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Résumé 

Les acariens prédateurs et les champignons entomopathogènes sont couramment utilisés 

dans les programmes de lutte biologique contre le thrips des petits fruits, Frankliniella 

occidentalis. Les acariens prédateurs peuvent localiser les thrips même lorsque ceux-ci se 

cachent, mais ne consomment que le premier stade larvaire. Les champignons 

entomopathogènes, quant à eux, peuvent infecter tous les stades, mais leur dispersion est 

passive. Dans cette thèse, nous avons évalué le potentiel des acariens prédateurs comme 

agents de dispersion des champignons entomopathogènes dans les colonies de thrips. Le 

travail expérimental de cette thèse a été divisé en trois sections.  

Dans la première section, nous avons évalué la pathogénicité de la souche ANT-03 du 

champignon entomopathogène Beauveria bassiana pour chacun des stades de thrips ainsi 

que pour trois espèces d'acariens prédateurs: deux espèces principalement actives sur les 

plantes (Amblyseius swirskii et Neoseiulus cucumeris) et une espèce active dans le sol 

(Stratiolaelaps scimitus). Nous avons (1) établi que la souche ANT-03, les acariens 

prédateurs et les thrips forment des associations fonctionnelles d'agent pathogène, de 

vecteurs et d'hôte, (2) démontré que des spores mélangées aux substrats d'élevage des 

acariens s'accumulent sur leurs corps au fil du temps, et (3) mis au point une méthode 

d'application permettant aux acariens de disséminer les spores de B. bassiana directement 

à partir des substrats d'élevage.  

Dans la deuxième section, à l'aide d'enregistrements vidéo, nous avons déterminé 

comment les acariens prédateurs délogent les spores de leurs corps en examinant la 

relation entre le nombre de spores restant sur les acariens et le temps alloué au toilettage 

ou à la marche. Nous avons comparé les comportements des acariens prédateurs avec ou 

sans spores. Nous avons montré que la marche, est plus efficace le toilettage pour déloger 

les spores. Les acariens prédateurs peuvent percevoir la présence des spores sur leur 

corps et augmenter le temps alloué à la marche.  

Dans la troisième section, nous avons déterminé la capacité des acariens prédateurs à 

acheminer les spores jusqu’aux colonies de thrips. Amblyseius swirskii et N. cucumeris 

ont été chargés de spores et relâchés sur des plantes infestées de thrips de premier stade et 
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regroupés sur les feuilles. Nous avons caractérisé la distribution spatiale de chaque 

organisme, calculé l’empiètement spatial entre les spores et les thrips et estimé la 

proportion de thrips portant des spores. Les deux acariens ont dispersé une quantité 

similaire de spores sur les plantes, mais A. swirskii a distribué plus de spores sur les 

feuilles infestées de thrips et a donc augmenté le taux de rencontre entre le pathogène et 

les thrips. Les différences observées entre les espèces d'acariens prédateurs résultent de 

leurs différents comportements de chasse.  

En comprenant le processus de transmission des spores de champignons 

entomopathogènes des acariens prédateurs vers les proies, nous fournissons une base 

théorique pour identifier quels prédateurs feraient de bons candidats comme agents de 

dispersion de spores. Ainsi, nous pourrons augmenter la capacité des acariens prédateurs 

à réduire les populations de thrips en combinant la prédation et la dispersion 

d’entomopathogènes dans un contexte de lutte biologique. 

Mots clés: dispersion de spores fongiques, comportement de toilettage, empiètement 

spatial, interactions tritrophiques, Frankliniella occidentalis, Beauveria bassiana, 

Amblyseius swirskii, Neoseiulus cucumeris, Stratiolaelaps scimitus  
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Abstract 

In biological control programs, predatory mites and entomopathogenic fungi are 

commonly used against western flower thrips, one of the most challenging pests in food 

and ornamental crops. Predatory mites can locate thrips even when thrips hide in plant 

crevices, but they only consume first instar larval thrips. Entomopathogenic fungi can 

infect all other stages, but their dispersal is passive and host encounter is therefore 

random. This thesis examines the potential role of predatory mites as dispersal agents of 

entomopathogenic fungi to thrips colonies. The experimental work has been divided into 

three sections. In the first section, we evaluated the pathogenicity of the 

entomopathogenic fungus Beauveria bassiana strain ANT-03 to all stages of the western 

flower thrips and to three species of predatory mites: Amblyseius swirskii and Neoseiulus 

cucumeris that are active on plants and Stratiolaelaps scimitus that is active in soil. We 

established that B. bassiana ANT-03, predatory mites and thrips form appropriate 

pathogen-vector-host associations. We also developed a commercially applicable method 

for predatory mites to collect B. bassiana spores directly from the rearing substrates and 

transport them to the environment. We demonstrated that spores did accumulate on 

predatory mites over time in the substrates. In the second section, using video recordings, 

we described how predatory mites dislodged spores by linking the number of spores 

remaining on a mite to the time spent grooming and walking. We compared behaviors of 

the predatory mites with and without spores following their release from rearing 

substrates. Using low-temperature scanning electronic microscopy, we visualized the 

spore distribution on mites. We showed that walking primarily contributed to predatory 

mites dislodging spores in our experimental arena, whereas grooming was insufficient. 

When bearing conidia, all three species of predatory mites extended their walking 

periods. The duration of grooming behavior was not affected for A. swirskii and N. 

cucumeris, and was even reduced for S. scimitus. For the third section, we determined the 

capacity of predatory mites to deliver spores to thrips colonies. Amblyseius swirskii and 

N. cucumeris were loaded with spores and released on plants that had been previously 

infested with first instar thrips clustered on leaves. We carefully characterized the spatial 

distribution of each organism on plants, calculated the spatial co-occurrence index of 

spores and thrips, and estimated the proportion of thrips with spores. Both mites 



	 vi	

dispersed similar amounts of spores per plant, but A. swirskii delivered more spores to 

thrips infested leaves and thereby played a significant role in spreading the fungal disease 

to thrips populations. The observed differences between predatory mite species resulted 

from different foraging activity patterns. By understanding how the pathogens can be 

transferred from foraging predatory mites to prey, we provided a theoretical basis for 

identifying candidate predators as efficient fungal dispersal agents. These methods, if 

validated in commercially representative settings, could increase the capacity of 

predatory mites to suppress thrips populations by combining predation and dispersion of 

entomopathogens for biological control. 

Key words: fungal dispersal, grooming behavior, spatial co-occurrence, tritrophic 

interactions, Frankliniella occidentalis, Beauveria bassiana, Amblyseius swirskii, 

Neoseiulus cucumeris, Stratiolaelaps scimitus 
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Figure 2-1. Experimental setups showing how predatory mites were exposed to 

Beauveria bassiana in rearing substrates: (A) connecting parts from left to right: a pipette 

tip with base wrapped with masking tape, a modified Eppendorf tube, a tube connecting 

to vacuum; (B) three connected parts with 0.05 g substrate in the tube as a buffer, mites 

were then vacuumed into the modified Eppendorf tube; (C) wheat bran substrate (left) 

and B. bassiana technical graded powder (right) for mixing; (D) mites were exposed to B. 

bassiana contaminated substrates in modified Eppendorf tubes. 

Figure 2-2. Survival probability of 1st instar larvae (a), 2nd instar larvae (b), propupae (c) 

and adult female (d) Frankliniella occidentalis treated with 0.05% Tween-80 suspension 

(Control; solid line) and Beauveria bassiana conidia suspension at 107 per ml of 0.05% 

Tween-80 (dashed line). The asterisks indicate significant differences between 

treatments: n.s. = not significant (p > 0.05), *** = p< 0.0001 (Cox proportional hazards 

mixed effect model). 

Figure 2-3. Number of colony-forming units (CFU) washed off three species of 

predatory mites after exposure to Beauveria bassiana conidia (108 g-1) in the substrate for 

2, 8, 20 and 24 h. (a) Neoseilus cucumeris, (b) Amblyseius swirskii, (c) Stratiolaelaps 

scimitus. The asterisks indicate significant differences between treatments: n.s. = not 

significant (p > 0.05), *** = p< 0.0001 (Generalized linear mixed-effect model). The 

grey area demonstrates 95% confidence intervals predicted by ‘smooth’ function from 

ggplot2. 

Figure 2-4. Probability of survival of predatory mites over 10 days after exposure to 

Beauveria bassiana conidia (dashed line) in the substrate for 24 h. For controls (solid 

line), predatory mites were isolated from the substrate without B. bassiana conidia after 

24 h. Exposure to conidia significantly reduced the survival of Neoseiulus cucumeris (a), 

but had no significant effect on survival of Amblyseius swirskii (b) or Stratiolaelaps 

scimitus (c). The asterisks indicate significant differences between treatments: n.s. = not 

significant (p > 0.05), ** = p< 0.01 (Cox proportional hazards mixed effect model). 
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Figure 2-5. Probability of survival of Neoseiulus cucumeris over 10 days after exposure 

to Beauveria bassiana conidia in the substrate for 2, 8, 20 and 24 h. Exposure duration 

had no significant effect on N. cucumeris survival, n.s. = not significant (p > 0.05) (Cox 

proportional hazards mixed effect model). 

Figure 3-1. Apparatus used for filming predatory mite behavior. (A) Two 3D-printed 

filming areas, the top one was used for Amblyseius swirskii and Neoseiulus cucumeris 

(1.8 mm x 1.3 mm) and the bottom one was used for Stratiolaelaps scimitus (4 mm x 3 

mm); The tested individual was enclosed in the inner well covered with a glass slide; 

moat around the well is designed for aeration. (B) An arena placed under a Dino-lite 

digital microscope camera. 

Figure 3-2. Neoseiulus cucumeris released from the rearing substrates with no Beauveria 

bassiana conidia. Idiosoma and the right set of palps and legs were indicated in the 

photo. The specimens were observed using a low temperature scan electron microscope 

(LT-SEM) as described in Bolton et al. (2014). 

Figure 3-3. Figure 3-3. The predicted number of conidia remaining on the body of 

Amblyseius swirskii, Neoseiulus cucumeris and Stratiolaelaps scimitus across the range 

of grooming duration, walking duration or resting duration along with 95% confidence 

intervals (grey area). Stars indicate significant predictors of number of spores on a mite: 

n. s. = p > 0.05, * = 0.05 < p < 0.01, ** = 0.001 < p < 0.01, *** < 0.001; generalized 

linear mixed-effect model with negative binomial distribution.	

Figure 3-4. Proportion of time (mean + S.E.) Amblyseius swirskii spent grooming (top), 

walking (middle) and resting (bottom) following release from Beauveria bassiana 

contaminated (grey curve) or non-contaminated (black curve) substrate. Stars indicate 

significant predictors of the proportion of time A. swirskii spent on a behavior: ** = 0.001 

< p < 0.01, *** < 0.001; generalized linear mixed-effects model. 

Figure 3-5. Proportion of time (mean + S.E.) Neoseiulus cucumeris spent grooming 

(top), walking (middle) and resting (bottom) following released from Beauveria bassiana 

contaminated (grey curve) or non-contaminated (black curve) substrate. Stars indicate 
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significant predictors of the proportion of time N. cucumeris spent on a behavior: ** = 

0.001 < p < 0.01, *** < 0.001; generalized linear mixed-effects model. 

Figure 3-6. Proportion of time (mean + S.E.) Stratiolaelaps scimitus spent grooming 

(top), walking (middle) and resting (bottom) following released from Beauveria bassiana 

contaminated (grey curve) or non-contaminated (black curve) substrate. Stars indicate 

significant predictors of the proportion of time S. scimitus spent on a behavior: * = 0.01 < 

p < 0.05; generalized linear mixed-effects model. 

Figure 3-7. Multiple conidia mixed with possibly mite saliva observed on Amblyseius 

swirskii mouth and legs. Arrows are pointed to examples of multiple conidia. (A) 

Beauveria bassiana conidia before being loaded onto A.s swirskii. (B) Conidia attached 

to an A. swirskii seta on leg 2, covered with multiple conidia. (C) Dorsal view of 

chelicerae with multiple conidia between chelicerae. (D) Lateral view of chelicerae with 

conidia covered with multiple conidia on the mouth opening. (E) Conidia near a seta on 

leg 1. (F) Conidia in clusters on seta bases of leg 2. The specimens were observed using 

LT-SEM as described in Bolton et al. (2014). 

Figure 3-8. Predatory mites bearing conidia of Beauveria bassiana. (A) Dorsal view of 

Amblyseius swirskii placed on a bean leaf immediately following released from B. 

bassiana contaminated substrate. The stringy structures are trichomes. (B) Lateral view 

of A. swirskii at 30 min following release from the substrate. (C) Dorsal view of 

Neoseiulus cucumeris immediately following release from B. bassiana contaminated 

substrate. (D) Dorsal view of N. cucumeris at 60 min after it was released from the 

substrate. (E) Dorsal view of Stratiolaelaps scimitus immediately following release from 

B. bassiana contaminated substrate. (F) Dorsal-lateral view of S. scimitus at 60 min after 

it was released from the substrate. The specimens were observed using LT-SEM as 

described in Bolton et al. (2014).  

Figure 3-9. Multiple Beauveria bassiana conidia. (A) Conidia in technical grade powder. 

(B) Conidia on Amblyseius swirskii cuticle 60 min following release from the substrate. 

(C) Conidia on Neoseiulus cucumeris cuticle 60 min following release from the substrate. 

(D) Conidia on Stratiolaelaps scimitus cuticle 60 min following release from the 
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substrate. The specimens were observed using LT-SEM as described in Bolton et al. 

(2014). 

Figure 3-10. Presence of bacteria on (A) Stratiolaelaps scimitus cuticle and (B) S. 

scimitus rearing substrate. The specimens were observed using LT-SEM as described in 

Bolton et al. (2014). 

Figure 4-1. Schematic drawing of the bean plant structure after being trimmed (left). 

Plant parts (leaflet and stem) are each identified by a number (right). An Eppendorf tube 

containing predatory mites and fungal conidia to be released was attached in position 8. 

An example of the spatial distribution of larval thrips is illustrated using yellow oval 

spots - in this case, thrips are mostly clumped on the oviposition leaflet 5. Drawn by G. 

Lin with the software Adobe Illustrator. 

Figure 4-2. (A) Neoseiulus cucumeris bearing Beauveria bassiana conidia. (B) 

Amblyseius swirskii bearing B. bassiana conidia, released on a bean leaflet. The hair-like 

structures are dense bean trichomes. We observed and took photos of the specimens using 

a low temperature scan electron microscope (LT-SEM) with the same method described 

in Bolton, et al. (2014).  

Figure 4-3. Number of Beauveria bassiana colony-forming units (CFUs) recovered on a 

plant 48 hours after the beginning of the experiment on plants without (control) and with 

predatory mites, Neoseiulus cucumeris or Amblyseius swirskii. Different letters indicate a 

significant treatment effect (p<0.05 generalized linear model with negative binomial 

distribution, multiple comparisons with ‘glht’ function, Tukey method). Dots identify 

outliers (values exceeding 1.5 interquartile range) as defined by ggplot2. 

Figure 4-4. Number of Beauveria bassiana colony-forming units (CFUs) recovered from 

the thrips oviposition leaflet (young vs. old) 48 hours after the beginning of the 

experiment on plants without (control) and with predatory mites, Neoseiulus cucumeris or 

Amblyseius swirskii. Thrips oviposition leaflet refers to the leaflet where thrips females 

were caged for 24 hours to lay eggs prior to treatments. Dots identify outliers (values 

exceeding 1.5 interquartile range) as defined by ggplot2. Different capital and lower case 
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letters indicate significant treatment effect for young and old leaflet, respectively (p<0.05, 

Kruskal-Wallis test with multiple comparisons). The asterisk indicates a significant 

difference (0.05 < p < 0.01) between thrips oviposition leaflet: n.s. = not significant 

(Kruskal-Wallis test for plants in treatment ‘control’ and treatment ‘cucumeris’, 

generalized linear model with negative binomial distribution for plants in treatment 

‘swirskii’). 

Figure 4-5. Co-occurrence index between thrips and Beauveria bassiana delivered to 

plants passively (control) and by predatory mites Neoseiulus cucumeris and Amblyseius 

swirskii. Different letters indicate significant differences between treatments (p<0.05, 

generalized linear model, followed by multiple comparisons with ‘glht’ function, Tukey 

method). Dots identify outliers (values exceeding 1.5 interquartile range) as defined by 

ggplot2. 

Figure 4-6. Proportion of thrips bearing Beauveria bassiana 48 hours after the release of 

B. bassiana on plant parts without (control) and with predatory mites, Neoseiulus 

cucumeris or Amblyseius swirskii. Thrips oviposition leaflet refers to the leaflet where 

thrips females were caged for 24 hours to lay eggs prior to treatments, (D) leaflet No. 5, 

young: leaflet No. 2. Different capital letters indicate significant treatment simple effect 

in plants where thrips eggs were laid on the young leaflet (p<0.05, generalized linear 

model, followed by multiple comparisons with ‘glht’ function, Tukey method) while 

different lower case letters indicate significant treatment simple effect in plants where 

thrips eegs were laid on the old leaflet (p<0.01, generalized linear model, followed by 

multiple comparisons with ‘glht’ function, Tukey method). Differences between thrips 

oviposition leaves within a treatment are shown above bars: n.s. = not significant (p > 

0.05), ** = 0.001 < p < 0.01 (generalized linear model). Dots identify outliers (values 

exceeding 1.5 interquartile range) as defined by ggplot2. 

Figure 4-7. Number of thrips recovered on plant 48 hours after the beginning of the 

experiment on plants without (control) and with predatory mites, Neoseiulus cucumeris or 

Amblyseius swirskii. Different letters above bars indicate significant differences between 

treatments (p<0.05, generalized linear model with negative binomial distribution, 
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followed by multiple comparisons with ‘glht’ function, Tukey method). Dots identify 

outliers (values exceeding 1.5 interquartile range) as defined by ggplot2. 

Figure 5-1. Conidia contained within mite rearing substrates after eight days (A) in 

rearing substrate of Amblyseius swirskii, (B) and (C) in rearing substrate of Stratiolaelaps 

scimitus, and (D) on dead feeder mite in the rearing substrate of Neoseiulus cucumeris. 

The specimens were observed using Hitachi tabletop TM3030 scanning electron 

microscope equipped with Deben Cold Stage Deben TM-3000 Coolstage (Deben UK 

Ltd., Suffolk, UK) as described in Otero-Colina et al. (2018). 

Figure 5-2. Proportion of time (mean + S.E.) predatory mites spent on palp activity: (A) 

Amblyseius swirskii and (B) Neoseiulus cucumeris following release from Beauveria 

bassiana contaminated (grey curve) or non-contaminated (black curve) substrate. Stars 

beside the factors indicate significant predictors of the proportion of time spent on a 

behavior (beside the factors) and stars above the curve indicate significant difference 

between treatments: * = 0.01 < p <0.05, ** = 0.001 < p < 0.01, *** < 0.001; generalized 

linear mixed-effect model.  
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predatory mites and thrips. I learned that thrips counterattack predatory mites, which 

confirmed my observations when I was helping growers control thrips with predatory 

mites. From time to time, I saw predatory mites cadavers within thrips colonies. Why are 

they dead while thrips remain still alive? They are thrips predators! All these articles 

about wars between predatory mites and thrips fascinated me and a name was commonly 

associated with these studies: Dr. Maurice Sabelis.  

When came the time to select my PhD committee members, Jacques asked me if I had 

thought about it. I asked, “Can we ask Maurice Sabelis from the University of 

Amsterdam?” Jacques hesitated and said, “One of our common friends told me Maus is 

very sick and may not recover.” I remember during that week, on a winter day, I was 

suddenly feeling very sad in my living room for Maurice, a person who I had never met. I 

had this crazy idea of flying to Amsterdam to meet him. Later that summer, when I told 

this story to Roy Norton, the oribatid mite specialist in Ohio Acarology program, he said, 
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“Yes, you should go and see him.” Roy told me that when he was a graduate student, he 

admired François Grandjean, but hesitated to meet him because at the time Roy thought 

of himself as nobody. Roy waited until his first paper was published to introduce himself 

to Grandjean, but that year Grandjean passed away. A month after the Ohio program, I 

was lucky to attend the International Congress of Acarology in Kyoto, Japan, following 

the invitation of my parents. They are both Acarologists. When I told my mom I love 

Maurice, she said her PhD supervisor Dr. Yutaka Saito is a friend of Maurice. Dr. Saito 

visited us for collaboration from time to time when I was a child. The night when I 

arrived in Japan, my mom said, “Dr. Saito has arranged a diner tomorrow with everyone 

from his lab and Maurice’s lab.” I said, “But I heard Maurice is very sick. How can he be 

in Japan?”  

The next day at the conference, the cell phone of a person sitting in front of me rang 

during a presentation and a bunch of people looked at me. I was shaking my head, 

crossing my arms and mouthing, “It’s not me!” Amongst the people who turned around 

to look, a kind-looking old man was smiling at me. I asked Frederic Beaulieu, who was 

sitting next to me at the time, who was that man. Frederic said, “The big boss: Maurice 

Sabelis.” I was struck by lightening! Later that evening, we went to a Japanese restaurant. 

People slowly showed up. When Maurice and his wife Izabela Lesna arrived, I waved at 

them, “Sit here!” That was my first dinner with Maurice and we had pleasant 

conversations. It was like a dream for me. At the conference, he gave amazing 

presentations. I was fascinated by how he made complex interactions so easily 

understandable. It was so clear, even to my dad whose English is very limited. During the 

last day of the conference, I had the courage to ask him, “Maurice, would you be a 

member of my PhD committee?” It took him half a second to say, “Yes, I will help you 

as long as my health allows me.” I went back to Montreal and told the story to Jacques. 

Jacques said, “We have to go and see him.” I replied, “It’s crazy.” He added, ‘Sometimes 

you have to be crazy.” 

At the University of Amsterdam, I presented my proposal to Maurice with Jacques sitting 

by my side. He made many valuable comments that helped me throughout my PhD. Later 

that afternoon, Maurice got very tired so we thanked him and said goodbye. He told us he 
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just needed to nap for half an hour and insisted to invite us for supper. We went to a 

restaurant where we sat on sheepskins. In that restaurant, I felt like I was in a dream again 

because I still suffered from jetlag and couldn’t believe I was spending precious time 

with Maurice. We hugged goodbye, I didn’t think I would see him again. During the 

following three months, we continued to exchange emails until the week before he passed 

away. He kept his promise and helped me as long as he could. Moved by his marvelous 

gesture, I want to help others and make them feel the way in which Maurice made me 

feel.  

During my PhD, I had the opportunity to meet with many other researchers who were 

also kind and patient enough to discuss my studies for hours. Special thanks to Drs. 

Svetlana and Vladimir Gouli for letting me, a stranger, to show up at their home in 

Vermont: they prepared a big meal for me and introduced me to the techniques involved 

in working with thrips and entomopathogenic fungi.  
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Fuzhou and Montréal and I’ve always enjoyed the discussions with him on ecology and 

behavior of predatory mites. Eric and I have a common friend, Ronald Ochoa.  

How I met Ronald Ochoa feels like destiny. He was teaching one of the mite courses in 

the Ohio Acarology Summer Program and his presentation about mites was a visual and 

auditory feast. I could feel his passion and couldn’t help but fall in love with mites. One 

day, he asked me where I was from, I replied, “Fuzhou China.” He asked me if I happen 

to know Dr. Lin, a Tarsonemid mite taxonomist. “Yes, he is my father” I said. I then saw 

Ronald’s jaw drop as if he was in a Spanish drama. Ronald and my father had exchanged 

letters for years, but had never met. I introduced them to each other in Kyoto, Japan.  

Thanks to Ronald, I had the opportunity to work at the United States Department of 

Agriculture (USDA) last spring for three weeks and took gorgeous LT-SEM photos of 

predatory mites bearing spores with Gary Bauchan. Thank you Gary and sorry for 
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Preface 

In June 2013, the year before I started my PhD, there was a conference entitled the 

International Entomophagous Insects Conference held in Orford, Canada. I presented the 

work conducted by my mother about using a predatory mite to deliver entomopathogenic 

fungi to Asian citrus psylids. The study showed that the entomopathogenic fungus was 

infectious to the pest but not to the predatory mites. Following the release of predatory 

mites dusted with entomopathogens on citrus twigs, almost 100% psylids died of 

infection after six days. I naively thought that biological control researchers and 

practitioners would be enthusiastic about this approach and started applying it in 

biological control programs, but this was not the case. Five years later, no one has used 

predatory mites to deliver entomopathogenic fungi at a commercial scale. Now I 

understand why, the available information was not convincing enough that the approach 

could work in a realistic situation. There was a lack of proof of concept: the impact on 

pest populations had been evaluated in small test tubes where the probability for pest to 

encounter the entomopathogen was high despite the presence of predatory mites. Another 

study followed. This time, two species of predatory mites covered with 

entomopathogenic fungi were released on a potted orange Jessamine tree (Zhang et al. 

2015b). The pest infection rate was compared not only with control treatment, but also 

with the pathogens sprayed all over the plant. The result showed that one species of 

predatory mites covered with pathogen induced a higher infection rate in prey 

populations than when the same quantity of pathogen was sprayed all over the plant, the 

other predatory mite species induced the same level of prey infection rate. The submitted 

manuscript was rejected a few times for several reasons. The proof of concept was not 

comprehensive: one predatory mite species induced 100% mortality in prey population, 

but how did it happen? How did predatory mites respond to the presence of pathogens on 

their bodies? How did predatory mites dislodge and disperse the pathogens? Why did two 

predatory mites induce different infection rate in prey population? Is it possible to apply 

it commercially? All these unanswered questions led to the beginning of my PhD: trying 

to understand the nature of each organism, their interactions and the process of disease 

transmission. 	  
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Chapter 1: Introduction 

1.1 Literature review 

Fungi, plants and animals are the three major groups of multicellular eukaryotes in 

terrestrial ecosystems (Freeman and Hamilton 2005). Plants are autotrophs, using solar 

energy and inorganic compounds to develop and reproduce. Fungi and animals are 

heterotrophic, consuming other organisms in a food chain. Fungi can develop as parasite, 

saprophyte or mutualist (Roper and Seminara 2019). Once fungi come into contact with a 

suitable resource, they undergo intense proliferation. When the resource is depleted, they 

need to find and colonize new substrates in order to persist (Malloch and Blackwell 

1992).  

“Fungi cannot walk or run, but some can swim, most can soar, a few can jump, and some 

must be carried” (Kendrick 1985).  

Fungi have evolved specific structures for dispersal (e.g. spores, hyphal fragments, 

sclerotia, soredia, sporangia, peridioles), spores being the main dispersal units (Magyar et 

al. 2016). Spores can be disseminated by dispersal agents such as wind, water and 

animals (Aylor 1990; Magyar et al. 2016). They are small enough to be carried by even 

weak wind (Roper and Seminara 2019). Since air is relatively stationary at the surface of 

a solid, especially above a leaf surface (Nobel 1999), an initial kick can facilitate spores 

to reach the dispersive airflow (Magyar et al. 2016). Spores can be violently discharged 

by osmosis pressure and released in many ways: from an apical pore rupture, by surface 

tension catapult or cavitation (forcing the cell walls snapping back between spores and 

conidiophore) reviewed by Roper and Seminara (2019). Some fungi from the phylum 

Basidiomycota grow long stalks, so the mushroom caps can reach the layer of air 

turbulence before releasing spores (Magyar et al. 2016). Mechanisms of initial spore 

dispersal are active and well understood. However, once spores reach the atmosphere, 

their fate remains unknown and highly unpredictable: some are dispersed locally, others 

over thousands of kilometers (Komonen and Müller 2018). Rain brings spores to the 

ground and dense vegetation facilitates spore deposition (Magyar et al. 2016). Spores can 
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also be washed from top leaves to a lower canopy. Leaf structures (e.g. trichomes) and 

sticky substances (e.g. plant sap and honeydew) enhance spore retention (Magyar et al. 

2016; Malloch and Blackwell 1992). The spores that are not securely attached to a 

suitable substrate re-suspend in the air after they are dried by airflow and continue their 

journey (Magyar et al. 2016).  

“Do fungi surrender to uncertainty? Can they strategize to exert some control of the fate 

of their progeny?” (Roper and Seminara 2019) 

Fungi can established commensalistic, mutualistic and parasitic relationships with 

animals, including arthropods, gastropods, mammals and birds, that purposefully move 

from one place to another (Peck 1999), thereby greatly reduce the randomness in 

encountering their host (Magyar et al. 2016). One of the routes for fungi to reach their 

substrates is by attaching to animals while the animals feed on the fungi or fungal 

substrates. For example, Sporothrix fungi that infect flowers and fruits of Protea trees in 

Africa are essential food for several species of mites. These fungi are dispersed as mites 

move from fruits to developing flowers via tree branches. Some species of mites are 

phoretic to pollinating beetles and nectar feeding Cape sugarbirds, which allow further 

dispersal of Sporothrix fungi between Protea trees even when the trees are separated by 

mountains. Cape sugarbirds directly disperse the spores when they feed on fungus 

contaminated nectar and pollen (Theron-De Bruin et al. 2018). In the region where 

Protea trees grow, natural fire cycles occur every 5-50 years. Following a fire, it takes at 

least three years for Protea trees to re-start producing flowers. The complex, diverse and 

close associations between Sporothrix fungi, mites and birds allow the fungi to persist 

under such harsh conditions (Roets et al. 2009).  

Fungi adhere to the surface of their dispersal agents or sometimes survive through their 

digestive tracts (Magyar et al. 2016). Some insects and mites evolved specific 

morphological structures, for example, the mycangia and the sporothecae, which function 

as “pockets” to store fungal spores for propagation. Fungi not only provide nutrients for 

their dispersal agents, in bark beetles for instance, fungi also transform phloem content of 

pine tree to essential nutrients for the beetles. In return these arthropods allow spores to 



	 4	

be dispersed within pine trees (Moser et al. 1995). Amongst animals, arthropods have the 

most complex, unique and close relationships with fungi (Magyar et al. 2016).  

Commonly, fungi never reach their host/substrates before their dispersal agents die. Some 

fungi have evolved the ability to exploit arthropod cadavers. They penetrate arthropod 

chitin-rich cuticles (Humber 2008) and degrade arthropod proteinaceous exoskeleton 

(Vilcinskas 2010), known as soil-borne saprophytic fungi. Some fungi are able to exploit 

the resource of their dispersal agents while they are still alive, known as 

entomopathogenic fungi. Entomopathogenic fungi are common antagonists to arthropods. 

Amongst all insect orders, 65% are known to be infected by fungi (Araújo and Hughes 

2016). The capacity of fungi to infect insects has evolved in several fungal phyla: 

including Ascomytcota, Zygomycota, Deuteromycota, Chytridiomycota and Oomycota, 

with the highest proportion and greatest diversity reported in Ascomycota (Mora et al. 

2017; Shah and Pell 2003).  

The infection process is summarized as follows: conidia adhere to the host cuticle, 

germinate, penetrate in the host by enzymatic and mechanical processes and then 

reproduce by exploiting host hemolymph and various host tissues (Askary et al. 1999; 

Boomsma et al. 2014; Valero-Jiménez et al. 2016). The transition from saprophytic to 

parasitic lifestyle has involved several mechanisms in order to conquer arthropod 

immune response, including budding and growing rapidly in host hemocoel in a yeast-

like mode, avoiding detection by host hemocytes by having cell walls lacking of an 

antigenic compound (e.g. chitin and galactomannan), escaping hemocyte phagocytosis by 

growing a germ tube out of phagocyte encapsulation, and/or suppressing the host immune 

system by producing toxins (Valero-Jiménez et al. 2016).  

Dispersal of entomopathogenic fungi 

Once host nutrients are depleted, the fungus breaches the cuticle from the inside out and 

usually sporulates in large numbers outside the host cadaver in order to disperse (Hajek 

and St. Leger 1994; Roper and Seminara 2019; Shah and Pell 2003; Valero-Jiménez et al. 

2016). In some cases, huge numbers of fungal spores can be discharged even when the 

host is alive (Shah and Pell 2003). For example, Entomophthora thripidum which infects 
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abdominal organs of onion thrips, keep its host alive while sporulating between 

abdominal integuments like a fountain (Shah and Pell 2003). After E. thripidum stopped 

ejecting mature spores, fungal hyphae and thrips died at the same time (Shah and Pell 

2003). Like for any other fungus, spores of entomopathogenic fungi can be carried by 

wind, rain and animals to reach suitable hosts (Shah and Pell 2003). Transmission of 

entomopathogenic fungi has been observed in closely-interacting species, for example, 

from phoretic tarsonemid mites to bark beetles, from phoretic Macrocheles mites to pales 

weevils, and from aphids to ants (Novgorodova and Kryukov 2017; Schabel 1982; 

Tkaczuk et al. 2011). Within host species, fascinating host-pathogen interactions have 

evolved to reduce the randomness in disease transmission. Entomopathogens can benefit 

from altering host behavior of infected individuals to increase disease transmission 

(Baverstock et al. 2010). For example, ants infected by Ophiocordyceps fungi display a 

series of atypical behaviors (Hughes et al. 2011). They cannot walk normally; convulsion 

and negative geotaxis keep them from falling off the plants and climb up to 

approximately 25 cm above ground, which is ideal for fungal development and dispersal. 

Infected ants bite into the primary or secondary vein of the abaxial leaf to secure the 

attachment of cadavers. Following ant mortality, a fungal stalk grows from behind the ant 

head and spores are released from the stalk. These complex host behavior modifications 

allow fungi to complete their development, spread and ultimately reach other ant 

colonies. Entomopathogenic fungi can also manipulate host courtship and mating 

behaviors by making infected hosts attractive or easier to copulate with for conspecifics 

than uninfected individuals. Male periodical cicadas infected by Massospora cicadina 

produce the same song frequency of sexually available female cicadas and therefore 

attract healthy males to copulate (Cooley et al. 2018). When healthy males copulate with 

infected male cicadas, they contract spores. In some instances, vigorous copulation by 

healthy males can cause infected males to lose their posterior abdominal segments and 

the release of spores contained inside the abdomen. These cicadas with open abdomens 

can remain alive for some time, continue to spread disease by leaving trails of spores 

behind as they walk and attempting to copulate with other cicadas (Cooley et al. 2018). 

Entomophthora muscae infected houseflies attach to the tip of a grass blade with their 

extended proboscis, spread their wings and shower the habitat with spores at night. Even 
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though these females are dead the next morning, they attract male flies to mate and 

transmit the disease (Gryganskyi et al. 2017). In fact, male houseflies are more attracted 

to dead females than to healthy females because of their infected swollen abdomens 

(Möller 1993). Curiously, fungi without brains can control the behavior of their hosts 

which do posses brains (Hughes et al. 2016). These ‘neuroengineers’ are the products of 

natural selection (Hughes et al. 2016).  

Do arthropods perceive the presence of entomopathogenic fungi on their bodies and in 

the environment?  

Arthropods can perceive the presence of fungi on their body through their physical 

weight and/or microbial volatile organic compound (MVOC) emission. For small 

organisms like arthropods, the accumulation of even tiny particles on their body surface 

can affect their movement due to overwhelming weight (Amador and Hu 2015). For 

example, water droplets attached to mosquitoes can weigh up to 80 times the mosquito 

body mass, which makes it impossible to fly (Amador and Hu 2015). Entomopathogenic 

fungi such as B. bassiana, M. anisopliae and Isaria fumosorosea (=Paecilomyces 

fumosoroseus Wize) (Ascomycota: Clavicipitaceae) produce an array of MVOC that can 

be detected by the termite Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae) 

through olfaction (Davis et al. 2013). MVOC of entomopathogens contained alkanes: the 

highly virulent entomopathogens produce straight-chain alkanes while the less virulent 

produce branched and cyclic alkanes (Hussain et al. 2010). It was found that the degree 

of repellency was linked to the virulence of the entomopathogen species: the higher the 

virulence, the more repellent it is to the termites. In fact, the most virulent 

entomopathogen caused the least mortality in termite populations, and vice-versa 

partially because they are actively avoided. (Hussain et al. 2010).  

Are arthropods doomed after they come into contact with entomopathogenic fungi? 

When hosts detect entomopathogenic fungi on their body, they may respond with 

behaviors that negatively affect disease transmission, such as intensive self-grooming, 

chemical disinfection and removal of infected conspecifics in gregarious or social species 

(Roy et al. 2006; Tragust et al. 2013). Grooming was described as the use of legs to clean 
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the body while arthropods stay stationery (Wekesa et al. 2007). Increased grooming 

following exposure to entomopathogenic fungi has been observed in several arthropod 

species such as predatory mites, African Tephritid fruit flies, ants and termites (Dimbi et 

al. 2009; Konrad et al. 2015; Reber et al. 2011). After predatory mites Phytoseiulus 

persimilis Athias-Henriot (Acari: Phytoseiidae) were exposed to leaves treated with the 

entomopathogenic fungus B. bassiana Balsamo, they spent 1.88 min more time grooming 

over a 10 min observation window (Morelos-Juárez et al. 2010; Reber et al. 2011). 

Phytoseiulus longipes Evans (Arcari: Phytoseiidae) spent 1.4 min longer grooming over 

the first 15 min after being exposed to leaves with entomopathogenic fungus Neozygites 

floridana (Zygomycetes: Neozygitaceae) capilliconidia (Wu et al. 2018). Ants Lasius 

japonicus exposed to spores of entomopathogenic fungi increased duration and frequency 

of grooming and improved survival (Okuno et al. 2012). Grooming towards others, 

known as allogrooming, contributes to removal of entomopathogens. Invasive garden 

ants exposed to entomopathogenic fungi Metarhizium brunneum Petch (Ascomycota: 

Hypocreales) mechanically removed the spores and applied antifungal chemicals (formic 

acid secreted from their acidopore) to disinfect the brood (Tragust et al. 2013). An ant 

queen would bite co-founding dead queen’s corpse to pieces to prevent disease from 

developing in the corpse following by burying or removing the pieces of corpse. In case 

the fungi started sporulation on the corpse, the ant queen would not perform these disease 

prevention behaviors, but rather avoid the fungi (Pull and Cremer 2017). Ants perform 

hygiene behavior not only for conspecifics but also towards mutualists that are 

contaminated with entomopathogens. Some ants in Formica species throw aphids that are 

infected by entomopathogens off the plants (Novgorodova and Kryukov 2017). These 

changes in behaviors imply that arthropods can perceive the presence of 

entomopathogenic fungi and actively reduce pathogen density on the individual level and 

in the colony level thereby compromise disease transmission (Tragust et al. 2013).  

The fungal infection process can also be interrupted by the arthropod’s innate immune 

system. Unlike vertebrates that have evolved an immune system relying on pathogen-

specific receptors and immune memories, invertebrates defend against foreign invaders 

with different mechanisms (Christensen et al. 2005). The first line of defense operates 

directly at the level of the cuticle. For instance, red flour beetles produce quinones in 
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their cuticle, which function as both strong physical barrier and toxins suppressing fungi 

such as B. bassiana (Leal 2015). Once the cuticle is breached, localized hemolymph 

coagulation and melanization can occur following the production of reactive 

intermediates of oxygen and nitrogen (Christensen et al. 2005), hemocytes encapsulating 

fungal blastospores and antimicrobial peptides acting synergistically to kill invading 

fungi (Hoffmann 1995). Different antimicrobial peptides can be induced depending on 

the type of parasites (Rolff and Schmid-Hempel 2016), because arthropods have 

receptors recognizing different microbial patterns (e.g. glucans on fungal cell walls) and 

virulence factors (e.g. protease) of entomopathogens (Gottar et al. 2006). Some genes 

encoding antimicrobial peptide are constitutively expressed in arthropods to inhibit the 

growth of blastospores, thereby contributing to the host surviving from B. bassiana 

(Maistrou et al. 2018). Furthermore, insects can increase their body temperature to 

maintain hemocyte populations, enhancing defense-related enzyme activities (such as 

lysozyme and phenoloxidase) to suppress pathogens, known as behavioral fever 

(Kryukov et al. 2018; Ouedraogo et al. 2003). Even though infection cannot be cleared 

with behavior fever, insects could still survive long enough to develop into adults and 

reproduce (Elliot et al. 2002). These anti-pathogen defense mechanisms reduce the 

mortality rate at the host population level. 

The use of entomopathogenic fungi in biological control  

Entomopathogenic fungi have been used in biological control against a large variety of 

insect pests: mosquitoes, aphids, thrips, flies, caterpillars, beetles, scale insects, 

whiteflies, grasshoppers, locusts and others (Shah and Pell 2003). At least 12 species 

have been commercialized world wide, such as Beauveria bassiana (Balsamo) Vuillemin 

(Ascomycota: Hypocreales), Beauveria brongniartii (Saccardo) Petch, Lagenidium 

giganteum Schenk (Oomycota: Lagenidiales), Lecanicillium lecanii (=Verticillium lecanii 

Zimmerman) (Ascomycota: Cordycipitaceae), Metarhizium anisopliae (Metschn.) 

Sorokin (Ascomycota: Clavicipitaceae) and Isaria fumosorosea (=Paecilomyces 

fumosoroseus Wize) (Ascomycota: Clavicipitaceae) (Lacey et al. 2015; Shah and Pell 

2003). Entomopathogenic fungi have several advantages compared to other biological 

control agents. They can be produced on culture media and stored for a longer period, for 
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example, with more than 90% viability after one year in refrigeration and viable up to ten 

years in -80 °C freezer (Lacey et al. 2001). They can be applied with a conventional 

pesticide sprayer (Lacey et al. 2001). Recent findings demonstrate that some species are 

beneficial to plants as endophytes, plant pathogen antagonists, rhizosphere colonizers and 

plant growth promoters (Lacey et al. 2015). To attain successful biological control using 

entomopathogenic fungi, practical efficiency, profitability, sustainability and public 

safety remain important challenges (Shah and Pell 2003). Two main approaches have 

been adopted for their commercial applications: classical and augmentation biological 

control (Shah and Pell 2003). Examples of classical biological control are found in the 

order entomophthorales, which are mainly classified as specialist fungal pathogens (Shah 

and Pell 2003). In comparison to generalist entomopathogenic fungi, specialist 

species/strains provide the following advantages: (i) narrow host range with minimal 

detrimental effects on non-target organisms, (ii) only few conidia1 are required to cause 

rapid infection, (iii) ability to induce epizootics (Navon and Ascher 2000). However, 

specialist fungi are rarely commercialized for biological control because they are difficult 

to culture on artificial media and they produce relatively small number of conidia. In 

addition, it is costly and labor intensive to collect the source of inoculum, propagate them 

on the host, store the propagules and release them back to the environment. In 1860s, the 

gypsy moth was accidently introduced from Europe to the Boston area and spread rapidly 

through northeastern USA affecting a wide variety of trees (Liebhold et al. 1992). 

Entomophthora maimaiga Humber, Shimazu & Soper (Entomophthorales: 

Entomophthoraceae) was found effective against gypsy moth populations, however, the 

application of E. maimaiga requires hand-collecting and redistribution of infected moth 

cadavers and soil containing resting spores in forests with gypsy moth outbreaks (Shah 

and Pell 2003). In contrast, generalist fungi, such as many species of entomopathogenic 

Hyphomycetes, have a wide range of arthropod hosts and more importantly they can 

grow as saprotrophs (Navon and Ascher 2000). The later characteristic allows them to be 

mass-produced on organic matter (e.g. barley and rice) at a high production rate and low 

cost, therefore, they can be developed into profitable products for augmentative 

biological control (Lacey et al. 2015). 

																																																								
1 Conidia and spores are interchangeable hereafter. Conidia are asexual form of spores. 
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Strategies for enhancing infection rates of generalist entomopathogens used for 

biological control 

Entomopathogenic Hyphomycetes such as Beauveria and Metarhizium species have been 

commercialized worldwide to control arthropod pests (Meyling and Eilenberg 2007; 

Zimmermann 2007). Infection rate has always been a constraint to their efficacy. Based 

on population dynamic models of infectious diseases, the infection rate is directly linked 

to pathogen density, host density and the transmission coefficient (Anderson and May 

1981). Accordingly, mainly five strategies have been applied to increase infection rate: 

increasing pathogen densities, increasing the persistence of conidia in the environment by 

adding protectants and nutrients in a formulation, increasing conidial dispersal, targeting 

conidia to host aggregation sites, attracting hosts to semiochemical inoculation traps 

(auto-dissemination) (Shah and Pell 2003), and using beneficials such as bees and 

predatory mites to disseminate conidia (Al-Mazra’awi et al. 2006). 

Growers can spray large amount of conidia at intervals to increase the density of 

entomopathogenic Hyphomycetes in their crops (Jaronski 2010). For example, a dose of 

1013-1014 M. anisopliae conidia per hectare is recommended to suppress pest in the field 

(Wraight et al. 2001). Spraying provides a means of dispersing entomopathogens. 

However, it cannot provide thorough coverage of plants due to spray runoff and drift and 

also because all plant surfaces cannot be reached (Courshee 1960). When the plant 

structure is complex, the host contact is challenging. For example, western flower thrips 

Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) inhabiting impatiens 

flowers acquired less B. bassiana conidia when flowers were partially closed than when 

they were fully open. Spraying B. bassiana reduced thrips populations by approximately 

30%, but increasing the dose of application from 4.9x1013 to 2x1014 conidia per ha did 

not significantly increase the infection level nor reduce the thrips populations, suggesting 

that fungal transmission is the limiting factor (Ugine et al. 2007). Furthermore, sprayed 

conidia have a short window of time to contact their host before dying, mainly from UV 

exposure. Beauveria bassiana conidia without UV protectants lost 95% viability 15 

minutes after being applied with water on a leaf surface (Inglis et al. 1995). 

Commercially, conidia can be formulated with protectants to prolong their viability, with 
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adhesives to improve attachment to plant surface, with humectants to stimulate rapid 

germination and with nutrient source for regeneration (Wraight et al. 2001). 

Another strategy for growers to increase host contact is to apply conidia on specific zones 

in a crop where pests aggregate (Jaronski 2010). For example, with hydraulic nozzles 

pointed upward, the quantity of B. bassiana conidia was increased between 6 to 30 times 

on the underside of the leaves, where whitefly pests are mostly located (Byrne and 

Bellows Jr 1991). Similarly, when B. bassiana was sprayed specifically on soil near sugar 

beet maggot oviposition sites, the amount of B. bassiana conidia deposited on the soil 

surface was increased five times compared to conventional broadcast spray (Jaronski 

2010). However, inundative application of entomopathogenic fungi does not guarantee 

successful biological control. For example, researchers have attempted to control termites 

with entomopathogenic fungi for more than 50 years. After 279 published studies on the 

topic, termite control by fungi still ends up in failures (Chouvenc et al. 2011). Several 

reasons have been identified (Chouvenc et al. 2011).  

Termites live in cryptic habitats and within a nest, it contains many galleries. Therefore 

spores are unlikely to reach the host when sprayed on the external surface of the nest. For 

species having a central nest, the inundative approach is costly but still possible. For 

species that have extended underground nests, it remains impossible to access the entire 

nest with current application methods. Unfortunately, the inundative application of 

entomopathogenic fungi would have a larger impact on non-target species than on 

termites (Chouvenc et al. 2011).  

Researchers have attempted to use bait to control populations of underground species, 

however, the proportion of termites trapped was far from enough to impact the whole 

colony. The reasons became obvious after termite behaviors were understood: termites 

can perceive the presence of entomopathogenic fungi and actively avoid them. Termites 

can also acquire ‘learned-avoidance’ to harmful fungi. In this case, the pathogen-host 

encounter doesn’t follow the principle of mass action: the probabilities of a host moving 

in different directions are not equal, especially when pathogens are present. Under such 

conditions, increasing pathogen density is useless for increasing the infection rate.  
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 ‘Artificial’ vectors or disease dispersal agents have been developed and tested to 

enhance the transmission of entomopathogens in the context of biological control. For 

example, when foraging within an aphid colony, the aphid predator Coccinella 

septempunctata Linnaeus (Coleoptera: Coccinellidae) inoculated with the 

entomopathogenic fungus Erynia neoaphidis Remaudiere & Hennebert 

(Entomophthorales: Entomophthoraceae) induced 10% of infection in pea aphid 

populations under laboratory conditions (Pell et al. 1997). Commercially mass-produced 

beneficials such as bumblebees, honeybees and predatory mites have been tested for 

entomopathogenic fungus dissemination for insect control (Al-Mazra'awi et al. 2006; 

Kapongo et al. 2008; Zhang et al. 2015a; Zhang et al. 2011). More than 90% of flowers 

and leaves contained detectable B. bassiana conidia and 30-40% of pest individuals were 

infected when bumble bees were used to disseminate B. bassiana to control the tarnished 

plant bug Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae) and F. occidentalis 

on greenhouse sweet pepper (Al-Mazra’awi et al. 2006). However, the limitations of this 

system are the following: 1) It can only be applied to flowering crops; 2) Being 

phototactic positive, bees do not avoid UV (which is detrimental to B. bassiana) but use 

UV signals to locate flowers or to escape into an open space (Heiling et al. 2005; Menzel 

and Greggers 1985). Nonetheless, the pollinator-vectored entomopathogen dissemination 

system opened a new field of study in biological control.  

Mites have been tested for their capacity as dispersal agents of entomopathogenic fungi. 

Laboratory experiments have been conducted to test the ability of phoretic Macrocheles 

mites to transfer conidia of M. anisopliae var. major to their host, the pales weevils 

Hylobius pales (Herbst) (Coleoptera: Curculionidae). Mites dusted with conidia were 

isolated with one weevil larva in a Petri dish and, within 24 h all beetles carried at least 

one mite. Eighty percent of the beetles carrying the phoretic mites died of infection after 

six weeks (Schabel 1982).  

Could predatory mites be efficient dispersal agents of entomopathogenic fungi? 

Several characteristics of predatory mites make them potential dispersal agents of 

entomopathogenic fungi. Phytoseiid mites are small and therefore have a large 
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surface/volume ratio for spores to be attached. Predatory mites are periodically released 

in large numbers in cropping systems. For example, N. cucumeris is released at a rate of 

200-500 mites/m2 bi-weekly or monthly (as recommended by Applied Bio-Nomics Ltd., 

Canada). Under these conditions, mites inoculated with entomopathogenic fungi can 

regularly bring large amount conidia to the plant. Secondly, predatory mites are actively 

searching for prey on plants. They are highly mobile and have a relatively fast walking 

speed relative to their small size. For example, Phytoseiulus species have a walking speed 

between 0.3-1.8 mm/s at 25°C (Coombs and Bale 2013). Thirdly, phytoseiid mites have 

the capacity to respond to herbivore-induced plant chemical cues to locate their prey, 

which would bring conidia to areas where prey aggregate (Dicke and Sabelis 1987). The 

prey finding capacity is critical for controlling pests with a cryptic nature, such as those 

dwelling in secluded sites on plants. Fourthly, phytoseiid mites and entomopathogenic 

fungi often have a similar preference for habitats characterized by high humidity and low 

UV intensity. Many phytoseiid species are vulnerable to ultraviolet radiations (Onzo et al. 

2010; Tachi and Osakabe 2012), low humidity (Perring and Lackey 1989) and high 

temperature (Montserrat et al. 2013). For instance, Neoseiulus californicus (=Amblyseius 

californicus McGregor) (Acari: Phytoseiidae) actively avoids UV radiation and visible 

light (Tachi and Osakabe 2012). Typhlodromalus aripo De Leon (Acari: Phytoseiidae) 

avoids UV exposure and low humidity by hiding in plant apex during the day and 

actively foraging in the dark (Onzo et al. 2009). Amblydromalus manihoti Moraes (Acari: 

Phytoseiidae) and Euseius fustis Pritchard & Baker (Acari: Phytoseiidae) spend most of 

the time on the abaxial surfaces of leaves, because UVB exposure is highly lethal to 

them, especially to the eggs (Onzo et al. 2010).  

The capacity of predatory mites to transmit disease to Asian citrus psylid populations was 

tested by Zhang et al. (2015b). They showed that Neoseiulus cucumeris (=Amblyseius 

cucumeris Oudemans) (Acari: Phytoseiidae) loaded with B. bassiana spores induced the 

same mortality in psylid populations as aerial spraying of the fungus, which means 

phytoseiid predatory mites could be explored as an alternative way to apply 

entomopathogenic fungi in biological control.	Amblyseius swirskii Athias-Henriot (Acari: 

Phytoseiidae) performed even better and completely eliminated psylid populations. Why 

did one predatory mite outperform the other? What criteria make a predatory mite an 
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efficient disease dispersal agent? The proof of concept needs to be comprehensive in 

order to develop a viable biological control tool. 

1.2 Objectives 

To understand the process of fungal disease transmission from predatory mites to prey 

and to develop a theoretical basis for such a method; 

To develop a predatory mite-mediated entomopathogenic fungi dispersal system as a 

biological control tool that is easy to use and ready to be validated for greenhouse or field 

trials.  

1.3 Research questions 

Can predatory mites enhance the probability of encounter between their prey and 

entomopathogenic fungi? If yes, what are the ecological mechanisms involved? 

Specifically, 

1. Can predatory mites perceive the presence of entomopathogenic fungi on their 

bodies? If yes, what are their behavioral responses? 

2. How do predatory mites dislodge fungi from their bodies to the environment? Is it 

by grooming? 

3. Do the spatial distributions of fungal spores differ when they are dispersed by 

different species of predatory mites? Does it influence the pathogen-host contact 

rate? 

4. To what extent the foraging behavior of predatory mites loaded with fungal spores 

determine the spatial distribution of the fungus on a plant?  

1.4 Hypothesis 

Our general hypothesis is the following: Predatory mites loaded with fungal spores 
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increase the encounter rate between entomopathogenic fungi and their prey. This capacity 

of predatory mites as dispersal agents is linked to their foraging activities. More specific 

hypotheses are described in each of the following chapters.  
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1.5 The study system 

The biological system under study consists of the entomopathogenic fungus Beauveria 

bassiana; two species of plant-dwelling phytoseiid predatory mites N. cucumeris and A. 

swirskii and one species of soil-dwelling predatory mites Stratiolaelaps scimitus 

(=Hypoaspis miles Berlese) (Acari: Laelapidae) as potential fungal dispersal agents; and 

the western flower thrips Frankliniella occidentalis, a key pest species in agriculture, as a 

resource for both the fungus and the predators. These species share similar habitats (i.e. 

plants supporting thrips populations) and can coexist in commercial greenhouses 

applying biological control programs.  

 

Beauveria bassiana is a generalist entomopathogenic fungus that exploits over 200 host 

species from most insect orders, with some isolates showing a high degree of specificity 

(Brodeur 2012; Uma Devi et al. 2008). The pathogenicity of B. bassiana, especially the 

registered strains, against beneficial insects, mammals and human is rarely reported 

(Zimmermann 2007). Therefore, they are considered as safe biological control agents. 

Conidia are responsible for infection and naturally dispersal by air movement because of 

their small size (1-3 µm) (Shimazu et al. 2002), by contact with infected hosts or via a 

dispersal agent (Baverstock et al. 2010; Fuxa and Tanada 1987; Vega et al. 2000). 

Conidia adhere to the host cuticle, germinate, penetrate in the host by enzymatic and 

mechanical processes and next reproduce by exploiting host hemolymph and various host 

tissues (Askary et al. 1999; Boomsma et al. 2014; Valero-Jiménez et al. 2016). Once host 

nutrients are depleted, the fungus breaches the cuticle from inside out and sporulates in 

large numbers (Valero-Jiménez et al. 2016). Commercial strains of B. bassiana are used 

for the control of arthropod pests in biological control programs. They are typically 

sprayed over the crops like pesticides and the probability of contact with the host depends 

on the spatial distribution of the pests (Brodeur 2012; Ugine et al. 2007). For our study, 

we used the B. bassiana strain ANT-03, which has been registered in North America for 

greenhouse biological control of thrips, aphids and whiteflies. 

Western flower thrips is a cosmopolitan and highly polyphagous insect that feeds on 

almost every plant part, from leaves to flower and pods (De Jager et al. 1993; Trichilo 
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and Leigh 1988; Zhi et al. 2005), it can also vector a number of plant viruses (Reitz 

2009). Thrips are difficult to control with contact insecticide because of their (i) 

thigmokinetic behaviour (hiding in concealed parts of plants, such as plant crevices and 

flowers, where insecticide cannot reach), (ii) propupal stage occurring below ground, also 

escaping from direct exposure to foliar pesticide, and (iii) rapid development of pesticide 

resistance (Broadbent et al. 2003; Jensen 2000). 

The two phytoseiid predatory mites are generalist predators that actively search for prey 

(McMurtry et al. 2013). Foraging phytoseiid mites typically respond to chemical cues 

emitted by plants when attacked by herbivores and move towards infested areas (Dicke et 

al. 1998). They are both commercialized and released on vegetable and ornamental crops 

to control insect pests, including thrips (McMurtry et al. 2013). They mostly attack first 

instar thrips larvae because larger prey successfully counterattack predatory mites 

(Bakker and Sabelis 1986). Small and large thrips larvae live together in colonies on 

plant parts and larger larvae can protect their younger siblings from predation (de Bruijn 

et al. 2014). Below ground, the distribution of thrips propupae and soil-dwelling 

predatory mites remains poorly understood. Under greenhouse conditions, most F. 

occidentalis propupae were found within the first two centimeters in soil (Deligeorgidis 

and Ipsilandis 2004). Soil predatory mites such as S. scimitus has the capacity to reduce 

thrips population below ground and can induce up to 77% thrips mortality within a week 

(Berndt et al. 2004a; Saito and Brownbridge 2016). However, S. scimitus alone is usually 

not efficient for suppressing F. occidentalis populations (Berndt et al. 2004b). For this 

polyphagous soil predator, the ability to locate F. occidentalis and availability of 

alternative prey such as nematodes and collembola may limit its capacity for controlling 

thrips below acceptable levels (Berndt et al. 2004b; Wiethoff et al. 2004). When S. 

scimitus was combined with the phytoseiid mite N. cucumeris, control was not better than 

applying N. cucumeris alone due to competition and intraguild predation (Pochubay and 

Grieshop 2012; Wiethoff et al. 2004). It is reasonable to combine other biological control 

agents that have no negative interactions with S. scimitus in order to achieve satisfactory 

level of thrips control. 
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1.6 How did we answer the questions using our study system? 

The main results of my thesis are structured in three scientific papers. In the first one, we 

developed a commercially applicable method for predatory mites to collect and transport 

spores of entomopathogenic fungi. We mixed B. bassiana into commercial rearing 

substrates of the predatory mites, extracted the mites after different hours and evaluated 

the number of spores on mite bodies. We also showed that B. bassiana strain (ANT-03), 

predatory mites and thrips form a suitable pathogen-vector-host association, meaning that 

the fungus is pathogenic against thrips, but benign towards the dispersal agents. In the 

second paper, we used video recordings to categorize and compare behaviours of the 

predatory mites with or without spores. We studied how mites dislodged spores by 

linking their time spent on different behaviours to the number of spores remaining on 

their bodies. Using low-temperature scan electronic microscopy (LT-SEM), we 

visualized the distribution of spores on mites. Finally, in the third study, plant-dwelling 

predatory mites were released on plants that had been previously infested with first instar 

thrips clustered on leaves. We examined each plant section to characterize the spatial 

distribution of each organism. We compared the performance of two species of predatory 

mites by calculating the spatial co-occurrence of spores and thrips and by measuring the 

proportion of thrips bearing spores. For the soil-dwelling predatory mites, we loaded the 

mites with spores and released them in soil infested with thrips propupa. We compared 

the number of emerging adult thrips and the proportion of adult thrips bearing spores 

across different experimental treatments. However, the results from the soil system are 

incomplete and therefore inconclusive. This part has been excluded from this thesis. 
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1.7 Contribution of the author and co-authors 

Being the first author and the corresponding author of one paper and two manuscripts 

(Chapter 2-4), I formed the research questions, conceived and designed the experiments, 

organized lab meetings to discuss and optimize experimental protocols, performed the 

experiments, collected the data, analyzed the data, wrote the manuscripts, revised the 

manuscripts and responded to peer review. Being the last author, my supervisor Dr. 

Jacques Brodeur played a crucial role in guiding me through every process. Not only that, 

but he also hired a student for me every time I needed help for my experiments. Being the 

second last author, my co-supervisor Dr. Silvia Todorova participated in all the 

experimental designs and provided her professional and editorial advice. She also 

provided me with the predatory mites N. cucumeris and the means of producing technical 

grade powder of B. bassiana (strain ANT-03) for my experiments. 

Below I will describe how each of my other co-authors contributed to the three Chapters. 

Chapter 2: Lin, G., Tanguay, A., Guertin, C., Todorova, S. & Brodeur, J. 2017. A new 

method for loading predatory mites with entomopathogenic fungi for biological control 

of their prey. Biological Control 115, 105-111 

Alexandre Tanguay participated in the protocol development and performed the 

experiment with me. Dr. Claude Guertin participated in the experimental design and 

provided the lab space for the experiment. They both reviewed the manuscript. 

Chapter 3: Lin, G., Di Paolo, S, Bauchan, G., Ochoa, R., Todorova, S. & Brodeur, J. 

Walking is the primary behavioral mechanism for predatory mites to dislodge fungal 

conidia from their bodies Manuscripts in preparation. 

Sean-Anthony Di Paolo performed the experiment with me and analyzed the video. Dr. 

Gary Bauchan and Dr. Ronald Ochoa were leading the LT-SEM observations and edited 

the manuscript. 
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In Chapter 4: Lin, G., Guertin, C., Di Paolo, S., Todorova, S. & Brodeur, J. Phytoseiid 

predatory mites can disperse entomopathogenic fungi to prey patches. Revision has been 

submitted to Scientific Reports on April 5th, 2019. 

Dr. Claude Guertin participated in the experimental design and provided editorial advice. 

Sean-Anthony Di Paolo performed the experiment with me. They both reviewed the 

manuscript. 
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2.1. Highlights 

• Predatory mites can be loaded with fungal conidia added to mite commercial 

rearing substrates. 

• Conidia loading capacity of soil mites increases with exposure time in the 

substrate.  

• Overall, Beauveria bassiana (Strain ANT-03) had a limited effect on survival of 

the predatory mite species included in the study  

• Beauveria bassiana showed stage-specific virulence to Frankliniella occidentalis. 

• Predatory mites are potential vectors of entomopathogenic fungi in biological 

control. 
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2.2 Abstract  

Movement of invertebrates can promote contact between entomopathogenic fungi and 

their hosts. In biological control programs, foraging predatory mites have the capacity to 

increase disease transmission rates and can potentially be used as fungal vectors. In this 

study, a method has been developed for predatory mites to collect and transport conidia 

of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) directly from 

the commercial rearing substrate. Increasing the duration of exposure (2-24 hours) to 

contaminated substrate significantly increased the number of conidia retained on the body 

of a soil predatory mite, Stratiolaelaps scimitus (=Hypoaspis miles Berlese) (Acari: 

Laelapidae). However, this was not observed in two phytoseiid species, Neoseiulus 

cucumeris (=Amblyseius cucumeris Oudemans) (Acari: Phytoseiidae) and Amblyseius 

swirskii Athias-Henriot (Acari: Phytoseiidae). These results suggest that upon receiving 

predatory mites from a supplier of biocontrol agents, conidia can be mixed into the 

substrate and, for the soil predatory mite, the length of time between mixing and release 

can be manipulated to determine the conidia load. Furthermore, the B. bassiana strain 

ANT-03 showed low virulence towards N. cucumeris, and had no significant effect on 

survival of A. swirskii or S. scimitus. However, stage-specific virulence was observed 

with their shared prey, the western flower thrips Frankliniella occidentalis Pergande 

(Thysanoptera: Thripidae). Exposure to Beauveria bassiana (107 conidia ml-1) 

significantly reduced survival of adults, propupae and 2nd instar larvae, but not 1st instar 

larvae. This biological model fits the profile of a suitable pathogen-vector-host 

association, where the pathogen uses vectors as dispersal agents and the host as a 

resource for reproduction.  

Key words fungal dispersal, conidia load, Beauveria bassiana, Stratiolaelaps scimitus, 

Neoseiulus cucumeris, Amblyseius swirskii 
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2.3 Introduction 

The probability that an individual becomes infected by a pathogen depends on various 

factors, including the pathogen’s dissemination capacity. The rate of transmission of a 

disease is typically proportional to the rate of encounter between the host and the free-

living infective stages of a pathogen (Anderson and May, 1980). Entomopathogenic fungi 

move between hosts by means of horizontal transmission among conspecifics, through 

conidia disseminated in the habitat, or via a vector (Fuxa and Tanada, 1987; Vega et al., 

2000). The vector, a living organism that disseminates infectious agents (Timmreck, 

2002), may transmit the pathogen passively without being infected by the infectious 

agent. The role played by vectors in entomopathogenic fungal epidemiology is complex, 

and in less studied vector-host systems such as arthropods, many aspects remain unclear.  

The capacity of mites and insects to carry fungal pathogens of arthropod pests is a 

potentially desirable trait that could be promoted in biological control programs. This 

strategy would be of particular interest when pests cannot effectively be reached by a 

biopesticide (meaning formulated entomopathogens in this case) sprayed in a culture. 

Commercially mass-produced arthropods, either pollinators or predators, have recently 

been tested for vectoring entomopathogenic fungi to agricultural pests (Baverstock et al., 

2010). For example, foraging bumblebees loaded with conidia of B. bassiana were 

released on sweet pepper plants in greenhouses where they transmitted the disease to the 

western flower thrips, F. occidentalis, and the tarnished plant bug, Lygus lineolaris 

(Palisot de Beauvois) (Al-Mazra'awi et al., 2006). Similarly, two phytoseiid predatory 

mite species N. cucumeris and A. swirskii showed the capacity to disseminate B. bassiana 

to their prey, the Asian citrus psyllid Diaphorina citri Kuwayama (Homoptera: Psyllidae) 

in potted citrus plants (Zhang et al., 2015b). These results suggest that arthropod vectors 

can contribute to increasing the rate of encounter between entomopathogenic fungi and 

arthropod pests.  

In nature, B. bassiana is an opportunist pathogen. It has been used for augmentative 

biological control with single or multiple applications in crops when climatic conditions 

facilitate interaction with the targeted pests (Brodeur, 2012; Waage, 1995). However, 
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transmission rate and conidia persistence in the habitat can dramatically affect the 

efficacy of an entomopathogenic fungus. In soil, the viability of B. bassiana (strain GHA) 

conidia decreased by 30% and by 75% one and seven weeks after application, 

respectively (Świergiel et al., 2015). When exposed to UV radiations on a leaf surface, B. 

bassiana (Strain GHA) conidia viability is reduced by 95% after only 15 minutes (Inglis 

et al., 1995). Typically, microbial biopesticides are applied like chemical pesticides as 

they are sprayed over a crop. The probability of contact with the targeted pest depends on 

the spraying technique and the spatial distribution of the host. In greenhouse impatiens 

crops, spraying B. bassiana reduced thrips populations by 30%, but increasing the 

concentration of application from 4.9x1013 to 2x1014 conidia per ha did not significantly 

increase the infection level, suggesting that host contact is the limiting factor (Ugine et 

al., 2007). Contacting the host when conidia remain viable is therefore crucial for the 

persistence and efficacy of entomopathogenic fungi as biocontrol agents. 

For a pathogen-vector-host association to be sustainable in a biological control program, 

the pathogen has to be benign towards the vector and virulent against the host; the vector 

conveys the pathogen to the host which is then used as a resource for growth and 

multiplication of the pathogen (Ewald, 1994). The present study is part of a research 

program aiming to explore ways to increase transmission rates of the entomopathogen B. 

bassiana to western flower thrips above and below ground using predatory mites as 

vectors. Under experimental conditions, predatory mites have been shown to acquire 

conidia either by walking on sporulating B. bassiana in a Petri dish (Zhang et al., 2015b) 

or being sprayed with a conidia suspension (Wu et al., 2016). However, these methods 

are not applicable for commercial use because mass-reared predatory mites are contained 

within rearing substrates such as bran or mixture of bran vermiculite and sphagnum moss 

(Freire and de Moraes, 2007). 

Frankliniella occidentalis was the target host for this study. It is a highly polyphagous 

insect with a short generation time and high reproductive rate, especially when it feeds on 

flowers (Jager et al., 1993). The pest is difficult to control with contact insecticide 

because of its (i) thigmokinetic behaviour (hiding in concealed parts of plants, such as 

flowers, where insecticide cannot reach), (ii) propupal stage occurring below ground, also 
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escaping from direct exposure to foliar pesticide, and (iii) rapid development of pesticide 

resistance (Broadbent et al., 2003; Jensen, 2000).  

Three generalist predatory mite species were used as potential vectors of B. bassiana: two 

phytoseiids foraging on plants N. cucumeri and A. swirskii and the soil-dwelling 

Stratiolaelaps scimitus (=Hypoaspis miles Berlese) (Acari: Laelapidae). Neoseiulus 

cucumeris and A. swirskii typically feed on 1st instar F. occidentalis while S. scimitus can 

attack F. occidentalis larvae and propupae (Gerson and Weintraub, 2007; Wu et al., 

2014a). All three species are commercialized and have been used successfully to control 

populations of F. occidentalis in vegetable and ornamental crops worldwide (Van 

Lenteren, 2012). Above ground, phytoseiid mites respond to chemical cues emitted by 

plants and move toward areas infested with thrips (Midthassel et al., 2016). Phytoseiid 

mites and thrips both include pollen in their diet with predatory mites spending a large 

proportion of time in flowers where thrips aggregate (Faraji et al., 2002). Below ground, 

the distribution of thrips propupae and soil-dwelling predatory mites remains poorly 

understood. Under greenhouse conditions, most F. occidentalis propupae were found 

within the first two centimeters in soil (Deligeorgidis and Ipsilandis, 2004). 

Stratiolaelaps scimitus has the capacity to reduce thrips population below ground (Berndt 

et al., 2004).  

In this study, we first tested the susceptibility of all developmental stages of F. 

occidentalis to B. bassiana (strain ANT-03). We next developed a method for one 

ground-dwelling (S. scimitus) and two foliar (N. cucumeris and A. swirskii) predatory 

mite species to acquire conidia by exposing them to B. bassiana technical grade powder 

in their respective rearing substrates. Finally, we examined conidia load and tested 

survival of these potential predatory mite vectors after different exposure durations in 

contaminated rearing substrates.  
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2.4 Materials and Methods 

2.4.1 Arthropod colonies and fungal inoculum 

A laboratory colony of F. occidentalis, obtained from Anatis Bioprotection Inc. was 

reared on French bean plants Phaseolus vulgaris L. (Fabaceae) in a growth chamber at 

25°C, 70% RH, 16:8 h (L:D). Apple pollen (Firman Pollen Co., (Yakima, WA)) was 

supplied ad libitum on a weekly basis. To obtain cohorts of F. occidentalis of a given 

stage for experiments, 10 day-old P. vulgaris seedlings were placed in a F. occidentatlis 

rearing cage for 24 h for females to oviposit in leaf tissues. Leaves with eggs were 

excised, sustained with water from a glass bottle, and isolated in a plastic container with 

meshed ventilation on the lid. First instar larvae, 2nd instar larvae, propupae and adults 

were obtained 5, 7, 9 and 12 d following oviposition.  

Neoseiulus cucumeris, provided by Anatis Bioprotection, Canada, were maintained on a 

factitious prey Aleuroglyphus ovatus Toupeau (Acari: Acaridae) and apple pollen. 

Amblyseius swirskii, purchased from BioBest Canada, were reared on a diet mixture 

containing Carpoglyphus lactis (Acari: Carpoglyphidae), Tyrophagus putrescentiae 

Schrank (Acari: Acaridae) and apple pollen. Both species were reared at 25°C, 70% 

humidity and under 14L: 10D light cycle. In the experiments, we used adult females that 

were less than one week old. Cohorts were produced by isolating ovipositing females on 

plastic sheets spread on wet sponges in plastic trays containing water. Larvae and 

protonymphs were collected and transferred onto another arena and supplied with their 

diet mixture. Wheat bran was supplied as shelter. After 4-5 d, most individuals of both 

species developed into adults.  

Stratiolaelaps scimitus, purchased from Applied Bionomics, Canada, were maintained on 

a mixture of wheat bran, vermiculite and sphagnum moss (2:2:1) with the factitious prey 

T. putrescentiae (Freire and de Moraes, 2007). To standardize the age of tested adult 

females, larvae were isolated on moistened plaster-charcoal (7:1) in plastic containers 

with meshed ventilation (Enkegaard et al., 1997) and reared at 25°C, 70% humidity and 

under dark. Predatory mites were fed on T. putrescentiae and A. ovatus, and moist 

sphagnums moss and wheat bran were supplied as shelter. After approximately 10 d, 
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most individuals developed into adults (Enkegaard et al., 1997; Ydergaard et al., 1997). 

Less than one-week-old adult S. scimitus females were used for the experiments.  

We used B. bassiana strain ANT-03 for this study. It has been registered as a pest control 

agent for greenhouse vegetable and ornamental crop production in North America. The 

technical grade powder (TGP) containing 5x1010 to 1.4x1011 conidia per gram (depending 

on the batch) and manufactured by Anatis Bioprotection, was used for the experiments. 

The viability of conidia was tested within a week before each experiment. A minimum 

germination rate of 90% was required. TGP was stored at 4°C.  

2.4.2 Stage-dependent susceptibility of F. occidentalis to B. bassiana 

Beauveria bassiana TGP was suspended in 0.05% Tween 80 and adjusted to an 

intermediate concentration 107 conidia per ml with a hemocytometer. This intermediate 

concentration was chosen to increase the probability of detecting effects: at high 

concentrations, thrips may die too rapidly for differences to be observed among life 

stages; at low concentrations, thrips may die too slowly for differences between control 

and conidia treatment to be detected within a 12-day period (Vestergaard et al., 1995). 

For each life stage of F. occidentalis (1st instar larva, 2nd instar larva, propupa and adult 

female), a cohort of 20-30 individuals was isolated in a Solo cup (29.6 ml) and 10 ml 

conidia suspension was poured into the cup. Thrips were immersed for 5 s and then 

transferred onto a black filter paper (Ø 9 cm, Thomas Scientific) in a Buchner funnel. 

The excess liquid was evacuated through a vacuum and thrips were individually 

transferred onto a P. vulgaris leaf disc (Ø 25 mm) placed upside down on a filter paper 

(Ø 42.5 mm, Fisher Scientific) soaked with 1 ml of distilled water. A small amount of 

apple pollen (≤0.001 g) was brushed on the leaf disc. The leaf disc and the pollen were 

replaced every 3-4 days. Each leaf disc was kept in one tightly closed Falcon Petri dish 

(Ø 50 mm) with a meshed ventilation hole (Ø 6 mm) at the top and observed daily at the 

same hour (1:30 pm) for survivorship over a 12 day period (Vestergaard et al., 1995). 

Frankliniella occidentalis treated with 0.05% Tween 80 served as control. The Petri 

dishes were kept in a growth chamber maintained at 25°C, 70% RH, 16:8 h (L:D). The 

entire test followed a randomized complete block design and was repeated three times 
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(temporal blocks) using the same batch of B. bassiana TGP (stored at 4°C, the inoculum 

was freshly prepared at the day of each experiment) and different generations of F. 

occidentalis. Thrips that escaped from the funnel and arena or accidentally crushed 

during experimental manipulation were eliminated. Within each block, 16-20 F. 

occidentalis of a given stage were tested. 

2.4.3 Conidia loading capacity of predatory mites 

The substrate used to assess the capacity of predatory mites to acquire B. bassiana 

conidia on their body over time was prepared as follows: medium-sized wheat bran (1-5 

mm in flake size, Farinex, Canada) was placed in an oven at 65°C for 4-7 d until it was 

completely dry. Distilled water was sprayed onto the dry wheat bran to reach 25% water 

content (w:w). Beauveria bassiana TGP was next mixed to 50 g moistened wheat bran to 

reach 1.3x108 conidia g-1 substrate. It was mixed by hand and with a vortex mixer at 3200 

rpm for five minutes. Apple pollen was also added to the wheat bran (0.01 g-1 substrate) 

to as food for the phytoseiid mites. For S. scimitus, the substrate contained wheat bran, 

vermiculite and sphagnum moss (2:2:1), together with the same B. bassiana 

concentration. No food was provided for S. scimitus in the tube because its prey T. 

putrescentiae is known as a fungivorous mite (Canfield and Wrenn, 2010), possibly 

consuming conidia mixed in the substrate.  

To expose mites to conidia, the experimental arena consisted of a modified 1.5-mL 

Eppendorf tube (Fisherbrand®, Fisher Scientific, USA). The tip of the tube was cut to 

make an opening of 5 mm in diameter. The opening was sealed with a fine mesh (23 μm-

size polyester mesh 508®, Clever©, Japan) and connected to a vacuum tube. A 5-mL 

pipette tip (Brand®, Germany) was cut and fit into the other opening of the Eppendorf 

tube. Before introducing the mites in the arena, substrate (0.05 g) without conidia was 

placed in the Eppendorf tube, serving as a buffer to minimize physical damage to the 

mites when vacuuming. Mites were vacuumed from the pipette tip into the Eppendorf 

tube. The substrate (0.15 g) mixed with B. bassiana conidia at 1.3x108 conidia g-1 was 

placed into the Eppendorf tubes. Therefore, the final concentration of conidia in each 

tube was adjusted to 108 conidia g-1 substrate. The tubes were flicked for 5 s, so that the 
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substrates with and without conidia were mixed within the tube. For each predatory mite 

species, 25 individuals were introduced per tube, and 1-2 tubes were prepared for each 

exposure period (Figure 2-1). Tubes were kept in a growth chamber set at 25°C, 70% 

humidity and 14:10 h (L:D) until mite extraction.  

Mites were extracted from experimental arenas 2, 8, 20 and 24 h following exposure to 

conidia. Mites isolated in the substrate without conidia for 24 h were checked for 

potential contamination from rearing, substrates, and experimental manipulations. At the 

end of the test, tubes were emptied and their content spread onto a 1 mm meshed screen 

placed on a glass funnel (5 cm in diameter at the top). A 40-watt tungsten light bulb was 

placed 1 cm above the mesh and turned on for 10 min. An arena similar to the ones used 

for phytoseiid mite oviposition (see Arthropod colonies and fungal inoculum) was placed 

below the funnel to capture mites that escaped from light and heat. Mites were picked up 

from the arena with fine brushes and placed inside a 1.5-mL Eppendorf tube containing 

0.5 ml of 0.05% Tween 80 solution. The tubes were then stirred twice for 30 s at 2000 

rpm (Dromph, 2001). This allowed the mites to remain intact while most of the conidia 

on their cuticles were washed into the suspension. The suspension (0.1 ml) was plated 

onto media selective for B. bassiana containing: oatmeal agar medium (Difco, Detroit, 

MI) amended with 0.55% Dodine, 0.005% chlortetracycline and 0.01% crystal violet in 

Petri dishes (Chase et al., 1986). They were kept in darkness at 25°C for 8 d, after which 

colony-forming units (CFU) were counted and recorded (Al-Mazra'Awi et al., 2007). The 

experiment followed a randomized complete block design and was repeated four times 

(temporal blocks) using different batches of B. bassiana TGP and mites for different 

generations. Within each block, 7-11 individual mites of each species were used to 

evaluate their conidia loading capacity per exposure duration. 

2.4.4 Survivorship of predatory mites loaded with conidia 

A subsample from the previous experiment was used to test for mite survivorship 

following extraction from the substrate. For each exposure duration, mites were 

individually transferred to a glass tube arena (Zhang et al., 2015a) and kept at 25°C, 70% 

RH, 16:8 h (L:D). Their survival was checked daily over a period of 10 days. The entire 
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test followed a randomized complete block design and was repeated four times (temporal 

blocks). Within each block, 11-14 N. cucumeris, 18-22 S. scimitus and 11-15 A. swirskii 

per exposure duration were tested. Mites isolated in the substrate without conidia for 24 h 

were served as control for the effect of exposure to B. bassiana for 24 h. 

2.4.5 Statistical analyses 

Susceptibility of F. occidentalis to B. bassiana (time until death) was analyzed using Cox 

proportional hazards survival model with mixed effects. For each F. occidentalis life 

stage, the death hazard rate was the response variable, the presence of conidia was a 

categorical fixed factor, and block was a categorical random factor. The package ‘coxme’ 

was used for the analysis, carried out using R version 0.99.896 (R, 2013).  

To estimate the conidia loading capacity of predatory mites, the number of CFU per mite 

(response variable) was analyzed using a generalized linear mixed-effect model with 

negative binomial distribution, with exposure duration as a continuous fixed factor and 

block as a categorical random factor. The package ‘glmmADMB’ was used for the 

analysis, carried out using R version 0.99.896 (Fournier et al., 2012; R, 2013).  

Predatory mite survival was first compared between controls (individuals isolated in 

clean substrate for 24 h) and individuals that had been exposed to conidia mixed in 

substrate for 24 h. The death hazard of the treatment and control was analyzed using a 

Cox mixed effects survival model with the presence of conidia (present/absent) as a fixed 

categorical factor and block as a categorical random factor. When exposure to conidia 

significantly increased predatory death hazard rate, we next tested the effect of exposure 

duration. The death hazard was analyzed using mixed effect Cox model with exposure 

duration as a continuous fixed factor and block as a categorical random factor. We tested 

if the association between exposure duration to B. bassiana and time to death was 

significant. The package ‘coxme’ was used for the analysis, carried out using R version 

0.99.896 (R, 2013).  
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2.5 Results 

2.5.1 Susceptibility of F. occidentalis to B. bassiana 

Frankliniella occidentalis displayed stage-dependent susceptibility to B. bassiana strain 

ANT-03 when exposed to a conidia concentration of 107ml-1 (Figure 2-2). Within a period 

of 12 d, the strain reduced the survival of adults (χ2=88.58, p<0.001), propupae 

(χ2=12.00, p<0.001) and 2nd instar larvae (χ2=8.83, p=0.003). However, the strain did not 

induce additional mortality of 1st instar larvae (χ2=2.01, p=0.156) compared to the control 

treatment. 

2.5.2 Conidia retention of predatory mites 

The duration of exposure to B. bassiana conidia in the substrate had no significant effect 

on conidia retention by N. cucumeris (z=0.64, p=0.520, Fig. 2-3a) or A. swirskii (z=0.9, 

p=0.370, Fig. 2-3b). Numbers of CFU recorded were 122±21 (Mean ± S.E.) for N. 

cucumeris and 53±5 for A. swirskii. For both species, no CFU were observed in control 

treatments.  

A different pattern was observed for S. scimitus, with a significant increase in B. bassiana 

conidia retention with increasing time spent in the substrate (z=9.09, p<0.001 Fig. 2-3c). 

By 24 h, each S. scimitus was loaded with an average of 1079±93 CFU. No CFU were 

observed in the control treatment.  

2.5.3 Survival of predatory mites exposed to B. bassiana 

Exposure to B. bassiana strain ANT-03 did not affect the survival of A. swirskii (χ2=0.30, 

p=0.584) or S. scimitus (χ2=0.38, p=0.536), but reduced the probability of N. cucumeris 

survival (χ2=6.31, p=0.012) (Fig. 2-4). Relative to control, the death hazard of N. 

cucumeris is 3.14 times higher when exposed to the strain (p=0.018). However, exposure 

duration to conidia in the substrate did not significantly affect N. cucumeris survival 

(χ2=0.16, p=0.688, Fig. 2-5).  
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2.6 Discussion 

Our study describes a biological system that fits the profile of a suitable pathogen-vector-

host association, where the pathogen uses vectors as dispersal agents and the host as a 

resource for reproduction. Furthermore, from a biological control perspective, we provide 

a simple and operational method for predatory mites to collect and transport fungal 

conidia directly from the commercial rearing substrate to the crop. 

Mortality of F. occidentalis exposed to B. bassiana (strain ANT-03) was stage-specific; 

generally, thrips susceptibility increased with life stage. This pattern concurs with the 

study by Vestergaard et al. (1995) where adult F. occidentalis had the highest mortality 

(near 100%) 6 days following inoculation with Metarhizium anisopliae, followed by 

propupae (41.3%) and larvae (27%). As suggested by Vestergaard et al. (1995), the 

underlying mechanism behind this stage-dependent susceptibility to entomopathogenic 

fungi likely relates to the probability of host molting before conidia can successfully 

penetrate the cuticle and invade the host tissues. First instar F. occidentalis shed their 

exuviae faster than other stages (Zhang et al., 2007) and this may prevent successful 

infection by B. bassiana. Adult F. occidentalis are the most vulnerable stage to B. 

bassiana infection, and the question remains as to whether phytoseiid mites can actually 

deliver conidia to adult thrips on the plant. This is likely to occur since both thrips 

(especially the adults) and phytoseiid mites tend to aggregate in flowers where they feed 

on pollen (Faraji et al., 2002; Hulshof et al., 2003). However, the spatial co-occurrence of 

phytoseiid mites and thrips of different stages on plant structure, as well as the potential 

of predatory mites as vectors of B. bassiana need to be further investigated.  

In our biological system, B. bassiana (strain ANT-03) was not pathogenic to A. swirskii 

or S. scimitus and showed low virulence towards N. cucumeris. Similar results were 

obtained for S. scimitus when infected by B. bassiana (BotaniGard) or Metarhizium 

brunneum (Met52) (Saito and Brownbridge, 2016). Differential susceptibility to B. 

bassiana of predatory mites compared to thrips suggests that predatory mites, especially 

A. swirskii and S. scimitus, could potentially be used as vectors to disseminate the fungus 

to the host pest. Reproduction of the fungus can occur on the three stages of F. 
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occidentalis susceptible to B. bassiana. The outcomes of these complex interactions 

remain to be examined at the population level to determine whether the pathogen and the 

vectors would interact positively in suppressing thrips populations under field or 

greenhouse conditions. For example, the relative contribution of above and below ground 

predatory mites in vectoring fungal conidia to different thrips developmental stages needs 

to be further explored. In past greenhouse experiments, applying the predatory mite 

Neoseiulus barkeri coated with B. bassiana did not result in increasing suppression of F. 

occidentalis populations (Wu et al., 2014b). The combined treatment (pathogen + 

predatory mite) provided better control of thrips than introducing the predatory mite 

alone, but the level of control obtained was not better when the pathogen was used alone. 

Although the B. bassiana strain SZ-26 is not pathogenic to N. barkeri, it was suggested 

that predation rate was reduced because N. barkeri exposed to B. bassiana spent a 

considerable amount of time grooming (Wu et al., 2016). On the other hand, the pathogen 

and the vector may interact positively, for example, B. bassiana delivered by A. swirskii 

caused higher mortality of Diaphorina citri than when B. bassiana was sprayed onto 

potted citrus plants, suggesting the predatory mite as a vector can enhance pathogen-host 

encounter rate (Zhang et al., 2015b). 

Beauveria bassiana conidia accumulated on the body of the three tested species of 

predatory mites. For both N. cucumeris and A. swirskii, the maximum conidia load was 

attained rapidly (within 2 h) when mites were introduced into the substrate and remained 

constant thereafter. In contrast, the number of conidia that accumulated on S. scimitus 

increased over time between 2 h and 24 h. This might arise from differences in adhesion 

force between conidia and mite associations. For example, M. anisopliae conidia had 

higher adhesion force to the cuticle of mealworm than to the cuticle of mosquito larva or 

glass (Greenfield et al., 2014). The level of adhesion between conidia and substrates may 

vary as well. Conidia may be more readily dislodged from the 

sphagnum/bran/vermiculite medium than from bran alone. Differential movement of the 

mites within the two substrates, or differences in mite activity levels may influence the 

rate at which conidia are acquired. The phytoseiid mites may spend more time moving 

outside of the substrate compared to the soil mite. In commercial packages, phytoseiid 
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mites are often seen on the lids but not soil mites (G. Lin, personal observations). It is 

also possible that phytoseiid mites have a better capacity than the soil mite to detect and 

remove fungal conidia from their body. Grooming may prevent mites from accumulating 

conidia in their rearing substrates. Red imported fire ants Solenopsis invicta Buren 

(Hymenoptera: Formicidae) exposed to M. anisopliae increased self- and allo-grooming 

activities leading to a significant decrease of conidia on their cuticles over time (Qiu et 

al., 2014). As for our system, the role of grooming behavior in conidia accumulation on 

predatory mite body remains to be examined.  
 

The current study is a part of a project testing if predatory mites can promote the 

encounter rate of their prey with an entomopathogen that is virulent against the prey. In 

the following two chapters, we will describe how predatory mites dislodge conidia and 

the spatial distribution of conidia dispersed by predatory mites in lab settings. If validated 

in large-scale greenhouse and/or field trials, the methodology developed here can have 

direct applications to biological control programs targeting thrips. Upon receiving 

commercially packed predatory mites, growers can mix B. bassiana conidia into rearing 

substrates. Neoseiulus cucumeris and A. swirskii can then be released after two hours 

with the maximum conidia load. For S. scimitus, the length of time between mixing and 

releasing can be manipulated to attain the desired conidia load.  

As for the practical application of this method, conidia can be mixed into bulk products 

instead of slow-release sachets, because sprinkling conidia with the substrates directly 

onto crops would likely increase pathogen dispersal. The fate of conidia spread onto 

crops remains to be examined. Furthermore, fungivorous prey mites, such as T. 

putrescentiae, that are present in commercial predatory mite products can potentially 

carry and disperse B. bassiana, because B. bassiana has frequently been associated with 

T. putrescentiae in stored products (Abdel-Sater and Eraky, 2002). If further studies show 

predatory mites to be efficient in delivering conidia to pests in commercial productions, 

the approval of such an application by regulatory agencies should not be a major concern. 

For instance, in Canada, the strain ANT-03 was granted full registration in Canada in 

2014. Furthermore, we are suggesting mixing predatory mites and B. beauveria conidia 

within commercial substrates/carriers that have already been applied in greenhouses and 
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fields for years and have not showed negative impacts on public health, environment or 

food safety. This approach consists of a simultaneous application of two already 

approved pest control products. Once validated with efficacy test in commercial settings, 

registration as a new product can be considered. 
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Figure 2-1. Experimental setups showing how predatory mites were exposed to 

Beauveria bassiana in rearing substrates: (A) connecting parts from left to right: a pipette 

tip with base wrapped with masking tape, a modified Eppendorf tube, a tube connecting 

to vacuum; (B) three connected parts with 0.05 g substrate in the tube as a buffer, mites 

were then vacuumed into the modified Eppendorf tube; (C) wheat bran substrate (left) 

and B. bassiana technical graded powder (right) for mixing; (D) mites were exposed to B. 

bassiana contaminated substrates in modified Eppendorf tubes. 
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Figure 2-2. Survival probability of 1st instar larvae (a), 2nd instar larvae (b), propupae (c) 

and adult female (d) Frankliniella occidentalis treated with 0.05% Tween-80 suspension 

(Control; solid line) and Beauveria bassiana conidia suspension at 107 per ml of 0.05% 

Tween-80 (dashed line). The asterisks indicate significant differences between 

treatments: n.s. = not significant (p > 0.05), *** = p< 0.0001 (Cox proportional hazards 

mixed effect model). 
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Figure 2-3. Number of colony-forming units (CFU) washed off three species of 

predatory mites after exposure to Beauveria bassiana conidia (108 g-1) in the substrate for 

2, 8, 20 and 24 h. (a) Neoseilus cucumeris, (b) Amblyseius swirskii, (c) Stratiolaelaps 

scimitus. The asterisks indicate significant differences between treatments: n.s. = not 

significant (p > 0.05), *** = p< 0.0001 (Generalized linear mixed-effect model). The 

grey area demonstrates 95% confidence intervals predicted by ‘smooth’ function from 

ggplot2.  
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Figure 2-4. Probability of survival of predatory mites over 10 days after exposure to 

Beauveria bassiana conidia (dashed line) in the substrate for 24 h. For controls (solid 

line), predatory mites were isolated from the substrate without B. bassiana conidia after 

24 h. Exposure to conidia significantly reduced the survival of Neoseiulus cucumeris (a), 

but had no significant effect on survival of Amblyseius swirskii (b) or Stratiolaelaps 

scimitus (c). The asterisks indicate significant differences between treatments: n.s. = not 

significant (p > 0.05), ** = p< 0.01 (Cox proportional hazards mixed effect model). 
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 Figure 2-5. Probability of survival of Neoseiulus cucumeris over 10 days after exposure 

to Beauveria bassiana conidia in the substrate for 2, 8, 20 and 24 h. Exposure duration 

had no significant effect on N. cucumeris survival, n.s. = not significant (p > 0.05) (Cox 

proportional hazards mixed effect model). 
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3.1 Abstract 

Beneficial arthropods can be used to deliver fungal conidia to pest populations for 

biological control programs. A method was developed for predatory mites to acquire 

conidia of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) from 

their commercial rearing substrate before they are released into the crop. Under 

laboratory conditions, conidium-unloading patterns of predatory mites were characterized 

by (i) linking the number of conidia remaining on the mite to the time spent grooming 

and walking and (ii) observing their behavior when loaded or not with conidia using 

video recordings. Three predatory mite species were tested: Neoseiulus cucumeris (= 

Amblyseius cucumeris Oudemans) (Acari: Phytoseiidae), Amblyseius swirskii Athias-

Henriot (Acari: Phytoseiidae) and Stratiolaelaps scimitus (= Hypoaspis miles Berlese) 

(Acari: Laelapidae). Walking rather than grooming was the most important factor for 

predatory mites to dislodge conidia in our experimental arena. When bearing conidia, all 

three species of predatory mites spent more time walking. The duration of grooming 

behavior was not affected by conidia for A. swirskii or N. cucumeris, and was even 

reduced for S. scimitus. Using low-temperature scan electronic microscopy, it was 

confirmed that grooming was only successful to clean spores off the lateral surfaces 

where legs can reach. A prolonged period of walking could increase B. bassiana dispersal 

by predatory mites and thus favor disease transmission in prey populations, which would 

be of benefit for biological control measures.  

Key words: mite-microbial interaction, entomopathogenic fungi, walking, grooming, 

fungal dispersal, low-temperature scanning electron microscopy, biocontrol 
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3.2 Introduction 

The accumulation of particles on the body surface of small organisms like arthropods can 

impair their movement due to overwhelming weight (Amador and Hu 2015). For 

example, water droplets attached to the body surface of a mosquito can weigh up to 80 

times of its body mass and render flight impossible (Amador and Hu 2015). The 

consequences can be worse when infective units of entomopathogens, i.e. conidia, attach 

to the arthropod cuticle. Animals therefore respond to the presence of foreign elements on 

their exoskeleton with various grooming behaviors such as scratching, licking, preening 

and rubbing against a surface to remove particles and parasites (Amador and Hu 2015; 

Hart and Hart 2018; Spruijt et al. 1992; Zhukovskaya et al. 2013). Grooming in 

arthropods has mainly been described as the use of legs to clean parts of the body while 

remaining stationery (Takano-Lee and Hoddle 2002). Ants exposed to entomopathogenic 

fungal conidia increase the duration and frequency of self-grooming and allo-grooming to 

increase individual survival (Morelos-Juárez et al. 2010; Okuno et al. 2012; Reber et al. 

2011) and to slow down disease transmission through the colony (Hart and Hart 2018; 

Zhukovskaya et al. 2013). Self-grooming for mites has been frequently observed and 

assumed to contribute to the removal of entomopathogenic conidia. For example, 

Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) exposed to leaves treated 

with the entomopathogenic fungus B. bassiana spent more time grooming than 

conspecifics foraging on non-contaminated leaves (Wu et al. 2018). A similar pattern was 

observed for Phytoseiulus longipes Evans (Arcari: Phytoseiidae) when exposed to leaves 

bearing capilliconidia of the entomopathogenic fungus Neozygites floridana (Weiser and 

Muma) Remaud and Kellar (Zygomycetes: Neozygitaceae) capilliconidia (Wekesa et al. 

2007). 

 

We investigated the capacity of predatory mites to deliver fungal conidia to pest 

populations, thus spreading the disease and thereby improving biological control by 

combining both predation and infection. The dispersal of fungal conidia is relatively 

passive (Magyar et al. 2016) while the movement of predatory mites is active and 

purposeful (Sabelis et al. 1984). Our study involves three species of predatory mites: A. 

swirskii, N. cucumeris and S. scimitus. These species have been commercialized and 



	 55	

successfully released on vegetable and ornamental crops to control insect pests, including 

the western flower thrips F. occidentalis (McMurtry et al. 2013; Okuno et al. 2012). 

Therefore, the movement paths of the predatory mites should overlap to some extent with 

the movement paths or location of the thrips. Previously we developed a method for these 

predatory mites to collect and transport B. bassiana conidia directly from the mite rearing 

substrates (Lin et al. 2017). The capacity of predatory mites as dispersal agents to 

influence prey infection rates would depend on their behavior: how and when they 

dislodge conidia and whether foraging is affected when bearing conidia. For instance, the 

distribution pattern of conidia dispersal will vary depending on the predatory mites 

dislodging conidia by grooming or by walking, thus spreading conidia along the path of 

the predatory mites. Furthermore, any change in predatory mite behavior induced by 

conidia could affect their navigation and motion capacity, thereby changing their 

movement paths (Nathan et al. 2008).  

In this study, behaviors of the predatory mites were investigated to determine how 

conidium dispersal occurs by predatory mites. Under laboratory conditions, we 1) 

categorized behavioral observations that may link to conidium dislodgement with video 

recordings, ie. grooming and walking; 2) linked conidia dislodgement to behaviors of 

predatory mites by counting the number of conidia remaining on a predatory mite prior to 

and after several periods grooming and walking on an arena; 3) determined if grooming 

was an efficient way to dislodge conidia by visualizing the presence and absence of 

conidia where predatory mites scrubbed their bodies using a low temperature scan 

electron microscope (LT-SEM); 4) examined changes in predatory mite behavior over 60 

min when bearing conidia.  
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3.3 Materials and Methods 

3.3.1 Arthropod colonies and fungal inoculum 

Amblyseius swirskii, purchased from BioBest Canada (Guelph, Ontario, Canada), were 

reared on a diet containing Carpoglyphus lactis Linnaeus (Acari: Carpoglyphidae) and 

cherry pollen (Firman Pollen Co., Yakima, WA). Neoseiulus cucumeris, provided by 

Anatis Bioprotection Inc. (Saint-Jacques-le-Mineur, Québec, Canada), was maintained on 

a factitious prey Aleuroglyphus ovatus Toupeau (Acari: Acaridae). Stratiolaelaps 

scimitus, purchased from Applied Bionomics Ltd. (Victoria, British Columbia, Canada), 

was reared on a mixture of wheat bran, vermiculite and sphagnum moss (2:2:1) (Freire 

and de Moraes 2007) and fed with the factitious prey A. ovatus (Lin et al. 2017). The 

predatory mites used for LT-SEM observations were purchased in USA, from IPM 

Laboratories Inc. (Locke, New York, United States). All three species were reared at 

25°C, 60-70% humidity and under 14L:10D light cycle. Only adult females were used in 

the experiments. 

 

Beauveria bassiana is a generalist entomopathogenic fungus that exploits over 700 

species from most insect orders, with some isolates showing a high degree of specificity 

(Rohrlich et al. 2018). Beauveria bassiana strain ANT-03 is registered in North America 

for greenhouse biocontrol of thrips, aphids and whiteflies. We used the technical grade 

powder produced at Anatis Bioprotection Inc., which contains 5x1010 conidia per gram 

for all experiments.  

3.3.2 Loading predatory mites with B. bassiana conidia 

Adult female predatory mites were exposed to B. bassiana conidia in the commercial 

rearing substrates (2.5x109 conidia g-1 substrate) in a modified Eppendorf tube for 20 

hours to ensure coverage of B. bassiana conidia on their body surface (Lin et al. 2017). 

Each tube contained 25 mites and cherry pollen was supplied as food (0.05 g-1 substrate) 

(Lin et al. 2017).  
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3.3.3 Linking behavior to conidium removal 

Predatory mites were extracted from B. bassiana-contaminated substrate with a modified 

Berlese funnel (Lin et al. 2017) onto a plastic sheet spread on wet sponges in plastic trays 

containing water. The mites were transferred individually to experimental arenas and 

filmed using a Dino-lite digital microscope (Model AM-4012NZT, Torrance, CA) (Fig. 

3-1). The experimental arenas were conceived by F. Longpré, London Research and 

Development Center, Agriculture and AgriFood Canada, (London, Ontario, Canada) and 

made using a 3D printer. They were designed to accommodate both the size of the mites 

and the limited depth of field of the camera. The behavior of the phytoseiid mites, A. 

swirskii and N. cucumeris, was observed on arenas of 1.8 mm in length x 1.3 mm in 

width x 0.8 mm in height. The arena size for S. scimitus, which is 4 times larger than the 

two other mites (from top perspective view), was 4 mm in length x 3 mm in width x 1 

mm in height. Lightning was provided by the built-in LED light of the Dino-lite digital 

microscope. We characterized predatory mite behavior as walking, grooming and resting. 

Walking is defined as locomotion, often accompanied by waving the first pair of legs (leg 

1, nearest to the gnathosoma) in the air (Fig. 3-2). Resting is defined as standing 

motionless. Grooming is defined as scrubbing between legs, between legs and idiosoma, 

and between legs and palps (Fig. 3-2). 

Mites were washed immediately after released from the substrate to estimate the initial 

conidia load or filmed for 10, 15, 20, 40 or 60 min and washed immediately after filming 

to assess the number of remaining conidia on a mite. For each mite species, 9-13 

individuals used per block were observed per block and the experiment was repeated in 3 

temporal blocks for A. swirskii and S. scimitus and 4 blocks for N. cucumeris. The mites 

were picked up with fine brushes and placed inside a 1.5-mL Eppendorf tube containing 

0.5 ml of 0.05% Tween 80 solution. Each tube was stirred twice for 30 s at 2000 rpm 

(Dromph 2001), which allowed the mites to remain intact while most of the conidia on 

their cuticles were washed into the suspension. The suspension (0.1 ml) was plated onto a 

medium selective for B. bassiana, containing oatmeal agar medium (Difco, Detroit, MI) 

amended with 0.55% Dodine, 0.005% chlortetracycline and 0.01% crystal violet in Petri 

dishes (Chase et al. 1986). The plates were kept in the dark at 25°C for 8 d, after which 
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colony-forming units (CFU) were counted and recorded (Al-Mazra'Awi et al. 2007). 

Discernment of the relative contribution of grooming and walking to conidium numbers 

on the mites was determined by studying videos of each mite and the calculation of the 

duration of grooming and walking was ascertained using the behavior observation 

research interactive software (BORIS) (Friard and Gamba 2016). Relationships were 

established between the number of conidia remaining on a mite and the duration of 

walking or grooming.  

3.3.4 Observation of conidium distribution on predatory mites using LT-SEM 

Visualization of whether conidia were removed by predatory mites grooming their bodies 

was realized by examining the conidium distribution pattern on the predatory mite with 

the use of a LT-SEM. Predatory mites were exposed to B. bassiana in their rearing 

substrates for 20 hours and subsequently released on plastic sheets spread on wet sponges 

in plastic trays containing water. Cherry pollen was supplied as food. Mites were 

randomly sampled at time 0, 30 and 60 min. Two to four specimens were observed using 

the LT-SEM as described in Bolton et al. (2014). Briefly, live predatory mites were 

secured to 15 mm x 30 mm copper plates using ultra smooth, round (12 mm diameter), 

carbon adhesive tabs (Electron Microscopy Sciences, Inc., Hatfield, PA, USA). The 

specimens were frozen conductively in a Styrofoam box, by placing the plates on the 

surface of a pre-cooled (-196 °C) brass bar whose lower half was submerged in liquid 

nitrogen (LN2). After 20-30 s, the holders containing the frozen samples were transferred 

to a Quorum PP2000 cryo-prep chamber (Quorum Technologies, East Sussex, UK) 

attached to an S-4700 field emission scanning electron microscope (Hitachi High 

Technologies America, Inc., Dallas, TX, USA). The specimens were etched inside the 

cryo-transfer system to remove any surface contamination (condensed water vapor) by 

raising the temperature of the chamber to -90 °C for 10-15 min. Following etching, the 

temperature inside the chamber was lowered to below -130 °C, and the specimens were 

coated with a 10 nm layer of platinum using a magnetron sputter head equipped with a 

platinum target. The specimens were transferred to a pre-cooled (-130 °C) cryostage in 

the SEM for observation. An accelerating voltage of 5kV was used to view the 

specimens. Images were captured using a 4pi Analysis System (Durham, NC). Individual 
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images were re-sized and placed together to produce a single figure using Adobe® 

Photoshop CS 5.0 (Friard and Gamba 2016). 

3.3.5 Comparing behavior of predatory mites with and without spores 

Predatory mites exposed or not exposed to B. bassiana were released from the rearing 

substrates and encaged individually in the arena and filmed using a Dino-lite digital 

microscope for 60 min (Fig. 3-1). The proportions of time spent grooming, walking and 

resting were calculated every 5 min and compared between treatments. Observations 

were made of 3-5 individuals per treatment in each block and the experiment was 

repeated three times (3 temporal blocks) for a total of 9-15 individuals per treatment. 

3.3.6 Statistical analyses 

In order to investigate the relationship between behaviors and the possible dislodgement 

of conidia, the numbers of conidia remaining on mites was analyzed with the grooming 

duration, the walking duration and the resting duration as independent continuous 

variables with mixed-effect generalized linear model with negative binomial distribution. 

Multicollinearity was tested by analyzing one behavior duration with another behavior 

duration as the independent variable with generalized linear mixed-effect model. When 

multi-collinearity occurred between two behaviors (for example, resting and grooming), 

they were not included in the same model. To optimize the model, non-significant factors 

were removed. The model generated an equation providing the predicted number of 

conidia remaining on a mite across the entire range of grooming duration, walking 

duration and/or resting duration. Determination of the effect of exposure to B. bassiana 

on predatory mite behaviors over 60 min was obtained by analyzing the duration of each 

behavior using a generalized linear mixed-effect model with exposure to B. bassiana as a 

categorical factor and time after released from the rearing substrate as a continuous 

factor. Kruskal-Wallis tests were used when residuals were not normally distributed, 

following a Normal QQ-plot test (Kozak and Piepho 2018). Non-significant factors were 

removed to optimize the model following a log-likelihood ratio test. All statistical 

analyses were carried out with R version 1.0.143 (R 2013).  
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3.4 Results 

3.4.1 A detailed description of grooming behavior  

The grooming behavior of all three predatory mite species was similar. The four pairs of 

legs and mouthpart, including chelicerae and palps, were involved in grooming. Adjacent 

legs of a given body side (either left or right) can scrub each other from proximal to distal 

direction. The second pair of legs (leg 2) can scrub legs 1, 3 and mouthparts laterally. 

When leg 2 scrubbed leg 1, it was mostly accompanied with ‘head ducking’ behavior: 

mouthparts of the mite bending downwards to avoid being hit. Leg 1 was scrubbed 

between two palps. Multiple scrubbings can occur simultaneously, for example, left legs 

2 and leg 3 scrubbing each other while right leg 1 scrubbing between two palps. The 

femur of legs 3 and 4 can scrub the lateral surface of the body when legs were bended. 

The tibia and tarsi of leg 4 can scrub the body, specifically the posterior lateral and 

ventral opisthosoma, but leg 1, 2 and 3 were not able to reach the posterior end of 

opisthosoma. Leg 4 can scrub from the lateral to the ventral surface, never the opposite 

direction.  

There were small variations in grooming behaviour among the three predatory mite 

species. For N. cucumeris and S. scimitus, both the left and right leg 2 can simultaneously 

scrub ventral gnathosoma in an alternating manner, whereas A. swirskii used one leg 2 at 

a time to scrub the ventral gnathosoma. Neoseiulus cucumeris and S. scimitus used both 

the right and left leg 4 to scrub posterior lateral and ventral idiosoma but cannot reach the 

dorsal shield. Amblyseius swirskii can stretch the furthest and reach the Z4 and Z5 setae 

located along the edge of posterior dorsal shield, possibly due to its longest leg-to-

opisthosoma ratio. Stratiolaelaps scimitus, displayed a distinct feature in which their 

chelicera can extend far from the base of the gnathosoma, for approximately 0.45 of body 

lengths, thus as the chelicera extended it was scrubbed by the palps extensively, followed 

by both the right and left leg 1 or leg 2.  

3.4.2 Behaviors contributing to removal of conidia from mite bodies 

There was multicollinearity between grooming and resting durations in A. swirskii 
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(χ2=5.36, df=1, p=0.021). In addition, the time spent resting did not influence the number 

of conidia remaining on A. swirskii (χ2=0.23, df=1, p=0.629); it was therefore excluded 

from the model. Grooming and walking durations were significant predictors of the 

number of conidia remaining on A. swirskii (grooming: χ2=10.37, df=1, p=0.001; 

walking: χ2=5.28, df=1, p=0.022). There was a significant interaction between grooming 

and walking durations (χ2=13.60, df=1, p<0.001). In simplified models where either 

grooming or waking was analyzed as the only variable, walking was a significant 

predictor of the number of conidia remaining on A. swirskii (χ2=9.74, df=1, p=0.002), but 

grooming was not (χ2=1.29, df=1, p=0.257), implying walking is the most important 

behavioral mechanism for dislodging conidia. To understand the interaction term, the 

initial mite cohort was subsampled across the entire range of grooming duration. In the 

subsamples where grooming lasted between 74 to 1527 seconds, grooming was a 

significant predictor of the number of conidia remaining on A. swirskii. When grooming 

was less than 74 seconds, there were not enough data points to construct the model. 

When the subsamples included individuals that spent more than 1527 seconds grooming, 

grooming became an insignificant predictor, because the mites that spent excessive time 

grooming were not likely to remove additional conidia and they are likely to devote less 

time walking.  

There was multicollinearity between the time spent grooming and resting in N. cucumeris 

(χ2=4.79, df=1, p=0.029). In addition, resting duration was not a significant main effect 

on N. cucumeris remaining conidia (χ2=0.13, df=1, p=0.715). Therefore, resting duration 

was excluded from the model. Walking duration was a significant predictor of the 

number of conidia remaining on N. cucumeris (χ2=5.08, df=1, p=0.024), but grooming 

was not (χ2=1.39, df=1, p=0.238) nor the interaction (χ2=1.51, df=1, p=0.219). The model 

was then simplified with walking duration as the only independent variable and walking 

significantly reduced the number of conidia remaining on N. cucumeris (χ2=4.17, df=1, 

p=0.041).  

There was multicollinearity between grooming and walking durations (χ2=18.32, df=1, 

p<0.001) and between grooming and resting durations in S. scimitus (χ2=6.12, df=1, 

p=0.013), therefore, the number of remaining conidia was analyzed with walking, 
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grooming or resting duration, each as an independent variable. Grooming duration 

(χ2=14.66, df=1, p<0.001, Fig. 3-3), walking duration (χ2=17.65, df=1, p<0.001) and 

resting duration (χ2=7.85, df=1, p=0.005) significantly reduced the number of conidia 

remaining on S. scimitus.  

3.4.3 Predatory mite behavior with and without conidia 

Three behaviors that could be important to determine a predatory mite’s capacity as a 

dispersal agent of fungal conidia were quantified over 60 min: grooming, walking and 

resting. For A. swirskii, exposure to B. bassiana in their rearing substrate did not affect 

the time spent grooming (Fig. 3-4), but significantly increased time spent walking by 

11.05±2.66% (χ2=17.26, df=1, p<0.001) and reduced time spent resting by 9.24±3.60% 

(χ2=6.61, df=1, p=0.010). The length of time following the release from the substrate 

affected the proportion of time A. swirskii spent grooming and resting. Grooming was 

reduced (χ2=73.47, df=1, p<0.001), resting was increased (χ2=68.27, df=1, p<0.001) and 

walking remained the same over the course of 60 min. 

For N. cucumeris, exposure to B. bassiana in their rearing substrate did not affect the 

time spent grooming (Fig. 3-5), but significantly reduced resting time by 12.214±4.481% 

(χ2=7.43, df=1, p=0.006). For walking time, there was a significant interaction between 

treatment and time (χ2=12.17, df=2, p=0.002) only for the first 25 min; exposure to B. 

bassiana significantly increased N. cucumeris walking time. The length of time since N. 

cucumeris had been released from the substrate reduced grooming (χ2=80.43, df=1, 

p<0.001), increased resting (χ2=22.80, df=1, p<0.001) while walking remained constant 

over the course of 60 min. 

For S. scimitus, upon exposure to B. bassiana in their rearing substrate, they reduced time 

spent grooming by 2.994±1.393% (χ2=4.62, df=1, p=0.032, Fig. 3-6), increased walking 

time by 3.18±1.471% (χ2=4.665, df=1, p=0.030), but did not modify resting time. The 

length of time since S. scimitus had been released from the substrate increased the 

proportion of time they spent resting (χ2=5.561, df=1, p=0.018) over the course of 60 

min, but not grooming or walking. 
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3.5 Discussion 

Our results demonstrated that walking is the primary behavioral mechanism for all three 

species of predatory mites to dislodge conidia. Grooming helps remove conidia, but it’s 

insufficient. Three predatory mite species showed slightly different behavioral patterns in 

dislodging conidia. Grooming contributed to dislodge conidia from the body of A. 

swirskii and S. scimitus. As revealed by LT-SEM images, the lateral surface and the legs 

of the mites became relatively clean 30-60 min following release from the substrates (Fig. 

3-8 B, 3-8F). However, grooming was insufficient to completely clean predatory mites, 

with large numbers of conidia still remaining on the dorsum (Figs. 3-8B, 3-8D, 3-8F). For 

A. swirskii, more than 25 min of grooming is necessary to clean the lateral surface and the 

legs. These mites spending excessive time grooming were likely to devote less time 

walking; therefore conidia were not efficiently dislodged. For N. cucumeris, grooming 

mostly led to condium translocation from the lateral surface to the legs (Fig. 3-8D). 

Walking is further required to dislodge these conidia.  

Walking could create mechanical disturbance and air movement at the mite body surface 

that favor the detachment of conidia. Fungal spores can secrete mucilage that further 

secures the attachment to the host and the adhesion force between a conidium and the 

arthropod cuticle varies among species (Askary et al. 1999; Qu et al. 2017). Metarhizium 

anisopliae conidia attach very well to the host Tenebrio molitor, but fail to attach to the 

host Aedes aegypti larvae (Greenfield et al. 2014). In our study, mucilage at the 

conidium-cuticle interface was not observed using LT-SEM images, as shown by Qu et 

al. (2017). It might be that B. bassiana ANT-03 conidia do not strongly attached to 

cuticles of A. swirskii, N. cucumeris or S. scimitus. The effect of walking on removing 

conidia would be larger than grooming when predatory mites walk on leaf surfaces 

because trichomes and other plant structures create a ‘jungle-like’ habitat that increases 

physical contacts with foraging predatory mites (Fig. 3-8A). Hence, leaf surface 

characteristics also influence the number and distribution of conidia deposited on a plant.  

Observational studies showed that predatory mites loaded with fungal conidia modify 

their behavior, mostly by extending walking periods. Prolonged periods of walking could 
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increase B. bassiana dispersal by predatory mites and thus favor disease transmission in 

prey populations, thereby benefiting biological control. Since walking, rather than 

grooming, is the primary behavioral mechanism to dislodge conidia, it is not surprising 

that when loaded with conidia, A. swirskii and N. cucumeris did not increase grooming 

time. As for S. scimitus, grooming duration even decreased.  

Our results revealed that predatory mites without B. bassiana conidia already spend 

considerable amount of time grooming, with A. swirskii and N. cucumeris devoting half 

of their time cleaning themselves upon release from the substrate. Predatory mites use 

their legs and mouthparts to clean accessible segments of the body while remaining 

stationary. Grooming helps remove accumulated substrate particles on the mite cuticle 

that could impair their movement or be a threat to their life, such as entomopathogen 

infective units (Zhukovskaya et al. 2013, Amador and Hu 2015, Hart and Hart 2018). As 

shown in other arthropods, grooming also contributes to clean sensory organs. In 

crustaceans, the cousin taxon of predatory mites, the Caribbean spiny lobster Panulirus 

argus Latreille (Decapoda: Palinuridae) uses mouthpart appendages, the third 

maxillipeds, to wipe olfactory sensilla on their attenules (Wroblewska et al. 2002). 

American cockroaches, Periplaneta Americana Linnaeus (Blattodea: Blattidae) maintain 

olfactory sensitivity by regularly grooming their antenna to remove excessive cuticular 

hydrocarbons and foreign chemicals (Böröczky et al. 2013). Similarly, predatory mites 

use grooming to clean their sensors to better perceive cues in the environment. In fact, 

legs and mouthparts of Acari contain multiple sensory organs (sensilla) that function as 

mechano- and chemoreceptors (De Bruyne et al. 1991; de Lillo et al. 2005). For A. 

swirskii, we observed with LT-SEM that legs frequently interact with mouthparts during 

grooming bouts and that a liquid substance may be involved (Fig. 3-7). This unknown 

substance from the mouth could function as a cleaning solution (saliva) to help remove 

foreign particles or neutralizing pathogen infective units.  

 

The grooming responses of N. cucumeris, A. swirskii and S. scimitus towards fungal 

conidia differ from those of two other predatory mites, P. persimilis and P. longipes, 

which spent more time grooming when foraging on leaves treated with entomopathogenic 

fungi than when foraging on clean leaves (Wekesa et al. 2007; Wu et al. 2018). Such a 
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divergent pattern might arise from differences in experimental conditions. The intensity 

of grooming in the presence of pathogens might depend on the predatory mite species, 

the identity and virulence of the pathogen, the relative burden of the infective units, the 

abundance of other foreign particles, the type of experimental arena, including the nature 

of the substrate, and so forth. The process of loading conidia on predatory mite bodies 

might also influence the frequency and duration of grooming behavior. In our 

experiments, B. bassiana conidia were loaded on mites by exposing them in a three-

dimensional contaminated substrate that results in the entire body being potentially 

covered by conidia. In contrast, in the studies of Wekesa et al. (2007) and Wu et al. 

(2018), predatory mites became contaminated with conidia when walking on a leaf. It 

might therefore be that self-grooming is effective enough to remove relatively small 

numbers of conidia mostly located on the legs. Additional work is needed to elucidate 

these differences in grooming patterns.  

We also noticed significant reductions of viable conidia on S. scimitus even when mites 

were resting. This was not the case for A. swirskii or N. cucumeris. Chemical substances 

and bacteria on S. scimitus cuticles could reduce the viability of conidia. As revealed in 

LT-SEM images, S. scimitus cuticles were covered with sticky substance and the 

embedding conidia appeared deflated (Fig. 3-9D) compared to the conidia sampled in the 

technical grade powder (Fig. 3-9A), on A. swirskii (Fig. 3-9B) or on N. cucumeris (Fig. 3-

9C). These substances could be cuticular compounds (e.g. lipids, aldehydes, 

salicylaldehyde, iridoid monoterpene epi-chrysomelidial, free fatty acides) that have been 

identified from various insect species exhibiting antifungal activities (Ortiz-Urquiza and 

Keyhani 2013). Bacteria are commonly observed on S. scimitus cuticles (Fig. 3-10A), 

possibly originating from the rearing substrates (Fig. 3-10B), and may have antifungal 

activities. The mechanism of B. bassiana degradation on the surface of S. scimitus 

remains to be investigated. In any case, such degradation is likely to impede S. scimitus 

capacity as an efficient B. bassiana dispersal agent. 

Understanding predatory mite behaviors and their conidia dislodging mechanisms helps 

predict their potential as dispersal agents of entomopathogens for biological control 

purposes (Lin et al. 2017). Conidia are expected to be dispersed along the path of 
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foraging predatory mites and eventually reach insect prey (pest) colonies. Whether a 

prolonged period of walking affects their regular foraging behavior and predatory 

capacity remains to be explored.  
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Figure 3-1. Apparatus used for filming predatory mite behavior. (A) Two 3D-printed 

filming areas, the top one was used for Amblyseius swirskii and Neoseiulus cucumeris 

(1.8 mm x 1.3 mm) and the bottom one was used for Stratiolaelaps scimitus (4 mm x 3 

mm); The tested individual was enclosed in the inner well covered with a glass slide; 

moat around the well is designed for aeration. (B) An arena placed under a Dino-lite 

digital microscope camera. 
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Figure 3-2. Neoseiulus cucumeris released from the rearing substrates with no Beauveria 

bassiana conidia. Idiosoma and the right set of palps and legs were indicated in the 

photo. The specimens were observed using a low temperature scan electron microscope 

(LT-SEM) as described in Bolton et al. (2014). 
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Figure 3-3. Figure 3-3. The predicted number of conidia remaining on the body of 

Amblyseius swirskii, Neoseiulus cucumeris and Stratiolaelaps scimitus across the range 

of grooming duration, walking duration or resting duration along with 95% confidence 

intervals (grey area). Stars indicate significant predictors of number of spores on a mite: 

n. s. = p > 0.05, * = 0.05 < p < 0.01, ** = 0.001 < p < 0.01, *** < 0.001; generalized 

linear mixed-effect model with negative binomial distribution.	
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Figure 3-4. Proportion of time (mean + S.E.) Amblyseius swirskii spent grooming (top), 

walking (middle) and resting (bottom) following release from Beauveria bassiana 

contaminated (grey curve) or non-contaminated (black curve) substrate. Stars indicate 

significant predictors of the proportion of time A. swirskii spent on a behavior: ** = 0.001 

< p < 0.01, *** < 0.001; generalized linear mixed-effects model. 
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Figure 3-5. Proportion of time (mean + S.E.) Neoseiulus cucumeris spent grooming 

(top), walking (middle) and resting (bottom) following released from Beauveria bassiana 

contaminated (grey curve) or non-contaminated (black curve) substrate. Stars indicate 

significant predictors of the proportion of time N. cucumeris spent on a behavior: ** = 

0.001 < p < 0.01, *** < 0.001; generalized linear mixed-effects model. 
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Figure 3-6. Proportion of time (mean + S.E.) Stratiolaelaps scimitus spent grooming 

(top), walking (middle) and resting (bottom) following released from Beauveria bassiana 

contaminated (grey curve) or non-contaminated (black curve) substrate. Stars indicate 

significant predictors of the proportion of time S. scimitus spent on a behavior: * = 0.01 < 

p < 0.05; generalized linear mixed-effects model. 
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Figure 3-7. Multiple conidia mixed with possibly mite saliva observed on Amblyseius 

swirskii mouth and legs. Arrows are pointed to examples of multiple conidia. (A) 

Beauveria bassiana conidia before being loaded onto A. swirskii. (B) Conidia attached to 

an A. swirskii seta on leg 2, covered with multiple conidia. (C) Dorsal view of chelicerae 

with multiple conidia between chelicerae. (D) Lateral view of chelicerae with conidia 

covered with multiple conidia on the mouth opening. (E) Conidia near a seta on leg 1. (F) 
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Conidia in clusters on seta bases of leg 2. The specimens were observed using LT-SEM 

as described in Bolton et al. (2014).  
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Figure 3-8. Predatory mites bearing conidia of Beauveria bassiana. (A) Dorsal view of 

Amblyseius swirskii placed on a bean leaf immediately following released from B. 

bassiana contaminated substrate. The stringy structures are trichomes. (B) Lateral view 

of A. swirskii at 30 min following release from the substrate. (C) Dorsal view of 

Neoseiulus cucumeris immediately following release from B. bassiana contaminated 
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substrate. (D) Dorsal view of N. cucumeris at 60 min after it was released from the 

substrate. (E) Dorsal view of Stratiolaelaps scimitus immediately following release from 

B. bassiana contaminated substrate. (F) Dorsal-lateral view of S. scimitus at 60 min after 

it was released from the substrate. The specimens were observed using LT-SEM as 

described in Bolton et al. (2014).    



	 79	

 

Figure 3-9. Multiple Beauveria bassiana conidia. (A) Conidia in technical grade powder. 

(B) Conidia on Amblyseius swirskii cuticle 60 min following release from the substrate. 

(C) Conidia on Neoseiulus cucumeris cuticle 60 min following release from the substrate. 

(D) Conidia on Stratiolaelaps scimitus cuticle 60 min following release from the 

substrate. The specimens were observed using LT-SEM as described in Bolton et al. 

(2014).   
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Figure 3-10. Presence of bacteria on (A) Stratiolaelaps scimitus cuticle and (B) S. 

scimitus rearing substrate. The specimens were observed using LT-SEM as described in 

Bolton et al. (2014). 
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4.1 Abstract 

Recent studies have shown that predatory mites used as biocontrol agents can be loaded 

with entomopathogenic fungal conidia to increase infection rates in pest populations. 

Under laboratory conditions, we determined the capacity of two phytoseiid mites, 

Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) and Neoseiulus cucumeris 

(=Amblyseius cucumeris Oudemans) (Acari: Phytoseiidae) to deliver the 

entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: 

Hypocreales) to their prey, Frankliniella occidentalis Pergande (Thysanoptera: 

Thripidae). Predatory mites were loaded with conidia and released on plants that had 

been previously infested with first instar prey clustered on a bean leaflet. We examined 

each plant section to characterize the spatial distribution of each interacting organism. 

Our results showed that A. swirskii delivered high numbers of conidia to thrips infested 

leaves, thereby increasing the proportion of thrips that came into contact with the fungus. 

The effect was larger when thrips infestation occurred on young leaves than on old 

leaves. Neoseiulus cucumeris delivered less conidia to the thrips infested leaves. These 

patterns result from differences in foraging activity between predatory mite species. 

Amblyseius swirskii stayed longer on plants and had a higher predation rate than N. 

cucumeris. Our study suggests that loading certain predatory mite species with fungal 

conidia can increase their capacity to suppress thrips populations by combining predation 

and dispersing pathogens.  

Key words: Disease transmission, spatial co-occurrence, dispersal agents, biological 

control, Amblyseius swirskii, Neoseiulus cucumeris, Frankliniella occidentalis, Beauveria 

bassiana  
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4.2 Introduction 

Pathogens have evolved several ways to disperse and increase the probability of 

encountering their host. A pathogen can be transferred directly from an infected 

individual to an uninfected individual, indirectly when the host encounters the free-living 

infectious stage of the pathogen in the environment, or via a vector 1,2. The rate of disease 

transmission within a host population is strongly influenced by the spatial distribution, 

temporal activity pattern and foraging behaviour of interacting species (i.e. pathogens, 

uninfected hosts, infected hosts, vectors) 3-5.  

A growing number of studies have shown that arthropods can act as dispersal agents and 

transmit pathogens passively to potential hosts without becoming themselves infected 6-9. 

For example, in the soil environment, collembolans can facilitate fungal dispersion by 

carrying conidia attached to their bodies or located in their guts 10,11. In honeybees, 

phoretic Varroa mites have been identified as common vectors of viruses and fungi 

contributing to mortality and colony collapse 12,13. Arthropod vectors therefore have the 

potential to shape direct and indirect interactions between a microorganism and its host 

and consequently influence their population dynamics, as well as the structure and 

stability of communities 8. Although such interactions should be common in nature, the 

role of arthropod dispersal agents in pathogen epidemiology remains poorly understood. 

From an applied perspective, insect pollinators and arthropod biological control agents 

can be used for dispersing pathogens to agricultural pests 14, weeds 15 and antagonists to 

plant diseases 16. For example, in addition to pollinating greenhouse tomato and sweet 

pepper, bumble bees have the capacity to co-disseminate two fungi B. bassiana and 

Clonostachys rosea (Link) Schroers, Samuels, Seifert, and Gams (Ascomycota: 

Hypocreales) for control of insect pests (greenhouse whitefly and tarnished plant bug) 

and grey mould, respectively 17. Similarly, some species of commercially mass-produced 

predatory mites have shown potential for dispersing entomopathogenic fungi to insect 

pests. Under laboratory conditions, two phytoseiid species, N. cucumeris and A. swirskii 

facilitated the dissemination of B. bassiana conidia to their prey, the Asian citrus psyllid 

Diaphorina citri Kuwayama (Homoptera: Psyllidae), a major pest of citrus 18. Such 
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findings stimulated research on techniques to load arthropod dispersal agents with 

optimal doses of infective fungal conidia before releasing them in the crop where they 

can disseminate the pathogen to the targeted pests 19-21.  

While the role of host and non-host arthropods in facilitating entomopathogenic fungi 

dispersal in the environment has been identified 1,14, the underlying ecological and 

behavioural mechanisms still need to be examined. Arthropods can mediate the rate at 

which a disease is horizontally transmitted to susceptible hosts through either direct 

physical contact (e.g. during a predation or a parasitism attempt by natural enemies) or 

indirectly by releasing infective propagules (fungal spores) in the habitat. In such cases, 

when there is a close association between the dispersal agent and the host susceptible to 

the pathogen, the encounter between interacting species is not a random event. For 

example, the capacity of a predator to disperse fungal conidia to its prey will primarily 

depend on how conidia are dislodged from the cuticle (either by grooming or walking) 

and its foraging behaviour (e.g. habitat location, area-restricted searching behaviour, 

numerical response) that contribute to increasing the spatial co-occurrence with the prey 
22. 

This study aimed to investigate the capacity of two species of predatory mites commonly 

used as biological control agents in dispersing conidia of an entomopathogenic fungus to 

their prey. We predict that foraging predatory mites artificially loaded with conidia will 

move close to their prey, thereby increasing the spatial co-occurrence between the fungus 

and the prey and, predictably, the fungal infection rate. Under laboratory conditions, we 

examined the (i) spatial distribution of conidia on plant parts when unloaded from 

predatory mite bodies, as well as their co-occurrence with prey, (ii) predation rates and 

(iii) proportion of prey bearing conidia on their body. These data provide valuable 

insights into mechanisms involved in dispersing fungal conidia when transported by an 

arthropod predator that is not harmed by the fungi. They also inform the biological 

control community of researchers and practitioners about the potential of predators to 

induce fungal epizootics in pest populations.  
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4.3 Methods 

4.3.1 The study system 

The biological system under study consisted of the entomopathogenic fungus B. 

bassiana, two species of predatory mites A. swirskii and N. cucumeris as potential fungal 

dispersal agents and the western flower thrips F. occidentalis as a resource for both the 

fungus and the predators. These species share similar habitats (i.e. plants supporting 

thrips populations) and can coexist in commercial greenhouses applying biological 

control programs. In a previous study, we showed that B. bassiana strain ANT-03 is 

virulent to thrips (all stages, except first instar larva), slightly virulent to N. cucumeris 

and avirulent to A. swirskii 20. This system thus perfectly fits the profile of a suitable 

pathogen, vector and host association, in which the pathogen is virulent against host and 

benign towards the vector 23. 

Beauveria bassiana is a generalist entomopathogenic fungus that exploits more than 200 

species from most insect orders, with some isolates showing a high degree of specificity 
24,25 . Conidia are responsible for infection and naturally dispersed by air movement 

because of their small size (1-3 µm) 26, by contact with infected hosts or via a dispersal 

agent 1,14,19. Conidia adhere to the host cuticle, germinate, penetrate in the host by 

enzymatic and mechanical processes and reproduce by exploiting host hemolymph and 

tissues 27-29. Once host nutrients are depleted, the fungus breaches the cuticle from inside 

out and sporulates in large numbers 28. Commercial strains of B. bassiana are used for the 

control of arthropod pests in biological control programs. They are typically sprayed over 

the crops like pesticides and the probability of contact with the host depends on the 

spatial distribution of the pests 25,30.  

The two phytoseiid species are generalist predators that actively search for prey 31. 

Foraging phytoseiid mites typically respond to chemical cues emitted by plants when 

attacked by herbivores and move towards infested areas 32. They are both commercialized 

and successfully released on vegetable and ornamental crops to control insect pests, 

including thrips 31. They both mostly attack first instar thrips larvae because larger prey 

successfully counterattack predatory mites 33. Small and large thrips larvae live together 
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in colonies on plant parts and larger larvae can protect their younger siblings from 

predation 34.  

Frankliniella occidentalis is a cosmopolitan and highly polyphagous insect that feed on 

almost every plant parts, from leaves to flower and pods 35-37, and it can also vector a 

number of plant virus 38. Their eggs are laid in plant tissues and nymphs develop for two 

instars before pupating in the soil. Mobile stages can hide in concealed parts of plants 

where pesticide cannot reach, and they rapidly develop resistance to chemicals 38,39.  

4.3.2 Arthropod colonies and fungal inoculum 

A colony of N. cucumeris, provided by Anatis Bioprotection Inc., was maintained on a 

factitious prey Aleuroglyphus ovatus Troupeau (Acari: Acaridae) while A. swirskii, 

purchased from BioBest Canada, was reared on a diet mixture containing Carpoglyphus 

lactis L. (Acari: Carpoglyphidae) and cherry pollen (Firman Pollen Co., Yakima, WA). 

Frankliniella occidentalis was obtained from a lab colony in Anatis Bioprotection Inc. 

and reared on California red kidney bean plants Phaseolus vulgaris L. (Fabaceae), with 

cherry pollen supplied ad libitum on a weekly basis. All colonies were maintained at 

25°C, 60-70% relative humidity and under a 14L: 10D light cycle. 

Beauveria bassiana strain ANT-03 has been registered in North America for greenhouse 

thrips control. We used the technical grade powder produced by Anatis Bioprotection Inc. 

containing 5x1010 conidia g-1 for all experiments.  

4.3.3 Prey patch establishment on a plant 

To test the capacity of predatory mites to deliver B. bassiana to thrips, we first 

established a spatial structure combining plant parts infested or not by thrips. To 

standardize the structure of a plant, we first trimmed bean plants (approximately 20 cm in 

height) to two sets of trifoliate leaves (Fig. 4-1). To create a clumped distribution of 

thrips larvae on the plant, we enclosed 25 ovipositing female thrips for 24 hours in a clip 

cage on a single leaflet. The clip cage was designed by F. Longpré, London Research and 

Development Center, Agriculture and AgriFood Canada, and made using a 3D printer. 

During the oviposition period, female thrips were assumed to have fed and left olfactory 
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cues on the leaflet that can further be used by predatory mites to locate the prey 40,41. 

Based on the control treatment (see below), 27.3 ± 2.8 (mean ± S.E.) thrips larvae were 

produced per plant, which is the unit of replication. To avoid potential experimental bias 

related to leaf age or position, half of the plants had thrips on leaflet 2, the middle leaflet 

of the old trifoliate leaf, while the second set of plants had thrips on leaflet 5, the middle 

leaflet of the young trifoliate leaf (Fig. 4-1). Following oviposition, the clip cage and 

female thrips were removed from the plant. Four days later, when most eggs had 

developed into first instar larvae, the suitable prey stage for predatory mites, we released 

predatory mites loaded with B. bassiana on the plant.  

4.3.4 Releasing predatory mites loaded with B. bassiana conidia 

Adult female predatory mites of various age were exposed to B. bassiana conidia in the 

commercial rearing substrate (2.5x109 conidia g-1 substrate) for two hours to obtain 

maximum conidia load on their body (Fig. 4-2) 20. In a modified Eppendorf tube, we put 

25 predatory mites with 0.2 g of B. bassiana contaminated rearing substrate 20. The tube 

was attached on the stem, at equal distance to the base of the petiole of the two trifoliate 

leaves (Fig. 4-1). To control for dispersal of B. bassiana conidia by air and potential 

mechanical disturbance during experimental manipulations, a tube containing 0.2 g of B. 

bassiana contaminated rearing substrate was attached to the plant (Control treatment). 

Each plant was isolated in a paper cylinder and the inner walls and the bottom of the 

paper cylinder were coated with rings of Tanglefoot® glue to prevent conidia and 

predatory mites dispersal between experimental units. For each set of plants (leaflet 2 vs. 

leaflet 5), there were three treatments: control, B. bassiana dispersed by N. cucumeris and 

B. bassiana dispersed by A. swirskii. The experiment was repeated nine times (temporal 

blocks, n=9) at 25°C, 60-70% relative humidity and under a 14L: 10D light cycle. The 

two blocks where all thrips had been consumed were excluded from the analyses of 

spatial co-occurrence index and of proportion of thrips bearing B. bassiana because these 

parameters cannot be estimated in absence of thrips. Inter-block variation was low and 

repeating the experiment 9 times was sufficient to reach significant conclusions.  
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At the beginning of the experiment, it was not possible to load the two predatory mite 

species with a similar number of conidia because of significant differences in their size, 

A. swirskii being bigger than N. cucumeris (dorsum length 452 ± 6 (mean ± S.E.) vs. 426 

± 4 µm, generalized linear model, χ2=12.262, n=12, p<0.001, Lin et al. unpublished data), 

and their capacity to retain conidia on their body, due to dissimilarities in morphological 

structure such as the texture of the tegument. As a result, A. swirskii can carry a higher 

number of conidia on their body than N. cucumeris (1526 ± 96 (mean ± S.E.) vs. 396 ± 

31; Lin et al. unpublished data) when exposed to B. bassiana conidia in the rearing 

substrate. This substantial difference in conidia carrying capacity between species was 

considered when interpreting results.  

4.3.5 Recovery of predators and prey 

Forty-eight hours after the release of phytoseiid mites, plants were carefully examined to 

establish the number and spatial distribution of surviving predators and prey. Each of the 

nine plant parts were collected and placed in a 2 oz black solo cup with lid. The cup was 

filled with carbon dioxide from SodaStream® to stop movement of thrips and predatory 

mites for the ease of handling and to avoid fungal cross-contamination between 

individuals. The number of mites and thrips found alive on each plant part was recorded. 

Thrips mortality was assumed to result from predation since B. bassiana conidia cannot 

germinate and invade thrips tissues within a 48 h period 20,42.  

4.3.6 Recovery of B. bassiana conidia from prey and plant parts 

To detect the presence or absence of B. bassiana on thrips that survived from predation, 

thrips were individually picked with a sterilized toothpick or clean fine brush (sterilized 

with 75% ethanol and rinsed with 0.1% Tween-80 between samples) and placed in a 

small Petri dish (Ø 35 mm) containing 2.5 ml of an oatmeal selective media for B. 

bassiana 43. Petri dishes were examined 10 days later when colony-forming units (CFUs) 

can be visualized. The proportion of thrips bearing conidia was recorded.  

To assess the number of conidia on each plant part following arthropod removal, leaves 

and stems were cut into small pieces (<2 cm in width or length) and put back into the 
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solo cup. Conidia were washed off by adding 5 ml of 0.1% Tween-80 into each solo cup 

and putting the cups on a rotary shaker for 2 hours at a speed of 125 rpm 44. Next, one 

aliquot of a 0.5 ml suspension was transferred onto the selective media for B. bassiana 43 

and CFUs were counted 9 days later. For each plant, we noted the sum of CFUs delivered 

to the entire plant and, more specifically, the quantity of CFUs on the leaflet where thrips 

females laid their eggs. 

4.3.7 The spatial co-occurrence between B. bassiana and thrips induced by predatory 

mites 

Since a large proportion of thrips (40.3±3.8% S.E.) moved away from the oviposition 

leaflet following hatching, we calculated a co-occurrence index between the fungus and 

thrips on bean plants. The proportion of B. bassiana CFUs and thrips that share the same 

plant part was calculated in the following equation (1) 45:  

𝜙 = 𝑝𝑛
!

!!!

 

where S is the number of plant parts (9 in our case), p is the proportion of conidia on part 

s, and n is the proportion of thrips on part s. The higher the proportions of B. bassiana 

and thrips sharing the same plant part, the higher is the co-occurrence index.  

4.3.8 Statistical analyses 

Our experimental design includes two categorical factors: treatment (3 levels: control, N. 

cucumeris and A. swirskii) and leaflet where eggs were laid (2 levels: leaflet 2 and leaflet 

5). When either factor was not identified as a significant predictor of the dependent 

variable following a log-likelihood test, it was eliminated from the initial statistical model 

to optimize the final model. The number of predatory mites remaining on the plants was 

analyzed using generalized linear models with negative binomial error distribution and 

with species as a factor. The number of thrips remaining on the plants was analyzed with 

generalized linear models with negative binomial distribution and with treatment a factor. 

The proportion of thrips bearing B. bassiana was analyzed using generalized linear 
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models with treatment and oviposition leaflet as factors. The number of conidia delivered 

to the entire plant was analyzed with generalized linear models with negative binomial 

distribution and with treatment and oviposition leaflet as factors. The number of conidia 

on the thrips oviposition leaflet was analyzed with both generalized linear models with 

negative binomial distribution and Kruskal-Wallis tests, depending on whether the 

residuals were normally distributed or not, determined by Normal QQ-plot 46. The co-

occurrence index was analyzed using generalized linearized models with treatment as 

factor. When either factor (treatment or oviposition leaflet) was significant, multiple 

comparisons were performed with the package ‘multcomp’ with ‘glht’ function and 

Tukey’s all-pair comparisons method. Kruskal-Wallis multiple comparison tests were 

performed to compare differences among means when residuals were not normally 

distributed. All the statistical analyses were carried out with R version 1.0.143 47.  

4.4 Results 

4.4.1 Number of B. bassiana conidia delivered by predatory mites and spatial co-

occurrence between B. bassiana and thrips 

The number of CFUs recovered from the entire plant significantly differed among 

treatments (treatment χ2=26.88, df=1, p<0.001, Fig. 4-3). Both A. swirskii (z=5.60, 

p<0.001) and N. cucumeris (z=4.48, p<0.001) contributed to increase total CFUs on 

plants compared to control. Both predatory mites delivered the same quantity of CFUs to 

the plant (z=1.14, p=0.489). One plant from the control treatment was excluded from the 

analysis because extremely high number of conidia (~19,800) landed on a single leaflet 

(most likely due to error in experimental manipulation); this outlier was more than three 

times of absolute deviation above the median 48.  

There was an interaction between the thrips oviposition leaflet and treatment (interaction 

χ2=31.47, df=5, p<0.001; Fig. 4-4). Simple effects (the effect of each independent 

variable within each level of the other independent variable) were examined. For A. 

swirskii, this effect is greater when thrips eggs were laid on the young leaflet than on the 

old leaflet (z=2.32, p=0.020). Amblyseius swirskii increased the number of CFUs 
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recovered from the thrips oviposition leaflet compared to control, but N. cucumeris did 

not (Kruskal-Wallis test, when thrips eggs were laid on old leaflet: treatment simple 

effect χ2=19.81, df=2, p<0.001; when thrips eggs were laid on young leaflet: treatment 

simple effect χ2=18.55, df=2, p<0.001).  

The co-occurrence index varies among treatments (χ2=13.14, df=2, p=0.001; Fig. 4-5) 

with A. swirskii increasing the co-occurrence of B. bassiana and thrips on a given plant 

part compared to control (z=3.49, p<0.001), but not N. cucumeris (z=0.97, p=0.594). 

4.4.2 Proportion of thrips contacting B. bassiana delivered by predatory mites 

The proportion of thrips coming into contact with B. bassiana was significantly affected 

by both treatment and thrips oviposition leaflet (treatment χ2=22.37, df=2, p<0.001; 

oviposition leaflet, df=1, χ2=10.78, p=0.001; Fig. 4-6), as well as by their interaction 

(χ2=8.00, df=2, p=0.018). For A. swirskii, this effect was much greater when thrips laid 

eggs on the young leaflet rather than the old leaflet (z=3.029, p=0.002).  

4.4.3 Predatory mites and thrips remaining on the plant 

Forty-eight hours following predatory mite release, higher numbers of A. swirskii 

(8.21±0.88 X±S.E.) were recovered from the plants than N. cucumeris (2.86±0.63 S.E.) 

(z=5.00, p<0.001, generalized linearized model with negative binomial distribution). The 

numbers of thrips recovered on plants at the end of the experiment also varied between 

treatments (χ2=20.29, df=2, p<0.001, Fig. 4-7). Amblyseius swirskii significantly reduced 

thrips number on plants (z=-4.47, p<0.001; Fig. 4-7) compared to control, but not N. 

cucumeris (z=-1.24, p=0.427).  

4.5 Discussion 

Our results demonstrate that A. swirskii and N. cucumeris both have the capacity to 

disseminate B. bassiana conidia on plants when foraging. Although N. cucumeris was 

initially transporting three to four times fewer conidia than A. swirskii (Lin et al., 

unpublished data), the number of spores recovered on plant surfaces after two days was 
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similar for both species, as well as the proportion of thrips carrying conidia on their body. 

However, A. swirskii is more efficient than N. cucumeris in delivering higher proportions 

of conidia to thrips colonies, as revealed by the analysis of the spatial co-occurrence 

between thrips and B. bassiana.  

There are mainly two ways in which conidia can be dislodged from the predatory mite 

body and be dispersed on the plant. They can either be actively groomed off by mites or 

rubbed off on the plant surface when predatory mites move along (Lin et al., unpublished 

data). Grooming, the use of legs to clean the body, has been observed in phytoseiid mites 

when they encounter potentially pathogenic fungi 49,50. However, grooming is not 

efficient to remove all conidia from a mite, especially those located on the dorsal sections 

of their body. We further more showed that A. swirskii and N. cucumeris mostly 

dislodged conidia from their body when walking on the plant surface. Indeed, the 

duration of walking is correlated to conidia removal for both species (Lin et al., 

unpublished data). Trichomes and other structures associated with the surface of bean 

leaves are likely to facilitate the dislodgement of conidia when mites are walking (Fig. 4- 

2B). Foraging predatory mites thus actively disperse B. bassiana conidia in the 

environment.  

When mediated by predatory mites, transfer of conidia to thrips can either be a passive or 

an active process. As seen above, conidia are unloaded on plant surfaces and can 

subsequently passively attach to thrips cuticle when thrips forage on a contaminated 

substrate. Alternatively, conidia can be directly transferred from predatory mites to thrips 

during an unsuccessful predation event involving a physical contact between the two 

protagonists. Thrips are aggressive prey that display counterattack behaviours. They can 

swing their abdomen to ‘slap’ predatory mites 51 or secrete irritating anal fluid which 

causes predatory mites to withdraw 33. Moreover, the presence of predatory mites in the 

vicinity of a thrips colony can affect their behaviour 52. Following detection of predators, 

thrips may switch state from stationary feeding to escaping, thereby increasing the 

probability of coming into contact with spores disseminated on plant surfaces 14.  



	 93	

The observed differences between A. swirskii and N. cucumeris in their capacity to 

disseminate B. bassiana conidia to thrips colony might arise from differences in predator 

foraging patterns. Amblyseius swirskii, a more robust predator 53,54, seems to be better 

adapted to detect thrips colonies and subdue this type of prey than N. cucumeris, as 

shown by A. swirskii having a higher predation rate than N. cucumeris in our 

experimental setup. The difference in co-occurrence values between thrips and the two 

predatory mite species attest to the better capacity of A. swirskii to exploit thrips on bean 

plants. In another study system, it showed that the predatory mite 

Neoseiulus (Amblyseius) barkeri Hughes (Acarina: Phytoseiidae) did not increase B. 

bassiana transmission to thrips population 55. Neosiulus barkeri is a less voracious thrips 

predator than N. cucumeris with a relatively low capture success when attacking first and 

second instar larvae of Thrips tabaci Lindeman (Thysanoptera: Thripidae) 51. 

Furthermore, the level of foraging activity of N. barkeri is lower than N. cucumeris 53. 

Therefore, it is normal that N. barkeri did not efficiently deliver B. bassiana to thrips 

colonies. These results suggest that the foraging capacity of a predator and the strength of 

its interaction with a prey would be essential determinants of its potential efficiency as a 

dispersal agent of entomopathogens. 

The rate at which B. bassiana contacts its host is crucial in the context of biological 

control, not only because it is directly linked to the infection rate but also because the 

viability of conidia is very sensitive to environmental conditions such as UV and 

humidity 56,57. Typically, entomopathogens are used like pesticides with single or 

multiple applications of large quantities of pathogens in crops. However, in some 

instances, aerial applications are not effective to reach targeted pests. For example, due to 

its thigmokinetic behaviour, Western flower thrips are often concealed in plant crevices 

and flower buds 58. As a result, spraying fungal pathogens has little effect on thrips 

infection level 30. In such circumstances, the capacity of predatory mites in delivering 

pathogen to thrips colonies could increase disease transmission. In our experiment, the 

thrips mortality after contacted with pathogen was not evaluated. Further experiments are 

needed to evaluate the thrips mortality. Nevertheless, it was shown that LD50 is relative 

low for technical grade powder of B. bassiana strain: approximately 50 conidia per 2nd 

instar F. occidentalis larva and only 5 per adult 59.  
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Our findings about the relative potential of A. swirskii and N. cucumeris in dispersing B. 

bassiana conidia to thrips are consistent with the conclusion drawn by Zhang, et al. 18 

who studied a similar biological system on the tropical shrub, Murraya paniculata (L.) 

Jack (Rutaceae), infested by the Asian citrus psyllid, Diaphorina citri, in the laboratory. 

Higher mortality in D. citri populations was achieved when B. bassiana was delivered by 

A. swirskii rather than by N. cucumeris, and compared to B. bassiana being sprayed 

evenly onto plants. We can thus conclude that under our experimental conditions, A. 

swirskii is a better biological control agent because it both preyed more on thrips and 

transmitted conidia to a larger number of thrips escaping from predation. However, N. 

cucumeris could show good potential both as a predator and an entomopathogen dispersal 

agent when used in a different crop-pest association. For example, in greenhouses from 

temperate regions, it has been shown that N. cucumeris showed similar performance as A. 

swirskii as a thrips biocontrol agent under simulated winter conditions 60.  

Finally, how can we apply such a system in a biological control program? Growers 

periodically release predatory mites and spray B. bassiana onto crops to control thrips. 

The strategy we proposed does not require two separate applications, but solely a premix 

of B. bassiana conidia (technical grade powder) into commercially available predatory 

mite package (if approved by regulatory agencies) 20. The predatory mites would likely 

increase disease transmission rate to concealed pests. The overall quality of a predatory 

mite species as a pathogen dispersal agent would depend on its capacity to be loaded with 

conidia, its capacity to resist pathogenic infection and, as shown by the present study, its 

foraging activity. Predatory mites should be closely associated to the target pest and have 

the ability to search for, locate and engage interactions with the pest on the plant, so they 

can disperse spores on the plant like little pebbles strewn about by Tom Thumb. 
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Figure 4-1. Schematic drawing of the bean plant structure after being trimmed (left). 

Plant parts (leaflet and stem) are each identified by a number (right). An Eppendorf tube 

containing predatory mites and fungal conidia to be released was attached in position 8. 

An example of the spatial distribution of larval thrips is illustrated using yellow oval 

spots - in this case, thrips are mostly clumped on the oviposition leaflet 5. Drawn by G. 

Lin with the software Adobe Illustrator. 
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Figure 4-2. (A) Neoseiulus cucumeris bearing Beauveria bassiana conidia. (B) 

Amblyseius swirskii bearing B. bassiana conidia, released on a bean leaflet. The hair-like 

structures are dense bean trichomes. We observed and took photos of the specimens using 

a low temperature scan electron microscope (LT-SEM) with the same method described 

in Bolton, et al. (2014).  

 

 

Figure 4-3. Number of Beauveria bassiana colony-forming units (CFUs) recovered on a 

plant 48 hours after the beginning of the experiment on plants without (control) and with 

predatory mites, Neoseiulus cucumeris or Amblyseius swirskii. Different letters indicate a 

significant treatment effect (p<0.05 generalized linear model with negative binomial 

distribution, multiple comparisons with ‘glht’ function, Tukey method). Dots identify 

outliers (values exceeding 1.5 interquartile range) as defined by ggplot2. 
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Figure 4-4. Number of Beauveria bassiana colony-forming units (CFUs) recovered from 

the thrips oviposition leaflet (young vs. old) 48 hours after the beginning of the 

experiment on plants without (control) and with predatory mites, Neoseiulus cucumeris or 

Amblyseius swirskii. Thrips oviposition leaflet refers to the leaflet where thrips females 

were caged for 24 hours to lay eggs prior to treatments. Dots identify outliers (values 

exceeding 1.5 interquartile range) as defined by ggplot2. Different capital and lower case 

letters indicate significant treatment effect for young and old leaflet, respectively (p<0.05, 

Kruskal-Wallis test with multiple comparisons). The asterisk indicates a significant 

difference (0.05 < p < 0.01) between thrips oviposition leaflet: n.s. = not significant 

(Kruskal-Wallis test for plants in treatment ‘control’ and treatment ‘cucumeris’, 

generalized linear model with negative binomial distribution for plants in treatment 

‘swirskii’). 

 

  



	 105	

 
Figure 4-5. Co-occurrence index between thrips and Beauveria bassiana delivered to 

plants passively (control) and by predatory mites Neoseiulus cucumeris and Amblyseius 

swirskii. Different letters indicate significant differences between treatments (p<0.05, 

generalized linear model, followed by multiple comparisons with ‘glht’ function, Tukey 

method). Dots identify outliers (values exceeding 1.5 interquartile range) as defined by 

ggplot2. 
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Figure 4-6. Proportion of thrips bearing Beauveria bassiana 48 hours after the release of 

B. bassiana on plant parts without (control) and with predatory mites, Neoseiulus 

cucumeris or Amblyseius swirskii. Thrips oviposition leaflet refers to the leaflet where 

thrips females were caged for 24 hours to lay eggs prior to treatments, (D) leaflet No. 5, 

young: leaflet No. 2. Different capital letters indicate significant treatment simple effect 

in plants where thrips eggs were laid on the young leaflet (p<0.05, generalized linear 

model, followed by multiple comparisons with ‘glht’ function, Tukey method) while 

different lower case letters indicate significant treatment simple effect in plants where 

thrips eegs were laid on the old leaflet (p<0.01, generalized linear model, followed by 

multiple comparisons with ‘glht’ function, Tukey method). Differences between thrips 

oviposition leaves within a treatment are shown above bars: n.s. = not significant (p > 

0.05), ** = 0.001 < p < 0.01 (generalized linear model). Dots identify outliers (values 

exceeding 1.5 interquartile range) as defined by ggplot2. 
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Figure 4-7. Number of thrips recovered on plant 48 hours after the beginning of the 

experiment on plants without (control) and with predatory mites, Neoseiulus cucumeris or 

Amblyseius swirskii. Different letters above bars indicate significant differences between 

treatments (p<0.05, generalized linear model with negative binomial distribution, 

followed by multiple comparisons with ‘glht’ function, Tukey method). Dots identify 

outliers (values exceeding 1.5 interquartile range) as defined by ggplot2. 
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Chapter 5: Discussion 

Our studies show that, under our experimental conditions, predatory mites can be 

efficient dispersal agents for entomopathogenic fungi. They collected conidia from their 

rearing substrates and increased walking duration to dislodge conidia. The species that 

spent sufficient time walking in prey colonies increased disease transmission in the prey 

populations. In this discussion, we will answer the specific research questions posed in 

the introduction, demonstrate how our results from the three chapters support the 

answers, and make suggestions and predictions for future research. 

5.1 We have made it easy to use for biological control 

We developed a method for fungal dispersal by predatory mites that would be user-

friendly for growers and the biological control industry. In future, to test the efficacy of 

the method in greenhouse or field trials, growers can simply mix conidia with predatory 

mites in the commercial rearing substrates, wait a short time for conidia to accumulate on 

mites and then release predators in the crops using their usual practices (i.e. sprinkling 

mites or using mite blowers). Biological control companies could mix conidia into mite 

rearing substrates before packing them into slow-release sachets. We have observed that 

conidia remain intact after eight days spent in the rearing substrates between 20-25 °C 

(Fig. 1). If the conidium infectivity is not significantly reduced, biological control 

companies can prepare the mix and growers will receive viable products if the standard 

shipping time (normally less than a week for predatory mites) is respected. 
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Figure 5-1. Conidia contained within mite rearing substrates after eight days (A) in 

rearing substrate of Amblyseius swirskii, (B) and (C) in rearing substrate of Stratiolaelaps 

scimitus, and (D) on dead feeder mite in the rearing substrate of Neoseiulus cucumeris. 

The specimens were observed using Hitachi tabletop TM3030 scanning electron 

microscope equipped with Deben Cold Stage Deben TM-3000 Coolstage (Deben UK 

Ltd., Suffolk, UK) as described in Otero-Colina et al. (2018). 

We have demonstrated that using this method under our experimental conditions, conidia 

are transferred from the rearing substrates to the plants and reach thrips via Amblyseius 

swirskii. The efficacy of this method in reducing thrips populations should be validated in 

greenhouse or field trials before it can be registered as a product. The ecological factors 

that may promote or impede the efficacy of this method should be further investigated in 

order to determine if the method is suitable for specific settings. Furthermore, the method 

could be particularly interesting for specialist entomopathogen species because their 
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dispersal within a crop remains challenging (Butt 2002). Instead of spreading infected 

host cadavers, it would be possible to mix host cadavers bearing sporulating 

entomopathogens into predatory mite rearing substrates so that conidia could accumulate 

on mites and be transferred to the prey/host colonies.  

5.2 Desirable traits of predatory mites as successful fungal dispersal agents 

The availability of predatory mite species varies depending on the regions, so how do we 

select the species as promising fungal dispersal agents? The rapidity at which the prey 

patches are detected and the duration of residence time within prey patches would 

determine disease transmission rate, because predatory mites dislodge conidia primarily 

by walking. The less ‘detours’ predatory mites make to find prey patches, the more 

conidia will be left to contaminate prey colonies. Therefore, the nature of the predator-

prey association is important to determine the capacity of predatory mites as efficient 

dispersal agents of entomopathogenic fungi. Disease transmission in prey population is 

likely to be favored by a close co-evolved link between the predator and its prey, for 

example, when predatory mites include the target pest in their diet. Zhang et al. (1992) 

showed that the foraging time allocation of oligophagous predatory mite P. persimilis 

depends on the initial density of its prey spider mites, but it was not the case for the 

polyphagous predatory mites Typhlodromus occidentalis or Amblyseius andersoni. They 

proposed that both polyphagous predatory mites randomly encountered prey patches, but 

the narrow polyphagous predator T. occidentalis is likely to stay longer in prey patches 

because they turn back more frequently when walking away from the prey patch 

compared to the broadly polyphagous predator A. andersoni. As the degree of feeding 

specialization increases, randomness of walking reduces: prey patch entry becoming 

faster and patch leaving becoming slower (Zhang et al. 1992), and it is likely that the 

entomopathogen spreading capacity in prey populations will increase accordingly. 

The searching efficiency varies even within a species of specialist predatory mite, 

because of intraspecific variation in its attraction to prey (Margolies et al. 1997). 

Margolies et al. (1997) selected lines of P. persimilis that were more attracted to spider 

mite induced plant volatiles and such attraction level can be passed on to at least three 
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generations. Therefore, within a specialist predatory mite species, it might be possible to 

further increase their capacity as dispersal agents by selectively maintaining lines that 

respond strongly to volatiles (Lommen et al. 2017). Interestingly, the P. persimilis 

population with the strongest response (+ line population) had shorter residence time 

compared to control (base line population) (Margolies et al. 1997). This means that 

within a given time, the population from the + line is likely to exploit more prey patches 

than the base line population. This trait could favor the spread of the fungi and allow 

predatory mites to induce higher infection in prey populations.  

Rearing conditions influence the attraction of predatory mites to prey as well (de Boer 

and Dicke 2006). Predatory mites reared on cucumber plants infested with spider mites 

find spider mites much faster on the same species of host plant than when reared on 

spider mite infested lima bean plants. Herbivore-induced plant volatile cues differ 

between plant species and predatory mites can develop a preference to a plant-prey 

association through associative learning (de Boer and Dicke 2006). An improvement in 

prey searching efficiency would be desirable when using predatory mites as dispersal 

agents of fungi because timing is crucial: all conidia are dislodged within two days. 

However, these predictions are based on the assumption that conidia do not influence the 

path of predatory mites. In fact, B. bassiana conidia did affect predatory mite behavior. 

5.3 Fungal conidia prolonged predatory mite walking behavior  

Predatory mites with conidia spend more time walking. Such a behavioral could promote 

predatory mites as promising fungal dispersal agents because movement has a positive 

relation with disease transmission (Sumner et al. 2017). Indeed, both A. swirskii and N. 

cucumeris dispersed conidia from the rearing substrates to the plants.  

We expected conidia to be dispersed along the path of foraging predatory mites and reach 

thrips colonies. We found that only A. swirskii dispersed B. bassiana to thrips colonies. It 

is likely that A. swirskii walked towards thrips colonies but N. cucumeris did not. This is 

unexpected, because N. cucumeris has been well recognized as a common biocontrol 

agents of western flower thrips (Messelink et al. 2006) and they are attracted to plant 
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volatiles induced by thrips feeding, which increases the probability of N. cucumeris 

walking towards thrips infested leaves (Tatemoto and Shimoda 2008). It might be that the 

amount of conidia dispersed to thrips colonies by N. cucumeris is too little to be detected. 

Another possible explanation is that conidia might impede N. cucumeris prey finding 

capacity. We found that conidia drastically reduced palp activity in N. cucumeris but not 

in A. swirskii (Fig. 3-2). Palp activity is alternating vertical movement of palps. This 

could be a behavior linked to predatory mite searching efficiency. Palps of predatory 

mites such as P. persimilis contain porous sensilla that may be involved in chemosensing, 

i.e. gustation (Jagers et al. 1985). Predatory mites respond to steep gradients of prey 

kairomone and circulate around the odor source (Sabelis et al. 1984). Do predatory mites 

perceive the cues from palp activity, ‘tasting’ the molecules on the leaf? Do B. bassiana 

disrupt their perception by reducing palp activity and make N. cucumeris run around like 

a decapitated chicken? Future studies can answer this question by testing the effect of B. 

bassiana on N. cucumeris searching efficiency.  

 

Figure 5-2. Proportion of time (mean + S.E.) predatory mites spent on palp activity: (A) 

Amblyseius swirskii and (B) Neoseiulus cucumeris following release from Beauveria 

bassiana contaminated (grey curve) or non-contaminated (black curve) substrate. Stars 

beside the factors indicate significant predictors of the proportion of time spent on a 

behavior (beside the factors) and stars above the curve indicate significant difference 
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between treatments: * = 0.01 < p <0.05, ** = 0.001 < p < 0.01, *** < 0.001; generalized 

linear mixed-effect model.  

5.4 Grooming is not simply a behavior for preventing infection 

We studied the effect of B. bassiana conidia on predatory mite behavior because we were 

concerned that mites would spend more time grooming, which would remove the conidia 

before they could be transferred to the prey colonies. To our surprise, this is not an 

important issue. Plant-dwelling predatory mites (A. swirskii and N. cucumeris) did not 

spend more time grooming when loaded with conidia. Grooming duration of soil mite S. 

scimitus was even reduced. Several studies claimed that grooming removes 

entomopathogens from arthropod bodies (Wekesa et al. 2007; Yanagawa et al. 2018). 

However, their conclusion could be false, as they did not disentangle the time spent on 

walking or grooming but linked the number of conidia remaining on the body directly to 

the time after conidia application. Drosophila melanogaster responded to musty odor of 

B. bassiana with an increased walking or running but not grooming (Yanagawa et al. 

2018), which is in agreement with what we have observed.  

Amblyseius swirskii and N. cucumeris without B. bassiana conidia spent half of their time 

grooming, scrubbing their bodies and mouthparts with their legs, where most known 

sensilla are located (de Lillo et al. 2005). These sensilla function as mechanoreceptors 

and chemoreceptors (de Lillo et al. 2005). Using electrophysiological recording, De 

Bruyne et al. (1991) found that the sensilla located on first leg tarsi of P. persimilis 

respond to methyl salicylate, a key component of spider mite induced plant volatile (De 

Bruyne et al. 1991). Therefore, grooming could be a maintenance behavior to keep the 

pores on sensilla clear in order to maximize chemical molecule detection. In crustaceans, 

a cousin taxon of predatory mites, grooming is actually a behavior to keep olfactory 

organs sensilla clean. Caribbean spiny lobster Panulirus argus uses mouthpart 

appendages called the third maxillipeds to wipe sensilla on their attenules (Wroblewska 

et al. 2002). When their prey extract was released in water, it elicited grooming behavior. 

After sensilla were ablated, the grooming behavior was reduced. Similarly, predatory 

mites might use grooming to clean their sensors in order to perceive various cues in the 
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environment. If this is true, we expect that the sensory capacity of S. scimitus involving 

sensilla on the legs can be disrupted by B. bassiana, but not of N. cucumeris or A. 

swirskii, because exposure to B. bassiana reduced grooming duration in S. scimitus, but 

not in the other two species. 

5.5 Does the susceptibility of predatory mites to the entomopathogen influence 

fungal dispersal capacity? 

We did not address this question with the experiments described in this thesis. We 

showed that N. cucumeris is susceptible to ANT-03, but not A. swirskii. Our data 

demonstrated that the behavior response of N. cucumeris is stronger than A. swirskii 

towards B. bassiana (strain ANT-03): with reduced palp activity and with a larger 

increase in activity. In fact, the amplitude of host response can be influenced by the 

virulence of a pathogen, because virulent and non-virulent pathogens emit different 

MVOC profiles that can be distinguished by host via olfaction (Davis et al. 2013). The 

wildtype D. melanogaster could perceive musty odor of B. bassiana and responded with 

an increased activities (prolonged walking or running duration), but a mutant with 

olfactory deficiency did not show any behavior change. Can the virulence of a pathogen 

influence navigation capacity of its dispersal agents? The question remains open for 

further work. 

5.6 Conclusion 

Our study demonstrated that, 1. Predatory mite increased B. bassiana conidia dispersal, 2. 

Conidia increase predatory mite movement, 3. Time of predatory mites spent in prey 

patches is likely to predict the pathogen-host encounter rate. We have provided 

theoretical basis for identifying candidate predators to become efficient fungal dispersal 

agents. Last but not least, we have made this system easy to use for greenhouse or field 

trials for biological control. 
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The finishing touch 

 

Towards the end of my PhD, I decided to combine my two passions together: burlesque 

and biological control. Here is the link to an eight-minute burlesque video that interprets 

my PhD. I danced as a predatory mite and my friends danced as thrips.  

https://www.youtube.com/watch?v=N-UT5engHRc 

 

Yes, sometimes we have to be crazy.	


