0 =
{

Dt1
(kσs(ϑ0))

kσs(ϑ0)

}∞
k=1

of
{

Dt1
(n)

n

}∞
n=1

. From the definition of D and the fact that

9. Di(n) is not defined when there does not exist a path from time i to time i+n. We simply
omit undefined cases when we consider the limsup. In a more rigorous sense, it is the limsup of
a subsequence of {Di(n)}∞n=1, where Di(n) is defined.

55

ϑ0 is a directed circle, we have Dt1(kσs(ϑ0)) ≥ kl(ϑ0), by considering the path on

Gun corresponding to following ϑ0 k -times. So we have

dr ≥ lim sup
k→+∞

Di(n)

n
≥ lim sup

k→+∞

Dt1(kσs(ϑ0))

kσs(ϑ0)
≥ kl(ϑ0)

kσs(ϑ0)
=

l(ϑ0)

σs(ϑ0)

Next we prove dr ≤ l(ϑ0)
σs(ϑ0)

. It suffices to prove that, for any ε ≥ 0, there exists

N > 0, such that for any path γ : {(t0, p0), (t1, p1), · · · , (tnγ , pnγ)} with tnγ−t1 > N ,

we have nγ
tnγ−t1

≤ l(ϑ0)
σs(ϑ0)

+ ε. We denote γ̄ as the image of γ on the cyclic graph.

γ̄ is a walk with repeated nodes and edges. Also, we assume there are in total Γ

nodes in cyclic graph Gc.
We first decompose γ̄ into a path and a set of directed cycles. More precisely,

there is a path γ0 and a sequence of directed cycles C = C1(γ), C2(γ), · · · , Cw(γ)

on Gc such that:

— The starting and end nodes of γ0 is the same as γ. (If γ starts and ends at

the same node, take γ0 as empty.)

— The catenation of the sequences of directed edges E(γ0), E(C1(γ)), E(C2(γ)), · · · , E(Cw(γ))

is a permutation of the sequence of edges of E(γ).

The existence of such a decomposition can be proved iteratively by removing di-

rected cycles from γ. Namely, if γ is not a paths, there must be some directed

cycles C ′ on γ. Removing C ′ from γ, we can get a new walk γ′. Inductively apply

this removal, we will finally get a (possibly empty) path and a sequence of directed

cycles. For a directed path or loop γ, we write D(γ) the distance between the

ending node and starting node when travel through γ once. We have

D(γ0) := tnγ − t0 +

|γ0|∑
i=1

σ(ei)

where ei, i ∈ {1, 2, · · · , |γ0|} is all the edges of γ0. t̄ denotes the module of t:

t ≡ t̄(modm).

So we have:

|D(γ0)| ≤ m+ Γ ·max
e∈Gc

σ(e) = M

For convenience, we denote l0, l1, · · · , lw to be the length of path γ0 and directed

56

cycles C1(γ), C2(γ), · · · , Cw(γ). Obviously we have:

nγ =
w∑
i=0

li

And also, we have

tnγ − t1 =
w∑
i=1

σs(Ci) +D(γ0)

So we have:

nγ
tnγ − t1

=
l0

tnγ − t1
+

w∑
i=1

li
tnγ − t1

≤ Γ

N
+

w∑
i=1

li
tnγ − t1

In which we have for all i ∈ {1, 2, · · · , w} :

li
tnγ − t1

=
li

σs(Ci)
· σs(Ci)
tnγ − t1

≤ l(ϑ0)

σs(ϑ0)

σs(Ci)

tnγ − t1

So we have:

w∑
i=1

li
tnγ − t1

≤ l(ϑ0)

σs(ϑ0)

[
1− D(γ0)

tnγ − t1

]
≤ l(ϑ0)

σs(ϑ0)
+
M ′

N

in which M ′ and Γ are constants depending only on the RNN Gc.
Finally we have:

nγ
tnγ − t1

≤ l(ϑ0)

σs(ϑ0)
+
M ′ + Γ

N

take N > M ′+Γ
ε

, we can prove the fact that dr ≤ l(ϑ0)
σs(ϑ0)

.

Proposition 4.6.0.1. Given an RNN and its two graph representations Gun and

Gc, if ∃ϑ ∈ C(Gc) such that (1) ϑ achieves the maximum in Eq.(4.4) and (2) U(ϑ)

in Gun visits nodes at every time step, then we have

dr = max
i∈Z

(
lim sup
n→+∞

Di(n)

n

)
= lim

n→+∞

Di(n)

n

Proof. We only need to prove, in such a graph, for all i ∈ Z we have

lim inf
n→+∞

Di(n)

n
≥ max

i∈Z

(
lim sup
n→+∞

Di(n)

n

)
= dr

57

Because it is obvious that

liminfn→+∞
Di(n)

n
≤ dr

Namely, it suffice to prove, for all i ∈ Z, for all ε > 0, there is an Nε > 0, such that

when n > Nε, we have Di(n)
n
≥ dr − ε. On the other hand, for k ∈ N, if we assume

(k + 1)σs(ϑ) + i > n ≥ i+ k · σs(ϑ), then according to condition (2) we have

Di(n)

n
≥ k · l(ϑ)

(k + 1)σs(ϑ)
=

l(ϑ)

σs(ϑ)
− l(ϑ)

σs(ϑ)

1

k + 1

We can see that if we set k > σs(ϑ)
l(ϑ)ε

, the inequality we wanted to prove.

We now prove Proposition 4.3.2.1 and Theorem 4.3.2.1 as follows.

Proposition 4.6.0.2. Given an RNN with recurrent depth dr, we denote

df = sup
i,n∈Z

D∗i (n)− n · dr.

The supremum df exists and we have the following least upper bound:

D∗i (n) ≤ n · dr + df .

Proof. We first prove that df < +∞. Write df (i) = supn∈ZD
∗
i (n)−n ·dr. It is easy

to verify df (·) is m−periodic, so it suffices to prove for each i ∈ N, df (i) < +∞.

Hence it suffices to prove

lim sup
n→∞

(D∗i (n)− n · dr) < +∞.

From the definition, we have Di(n) ≥ D∗i (n). So we have

D∗i (n)− n · dr ≤ Di(n)− n · dr.

From the proof of Theorem 4.6.0.1, there exists two constants M ′ and Γ depending

only on the RNN Gc, such that

Di(n)

n
≤ dr +

M ′ + Γ

n
.

58

So we have

lim sup
n→∞

(D∗i (n)− n · dr) ≤ lim sup
n→∞

(Di(n)− n · dr) ≤M ′ + Γ.

Also, we have df = supi,n∈ZD
∗
i (n)− n · dr, so for any i, n ∈ Z,

df ≥ D∗i (n)− n · dr.

Theorem 4.6.0.2. Given an RNN and its two graph representations Gun and Gc,
we denote ξ(Gc) the set of directed path that starts at an input node and ends at an

output node in Gc. For γ ∈ ξ(Gc), denote l(γ) the length and σs(γ) the sum of σ

along γ. Then we have:

df = sup
i,n∈Z

D∗i (n)− n · dr = max
γ∈ξ(Gc)

l(γ)− σs(γ) · dr.

Proof. Let γ : {(t0, 0), (t1, p1), · · · , (tnγ , p)} be a path in Gun from an input node

(t0, 0) to an output node (tnγ , p), where t0 = i and tnγ = i + n. We denote γ̄ as

the image of γ on the cyclic graph. From the proof of Theorem 4.6.0.1, for each

γ̄ in Gc, we can decompose it into a path γ0 and a sequence of directed cycles

C = C1(γ), C2(γ), · · · , Cw(γ) on Gc satisfying those properties listed in Theorem

4.6.0.1. We denote l0, l1, · · · , lw to be the length of path γ0 and directed cycles

C1(γ), C2(γ), · · · , Cw(γ). We know lk
σs(Ck)

≤ dr for all k = 1, 2, . . . , w by definition.

Thus,

lk ≤ dr · σs(Ck)
w∑
k=1

lk ≤ dr ·
w∑
k=1

σs(Ck)

59

Note that n = σs(γ0) +
∑w

k=1 σs(Ck). Therefore,

l(γ)− n · dr = l0 +
w∑
k=1

lk − n · dr

≤ l0 + dr · (
w∑
k=1

σs(Ck)− n)

= l0 − dr · σs(γ0)

for all time step i and all integer n. The above inequality suggests that in order

to take the supremum over all paths in Gun, it suffices to take the maximum over

a directed path in Gc. On the other hand, the equality can be achieved simply by

choosing the corresponding path of γ0 in Gun. The desired conclusion then follows

immediately.

Lastly, we show Theorem 4.3.3.1.

Theorem 4.6.0.3. Given an RNN cyclic graph and its unfolded representation

(Gc,Gun), we denote C(Gc) the set of directed cycles in Gc. For ϑ ∈ C(Gc), denote

l(ϑ) the length of ϑ and σs(ϑ) the sum of σ along ϑ. Write si = lim infk→∞
di(n)
n

.

We have :

— The quantity si is periodic, in the sense that si+m = si,∀i ∈ N.

— Let s = mini si, then

dr = min
ϑ∈C(Gc)

l(ϑ)

σs(ϑ)
. (4.5)

Proof. The proof is essentially the same as the proof of the first theorem. So we

omit it here.

Proposition 4.6.0.3. Given an RNN and its two graph representations Gun and

Gc, if ∃ϑ ∈ C(Gc) such that (1) ϑ achieves the minimum in Eq.(4.5) and (2) U(ϑ)

in Gun visits nodes at every time step, then we have

s = min
i∈Z

(
lim inf
n→+∞

di(n)

n

)
= lim

n→+∞

di(n)

n
.

Proof. The proof is essentially the same as the proof of the Proposition 4.6.0.1. So

we omit it here.

60

5 Prologue to Second Article

5.1 Article Detail

On Multiplicative Integration with Recurrent Neural Networks. Yuhuai

Wu 1, Saizheng Zhang 1 , Ying Zhang, Yoshua Bengio, Ruslan Salakhutdinov. Ad-

vances in Neural Information Processing Systems (NeurIPS), 2016.

Personal Contribution. I proposed the original idea of multiplying two different

information flows in the transition function of RNN. Yuhuai Wu and I further de-

veloped the general form of the multiplicative integration and designed exploratory

experiments for understanding its functionality. I conducted experiments on lan-

guage modeling datasets, Ying Zhang was responsible for examining the module

efficiency on speech recognition problems and Yuhuai Wu performed evaluation on

training skip-thought vectors and reading comprehension tasks. Yoshua Bengio

and Ruslan Salakhutdinov provided valuable advice on model evaluation.

5.2 Context

This work introduces a general and simple structural design called “Multiplica-

tive Integration” (MI) to improve recurrent neural networks (RNNs). As a simple

Hadamard product operation, MI changes the way in which information from dif-

ference sources flows and is integrated in the computational building block of an

RNN, while introducing almost no extra parameters. The new structure can be

easily embedded into many popular RNN models, including LSTMs and GRUs.

We empirically analyze its learning behaviour and conduct evaluations on several

1. Equal contribution.

61

tasks using different RNN models. Our experimental results demonstrate that Mul-

tiplicative Integration can provide a substantial performance boost over many of

the existing RNN models.

5.3 Contributions

The introduced MI mechanism is one of the few improvements that directly

touches the essential transition function of an RNN with (1) strong adaptability

towards any recurrent models, (2) no extra computational cost as it brings almost

no extra parameters and (3) no extra engineering beyond implementing the RNN

model itself. In addition, the general form of MI is by design performing at least

as well as the standard RNN transition function.

62

6
On Multiplicative
Integration with Recurrent
Neural Networks

6.1 Introduction

Recently there has been a resurgence of new structural designs for recurrent

neural networks (RNNs) Chung et al. (2015); Kalchbrenner et al. (2015); Joze-

fowicz et al. (2015). Most of these designs are derived from popular structures

including vanilla RNNs, Long Short Term Memory networks (LSTMs) Hochreiter

and Schmidhuber (1997) and Gated Recurrent Units (GRUs) Cho et al. (2014). De-

spite of their varying characteristics, most of them share a common computational

building block, described by the following equation:

φ(Wx+ Uz + b), (6.1)

where x ∈ Rn and z ∈ Rm are state vectors coming from different information

sources, W ∈ Rd×n and U ∈ Rd×m are state-to-state transition matrices, and b

is a bias vector. This computational building block serves as a combinator for

integrating information flow from the x and z by a sum operation “+”, followed

by a nonlinearity φ. We refer to it as the additive building block. Additive building

blocks are widely implemented in various state computations in RNNs (e.g. hidden

state computations for vanilla-RNNs, gate/cell computations of LSTMs and GRUs.

In this work, we propose an alternative design for constructing the computa-

tional building block by changing the procedure of information integration. Specif-

ically, instead of utilizing sum operation “+”, we propose to use the Hadamard

product “�” to fuse Wx and Uz:

φ(Wx�Uz + b) (6.2)

The result of this modification changes the RNN from first order to second order

Goudreau et al. (1994), while introducing no extra parameters. We call this kind

63

of information integration design a form of Multiplicative Integration. The effect

of multiplication naturally results in a gating type structure, in which Wx and

Uz are the gates of each other. More specifically, one can think of the state-

to-state computation Uz (where for example z represents the previous state) as

dynamically rescaled by Wx (where for example x represents the input). Such

rescaling does not exist in the additive building block, in which Uz is independent

of x. This relatively simple modification brings about advantages over the additive

building block as it alters RNN’s gradient properties, which we discuss in detail in

the next section, as well as verify through extensive experiments.

In the following sections, we first introduce a general formulation of Multi-

plicative Integration. We then compare it to the additive building block on several

sequence learning tasks, including character level language modelling, speech recog-

nition, large scale sentence representation learning using a Skip-Thought model,

and teaching a machine to read and comprehend for a question answering task.

The experimental results (together with several existing state-of-the-art models)

show that various RNN structures (including vanilla RNNs, LSTMs, and GRUs)

equipped with Multiplicative Integration provide better generalization and easier

optimization. Its main advantages include: (1) it enjoys better gradient proper-

ties due to the gating effect. Most of the hidden units are non-saturated; (2) the

general formulation of Multiplicative Integration naturally includes the regular ad-

ditive building block as a special case, and introduces almost no extra parameters

compared to the additive building block; and (3) it is a drop-in replacement for

the additive building block in most of the popular RNN models, including LSTMs

and GRUs. It can also be combined with other RNN training techniques such as

Recurrent Batch Normalization Cooijmans et al. (2016). We further discuss its

relationship to existing models, including Hidden Markov Models (HMMs) Baum

and Eagon (1967), second order RNNs Giles et al. (1991); Goudreau et al. (1994)

and Multiplicative RNNs Sutskever et al. (2011).

64

6.2 Structure Description and Analysis

6.2.1 General Formulation of Multiplicative Integration

The key idea behind Multiplicative Integration is to integrate different informa-

tion flows Wx and Uz, by the Hadamard product“�”. A more general formulation

of Multiplicative Integration includes two more bias vectors β1 and β2 added to

Wx and Uz:

φ((Wx+ β1)� (Uz + β2) + b) (6.3)

where β1,β2 ∈ Rd are bias vectors. Notice that such formulation contains the first

order terms as in a additive building block, i.e., β1�Uht−1 +β2�Wxt. In order to

make the Multiplicative Integration more flexible, we introduce another bias vector

α ∈ Rd to gate 1 the term Wx�Uz, obtaining the following formulation:

φ(α�Wx�Uz + β1 �Uz + β2 �Wx+ b), (6.4)

Note that the number of parameters of the Multiplicative Integration is about the

same as that of the additive building block, since the number of new parameters

(α, β1 and β2) are negligible compared to total number of parameters. Also, Mul-

tiplicative Integration can be easily extended to LSTMs and GRUs 2, that adopt

vanilla building blocks for computing gates and output states, where one can di-

rectly replace them with the Multiplicative Integration. More generally, in any

kind of structure where k information flows (k ≥ 2) are involved (e.g. RNN with

multiple skip connections Zhang et al. (2016) or in feedforward models like residual

networks He et al. (2015)), one can implement pairwise Multiplicative Integration

for integrating all k information sources.

6.2.2 Gradient Properties

The Multiplicative Integration has different gradient properties compared to the

additive building block. For clarity of presentation, we first look at vanilla-RNN

and RNN with Multiplicative Integration embedded, referred to as MI-RNN. That

is, ht = φ(Wxt +Uht−1 +b) versus ht = φ(Wxt�Uht−1 +b). In a vanilla-RNN,

1. If α = 0, the Multiplicative Integration will degenerate to the vanilla additive building
block.

2. See exact formulations in the Appendix.

65

the gradient ∂ht
∂ht−n

can be computed as follows:

∂ht
∂ht−n

=
t∏

k=t−n+1

UTdiag(φ′k), (6.5)

where φ′k = φ′(Wxk + Uhk−1 + b). The equation above shows that the gradient

flow through time heavily depends on the hidden-to-hidden matrix U, but W and

xk appear to play a limited role: they only come in the derivative of φ′ mixed with

Uhk−1. On the other hand, the gradient ∂ht
∂ht−n

of a MI-RNN is 3:

∂ht
∂ht−n

=
t∏

k=t−n+1

UTdiag(Wxk)diag(φ′k), (6.6)

where φ′k = φ′(Wxk � Uhk−1 + b). By looking at the gradient, we see that the

matrix W and the current input xk is directly involved in the gradient computation

by gating the matrix U, hence more capable of altering the updates of the learning

system. As we show in our experiments, with Wxk directly gating the gradient, the

vanishing/exploding problem is alleviated: Wxk dynamically reconciles U, making

the gradient propagation easier compared to the regular RNNs. For LSTMs and

GRUs with Multiplicative Integration, the gradient propagation properties are more

complicated. But in principle, the benefits of the gating effect also persists in these

models.

6.3 Experiments

In all of our experiments, we use the general form of Multiplicative Integration

(Eq. 6.4) for any hidden state/gate computations, unless otherwise specified.

6.3.1 Exploratory Experiments

To further understand the functionality of Multiplicative Integration, we take

a simple RNN for illustration, and perform several exploratory experiments on the

character level language modeling task using Penn-Treebank dataset Marcus et al.

(1993), following the data partition in Mikolov et al. (2012). The length of the

3. Here we adopt the simplest formulation of Multiplicative Integration for illustration. In the
more general case (Eq. 6.4), diag(Wxk) in Eq. 6.6 will become diag(α�Wxk + β1).

66

training sequence is 50. All models have a single hidden layer of size 2048, and we

use Adam optimization algorithm Kingma and Ba (2014) with learning rate 1e−4.

Weights are initialized to samples drawn from uniform[−0.02, 0.02]. Performance

is evaluated by the bits-per-character (BPC) metric, which is log2 of perplexity.

Gradient Properties

To analyze the gradient flow of the model, we divide the gradient in Eq. 6.6 into

two parts: 1. the gated matrix products: UTdiag(Wxk), and 2. the derivative of

the nonlinearity φ′, We separately analyze the properties of each term compared

to the additive building block. We first focus on the gating effect brought by

diag(Wxk). In order to separate out the effect of nonlinearity, we chose φ to be

the identity map, hence both vanilla-RNN and MI-RNN reduce to linear models,

referred to as lin-RNN and lin-MI-RNN.

For each model we monitor the log-L2-norm of the gradient log||∂C/∂ht||2
(averaged over the training set) after every training epoch, where ht is the hidden

state at time step t, and C is the negative log-likelihood of the single character

prediction at the final time step (t = 50). Figure. 6.1 (a) shows the evolution

of the gradient norms for small t, i.e., 0, 5, 10, as they better reflect the gradient

propagation behaviour. Observe that the norms of lin-MI-RNN (orange) increase

rapidly and soon exceed the corresponding norms of lin-RNN by a large margin.

The norms of lin-RNN stay close to zero (≈ 10−4) and their changes over time are

almost negligible. This observation implies that with the help of diag(Wxk) term,

the gradient vanishing of lin-MI-RNN can be alleviated compared to lin-RNN. The

final test BPC (bits-per-character) of lin-MI-RNN is 1.48, which is comparable to

a vanilla-RNN with stabilizing regularizer Krueger and Memisevic (2015), while

lin-RNN performs rather poorly, achieving a test BPC of over 2.

Next we look into the nonlinearity φ. We chose φ = tanh for both vanilla-RNN

and MI-RNN. Figure 6.1 (c) and (d) shows a comparison of histograms of hidden

activations over all time steps on the validation set after training. Interestingly, in

(c) for vanilla-RNN, most activations are saturated with values around ±1, whereas

in (d) for MI-RNN, most activations are non-saturated with values around 0. This

has a direct consequence in gradient propagation: non-saturated activations imply

that diag(φ′k) ≈ 1 for φ = tanh, which can help gradients propagate, whereas

saturated activations imply that diag(φ′k) ≈ 0, resulting in gradients vanishing.

67

Figure 6.1 – (a) Curves of log-L2-norm of gradients for lin-RNN (blue) and lin-MI-
RNN (orange). Time gradually changes from {1, 5, 10}. (b) Validation BPC curves
for vanilla-RNN, MI-RNN-simple using Eq. 6.2, and MI-RNN-general using Eq. 6.4. (c)
Histogram of vanilla-RNN’s hidden activations over the validation set, most activations
are saturated. (d) Histogram of MI-RNN’s hidden activations over the validation set,
most activations are not saturated.

Scaling Problem

When adding two numbers at different order of magnitude, the smaller one

might be negligible for the sum. However, when multiplying two numbers, the

value of the product depends on both regardless of the scales. This principle also

applies when comparing Multiplicative Integration to the additive building blocks.

In this experiment, we test whether Multiplicative Integration is more robust to

the scales of weight values. Following the same models as in Section 6.3.1, we first

calculated the norms of Wxk and Uhk−1 for both vanilla-RNN and MI-RNN for

different k after training. We found that in both structures, Wxk is a lot smaller

than Uhk−1 in magnitude. This might be due to the fact that xk is a one-hot

68

rW = 0.02 0.1 0.3 0.6 std

RNN 1.69 1.65 1.57 1.54 0.06
MI-RNN 1.39 1.40 1.40 1.41 0.008

Table 6.1 – Test BPCs and the standard deviation of models with different scales of
weight initializations.

vector, making the number of updates for (columns of) W be smaller than U. As

a result, in vanilla-RNN, the pre-activation term Wxk+Uhk−1 is largely controlled

by the value of Uhk−1, while Wxk becomes rather small. In MI-RNN, on the other

hand, the pre-activation term Wxk � Uhk−1 still depends on the values of both

Wxk and Uhk−1, due to multiplication.

We next tried different initialization of W and U to test their sensitivities to the

scaling. For each model, we fix the initialization of U to uniform[−0.02, 0.02] and

initialize W to uniform[−rW, rW] where rW varies in {0.02, 0.1, 0.3, 0.6}. Table 6.1

shows results. As we increase the scale of W, performance of the vanilla-RNN

improves, suggesting that the model is able to better utilize the input information.

On the other hand, MI-RNN is much more robust to different initializations, where

the scaling has almost no effect on the final performance.

On different choices of the formulation

In our third experiment, we evaluated the performance of different computa-

tional building blocks, which are Eq. 6.1 (vanilla-RNN), Eq. 6.2 (MI-RNN-simple)

and Eq. 6.4 (MI-RNN-general) 4. From the validation curves in Figure 6.1 (b),

we see that both MI-RNN, simple and MI-RNN-general yield much better perfor-

mance compared to vanilla-RNN, and MI-RNN-general has a faster convergence

speed compared to MI-RNN-simple. We also compared our results to the previ-

ously published models in Table 6.2, top panel, where MI-RNN-general achieves a

test BPC of 1.39, which is to our knowledge the best result for RNNs on this task

without complex gating/cell mechanisms.

4. We perform hyper-parameter search for the initialization of {α,β1,β2,b} in MI-RNN-
general.

69

Penn-Treebank BPC
RNN Mikolov et al. (2012) 1.42
HF-MRNN Mikolov et al. (2012) 1.41
RNN+stabalization Krueger and Memisevic (2015) 1.48
MI-RNN (ours) 1.39
linear MI-RNN (ours) 1.48

text8
RNN+smoothReLu Pachitariu and Sahani (2013) 1.55
HF-MRNN Mikolov et al. (2012) 1.54
MI-RNN (ours) 1.52
LSTM (ours) 1.51
MI-LSTM(ours) 1.44

HutterWikipedia
stacked-LSTM Graves (2013) 1.67
GF-LSTM Chung et al. (2015) 1.58
grid-LSTM Kalchbrenner et al. (2015) 1.47
MI-LSTM (ours) 1.44

Table 6.2 – Top: test BPCs on character level Penn-Treebank dataset. Middle: test
BPCs on character level text8 dataset. Bottom: test BPCs on character level Hutter
Prize Wikipedia dataset.

6.3.2 Character Level Language Modeling

In addition to the Penn-Treebank dataset, we also perform character level lan-

guage modeling on two larger datasets: text8 5 and Hutter Challenge Wikipedia 6.

Both of them contain 100M characters from Wikipedia while text8 has an alphabet

size of 27 and Hutter Challenge Wikipedia has an alphabet size of 205. For both

datasets, we follow the training protocols in Mikolov et al. (2012) and Chung et al.

(2015) respectively. We use Adam for optimization with the starting learning rate

grid-searched in {0.002, 0.001, 0.0005}. If the validation BPC (bits-per-character)

does not decrease for 2 epochs, we half the learning rate.

We implemented Multiplicative Integration on both vanilla-RNN and LSTM, re-

ferred to as MI-RNN and MI-LSTM. The results for the text8 dataset are shown in

Table 6.2, middle panel. All five models, including some of the previously published

models, have the same number of parameters (≈4M). For RNNs without complex

gating/cell mechanisms (the first three results), our MI-RNN (with {α,β1,β2,b}
initialized as {2, 0.5, 0.5, 0}) performs the best, our MI-LSTM (with {α,β1,β2,b}

5. http://mattmahoney.net/dc/textdata

6. http://prize.hutter1.net/

70

http://mattmahoney.net/dc/textdata
http://prize.hutter1.net/

WSJ Corpus CER WER

DRNN+CTCbeamsearch Hannun et al. (2014) 10.0 14.1
Encoder-Decoder Bahdanau et al. (2015) 6.4 9.3
LSTM+CTCbeamsearch Graves and Jaitly (2014) 9.2 8.7
Eesen Miao et al. (2015) - 7.3
LSTM+CTC+WFST (ours) 6.5 8.7
MI-LSTM+CTC+WFST (ours) 6.0 8.2

Table 6.3 – Test CERs and WERs on WSJ corpus.

initialized as {1, 0.5, 0.5, 0}) outperforms all other models by a large margin 7.

On Hutter Challenge Wikipedia dataset, we compare our MI-LSTM (single layer

with 2048 unit, ≈17M, with {α,β1,β2,b} initialized as {1, 1, 1, 0}) to the previ-

ous stacked LSTM (7 layers, ≈27M) Graves (2013), GF-LSTM (5 layers, ≈20M)

Chung et al. (2015), and grid-LSTM (6 layers, ≈17M) Kalchbrenner et al. (2015).

Table 6.2, bottom panel, shows results. Despite the simple structure compared to

the sophisticated connection designs in GF-LSTM and grid-LSTM, our MI-LSTM

outperforms all other models and achieves the new state-of-the-art on this task.

6.3.3 Speech Recognition

We next evaluate our models on Wall Street Journal (WSJ) corpus (available as

LDC corpus LDC93S6B and LDC94S13B), where we use the full 81 hour set“si284”

for training, set “dev93” for validation and set “eval92” for test. We follow the same

data preparation process and model setting as in Miao et al. (2015), and we use

59 characters as the targets for the acoustic modelling. Decoding is done with the

CTC Graves et al. (2006) based weighted finite-state transducers (WFSTs) Mohri

et al. (2002) as proposed by Miao et al. (2015).

Our model (referred to as MI-LSTM+CTC+WFST) consists of 4 bidirectional

MI-LSTM layers, each with 320 units for each direction. CTC is performed on

top to resolve the alignment issue in speech transcription. For comparison, we also

train a baseline model (referred to as LSTM+CTC+WFST) with the same size but

using vanilla LSTM. Adam with learning rate 0.0001 is used for optimization and

Gaussian weight noise with zero mean and 0.05 standard deviation is injected for

7. Cooijmans et al. (2016) reports better results but they use much larger models (≈16M)
which is not directly comparable.

71

regularization. We evaluate our models on the character error rate (CER) without

language model and the word error rate (WER) with extended trigram language

model.

Table 6.2, top right panel, shows that MI-LSTM+CTC+WFST achieves quite

good results on both CER and WER compared to recent works, and it has a clear

improvement over the baseline model. Note that we did not conduct a careful

hyper-parameter search on this task, hence one could potentially obtain better

results with better decoding schemes and regularization techniques.

6.3.4 Learning Skip-Thought Vectors

Next, we evaluate our Multiplicative Integration on the Skip-Thought model of

Kiros et al. (2015). Skip-Thought is an encoder-decoder model that attempts to

learn generic, distributed sentence representations. The model produces sentence

representation that are robust and perform well in practice, as it achieves excellent

results across many different NLP tasks. The model was trained on the BookCorpus

dataset that consists of 11,038 books with 74,004,228 sentences. Not surprisingly, a

single pass through the training data can take up to a week on a high-end GPU (as

reported in Kiros et al. (2015)). Such training speed largely limits one to perform

careful hyper-parameter search. However, with Multiplicative Integration, not only

the training time is shortened by a factor of two, but the final performance is also

significantly improved.

We exactly follow the authors’ Theano implementation of the skip-thought

model 8: Encoder and decoder are single-layer GRUs with hidden-layer size of 2400;

all recurrent matrices adopt orthogonal initialization while non-recurrent weights

are initialized from uniform distribution. Adam is used for optimization. We im-

plemented Multiplicative Integration only for the encoder GRU (embedding MI

into decoder did not provide any substantial gains). We refer our model as MI-uni-

skip, with {α,β1,β2,b} initialized as {1, 1, 1, 0}. We also train a baseline model

with the same size, referred to as uni-skip(ours), which essentially reproduces the

original model of Kiros et al. (2015).

During the course of training, we evaluated the skip-thought vectors on the

semantic relatedness task, using SICK dataset, every 2500 updates for both MI-

8. https://github.com/ryankiros/skip-thoughts

72

https://github.com/ryankiros/skip-thoughts

Semantic-Relatedness r ρ MSE

uni-skip Kiros et al. (2015) 0.8477 0.7780 0.2872
bi-skip Kiros et al. (2015) 0.8405 0.7696 0.2995
combine-skip Kiros et al. (2015) 0.8584 0.7916 0.2687

uni-skip (ours) 0.8436 0.7735 0.2946
MI-uni-skip (ours) 0.8588 0.7952 0.2679

Paraphrase detection Acc F1

uni-skip Kiros et al. (2015) 73.0 81.9
bi-skip Kiros et al. (2015) 71.2 81.2
combine-skip Kiros et al. (2015) 73.0 82.0

uni-skip (ours) 74.0 81.9
MI-uni-skip (ours) 74.0 82.1

Classification MR CR SUBJ MPQA

uni-skip Kiros et al. (2015) 75.5 79.3 92.1 86.9
bi-skip Kiros et al. (2015) 73.9 77.9 92.5 83.3
combine-skip Kiros et al. (2015) 76.5 80.1 93.6 87.1

uni-skip (ours) 75.9 80.1 93.0 87.0
MI-uni-skip (ours) 77.9 82.3 93.3 88.1

Table 6.4 – Skip-thought+MI on Semantic-Relatedness task (top), Paraphrase Detection
task (middle) and four different classification tasks (bottom).

uni-skip and the baseline model (each iteration processes a mini-batch of size 64).

The results are shown in Figure 6.2 (a). Note that MI-uni-skip significantly out-

performs the baseline, not only in terms of speed of convergence, but also in terms

of final performance. At around 125k updates, MI-uni-skip already exceeds the

best performance achieved by the baseline, which takes about twice the number of

updates.

We also evaluated both models after one week of training, with the best re-

sults being reported on six out of eight tasks reported in Kiros et al. (2015): se-

mantic relatedness task on SICK dataset, paraphrase detection task on Microsoft

Research Paraphrase Corpus, and four classification benchmarks: movie review

sentiment (MR), customer product reviews (CR), subjectivity/objectivity classifi-

cation (SUBJ), and opinion polarity (MPQA). We also compared our results with

the results reported on three models in the original skip-thought paper: uni-skip,

bi-skip, combine-skip. Uni-skip is the same model as our baseline, bi-skip is a

bidirectional model of the same size, and combine-skip takes the concatenation of

73

Figure 6.2 – (a) MSE curves of uni-skip (ours) and MI-uni-skip (ours) on semantic
relatedness task on SICK dataset. MI-uni-skip significantly outperforms baseline uni-
skip. (b) Validation error curves on attentive reader models. There is a clear margin
between models with and without MI.

the vectors from uni-skip and bi-skip to form a 4800 dimension vector for task

evaluation. Table 6.4 shows that MI-uni-skip dominates across all the tasks. Not

only it achieves higher performance than the baseline model, but in many cases, it

also outperforms the combine-skip model, which has twice the number of dimen-

sions. Clearly, Multiplicative Integration provides a faster and better way to train

a large-scale Skip-Thought model.

6.3.5 Teaching Machines to Read and Comprehend

In our last experiment, we show that the use of Multiplicative Integration

can be combined with other techniques for training RNNs, and the advantages

of using MI still persist. Recently, Cooijmans et al. (2016) introduced Batch-

Normalization Ioffe and Szegedy (2015) for RNNs. They evaluated their proposed

technique on a uni-directional Attentive Reader Model Hermann et al. (2015) for

the question answering task using the CNN corpus 9. To test our approach, we eval-

uated the following four models: 1. A vanilla LSTM attentive reader model with

a single hidden layer size 240 (same as Cooijmans et al. (2016)) as our baseline,

referred to as LSTM (ours), 2. A multiplicative integration LSTM with a single

hidden size 240, referred to as MI-LSTM , 3. MI-LSTM with Batch-Norm, referred

to as MI-LSTM+BN , 4. MI-LSTM with Batch-Norm everywhere (as detailed in

Cooijmans et al. (2016)), referred to as MI-LSTM+BN-everywhere. We compared

9. Note that Cooijmans et al. (2016) used a truncated version of the original dataset in order
to save computation.

74

Attentive Reader Val. Err.

LSTM Cooijmans et al. (2016) 0.5033
BN-LSTM Cooijmans et al. (2016) 0.4951
BN-everywhere Cooijmans et al. (2016) 0.5000
LSTM (ours) 0.5053
MI-LSTM (ours) 0.4721
MI-LSTM+BN (ours) 0.4685
MI-LSTM+BN-everywhere (ours) 0.4644

Table 6.5 – Multiplicative Integration (with batch normalization) on Teaching Machines
to Read and Comprehend task.

our models to results reported in Cooijmans et al. (2016) (referred to as LSTM,

BN-LSTM and BN-LSTM everywhere) 10.

For all MI models, {α,β1,β2,b} were initialized to {1, 1, 1, 0}. We follow the

experimental protocol of Cooijmans et al. (2016) 11 and use exactly the same set-

tings as theirs, except we remove the gradient clipping for MI-LSTMs. Figure. 6.2

(b) shows validation curves of the baseline (LSTM), MI-LSTM, BN-LSTM, and

MI-LSTM+BN, and the final validation errors of all models are reported in Ta-

ble 6.5, bottom right panel. Clearly, using Multiplicative Integration results in

improved model performance regardless of whether Batch-Norm is used. However,

the combination of MI and Batch-Norm provides the best performance and the

fastest speed of convergence. This shows the general applicability of Multiplication

Integration when combining it with other optimization tricks.

6.4 Relationship to Previous Models

6.4.1 Relationship to Hidden Markov Models

One can show that under certain constraints, MI-RNN is effectively implement-

ing the forward algorithm of the Hidden Markov Model(HMM). A direct map-

ping can be constructed as follows (see Wessels and Omlin (2000) for a simi-

lar derivation). Let U ∈ Rm×m be the state transition probability matrix with

10. Learning curves and the final result number are obtained by emails correspondence with
authors of Cooijmans et al. (2016).

11. https://github.com/cooijmanstim/recurrent-batch-normalization.git.

75

https://github.com/cooijmanstim/recurrent-batch-normalization.git

Uij = Pr[ht+1 = i|ht = j], W ∈ Rm×n be the observation probability matrix with

Wij = Pr[xt = i|ht = j]. When xt is a one-hot vector (e.g., in many of the lan-

guage modelling tasks), multiplying it by W is effectively choosing a column of the

observation matrix. Namely, if the jth entry of xt is one, then Wxt = Pr[xt|ht = j].

Let h0 be the initial state distribution with h0 = Pr[h0] and {ht}t≥1 be the alpha

values in the forward algorithm of HMM, i.e., ht = Pr[x1, ..., xt, ht]. Then Uht =

Pr[x1, ..., xt, ht+1]. Thus ht+1 = Wxt+1�Uht = Pr[xt+1|ht+1] ·Pr[x1, ..., xt, ht+1] =

Pr[x1, ..., xt+1, ht+1]. To exactly implement the forward algorithm using Multiplica-

tive Integration, the matrices W and U have to be probability matrices, and xt

needs to be a one-hot vector. The function φ needs to be linear, and we drop

all the bias terms. Therefore, RNN with Multiplicative Integration can be seen

as a nonlinear extension of HMMs. The extra freedom in parameter values and

nonlinearity makes the model more flexible compared to HMMs.

6.4.2 Relations to Second Order RNNs and Multiplicative

RNNs

MI-RNN is related to the second order RNN Giles et al. (1991); Goudreau

et al. (1994) and the multiplicative RNN (MRNN) Sutskever et al. (2011). We first

describe the similarities with these two models:

The second order RNN involves a second order term st in a vanilla-RNN, where

the ith element st,i is computed by the bilinear form: st,i = xTt T (i)ht−1, where

T (i) ∈ Rn×m(1 ≤ i ≤ m) is the ith slice of a tensor T ∈ Rm×n×m. Multiplicative

Integration also involve a second order term st = α �Wxt �Uht−1, but in our

case st,i = αi(wi · xt)(ui · ht−1) = xTt (αwi ⊗ ui)ht−1, where wi and ui are ith

row in W and U, and αi is the ith element of α. Note that the outer product

αiwi⊗ui is a rank-1 matrix. The Multiplicative RNN is also a second order RNN,

but which approximates T by a tensor decomposition
∑
x

(i)
t T (i) = Pdiag(Vxt)Q.

For MI-RNN, we can also think of the second order term as a tensor decomposition:

α�Wxt �Uht−1 = U(xt)ht−1 = [diag(α)diag(Wxt)U]ht−1.

There are however several differences that make MI a favourable model: (1)

Simpler Parametrization: MI uses a rank-1 approximation compared to the sec-

ond order RNNs, and a diagonal approximation compared to Multiplicative RNN.

Moreover, MI-RNN shares parameters across the first and second order terms,

76

whereas the other two models do not. As a result, the number of parameters are

largely reduced, which makes our model more practical for large scale problems,

while avoiding overfitting. (2) Easier Optimization: In tensor decomposition meth-

ods, the products of three different (low-rank) matrices generally makes it hard

to optimize Sutskever et al. (2011). However, the optimization problem becomes

easier in MI, as discussed in section 2 and 3. (3) General structural design vs.

vanilla-RNN design: Multiplicative Integration can be easily embedded in many

other RNN structures, e.g. LSTMs and GRUs, whereas the second order RNN and

MRNN present a very specific design for modifying vanilla-RNNs.

Moreover, we also compared MI-RNN’s performance to the previous HF-MRNN’s

results (Multiplicative RNN trained by Hessian-free method) in Table 6.2, bottom

left and bottom middle panels, on Penn-Treebank and text8 datasets. One can see

that MI-RNN outperforms HF-MRNN on both tasks.

6.4.3 General Multiplicative Integration

Multiplicative Integration can be viewed as a general way of combining informa-

tion flows from two different sources. In particular, Rasmus et al. (2015) proposed

the ladder network that achieves promising results on semi-supervised learning.

In their model, they combine the lateral connections and the backward connec-

tions via the “combinator” function by a Hadamard product. The performance

would severely degrade without this product as empirically shown by Pezeshki

et al. (2015). Yang et al. (2014) explored neural embedding approaches in knowl-

edge bases by formulating relations as bilinear and/or linear mapping functions,

and compared a variety of embedding models on the link prediction task. Surpris-

ingly, the best results among all bilinear functions is the simple weighted Hadamard

product. They further carefully compare the multiplicative and additive interac-

tions and show that the multiplicative interaction dominates the additive one.

6.5 Conclusion

In this work we proposed to use Multiplicative Integration (MI), a simple

Hadamard product to combine information flow in recurrent neural networks. MI

77

can be easily integrated into many popular RNN models, including LSTMs and

GRUs, while introducing almost no extra parameters. Indeed, the implementation

of MI requires almost no extra work beyond implementing RNN models. We also

show that MI achieves state-of-the-art performance on four different tasks or 11

datasets of varying sizes and scales. We believe that the Multiplicative Integration

can become a default building block for training various types of RNN models.

78

7 Prologue to Third Article

7.1 Article Detail

HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question

Answering. Zhilin Yang1, Peng Qi1, Saizheng Zhang1, Yoshua Bengio, William W.

Cohen, Ruslan Salakhutdinov, Christopher D. Manning. Conference on Empirical

Methods in Natural Language Processing (EMMLP), 2018.

Personal Contribution. The idea of examining existing models’ multi-hop rea-

soning abilities came from brainstormings among the first three authors. For the

data collection, Zhilin Yang and Peng Qi built the hyperlink graph framework for

generating candidate Wikipedia paragraphs while I implemented the preliminary

version of the crowdsourcing interface. We three further made significant improve-

ments on the data collection pipeline in which I was mainly responsible for the hit

reviewing script and worker quality evaluation. For the experiments, I prepared

the distractor setting and built the retrieval baseline for full-wiki setting. Zhilin

Yang proposed the model based data split and conducted the benchmark setting

experiments and ablation studies with strong end-to-end neural baseline models.

Peng Qi gave a thorough data analysis of the collected dataset and established

the human performance evaluation. The other co-authors provided several critical

advice on data collection and experiments.

7.2 Context

Existing question answering (QA) datasets fail to train QA systems to perform

complex reasoning and provide explanations for answers. We introduce HOT-

POTQA, a new dataset with 113k Wikipedia-based question-answer pairs with

1. Equal contribution.

79

four key features: (1) the questions require finding and reasoning over multiple

supporting documents to obtain an answer; (2) the questions are diverse and not

constrained to any pre-existing knowledge bases or knowledge schemas; (3) we pro-

vide sentence-level supporting facts required for reasoning, allowing QA systems

to reason with strong supervision and explain the predictions; (4) we offer a new

type of factoid comparison questions to test QA systems’ ability to extract relevant

facts and perform necessary comparison. We show that HOTPOTQA is challeng-

ing for the latest QA systems, and the supporting facts enable models to improve

performance and make explainable predictions.

7.3 Contributions

The HotpotQA dataset introduced in this work is the very first large scale

question answering dataset aiming at facilitating the development of QA systems

capable of performing explainable, multi-hop reasoning. Compared to previous

existing resources, HotpotQA dataset ensures the requirement of true multi-

hop reasoning, enables explainable model prediction by introducing support facts

and forces the question-answer pairs being in diversified natural language form. A

byproduct is the proposed high-quality multi-hop question collection pipeline which

may shed light on future work in this direction.

80

8

HotpotQA: A Dataset for
Diverse, Explainable
Multi-hop Question
Answering

8.1 Introduction

The ability to perform reasoning and inference over natural language is an im-

portant aspect of intelligence. The task of question answering (QA) provides a

quantifiable and objective way to test the reasoning ability of intelligent systems.

To this end, a few large-scale QA datasets have been proposed, which sparked sig-

nificant progress in this direction. However, existing datasets have limitations that

hinder further advancements of machine reasoning over natural language, especially

in testing QA systems’ ability to perform multi-hop reasoning, where the system

has to reason with substantial information from more than one document to arrive

at the answer.

First, some datasets mainly focus on testing the ability of reasoning within a

single paragraph or document, or single-hop reasoning. For example, SQuAD (Ra-

jpurkar et al., 2016) questions are designed to be answered given a single paragraph

as the context, and most of the questions can in fact be addressed by matching

the question with a single sentence in that paragraph. As a result, it has fallen

short at testing systems’ ability to reason over a larger context. TriviaQA (Joshi

et al., 2017b) and SearchQA (Dunn et al., 2017) create a more challenging setting

by using information retrieval to collect multiple documents to form the context

given existing question-answer pairs. Nevertheless, most of the questions can be

answered by matching the question with a few nearby sentences in one single para-

graph, which is limited as it does not require more complex reasoning (e.g., over

multiple paragraphs).

Second, existing datasets that target multi-hop reasoning, such as WikiHop

(Welbl et al., 2018a) and ComplexWebQ (Talmor and Berant, 2018), are con-

structed on top of existing knowledge bases (KBs). As a result, these datasets

are constrained by the schema of the KBs they use, and therefore the diversity of

81

Paragraph A, Return to Olympus:
[1] Return to Olympus is the only album by the alternative rock band Malfunkshun.
[2] It was released after the band had broken up and after lead singer Andrew Wood
(later of Mother Love Bone) had died of a drug overdose in 1990. [3] Stone Gos-
sard, of Pearl Jam, had compiled the songs and released the album on his label,
Loosegroove Records.

Paragraph B, Mother Love Bone:
[4] Mother Love Bone was an American rock band that formed in Seattle, Washington
in 1987. [5] The band was active from 1987 to 1990. [6] Frontman Andrew Wood’s
personality and compositions helped to catapult the group to the top of the burgeon-
ing late 1980s/early 1990s Seattle music scene. [7] Wood died only days before the
scheduled release of the band’s debut album, “Apple”, thus ending the group’s hopes
of success. [8] The album was finally released a few months later.

Q: What was the former band of the member of Mother Love Bone who died just
before the release of “Apple”?
A: Malfunkshun
Supporting facts: 1, 2, 4, 6, 7

Figure 8.1 – An example of the multi-hop questions in HotpotQA. We also highlight the
supporting facts in blue italics, which are also part of the dataset.

questions and answers is inherently limited.

Third, all of the above datasets only provide distant supervision; i.e., the sys-

tems only know what the answer is, but do not know what supporting facts lead

to it. This makes it difficult for models to learn about the underlying reasoning

process, as well as to make explainable predictions.

To address the above challenges, we aim at creating a QA dataset that requires

reasoning over multiple documents, and does so in natural language, without con-

straining itself to an existing knowledge base or knowledge schema. We also want

it to provide the system with strong supervision about what text the answer is ac-

tually derived from, to help guide systems to perform meaningful and explainable

reasoning.

We present HotpotQA 1, a large-scale dataset that satisfies these desider-

ata. HotpotQA is collected by crowdsourcing based on Wikipedia articles, where

crowd workers are shown multiple supporting context documents and asked explic-

itly to come up with questions requiring reasoning about all of the documents. This

1. The name comes from the first three authors’ arriving at the main idea during a discussion
at a hot pot restaurant.

82

ensures it covers multi-hop questions that are more natural, and are not designed

with any pre-existing knowledge base schema in mind. Moreover, we also ask the

crowd workers to provide the supporting facts they use to answer the question,

which we also provide as part of the dataset (see Figure 8.1 for an example). We

have carefully designed a data collection pipeline for HotpotQA, since the collec-

tion of high-quality multi-hop questions is non-trivial. We hope that this pipeline

also sheds light on future work in this direction. Finally, we also collected a novel

type of questions—comparison questions—as part of HotpotQA, in which we

require systems to compare two entities on some shared properties to test their un-

derstanding of both language and common concepts such as numerical magnitude.

We make HotpotQA publicly available at https://HotpotQA.github.io.

8.2 Data Collection

The main goal of our work is to collect a diverse and explainable question an-

swering dataset that requires multi-hop reasoning. One way to do so is to define

reasoning chains based on a knowledge base (Welbl et al., 2018a; Talmor and Be-

rant, 2018). However, the resulting datasets are limited by the incompleteness of

entity relations and the lack of diversity in the question types. Instead, in this

work, we focus on text-based question answering in order to diversify the ques-

tions and answers. The overall setting is that given some context paragraphs (e.g.,

a few paragraphs, or the entire Web) and a question, a QA system answers the

question by extracting a span of text from the context, similar to Rajpurkar et al.

(2016). We additionally ensure that it is necessary to perform multi-hop reasoning

to correctly answer the question.

8.2.1 Pipeline

It is non-trivial to collect text-based multi-hop questions. In our pilot studies,

we found that simply giving an arbitrary set of paragraphs to crowd workers is

counterproductive, because for most paragraph sets, it is difficult to ask a mean-

ingful multi-hop question. To address this challenge, we carefully design a pipeline

83

https://hotpotqa.github.io

to collect text-based multi-hop questions. Next, we will highlight the key design

choices in our pipeline.

Building a Wikipedia Hyperlink Graph. We use the entire English Wikipedia

dump as our corpus. 2 In this corpus, we make two observations: (1) hyper-links

in the Wikipedia articles often naturally entail a relation between two (already

disambiguated) entities in the context, which could potentially be used to facili-

tate multi-hop reasoning; (2) the first paragraph of each article often contains the

most information that could be queried in a meaningful way. Based on these ob-

servations, we extract all the hyperlinks from the first paragraphs of all Wikipedia

articles. With these hyperlinks, we build a directed graph G, where each edge (a, b)

indicates there is a hyperlink from the first paragraph of article a to article b.

Generating Candidate Paragraph Pairs. To generate meaningful pairs of

paragraphs for multi-hop question answering with G, we start by considering an

example question “when was of the singer and songwriter of Radiohead born?” To

answer this question, one would need to first reason that the “singer and songwriter

of Radiohead” is “Thom Yorke”, and then figure out his birthday in the text. We

call “Thom Yorke” a bridge entity in this example. Given an edge (a, b) in the

hyperlink graph G, the entity of b can usually be viewed as a bridge entity that

connects a and b. As we observe article b’s usually determine the theme of the

shared context between a and b, but not all entity b’s are suitable for collecting

multi-hop questions. For example, entities like countries are frequently referred to

in Wikipedia, but don’t necessarily have much in common with all incoming links.

It is also difficult, for instance, for the crowd workers to ask meaningful multi-

hop questions about highly technical entities like the IPv4 protocol. To alleviate

this issue, we constrain the bridge entities to a set of curated pages in Wikipedia,

see Section 8.2.2. After manually curating a set of pages B, we create candidate

paragraph pairs by sampling edges (a, b) from the hyperlink graph such that b ∈ B.

Comparison Questions. In addition to questions collected using bridge entities,

we also collect another type of multi-hop questions—comparison questions. The

main idea is that comparing two entities from the same category usually results

2. https://dumps.wikimedia.org/

84

https://dumps.wikimedia.org/

Algorithm 1 Overall data collection procedure

Input: question type ratio r1 = 0.75, yes/no ratio r2 = 0.5
while not finished do

if random() < r1 then
Uniformly sample an entity b ∈ B
Uniformly sample an edge (a, b)
Workers ask a question about paragraphs a and b

else
Sample a list from L, with probabilities weighted by list sizes
Uniformly sample two entities (a, b) from the list
if random() < r2 then

Workers ask a yes/no question to compare a and b
else

Workers ask a question with a span answer to compare a and b
end if

end if
Workers provide the supporting facts

end while

in interesting multi-hop questions, e.g., “Who has played for more NBA teams,

Michael Jordan or Kobe Bryant?” To facilitate collecting this type of question, we

manually curate 42 lists of similar entities (denoted as L) from Wikipedia. 3 To

generate candidate paragraph pairs, we randomly sample two paragraphs from the

same list and present them to the crowd worker.

To increase the diversity of multi-hop questions, we also introduce a subset of

yes/no questions in comparison questions. This complements the original scope

of comparison questions by offering new ways to require systems to reason over

both paragraphs. For example, consider the entities Iron Maiden (from the UK)

and AC/DC (from Australia). Questions like “Is Iron Maiden or AC/DC from the

UK?” are less ideal, because one would deduce the answer is “Iron Maiden” even if

one only had access to that article. With yes/no questions, one may ask “Are Iron

Maiden and AC/DC from the same country?”, which requires reasoning over both

paragraphs.

To the best of our knowledge, text-based comparison questions are a novel type

of questions that have not been considered by previous datasets. More impor-

tantly, answering these questions usually requires arithmetic comparison, such as

3. This is achieved by manually curating lists from the Wikipedia“List of lists of lists” (https:
//wiki.sh/y8qv). One example is “Highest Mountains on Earth”.

85

https://wiki.sh/y8qv
https://wiki.sh/y8qv

comparing ages given birth dates, which presents a new challenge for future model

development.

Collecting Supporting Facts. To enhance the explainability of question an-

swering systems, we want them to output a set of supporting facts necessary to

arrive at the answer, when the answer is generated. To this end, we also collect

the sentences that determine the answers from crowd workers. These supporting

facts can serve as strong supervision for what sentences to pay attention to. More-

over, we can now test the explainability of a model by comparing the predicted

supporting facts to the ground truth ones.

The overall procedure of data collection is illustrated in Algorithm 1.

8.2.2 Implementation Details

Wikipedia Preprocessing. We downloaded the dump of English Wikipedia of

October 1, 2017, and extracted text and hyperlinks with WikiExtractor. 4 We use

Stanford CoreNLP 3.8.0 (Manning et al., 2014) for word and sentence tokenization.

We use the resulting sentence boundaries for collection of supporting facts, and use

token boundaries to check whether Turkers are providing answers that cover spans

of entire tokens to avoid nonsensical partial-word answers.

Curating Wikipedia Pages. To make sure the sampled candidate paragraph

pairs are intuitive for crowd workers to ask high-quality multi-hop questions about,

we manually curate 591 categories from the lists of popular pages by WikiProject. 5

For each category, we sample (a, b) pairs from the graph G where b is in the consid-

ered category, and manually check whether a multi-hop question can be asked given

the pair (a, b). Those categories with a high probability of permitting multi-hop

questions are selected.

Bonus Structures. To incentivize crowd workers to produce higher-quality data

more efficiently, we follow Yang et al. (2018b), and employ bonus structures. We

mix two settings in our data collection process. In the first setting, we reward

the top (in terms of numbers of examples) workers every 200 examples. In the

4. https://github.com/attardi/wikiextractor

5. https://wiki.sh/y8qu

86

https://github.com/attardi/wikiextractor
https://wiki.sh/y8qu

Supporting Paragraphs

Friendly Hints

Worker Input

Figure 8.2 – Screenshot of our worker interface on Amazon Mechanical Turk.

second setting, the workers get bonuses based on their productivity (measured as

the number of examples per hour).

Crowd Worker Interface. Our crowd worker interface is based on Amazon

Mechanical Turk 6 using the ParlAI (Miller et al., 2017), an open-source project

that facilitates the development of dialog systems and data collection with a dialog

interface. We adapt ParlAI for collecting question answer pairs by converting the

collection workflow into a system-oriented dialog. This allows us to have more

control over the turkers input, as well as provide turkers with in-the-loop feedbacks

or helpful hints to help Turkers finish the task, and therefore speed up the collection

process. See Figure 8.2 for an example of the worker interface during data collection.

8.3 Processing and Benchmark Settings

We collected 112,779 valid data examples in total .We first split out a subset

of data called train-easy. Specifically, we randomly sampled questions (∼3–10 per

6. https://www.mturk.com/

87

https://www.mturk.com/

Name Desc. Usage # Examples

train-easy single-hop training 18,089
train-medium multi-hop training 56,814
train-hard hard multi-hop training 15,661
dev hard multi-hop dev 7,405
test-distractor hard multi-hop test 7,405
test-fullwiki hard multi-hop test 7,405
Total 112,779

Table 8.1 – Data split. The splits train-easy, train-medium, and train-hard are combined for
training. The distractor and full wiki settings use different test sets so that the gold paragraphs
in the full wiki test set remain unknown to any models.

Turker) from top-contributing turkers, and categorized all their questions into the

train-easy set if an overwhelming percentage in the sample only require reasoning

over one of the paragraphs. We only sampled these turkers because they con-

tributed more than 70% of our data. This train-easy set contains 18,089 mostly

single-hop examples.

We implemented a question answering model based on the current state-of-the-

art architectures, which we discuss in detail in Section 8.5.1. Based on this model,

we performed a three-fold cross validation on the remaining multi-hop examples.

Among these examples, the models were able to correctly answer 60% of the ques-

tions with high confidence (determined by thresholding the model loss). These

correctly-answered questions (56,814 in total, 60% of the multi-hop examples) are

split out and marked as the train-medium subset, which will also be used as part

of our training set.

After splitting out train-easy and train-medium, we are left with hard examples.

As our ultimate goal is to solve multi-hop question answering, we focus on questions

that the latest modeling techniques are not able to answer. Thus we constrain

our dev and test sets to be hard examples. Specifically, we randomly divide the

hard examples into four subsets, train-hard, dev, test-distractor, and test-fullwiki.

Statistics about the data split can be found in Table 8.1. In Section 8.5, we will show

that combining train-easy, train-medium, and train-hard to train models yields the

best performance, so we use the combined set as our default training set. The

two test sets test-distractor and test-fullwiki are used in two different benchmark

settings, which we introduce next.

88

We create two benchmark settings. In the first setting, to challenge the model

to find the true supporting facts in the presence of noise, for each example we

employ bigram tf-idf (Chen et al., 2017) to retrieve 8 paragraphs from Wikipedia

as distractors, using the question as the query. We mix them with the 2 gold

paragraphs (the ones used to collect the question and answer) to construct the

distractor setting. The 2 gold paragraphs and the 8 distractors are shuffled before

they are fed to the model. In the second setting, we fully test the model’s ability

to locate relevant facts as well as reasoning about them by requiring it to answer

the question given the first paragraphs of all Wikipedia articles without the gold

paragraphs specified. This full wiki setting truly tests the performance of the

systems’ ability at multi-hop reasoning in the wild. 7 The two settings present

different levels of difficulty, and would require techniques ranging from reading

comprehension to information retrieval. As shown in Table 8.1, we use separate test

sets for the two settings to avoid leaking information, because the gold paragraphs

are available to a model in the distractor setting, but should not be accessible in

the full wiki setting.

We also try to understand the model’s good performance on the train-medium

split. Manual analysis shows that the ratio of multi-hop questions in train-medium

is similar to that of the hard examples (93.3% in train-medium vs. 92.0% in dev),

but one of the question types appears more frequently in train-medium compared

to the hard splits (Type II: 32.0% in train-medium vs. 15.0% in dev, see Section 8.4

for the definition of Type II questions). These observations demonstrate that given

enough training data, existing neural architectures can be trained to answer cer-

tain types and certain subsets of the multi-hop questions. However, train-medium

remains challenging when not just the gold paragraphs are present:Table 8.2 shows

the comparison between train-medium split and hard examples like dev and test

under retrieval metrics in full wiki setting. As we can see, the performance gap be-

tween train-medium split and its dev/test is close, which implies that train-medium

split has a similar level of difficulty as hard examples under the full wiki setting in

which a retrieval model is necessary as the first processing step.

7. As we required the crowd workers to use complete entity names in the question, the majority
of the questions are unambiguous in the full wiki setting.

89

Set MAP Mean Rank CorAns Rank

train-medium 41.89 288.19 82.76

dev 42.79 304.30 97.93

test 45.92 286.20 74.85

Table 8.2 – Retrieval performance comparison on full wiki setting for train-medium, dev and
test with 1,000 random samples each. MAP and are in %. Mean Rank averages over retrieval
ranks of two gold paragraphs. CorAns Rank refers to the rank of the gold paragraph containing
the answer.

8.4 Dataset Analysis

In this section, we analyze the types of questions, types of answers, and types

of multi-hop reasoning covered in the dataset.

Question Types. We heuristically identified question types for each collected

question. To identify the question type, we first locate the central question word

(CQW) in the question. Since HotpotQA contains comparison questions and

yes/no questions, we consider as question words WH-words, copulas (“is”, “are”),

and auxiliary verbs (“does”, “did”). Because questions often involve relative clauses

beginning with WH-words, we define the CQW as the first question word in the

question if it can be found in the first three tokens, or the last question word

otherwise. Then, we determine question type by extracting words up to 2 tokens

away to the right of the CQW, along with the token to the left if it is one of a few

common prepositions (e.g., in the cases of “in which” and “by whom”).

We visualize the distribution of question types in Figure 8.3, and label the ones

shared among more than 250 questions. As is shown, our dataset covers a diverse

variety of questions centered around entities, locations, events, dates, and numbers,

as well as yes/no questions directed at comparing two entities (“Are both A and B

...?”), to name a few.

Answer Types. We further sample 100 examples from the dataset, and present

the types of answers in Table 8.3. As can be seen, HotpotQA covers a broad

range of answer types, which matches our initial analysis of question types. We

90

Figure 8.3 – Types of questions covered in HotpotQA. Question types are extracted heuristi-
cally, starting at question words or prepositions preceding them. Empty colored blocks indicate
suffixes that are too rare to show individually. See main text for more details.

find that a majority of the questions are about entities in the articles (68%), and a

non-negligible amount of questions also ask about various properties like date (9%)

and other descriptive properties such as numbers (8%) and adjectives (4%).

Multi-hop Reasoning Types. We also sampled 100 examples from the dev

and test sets and manually classified the types of reasoning required to answer

each question. Besides comparing two entities, there are three main types of multi-

hop reasoning required to answer these questions, which we show in Table 8.4

accompanied with examples.

Most of the questions require at least one supporting fact from each paragraph

to answer. A majority of sampled questions (42%) require chain reasoning (Type

I in the table), where the reader must first identify a bridge entity before the sec-

ond hop can be answered by filling in the bridge. One strategy to answer these

questions would be to decompose them into consecutive single-hop questions. The

91

Answer Type % Example(s)

Person 30 King Edward II, Rihanna
Group / Org 13 Cartoonito, Apalachee
Location 10 Fort Richardson, California
Date 9 10th or even 13th century
Number 8 79.92 million, 17
Artwork 8 Die schweigsame Frau
Yes/No 6 -
Adjective 4 conservative
Event 1 Prix Benois de la Danse
Other proper noun 6 Cold War, Laban Movement Analysis
Common noun 5 comedy, both men and women

Table 8.3 – Types of answers in HotpotQA.

bridge entity could also be used implicitly to help infer properties of other entities

related to it. In some questions (Type III), the entity in question shares certain

properties with a bridge entity (e.g., they are collocated), and we can infer its

properties through the bridge entity. Another type of question involves locating

the answer entity by satisfying multiple properties simultaneously (Type II). Here,

to answer the question, one could find the set of all entities that satisfy each of the

properties mentioned, and take an intersection to arrive at the final answer. Ques-

tions comparing two entities (Comparison) also require the system to understand

the properties in question about the two entities (e.g., nationality), and sometimes

require arithmetic such as counting (as seen in the table) or comparing numerical

values (“Who is older, A or B?”). Finally, we find that sometimes the questions

require more than two supporting facts to answer (Other). In our analysis, we also

find that for all of the examples shown in the table, the supporting facts provided

by the Turkers match exactly with the limited context shown here, showing that

the supporting facts collected are of high quality.

Aside from the reasoning types mentioned above, we also estimate that about

6% of the sampled questions can be answered with one of the two paragraphs, and

2% of them unanswerable. We also randomly sampled 100 examples from train-

medium and train-hard combined, and the proportions of reasoning types are: Type

I 38%, Type II 29%, Comparison 20%, Other 7%, Type III 2%, single-hop 2%, and

unanswerable 2%.

92

Reasoning Type % Example(s)

Inferring the bridge

entity to complete

the 2nd-hop question

(Type I)

42 Paragraph A: The 2015 Diamond Head Classic was a college basketball

tournament ... Buddy Hield was named the tournament’s MVP .

Paragraph B: Chavano Rainier ”Buddy” Hield is a Bahamian pro-

fessional basketball player for the Sacramento Kings of the NBA...

Q: Which team does the player named 2015 Diamond Head Classic’s

MVP play for?

Comparing two entities

(Comparison)

27 Paragraph A: LostAlone were a British rock band ... consisted of Steven

Battelle, Alan Williamson, and Mark Gibson...

Paragraph B: Guster is an American alternative rock band ... Founding

members Adam Gardner, Ryan Miller, and Brian Rosenworcel began...

Q: Did LostAlone and Guster have the same number of members? (yes)

Locating the answer

entity by checking

multiple properties

(Type II)

15 Paragraph A: Several current and former members of the Pittsburgh

Pirates – ... John Milner, Dave Parker, and Rod Scurry...

Paragraph B: David Gene Parker, nicknamed ”The Cobra”, is an

American former player in Major League Baseball...

Q: Which former member of the Pittsburgh Pirates was nicknamed ”The

Cobra”?

Inferring about the

property of an entity

in question through a

bridge entity (Type

III)

6 Paragraph A: Marine Tactical Air Command Squadron 28 is a United

States Marine Corps aviation command and control unit based at Marine

Corps Air Station Cherry Point ...

Paragraph B: Marine Corps Air Station Cherry Point ... is a United

States Marine Corps airfield located in Havelock, North Carolina,

USA ...

Q: What city is the Marine Air Control Group 28 located in?

Other types of reason-

ing that require more

than two supporting

facts (Other)

2 Paragraph A: ... the towns of Yodobashi, Okubo, Totsuka, and

Ochiai town were merged into Yodobashi ward Yodobashi Camera

is a store with its name taken from the town and ward .

Paragraph B: Yodobashi Camera Co., Ltd. is a major Japanese retail

chain specializing in electronics, PCs, cameras and photographic equip-

ment .

Q: Aside from Yodobashi, what other towns were merged into the ward

which gave the major Japanese retail chain specializing in electronics,

PCs, cameras, and photographic equipment it’s name?

Table 8.4 – Types of multi-hop reasoning required to answer questions in the HotpotQA dev
and test sets. We show in orange bold italics bridge entities if applicable, blue italics supporting
facts from the paragraphs that connect directly to the question, and green bold the answer in
the paragraph or following the question. The remaining 8% are single-hop (6%) or unanswerable
questions (2%) by our judgement.

93

8.5 Experiments

8.5.1 Model Architecture and Training

To test the performance of leading QA systems on our data, we reimplemented

the architecture described in Clark and Gardner (2017) as our baseline model. We

note that our implementation without weight averaging achieves performance very

close to what the authors reported on SQuAD (about 1 point worse in F1). Our

implemented model subsumes the latest technical advances on question answering,

including character-level models, self-attention (Wang et al., 2017), and bi-attention

Seo et al. (2017). Combining these three key components is becoming standard

practice, and various state-of-the-art or competitive architectures (Liu et al., 2018;

Clark and Gardner, 2017; Wang et al., 2017; Seo et al., 2017; Pan et al., 2017;

Salant and Berant, 2018; Xiong et al., 2018) on SQuAD can be viewed as similar

to our implemented model. To accommodate yes/no questions, we also add a 3-

way classifier after the last recurrent layer to produce the probabilities of “yes”,

“no”, and span-based answers. During decoding, we first use the 3-way output to

determine whether the answer is “yes”, “no”, or a text span. If it is a text span, we

further search for the most probable span.

Supporting Facts as Strong Supervision. To evaluate the baseline model’s

performance in predicting explainable supporting facts, as well as how much they

improve QA performance, we additionally design a component to incorporate such

strong supervision into our model. For each sentence, we concatenate the output

of the self-attention layer at the first and last positions, and use a binary linear

classifier to predict the probability that the current sentence is a supporting fact.

We minimize a binary cross entropy loss for this classifier. This objective is jointly

optimized with the normal question answering objective in a multi-task learning

setting, and they share the same low-level representations. With this classifier, the

model can also be evaluated on the task of supporting fact prediction to gauge its

explainability. Our overall architecture is illustrated in Figure 8.4. Though it is

possible to build a pipeline system, in this work we focus on an end-to-end one,

which is easier to tune and faster to train.

94

Char RNN Word emb Char RNN Word emb

paragraphs question

RNN RNN

Bi-Attention

RNN

Self-Attention

RNN 0/1
(is supporting facts?)

residual

RNN

Strong supervision

concat

Linear Start token

RNN

RNN

Linear

Linear

End token

Yes/no/span

concat

concat

Figure 8.4 – Our model architecture. Strong supervision over supporting facts is used in a
multi-task setting.

8.5.2 Results

We evaluate our model in the two benchmark settings. In the full wiki setting,

to enable efficient tf-idf retrieval among 5,000,000+ wiki paragraphs, given a ques-

tion we first return a candidate context pool of at most 5,000 paragraphs using

an inverted index based filtering strategy (see Algorithm 2) and then select the

top 10 paragraphs in the pool by standard bigram tf-idf retrieval to gather final

candidates. 8 Retrieval performance is shown in Table 8.5. After retrieving these

10 paragraphs, we then use the model trained in the distractor setting to evaluate

its performance on these final candidate paragraphs.

8. We choose the number of final candidates as 10 to stay consistent with the distractor setting
where candidates are 2 gold paragraphs plus 8 distractors.

95

Algorithm 2 Inverted Index Filtering Strategy

Input: question text q, control threshold N , ngram-to-Wikidoc inverted index D
Inintialize:
Extract unigram + bigram set rq from q
Ncand = +∞
Cgram = 0
while Ncands > N do
Cgram = Cgram + 1
Set Soverlap to be an empty dictionary
for w ∈ rq do

for d ∈ D[w] do
if d not in Soverlap then
Soverlap[d] = 1

else
Soverlap[d] = Soverlap[d] + 1

end if
end for

end for
Scand = ∅
for d in Soverlap do

if Soverlap[d] ≥ Cgram then
Scand = Scand ∪ {d}

end if
end for
Ncands = |Scand|

end while
return Scand

Following previous work (Rajpurkar et al., 2016), we use exact match (EM)

and F1 as two evaluation metrics. To assess the explainability of the models, we

further introduce two sets of metrics involving the supporting facts. The first set

focuses on evaluating the supporting facts directly, namely EM and F1 on the set

of supporting fact sentences as compared to the gold set. The second set features

joint metrics that combine the evaluation of answer spans and supporting facts

as follows. For each example, given its precision and recall on the answer span

(P (ans), R(ans)) and the supporting facts (P (sup), R(sup)), respectively, we calculate

joint F1 as

P (joint) = P (ans)P (sup), R(joint) = R(ans)R(sup),

96

Set MAP Mean Rank Hits@2 Hits@10

dev 43.93 314.71 39.43 56.06
test 43.21 314.05 38.67 55.88

Table 8.5 – Retrieval performance in the full wiki setting. Mean Rank is averaged over the ranks
of two gold paragraphs.

Setting Split
Answer Sup Fact Joint

EM F1 EM F1 EM F1

distractor dev 44.44 58.28 21.95 66.66 11.56 40.86
distractor test 45.46 58.99 22.24 66.62 12.04 41.37

full wiki dev 24.68 34.36 5.28 40.98 2.54 17.73
full wiki test 25.23 34.40 5.07 40.69 2.63 17.85

Table 8.6 – Main results: the performance of question answering and supporting fact prediction
in the two benchmark settings. We encourage researchers to report these metrics when evaluating
their methods.

Joint F1 =
2P (joint)R(joint)

P (joint) +R(joint)
.

Joint EM is 1 only if both tasks achieve an exact match and otherwise 0. Intuitively,

these metrics penalize systems that perform poorly on either task. All metrics are

evaluated example-by-example and then averaged over the evaluation set.

The performance of our model on the benchmark settings is reported in Table

8.6, where all numbers are obtained with strong supervision over supporting facts.

From the distractor setting to the full wiki setting, expanding the scope of the

context increases the difficulty of question answering. The performance in the full

wiki setting is substantially lower, which poses a challenge to existing techniques

on retrieval-based question answering. Overall, model performance in all settings

is significantly lower than human performance as shown in Section 8.5.3, which

indicates that more technical advancements are needed in future work.

We also investigate the explainability of our model by measuring supporting

fact prediction performance. Our model achieves 60+ supporting fact prediction

F1 and ∼40 joint F1, which indicates there is room for further improvement in

terms of explainability.

In Table 8.7, we break down the performance on different question types. In

97

Setting Br EM Br F1 Cp EM Cp F1

distractor 43.41 59.09 48.55 55.05
full wiki 19.76 30.42 43.87 50.70

Table 8.7 – Performance breakdown over different question types on the dev set in the distractor
setting. “Br” denotes questions collected using bridge entities, and “Cp” denotes comparison
questions.

the distractor setting, comparison questions are more challenging than questions

involving bridge entities (as defined in Section 8.2), which indicates that this novel

question type might not be well-modeled by existing neural architectures. In the

full wiki setting, the performance of bridge entity questions drops significantly

while that of comparison questions decreases only marginally. This is because both

entities usually appear in the comparison questions, and thus reduces the difficulty

of retrieval. Combined with the retrieval performance in Table 8.5, we believe that

the deterioration in the full wiki setting in Table 8.6 is largely due to the difficulty

of retrieving both entities.

We perform an ablation study in the distractor setting, and report the results in

Table 8.8. Both self-attention and character-level models contribute notably to the

final performance, which is consistent with prior work. This means that techniques

targeted at single-hop QA are still somewhat effective in our setting. Moreover,

removing strong supervision over supporting facts decreases performance, which

demonstrates the effectiveness of our approach and the usefulness of the supporting

facts. We establish an estimate of the upper bound of strong supervision by only

considering the supporting facts as the oracle context input to our model, which

achieves a 10+ F1 improvement over not using the supporting facts. Compared

with the gain of strong supervision in our model (∼2 points in F1), our proposed

method of incorporating supporting facts supervision is most likely suboptimal,

and we leave the challenge of better modeling to future work. At last, we show

that combining all data splits (train-easy, train-medium, and train-hard) yields the

best performance, which is adopted as the default setting.

98

Setting EM F1

our model 44.44 58.28

– sup fact 42.79 56.19

– sup fact, self attention 41.59 55.19
– sup fact, char model 41.66 55.25

– sup fact, train-easy 41.61 55.12
– sup fact, train-easy, train-medium 31.07 43.61

gold only 48.38 63.58
sup fact only 51.95 66.98

Table 8.8 – Ablation study of question answering performance on the dev set in the distractor
setting. “– sup fact” means removing strong supervision over supporting facts from our model. “–
train-easy” and “– train-medium” means discarding the according data splits from training. “gold
only” and “sup fact only” refer to using the gold paragraphs or the supporting facts as the only
context input to the model.

8.5.3 Establishing Human Performance

To establish human performance on our dataset, we randomly sampled 1,000

examples from the dev and test sets, and had at least three additional Turkers

provide answers and supporting facts for these examples.

As a baseline, we treat the original Turker during data collection as the predic-

tion, and the newly collected answers and supporting facts as references, to evaluate

human performance. For each example, we choose the answer and supporting fact

reference that maximize the F1 score to report the final metrics to reduce the effect

of ambiguity (Rajpurkar et al., 2016).

As can be seen in Table 8.9, the original crowd worker archives very high per-

formance in both finding supporting facts, and answering the question correctly. If

the baseline model were provided with the correct supporting paragraphs to begin

with, it achieves parity with the crowd worker in finding supporting facts, but still

falls short at finding the actual answer. When distractor paragraphs are present,

the performance gap between the baseline model and the crowd worker on both

tasks is enlarged to ∼30% for both EM and F1.

We further establish the upper bound of human performance in HotpotQA,

by taking the maximum EM and F1 for each example. Here, we use each Turker’s

answer in turn as the prediction, and evaluate it against all other workers’ answers.

99

Setting
Answer Sp Fact Joint

EM F1 EM F1 EM F1

gold only 65.87 74.67 59.76 90.41 41.54 68.15
distractor 60.88 68.99 30.99 74.67 20.06 52.37

Human 83.60 91.40 61.50 90.04 52.30 82.55
Human UB 96.80 98.77 87.40 97.56 84.60 96.37

Table 8.9 – Comparing baseline model performance with human performance on 1,000 random
samples. “Human UB” stands for the upper bound on annotator performance on HotpotQA.
For details please refer to the main body.

As can be seen in Table 8.9, most of the metrics are close to 100%, illustrating

that on most examples, at least a subset of Turkers agree with each other, showing

high inter-annotator agreement. We also note that crowd workers agree less on

supporting facts, which could reflect that this task is inherently more subjective

than answering the question.

8.6 Related Work

Various recently-proposed large-scale datasets have been constructed in recent

years. We categorize them in four categories in our discussion.

Single-document datasets. SQuAD (Rajpurkar et al., 2016, 2018) questions

that are relatively simple because they usually require no more than one sentence

in the paragraph to answer.

Multi-document datasets. TriviaQA Joshi et al. (2017b) and SearchQA

Dunn et al. (2017) contain question answer pairs that are accompanied with more

than one document as the context. This further challenges QA systems’ ability

to accommodate longer contexts. However, since the supporting documents are

collected after the question answer pairs with information retrieval, the questions

are not guaranteed to involve interesting reasoning between multiple documents.

100

KB-based multi-hop datasets. Recent datasets like WikiHop (Welbl et al.,

2018a) and ComplexWebQ (Talmor and Berant, 2018) explore different ap-

proaches of using pre-existing knowledge bases (KB) with pre-defined logic rules

to generate valid QA pairs, to test QA models’ capability of performing multi-hop

reasoning. The diversity of questions and answers is largely limited by the fixed KB

schemas or logical forms. Furthermore, some of the questions might be answerable

by one text sentence due to the incompleteness of KBs.

Free-form answer-generation datasets. MS MARCO (Nguyen et al., 2016)

contains 100k user queries from Bing Search with human generated answers. Sys-

tems generate free-form answers and are evaluated by automatic metrics such as

ROUGE-L and BLEU-1. However, the reliability of these metrics is questionable

because they have been shown to correlate poorly with human judgement (Novikova

et al., 2017).

8.7 Conclusions

We present HotpotQA, a large-scale question answering dataset aimed at fa-

cilitating the development of QA systems capable of performing explainable, multi-

hop reasoning over diverse natural language. We also offer a new type of factoid

comparison questions to test systems’ ability to extract and compare various entity

properties in text.

101

9 Prologue to Fourth Article

9.1 Article Detail

Personalizing Dialogue Agents: I have a dog, do you have pets too?

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, Jason

Weston. Annual Meeting of the Association for Computational Linguistics (ACL),

2018.

Personal Contribution. The original idea of persona based chitchat was derived

from a series of discussions among Jason Weston, Arthur Szlam, Douwe Kiela and

me. With the help and suggestions from all the co-authors, I implemented the

pipeline for collecting personas and dialogues via crowd sourcing, performed exper-

iments on end-to-end neural models and conducted the original human evaluation.

Jason Weston evaluated the performance of ranking based models and further pro-

posed the persona prediction task. Emily Dinan rewrote the entire framework

and made critical improvements on both experiments and human evaluation. Jack

Urbanek provided solid engineering support through the entire project.

9.2 Context

Chit-chat models are known to have several problems: they lack specificity, do

not display a consistent personality and are often not very captivating. In this work

we present the task of making chit-chat more engaging by conditioning on profile

information. We collect data and train models to (1) condition on their given profile

information; and (2) information about the person they are talking to, resulting in

improved dialogues, as measured by next utterance prediction. Since (2) is initially

unknown, our model is trained to engage its partner with personal topics, and we

102

show the resulting dialogue can be used to predict profile information about the

interlocutors.

9.3 Contributions

The persona-chat dataset in this work is the very first large scale dataset

that allows explicitly modeling chatbot personalities using natural language profiles

under a chit-chat environment. Compared with existing resources, models trained

on persona-chat expressed better consistency and more engagingness during a

conversation. Furthermore, the proposed profile prediction task moves chit-chat in

the direction of goal-directed dialogue which has metrics for success. Indeed, the

original and rephrased profiles collected are also interesting as a semantic similarity

dataset in their own right. We hope that the dataset will aid training agents

that can ask questions about users’ profiles, remember the answers, and use them

naturally in conversation.

103

10
Personalizing Dialogue
Agents: I have a dog, do
you have pets too?

10.1 Introduction

Despite much recent success in natural language processing and dialogue re-

search, communication between a human and a machine is still in its infancy. It is

only recently that neural models have had sufficient capacity and access to suffi-

ciently large datasets that they appear to generate meaningful responses in a chit-

chat setting. Still, conversing with such generic chit-chat models for even a short

amount of time quickly exposes their weaknesses (Serban et al., 2016a; Vinyals and

Le, 2015).

Common issues with chit-chat models include: (i) the lack of a consistent per-

sonality (Li et al., 2016a) as they are typically trained over many dialogs each with

different speakers, (ii) the lack of an explicit long-term memory as they are typically

trained to produce an utterance given only the recent dialogue history (Vinyals and

Le, 2015); and (iii) a tendency to produce non-specific answers like “I don’t know”

(Li et al., 2015). Those three problems combine to produce an unsatisfying overall

experience for a human to engage with. We believe some of those problems are due

to there being no good publicly available dataset for general chit-chat. 1.

Because of the low quality of current conversational models, and because of

the difficulty in evaluating these models, chit-chat is often ignored as an end-

application. Instead, the research community has focused on task-oriented commu-

nication, such as airline or restaurant booking (Bordes and Weston, 2016), or else

single-turn information seeking, i.e. question answering (Rajpurkar et al., 2016).

Despite the success of the latter, simpler, domain, it is well-known that a large

quantity of human dialogue centers on socialization, personal interests and chit-

chat (Dunbar et al., 1997). For example, less than 5% of posts on Twitter are

1. For example, currently the most general chit-chat dataset available in http://parl.ai a
large repository of dialogue datasets is probably OpenSubtitles, which is based on movie scripts,
not natural conversations.

104

http://parl.ai

questions, whereas around 80% are about personal emotional state, thoughts or

activities, authored by so called “Meformers” (Naaman et al., 2010).

In this work we make a step towards more engaging chit-chat dialogue agents

by endowing them with a configurable, but persistent persona, encoded by multiple

sentences of textual description, termed a profile. This profile can be stored in a

memory-augmented neural network and then used to produce more personal, spe-

cific, consistent and engaging responses than a persona-free model, thus alleviating

some of the common issues in chit-chat models. Using the same mechanism, any

existing information about the persona of the dialogue partner can also be used

in the same way. Our models are thus trained to both ask and answer questions

about personal topics, and the resulting dialogue can be used to build a model of

the persona of the speaking partner.

To support the training of such models, we present the persona-chat dataset,

a new dialogue dataset consisting of 162,064 utterances between crowdworkers who

were randomly paired and each asked to act the part of a given provided persona

(randomly assigned, and created by another set of crowdworkers). The paired

workers were asked to chat naturally and to get to know each other during the

conversation. This produces interesting and engaging conversations that our agents

can try to learn to mimic.

Studying the next utterance prediction task during dialogue, we compare a

range of models: both generative and ranking models, including Seq2Seq models

and Memory Networks (Sukhbaatar et al., 2015b) as well as other standard re-

trieval baselines. We show experimentally that in either the generative or ranking

case conditioning the agent with persona information gives improved prediction of

the next dialogue utterance. The persona-chat dataset is designed to facilitate

research into alleviating some of the issues that traditional chit-chat models face,

and with the aim of making such models more consistent and engaging, by en-

dowing them with a persona. By comparing against chit-chat models built using

the OpenSubtitles and Twitter datasets, human evaluations show that our dataset

provides more engaging models, that are simultaneously capable of being fluent

and consistent via conditioning on a persistent, recognizable profile.

105

10.2 Related Work

Traditional dialogue systems consist of building blocks, such as dialogue state

tracking components and response generators, and have typically been applied to

tasks with labeled internal dialogue state and precisely defined user intent (i.e.,

goal-oriented dialogue), see e.g. Young (2000). The most successful goal-oriented

dialogue systems model conversation as partially observable Markov decision pro-

cesses (POMDPs) (Young et al., 2013). All those methods typically do not consider

the chit-chat setting and are more concerned with achieving functional goals (e.g.

booking an airline flight) than displaying a personality. In particular, many of

the tasks and datasets available are constrained to narrow domains (Serban et al.,

2015).

Non-goal driven dialogue systems go back to Weizenbaum’s famous program

ELIZA (Weizenbaum, 1966), and hand-coded systems have continued to be used

in applications to this day. For example, modern solutions that build an open-

ended dialogue system to the Alexa challenge combine hand-coded and machine-

learned elements (Serban et al., 2017a). Amongst the simplest of statistical systems

that can be used in this domain, that are based on data rather than hand-coding,

are information retrieval models (Sordoni et al., 2015), which retrieve and rank

responses based on their matching score with the recent dialogue history. We use

IR systems as a baseline in this work.

End-to-end neural approaches are a class of models which have seen growing

recent interest. A popular class of methods are generative recurrent systems like

seq2seq applied to dialogue (Sutskever et al., 2014; Vinyals and Le, 2015; Sordoni

et al., 2015; Li et al., 2016b; Serban et al., 2017b). Their strengths are that (i) they

are not constrained by hard-code rules or explicit internal states that may work

well in a narrow domain, but are too restrictive for more open dialogue such as

chit-chat, and (ii) being based on architectures rooted in language modeling and

machine translation, they excel at generating syntactically coherent language, and

can generate entirely novel responses. Their deficiencies are that they typically need

a large amount of data to be trained, and the vanilla approach generates responses

given only the recent dialogue history without using other external memory. The

latter issue makes neural models hence typically lack both domain knowledge in

the domain being discussed, and a persistent personality during discussions.

106

A promising direction, that is still in its infancy, to fix this issue is to use a

memory-augmented network instead (Sukhbaatar et al., 2015b; Dodge et al., 2015)

by providing or learning appropriate memories. A related class of neural methods

is to retrieve and rank candidates rather than generate words, similarly to IR

methods, but using memory-augmented networks to score the candidates instead.

We compare the generative and ranking approaches to each other in this work.

Serban et al. (2015) list available corpora for training dialogue systems. Perhaps

the most relevant to learning chit-chat models are ones based on movie scripts

such as OpenSubtitles and Cornell Movie-Dialogue Corpus, and dialogue from web

platforms such as Reddit and Twitter, all of which have been used for training

neural approaches (Vinyals and Le, 2015; Dodge et al., 2015; Li et al., 2016b;

Serban et al., 2017b). Naively training on these datasets leads to models with

the lack of a consistent personality as they will learn a model averaged over many

different speakers. Moreover, the data does little to encourage the model to engage

in understanding and maintaining knowledge of the dialogue partner’s personality

and topic interests.

According to the survey from Serban et al. (2015), personalization of dialogue

systems is “an important task, which so far has not received much attention”. In

the case of goal-oriented dialogue some work has focused on the agent being aware

of the human’s profile and adjusting the dialogue accordingly, but without a per-

sonality to the agent itself (Lucas et al., 2009; Joshi et al., 2017a). For the chit-chat

setting, the most relevant work is (Li et al., 2016a). For each user in the Twitter

corpus, personas were captured via distributed embeddings (one per speaker) to

encapsulate individual characteristics such as background information and speak-

ing style, and they then showed using those vectors improved the output of their

seq2seq model for the same speaker. Their work does not focus on attempting to

engage the other speaker by getting to know them, as we do here. For that reason,

our focus is on explicit profile information, not hard-to-interpret latent variables.

10.3 The persona-chat Dataset

The aim of this work is to facilitate more engaging and more personal chit-

chat dialogue. The persona-chat dataset is a crowd-sourced dataset, collected

107

Original Persona Revised Persona

I love the beach. To me, there is nothing like a day at the seashore.
My dad has a car dealership My father sales vehicles for a living.
I just got my nails done I love to pamper myself on a regular basis.
I am on a diet now I need to lose weight.
Horses are my favorite animal. I am into equestrian sports.

I am an eccentric hair stylist for dogs I work with animals.
My favorite past time is collecting Civil War antiques. I like finding or buying historical artifacts.
I fake a British accent to seem more attractive. I heard girls liked foreigners.
I have been married four times and widowed three. I have a lot of experience with marriage
I have an allergy to mangoes I have reactions to certain fruits.

I play a lot of fantasy videogames. RPGs are my favorite genre.
I have a computer science degree. I also went to school to work with technology.
My mother is a medical doctor The woman who gave birth to me is a physician.
I am very shy. I am not a social person.
I like to build model spaceships. I enjoy working with my hands.

Table 10.1 – Example Personas (left) and their revised versions (right) from the persona-chat
dataset. The revised versions are designed to be characteristics that the same persona might have,
which could be rephrases, generalizations or specializations.

via Amazon Mechanical Turk, where each of the pair of speakers condition their

dialogue on a given profile, which is provided.

The data collection consists of three stages:

(i) Personas: we crowdsource a set of 1155 possible personas, each consisting

of at least 5 profile sentences, setting aside 100 never seen before personas for

validation, and 100 for test.

(ii) Revised personas: to avoid modeling that takes advantage of trivial word

overlap, we crowdsource additional rewritten sets of the same 1155 personas, with

related sentences that are rephrases, generalizations or specializations, rendering

the task much more challenging.

(iii) Persona chat: we pair two Turkers and assign them each a random (original)

persona from the pool, and ask them to chat. This resulted in a dataset of 162,064

utterances over 10,907 dialogs, 15,602 utterances (1000 dialogs) of which are set

aside for validation, and 15,024 utterances (968 dialogs) for test.

The final dataset and its corresponding data collection source code, as well as

models trained on the data, are all available open source in ParlAI 2.

In the following, we describe each data collection stage and the resulting tasks

in more detail.

2. https://github.com/facebookresearch/ParlAI/tree/master/projects/

personachat

108

https://github.com/facebookresearch/ParlAI/tree/master/projects/personachat
https://github.com/facebookresearch/ParlAI/tree/master/projects/personachat

10.3.1 Personas

We asked the crowdsourced workers to create a character (persona) description

using 5 sentences, providing them only a single example:

“I am a vegetarian. I like swimming. My father used to work for Ford. My

favorite band is Maroon5. I got a new job last month, which is about advertising

design.”

Our aim was to create profiles that are natural and descriptive, and contain

typical topics of human interest that the speaker can bring up in conversation.

Because the personas are not the real profiles of the Turkers, the dataset does not

contain personal information (and they are told specifically not to use any). We

asked the workers to make each sentence short, with a maximum of 15 words per

sentence. This is advantageous both for humans and machines: if they are too

long, crowdsourced workers are likely to lose interest, and for machines the task

could become more difficult.

Some examples of the personas collected are given in Table 10.1 (left).

10.3.2 Revised Personas

A difficulty when constructing dialogue datasets, or text datasets in general, is

that in order to encourage research progress, the task must be carefully constructed

so that is neither too easy nor too difficult for the current technology (Voorhees

et al., 1999). One issue with conditioning on textual personas is that there is a

danger that humans will, even if asked not to, unwittingly repeat profile information

either verbatim or with significant word overlap. This may make any subsequent

machine learning tasks less challenging, and the solutions will not generalize to more

difficult tasks. This has been a problem in some recent datasets: for example, the

dataset curation technique used for the well-known SQuAD dataset suffers from

this word overlap problem to a certain extent (Chen et al., 2017).

To alleviate this problem, we presented the original personas we collected to a

new set of crowdworkers and asked them to rewrite the sentences so that a new

sentence is about “a related characteristic that the same person may have”, hence

the revisions could be rephrases, generalizations or specializations. For example “I

like basketball” can be revised as “I am a big fan of Michael Jordan” not because

they mean the same thing but because the same persona could contain both.

109

In the revision task, workers are instructed not to trivially rephrase the sentence

by copying the original words. However, during the entry stage if a non-stop word

is copied we issue a warning, and ask them to rephrase, guaranteeing that the

instructions are followed. For example, “My father worked for Ford.” can be revised

to “My dad worked in the car industry”, but not “My dad was employed by Ford.”

due to word overlap.

Finally, we encourage the construction of natural sentences. In earlier versions

of the task we noticed that the word overlap constraint caused unwanted unnatural

constructions such as “I like eating pretzels” revised as “I like to chew and swallow

twisted bread with salt”. Giving explicit instructions about this seemed to help,

where we prefer a revision like “I enjoy beers and beer snacks”.

Some examples of the revised personas collected are given in Table 10.1 (right).

10.3.3 Persona Chat

After collecting personas, we then collected the dialogues conditioned on the

personas. For each dialogue, we paired two random crowdworkers, and gave them

the instruction that they will chit-chat with another worker, while playing the part

of a given character. We then provide them with a randomly chosen persona from

our pool, different to their partners. The instructions are on purpose quite terse

and simply ask them to “chat with the other person naturally and try to get to

know each other”. In an early study we noticed the crowdworkers tending to talk

about themselves (their own persona) too much, so we also added the instructions

“both ask questions and answer questions of your chat partner” which seemed to

help. We also gave a bonus for high quality dialogs. The dialog is turn-based, with

a maximum of 15 words per message. We again gave instructions to not trivially

copy the character descriptions into the messages, but also wrote explicit code

sending them an error if they tried to do so, using simple string matching. We

define a minimum dialogue length which is randomly between 6 and 8 turns each

for each dialogue. An example dialogue from the dataset is given in Table 10.2.

10.3.4 Evaluation

We focus on the standard dialogue task of predicting the next utterance given

the dialogue history, but consider this task both with and without the profile in-

110

Persona 1 Persona 2

I like to ski I am an artist
My wife does not like me anymore I have four children
I have went to Mexico 4 times this year I recently got a cat
I hate Mexican food I enjoy walking for exercise
I like to eat cheetos I love watching Game of Thrones

[PERSON 1:] Hi
[PERSON 2:] Hello ! How are you today ?
[PERSON 1:] I am good thank you , how are you.
[PERSON 2:] Great, thanks ! My children and I were just about to watch Game of Thrones.
[PERSON 1:] Nice ! How old are your children?
[PERSON 2:] I have four that range in age from 10 to 21. You?
[PERSON 1:] I do not have children at the moment.
[PERSON 2:] That just means you get to keep all the popcorn for yourself.
[PERSON 1:] And Cheetos at the moment!
[PERSON 2:] Good choice. Do you watch Game of Thrones?
[PERSON 1:] No, I do not have much time for TV.
[PERSON 2:] I usually spend my time painting: but, I love the show.

Table 10.2 – Example dialog from the persona-chat dataset. Person 1 is given their own
persona (top left) at the beginning of the chat, but does not know the persona of Person 2, and
vice-versa. They have to get to know each other during the conversation.

formation being given to the learning agent. Our goal is to enable interesting

directions for future research, where chatbots can for instance have personalities,

or imputed personas could be used to make dialogue more engaging to the user.

We consider this in four possible scenarios: conditioning on no persona, your

own persona, their persona, or both. These scenarios can be tried using either

the original personas, or the revised ones. We then evaluate the task using three

metrics: (i) the log likelihood of the correct sequence, measured via perplexity, (ii)

F1 score, and (iii) next utterance classification loss, following Lowe et al. (2015).

The latter consists of choosing N random distractor responses from other dialogues

(in our setting, N=19) and the model selecting the best response among them,

resulting in a score of one if the model chooses the correct response, and zero

otherwise (called hits@1 in the experiments).

111

10.4 Models

We consider two classes of model for next utterance prediction: ranking models

and generative models. Ranking models produce a next utterance by considering

any utterance in the training set as a possible candidate reply. Generative models

generate novel sentences by conditioning on the dialogue history (and possibly,

the persona), and then generating the response word-by-word. Note one can still

evaluate the latter as ranking models by computing the probability of generating

a given candidate, and ranking candidates by those scores.

10.4.1 Baseline ranking models

We first consider two baseline models, an IR baseline Sordoni et al. (2015) and

a supervised embedding model, Starspace Wu et al. (2017) 3. While there are many

IR variants, we adopt the simplest one: find the most similar message in the (train-

ing) dataset and output the response from that exchange. Similarity is measured

by the tf-idf weighted cosine similarity between the bags of words. Starspace is a

recent model that also performs information retrieval but by learning the similarity

between the dialog and the next utterance by optimizing the embeddings directly

for that task using the margin ranking loss and k-negative sampling. The simi-

larity function sim(q, c′) is the cosine similarity of the sum of word embeddings

of the query q and candidate c′. Denoting the dictionary of D word embeddings

as W which is a D × d matrix, where Wi indexes the ith word (row), yielding its

d-dimensional embedding, it embeds the sequences q and c′.

In both methods, IR and StarSpace, to incorporate the profile we simply con-

catenate it to the query vector bag of words.

10.4.2 Ranking Profile Memory Network

Both the previous models use the profile information by combining it with the

dialogue history, which means those models cannot differentiate between the two

when deciding on the next utterance. In this model we instead use a memory

network with the dialogue history as input, which then performs attention over

the profile to find relevant lines from the profile to combine with the input, and

3. github.com/facebookresearch/StarSpace

112

github.com/facebookresearch/StarSpace

then finally predicts the next utterance. We use the same representation and loss

as in the Starspace model, so without the profile, the two models are identical.

When the profile is available attention is performed by computing the similarity of

the input q with the profile sentences pi, computing the softmax, and taking the

weighted sum:

q+ = q +
∑

sipi, si = Softmax(sim(q, pi))

where Softmax(zi) = ezi/
∑

j e
zj . One can then rank the candidates c′ using

sim(q+, c′). One can also perform multiple “hops” of attention over the profile

rather than one, as shown here, although that did not bring significant gains in our

parameter sweeps.

10.4.3 Key-Value Profile Memory Network

The key-value (KV) memory network Miller et al. (2016) was proposed as an

improvement to the memory network by performing attention over keys and out-

putting the values (instead of the same keys as in the original), which can outper-

form memory networks dependent on the task and definition of the key-value pairs.

Here, we apply this model to dialogue, and consider the keys as dialog histories

(from the training set), and the values as the next dialogue utterances, i.e., the

replies from the speaking partner. This allows the model to have a memory of past

dialogues that it can directly use to help influence its prediction for the current

conversation. The model we choose is identical to the profile memory network just

described in the first hop over profiles, while in the second hop, q+ is used to attend

over the keys and output a weighted sum of values as before, producing q++. This

is then used to rank the candidates c′ using sim(q++, c′) as before. As the set of

(key-value) pairs is large this would make training very slow. In our experiments

we simply trained the profile memory network and used the same weights from that

model and applied this architecture at test time instead. Training the model di-

rectly would presumably give better results, however this heuristic already proved

beneficial compared to the original network.

113

10.4.4 Seq2Seq

The input sequence x is encoded by applying het = LSTMenc(xt | het−1). We use

GloVe (Pennington et al., 2014) for our word embeddings. The final hidden state,

het , is fed into the decoder LSTMdec as the initial state hd0. For each time step t,

the decoder then produces the probability of a word j occurring in that place via

the softmax, i.e.,

p(yt,j = 1 | yt−1, . . . , y1) =
exp(wjh

d
t)∑K

j′=1 exp(wj′hdt)
.

The model is trained via negative log likelihood. The basic model can be extended

to include persona information, in which case we simply prepend it to the input

sequence x, i.e., x = ∀p ∈ P || x, where || denotes concatenation. For the OpenSub-

titles and Twitter datasets trained in Section 10.5.2 we found training a language

model (LM), essentially just the decoder part of this model, worked better and we

report that instead.

10.4.5 Generative Profile Memory Network

Finally, we introduce a generative model that encodes each of the profile entries

as individual memory representations in a memory network. As before, the dialogue

history is encoded via LSTMenc, the final state of which is used as the initial

hidden state of the decoder. Each entry pi = 〈pi,1, . . . , pi,n〉 ∈ P is then encoded

via f(pi) =
∑|pi|

j αipi,j. That is, we weight words by their inverse term frequency:

αi = 1/(1+ log(1+tf)) where tf is computed from the GloVe index via Zipf’s law 4.

Let F be the set of encoded memories. The decoder now attends over the encoded

profile entries, i.e., we compute the mask at, context ct and next input x̂t as:

at = softmax(FWah
d
t),

ct = aᵀtF ; x̂t = tanh(Wc[ct−1, xt]).

If the model has no profile information, and hence no memory, it becomes

equivalent to the Seq2Seq model.

4. tf = 1e6 ∗ 1/(idx1.07)

114

10.5 Experiments

We first report results using automated evaluation metrics, and subsequently

perform an extrinsic evaluation where crowdsourced workers perform a human eval-

uation of our models.

10.5.1 Automated metrics

The main results are reported in Table 10.3. Overall, the results show the

following key points:

Persona Conditioning Most models improve significantly when conditioning

prediction on their own persona at least for the original (non-revised) versions,

which is an easier task than the revised ones which have no word overlap. For

example, the Profile Memory generation model has improved perplexity and hits@1

compared to Seq2Seq, and all the ranking algorithms (IR baseline, Starspace and

Profile Memory Networks) obtain improved hits@1.

Ranking vs. Generative. Ranking models are far better than generative

models at ranking. This is perhaps obvious as that is the metric they are op-

timizing, but still the performance difference is quite stark. It may be that the

word-based probability which generative models use works well, but is not cali-

brated well enough to give a sentence-based probability which ranking requires.

Human evaluation is also used to compare these methods, which we perform in

Section 10.5.2.

Ranking Models. For the ranking models, the IR baseline is outperformed

by Starspace due to its learnt similarity metric, which in turn is outperformed by

Profile Memory networks due to the attention mechanism over the profiles (as all

other parts of the models are the same). Finally KV Profile Memory networks

outperform Profile Memory Networks in the no persona case due to the ability to

consider neighboring dialogue history and next utterance pairs in the training set

that are similar to the current dialogue, however when using persona information

the performance is similar.

Revised Personas. Revised personas are much harder to use. We do however

still see some gain for the Profile Memory networks compared to none (0.354 vs.

0.318 hits@1). We also tried two variants of training: with the original personas

in the training set or the revised ones, a comparison of which is shown in Table

115

Method
No Persona Original Persona Revised Persona
ppl hits@1 ppl hits@1 ppl hits@1

Generative Models
Seq2Seq 38.08 0.092 40.53 0.084 40.65 0.082
Profile Memory 38.08 0.092 34.54 0.125 38.21 0.108

Ranking Models
IR baseline - 0.214 - 0.410 - 0.207
Starspace - 0.318 - 0.491 - 0.322
Profile Memory - 0.318 - 0.509 - 0.354
KV Profile Memory - 0.349 - 0.511 - 0.351

Table 10.3 – Evaluation of dialog utterance prediction with various models in three
settings: without conditioning on a persona, conditioned on the speakers given persona (“Original
Persona”), or a revised persona that does not have word overlap.

Persona Method
Original Revised

ppl hits@1 F1 ppl hits@1 F1

No Persona 38.08 0.092 0.168 38.08 0.092 0.168

Self Persona
Seq2Seq 40.53 0.084 0.172 40.65 0.082 0.171
Profile Memory 34.54 0.125 0.172 38.21 0.108 0.170

Their Persona
Seq2Seq 41.48 0.075 0.168 41.95 0.074 0.168
Profile Memory 36.42 0.105 0.167 37.75 0.103 0.167

Both Personas
Seq2Seq 40.14 0.084 0.169 40.53 0.082 0.166
Profile Memory 35.27 0.115 0.171 38.48 0.106 0.168

Table 10.4 – Evaluation of dialog utterance prediction with generative models in four
settings: conditioned on the speakers persona (“self persona”), the dialogue partner’s persona
(“their persona”), both or none. The personas are either the original source given to Turkers to
condition the dialogue, or the revised personas that do not have word overlap. In the“no persona”
setting, the models are equivalent, so we only report once.

10.5. Training on revised personas helps, both for test examples that are in original

form or revised form, likely due to the model be forced to learn more than simple

word overlap, forcing the model to generalize more (i.e., learn semantic similarity

of differing phrases).

Their Persona. We can also condition a model on the other speaker’s persona,

or both personas at once, the results of which are in Tables 10.4 and 10.5. Using

“Their persona” has less impact on this dataset. We believe this is because most

speakers tend to focus on themselves when it comes to their interests. It would be

interesting how often this is the case in other datasets. Certainly this is skewed

116

No Persona Self Persona Their Persona Both Personas
Method Orig Rewrite Orig Rewrite Orig Rewrite Orig Rewrite

IR baseline 0.214 0.214 0.410 0.207 0.181 0.181 0.382 0.188
Training on original personas
Starspace 0.318 0.318 0.481 0.295 0.245 0.235 0.429 0.258
Profile Memory 0.318 0.318 0.473 0.302 0.283 0.267 0.438 0.266
Training on revised personas
Starspace 0.318 0.318 0.491 0.322 0.271 0.261 0.432 0.288
Profile Memory 0.318 0.318 0.509 0.354 0.299 0.294 0.467 0.331
KV Profile Memory 0.349 0.349 0.511 0.351 0.291 0.289 0.467 0.330

Table 10.5 – Evaluation of dialog utterance prediction with ranking models using
hits@1 in four settings: conditioned on the speakers persona (”self persona”), the dialogue part-
ner’s persona (”their persona”), both or none. The personas are either the original source given
to Turkers to condition the dialogue, or the rewritten personas that do not have word overlap,
explaining the poor performance of IR in that case.

by the particular instructions one could give to the crowdworkers. For example

if we gave the instructions “try not to talk about yourself, but about the other’s

interests’ likely these metrics would change.

10.5.2 Human Evaluation

As automated metrics are notoriously poor for evaluating dialogue (Liu et al.,

2016) we also perform human evaluation using crowdsourced workers. The proce-

dure is as follows. We perform almost exactly the same setup as in the dataset

collection process itself as in Section 10.3.3. In that setup, we paired two Turkers

and assigned them each a random (original) persona from the collected pool, and

asked them to chat. Here, from the Turker’s point of view everything looks the

same except instead of being paired with a Turker they are paired with one of our

models instead (they do not know this). In this setting, for both the Turker and

the model, the personas come from the test set pool.

After the dialogue, we then ask the Turker some additional questions in order

to evaluate the quality of the model.

They are, in order:

— Fluency: We ask them to judge the fluency of the other speaker as a score

from 1 to 5, where 1 is “not fluent at all”, 5 is “extremely fluent”, and 3 is

“OK”.

117

Method Persona
Model Profile Fluency Engagingness Consistency Detection

Human Self 4.31(1.07) 4.25(1.06) 4.36(0.92) 0.95(0.22)

Generative PersonaChat Models
Seq2Seq None 3.17(1.10) 3.18(1.41) 2.98(1.45) 0.51(0.50)
Profile Memory Self 3.08(1.40) 3.13(1.39) 3.14(1.26) 0.72(0.45)

Ranking PersonaChat Models
KV Memory None 3.81(1.14) 3.88(0.98) 3.36(1.37) 0.59(0.49)
KV Profile Memory Self 3.97(0.94) 3.50(1.17) 3.44(1.30) 0.81(0.39)

Twitter LM None 2.22(1.17) 1.68(0.89) 1.82(0.95) 0.55(0.50)
OpenSubtitles 2018 LM None 2.46(1.28) 2.0(1.09) 1.98(1.15) 0.52(0.50)
OpenSubtitles 2009 LM None 2.74(1.39) 1.74(1.02) 1.8(1.17) 0.47(0.50)
OpenSubtitles 2009 KV Memory None 2.14(1.20) 2.22(1.22) 2.06(1.29) 0.42(0.49)

Table 10.6 – Human Evaluation of various persona-chat models, along with a comparison
to human performance, and Twitter and OpenSubtitles based models (last 4 rows), standard
deviation in parenthesis.

— Engagingness: We ask them to judge the engagingness of the other speaker

disregarding fluency from 1-5, where 1 is“not engaging at all”, 5 is“extremely

engaging”, and 3 is “OK”.

— Consistency: We ask them to judge the consistency of the persona of the

other speaker, where we give the example that “I have a dog” followed by “I

have no pets” is not consistent. The score is again from 1-5.

— Profile Detection: Finally, we display two possible profiles, and ask which

is more likely to be the profile of the person the Turker just spoke to. One

profile is chosen at random, and the other is the true persona given to the

model.

The results are reported in Table 10.6 for the best performing generative and

ranking models, in both the No Persona and Self Persona categories, 100 dialogues

each. We also evaluate the scores of human performance by replacing the chatbot

with a human (another Turker). This effectively gives us upper bound scores which

we can aim for with our models. Finally, and importantly, we compare our models

trained on persona-chat with chit-chat models trained with the Twitter and

OpenSubtitles datasets (2009 and 2018 versions) instead, following Vinyals and Le

(2015). Example chats from a few of the models are shown in the Appendix in

Tables 10.9, 10.10, 10.11, 10.12, 10.13 and 10.14.

Firstly, we see a difference in fluency, engagingness and consistency between

all persona-chat models and the models trained on OpenSubtitles and Twitter.

118

persona-chat is a resource that is particularly strong at providing training data

for the beginning of conversations, when the two speakers do not know each other,

focusing on asking and answering questions, in contrast to other resources. We

also see suggestions of more subtle differences between the models, although these

differences are obscured by the high variance of the human raters’ evaluations. For

example, in both the generative and ranking model cases, models endowed with a

persona can be detected by the human conversation partner, as evidenced by the

persona detection accuracies, whilst maintaining fluency and consistency compared

to their non-persona driven counterparts.

Finding the balance between fluency, engagement, consistency, and a persistent

persona remains a strong challenge for future research.

10.5.3 Profile Prediction

While the main study of this work is the ability to improve next utterance clas-

sification by conditioning on a persona, one could naturally consider two tasks: (1)

next utterance prediction during dialogue, and (2) profile prediction given dialogue

history. In the main paper we show that Task 1 can be improved by using profile

information. Task 2, however, can be used to extract such information.

In this section we conduct a preliminary study of the ability to predict the

persona of a speaker given a set of dialogue utterances. We consider the dialogues

between humans (PERSON 0) and our best performing model, the retrieval-based

Key-Value Profile Memory Network (PERSON 1) from Section 10.5.2. We tested

the ability to predict the profile information of the two speakers from the dialogue

utterances of each speaker, considering all four combinations. We employ the same

IR baseline model used in the main paper to predict profiles: it ranks profile can-

didates, either at the entire profile level (considering all the sentences that make

up the profile as a bag) or at the sentence level (each sentence individually). We

consider 100 negative profile candidates for each positive profile, and compute the

error rate of predicting the true profile averaged over all dialogues and candidates.

The results are given in Table 10.7, both for the model conditioned on profile in-

formation, and the same KV Memory model that is not. The results indicate the

following:

— It is possible to predict the humans profile from their dialogue utterances

119

Speaker Profile
Profile Level Sentence Level

KV Profile KV w/o Profile KV Profile KV w/o Profile

PERSON 0 Profile 0 0.057 0.017 0.173 0.141
PERSON 0 Profile 1 0.234 0.491 0.431 0.518
PERSON 1 Profile 0 0.254 0.112 0.431 0.349
PERSON 1 Profile 1 0.011 0.512 0.246 0.530

Table 10.7 – Profile Prediction. Error rates are given for predicting either the persona
of speaker 0 (Profile 0) or of speaker 1 (Profile 1) given the dialogue utterances of speaker 0
(PERSON 0) or speaker 1 (PERSON 1). This is shown for dialogues between humans (PERSON
0) and either the KV Profile Memory model (“KV Profile”) which conditions on its own profile,
or the KV Memory model (“KV w/o Profile”) which does not.

Speaker Profile
Dialogue Length

1 2 3 4 5 6 7 8

PERSON 0 Profile 0 0.76 0.47 0.35 0.29 0.23 0.19 0.17 0.17
PERSON 0 Profile 1 0.51 0.39 0.32 0.29 0.27 0.27 0.25 0.25
PERSON 1 Profile 0 0.57 0.52 0.48 0.46 0.45 0.43 0.43 0.43
PERSON 1 Profile 1 0.81 0.58 0.48 0.47 0.45 0.44 0.43 0.43

Table 10.8 – Profile Prediction By Dialog Length. Error rates are given for predicting
either the persona of speaker 0 (Profile 0) or of speaker 1 (Profile 1) given the dialogue utterances
of speaker 0 (PERSON 0) or speaker 1 (PERSON 1). This is shown for dialogues between humans
(PERSON 0) and the KV Profile Memory model averaged over the first N dialogue utterances
from 100 conversations (where N is the “Dialogue Length”). The results show the accuracy of
predicting the persona improves in all cases as dialogue length increases.

(PERSON 0, Profile 0) with high accuracy at both the profile and sentence

level, independent of the model they speaking to.

— Similarly the model’s profile can be predicted with high accuracy from its

utterances (PERSON 1, Profile 1) when it is conditioned on the profile,

otherwise this is chance level (w/o Profile).

— It is possible to predict the model’s profile from the human’s dialogue, but

with a lower accuracy (PERSON 0, Profile 1) as long as the model is condi-

tioned on its own profile. This indicates the human responds to the model’s

utterances and pays attention to the model’s interests.

— Similarly, the human’s profile can be predicted from the model’s dialogue,

but with lower accuracy. Interestingly, the model without profile condi-

tioning is better at this, perhaps because it does not concentrate on talking

about itself, and pays more attention to responding to the human’s interests.

120

There appears to be a tradeoff that needs to be explored and understood

here.

We also study the performance of profile prediction as the dialogue progresses,

by computing error rates for dialogue lengths 1 to 8 (the longest length we consider

in this work). The results, given in Table 10.8, show the error rate of predicting

the persona decreases in all cases as dialogue length increases.

Overall, the results in this section show that it is plausible to predict profiles

given dialogue utterances, which is an important extraction task. Note that better

results could likely be achieved with more sophisticated models.

10.6 Conclusion & Discussion

In this work we have introduced the persona-chat dataset, which consists

of crowd-sourced dialogues where each participant plays the part of an assigned

persona; and each (crowd-sourced) persona has a word-distinct paraphrase. We

test various baseline models on this dataset, and show that models that have access

to their own personas in addition to the state of the dialogue are scored as more

consistent by annotators, although not more engaging. On the other hand, we

show that models trained on persona-chat (with or without personas) are more

engaging than models trained on dialogue from other resources (movies, Twitter).

We believe persona-chat will be a useful resource for training components

of future dialogue systems. Because we have paired human generated profiles and

conversations, the data aids the construction of agents that have consistent per-

sonalities and viewpoints. Furthermore, predicting the profiles from a conversation

moves chit-chat tasks in the direction of goal-directed dialogue, which has metrics

for success. Because we collect paraphrases of the profiles, they cannot be trivially

matched; indeed, we believe the original and rephrased profiles are interesting as

a semantic similarity dataset in their own right. We hope that the data will aid

training agents that can ask questions about users’ profiles, remember the answers,

and use them naturally in conversation.

121

10.7 Dialogues between Humans and Models

In Tables 10.9, 10.10, 10.11, 10.13, 10.14 we show example dialogues between

Turkers and various models collected as part of the human evaluation of Section

10.5.2.

Persona 1 Persona 2 (Not used by model)

I am a doctor I eat sardines for breakfast daily
I have one brother I just had surgery
My mom is a secretary I love playing Frisbee
I like to eat a lot of meat I have two large dogs
I am a bodybuilder I never finished high school

[PERSON 1:] Hi I am Dr. Jenson. What is your name?
[PERSON 2:] Miss Dawes.
[PERSON 1:] Hi Miss Dawes, tell me about your family!
[PERSON 2:] Miss Baggoli, I know it must show on your records that my name is Mary, but
everyone has referred to me as Lola since I was a squealing infant in my mother’ s arms.
[PERSON 1:] fascinating. My secretary mother would have made note of all of that.
[PERSON 2:] In addition to the remainder, it writes my autobiography.
[PERSON 1:] Oh yeah? well I enjoy a nice steak. how about you?
[PERSON 2:] Father always used to say that if we ever had the money you have...
we’ d have steak and ice cream three times every day!
[PERSON 1:] I eat all the steak and chicken too, even bacon
[PERSON 2:] Father always used to say that if we ever had the money you have...
we’ d have steak and ice cream three times every day!
[PERSON 1:] yeah you said that already
[PERSON 2:] Dynamic structure can absorb shock.
[PERSON 1:] yes it can. I know about that as a bodybuilder
[PERSON 2:] Ladies and gentlemen... the strongest man in the world is blowing up a hot
water bottle.

Table 10.9 – Example dialog between a human (Person 1) and the OpenSubtitles KV Memory
Network model (Person 2).

122

Persona 1 Persona 2 (Not used by model)

I am afraid of dogs I am a carpenter
I used to work at a carnival I used to drink but I stopped five years ago
I like to drink scotch to relax I have a wife and three kids
I write short stories for a living I like playing poker
I like dark superhero movies I dont have many friends

[PERSON 1:] Hi are you relaxing on this fine evening?
[PERSON 2:] I am doing good and you?
[PERSON 1:] I am well, just drinking some scotch and working on my writing
[PERSON 2:] I love to cook and bake but I rarely make time for it
[PERSON 1:] what do you usually bake?
[PERSON 2:] I do not cook, I bake cakes at a local restaurant. how about you?
[PERSON 1:] I used to be a juggler at a carnival but now I am an author
[PERSON 2:] I am a dancer, what do you do?
[PERSON 1:] I just told you. Do you have any pets?
[PERSON 2:] no, I am allergic to pets unfortunately.
[PERSON 1:] I understand. I am not allergic but I am terrified of dogs!
[PERSON 2:] I have a cat. she has been with me through three wives, haha.
[PERSON 1:] Funny that you just told me you have no pets
[PERSON 2:] I do not have any animals.

Table 10.10 – Example dialog between a human (Person 1) and the Seq2Seq model (Person 2).

123

Persona 1 Persona 2

I am engaged to be married I am a writer
I used to play sports in high school I write romance novels
My favorite sport is soccer I live on a faraway island
I am a college graduate I am an introvert
I love watching sports on TV I have two cats

[PERSON 1:] I just got done playing soccer. What have you been up to?
[PERSON 2:] I do not have pets. I spend my free time writing. what about you?
[PERSON 1:] Just graduated from college. Looking for work.
[PERSON 2:] yes I graduated, in writing and poetry
[PERSON 1:] Have you had anything published?
[PERSON 2:] I mainly write fiction novels.
[PERSON 1:] Do you like to watch sports?
[PERSON 2:] do you like kings of leon my favorite by them is use somebody
[PERSON 1:] Are you married? I will be married soon.
[PERSON 2:] haha, no time. I have got a novel to finish.
[PERSON 1:] What is your novel about?
[PERSON 2:] it is a love story. I really enjoy writing. do you write or read?
[PERSON 1:] Like to read. Spend most time watching football.
[PERSON 2:] yes I do I am and author for a living

Table 10.11 – Example dialog between a human (Person 1) and the Key-Value Profile Memory
Network with Self Persona.

124

Persona 1 Persona 2

I dont like exercise or physical activity My favorite type of food is Italian
My favorite food is ice cream I have a big pet dog
I am a homebody I want to travel to Europe
I have a husband who I love very much I love reading books about travel
I love watching movies and TV I like to walk long distances

[PERSON 1:] Hello, how are you doing today?
[PERSON 2:] I am good. I just got finished walking my dog.
[PERSON 1:] Oh cool! I am just sitting watching a movie.
[PERSON 2:] I have been watching that one before. I love it.
[PERSON 1:] Me too. I don’t like going out much so I enjoy movies and TV.
[PERSON 2:] that is a great idea. I am going to read a book on writing.
[PERSON 1:] Oh, are you a writer?
[PERSON 2:] yes, I love to read. I am a great author.
[PERSON 1:] What sorts of topics do you write about?
[PERSON 2:] I could read all of those. I am sure you enjoy reading.
[PERSON 1:] I do, but I prefer movies.
[PERSON 2:] I have not, I can not do that. I have to go to the east coast.
[PERSON 1:] Why can’t you watch movies?
[PERSON 2:] I have not. I have always had that done.

Table 10.12 – Example dialog between a human (Person 1) and the Generative Profile Memory
Network with Self Persona.

Persona 1 Persona 2 (Not used by model)

I am a single mom of two boys I am an omnivore
I live in Ohio I love the band Rush
I work as an accountant I work in sales
I like to go hiking in my spare time Last week I was at a friend’s wedding
I drive a Honda Civic My hobby is graphic design

[PERSON 1:] Hello are you from Ohio too?
[PERSON 2:] I’m from the village.
[PERSON 1:] Thats nice I am in accountant what work do you do?
[PERSON 2:] I work for the company.
[PERSON 1:] That sounds classified. Do you have any children I am a single mother of 2 boys.
[PERSON 2:] I’m not going to lose.
[PERSON 1:] That’s how I see hiking in my spare time I will not lose
[PERSON 2:] I’m not afraid of you
[PERSON 1:] thats usually peoples mistake.
[PERSON 2:] I’m sure you think you’re a bit of a disappointment.

Table 10.13 – Example dialog between a human (Person 1) and the Language Model trained
on the OpenSubtitles 2018 dataset (does not use persona).

125

Persona 1 Persona 2 (Not used by model)

I have a golden retriever named Ginger I share an appartment in Seattle with two roomates
I just became a first time father I just graduated from college two years ago
I studied abroad for a year I gam a kindergarten teacher
I have seen the movie Titanic ten times I can barely pay my bills every month

[PERSON 1:] Hello. Want to see a picture of my new baby?
[PERSON 2:] I don’t think so. I have to be honest, but I just like the way it was.
[PERSON 1:] I understand. I have seen the titanic movie 10 times. The shows I like things
the same.
[PERSON 2:] I just got anew iphone 7 plus
[PERSON 1:] That is very cool. I used one of those when I studied abroad.
[PERSON 2:] I think it was a great example of the.
[PERSON 1:] I eventually have to com back and start a family
[PERSON 2:] I know I have to be a friend.
[PERSON 1:] My dog, Ginger, is my best friend.
[PERSON 2:] I love you so much
[PERSON 1:] Too much too soon sorry.
[PERSON 2:] I know. I don’t know if I had to.

Table 10.14 – Example dialog between a human (Person 1) and the Language Model trained
on the Twitter dataset (does not use persona).

126

11 Conclusion

RNNs regained the attention from the community in 2014, due to a series of

research advances in neural machine translation (Sutskever et al., 2014; Bahdanau

et al., 2014) in which improved recurrent models with gating/memorizing mecha-

nisms were widely adopted. Since then, more recurrent models with novel connect-

ing architectures and functionalities were developed and their effectiveness were

also proved empirically in a wide range of NLP tasks. As recurrent models be-

come increasingly complicated and powerful, many challenging problems almost

untouched before are now feasible, whilst deeper understanding towards various

fundamental aspects of RNN becomes imperative.

This thesis provides several new perspectives on both RNN’s structural prop-

erties and its potentials in recently proposed challenging NLP problems. The first

two articles explore the basic architectural and functional properties of RNN un-

der universal condition and propose several principles of how to construct an RNN

with better gradient flows and the ability of capturing multi-scale nonlinear de-

pendencies. The third and the fourth article turn to two of the most crucial NLP

tasks which are machine reading comprehension and dialogue systems respectively.

Specifically, we build two large scale datasets attempting to motivate model/al-

gorithm innovations in problems of advanced multi-step reasoning on natural lan-

guage documents and integrating external personality information to conduct a

more captivating machine-human conversation.

During the time of writing this thesis, we have seen the rise of a new structural

design methodology heavily embracing the attention mechanism derived from the

original RNN (Vaswani et al., 2017; Devlin et al., 2018). The proposed modules

are newly crowned in NLP by leveraging unsupervised pretraining on huge corpus,

demonstrating their potentials as general building blocks for understanding natural

language. In the coming decade, we expect that RNN and its inheritors will address

more essential intelligence problems such as understanding common sense, complex

reasoning and flexible utilization of the world knowledge.

127

Bibliography

Arjovsky, M., Shah, A., and Bengio, Y. (2015). Unitary evolution recurrent neural

networks. arXiv preprint arXiv:1511.06464.

Aust, H., Oerder, M., Seide, F., and Steinbiss, V. (1995). The philips automatic

train timetable information system. Speech Communication, 17(3-4):249–262.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv

preprint arXiv:1607.06450.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., and Bengio, Y. (2015).

End-to-end attention-based large vocabulary speech recognition. arXiv preprint

arXiv:1508.04395.

Baum, L. and Eagon, J. (1967). An inequality with application to statistical esti-

mation for probabilistic functions of markov processes and to a model for ecology.

Bulletin of the American Mathematical Society, 73:360–363.

Bengio, Y. (2009). Learning deep architectures for ai. Foundations and trends R©
in Machine Learning, 2(1):1–127.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilis-

tic language model. Journal of machine learning research, 3(Feb):1137–1155.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise

training of deep networks. In Advances in neural information processing systems,

pages 153–160.

128

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependen-

cies with gradient descent is difficult. Neural Networks, IEEE Transactions on,

5(2):157–166.

Bordes, A. and Weston, J. (2016). Learning end-to-end goal-oriented dialog. arXiv

preprint arXiv:1605.07683.

Büttcher, S., Clarke, C. L., and Cormack, G. V. (2016). Information retrieval:

Implementing and evaluating search engines.

Charniak, E., Hendrickson, C., Jacobson, N., and Perkowitz, M. Equations for

part-of-speech tagging.

Chen, D. (2018). Neural Reading Comprehension and Beyond. PhD thesis, Stanford

University.

Chen, D., Bolton, J., and Manning, C. D. (2016). A thorough examination of the

cnn/daily mail reading comprehension task. arXiv preprint arXiv:1606.02858.

Chen, D., Fisch, A., Weston, J., and Bordes, A. (2017). Reading Wikipedia to

answer open-domain questions. In Association for Computational Linguistics

(ACL).

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., and Bengio, Y. (2014). Learning phrase representations using rnn encoder-

decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2015).

The loss surfaces of multilayer networks.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evalua-

tion of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2015). Gated feedback recurrent

neural networks. arXiv preprint arXiv:1502.02367.

Clark, C. and Gardner, M. (2017). Simple and effective multi-paragraph reading

comprehension. In Proceedings of the 55th Annual Meeting of the Association of

Computational Linguistics.

129

Cooijmans, T., Ballas, N., Laurent, C., and Courville, A. (2016). Recurrent batch

normalization. http://arxiv.org/pdf/1603.09025v4.pdf.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,

20(3):273–297.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.

Mathematics of control, signals and systems, 2(4):303–314.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y.

(2014). Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization. In Advances in neural information processing systems,

pages 2933–2941.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

Dodge, J., Gane, A., Zhang, X., Bordes, A., Chopra, S., Miller, A., Szlam, A.,

and Weston, J. (2015). Evaluating prerequisite qualities for learning end-to-end

dialog systems. arXiv preprint arXiv:1511.06931.

Dunbar, R. I., Marriott, A., and Duncan, N. D. (1997). Human conversational

behavior. Human nature, 8(3):231–246.

Dunn, M., Sagun, L., Higgins, M., Guney, U., Cirik, V., and Cho, K. (2017).

SearchQA: A new Q&A dataset augmented with context from a search engine.

arXiv preprint arXiv:1704.05179.

El Hihi, S. and Bengio, Y. (1996). Hierarchical recurrent neural networks for long-

term dependencies. In Advances in Neural Information Processing Systems, pages

493–499.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position. Biological

cybernetics, 36(4):193–202.

130

Giles, C. L., Chen, D., Miller, C., Chen, H., Sun, G., and Lee, Y. (1991). Second-

order recurrent neural networks for grammatical inference. In Neural Networks,

1991., IJCNN-91-Seattle International Joint Conference on, volume 2, pages

273–281. IEEE.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies

for accurate object detection and semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 580–587.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances

in Neural Information Processing Systems, pages 2672–2680.

Gorin, A. L., Riccardi, G., and Wright, J. H. (1997). How may i help you? Speech

communication, 23(1-2):113–127.

Goudreau, M. W., Giles, C. L., Chakradhar, S. T., and Chen, D. (1994). First-order

versus second-order single-layer recurrent neural networks. Neural Networks,

IEEE Transactions on, 5(3):511–513.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connection-

ist temporal classification: labelling unsegmented sequence data with recurrent

neural networks. In Proceedings of the 23rd international conference on Machine

learning, pages 369–376. ACM.

Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with

recurrent neural networks. In Proceedings of the 31st International Conference

on Machine Learning (ICML-14), pages 1764–1772.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. In 2013 IEEE international conference on acoustics,

speech and signal processing, pages 6645–6649. IEEE.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv

preprint arXiv:1410.5401.

131

Hannun, A. Y., Maas, A. L., Jurafsky, D., and Ng, A. Y. (2014). First-pass large

vocabulary continuous speech recognition using bi-directional recurrent dnns.

arXiv preprint arXiv:1408.2873.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image

recognition. arXiv preprint arXiv:1512.03385.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman,

M., and Blunsom, P. (2015). Teaching machines to read and comprehend. In

Advances in Neural Information Processing Systems, pages 1684–1692.

Hermans, M. and Schrauwen, B. (2013). Training and analysing deep recurrent

neural networks. In Advances in Neural Information Processing Systems, pages

190–198.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A.,

Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks

for acoustic modeling in speech recognition: The shared views of four research

groups. IEEE Signal Processing Magazine, 29(6):82–97.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of

data with neural networks. Science, 313(5786):504–507.

Hirschman, L., Light, M., Breck, E., and Burger, J. D. (1999). Deep read: A

reading comprehension system. In Proceedings of the 37th annual meeting of the

Association for Computational Linguistics on Computational Linguistics, pages

325–332. Association for Computational Linguistics.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen netzen.

Diploma, Technische Universität München.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8):1735–1780.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward net-

works are universal approximators. Neural networks, 2(5):359–366.

Hu, M., Peng, Y., Huang, Z., Qiu, X., Wei, F., and Zhou, M. (2017). Rein-

forced mnemonic reader for machine reading comprehension. arXiv preprint

arXiv:1705.02798.

132

Huang, H.-Y., Zhu, C., Shen, Y., and Chen, W. (2017). Fusionnet: Fusing via

fully-aware attention with application to machine comprehension. arXiv preprint

arXiv:1711.07341.

Hutchens, J. L. and Alder, M. D. (1998). Introducing megahal. In Proceedings of

the Joint Conferences on New Methods in Language Processing and Computa-

tional Natural Language Learning, pages 271–274. Association for Computational

Linguistics.

Hutchins, W. J., Dostert, L., and Garvin, P. (1955). The georgetown-ibm experi-

ment. In In. Citeseer.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In Proceedings of The 32nd Inter-

national Conference on Machine Learning, pages 448–456.

Jordan, M. I. (1997). Serial order: A parallel distributed processing approach.

Advances in psychology, 121:471–495.

Joshi, C. K., Mi, F., and Faltings, B. (2017a). Personalization in goal-oriented

dialog. arXiv preprint arXiv:1706.07503.

Joshi, M., Choi, E., Weld, D., and Zettlemoyer, L. (2017b). Triviaqa: A large scale

distantly supervised challenge dataset for reading comprehension. In Proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), volume 1, pages 1601–1611.

Jozefowicz, R., Zaremba, W., and Sutskever, I. (2015). An empirical exploration

of recurrent network architectures. In Proceedings of the 32nd International

Conference on Machine Learning (ICML-15), pages 2342–2350.

Kalchbrenner, N., Danihelka, I., and Graves, A. (2015). Grid long short-term

memory. arXiv preprint arXiv:1507.01526.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114.

133

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A.,

and Fidler, S. (2015). Skip-thought vectors. In Advances in Neural Information

Processing Systems, pages 3276–3284.

Koutnik, J., Greff, K., Gomez, F., and Schmidhuber, J. (2014). A clockwork rnn.

In Proceedings of The 31st International Conference on Machine Learning, pages

1863–1871.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105.

Krueger, D. and Memisevic, R. (2015). Regularizing rnns by stabilizing activations.

arXiv preprint arXiv:1511.08400.

Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and docu-

ments. In International conference on machine learning, pages 1188–1196.

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A simple way to initialize recurrent

networks of rectified linear units. arXiv preprint arXiv:1504.00941.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,

521(7553):436–444.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lehnert, W. G. (1977). The process of question answering. Technical report, YALE

UNIV NEW HAVEN CONN DEPT OF COMPUTER SCIENCE.

Li, J., Galley, M., Brockett, C., Gao, J., and Dolan, B. (2015). A diversity-

promoting objective function for neural conversation models. arXiv preprint

arXiv:1510.03055.

Li, J., Galley, M., Brockett, C., Spithourakis, G. P., Gao, J., and Dolan, B. (2016a).

A persona-based neural conversation model. arXiv preprint arXiv:1603.06155.

Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., and Jurafsky, D. (2016b). Deep

reinforcement learning for dialogue generation. arXiv preprint arXiv:1606.01541.

134

Lin, T., Horne, B. G., Tino, P., and Giles, C. L. (1996). Learning long-term

dependencies is not as difficult with NARX recurrent neural networks. IEEE

Transactions on Neural Networks, 7(6):1329–1338.

Lin, Z., Feng, M., Santos, C. N. d., Yu, M., Xiang, B., Zhou, B., and Ben-

gio, Y. (2017). A structured self-attentive sentence embedding. arXiv preprint

arXiv:1703.03130.

Liu, C.-W., Lowe, R., Serban, I. V., Noseworthy, M., Charlin, L., and Pineau,

J. (2016). How not to evaluate your dialogue system: An empirical study of

unsupervised evaluation metrics for dialogue response generation. arXiv preprint

arXiv:1603.08023.

Liu, X., Shen, Y., Duh, K., and Gao, J. (2018). Stochastic answer networks for

machine reading comprehension. In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics.

Lowe, R., Pow, N., Serban, I., and Pineau, J. (2015). The ubuntu dialogue corpus:

A large dataset for research in unstructured multi-turn dialogue systems. arXiv

preprint arXiv:1506.08909.

Lucas, J., Fernández, F., Salazar, J., Ferreiros, J., and San Segundo, R. (2009).

Managing speaker identity and user profiles in a spoken dialogue system. Proce-

samiento del Lenguaje Natural, 43:77–84.

Manning, C. D., Manning, C. D., and Schütze, H. (1999). Foundations of statistical

natural language processing. MIT press.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., and McClosky,

D. (2014). The Stanford CoreNLP natural language processing toolkit. In As-

sociation for Computational Linguistics (ACL) System Demonstrations, pages

55–60.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large

annotated corpus of english: The penn treebank. Computational linguistics,

19(2):313–330.

Màrquez, L. and Rodŕıguez, H. (1998). Part-of-speech tagging using decision trees.

In European Conference on Machine Learning, pages 25–36. Springer.

135

McCallum, A., Nigam, K., et al. (1998). A comparison of event models for naive

bayes text classification. In AAAI-98 workshop on learning for text categoriza-

tion, volume 752, pages 41–48. Citeseer.

Miao, Y., Gowayyed, M., and Metze, F. (2015). Eesen: End-to-end speech

recognition using deep rnn models and wfst-based decoding. arXiv preprint

arXiv:1507.08240.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and Khudanpur, S. (2010).

Recurrent neural network based language model. In Eleventh annual conference

of the international speech communication association.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Dis-

tributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems, pages 3111–3119.

Mikolov, T., Sutskever, I., Deoras, A., Le, H.-S., and Kombrink, S.

(2012). Subword language modeling with neural networks. preprint,

(http://www.fit.vutbr.cz/imikolov/rnnlm/char.pdf).

Miller, A., Fisch, A., Dodge, J., Karimi, A.-H., Bordes, A., and Weston, J. (2016).

Key-value memory networks for directly reading documents. arXiv preprint

arXiv:1606.03126.

Miller, A. H., Feng, W., Fisch, A., Lu, J., Batra, D., Bordes, A., Parikh, D., and

Weston, J. (2017). ParlAI: A dialog research software platform. arXiv preprint

arXiv:1705.06476.

Minsky, M. and Papert, S. (1969). Perceptrons.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-

level control through deep reinforcement learning. Nature, 518(7540):529–533.

Mohri, M., Pereira, F., and Riley, M. (2002). Weighted finite-state transducers in

speech recognition. Computer Speech & Language, 16(1):69–88.

136

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. (2014). On the number

of linear regions of deep neural networks. In Advances in neural information

processing systems, pages 2924–2932.

Mrkšić, N., Séaghdha, D. Ó., Thomson, B., Gasic, M., Su, P.-H., Vandyke, D., Wen,

T.-H., and Young, S. (2015). Multi-domain dialog state tracking using recurrent

neural networks. In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 2: Short Papers), volume 2, pages 794–799.

Naaman, M., Boase, J., and Lai, C.-H. (2010). Is it really about me?: message

content in social awareness streams. In Proceedings of the 2010 ACM conference

on Computer supported cooperative work, pages 189–192. ACM.

Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., and Deng,

L. (2016). MS MARCO: A human generated machine reading comprehension

dataset. In Proceedings of the 30th Annual Conference on Neural Information

Processing Systems (NIPS).

Novikova, J., Dušek, O., Curry, A. C., and Rieser, V. (2017). Why we need new

evaluation metrics for NLG. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing.

Pachitariu, M. and Sahani, M. (2013). Regularization and nonlinearities for neural

language models: when are they needed? arXiv preprint arXiv:1301.5650.

Pan, B., Li, H., Zhao, Z., Cao, B., Cai, D., and He, X. (2017). Memen: Multi-layer

embedding with memory networks for machine comprehension. arXiv preprint

arXiv:1707.09098.

Parikh, A. P., Täckström, O., Das, D., and Uszkoreit, J. (2016). A decomposable

attention model for natural language inference. arXiv preprint arXiv:1606.01933.

Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2013a). How to construct

deep recurrent neural networks. arXiv preprint arXiv:1312.6026.

Pascanu, R., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). How to construct deep

recurrent neural networks. In International Conference on Learning Representa-

tions 2014(Conference Track).

137

Pascanu, R., Mikolov, T., and Bengio, Y. (2013b). On the difficulty of training

recurrent neural networks. In Proceedings of The 30th International Conference

on Machine Learning, pages 1310–1318.

Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for

word representation. In Proceedings of the 2014 conference on empirical methods

in natural language processing (EMNLP), pages 1532–1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and

Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint

arXiv:1802.05365.

Pezeshki, M., Fan, L., Brakel, P., Courville, A., and Bengio, Y. (2015). Decon-

structing the ladder network architecture. arXiv preprint arXiv:1511.06430.

Raiko, T., Valpola, H., and LeCun, Y. (2012). Deep learning made easier by

linear transformations in perceptrons. In International Conference on Artificial

Intelligence and Statistics, pages 924–932.

Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unan-

swerable questions for squad. In Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics (Volume 2: Short Papers), volume 2,

pages 784–789.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). Squad: 100,000+

questions for machine comprehension of text. arXiv preprint arXiv:1606.05250.

Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and Raiko, T. (2015). Semi-

supervised learning with ladder network. arXiv preprint arXiv:1507.02672.

Reithinger, N. and Klesen, M. (1997). Dialogue act classification using language

models. In Fifth European Conference on Speech Communication and Technology.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropa-

gation and approximate inference in deep generative models. arXiv preprint

arXiv:1401.4082.

Richardson, M., Burges, C. J., and Renshaw, E. (2013). Mctest: A challenge

dataset for the open-domain machine comprehension of text. In Proceedings

138

of the 2013 Conference on Empirical Methods in Natural Language Processing,

pages 193–203.

Ritter, A., Cherry, C., and Dolan, B. (2010). Unsupervised modeling of twitter

conversations. In Human Language Technologies: The 2010 Annual Conference

of the North American Chapter of the Association for Computational Linguistics,

pages 172–180. Association for Computational Linguistics.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information stor-

age and organization in the brain. Psychological review, 65(6):386.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning representa-

tions by back-propagating errors. Cognitive modeling, 5(3):1.

Salant, S. and Berant, J. (2018). Contextualized word representations for read-

ing comprehension. In Proceedings of the 16th Annual Conference of the North

American Chapter of the Association for Computational Linguistics.

Schank, R. C. and Abelson, R. P. (1977). Scripts, plans, goals and understanding:

An inquiry into human knowledge structures.

Schmidhuber, J. (1992). Learning complex, extended sequences using the principle

of history compression. Neural Computation, 4(2):234–242.

Schrading, N., Alm, C. O., Ptucha, R., and Homan, C. (2015). An analysis of

domestic abuse discourse on reddit. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, pages 2577–2583.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, 45(11):2673–2681.

Seo, M., Kembhavi, A., Farhadi, A., and Hajishirzi, H. (2017). Bidirectional at-

tention flow for machine comprehension. In Proceedings of the International

Conference on Learning Representations.

Serban, I. V., Lowe, R., Charlin, L., and Pineau, J. (2016a). Generative deep neural

networks for dialogue: A short review. arXiv preprint arXiv:1611.06216.

139

Serban, I. V., Lowe, R., Henderson, P., Charlin, L., and Pineau, J. (2015). A

survey of available corpora for building data-driven dialogue systems. arXiv

preprint arXiv:1512.05742.

Serban, I. V., Sankar, C., Germain, M., Zhang, S., Lin, Z., Subramanian, S., Kim,

T., Pieper, M., Chandar, S., Ke, N. R., et al. (2017a). A deep reinforcement

learning chatbot. arXiv preprint arXiv:1709.02349.

Serban, I. V., Sordoni, A., Bengio, Y., Courville, A., and Pineau, J. (2016b).

Building end-to-end dialogue systems using generative hierarchical neural net-

work models. In Thirtieth AAAI Conference on Artificial Intelligence.

Serban, I. V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A. C., and

Bengio, Y. (2017b). A hierarchical latent variable encoder-decoder model for

generating dialogues.

Siegelmann, H. T. (1999). Computation beyond the turing limit. In Neural Net-

works and Analog Computation, pages 153–164. Springer.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).

Mastering the game of go with deep neural networks and tree search. Nature,

529(7587):484–489.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556.

Singh, S. P., Kearns, M. J., Litman, D. J., and Walker, M. A. (2000). Reinforce-

ment learning for spoken dialogue systems. In Advances in Neural Information

Processing Systems, pages 956–962.

Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J.-Y.,

Gao, J., and Dolan, B. (2015). A neural network approach to context-sensitive

generation of conversational responses. arXiv preprint arXiv:1506.06714.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov,

R. (2014). Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958.

140

Stolcke, A. and Omohundro, S. (1994). Inducing probabilistic grammars by

bayesian model merging. In International Colloquium on Grammatical Infer-

ence, pages 106–118. Springer.

Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015a). End-to-end memory net-

works. In Advances in neural information processing systems, pages 2440–2448.

Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015b). End-to-end memory net-

works. In Advances in neural information processing systems, pages 2440–2448.

Sutskever, I. and Hinton, G. (2010). Temporal-kernel recurrent neural networks.

Neural Networks, 23(2):239–243.

Sutskever, I., Martens, J., and Hinton, G. E. (2011). Generating text with recurrent

neural networks. In Proceedings of the 28th International Conference on Machine

Learning (ICML-11), pages 1017–1024.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with

neural networks. In Advances in neural information processing systems, pages

3104–3112.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1–9.

Talmor, A. and Berant, J. (2018). The web as a knowledge-base for answering

complex questions. In Proceedings of the 16th Annual Conference of the North

American Chapter of the Association for Computational Linguistics.

Telgarsky, M. Benefits of depth in neural networks.

Tiedemann, J. (2012). Parallel data, tools and interfaces in opus. In Proceedings

of the Eighth International Conference on Language Resources and Evaluation

(LREC-2012).

Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the Turing

Test, pages 23–65. Springer.

141

Vapnik, V. N. Statistical learning theory, volume 1.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Advances in

Neural Information Processing Systems, pages 5998–6008.

Vinyals, O. and Le, Q. (2015). A neural conversational model. arXiv preprint

arXiv:1506.05869.

Voorhees, E. M. et al. (1999). The trec-8 question answering track report. In Trec,

volume 99, pages 77–82.

Wallace, R. S. (2009). The anatomy of alice. In Parsing the Turing Test, pages

181–210. Springer.

Wang, H., Bansal, M., Gimpel, K., and McAllester, D. (2015). Machine compre-

hension with syntax, frames, and semantics. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th Interna-

tional Joint Conference on Natural Language Processing (Volume 2: Short Pa-

pers), volume 2, pages 700–706.

Wang, S. and Jiang, J. (2016). Machine comprehension using match-lstm and

answer pointer. arXiv preprint arXiv:1608.07905.

Wang, W., Yang, N., Wei, F., Chang, B., and Zhou, M. (2017). Gated self-matching

networks for reading comprehension and question answering. In Proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), volume 1, pages 189–198.

Weizenbaum, J. (1966). Eliza—a computer program for the study of natural lan-

guage communication between man and machine. Communications of the ACM,

9(1):36–45.

Welbl, J., Stenetorp, P., and Riedel, S. (2018a). Constructing datasets for multi-

hop reading comprehension across documents. Transactions of the Association

of Computational Linguistics.

Welbl, J., Stenetorp, P., and Riedel, S. (2018b). Constructing datasets for multi-

hop reading comprehension across documents. Transactions of the Association

of Computational Linguistics, 6:287–302.

142

Wen, T.-H., Vandyke, D., Mrksic, N., Gasic, M., Rojas-Barahona, L. M., Su, P.-

H., Ultes, S., and Young, S. (2016). A network-based end-to-end trainable task-

oriented dialogue system. arXiv preprint arXiv:1604.04562.

Werbos, P. (1974). Beyond regression:” new tools for prediction and analysis in the

behavioral sciences. Ph. D. dissertation, Harvard University.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do

it. Proceedings of the IEEE, 78(10):1550–1560.

Wessels, T. and Omlin, C. W. (2000). Refining hidden markov models with recur-

rent neural networks. In Neural Networks, 2000. IJCNN 2000, Proceedings of the

IEEE-INNS-ENNS International Joint Conference on, volume 2, pages 271–276

vol.2.

Weston, J., Chopra, S., and Bordes, A. (2014). Memory networks. arXiv preprint

arXiv:1410.3916.

Winograd, T. (1971). Procedures as a representation for data in a computer pro-

gram for understanding natural language. Technical report, MASSACHUSETTS

INST OF TECH CAMBRIDGE PROJECT MAC.

Wu, L., Fisch, A., Chopra, S., Adams, K., Bordes, A., and Weston, J. (2017).

Starspace: Embed all the things! arXiv preprint arXiv:1709.03856.

Wu, Y., Zhang, S., Zhang, Y., Bengio, Y., and Salakhutdinov, R. R. (2016). On

multiplicative integration with recurrent neural networks. In Advances in neural

information processing systems, pages 2856–2864.

Xiong, C., Zhong, V., and Socher, R. (2016). Dynamic coattention networks for

question answering. arXiv preprint arXiv:1611.01604.

Xiong, C., Zhong, V., and Socher, R. (2018). DCN+: Mixed objective and deep

residual coattention for question answering. In Proceedings of the International

Conference on Learning Representations.

Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. (2014). Embedding enti-

ties and relations for learning and inference in knowledge bases. arXiv preprint

arXiv:1412.6575.

143

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W., Salakhutdinov, R., and Man-

ning, C. D. (2018a). Hotpotqa: A dataset for diverse, explainable multi-hop

question answering. In Proceedings of the 2018 Conference on Empirical Meth-

ods in Natural Language Processing, pages 2369–2380.

Yang, Z., Zhang, S., Urbanek, J., Feng, W., Miller, A. H., Szlam, A., Kiela, D.,

and Weston, J. (2018b). Mastering the dungeon: Grounded language learning

by mechanical turker descent. In Proceedings of the International Conference on

Learning Representations.

Yin, W., Ebert, S., and Schütze, H. (2016). Attention-based convolutional neural

network for machine comprehension. arXiv preprint arXiv:1602.04341.

Young, S., Gašić, M., Thomson, B., and Williams, J. D. (2013). Pomdp-based sta-

tistical spoken dialog systems: A review. Proceedings of the IEEE, 101(5):1160–

1179.

Young, S. J. (2000). Probabilistic methods in spoken–dialogue systems. Philosoph-

ical Transactions of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, 358(1769):1389–1402.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional

networks. In European Conference on Computer Vision, pages 818–833. Springer.

Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., and Weston, J. (2018).

Personalizing dialogue agents: I have a dog, do you have pets too? In Proceedings

of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 2204–2213.

Zhang, S., Wu, Y., Che, T., Lin, Z., Memisevic, R., Salakhutdinov, R. R., and Ben-

gio, Y. (2016). Architectural complexity measures of recurrent neural networks.

In Advances in neural information processing systems, pages 1822–1830.

144

	 Résumé
	 Summary
	 Contents
	 List of Figures
	 List of Tables
	 Acknowledgments
	1 Introduction
	1.1 Architectural Analysis and New Structure Design of RNNs
	1.2 Open Problems in Machine Reading Comprehension and Dialogue System

	2 Background and Related Work
	2.1 From Artificial Neural Networks to Deep Learning
	2.2 Recurrent Neural Networks
	2.2.1 Vanilla Recurrent Neural Network
	2.2.2 Backpropagation Through Time (BPTT)
	2.2.3 Gradient Vanishing/Exploding Problems
	2.2.4 Gates and Memory Cells
	2.2.5 Sequence-to-sequence Models
	2.2.6 Attention Mechanism
	2.2.7 External Memory
	2.2.8 Making RNNs deeper

	2.3 Learning Neural Natural Language Representations
	2.3.1 Neural Language Model
	2.3.2 Word Embedding and Beyond
	2.3.3 Neural Reading Comprehension
	2.3.4 Neural Dialogue System

	3 Prologue to First Article
	3.1 Article Detail
	3.2 Context
	3.3 Contributions

	4 Architectural Complexity Measures of Recurrent Neural Networks
	4.1 Introduction
	4.2 General RNN
	4.2.1 The Connecting Architecture
	4.2.2 A General Definition of RNN

	4.3 Measures of Architectural Complexity
	4.3.1 Recurrent Depth
	4.3.2 Feedforward Depth
	4.3.3 Recurrent Skip Coefficient

	4.4 Experiments and Results
	4.4.1 Tasks and Training Settings
	4.4.2 Recurrent Depth is Non-trivial
	4.4.3 Comparing Depths
	4.4.4 Recurrent Skip Coefficients
	4.4.5 Recurrent Skip Coefficients vs. Skip Connections

	4.5 Conclusion
	4.6 Proofs

	5 Prologue to Second Article
	5.1 Article Detail
	5.2 Context
	5.3 Contributions

	6 On Multiplicative Integration with Recurrent Neural Networks
	6.1 Introduction
	6.2 Structure Description and Analysis
	6.2.1 General Formulation of Multiplicative Integration
	6.2.2 Gradient Properties

	6.3 Experiments
	6.3.1 Exploratory Experiments
	6.3.2 Character Level Language Modeling
	6.3.3 Speech Recognition
	6.3.4 Learning Skip-Thought Vectors
	6.3.5 Teaching Machines to Read and Comprehend

	6.4 Relationship to Previous Models
	6.4.1 Relationship to Hidden Markov Models
	6.4.2 Relations to Second Order RNNs and Multiplicative RNNs
	6.4.3 General Multiplicative Integration

	6.5 Conclusion

	7 Prologue to Third Article
	7.1 Article Detail
	7.2 Context
	7.3 Contributions

	8 HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering
	8.1 Introduction
	8.2 Data Collection
	8.2.1 Pipeline
	8.2.2 Implementation Details

	8.3 Processing and Benchmark Settings
	8.4 Dataset Analysis
	8.5 Experiments
	8.5.1 Model Architecture and Training
	8.5.2 Results
	8.5.3 Establishing Human Performance

	8.6 Related Work
	8.7 Conclusions

	9 Prologue to Fourth Article
	9.1 Article Detail
	9.2 Context
	9.3 Contributions

	10 Personalizing Dialogue Agents: I have a dog, do you have pets too?
	10.1 Introduction
	10.2 Related Work
	10.3 The persona-chat Dataset
	10.3.1 Personas
	10.3.2 Revised Personas
	10.3.3 Persona Chat
	10.3.4 Evaluation

	10.4 Models
	10.4.1 Baseline ranking models
	10.4.2 Ranking Profile Memory Network
	10.4.3 Key-Value Profile Memory Network
	10.4.4 Seq2Seq
	10.4.5 Generative Profile Memory Network

	10.5 Experiments
	10.5.1 Automated metrics
	10.5.2 Human Evaluation
	10.5.3 Profile Prediction

	10.6 Conclusion & Discussion
	10.7 Dialogues between Humans and Models

	11 Conclusion
	 Bibliography

