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Résumé 

 

La présentation répétée d’un son inconnu conduit à des effets de répétition comprenant la 

suppression (‘repetition suppression’ ou RS) ou l’augmentation (‘repetition enhancement’ ou 

RE) de l’activité neuronale. Ces phénomènes reflètent des mécanismes cérébraux impliquant un 

apprentissage perceptuel. L’objectif de ce mémoire de maitrise était d’apporter une perspective 

développementale de l’activité cérébrale sous-tendant l’apprentissage perceptuel auditif. L’EEG 

a été enregistré chez 101 participants sains âgés de 3 à 40 ans pendant un paradigme auditif 

passif durant lequel 30 pseudo-mots étaient répétés 6 fois chacun. Des analyses en temps-

fréquence ont été calculées pour chaque répétition. La puissance spectrale enregistrées en EEG 

entre chaque répétition a été comparée au moyen de modèles linéaires mixtes. Les résultats 

montrent qu’un effet de répétition survient au cours du développement mais varie en fonction de 

l’âge et des bandes de fréquences. Du RS et RE ont été observés à tous les âges dans le thêta bas 

et le gamma respectivement. Un effet développemental a été trouvé de façon plus précoce pour le 

RS dans le thêta haut et de façon tardive pour le RE dans le thêta bas. Ces résultats montrent que 

les processus impliquant un apprentissage perceptif auditif, tel que le RS et le RE, suivent une 

trajectoire développementale spécifique en fonction des rythmes cérébraux. Les effets de 

répétition reflèteraient différents niveaux de traitement des stimuli qui se développeraient de 

manière indépendante. Des recherches supplémentaires seront nécessaires pour préciser le rôle 

fonctionnel des effets de répétitions sur le développement cognitif. 

Mots clés : Effets de répétition, EEG, analyses en temps-fréquence, développement cérébral, 

codage prédictif.  
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Abstract  

 

The repeated presentation of unfamiliar sounds leads to repetition effects comprising 

repetition suppression (RS) and enhancement (RE) of neural activity. These phenomena reflect 

mechanisms involved in perceptual learning and are associated with a decrease or increase in 

EEG spectral powers. The objective of this Master’s thesis is to provide a developmental 

perspective of the cortical activity underlying auditory perceptual learning. EEG was recorded in 

101 healthy participants ranging from 3 to 40 years during an auditory paradigm comprising 30 

pseudowords repeated six times each. EEG time-frequency spectral power was calculated for 

each presentation and was compared to quantify repetition effects. Linear mixed model analysis 

revealed that some repetition effects occurred across ages and others varied with age in specific 

frequency bands. More precisely, RS and RE were found across ages in lower theta and gamma 

frequency bands respectively between the first and all subsequent pseudoword presentations. 

Developmental effects were seen in the RS observed in the higher theta/low alpha band and in 

the later occurring RE in the lower theta band. These results show that processes involved in 

auditory perceptual learning, such as RS and RE, are modulated by maturation. Further, 

repetition effects reflect different levels of stimulus processing and these levels seem to develop 

independently. More research is required to identify the exact functional roles of auditory 

repetitions effects on cognitive development.  

Keywords : repetition suppression, repetition enhancement, EEG spectral power, brain 

development, time-frequency analysis.  
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General Introduction 

 

Brain development is a process that encompasses a plethora of changes in terms of its 

structural and functional properties, that also involves many cognitive changes. Understanding 

how these changes influence one another is mandatory to provide a better knowledge of how the 

healthy brain evolves through life. More specifically, this master’s thesis focuses on the 

developmental course of auditory learning repetition effects. Hence, the first section of this 

master’s thesis will highlight the maturation of cortical regions involved in the processing of 

auditory stimuli. Learning and the development of its neural correlates will also be described with 

a specific focus on experiments in the field of electroencephalography. The second section will 

present a scientific manuscript investigating the developmental course of auditory repetition 

effects using time-frequency analysis. Finally, the third section will present a general discussion 

and will address prospects for future research.  

Brain development  

 Human brain development is a complex, long-lasting process that begins in the early 

embryonic stage and continues well into adolescence, as well as throughout adulthood (Stiles & 

Jernigan, 2010). Research in neuroscience suggests that the biology of the brain is the foundation 

for behavior and the development of abilities (Anderson, 2016; Barrett & Satpute, 2013). Of 

particular interest for this Master’s thesis is the development of cortical regions involved in 

auditory processing and their relation to learning. Many studies have shown that the processing 

of repeated auditory stimuli involves not only the auditory cortex but also non-auditory higher 

order areas including the frontal cortex (McDonald et al., 2010; Orekhova et al., 2013; Sussman, 
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Steinschneider, Gumenyuk, Grushko, & Lawson, 2008). Understanding the development of these 

cortical areas is important to get a better idea of how they are involved in learning.  

Electroencephalography (EEG) is a neuroimaging technique that has been widely used to 

study the functional activity of the brain by looking at the neuronal activity associated to specific 

sensory, motor and cognitive events (Luck, 2014; Pietto, Gatti, Raimondo, Lipina, & 

Kamienkowski, 2018). In order to give rise to these activities, averaging techniques of the EEG 

signal need to be performed to extract these responses from the different sources of neural 

activity comprised in the signal (Luck, 2014). The resulting averaged waveforms consist of a 

sequence of positive and negative voltage deflections, which are called event-related potentials 

(ERP) components (Luck, 2014). ERP techniques have been used in many studies to demonstrate 

the development of auditory processing. For example, cortical auditory evoked potentials 

(CAEPs) have been shown to provide an important index of auditory system function and 

plasticity (Sussman et al., 2008).   

Auditory cortex  

The auditory cortex demonstrates a prolonged maturational time course compared to other 

sensory regions of the brain, which reflects both its anatomical complexity and its implication in 

lengthy processes such as language acquisition (Moore & Linthicum, 2007). Maturation in the 

auditory cortex is believed to take place on a cortical layer-by-layer basis (Moore & Linthicum, 

2007) in which lower layers of the auditory cortex are thought to mature faster than the upper 

layers (Orekhova et al., 2013). In early childhood, from ages two to five, the major 

developmental change is continued axonal maturation in the deep layers of the auditory cortex. 

Axons grow, slowly and steadily, until adult density is reached by five years of age (Moore & 

Linthicum, 2007). The last step in the structural maturation of the auditory cortex takes place 
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from six to twelve years of age. At this period in the developmental course, the superficial 

cortical layers and their intra-cortical connections with the other layers and between hemispheres 

mature (Moore and Linthicum (2007).  

 Changes in the morphology of auditory ERPs with age have been shown to reflect the 

maturation of the auditory cortex (Orekhova et al., 2013).  Lippe, Martinez-Montes, Arcand, and 

Lassonde (2009) studied the development of CAEPs in a cohort of infants and children aged from 

1 month to 5 years of age in comparison to adults. In a paradigm using broadband noises, they 

confirmed the presence of maturational changes in CAEPs throughout infancy, with ERPs not 

reaching the adult pattern at 5 years of age. Furthermore, other studies using ERPs indicate 

significant differences between adolescents and adults in terms of the amplitude and latency of 

certain components involved in basic auditory processing (Sussman et al., 2008), thus indicating 

that adult morphology of cortical auditory response is not reached until late adolescence 

(Orekhova et al., 2013; Strauss, Kotz, Scharinger, & Obleser, 2014). Behaviorally, auditory 

cortex maturation can be approached by observing the development of sound and speech 

discrimination (Moore & Linthicum, 2007). For example, gains in the ability to discriminate 

speech under difficult conditions are observed during late childhood (Orekhova et al., 2013). 

Therefore, enhanced language acquisition and detection skills may reflect a capacity for complex 

auditory processing (Orekhova et al., 2013).  

 Primary and secondary auditory areas are mainly in charge of basic processing of auditory 

stimuli. This being said, other cortical areas in charge of cognitive processes have been shown to 

play an integral role in these processes (Machado, Teixeira, & da Costa, 2018).   
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Prefrontal cortex  

The prefrontal cortex (PFC), the association cortex of the frontal lobe, is involved in many 

cognitive abilities and plays a crucial role in executive functioning in humans (Teffer & 

Semendeferi, 2012). It matures later in development and exhibits more complex dendritic 

arborizations than posterior regions (Fuster, 2002; Teffer & Semendeferi, 2012).  Indeed, a 

proliferation of synapses in the frontal cortex can be observed from childhood to puberty, 

followed by a plateau phase. By the end of adolescence, an elimination and reorganization of 

synaptic connections takes place (Blakemore & Choudhury, 2006). Accordingly, the 

development of the PFC is assumed to follow an inverted U-shape peaking around age six (Shaw 

et al., 2008), characterized by synaptogenesis in early childhood, increased synaptic pruning in 

adolescence followed by a slight increase in synaptogenesis and stabilization in adulthood (Teffer 

& Semendeferi, 2012). This developmental trajectory is thought to be linked to the maturation of 

frontal lobe cortical networks involved in many higher order processes such as language, 

decision-making, attention control and working memory (Casey, Galvan, & Hare, 2005). 

Interestingly, Diamond, Prevor, Callender, and Druin (1997) have found that a gradual 

improvement in performance on tests measuring executive functions are closely related to this 

slow PFC development (Diamond et al., 1997). Furthermore, modulation of prefrontal cortical 

activity using transcranial direct current stimulation has confirmed its role in basic learning 

mechanisms of sensory perception. Thus, the PFC is involved in early sensory encoding through 

top-down processing (Lafontaine, Theoret, Gosselin, & Lippe, 2013).   

Learning 

Learning is a survival enhancing skill that enables an individual to efficiently associate 

external stimuli and as a result, produce adapted behaviors based on these associations. 
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Developing and maintaining a good learning ability is essential to cope with a changing 

environment at every stage of life. Learning mechanisms and their underlying cerebral correlates 

are therefore a major field of interest for research in cognitive neuroscience. Habituation, a 

process that occurs as early as the fetal stage, is one of the most primitive forms of perceptual 

learning (Leader, Baillie, Martin, & Vermeulen, 1982). The main method to study the 

neurological correlates of habituation is to observe brain activity linked with the repeated 

presentation of a stimulus, namely, repetition effects (Grill-Spector, Henson, & Martin, 2006). 

Repetition effects, as observed by neuroimaging techniques, are thought to be the most primitive 

and fundamental neurophysiological correlate of learning as demonstrated by studies in animals, 

infants and fetuses (Morokuma et al., 2004; Snyder & Keil, 2008). 

Repetition effects 

 Repetition effects comprise both repetition suppression (RS) and repetition enhancement 

(RE) which are cortical responses to repeated stimuli. RS has been related to the recognition of a 

familiar stimulus whereas RE has been linked to the repetition of an unfamiliar one (R. N. 

Henson, 2015). More specifically, RS is a robust cortical process defined as the reduction in 

neuronal activity following the presentation of a repeated stimulus (Grill-Spector et al., 2006). On 

the other hand, RE is described as an increase in the neural response associated with recognition, 

learning and prediction of repeated stimuli (Recasens, Leung, Grimm, Nowak, & Escera, 2015). 

RS and RE are therefore thought to be complementary mechanisms of regularity encoding that 

occur at different time scales and cortical regions (Recasens et al., 2015). Studies have shown 

that behavioral performance, such as response accuracy and reaction time, reflect learning and are 

positively correlated with measures of RS in response to repeated stimuli, where a good 

behavioral performance showed greater RS than a bad one (Henson, 2003). These phenomena 
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have been studied using multiple neuroimaging techniques, which have confirmed that repetition 

effects are present not only in cortical areas responsible for stimulus processing (R. Henson, 

2003), but also at different cortical levels involved in higher level stimulus processing (Grill-

Spector et al., 2006). Using magnetoencephalography source analysis, Recasens et al. (2015) 

demonstrated that auditory RS and RE are complementary mechanisms of regularity encoding. 

More precisely, they found that RS in early auditory components involved regions of the auditory 

cortex located in the temporal and parietal brain regions. They also found a late RE effect in the 

frontal regions. Thus, they demonstrated that the neuronal generators in charge of RS and RE 

reflects functionally separated mechanisms implicated in different stages of auditory processing 

of the human brain (Recasens et al., 2015). Studies have shown that the repeated presentation of 

sounds (speech and non-speech) led to a reduction in bilateral neural activity of the temporal 

cortex but also that of additional regions surrounding it (Emberson, Cannon, Palmeri, Richards, 

& Aslin, 2017). This reduction in activity is thought to be linked to the presence of inhibitory 

interneurons in the upper layers of the auditory cortex (Kudela, Boatman-Reich, Beeman, & 

Anderson, 2018), layers which have been shown to develop later in life (Orekhova et al., 2013). 

These latter results suggest that maturational changes in the anatomy of the brain may lead to 

developmental changes in patterns of cortical activity. 

Repetition effect models 

 Several studies have tackled the complex task of modeling repetition effects at the 

neuronal level. Although competing repetition effects models exist, the ones within the 

theoretical framework of predictive coding, including the sharpening model and sensory gating, 

provide the best explanation for the neural correlates of learning.     
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Sharpening model. The sharpening model postulates that the presentation of repeated 

information leads to a fine-tuned cortical representation of sensory information (Alink, 

Abdulrahman, & Henson, 2018; Desimone, 1996; Grill-Spector et al., 2006). While novel stimuli 

activate large populations of non-specific neurons, repeated stimulus exposure results in fewer 

firing neurons. Neurons that keep firing carry critical information needed to identify the stimulus 

whereas neurons that stop firing are not, thus creating a more specific or sharper representation 

(Wiggs & Martin, 1998).  

Sensory Gating. Similarly, sensory gating is described as the early processing step of filtering 

redundant sensory information related to stimulus processing during its repeated presentation 

(Campbell, Bean, & LaBrec, 2018; Marshall, Bar-Haim, & Fox, 2004). This model describes the 

ability of the central nervous system to prevent sensory cortical areas from being flooded with 

irrelevant information by filtering incoming stimuli (Brinkman & Stauder, 2007). Marshall et al. 

(2004) have found that gating of irrelevant or repetitive stimulus information is present in 

different age groups.  This ability is thought to involve many cortical areas such as the temporo-

frontal, hippocampal and frontal cortical networks (Campbell et al., 2018).  

Predictive coding. Predictive coding is a neurobiological framework that explains how 

biological systems infer and learn from perceptual inputs. An implicit process creates an internal 

model of sensory input with the goal of minimizing surprise, also called prediction error 

(Auksztulewicz & Friston, 2016). The model is based on the bidirectional flow of information in 

a hierarchical neural network where the incoming sensory inputs are encoded by representational 

units located at the higher levels of the network (Friston, 2005). These higher levels then send 

predictions to prediction error units located in the lower level, where the new sensory input is 

compared with the prediction (Ylinen, Bosseler, Junttila, & Huotilainen, 2017). Matching 
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between input and prediction results in a suppressed neural response, whereas a mismatch elicits 

a prediction error response, which is projected back to the higher level to adjust the internal 

model. For repetition effects, predictive coding explains RS in early sensory processing areas as a 

consequence of the progressive reduction in prediction error from higher-order, associative areas 

of the cortex such as the frontal cortex (Friston, 2005; R. Henson, 2003). Consequently, RS is 

considered the physiological correlate of a reduction in prediction error in response to a 

repeatedly presented stimulus achieved through the modification of existing connections between 

hierarchical levels (Baldeweg, 2006). In other words, as the difference between bottom-up 

sensory input and top-down experience-dependent prediction is lessened for each repetition, 

stimulus processing becomes more efficient and leads to the reduction of neurons needed to 

represent the stimulus as well as an enhanced ability to recognize and retrieve items from 

memory (Auksztulewicz & Friston, 2016).  

 Given the complexity of the cortical processes underlying RS and learning, it is believed 

that the combination of the different models provides the best explanation for the underlying 

neuronal correlates of repetition effects ( Grill-Spector et al., 2006).  

Development of auditory repetition effects 

Auditory event related potentials 

Emberson et al. (2017) brought forth that the developing brain does not respond to 

repetition in the same way that the mature brain does and provided robust evidence that auditory 

RS in the auditory cortices and frontal lobe is already observed in infants. Many developmental 

studies focused on sensory gating using the reduction in amplitude in auditory ERP between 

repetitions of clicks as a measure of RS. In a sample ranging from 7 to 13 years of age, Marshall 
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et al. (2004) found a positive correlation between RS and age, showing stronger RS in older 

subjects. These results were replicated in a sample with a larger age span, from 5 to 29 years of 

age (Brinkman & Stauder, 2007). Thus, younger age groups (ages 5 to 12) are believed to show 

less sensory gating when compared to older children and adults while also showing more within 

group variance (Davies, Chang, & Gavin, 2009). Further, adult patterns of sensory gating are 

thought to appear only around early adolescence (Marshall et al., 2004) 

Research on language and word learning related RS seems to focus on infants and shows 

RS in response to simple stimuli and RE when more complex ones are used (Dehaene-Lambertz, 

Dehaene, et al., 2006). Furthermore, development in older children has mostly been investigated 

in the framework of sensory gating as described earlier. Consequently, there is a lack of 

knowledge regarding the development of repetition effects across all age groups especially when 

using more complex language-related stimuli. Additionally, sensory gating focuses on early, 

perceptual components and does not allow insight into later, more cognitive and memory-related 

neural correlates of learning. Using a more complex type of language-related stimulus would 

potentially better reflect repetition effects as well as their development.  

Although ERPs allow a precise temporal resolution of cortical activity, this technique 

paints a pretty restrictive portrait of brain activity as they cause a loss of information that might 

be crucial to the understanding of certain cortical processes The EEG averaging technique used to 

generate ERPs can cause the loss of event-related changes in the magnitude and phase of EEG 

oscillations at specific frequencies (Luck, 2014). These neural oscillations are involved in the 

routing of information within and across brain regions but also in the control of information 

gating and maintaining sensory representations (Recasens, Gross, & Uhlhaas, 2018; Roach & 

Mathalon, 2008). Since less attention has been paid to the contribution of rhythmic activity 
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towards auditory perceptual learning, methods of EEG analysis emphasizing this type of activity 

should be adopted to clarify the functional correlates of auditory learning in the developing brain. 

Time-frequency analysis 

Time-frequency analysis is an EEG analysis technique that focuses on the spectral 

variations of the EEG signal through time (Luck, 2014). This method allows us to view the 

brain’s parallel processing of information, with oscillations at various frequencies reflecting 

multiple neural processes co-occurring and interacting which contribute to the integrative and 

dynamically adaptive processing of information (Roach & Mathalon, 2008). To quantify the 

changes in oscillatory activity in the time-frequency domains, methods focus on the 

quantification of the neuronal event-related synchronization (ERS) and event-related 

desynchronization (ERD) (Pfurtscheller & Aranibar, 1977). ERS and ERD result in increases and 

decreases in EEG power, respectively (Pfurtscheller, 1977). As such, changes in power are 

considered changes in neuronal synchrony. Thus, time-frequency analysis informs on which 

frequencies have the most power at specific points in time and space.   

The brain’s oscillatory activity spans a large range of frequencies commonly divided into 

five frequency bands, namely delta, theta, alpha, beta and gamma.  These frequency bands are 

thought to develop at different rates and reflect different cognitive processes (Jeannerod, 1997). 

Maturational studies of EEG oscillations report that lower frequencies decrease and higher 

frequencies increase with age (Clarke, Barry, McCarthy, & Selikowitz, 2001). 

Of interest, the theta and gamma bands are thought to reflect most cognitive processes 

important in auditory learning (Crivelli-Decker, Hsieh, Clarke, & Ranganath, 2018; Musacchia et 

al., 2017).  
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Theta. Although literature is conflicted regarding the accepted frequency range for theta band 

oscillations (Kropotov, 2010), the most commonly accepted range is 4 to 7Hz varying in 

amplitude and morphology (Jeannerod, 1997). The development of theta rhythms over frontal 

areas is thought to facilitate sustained emotional states and its presence over central areas reflects 

periods of focalized attention as well as realization of mental tasks implicating mnemonic 

processes (Muller & Jacobs, 2009). In a series of experiments, Klimesch was able to demonstrate 

that in human scalp EEG, the theta band synchronization responded selectively to the encoding of 

new information into episodic memory (Klimesch, 1999). In RS, Rigoulot et al. (2017) recently 

found in a sample with an age range of 9 to 32 years, that theta band power diminished after the 

second presentation of a visual stimulus over frontal electrodes proving the involvement of the 

theta band in repetition effects. Together, these results show that theta oscillations are involved in 

repetition effects underlying learning by encoding stimulus properties into episodic memory.  

Gamma. Gamma waves encompass frequencies ranging from 30 to 250Hz (Tallon-Baudry & 

Bertrand, 1999) which can further be divided into 2 bands called low (from 30 to 60Hz) and high 

(from 60 to 250Hz) gamma (Ainsworth et al., 2011; Edwards, Soltani, Deouell, Berger, & 

Knight, 2005). Auditory gamma oscillations are thought to reflect memory processes involved in 

learning (Frund, Busch, Korner, Schadow, & Herrmann, 2007). During speech discrimination 

tasks, high gamma frequencies are found in the posterior superior temporal gyrus, part of the 

auditory cortex demonstrating its implication in the processing of more complex stimuli (Crone, 

Korzeniewska, & Franaszczuk, 2011). These results indicate that gamma band synchronization is 

not a purely sensory driven phenomenon, but reflects general aspects of cortical functions (Fries, 

2009) involved in the perceptual binding between stimulus features (Scheeringa & Fries, 2017). 

Very sparse information exists on the developmental course of gamma waves especially in the 
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context of auditory learning. Although gamma rhythms can probably occur across the entire 

cortex, gamma band synchrony exhibits great spatial specificity (Scheeringa & Fries, 2017). For 

example, it was found that increased gamma-band suppression in the prefrontal region in adults 

was positively correlated with faster reaction times in a visual encoding task (Ossandon et al., 

2011). Further, gamma frequencies in the auditory cortex are mainly associated with the encoding 

of rapid feature analysis, temporal binding of stimulus events and attention control (Musacchia et 

al., 2017).  

Together, theta and gamma oscillations reflect important neuronal activity that might 

underlie cognitive processes involved in habituation and learning. This being said, we do not 

know their precise roles, how these frequency bands influence each other or if other frequency 

bands might come into play when learning processes are triggered by repetition paradigms. 

Moreover, the maturation of repetition effects has yet to be elucidated.  
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Scientific Article 

 

Objective. The objective of the scientific article included in this Master’s thesis is to 

elucidate the developmental course of auditory repetition effects across frequency bands. We 

hypothesize that the characteristics of repetition effects change with age, based on the different 

structural maturation observed in the auditory and frontal cortices.  

 Contributions. The scientific article included in this Master’s thesis describes the 

research project that was conducted by Audrey-Rose Charlebois in the framework of her Master’s 

degree, based on an initial idea from her supervisor Sarah Lippé. This project is part of the 

research on brain development in healthy individuals conducted in the Neuroscience of Early 

Development laboratory. As the first author of the scientific article, Audrey-Rose Charlebois 

devised the research problem, participated in the testing of subjects, took care of EEG data pre-

processing, conducted the statistical analyses and wrote the article. Inga Sophia Knoth was 

involved in the design of the study, helped with participant recruitment and testing as well as the 

development of data pre-processing pipelines and statistical analyses. Valérie Côté and Charles-

Olivier Martin helped with recruitment and data acquisition of participants. Fanny Barlaam was 

involved in the development of data analysis techniques, in the interpretation of results and in 

proofreading of the article. Jean-Marc Lina, with the help of Kristian Agbogba, worked on the 

technical development of data analysis strategies. Sébastien Jacquemont provided additional data. 

Sarah Lippé guided Audrey-Rose throughout the whole process. The article is currently under 

final review by co-authors before submission. It is expected to be submitted to Cerebral Cortex 

within the next month.  
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Abstract 

Repetition effects are defined as changes in the neural response to repeatedly presented 

stimuli and reflect elementary forms of auditory perceptual learning. However, data is lacking on 

how repetition effects in response to complex verbal auditory stimuli develop with age. 

Moreover, less attention has been paid to the contribution of cortical oscillatory activity in the 

development of auditory repetition effects. In this study, EEG was recorded in 101 participants 

from 3 to 40 years old while 30 pseudowords were repeated 6 times each. EEG time-frequency 

(TF) analyses were computed for each pseudoword presentation and linear mixed models were 

used to reveal how age was related to auditory repetition effects. For all ages, RS occurred early 

after stimulus onset in the lower theta band between the first and all subsequent repetitions. 

Similarly, RE was observed in gamma TF power between the first and all subsequent repetitions,  

again across ages. Importantly, only adults showed significant RS in the early occurring low 

alpha band and RE in the late low theta rhythms. Our data shows that the repetition effect is a 

general principle of the brain. However, neural mechanisms responsible for it mature until 

adulthood.  

 

 

Keywords:  

Repetition suppression, repetition enhancement, EEG spectral power, brain development, 

predictive coding.  
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1. Introduction 

Even in early stages of development, the brain exploits statistical regularities from inputs. 

These regularities are learned from repetition and form expectations facilitating further processes. 

This phenomenon has been known as repetition suppression in the brain signal (Nordt, Hoehl, & 

Weigelt, 2016). Several theoretical frameworks have attempted to provide an explanation for the 

cortical processes involved in repetition suppression (Kim, 2017). According to the sharpening 

model, repeated information leads to a sharpening of information representation in the cortex 

(Desimone, 1996; K. Grill-Spector, R. Henson, & A. Martin, 2006; Wiggs & Martin, 1998). 

While novel stimuli activate large populations of non-specific neurons, repeated stimulus 

exposure results in fewer firing neurons.  These neurons carry critical information needed to 

identify the stimulus, thus creating a more specific or sharper representation (Wiggs & Martin, 

1998). In the theoretical framework of “predictive coding’ (Friston, 2005), neuronal sharpening is 

thought to happen due to an interplay between bottom-up sensory input and top-down 

expectations in hierarchically organized sensory systems, ranging from the primary areas 

receiving sensory information from thalamic nerve projections to the frontal cortex generating 

predictive percepts (Summerfield et al., 2006). As the difference between bottom-up sensory 

input and top-down experience dependent prediction is reduced for each repetition, stimulus 

processing becomes more efficient, leading to the reduction of neurons needed to represent the 

stimulus as well as an enhanced ability to recognize and retrieve items from memory 

(Auksztulewicz & Friston, 2016). In addition to RS, repetition effects also include repetition 

enhancement (RE) where the repeated presentation of a stimulus leads to an increase in cortical 

activity (Sawamura, Orban, & Vogels, 2006). RE has received much less attention than RS but is 

also thought to reflect changes in information processing guided by principles of predictive 
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coding (Segaert, Weber, de Lange, Petersson, & Hagoort, 2013). Since attention was shown to 

counteract RS, RE may be the result of varying levels of attention to the stimuli (Garrido, Rowe, 

Halasz, & Mattingley, 2018). Combining the sharpening and predictive coding models provides a 

strong theoretical framework for the explanation of repetition effects. Since predictive coding is 

believed to underlie learning, it has specifically been used to explain language skill acquisition in 

infants (Saffran, Aslin, & Newport, 1996), such as word leaning and recognition (Gagnepain, 

Henson, & Davis, 2012).  

Auditory repetition effects occur at all ages in normally developing children and have 

been extensively used to study language development in infants. Neonates and 3 month-olds 

show a decrease in EEG amplitude in response to spoken syllables, the decrease being greater for 

the first repetition than for following ones (Dehaene-Lambertz & Dehaene, 1994; Dehaene-

Lambertz & Pena, 2001). In 2 month-olds a reduced BOLD response was found to repeated when 

compared to varied music and speech segments (Dehaene-Lambertz et al., 2010) and 9 month-

olds show a decrease in BOLD response with each subsequent repetition of a word (Bortfeld, 

Shaw, & Depowski, 2013). However, RE has also been reported in preverbal infants. Three 

month olds showed increased BOLD responses to the second as compared to the first 

presentation of a sentence in Broca’s area (Dehaene-Lambertz, Hertz-Pannier, et al., 2006), 

suggesting RE in response to more complex stimuli (syllables vs. sentences).  Interestingly, the 

same paradigm induced RS in inferior frontal and broad temporal regions in adults, suggesting 

that repetition effects to verbal auditory stimuli change with age (Dehaene-Lambertz, Dehaene, et 

al., 2006).  

Regarding the development of repetition effects in children, most studies focused on the 

developmental trajectory of sensory gating – a specific type of RS that describes the process of 
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filtering redundant sensory stimuli information, often measured as a reduction in P50 amplitude 

in response to the second presentation of an auditory ‘click’ stimulus (Brinkman & Stauder, 

2007). Sensory gating was found to be positively correlated with age, showing stronger RS in 

older subjects when investigated in a sample ranging from seven to 13 (Marshall et al., 2004) and 

five to 29 (Brinkman & Stauder, 2007) years. Adult patterns of sensory gating appeared in 

adolescence (Marshall et al., 2004). Younger age groups ((Brinkman & Stauder, 2007): 5-7 

years,(Davies et al., 2009): 5-12 years) showed less sensory gating when compared to older 

children and adults while also showing more within-group variance (Davies et al., 2009). 

Given these results, it appears that language and word learning related RS has been 

intensively studied in infants, showing RS in response to simple and RE in response to complex 

stimuli whereas development with age in older children has mostly been investigated in the 

framework of sensory gating, demonstrating mostly an increase in RS with age. Data is lacking 

for the development of repetition effects in young children as well as in response to more 

complex language-related stimuli. Additionally, sensory gating focuses on early, perceptual 

components whereas it does not allow insight into later, more cognitive and memory-related 

components of the EEG signal.  

The majority of research on the development of auditory EEG repetition effects has been 

done using ERPs. Generally, comparing ERPs across ages is complicated due to changes in 

morphology, amplitudes and latencies of components occurring with maturation (Fox, Anderson, 

Reid, Smith, & Bishop, 2010). Less attention has been paid to the contribution of oscillatory 

activity in an auditory habituation setting. Cortical rhythms play an important role in routing 

information within and between cortical regions, as well as controlling information gating and 

maintaining sensory representations (Fries, 2015). Increasing evidence in the predictive coding 
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framework indicates that neural oscillations are fundamental for the signaling of top-down 

predictions and bottom up prediction-errors conveyed across hierarchical regions in distinct 

rhythmic brands (Recasens et al., 2018). 

In this study, we aim at elucidating the developmental course of auditory repetition effects 

using time-frequency analysis of brain responses to repeatedly presented pseudowords. We 

hypothesize that characteristics of repetition effects change with age, based on the structural and 

functional maturation of brain regions involved in auditory learning. More precisely, we predict 

that specific frequency bands involved in cortical processes will exhibit different patterns of 

repetition across ages. 

2. Materials and Methods 

2.1 Participants 

A total of 112 healthy subjects took part in an auditory electroencephalography (EEG) 

experiment. Eleven participants had to be excluded from the EEG analyses due to difficulties in 

testing, movement artifacts and incomplete neuropsychological results. The 101 remaining 

participants (35 females) ranged in age between three and forty years (X=19.5 years, SD= 11 

years). As intellectual quotient (IQ) can affect the repetition effects (Knoth et al., 2018), scores 

for Performance IQ (PIQ) were obtained using the Leiter R, the WPPSI-IV, the WISC-V, and the 

WAIS-IV’s PIQ scales depending of the age of the participant. PIQ scores ranged from 67 to 155 

with a mean of 105 (SD=15.7). Recruitment took place at the CHU Ste-Justine Hospital and the 

University of Montreal. All participants were healthy and had no history of brain injury, 

psychiatric or neurological illnesses, did not take any medication, and were born at term. Normal 

hearing was reported in all participants. All of them were native French speakers. The study 
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protocol was reviewed and approved by the ethics, administrative, and scientific committees at 

the CHU Ste-Justine Hospital Research Center. Written informed consent obtained before the 

experiment from participants and parents or legal guardians of participants under the age of 18.  

2.2 Apparatus, stimuli and procedure 

Auditory stimuli were generated by a Dell Optiplex 790 PC using E-Prime 2.0 

(Psychology Software Tools, Inc., Pittsburgh, PA, USA). A total of 30 two-syllables 

pseudowords were chosen as ecological stimuli to induce learning of unfamiliar material. These 

words were taken from the BELEC (Mousty, Leybaert, Alegria, Content, & Morais, 1994) and 

the ODÉDYS-II (Jacquier-Roux, Valdois, Zorman, Lequette, & Pouget, 2009) pediatric batteries. 

The pseudowords used had a mean duraation of 1365ms (SD= 8ms) and were recorded in a 

soundproof chamber while being read by a female native French speaker. Volume was 

normalized across pseudowords to -3dB SPL.  

The EEG recording took place in an electrically shielded and dark soundproof 

experimental chamber. To induce a repetition effect, each pseudoword was presented six times 

with an interstimulus interval of 250ms. After the sixth presentation of the pseudoword, a 500ms 

inter-trial interval ensued, followed by the presentation of a new pseudoword. Stimuli were 

presented at a 70dB SPL intensity and 16-bit resolution. Two speakers (BX5a, M-Audio, Canada) 

were located laterally at a 30cm distance from the subject’s ears. A movie was shown to 

participants during the installation of the EEG net to reduce movement artifacts and facilitate the 

installation process. This same movie was silenced for the duration of the experiment (without 

subtitles), and participants were instructed to passively listen to the pseudowords being presented. 

The order of pseudowords was kept the same for all participants to avoid similar pseudowords to 

be presented successively.  
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2.3 EEG recordings ans analysis 

A high-density EEG system containing 128 electrodes was used for continuous recording 

(Electrical Geodesics System Inc., Eugene, OR, USA). Signals were acquired and processed by a 

G4 Macintosh computer using NetStation EEG Software (Version 4.5.4). The vertex was used as 

the reference electrode during recording and impedances were maintained below 40 kΩ (Tucker, 

1993). EEG data was analog bandpass filtered from 0.01 to 4000 Hz and sampled at 1000 Hz. 

Off-line pre-processing was carried out with MATLAB (version R2014b) and EEGlab toolbox 

(v.13.6.5b) (Delorme & Makeig, 2004; Makeig, Debener, Onton, & Delorme, 2004).  Data was 

initially resampled to 250Hz and was digitally filtered with a lower-bound 0.5 filter and a 60Hz 

notch filter. Twenty-eight electrodes containing muscular artifacts, around the neck and face were 

removed for all participants. Electrodes with voltages lower than 2µV and higher than 200µV 

were removed using the trimOutlier plugin from EEGlab. Data was then re-referenced to an 

average reference. Eye movement artifacts were corrected using the semi-automatic independent 

component analysis (ICA) tool implemented in EEGlab. Each segment contains epochs from -

440 to 1536ms encompassing each repetition of a pseudoword. EEGlab’s jointprob function 

(which determines the probability distribution of values across data epochs) was used to exclude 

trials in which values exceeded a certain threshold (in terms of standard deviation [SD], single 

channel limit was set to 6 SD and all-channel limit to 2 SD). Trials with voltage amplitudes of 

±200 µV were also algorithmically removed. Finally, all trials were visually inspected and those 

contaminated with artifacts were manually removed. Following epoch rejection, an average of 

148.55 epochs (SD 19.6) per participant were considered artefact free and kept for analysis.  
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For the time-frequency decomposition, six regions of interest (ROI) were chosen for 

analysis: left frontal (F3), right frontal (F4), centrofrontal (FCz), central (Cz), left temporal (T5) 

and right temporal (T6). 

A Singular Value Decomposition (SVD) was computed on all electrodes defining each 

ROI with MATLAB (The Mathworks Inc., Natick, MA) and the first component was retained for 

each ROI. Each epoch of the SVD signal was analyzed in the time-frequency domain with 

complex Gaussian Morlet’s wavelets (Tallon-Baudry & Bertrand, 1999). This convolution 

provided for each trial a TF power map for each trial: 

                                                    𝑃 𝑡, 𝑓 = 𝑤 𝑡, 𝑓 ∗ 𝑠 𝑡 ) 

where s(t) was the signal as a function of time t and w(t,f) was for each time t and frequency f a 

complex Morlet’s wavelet: 

𝑤 𝑡, 𝑓 = 𝐴 ∗ 𝑒𝑥𝑝
−𝑡)

2𝜎1)
∗ 𝑒𝑥𝑝 2𝑖𝜋𝑓𝑡  

with 𝐴 = 	 (𝜎𝑡 𝜋)
789	and 𝜎𝑡 = :

);<=
, and σf a function of the frequency f: σf = @

AB
.  

In the EEGlab toolbox, wavelet cycles have been defined by entry 3 0.8 as parameters. A 

baseline correction was performed by computing the average of all six repetitions of a 

pseudoword and dividing each repetition by this mean. Each repetition was then represented as 

Event Related Spectral Perturbation (ERSP) plots. The ERSP (Makeig, 1993) shows mean log 

event-locked deviations from baseline mean power at each frequency. Finally, a grand mean 

average across subjects was computed for each ROI. 
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To identify the time-frequency windows of interest for the statistical analysis, six t-test 

maps were generated to identify significant differences between power in time-frequency 

oscillations associated with each repetition. T-test maps represented comparisons between 

subsequent presentations (i.e. first vs. second, second vs. third, etc).  

 Five time-frequency windows (TFW) showing significant repetition effects were 

identified. The sum of all values contained in each time-frequency window was used as total 

power in time-frequency oscillations value by window for each repetition of a pseudoword 

2.4 Statistical analysis 

All statistical analyses were performed using SPSS statistics, version 25 (IBM Corp., 

Armonk, NY, USA). Linear mixed model (LMM) analyses were performed to understand how 

age might contribute to repetition effects in spectral power. A LMM approach was chosen 

because it can easily deal with missing data and with small sample size, in addition to enabling 

random intercepts and slopes, allowing for nonlinear modelling and selecting appropriate 

covariance structure (Field, 2014; West, 2009). A series of steps were undergone to determine 

model fit starting by evaluating if fixed intercept and fixed slope would improve the 

ROI*TFW*Rep model according to the Chi-square -2log likelihood ratio test (Field, 2014). The 

appropriate polynomial structure for changes in power across repetitions was chosen by 

comparing model fit for linear, quadratic and cubic structures (Shek & Ma, 2011). LMM analysis 

was performed using maximum likelihood for estimation method (Field, 2014) and predictor 

groups, age and PIQ, were added sequentially, verifying if model fit was improved by addition of 

each predictor using chi-square likelihood ratio test (Field, 2014). Finally, covariance structure 

was selected by comparing model fit between available structures using Akaike’s Information 

Criterion (AIC) (Field, 2014).  
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 Depending on the significant interactions and main effects found, additional LMMs were 

performed to explore power changes across repetitions on each TFW separately following the 

same series of steps previously described for each model. Bonferroni-corrected post hoc paired 

comparisons were performed for significant main effects. Significance level was set to 5% 

(p=0.05). Finally, in order to explore significant interactions and reveal patterns of RS, the cohort 

was divided into four age groups reflecting auditory development, namely 3 to 6, 7 to 11, 12 to 

17, and 18 years and older (Litovsky, 2015) .  

3. Results 

3.1 Linear mixed models 

 Baseline model: intercept, slope and polynomial structure. The construction of the 

model started with a repeated measures (repetition (6) x ROI (6) x TFW (5)) baseline model with 

power as outcome variable and repetition, ROI and TFW as fixed effects, without any predictors. 

The Chi-square likelihood ratio test displayed a better fit with fixed intercept [vs. with a random 

intercept: χ2 (1, N = 101) = 0.125, p > 0.995]. Next, we introduced a random slope to the model, 

allowing slopes across repetitions to vary between participants, which did not significantly 

improve the model [c2 (1, N = 101) = -1391.796, p > 0.995]. To examine the fit of a quadratic 

curve model, we added a quadratic term for repetition (repetition*repetition) to the model, which 

displayed a significantly better fit compared to the linear model [c2 (24, N = 101) = 167.029, 

p < 0.001]. We then looked at the model fit of a cubic curve model by adding a cubic term 

(repetition*repetition*repetition) to the model, which demonstrated a significantly better fit 

compared to the quadratic model [c2 (24, N = 101) = 77.642, p < 0.001]. Therefore, using the chi-

square likelihood ratio test, best fit for the baseline model was found using fixed intercept and 

slope with a cubic curve model.  
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Predictors. The first predictor added to the model was age to verify if this information 

improves model fit. Interactions between repetition and TFW; age and repetition; age and TFW; 

age and ROI, and repetition, ROI and TFW as well as repetition, ROI and TFW were entered as 

fixed effects. Adding the predictor “age” improved the model significantly [c2 (15, N = 101) = 

47.621, p < 0.001]. While no significant main effect was found for repetition and ROI, TFW 

yielded a significant effect (F (3, 4792.478) = 30.049, p= 0.0001), meaning that power 

significantly changed across TFW. Furthermore, a significant main effect was found for age (F 

(1, 3649.037) = 12.727, p= 0.0001), meaning that power also significantly changed across age. A 

significant interaction was found between the cubic repetition term and TFW (F (3, 4537.878) = 

15.612, p= 0.0001), suggesting that power at each repetition differed between TFW. Finally, an 

interaction was found between the cubic repetition term and age (F (1, 3678.878) = 4.379, p= 

0.036), suggesting that the cubic repetition term also differed according to age.  

To evaluate the effect of IQ on the model, PIQ was added as a second predictor and fixed 

effect to the model. There were no significant results and model fit was not significantly 

improved with PIQ [c2 (9, N = 101) = 3.047, p >0.2]. PIQ was therefore not retained in the 

subsequent models.  

3.2 Models divided by TFW 

Based on the significant interaction between TFW and repetitions, separate models for 

each TFW were built to examine their distinct repetition effects. The construction of the models 

for each TFW started again with a repeated measures baseline model (repetition (6) x ROI (6)) 

with TF power as outcome variable and repetition and ROI as fixed effects, without any 

predictors. 
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TFW1: 4.5-9Hz & 200 to 950ms. A fixed intercept, fixed slope and a quadratic curve model [c2 

(6, N = 101) = 40.551, p < 0.001] had the best fit using the chi-square likelihood ratio test. Age 

was added as a predictor and model fit was significantly improved [c2 (8, N = 101) = 17.624, p < 

0.05]. A significant main effect of age was observed (F (1, 1133.878) = 7.704, p = 0.006), 

meaning that power differed across age. Further, a significant interaction between age and 

quadratic repetition term was found (F (1, 1195.472) = 9.808, p = 0.002), showing that power for 

each repetition differed across age. Further statistical inquiries to explain this interaction are 

specified in the “Age interaction” section. Figure 1 shows the sum of powers across repetitions 

for TFW1. 

 

Fig.  1 EEG sum of powers for TFW1 across presentations one through 
six (Rep1-Rep6) over ROI Cz averaged for each age group. Error bars 
are showing standard deviations. ***p<0.001 
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TFW2: 3-4.5Hz & 200 to 1000ms. As determined by the chi-square likelihood ratio test, best fit 

for the baseline model was found to be a fixed intercept and slope model with cubic curve [c2 (6, 

N = 101) = 48.417, p <0.001]. A significant main effect was found for the quadratic repetition 

term (F (1, 943.772) = 31.669, p = 0.0001), meaning that power significantly changed between 

repetitions. A Bonferroni-corrected post hoc test showed a significant reduction in power 

between the first and all following presentations of a pseudoword (results in Table 1). The 

addition of age as a predictor did not improve the model significantly [c2 (9, N = 101) = -50.202, 

p > 0.995]. Figure 2 shows the sum of powers across repetitions for TFW2.  

 

Fig.  2 EEG sum of powers for TFW2 across presentations one through 
six (Rep1-Rep6) over ROI Cz averaged for each age group. Error bars 
are showing standard deviations. ***p< 0.001, **p<0.01 
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Table 1 Mean sum of power (±SD) for each repetition and age group and 
t statistics for significant power differences between repetitions at Cz and 
for TFW2 (Bonferroni corrected p-values). 

Repetition All participants 
1 263.9 (±541.4) 

2          -159.6 (±530.2) 

1 vs. 2 t (100) = 5.7, p=0.0001 

3 -114.7 (±681.2) 

1 vs. 3 t (100) = 4.3, p=0.0001 

4 28.1 (±546.4) 

1 vs. 4 t (100) = 2.9, p=0.0001 

2 vs. 4 t (100) = -2.4, p=0.018 

5 -28.2 (±549.7) 

1 vs. 5 t (100) = 3.6, p=0.0001 

6 -10.1 (±562.6) 

1 vs. 6 t (100) = 3.4, p=0.0001 

2 vs. 6 t (100) = -1.9, p=0.012 

 
 
 
TFW3: 30-40Hz & 815 to 1125ms. Using the chi-square likelihood ratio test, best fit for the 

baseline model was found using a fixed intercept and slope and a cubic curve model [c2 (6, 

N = 101) = 26.954, p <0.001]. The addition of age as a predictor significantly improved the 

model [c2 (9, N = 101) = 18.902, p <0.05]. This being said, the main effect for age was not 

significant (F (1, 1466.885) = 1.093, p= 0.296) nor was the interaction of age and cubic repetition 

term (F (1, 1478.190) = 0.093, p= 0.761). A significant interaction was found between the cubic 
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repetition term and ROI (F (5, 2559.808) = 4.021, p= 0.001), meaning that power significantly 

changed between repetitions across ROI.  

As was done with the previous TFW, LMMs were performed by ROI to explore this 

interaction. Again, the baseline model with the best fit was found to be a linear model with fixed 

intercept and slope. A significant main effect for repetition was found at frontocentral, left 

frontal, right frontal and right temporal sites [frontocentral: (F (1, 377.866) = 6.764, p= 0.010); 

left frontal: (F (1, 376.317) = 14.133, p= 0.0001); right frontal: (F (1, 378.319) = 4.067, p= 

0.044); right temporal: (F (1, 375.515) = 4.847, p= 0.028)]. A Bonferroni-corrected post hoc test 

within each of these ROIs revealed significant differences in power between repetitions only in 

frontocentral and left frontal ROIs. For the frontocentral ROI, a significant increase in power 

between repetition 1 and 4 was observed. At left frontal ROI, a significant increase in power was 

observed between the first and all subsequent repetitions (results in Table 2). 
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Table 2 Mean sum of power (±SD) for each repetition and age group and 
t statistics for significant power differences between repetitions at F3g 
and for TFW3 (Bonferroni corrected p-values). 

Repetition All participants 

1 -99.9 (±139.8) 

2          -26.5 (±137.6) 

1 vs. 2 t (100) = -3.6, p=0.002 

3 -9.7 (±116.8) 

1 vs. 3 t (100) = -4.7, p=0.0001 

4 -38.5 (±156.9) 

1 vs. 4 t (100) = -3.0, p=0.022 

5 -17.0 (±133.4) 

1 vs. 5 t (100) = -4.1, p=0.0001 

6 -13.0 (±136.9) 

1 vs. 6 t (100) = -4.7, p=0.0001 

 

TFW4: 3-5Hz & 1200 to 1500ms. Using the chi-square likelihood ratio test, best fit for the 

baseline model was found using a fixed intercept, fixed slope and a linear model. Age was added 

as a predictor and model fit was significantly improved [c2 (7, N = 101) = 15.005, p <0.05]. A 

significant main effect of age was then observed (F (1, 951.511) = 6.530, p= 0.011), meaning that 

power differed across age. Further, a significant interaction between age and repetition was found 

(F (1, 976.855) = 6.498, p= 0.011), showing that power for each repetition differed across ages. 

Further statistical analyses to explain this interaction are specified in the “Age interaction” 

section. 
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3.3 Age interaction 

As mentioned above, TFW1 and TFW4 all exhibited a repetition*age interaction. To 

further explore this significant interaction, we decided to split the cohort in the following four age 

groups: 3 to 6 years old, 7 to 11 years old, 12 to 17 years old and 18 years older. We ran separate 

LMMs for TWF1 and TWF5 by age groups in order to clarify how age influenced repetition 

effects. Using the steps described earlier, best model fit was obtained using a linear model with 

fixed intercept and slope.     

3 to 6 years old. None of the two TFWs had a significant main effect for repetition in this age 

group [TFW1: (F (1, 113.698) = 0.080, p= 0.778); TFW4: (F (1, 113.441) = 0.072, p= 0.788)]. 

Figure 3 shows ERSPS plots for each repetition for the 3 to 6 years old age group.  

 

Fig.  3 ERSP plots of repetitions one through six for participants with 
ages 3 to 6 at Cz.  
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7 to 11 years old. Neither of the two TFWs showed a significant main effect for repetition for 

this age group [TFW1: (F (1, 176.382) = 0.616, p= 0.434); TFW4: (F (1, 174.352) = 0.438, p= 

0.495)]. Figure 4 shows the ERSP plots for each repetition for the 7 to 11 years old group. 

 

Fig.  4 ERSP plots of repetitions one through six for participants with 
ages 7 to 11 at Cz.  

 
 
12 to 17 years old. Once again, the two TFWs did not show a statistically significant repetition 

effect for this age group [TFW1: (F (1, 146.053) = 0.704, p= 0.403); TFW4: (F (1, 166.336) = 

0.000, p= 0.983)]. Figure 5 shows the ERPS plots for each repetition for the 12 to 17 years old 

group.  
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Fig.  5 ERSP plots of repetitions one through six for participants with 
ages 12 to 17 at Cz.  

 

18 years old and above. Significant main effects of repetition were found for both TFWs in this 

age group. For TWF1, the significant main effect observed (F (1, 446.970) = 14.615, p= 0.0001) 

showed that power changed between repetitions. A Bonferroni-corrected post hoc test showed a 

significant reduction in power between repetition one and all subsequent repetitions (results in 

Table 3). TFW4 showed a significant main effect for repetition (F (1, 502.091) = 12.267, p= 

0.001). Bonferroni-corrected post hoc test showed that the reduction in power is significant 

between repetitions 1 and 5 as well as 1 and 6 (results in Table 4). Figure 6 shows the ERSP plots 

for each repetition for the 18 years and older group.  
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Table 3 Mean sum of power (±SD) for each repetition and age group and 
t statistics for significant power differences between repetitions at Cz and 
for TFW1 (Bonferroni corrected p-values). 

Repetition 3 to 6 years 7 to 11 years 12 to 17 years 18 years and older 

1 51.2 (±478.8) -97.4 (±839.1) 218.9 (±752.1) 378.0 (±710.1) 

2 -3.1 (±580.7) -239.5 (±710.1) 64.8 (±419.4) -265.2 (±699.6) 

1 vs. 2    t (636) = 4.585, p=0.0001 

3 139.1 (±839.1) -66.9 (±665.9) 418.8 (±879.3) -276.5 (±726.0) 

1 vs. 3    t (520) = 4.570, p=0.0001 

4 -225.3 (±678.2) 42.8 (±637.5) -221.2 (±782.6) -186.0 (±699.2) 

1 vs. 4    t (519) = 3.622, p=0.0001 

5 -288.9 (±681.2) -119.5 (±749.0) -325.0 (±854.3) -229.9 (±894.6) 

1 vs. 5    t (519) = 4.017, p=0.0001 

6 -134.6 (±839.1) -225.9 (±625.7) 201.1 (±779.9) 32.0 (±721.5) 

1 vs. 6    t (519) = 2.685, p=0.001 

 

Table 4 Mean sum of power (±SD) for each repetition and age group and 
t statistics for significant power differences between repetitions at Cz and 
for TFW4 (Bonferroni corrected p-values). 

Repetition 3 to 6 years 7 to 11 years 12 to 17 years 18 years and older 

1 -141.3 (±191.5) -167.9(±279.9) -88.3 (±254.9) -185.9 (±285.2) 

2 -23.5 (±292.1) -73.4 (±259.7) -121.8 (±273.3) -140.6 (±275.4) 

3 -54.8 (±242.9) -11.5 (±280.0) -0.3 (±290.8) -170.6 (±293.6) 

4 -34.2 (±168.1) -122.1 (±264.7) -182.7 (±285.4) -154.7 (±324.4) 

5 -164.8 (±180.1) 43.6 (±267.6) -166.2 (±343.2) -63.9 (±295.1) 

    1 vs. 5    t (519) = -2.0, p=0.049 

6 -107.4 (±286.8) -46.8 (±247.7) -5.1 (±365.8) -19.7 (±297.7) 

    1 vs. 6    t (519) = -3.2, p=0.002 
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Fig.  6 ERSP plots of repetitions one through six for participants with 
ages 18 and over at Cz.  

 

4. Discussion 

The objective of this study was to determine the developmental course of auditory 

repetition effects. A typical RS pattern was observed across all ages in the early theta activity 

(200-1000 ms after stimulus onset) where TF power decreased between the first and all 

subsequent presentations of a pseudoword. In addition, RE in the gamma frequency band was 

found for all ages in the left frontal and fronto-central ROIs. In terms of the development of 

repetition effects, age was observed to have an influence in the high theta/low alpha window 

(200-1000 ms) and later in the theta band (1200-1500 ms), showing repetition effects in adults 

but not in children and adolescents. More specifically, RS was found early after stimulus onset in 

the adult group between the first and all following repetitions in the high theta/low alpha band, 
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whereas RE was found at stimulus offset, occurring in the theta band activity between the first 

and fifth as well as first and sixth presentations in adults.  

4.1 Time-frequency without age effects 

Our results show a reduction in theta rhythms (3 to 4.5 Hz) with stimulus repetition, 

starting 200ms after stimulus onset for all participants and in all ROI. Significant TF power 

reduction (RS) was found between the first and all subsequent presentations of a pseudoword. 

Since this phenomenon was observed from childhood to adulthood, RS in lower frequencies 

appears to represent robust processes implicated in auditory repetition effects. It is not surprising 

that repetition effects in these slower rhythms were already denoted in children as young as 3 

years old as delta and theta frequency bands are the first to develop (Whitford et al., 2007). More 

precisely, Lippe et al. (2009) demonstrated that the infant’s brain is dominated by slow rhythms, 

with maturation of the theta frequency band seen as early as five months. The fact that RS is 

observed as early as the first repetition of the stimulus reflects that lower theta is involved in 

basic processing of auditory stimuli. Accordingly, Mai, Minett, and Wang (2016) have found that 

phonological processing involved higher powers at slower rhythms (i.e. delta and theta) in adults. 

RS in low theta might indicate more efficient phonological processing of the pseudowords. As 

these results were seen in all our participants, including children as young as 3 years, it confirms 

that these phonological processes are already established in early childhood.  

Further, RE in the low gamma range (between 30 and 40Hz) was observed across all ages 

around 800ms post-stimulus onset (during stimulus presentation). Interestingly, only frontal ROI, 

mostly the left frontal ROI, showed RE between the first and all following presentations. 

Although the spatial acuity of EEG is not precise, activity in the frontal ROI might reflect the 

implication of higher order cortical areas like the prefrontal cortex in the processing of repeated 



 37 

pseudowords (Mainy et al., 2008). Frontal increases in gamma activity have been related to 

stimulus maintenance in short-term memory tasks involving the learning of syllables (Kaiser & 

Lutzenberger, 2005). Alternatively, increases in gamma TF powers have been observed in 9 to 12 

year old children when subjected to an auditory selective attention task (Yordanova et al., 2000), 

showing that gamma frequencies are also involved in attentional mechanisms. Selective attention 

and working memory are inter-dependent core cognitive functions that play an important role in 

learning (Ku, 2018), the observed gamma TF power RE may reflect either of these cognitive 

process. Knowing that gamma band activity shows greater relative power increases only after age 

5 (Lippe et al., 2009), a surprising finding was the lack of age effects for these oscillations. Our 

results indicate that neuronal mechanisms underlying repetition based word learning are already 

developed by 3 years of age.  

4.2 Time-frequency windows with age effects 

Nevertheless, maturation of cortical responses to stimuli repetitions was found in our data 

in the high theta/low alpha and later low theta windows. Specifically, significant repetition effects 

in these windows were only present in the adult group and not in our children or adolescent 

participants. RS was found in adults between the first and all other repetitions for the high 

theta/low alpha band encompassing frequencies from 4.5 to 9Hz. As mentioned earlier, an 

increase in the dominant frequency of the EEG power spectra throughout childhood and 

adolescence occurs (Cragg et al., 2011). This developmental shift in dominant frequencies is only 

completed after the age of 16 (Marcuse et al., 2008). The natural involvement of higher theta and 

alpha cortical rhythms in our adult group may be analogue to this shift in frequencies with 

maturation. One adult study in magnetoencephalography showed that repeated presentations of 

pseudowords resulted in significant RS in the 5-15Hz range (Tavabi, Embick, & Roberts, 2011). 
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In addition to obtaining similar results for the adult group, our data shows that RS patterns in the 

high theta/low alpha band have not reached stability in our younger participants.  

The clear burst of activity observed in adults at the first presentation of a pseudoword 

reflects a synchronous and continuous firing of neurons. This increased neuronal firing is thought 

to facilitate the activation of functional networks by entraining synchronous neuronal firing 

across cortical regions (König & Schillen, 1991), enabling further processing. More studies are 

needed to elucidate mechanisms reflected in this developmental pattern.  

Furthermore, RE was observed in the lower theta band (3 to 5 Hz) towards the end of the 

stimulus (1200-1500 ms) in the oldest age group between the first and fifth, and first and sixth 

presentations of a pseudoword. As earlier occurring event related activity is generally associated 

to more basic auditory and phonological processing (Mai et al., 2016), and later activity is 

associated to higher order processes, this late theta activity might reflect a deeper processing of 

the pseudowords. The ability to discriminate speech under difficult conditions seems to improve 

across childhood and adolescence, and up until adulthood (Moore & Linthicum, 2007). In their 

review, Moore and Linthicum (2007) concluded that this enhanced skill likely reflects a capacity 

for more complex auditory processing, based on increasing neuronal communication. In line with 

those conclusions, the later theta TF power increase occurring only after the fifth presentation of 

a pseudoword that was observed in our adult group, might reflect that increased neuronal 

communication. Thus, we can assume that late activity in the lower theta band is related to 

speech processing which might not be fully developed in children and adolescents. Strauss et al. 

(2014) found that repeated presentations of pseudowords to adult participants induced an increase 

in theta TF power in bilateral fronto-temporal networks. They defined this theta power RE as an 

index of specific ambiguity-resolution processes where lexical re-evaluation of the pseudoword is 
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achieved by replaying sensory evidence (Fuentemilla, Penny, Cashdollar, Bunzeck, & Duzel, 

2010).  

4.3 Neuronal mechanisms underlying age related changes in repetition effects 

The neuronal mechanisms of the underlying developmental changes in repetition effects 

remain mainly to be demonstrated. However, differences in brain maturation, such as the 

development of GABAergic circuits involved in lateral inhibition (Muller & Scheich, 1988), may 

account for these age-related differences in repetition effects. Not only gamma frequency 

oscillations, but also alpha oscillations are modulated by GABAergic drugs (Hall, Barnes, 

Furlong, Seri, & Hillebrand, 2010). The development of GABA circuits, including synapse 

maturation and inhibitory neurotransmission, has been found to be completed only by the end of 

adolescence (Di Cristo, 2007). This leaves a critical developmental period during which 

experience can shape the GABAergic innervation (Di Cristo, 2007). This critical period for the 

development of inhibitory interactions is likely experience-dependent and characterized by a 

cortical reorganization that only occurs until a certain age in late childhood or early adolescence 

(Berardi, Pizzorusso, & Maffei, 2000).  

Early activity in the lower theta band (Recasens et al., 2018) as well as gamma (Fries, 

2015) oscillations are thought to underlie prediction-error generation in cortical-subcortical 

networks. Considering our results in the predictive coding framework, prediction-error generation 

mechanisms seem to be already developed in our younger participants.  Conversely, higher theta/ 

low alpha has been related to mediation of top-down feedback signals (Recasens et al., 2018). 

The lack of repetition effects in low alpha for these age groups suggests that top-down processes 

involved in predictive coding might only be fully matured once adulthood is reached. This being 

said, although early low theta activity is thought to be related to bottom-up processes, we did find 
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age effects in a later occurring theta oscillation. RE in this band also occurred only after several 

repetitions, suggesting that this activity reflects some parts of top-down processes (de Lange, 

Heilbron, & Kok, 2018). 

4.4 Conclusion 

In this study, we show that auditory EEG repetition effects of pseudowords comprise 

processes that are already present from a young age, reflecting a general principle of sensory 

processing, and others that mature with brain development. To our knowledge, this study is the 

first to reveal developmental differences in EEG TF repetition effects in response to repeatedly 

presented auditory pseudowords from early childhood to adulthood. We thereby contribute to the 

closure of the gap in available research in this field that has mainly focused on infancy and 

adulthood. This study contributes to the understanding of perceptual language learning 

throughout development. Given the complexity of the stimulus type used, studies comparing 

repetition effects in response to verbal stimuli of varying complexity would be of interest to 

further elucidate how auditory stimulus processing develops with age. Additionally, the majority 

of our results did not differ across different cortical regions. Knowing that EEG is mostly used 

for its precise temporal resolution and that auditory perceptive learning relies on brain structures 

that mature with age, imaging techniques with a better spatial resolution (i.e. NIRS, fMRI) should 

be explored to relate these functional findings to structural brain maturation.  
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General Discussion 

 

Objectives, Results and Scientific Contributions  

 The general objective of this Master’s thesis was to investigate the developmental course 

of auditory EEG repetition effects in healthy humans. We expected the cortical functional 

correlates of learning to change with development, considering that many structural and cognitive 

changes occur as the auditory and prefrontal cortices mature. To better understand these 

maturational patterns, we developed a study design that included 101 participants ranging from 3 

to 40 years old. This large age span allowed us to bridge the gap in available research on auditory 

perceptual learning that has mainly been looking at infancy and adulthood. An auditory repetition 

paradigm where pseudowords were repeated six times each, was presented to all participants in 

order to observe of the changes in brain activity with each repetition. A strength of this study was 

the use of pseudowords as auditory stimuli. Pseudowords allowed us to extend our investigation 

of auditory repetition effects from basic sensory processing, as observed in studies using sounds 

and syllables, to higher order cognitive steps of stimuli processing by mimicking vocabulary 

acquisition. Further, our paradigm included more repetitions than what is seen in literature, which 

mostly focuses on only one repetition. This enabled us to observe repetition effects that take more 

repetitions to appear and might be associated with higher cognitive processes. Altogether, the 

features of this experimental task allowed for a more thorough interpretation of repetition effects 

by combining complex language-mimicking stimuli and providing more repetitions. Time-

frequency analysis was used to compare the cortical activity associated to each repetition of a 

pseudoword. As most research on auditory development focuses on ERP analysis, our data 

represents one of the first attempts to reveal EEG repetition effects in terms of cortical 
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oscillations. Using LMM statistical analysis, we investigated EEG TF power repetition patterns 

across age in defined frequency bands at different regions of interest to reveal developmental 

trends. Analysis revealed that some repetition effects could be observed in all participants, 

regardless of age. More precisely, all participants showed a burst of activity early after stimulus 

onset in the low theta frequencies at the first presentation of a pseudoword. RS was seen for all 

subsequent repetitions and across all ages. Further, RE in gamma TF powers, occurring mid-

stimulus was seen between the first and all following stimulus presentations in the frontal region 

for all participants. Our results further suggest consequences of maturation on the repetition 

effects in other TF windows, where the signal decreases through repetitions only in our adult 

participants. Precisely, a high theta/low alpha burst of activity was only present in adults. RS in 

this frequency band was not observed for children and adolescents. Hence, the adult RS brain 

response seemingly involves not only the theta band, but also the low alpha band, recruiting 

somewhat higher frequency oscillations. Another modulation with age was found in the late time 

window, towards the end of the pseudoword. RE between the first and fifth repetition was found 

in the low theta band and towards the end of the pseudowords only in our adult group. These 

results demonstrate that high theta/low alpha activity as well as a later onset low theta 

enhancement in response to repeated auditory stimuli take more time to develop. Altogether our 

data show the developmental patterns of neural oscillations in response to repeated auditory 

pseudowords. We were also able to assume that repetition effects reflected different levels of 

stimulus processing and that these levels developed independently. This being said, more 

research using different experimental designs is needed to complement these findings and 

provide more mechanistic explanations. 
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Pseudowords, language acquisition and predictive coding 

 Language and word learning related RS has been studied in infants, showing RS in 

response to simple and RE in response to complex stimuli (Bortfeld et al., 2013; Dehaene-

Lambertz & Dehaene, 1994; Dehaene-Lambertz & Pena, 2001), whereas development with age 

in older children has mostly been investigated in the framework of sensory gating, demonstrating 

an increase in RS with age (Brinkman & Stauder, 2007; Davies et al., 2009; Marshall et al., 

2004). The use of pseudowords as auditory stimuli, as compared to vowels or syllables, allowed 

us to explore higher-order processes involved in language acquisition across age. While sensory 

processing is already present in infants, our results indicate that higher order processes mature 

during later brain development. These processes might be involved in language acquisition as 

pseudowords are thought to trigger cortical activity associated with lexical processes (Gagnepain 

et al., 2012).   

The auditory cortex is believed to mature cortical layer by layer (Moore & Linthicum, 

2007), starting with the development of the lower layers and progressing towards the upper layers 

(Orekhova et al., 2013). While axonal growth in the lower layers of the auditory cortex 

progresses until about 5 years of age, the superficial cortical layers as well as their intra-cortical 

connections with other layers and hemisphere mature from age 6 onwards (Moore & Linthicum, 

2007). The superior temporal gyrus (STG), which is part of the auditory cortex, is believed to 

play a role in spoken word recognition (Zevin, 2009). The STG contains a layer of sparse 

representations for each phoneme in the language which is assumed to be connected to lower-

level acoustic layers (in the primary auditory cortex), and a higher-level lexical layers 

(Gagnepain et al., 2012). Gagnepain et al. (2012) proposed a neurobiological predictive coding 

model in which the cells in the STG respond to pseudowords by coding the difference between 
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the predictions from a lexical-semantic system higher in the linguistic hierarchy and the sensory 

evidence derived from acoustic analysis in lower levels. These cells then project this prediction 

error to higher levels in the hierarchy to update previously compatible, and hence partially 

activated, lexical representations of the pseudoword (Gagnepain et al., 2012). Since the lower 

layers of the auditory cortex develop up until age 5 (Moore & Linthicum, 2007), the repetition 

effects we observed across ages might reflect the generation of prediction error based on auditory 

sensory input (Gagnepain et al., 2012). Our age dependent repetition effect results might reflect 

the involvement of higher layers where top-down lexical processes occur.  

Lack of Regions of Interest Effect 

 The auditory and prefrontal cortices, both involved in auditory perceptual learning 

(Machado et al., 2018), adopt different maturational time courses. The auditory cortex 

demonstrates important phases of developmental changes from early childhood to adolescence 

(Moore & Linthicum, 2007; Orekhova et al., 2013) as compared to the prefrontal cortex that 

continues to mature until adulthood (Teffer & Semendeferi, 2012). Therefore, one would expect 

differences in the developmental time course of repetition effects in the EEG activity associated 

with the different maturational patterns of those regions. Thus, we selected defined regions of 

interest based on a study done in our laboratory using an earlier version of our pseudowords task 

(Knoth et al., 2018). Following a spatial principal component analysis on all electrodes, Knoth et 

al. (2018) found that seven ROIs explained over 60% of data variance. Those ROIs include the 

ones that were selected for our study, namely: central, left frontal, fronto-central, right frontal, 

left temporal, and right temporal areas. Hence, an interesting finding of our study was the fact 

that for most frequency bands, repetition patterns did not seem to vary across cortical regions. In 

fact, only the gamma frequency band showed a more precise spatial location (i.e. left 
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frontocentral/frontocentral). Many reasons may explain why we were not able to observe 

differing effects according to regions of interest for most of the time frequency windows. First, 

although EEG has a high temporal resolution, its low spatial resolution does not allow for a 

precise definition of which cortical areas are involved in stimuli processing (Luck, 2014). The 

neuronal activity measured by EEG is in fact the summation of electrical dipoles emanating from 

neurotransmission in pyramidal cells perpendicular to the scalp (Luck, 2014). The voltage of 

dipoles measured at the surface of the scalp will therefore spread due to the different conducting 

properties of the brain, skull and scalp (Luck, 2014). Thus, the voltage for a single dipole will be 

fairly broadly distributed over the surface of the skull, creating spatial blurring (Luck, 2014). 

Using a combination of ERPs and functional magnetic resonance (fMRI), Milner et al. (2014) 

demonstrated that though auditory stimuli activated the auditory cortex (as observed using fMRI) 

auditory ERPs could be measured throughout the scalp. Our results replicate this finding as 

repetition effects did not differ across areas of interest for most frequency band. Again using a 

combination of ERP and fMRI, dipoles reflecting activity from the prefrontal cortex have been 

recorded in frontocentral electrodes (FCz) (Opitz, Rinne, Mecklinger, von Cramon, & Schroger, 

2002). Knowing that Cz and Fcz are very close and that dipoles originating from the auditory and 

prefrontal cortices could very well overlap might explain the generalized patterns observed in our 

data.   

Auditory Pseudoword Paradigm 

  Our experimental task contains many strengths such as the type of stimulus used (i.e. 

complex language-related pseudowords) and the increased number of repetitions as compared to 

other auditory perceptual learning studies. As this task is part of a series of tasks administered in 

our laboratory, electrode net installation and recording sessions can sometimes require 
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participants to sit still for up to 45 minutes. In our experience, while this is generally not an 

effortful demand for healthy adults, collecting EEG data can be challenging in children and 

clinical populations who can sometimes lose focus and become agitated. To collect comparable 

data across ages and populations with as little movement artefacts as possible, while still keeping 

a study design that allowed us to study higher-order stimuli processing, we decided to use a short 

inter-stimulus interval (ISI). The use of this short ISI is also validated because the task was 

initially designed for EEG signal analysis of early occurring auditory ERPs which requires less 

time before stimulus for the baseline correction. Indeed, when trials are segmented from the 

continuous EEG data, each segment includes a baseline period prior to the stimulus (Luck, 2014). 

Baseline corrections typically involves subtracting this average pre-stimulus activity from the 

entire trial (Luck, 2014). Thus, this correction minimizes the voltage offsets and drifts observed 

across time periods, between subjects and across ages, by centering the prestimulus period around 

the 0µV line. According to Luck (2014), the baseline period must be at least 20% of the overall 

segment duration. In our case, considering that we look at activity up to 1500ms post-stimulus, 

this means that our baseline should be a minimum of 300ms. Further, using a longer baseline 

period will render a more accurate estimate of the true voltage offset (Luck, 2014). Consequently, 

the 250ms ISI was not sufficient for our time-frequency analysis. Because baseline subtraction is 

based on the fact that voltage during the prestimulus period should contain nothing except offset 

and noise, we could not use a longer baseline period in our analysis since it would have cut into 

the previous stimulus which would have modified the amplitudes of the effects observed (Luck, 

2014). In order to keep a short task and to still get accurate data, we developed a baseline 

correction method that did not focus on the pre-stimulus interval. Hence, we decided to use the 

average of all 6 repetitions of a pseudoword as a baseline for each trial. By doing so, we 
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eliminated stimulus processing related activity that was common throughout all repetitions. Thus, 

we isolated neuronal activity that was strictly related to the repeated presentation of our 

pseudowords. Using this baseline correction method, we were able to obtain data comparable to 

what was found in the literature, therefore validating it’s use. Adopting this method of baseline 

correction will allow us to test a wide range of clinical populations that are more difficult to test.  
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Perspectives 

  

The most promising conclusion from the scientific article included in this Master’s thesis 

is that auditory repetition effects develop beyond adolescence into early adulthood, which can be 

observed using EEG TF analysis. From our results, we can assume, first that their involvement in 

such processes developed with age and second, that depending on their frequencies, cortical 

rhythms might play different roles in auditory perceptual learning. This being said, this Master’s 

thesis raises several questions for future research and opens the door to clinical applications. 

 Methodological and Data Analysis Perspectives.  

Adding a behavioral measure would help to shed light on the brain-behavior relationship 

in the repetition effects. Most frequently, RS has been associated to behavioral repetition priming 

which is described by the facilitated behavioral responses to a stimulus that has been previously 

presented. Nevertheless, the functional link between these two processes has not yet been 

completely elucidated (Gotts, Chow, & Martin, 2012). Decreases in reaction time have been 

related to auditory RS in studies using EEG (Murray, Camen, Spierer, & Clarke, 2008) and fMRI 

(Gagnepain et al., 2008; Heusser, Awipi, & Davachi, 2013). Moreover, our group demonstrated 

that disturbance of RS using transcranial direct-current stimulation influences recognition 

performance (Lafontaine et al., 2016; Lafontaine, Theoret, Gosselin, & Lippe, 2013). However, 

the relation between the possible repetition effects (RS vs. RE) over multiple repetitions and 

successful learning remains to be elucidated, particularly during development. As we do not 

know with certainty which characteristics of brain responses during encoding predict successful 
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learning, adding a behavioral measure involving the later recall of our pseudowords would clarify 

this.  

Since the development of auditory repetition effects has been extensively studied using 

ERP analysis (Marshall et al., 2004; Zhang, Li, Zheng, Dong, & Tu, 2017), it would be 

interesting to track the development of auditory habituation using the combination of ERP and 

TF analysis. As mentioned earlier, ERPs are composed of a series of positive and negative 

deflections that reflect the temporal-spatial dynamics of cortical responses to sensory or cognitive 

events (Luck, 2014). Cortical oscillations, on the other hand, contain both phase-locked event-

related brain responses called stimulus-evoked oscillations as well as stimulus-induced 

oscillations which vary in phase with respect to stimulus onset. Moreover, stimulus-evoked 

activity is time-locked across trials whereas stimulus-induced activities are not (Herrmann, Rach, 

Vosskuhl, & Struber, 2014). Therefore, while TF analysis allows to observe these evoked and 

induced activations (Luck, 2014), the averaging of trials necessary to obtain ERPs cancel out the 

induced activity (Herrmann et al., 2014). An ERP component can therefore be viewed as an 

event-related cortical rhythm of a specific frequency or a superposition of multiple event-related 

cortical rhythms of different frequencies (Herrmann et al., 2014). By combining these 

complementary methods, we could first, better define which cortical responses to repetition were 

stimulus-evoked and second, identify the stimulus-induced activity. In a predictive coding 

framework, the stimulus-evoked oscillations are believed to reflect the forward connections from 

sensory to higher areas involved in the bottom-up generation of prediction error (David, Kiebel, 

et al., 2006). On the other hand, the stimulus-induced oscillations play a role in the top-down 

mechanisms of perceptual synthesis (David, Kilner, & Friston, 2006). Thus, adding an ERP 
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analysis to our TF analysis would also allow to methodologically suggest which of our results 

were attributed to bottom-up versus top-down processes of predictive coding.  

  Developmental and Clinical Perspectives.  

 As emitted in the discussion of the article, our pseudoword paradigm was able to elicit 

neuronal activities that were understood within the theoretical framework of predictive coding. 

Using a cohort of participants with ages ranging from 3 to 40 years old, we covered the 

development of auditory repetition effects from early childhood, through adolescentce and up to 

adulthood. Thus, the scientific article included in this Master’s thesis provides data for the normal 

development of auditory perceptual learning using complex language-mimicking stimuli. As 

shown in the introduction, many studies have focused on the development of repetition effects in 

infancy using ERPs techniques. Therefore, it would be interesting to observe changes in cortical 

rhythms in infants. As repetition effects denote stimulus encoding and processing (Nordt, Hoehl, 

& Weigelt, 2016), it would be of interest to observe how our pseudowords task gives rise to those 

processes in preverbal infants. In the same train of thought, our paradigm could be applied to the 

elderly as repetition effects have been observed to change in older adults (Kober & Wood, 2017).  

 A question of interest is how repetition effects are affected in certain neurodevelopmental 

disorders. For example, in Autism Spectrum Disorder (ASD), hints to a special role of repetition 

have been described first on the behavioral level, in the form of an often expressed “need for 

sameness”, and second, on the neural level with differential RS effects following the repetition of 

visual and auditory stimuli (Ethridge et al., 2016; Knoth et al., 2018; Nordt et al., 2016). In the 

predictive coding framework, recent theories postulate that the heart of the difficulties in ASD 

lies in a perceptual overload caused by an imbalance in the way predictions based on sensory 

inputs are generated and taken into account. Thus, the brains of people with ASD seem to 
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consider irrelevant stimulus information which leads to a perceptual overload, or in other words 

perceptual hypersensitivity (Bolis, Balsters, Wenderoth, Becchio, & Schilbach, 2017). This 

dominance of sensory inputs generates the detailed perception of the environment and difficulty 

extracting its meaning, the lack of cognitive flexibility, and the stereotyped behaviors illustrating 

a significant resistance to change observed in ASD (Lawson, Rees, & Friston, 2014). The 

advantage of this “predictive brain” approach is that it can target a broader range of deficits and 

peculiarities symptomatic of ASD than earlier single deficit accounts. By studying alterations or 

dysfunctions of one or several components of predictive coding, one can attempt to identify 

behavioral markers associated with ASD. Outcomes could provide an opportunity for predictive 

brain theory to contribute to improvements for key challenges in diagnosis and treatment of 

children and adults along the autism spectrum. 
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Conclusion 

  

This Master’s thesis showed that by looking at repetition effects in EEG TF analyses, we 

were able to track developmental changes in auditory perceptual learning. Hence, we help in 

closing the gap in available research that has mainly focused on ERPs analysis of infants and 

adults. Future research should look at the brain-behavior relationship between cortical activity 

and learning by adding behavioral measures. Moreover, data analysis should focus on 

implementing experimental protocols combining complementary EEG data analysis methods, 

such as ERPs and TF, to better characterize the development of repetition effects. Finally, 

knowing that repetition paradigms are useful tools for studies in the field of developmental 

cognitive neuroscience, applying those paradigms to a wider range of ages (i.e. from infancy to 

elderly adults) could provide a more thorough portrait of the developmental time course of 

learning. Lastly, applying those paradigms to different clinical populations where we know 

defects in perceptual learning might be present could help us get a clearer picture of the deficits 

exhibited in those patients.  
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