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Sommaire

Dans la dernière décennie, une heureuse confluence de matériel, de logiciels et de théorie

ont permis à l’intelligence artificielle de connaître un renouveau: un “printemps” et qui,

contrairement au passé, semblent avoir mené non pas à la déception d’un autre “hiver”, mais

à un “été” durable, rempli de réelles avances.

Une de ces récentes avances est l’entrée en scène de l’apprentissage véritablement “pro-

fond”. Dans maintes applications les architectes de réseaux de neurones ont connu du succès

en les approfondissant, et plus personne ne doute de l’utilité de représentations profondes,

composées, hiérarchiques, apprises automatiquement à base d’exemples.

Mais il existe d’autres avenues, moins explorées, qui pourraient être utiles, comme l’em-

ploi d’alternatives au système numérique le plus commun, les nombres réels: nombres à basse

précision, nombres complexe, quaternions. . . . En 2017, moi-même et l’un de mes principaux

collaborateurs discutâmes du manque d’intérêt accordé au traitement en nombres complexes

et à l’analyse de signaux complexes ou aisément convertis en une série de nombres com-

plexes grâce à la transformée de Fourier (1D, 2D, à court terme ou non). Puisque ce secteur

semblait peu exploré, nous nous y sommes lancés et, au terme d’une année passée à relever

des défis propres à l’architecture et l’initialisation d’un réseau de neurones n’employant que

des nombres complexes, nous avons débouché sur des résultats prometteurs en vision infor-

matique et en traitement de musique. Nous déjouons aussi les pièges d’une initialisation et

d’une normalisation naïve de ce type de réseau de neurones avec des procédures adaptées.

Mots-clés: Intelligence artificielle, Apprentissage profond, Apprentissage automatique,

réseaux de neurones, nombres complexes.
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Summary

In the past decade, a convergence of hardware, software and theory have allowed artificial

intelligence to experience a renewal: a “spring” that, unlike previous times, seems to have

led not to a burst hype bubble and a new “AI winter”, but to a lasting “summer”, anchored

by tangible advances in the field.

One of the key such advances is truly “deep” learning. In many applications, the ar-

chitects of neural networks have had great success by deepening them, and there is now

little doubt about the value of deep, composable, hierarchical, automatically-learned-from-

examples representations.

But there exist other, less-well-explored avenues for research, such as alternatives to the

real-valued number system most commonly used: low-precision, complex, quaternions. . . . In

2017, myself and one of my primary collaborators discussed the seeming lack of interest given

to purely complex-valued processing of digital signals, either directly available in complex

form or convertible to such using e.g. the Fourier Transform (1D, 2D, short-time or not).

Since this area seemed under-explored, we threw ourselves into it and, after a year spent

dealing with the challenges of neural networks with purely complex-valued internal repre-

sentations, we obtained good results in computer vision and music spectrum prediction. We

also expose the pitfalls of naively initializing and normalizing such complex-valued networks

and solve them with custom formulations adapted for the use of complex numbers.

Keywords: Artificial intelligence, Deep learning, Machine learning, Neural networks,

complex numbers.
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Introduction

In recent years, deep neural networks have burst onto the scene of artificial intelligence, and

since then firmly established themselves in many areas previously thought of as the exclusive

domain of humans.

A watershed moment in AI was the crushing victory, in 2012, of neural networks in

the famed computer vision challenge ILSVRC (ImageNet Large-Scale Visual Recognition

Challenge) [1], the task of classifying correctly natural images into one of 1000 different object

categories. A neural network, AlexNet [2], obtained a top-5 error rate of 15.3%, whereas its

closest competitor obtained 26.2%. In the years since, neural networks have dominated this

competition, and now plumb depths of as low as 5.79% [3], firmly establishing computer

vision as a killer application of deep convolutional neural networks.

Vision is not the only human signal-processing task deep neural networks have been

successfully applied to. Deep recurrent neural networks have successfully emulated various

aspects of human hearing and speaking: source separation [4], speech recognition [5] and

text-to-speech [6]. They have also been used for vision tasks fundamentally more complex

than the mere classification of still images, for instance hand gesture recognition [7], which

requires reasoning across both space and time.

All of these tasks have something in common: They are highly-refined examples of

artificially-intelligent digital signal processing (DSP). They have something else in common:

None employ complex numbers as their primary numeric system, even though complex num-

bers arise naturally in DSP. Instead, all use real numbers, and it is vanishingly rare to see

neural networks using complex numbers natively.

Complex numbers pervade many branches of mathematics and engineering. One of them

is digital signal processing, where complex numbers often appear in the analysis of a filter’s

properties, and the study of a signal’s frequency content. Filters and signals abound in the



real world. Signals exist in many types: 1-dimensional (e.g. audio), 2-dimensional (e.g. still

images), 3-dimensional (e.g. video and volumetric imaging), or even higher-dimensional in

rare cases. In the light of complex numbers’ obvious utility and yet near-total disuse, it felt

appropriate for us to investigate natively complex-valued deep neural networks for various

tasks.

The rest of the document is structured as follows. In Chapter 1, we cover the basics of

complex numbers and digital signal processing, to provide some context. Chapter 2 then

presents our unification of these tools into Deep Complex Networks. Lastly, the Conclusion

provides a short recapitulation and indicates promising future directions.
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Chapter 1

Essentials in Digital Signal Processing

The body of this work relies heavily on complex numbers and the application of a few

concepts in digital signal processing to machine learning tasks on signals. We will therefore

quickly review here complex numbers, then Fourier Transforms and some basic properties.

1.1. Complex Numbers

1.1.1. Definition

The set of complex numbers, C, is an extension of the set of real numbers R to a second,

imaginary axis. A complex number x ∈ C may be written as x = a + bi, where i is the

imaginary unit with the property that i2 = −1, <(x) = a ∈ R is called the real part and

=(x) = b ∈ R is called the imaginary part. This is called the Cartesian or rectangular form

of x.

Because complex numbers are two-dimensional objects, there exists an alternative, equiv-

alent expression x = r∠θ, called the polar form, where r is the radius, magnitude or ampli-

tude (the distance from the origin) and θ is the phase, argument or angle with respect to

the real axis. The polar form is particularly useful in expressing rotations and scalings, and

computing exponentials.

One can readily convert between the Cartesian and polar forms:

r∠θ = (r cos θ) + (r sin θ)i (1.1.1)

a+ bi =
√
a2 + b2 ∠∠∠ atan2(b,a) (1.1.2)



where atan2(y,x) is the two-argument form of the mathematical arctangent function,

atan(y/x) or tan−1(y/x). atan2(y,x) returns the angle of rotation counter-clockwise about

the origin from the positive x-axis towards the vector (x,y). atan2(y,x) is included as a

separate routine in many math libraries because of the singularities and loss of precision

that atan(y/x) exhibits as x→ 0, and consequently y/x→ ±∞.

atan2(y,x) =



atan(y/x) if x > 0, y ≥ 0

π
2

if x = 0, y > 0

π − atan(y/x) if x < 0, y ≥ 0

π + atan(y/x) if x < 0, y ≤ 0

3π
2

if x = 0, y < 0

2π − atan(y/x) if x > 0, y ≤ 0

Indeterminate if x = 0, y = 0

(1.1.3)

The real numbers R are the special-case subset of complex numbers C where θ = 0 or,

equivalently, b = 0.

1.1.2. Arithmetic

Because of the imaginary unit, arithmetic with complex numbers includes a slight twist

over real number arithmetic.

Addition and subtraction resemble that of a two-element vector:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i (1.1.4)

(a+ bi)− (c+ di) = (a− c) + (b− d)i (1.1.5)

Multiplication must take into account that i2 is by definition equal to −1, a real number:

(a+ bi) · (c+ di) = (ac) + (adi) + (bci) + (bdi2)

= (ac− bd) + (ad+ bc)i (1.1.6)

(r∠θ) · (s∠φ) = rs∠(θ + φ) (1.1.7)

We highlight the elegance of polar-form multiplication: Angles add and magnitudes multiply.

4



1.2. Digital Signal Processing

Digital signal processing is a set of techniques for digital computer analysis, manipulation

and synthesis of signals. Within the context of such a computer, these signals are necessarily

discrete (sampled at time intervals, rather that continuous-valued) and quantized (stored in

finite precision, rather than unlimited-precision real numbers) versions of a continuous analog

signal from the outside world. Examples of such digital signals are Hi-Fi 16-bit, 44100Hz

studio recordings, or 8-bit-depth, 24-megapixel RGB images taken by a good-quality camera.

We will cover only a few needed DSP techniques here, and for a more complete exposi-

tion the reader is urged to refer to good-quality DSP handbooks such as the Digital Signal

Processing Handbook published by CRC Press [8].

1.2.1. Convolution

One of the most common digital processing techniques, both in signal processing in

general and deep learning specifically, is convolution. Convolution is a binary, associative,

commutative, linear operation of two functions or signals denoted by a ∗ b. It yields a,

“filtered” in some sense by b (equivalently, b filtered by a). Depending on the exact shape

of a (respectively, b), this may have various effects, including smoothing a, sharpening a, or

perhaps detecting very specific patterns.

Convolution over discrete signals a and b is defined as

(a ∗ b)i =
∞∑

j=−∞

aj · bi−j (1.2.1)

which, in the case of a equal to zero outside of a finite interval [−N,M ], reduces to a finite

sum

(a ∗ b)i =
M∑

j=−N

aj · bi−j (1.2.2)

This can be understood as the dot-product of a with a reversed sliding-window b.

Convolution is one of the most important and heavily used operations in deep learning,

and is the defining characteristic of Convolutional Neural Networks (CNNs). It also has a

deep connection to multiplication, through the Discrete Fourier Transform (DFT).

5



1.2.2. Discrete Fourier Transform

1.2.2.1. Definition

The Discrete Fourier Transform is an invertible decomposition of a discrete-time, periodic

complex-valued signal xt of N samples into a unique linear combination of N complex-valued

frequency components, Xk, called its spectrum. It is elegantly defined, in vector and scalar

form, as:

X = Fx (1.2.3)

Xk =
T−1∑
t=0

Fkt · xt

=
T−1∑
t=0

e−
2πi
N
kt · xt (1.2.4)

Intuitively, all periodic signals of length N are the weighted sum of N complex exponentials,

each with a different frequency, amplitude and phase. The frequency associated with Xk

is f = k
N
, or k cycles per N samples; The amplitude of that complex exponential is the

amplitude of Xk; And the phase of that complex exponential is the phase of Xk.

It should be noted here that even if the input signal x is entirely real, the output spectrum

X need not be, unless the signal satisfies additional symmetries [8].

1.2.2.2. Convolution Theorem

The convolution theorem states that the convolution of two signals a, b is equivalent to

the Inverse Fourier Transform of the product of the Fourier Transforms of a and b. In other

words, convolution and pointwise multiplication are dual to each other under the Fourier

Transform.

a ∗ b = F−1 {F{a} � F{b}} (1.2.5)

a� b = F−1 {F{a} ∗ F{b}} (1.2.6)

where � is the Hadamard (pointwise) product.

The convolution theorem applies to the Discrete Fourier Transform. However, because

of the DFT’s assumption that its input is periodic, “convolution” is to be interpreted here as
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circular convolution, a variation of Eq. 1.2.1 where all subscripts are taken modN . If this

is not desired, zero-padding can be used to avoid edge effects.

The DFT implemented naively requires O(N2) computation. However, there exists an

O(N logN) algorithm to compute the DFT called the Fast Fourier Transform. The ex-

istence and efficiency of this algorithm makes many spectral analyzes and fast convolu-

tion/multiplication algorithms possible that otherwise would not have been.

1.2.2.3. Short-Time Fourier Transform Variant

The DFT is very useful, but does have some disadvantages in its purest form. Obtaining

the DFT of a signal yields the entire spectrum of the signal, but simultaneously loses all

space/time localization information. It is often desirable to look only at the frequency

content within a specific area or time interval.

Moreover, directly supplying a spectrum to a convolutional neural network is

wasteful and pointless. Indeed, convolution over the spectrum of a signal is equivalent, by

the convolution theorem, to pointwise multiplication in the time/space-domain. Pointwise

multiplication of the input data is of questionable utility, and not even an optimized FFT

and convolution routine could compete with pointwise multiplication in the original time or

space domain of the signal.

A compromise solution is to split the signal into space/time blocks, and perform the DFT

on these blocks. Care must be taken when doing this.

Slicing out a block from the signal corresponds to pointwise multiplication by a rectan-

gular window ; The spectrum of the block will thus be corrupted by convolution with the

rectangular window’s spectrum. A solution with better spectral properties is to choose a

different windowing function, such as the Hann, Hamming, or cosine window, that taper

towards 0 at both ends of the block.

Given the window functions’ tapering to 0, it is also common to have an overlap between

blocks, so that signal samples near the edges of blocks are not ignored.

1.2.2.4. Multidimensional Variants

The Fourier Transforms in one dimension defined above can be generalized to two-

dimensional and higher-dimensional spaces. It retains exactly the same properties, and
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can be implemented with the same algorithms. A simple way to implement it is to perform

the 1-D DFT along each dimension of the signal in turn.

For instance, the 2-D DFT over anM ×N image can be evaluated by computingM 1-D,

N -element DFTs along each row, producing a partially-transformed image, then applying

the 1-DFT on this partially-transformed image N times along its M -element columns. This

is equivalent to first performing the DFT along the N M -element columns and then along

the M N -element rows.
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Chapter 2

Deep Complex Networks

This paper was accepted at ICLR 2018 in the conference track. Its authors were:

Chiheb Trabelsi∗, Olexa Bilaniuk∗, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian,

João Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio & Christopher J

Pal

Contribution Chiheb Trabelsi and myself led the project. Both of us originated the idea

of implementing complex-valued deep neural networks, wrote the bulk of the paper and with

the help of Sandeep Subramanian coded the bulk of the Keras Python software package we

made use of in our experiment. I wrote scripts for and ran most of the computer vision

experiments. Chiheb suggested a whitening-based batch normalization for complex numbers,

and I found its correct form. I drew in Asymptote the figure illustrating it (§2.7.6). and

Other collaborators applied our software package to audio tasks like music transcription and

speech spectrum prediction.

2.1. Introduction

Recent research advances have made significant progress in addressing the difficulties

involved in learning deep neural network architectures. Key innovations include normaliza-

tion techniques [9, 10] and the emergence of gating-based feed-forward neural networks like

Highway Networks [11]. Residual networks [12, 13] have emerged as one of the most pop-

ular and effective strategies for training very deep convolutional neural networks (CNNs).

Both highway networks and residual networks facilitate the training of deep networks by

providing shortcut paths for easy gradient flow to lower network layers thereby diminishing

the effects of vanishing gradients [14]. He et al. [13] show that learning explicit residuals



of layers helps in avoiding the vanishing gradient problem and provides the network with

an easier optimization problem. Batch normalization [9] demonstrates that standardizing

the activations of intermediate layers in a network across a minibatch acts as a powerful

regularizer as well as providing faster training and better convergence properties. Further,

such techniques that standardize layer outputs become critical in deep architectures due to

the vanishing and exploding gradient problems.

The role of representations based on complex numbers has started to receive increased

attention, due to their potential to enable easier optimization [15], better generalization

characteristics [16], faster learning [17, 18, 19] and to allow for noise-robust memory mech-

anisms [18]. Wisdom et al. [19] and Arjovsky et al. [17] show that using complex numbers

in recurrent neural networks (RNNs) allows the network to have a richer representational

capacity. Danihelka et al. [18] present an LSTM [20] architecture augmented with associative

memory with complex-valued internal representations. Their work highlights the advantages

of using complex-valued representations with respect to retrieval and insertion into an as-

sociative memory. In residual networks, the output of each block is added to the output

history accumulated by summation until that point. An efficient retrieval mechanism could

help to extract useful information and process it within the block.

In order to exploit the advantages offered by complex representations, we present a general

formulation for the building components of complex-valued deep neural networks and apply

it to the context of feed-forward convolutional networks and convolutional LSTMs. Our

contributions in this paper are as follows:

(1) A formulation of complex batch normalization, which is described in Section 2.3.5;

(2) Complex weight initialization, which is presented in Section 2.3.6;

(3) A comparison of different complex-valued ReLU-based activation functions

presented in Section 2.4.1;

(4) A state of the art result on the MusicNet multi-instrument music transcription

dataset, presented in Section 2.4.2;

(5) A state of the art result in the Speech Spectrum Prediction task on the TIMIT

dataset, presented in Section 2.4.3.

We perform a sanity check of our deep complex network and demonstrate its effectiveness

on standard image classification benchmarks, specifically, CIFAR-10, CIFAR-100. We also
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use a reduced-training set of SVHN that we call SVHN*. For audio-related tasks, we perform

a music transcription task on the MusicNet dataset and a Speech Spectrum prediction task on

TIMIT. The results obtained for vision classification tasks show that learning complex-valued

representations results in performance that is competitive with the respective real-valued

architectures. Our promising results in music transcription and speech spectrum prediction

underscore the potential of deep complex-valued neural networks applied to acoustic related

tasks1 – We continue this paper with discussion of motivation for using complex operations

and related work.

2.2. Motivation and Related Work

Using complex parameters has numerous advantages from computational, biological, and

signal processing perspectives. From a computational point of view, Danihelka et al. [18]

has shown that Holographic Reduced Representations [21], which use complex numbers, are

numerically efficient and stable in the context of information retrieval from an associative

memory. Danihelka et al. [18] insert key-value pairs in the associative memory by addition

into a memory trace. Although not typically viewed as such, residual networks [12, 13] and

Highway Networks [11] have a similar architecture to associative memories: each ResNet

residual path computes a residual that is then inserted – by summing into the “memory”

provided by the identity connection. Given residual networks’ resounding success on several

benchmarks and their functional similarity to associative memories, it seems interesting to

marry both together. This motivates us to incorporate complex weights and activations in

residual networks. Together, they offer a mechanism by which useful information may be

retrieved, processed and inserted in each residual block.

Orthogonal weight matrices provide a novel angle of attack on the well-known vanishing

and exploding gradient problems in RNNs. Unitary RNNs [17] are based on unitary weight

matrices, which are a complex generalization of orthogonal weight matrices. Compared to

their orthogonal counterparts, unitary matrices provide a richer representation, for instance

being capable of implementing the discrete Fourier transform, and thus of discovering spectral

representations. Unitary RNNs [17] show the potential of this type of recurrent neural

1The source code is located at http://github.com/ChihebTrabelsi/deep_complex_networks
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networks on toy tasks. Wisdom et al. [19] provided a more general framework for learning

unitary matrices and they applied their method on toy tasks and on a real-world speech task.

Using complex weights in neural networks also has biological motivations. Reichert and

Serre [22] proposed a biologically-plausible deep network that allows one to construct richer

and more versatile representations using complex-valued neuronal units. The complex-valued

formulation allows one to express the neuron’s output in terms of its firing rate and the

relative timing of its activity. The amplitude of the complex neuron represents the former

and its phase the latter. Input neurons that have similar phases are called synchronous as

they add constructively, whereas asynchronous neurons add destructively and thus interfere

with each other. This is related to the gating mechanism used in both deep feed-forward

neural networks [11, 23, 6] and recurrent neural networks [20, 24, 25] as this mechanism learns

to synchronize inputs that the network propagates at a given feed-forward layer or time

step. In the context of deep gating-based networks, synchronization means the propagation

of inputs whose controlling gates simultaneously hold high values. These controlling gates

are usually the activations of a sigmoid function. This ability to take into account phase

information might explain the effectiveness of incorporating complex-valued representations

in the context of recurrent neural networks.

The phase component is not only important from a biological point of view but also from

a signal processing perspective. It has been shown that the phase information in speech

signals affects their intelligibility [26]. Oppenheim and Lim [27] showed that the amount

of information present in the phase of an image is sufficient to recover the majority of the

information encoded in its magnitude. In fact, phase provides a detailed description of

objects as it encodes shapes, edges, and orientations.

Recently, Rippel, Snoek, and Adams [28] leveraged the Fourier spectral representation for

convolutional neural networks, providing a technique for parametrizing convolution kernel

weights in the spectral domain, and performing pooling on the spectral representation of

the signal. However, the authors avoid performing complex-valued convolutions, instead

building from real-valued kernels in the spatial domain. In order to ensure that a complex

parametrization in the spectral domain maps onto real-valued kernels, the authors impose a

conjugate symmetry constraint on the spectral-domain weights, such that when the Inverse

Fourier Transform is applied to them, it only yields real-valued kernels.
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As pointed out in Reichert and Serre [22], the use of complex-valued neural networks

[29, 30, 31, 32, 33] has been investigated long before the earliest deep learning breakthroughs

[34, 35, 36]. Recently [22, 37, 17, 18, 19] have tried to bring more attention to the usefulness

of deep complex neural networks by providing theoretical and mathematical motivation for

using complex-valued deep networks. However, to the best of our knowledge, most of the re-

cent works using complex valued networks have been applied on toy tasks, with the exception

of some attempts. In fact, [38, 39, 40] have used complex representation in vision tasks. [19]

have also performed a real-world speech task consisting of predicting the log magnitude of

the future Short Time Fourier Transform frames. In Natural Language Processing, [41, 42]

have used complex-valued embeddings. Much remains to be done to develop proper tools

and a general framework for training deep neural networks with complex-valued parameters.

Given the compelling reasons for using complex-valued representations, the absence of

such frameworks represents a gap in machine learning tooling, which we fill by providing a

set of building blocks for deep complex-valued neural networks that enable them to achieve

competitive results with their real-valued counterparts on real-world tasks.

2.3. Complex Building Blocks

In this section, we present the core of our work, laying down the mathematical framework

for implementing complex-valued building blocks of a deep neural network.

2.3.1. Representation of Complex Numbers

We start by outlining the way in which complex numbers are represented in our frame-

work. A complex number z = a + ib has a real component a and an imaginary component

b. We represent the real part a and the imaginary part b of a complex number as logically

distinct real valued entities and simulate complex arithmetic using real-valued arithmetic

internally. Consider a typical real-valued 2D convolution layer that has N feature maps

such that N is divisible by 2; to represent these as complex numbers, we allocate the first

N/2 feature maps to represent the real components and the remaining N/2 to represent the

imaginary ones. Thus, for a four dimensional weight tensor W that links Nin input feature

maps to Nout output feature maps and whose kernel size is m×m we would have a weight

tensor of size (Nout ×Nin ×m×m) /2 complex weights.
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2.3.2. Complex Convolution

In order to perform the equivalent of a traditional real-valued 2D convolution in the

complex domain, we convolve a complex filter matrix W = A + iB by a complex vector

h = x + iy where A and B are real matrices and x and y are real vectors since we are

simulating complex arithmetic using real-valued entities. As the convolution operator is

distributive, convolving the vector h by the filter W we obtain:

W ∗ h = (A ∗ x−B ∗ y) + i (B ∗ x + A ∗ y). (2.3.1)

As illustrated in Figure 2.1a, if we use matrix notation to represent real and imaginary parts

of the convolution operation we have:

<(W ∗ h)

=(W ∗ h)

 =

A −B

B A

 ∗
x
y

. (2.3.2)

2.3.3. Complex Differentiability

In order to perform backpropagation in a complex-valued neural network, a sufficient

condition is to have a cost function and activations that are differentiable with respect to

the real and imaginary parts of each complex parameter in the network. See Section 2.7.3

in the Appendix for the complex chain rule.

By constraining activation functions to be complex differentiable or holomorphic, we

restrict the use of possible activation functions for a complex valued neural networks (for

further details about holomorphism please refer to Section 2.7.2 in the appendix). Hirose

and Yoshida [16] show that it is unnecessarily restrictive to limit oneself only to holomorphic

activation functions; Those functions that are differentiable with respect to the real part and

the imaginary part of each parameter are also compatible with backpropagation. [17, 19, 18]

have used non-holomorphic activation functions and optimized the network using regular,

real-valued backpropagation to compute partial derivatives of the cost with respect to the

real and imaginary parts.

Even though their use greatly restricts the set of potential activations, it is worth men-

tioning that holomorphic functions can be leveraged for computational efficiency purposes.
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As pointed out in [43], using holomorphic functions allows one to share gradient values (be-

cause the activation satisfies the Cauchy-Riemann equations 2.7.1 and 2.7.2 in the appendix).

So, instead of computing and backpropagating 4 different gradients, only 2 are required.

2.3.4. Complex-Valued Activations

2.3.4.1. modReLU

Numerous activation functions have been proposed in the literature in order to deal with

complex-valued representations. Arjovsky et al. [17] have proposed modReLU, which is

defined as follows:

modReLU(z) = ReLU(|z|+ b) eiθz =

(|z|+ b) z
|z| if |z|+ b ≥ 0,

0 otherwise,
(2.3.3)

where z ∈ C, θz is the phase of z, and b ∈ R is a learnable parameter. As |z| is always positive,

a bias b is introduced in order to create a “dead zone” of radius b around the origin 0 where the

neuron is inactive, and outside of which it is active. The authors have used modReLU in the

context of unitary RNNs. Their design of modReLU is motivated by the fact that applying

separate ReLUs on both real and imaginary parts of a neuron performs poorly on toy tasks.

The intuition behind the design of modReLU is to preserve the pre-activated phase θz, as

altering it with an activation function severely impacts the complex-valued representation.

modReLU does not satisfy the Cauchy-Riemann equations, and thus is not holomorphic. We

have tested modReLU in deep feed-forward complex networks and the results are given in

Table 2.1.

2.3.4.2. CReLU and zReLU

We call Complex ReLU (or CReLU) the complex activation that applies separate ReLUs

on both of the real and the imaginary part of a neuron, i.e:

CReLU(z) = ReLU(<(z)) + iReLU(=(z)). (2.3.4)

CReLU satisfies the Cauchy-Riemann equations when both the real and imaginary parts

are at the same time either strictly positive or strictly negative. This means that CReLU

satisfies the Cauchy-Riemann equations when θz ∈ ]0, π/2[ or θz ∈ ]π, 3π/2[. We have tested

CReLU in deep feed-forward neural networks and the results are given in Table 2.1.
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It is also worthwhile to mention the work done by Guberman [44], where a ReLU-based

complex activation that satisfies the Cauchy-Riemann equations everywhere except for the

set of points {<(z) > 0,=(z) = 0} ∪ {<(z) = 0,=(z) > 0} is used. The activation function

has similarities to CReLU. We will refer to the activation in [44] as zReLU. It is defined as

follows:

zReLU(z) =

z if θz ∈ [0, π/2],

0 otherwise,
(2.3.5)

We have tested zReLU in deep feed-forward complex networks and the results are given in

Table 2.1.

2.3.5. Complex Batch Normalization

Deep networks generally rely upon Batch Normalization [9] to accelerate learning. In

some cases batch normalization is essential to optimize the model. The standard formulation

of Batch Normalization applies only to real values. In this section, we propose a batch

normalization formulation that can be applied for complex values.

To standardize an array of complex numbers to the standard normal complex distribu-

tion, it is not sufficient to translate and scale them such that their mean is 0 and their

variance 1. This type of normalization does not ensure equal variance in both the real and

imaginary components, and the resulting distribution is not guaranteed to be circular; it will

be elliptical, potentially with high eccentricity.

We instead choose to treat this problem as one of whitening 2D vectors, which implies

scaling the data by the square root of their variances along each of the two principal compo-

nents. This can be done by multiplying the 0-centered data (x− E[x]) by the inverse square

root of the 2× 2 covariance matrix V :

x̃ = (V )−
1
2 (x− E[x]) ,

where the covariance matrix V is

V =

 Vrr Vri

Vir Vii

 =

 Cov(<{x},<{x}) Cov(<{x},={x})

Cov(={x},<{x}) Cov(={x},={x})

 .

The square root and inverse of 2 × 2 matrices has an inexpensive, analytical solution, and

its existence is guaranteed by the positive (semi-)definiteness of V . Positive definiteness of
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V is ensured by the addition of εI to V (Tikhonov regularization). The mean subtraction

and multiplication by the inverse square root of the variance ensures that x̃ has standard

complex distribution with mean µ = 0, covariance Γ = 1 and pseudo-covariance (also called

relation) C = 0. The mean, the covariance and the pseudo-covariance are given by:

µ = E [x̃]

Γ = E [(x̃− µ) (x̃− µ)∗] = Vrr + Vii + i (Vir − Vri)

C = E [(x̃− µ) (x̃− µ)] = Vrr − Vii + i (Vir + Vri).

(2.3.6)

The normalization procedure allows one to decorrelate the imaginary and real parts of a

unit. This has the advantage of avoiding co-adaptation between the two components, which

reduces the risk of overfitting [45, 46].

Analogously to the real-valued batch normalization algorithm, we use two parameters, β

and γ. The shift parameter β is a complex parameter with two learnable components (the

real and imaginary means). The scaling parameter γ is a 2× 2 positive semi-definite matrix

with only three degrees of freedom, and thus only three learnable components. In much

the same way that the matrix (V )−
1
2 normalized the variance of the input to 1 along both

of its original principal components, so does γ scale the input along desired new principal

components to achieve a desired variance. The scaling parameter γ is given by:

γ =

 γrr γri

γir γii

 .

As the normalized input x̃ has real and imaginary variance 1, we initialize both γrr and

γii to 1/
√

2 in order to obtain a modulus of 1 for the variance of the normalized value. γri,

<{β} and ={β} are initialized to 0. The complex batch normalization is defined as:

BN (x̃) = γ x̃+ β. (2.3.7)

We use running averages with momentum to maintain an estimate of the complex batch

normalization statistics during training and testing. The moving averages of Vri and β are

initialized to 0. The moving averages of Vrr and Vii are initialized to 1/
√

2. The momentum

for the moving averages is set to 0.9.
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2.3.6. Complex Weight Initialization

In a general case, particularly when batch normalization is not performed, proper ini-

tialization is critical in reducing the risks of vanishing or exploding gradients. To do this,

we follow the same steps as in Glorot and Bengio [47] and He, Zhang, Ren, and Sun [48] to

derive the variance of the complex weight parameters.

A complex weight has a polar form as well as a rectangular form

W = |W |eiθ = <{W}+ i ={W}, (2.3.8)

where θ and |W | are respectively the argument (phase) and magnitude of W .

Variance is the difference between the expectation of the squared magnitude and the square

of the expectation:

Var(W ) = E [WW ∗]− (E [W ])2 = E
[
|W |2

]
− (E [W ])2,

which reduces, in the case of W symmetrically distributed around 0, to E [|W |2]. Although

we have not yet derived the value of Var(W ) = E [|W |2], we do know a related quantity,

Var(|W |), because the magnitude of complex normal values, |W |, follows the Rayleigh dis-

tribution (Chi-distributed with two degrees of freedom (DOFs)). This quantity is

Var(|W |) = E [|W ||W |∗]− (E [|W |])2 = E
[
|W |2

]
− (E [|W |])2. (2.3.9)

Putting them together:

Var(|W |) = Var(W )− (E [|W |])2, and Var(W ) = Var(|W |) + (E [|W |])2.

We now have a formulation for the variance of W in terms of the variance and expectation

of its magnitude, both properties analytically computable from the Rayleigh distribution’s

single parameter, σ, indicating the mode. These are:

E [|W |] = σ

√
π

2
, Var(|W |) =

4− π
2

σ2.

The variance of W can thus be expressed in terms of its generating Rayleigh distribution’s

single parameter, σ, thus:

Var(W ) =
4− π

2
σ2 +

(
σ

√
π

2

)2

= 2σ2. (2.3.10)

If we want to use the Glorot and Bengio [47] initialization, which ensures that the vari-

ances of the input and output are the same, then we would have Var(W ) = 2/(nin + nout),

where nin and nout are the number of input and output units respectively. In that case,
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σ = 1/
√
nin + nout. If we want to use the He et al. [48] initialization, which is specialized for

ReLU-based networks, then Var(W ) = 2/nin, in which case σ = 1/
√
nin.

The magnitude of the complex parameterW is then drawn from the Rayleigh distribution

with the appropriate mode σ, while the phase is drawn from the uniform distribution between

−π and π. By multiplying the real magnitudeW by the complex phasor eiθ (equation 2.3.8),

we combine them into an appropriate initialization value for the complex parameter.

In all the experiments that we report, we use variants of this initialization that addition-

ally leverage the independence property of unitary matrices. As noted by Cogswell et al.

[45], Srivastava et al. [46], and Tompson, Goroshin, Jain, LeCun, and Bregler [49], learning

decorrelated features is beneficial, as it yields better generalization and faster learning. This

motivates initializing the weights with appropriately-scaled (semi-)unitary matrices (a ma-

trix U not necessarily square s.t. either UHU = I or UUH = I). The scaling factor required

is
√

Hevar/Var(W ) or
√

Glorotvar/Var(W ) where Glorotvar and Hevar are respectively equal to

2/(nin +nout) and 2/nin. We thereby achieve both our aim to make kernels maximally inde-

pendent of each other and appropriately scaled for complex-valued models. For real-valued

models, the analogous initialization uses scaled (semi-)orthogonal matrices.

2.3.7. Complex Convolutional Residual Network

A deep convolutional residual network of the nature presented in [12, 13] consists in three

stages, each comprising several residual blocks. Within a stage, feature maps maintain the

same shape. At the end of a stage, the feature maps are downsampled by a factor of 2 and

the number of convolution filters is doubled. The sizes of the convolution kernels are always

set to 3 × 3. The stage’s residual blocks contain two convolution layers each. The contents

of one such residual block in the real and complex settings are illustrated in the appendix

Figure 2.1b.

In the complex-valued setting, the majority of the architecture remains identical to the

one presented in [13], with only a few subtle differences. First, since all datasets that we

work with have real-valued inputs, we present a way to learn their imaginary components

to let the rest of the network operate in the complex plane. We learn the initial imaginary

component of our input by performing the operations present within a single real-valued
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residual block

BN → ReLU → Conv → BN → ReLU → Conv .

Using this residual block yielded better results empirically than assuming that the input

image has null imaginary part. The parameters of this real-valued residual block are trained

by backpropagation of errors from the task-specific loss function. Second, we perform a

Conv → BN → Activation operation on the obtained complex input before feeding it to

the first stage of the residual network proper. We also perform the same operation on the

real-valued network’s input, instead of Conv → Maxpooling as in He et al. [13]. Third, we

subtly alter the way in which we perform a projection at the end of a stage in our network.

We concatenate the output of the last residual block with the output of a 1× 1 convolution

applied on it with the same number of filters used throughout the stage and downsample by

a factor of 2. In contrast, He et al. [13] perform a 1× 1 convolution with twice the number

of feature filters in the current stage to both downsample the feature maps spatially and

double them in number.

2.4. Experimental Results

In this section, we present empirical results from using our model to perform image, music

classification and spectrum prediction. We present our model’s architecture followed by the

results we obtained on natural image classification datasets CIFAR-10, CIFAR-100, and

SVHN, as well as the results on automatic music transcription on the MusicNet benchmark

and speech spectrum prediction on TIMIT.

2.4.1. Image Recognition

We adopt an architecture inspired by [13]. The latter will also serve as a baseline to

compare against. We train comparable real-valued Neural Networks using the standard

ReLU activation function. We have tested our complex models with the CReLU, zReLU

and modRelu activation functions. We use a cross entropy loss for both real and complex

models. A global average pooling layer followed by a single fully connected layer with a

softmax function is used to classify the input as belonging to one of 10 classes in the CIFAR-

10 and SVHN datasets and 100 classes for CIFAR-100.
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We consider architectures that trade off model depth (number of residual blocks per

stage) and width (number of convolutional filters in each layer) given a fixed parameter

budget. Specifically, we build three different models - wide and shallow (WS), deep and

narrow (DN) and in-between (IB). In a model that has roughly 1.7 million parameters, our

WS architecture for a complex network starts with 12 complex filters (24 real filters) per

convolution layer in the initial stage and 16 residual blocks per stage. The DN architecture

starts with 10 complex filters and 23 blocks per stage while the IB variant starts with 11

complex filters and 19 blocks per stage. The real-valued counterpart has also 1.7 million

parameters. Its WS architecture starts with 18 real filters per convolutional layer and 14

blocks per stage. The DN architecture starts with 14 real filters and 23 blocks per stage and

the IB architecture starts with 16 real filters and 18 blocks per stage.

All models (real and complex) were trained using the backpropagation algorithm with

Stochastic Gradient Descent with Nesterov momentum [50] set at 0.9. We also clip the norm

of our gradients to 1. We tweaked the learning rate schedule used in [13] in both the real and

complex residual networks to extract small performance improvements in both. We start

our learning rate at 0.01 for the first 10 epochs to warm up the training and then set it at

0.1 from epoch 10-100 and then anneal the learning rates by a factor of 10 at epochs 120

and 150. We end the training at epoch 200.

Table 2.1 presents our results for image classification on CIFAR-10 and CIFAR-100. In

addition, we consider a reduced version of the Street View House Numbers (SVHN) dataset,

which we call SVHN*. For computational reasons, we use only the required 73,257 “training”

images of Street View House Numbers (SVHN), and not the “extra” dataset. We still test

on all 26,032 “test” images. For all the tasks and for both the real- and complex-valued

models, the WS architecture has yielded the best performances. This is in agreement with

Zagoruyko and Komodakis [3], who observed that wider and shallower residual networks

perform better than their deeper and narrower counterpart. On CIFAR-10 and SVHN∗, the

real-valued representation performs slightly better than its complex counterpart. On CIFAR-

100, the complex representation outperforms the real one. In general, the obtained results

for both representation are quite comparable. To understand the effect of using either real

or complex representation for a given task, we designed hybrid models that combine both.

Table 2.2 contains the results for hybrid models. We can observe in Table 2.2 that in cases
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Table 2.1. Classification error on CIFAR-10, CIFAR-100 and SVHN∗ using different com-

plex activations functions (zReLU, modReLU and CReLU). WS, DN and IB stand for the

wide and shallow, deep and narrow and in-between models respectively. The prefixes R & C

refer to the real and complex valued networks respectively. Performance differences between

the real network and the complex network using CReLU are reported between their respec-

tive best models. All models are constructed to have roughly 1.7M parameters except the

modReLU models which have roughly 2.5M parameters. modReLU and zReLU were largely

outperformed by CReLU in the reported experiments. Due to limited resources, we haven’t

performed all possible experiments as the conducted ones are already conclusive. A "-" is

filled in front of an unperformed experiment.

Arch CIFAR-10 CIFAR-100 SVHN∗

zReLU modReLU CReLU zReLU modReLU CReLU zReLU modReLU CReLU

CWS 11.71 23.42 6.17 - 50.38 26.36 80.41 7.43 3.70

CDN 9.50 22.49 6.73 - 50.64 28.22 80.41 - 3.72

CIB 11.36 23.63 5.59 - 48.10 28.64 4.98 - 3.62

ReLU ReLU ReLU

RWS 5.42 27.22 3.42

RDN 6.29 27.84 3.52

RIB 6.07 27.71 4.30

DIFF -0.17 +0.86 -0.20

where complex representation outperformed the real one (wide and shallow on CIFAR-100),

combining a real-valued convolutional filter with a complex batch normalization improves

the accuracy of the real-valued model. However, the complex-valued model still outperforms

the hybrid. In cases where real-valued models outperformed the complex ones (wide and

shallow on CIFAR-10 and SVHN∗), replacing a complex batch normalization with a regular

batch normalization increased the accuracy of the complex model. Despite that replacement,

the real-valued model performs better in terms of accuracy for such tasks. In general, these

experiments show that the difference in efficiency between the real and complex models varies

by dataset, task and architecture.
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Table 2.2. Classification error on CIFAR-10, CIFAR-100 and SVHN∗ using different nor-

malization strategies. NCBN, CBN and BN stand for a Naive variant of the complex batch-

normalization, complex batch-normalization and regular batch normalization respectively.

(R) & (C) refer to the use of the real- and complex-valued convolution respectively. The

complex models use CReLU as activation. All models are constructed to have roughly 1.7M

parameters. 5 out of 6 experiments using the naive variant of the complex batch normaliza-

tion failed with the apparition of NaNs during training. As these experiments are already

conclusive and due to limited resources, we haven’t conducted other experiments for the

NCBN model. A "-" is filled in front of an unperformed experiment.

Arch CIFAR-10 CIFAR-100 SVHN∗

NCBN(C) CBN(R) BN(C) NCBN(C) CBN(R) BN(C) NCBN(C) CBN(R) BN(C)

WS - 5.47 6.32 27.29 26.63 27.89 NAN 3.80 3.52

DN - 5.89 6.71 NAN 27.13 28.83 NAN 3.54 3.58

IB - 5.66 6.83 NAN 26.99 29.89 NAN 3.74 3.56

Ablation studies were performed in order to investigate the importance of the 2D whiten-

ing operation that occurs in the complex batch normalization. We replaced the complex

batch normalization layers with a naive variant (NCBN) which, instead of left multiplying

the centered unit by the inverse square root of its covariance matrix, just divides it by its

complex variance. Here, this naive variant of CBN is Mimicking the regular BN by not

taking into account correlation between the elements in the complex unit. The Naive vari-

ant of the Complex Batch Normalization performed very poorly; In 5 out of 6 experiments,

training failed with the appearance of NaNs (See Section 2.7.6 for the explanation). By way

of contrast, all 6 complex-valued Batch Normalization experiments converged. Results are

given in Table 2.2.

Another ablation study was undertaken to compare CReLU, modReLU and zRELU.

Again the differences were stark: All CReLU experiments converged and outperformed both

modReLU and zReLU, both which variously failed to converge or fared substantially worse.

We think that modRelu didn’t perform as well as CReLU due to the fact that consecutive

layers in a feed-forward net do not represent time-sequential patterns, and so, they might
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need to drop some phase information. Results are reported in Table 2.1. More discussion

about phase information encoding is presented in section 2.7.7.

2.4.2. Automatic Music Transcription

In this section we present results for the automatic music transcription (AMT) task. The

nature of an audio signal allows one to exploit complex operations as presented earlier in the

paper. The experiments were performed on the MusicNet dataset [51]. For computational

efficiency we resampled the original input from the original 44.1kHz to the reduced 11kHz

using the algorithm described in [52]. This sampling rate is sufficient to recognize frequencies

present in the dataset while reducing the computational cost dramatically. We modeled each

of the 84 notes that are present in the dataset with independent sigmoids (due to the fact

that notes can fire simultaneously). We initialized the bias of the last layer to the value of

−5 to reflect the distribution of silent/non-silent notes. As in the baseline, we performed

experiments on the raw signal and the frequency spectrum. For complex experiments with

the raw signal, we considered its imaginary part equal to zero. When using the spectrum

input we used its complex representation (instead of only the magnitudes, as usual for AMT)

for both real and complex models. For the real model, we considered the real and imaginary

components of the spectrum as separate channels.

The model we used for raw signals is a shallow convolutional network similar to the model

used in the baseline, with the size reduced by a factor of 4 (corresponding to the reduction

in sampling rate). The convolutional filter size was 512 samples (spanning about 12ms) with

a stride of 16. The model for the spectral input is similar to the VGG model [53]. The first

layer has filter with size of 7 and is followed by 5 convolutional layers with filters of size 3.

The final convolution block is followed by a fully connected layer with 2048 units. The latter

is followed, in its turn, by another fully connected layer with 84 sigmoidal units. In all of

our experiments we use an input window of 4096 samples or its corresponding FFT (which

corresponds to the 16,384 window used in the baseline) and predicted notes in the center

of the window. All networks were optimized with the Adam optimizer [54]. We start our

learning rate at 10−3 for the first 10 epochs and then anneal it by a factor of 10 at epochs 100,

120 and 150. We end the training at epoch 200. For the real-valued models, we have used

ReLU as the activation. For complex-valued models we have used CReLU as the activation.
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Table 2.3. MusicNet experiments. FS is the sampling rate. Params is the total number

of parameters. We report the average precision (AP) metric that is the area under the

precision-recall curve.

Architecture FS Params AP %

Shallow, Real 11kHz 66.1

Shallow, Complex 11kHz 66.0

Shallow, Thickstun et al. [51] 44.1kHz - 67.8

Deep, Real 11kHz 10.0M 69.6

Deep, Complex 11kHz 8.8M 72.9

The complex network was initialized using the unitary He initialization scheme described

in Section 2.3.6. For the real-valued network, we have used the analogous real-valued or-

thogonal He initialization. The complex batch normalization of Section 2.3.5 was used.

Following Thickstun et al. [51] we used recordings with ids ‘2303’, ‘2382’ and ‘1819’ as the

test subset, and additionally we created a validation subset by randomly choosing from the

training set recording ids ‘2131’, ‘2384’, ‘1792’, ‘2514’, ‘2567’ and ‘1876’. The validation

subset was used for model selection and early stopping. The remaining 321 files were used

for training. The results are summarized in Table 2.3. We achieve a performance comparable

to the baseline with the shallow convolutional network. Our VGG-based deep real-valued

model reaches 69.6% average precision on the downsampled data. With significantly fewer

parameters than its real counterpart, the VGG-based deep complex model achieves 72.9%

average precision, which is state of the art to the best of our knowledge. See Figures 2.2 and

2.3 in the appendix for precision-recall curves and a sample of the output of the model.

2.4.3. Speech Spectrum Prediction

We apply both a real Convolutional LSTM [55] and a complex Convolutional LSTM on

speech spectrum prediction task (See section 2.7.5 in the appendix for the details of the

real and complex Convolutional LSTMs). In this task, the model predicts the magnitude

spectrum. It implicitly infers the real and imaginary components of the spectrum at time t+1,

given all the spectrum (imaginary part and real components) up to time t, which is slightly
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Table 2.4. Speech Spectrum Prediction on TIMIT test set. CConv-LSTM denotes the

Complex Convolutional LSTM.

Model #params MSE(validation) MSE(test)

LSTM [19] ≈ 135k 16.59 16.98

Full-capacity uRNN [19] ≈ 135k 14.56 14.66

Conv-LSTM (our baseline) ≈ 88k 11.10 12.18

CConv-LSTM (ours) ≈ 88k 10.78 11.90

different from [19]. The real and imaginary components are considered as separate channels

in both model. We evaluate the model with mean-square-error (MSE) on log-magnitude to

compare with Wisdom et al. [19]. The experiments are conducted on a downsampled (8kHz)

version of the TIMIT dataset. Following the steps in [19], raw audio waves are transformed

into the frequency domain via the short-time Fourier transform (STFT) with a Hann window

of 256 samples and a window hop of 128 samples (50% overlap). We use a training set with

3690 utterances, a validation set with 400 utterances and the standard test set with 192

utterance.

To match the number of parameters for both model, the Convolutional LSTM has 84

real-valued feature maps while the complex model has 60 complex-valued feature maps (120

real feature maps in total). The Adam optimizer [54] with a fixed learning rate of 1e-4 is used

in both experiments. We initialize the complex model with the unitary Glorot initialization

and the real model with the orthogonal Glorot initialization. The result is shown in Table 2.4

and the learning curve is shown in Figure 2.4. Our baseline model has achieved the state

of the art and the complex convolutional LSTM model performs better than the baseline in

terms of MSE and speed of convergence.

2.5. CONCLUSIONS

We have presented key building blocks required to train complex valued neural networks,

such as complex batch normalization and complex weight initialization. We have also ex-

plored a wide variety of complex convolutional network architectures, including some yielding

competitive results for image classification and state of the art results for a music transcrip-

tion task and speech spectrum prediction. We hope that our work will stimulate further
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investigation of complex valued networks for deep learning models and their application to

more challenging tasks such as generative models for audio and images.
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2.7. APPENDIX

In practice, the complex convolution operation is implemented as illustrated in Fig.2.1a where

MI , MR refer to imaginary and real feature maps and KI and KR refer to imaginary and real

kernels. MIKI refers to result of a real-valued convolution between the imaginary kernels KI and

the imaginary feature maps MI .

2.7.1. MusicNet illustrations

2.7.2. Holomorphism and Cauchy–Riemann Equations

Holomorphism, also called analyticity, ensures that a complex-valued function is complex dif-

ferentiable in the neighborhood of every point in its domain. This means that the derivative,

f ′(z0) ≡ lim∆z→0[ (f(z0)+∆z)−f(z0)
∆z ] of f , exists at every point z0 in the domain of f where f is a

complex-valued function of a complex variable z = x+ i y such that f(z) = u(x, y)+ i v(x, y). u and

v are real-valued functions. One possible way of expressing ∆z is to have ∆z = ∆x+ i∆y. ∆z can

approach 0 from multiple directions (along the real axis, imaginary axis or in-between). However, in

order to be complex differentiable, f ′(z0) must be the same complex quantity regardless of direction

of approach. When ∆z approaches 0 along the real axis, f ′(z0) could be written as:

f ′(z0) ≡ lim
∆z→0

[
(f(z0) + ∆z)− f(z0)

∆z

]
= lim

∆x→0
lim

∆y→0

[
∆u(x0, y0) + i∆v(x0, y0)

∆x+ i∆y

]
= lim

∆x→0

[
∆u(x0, y0) + i∆v(x0, y0)

∆x+ i 0

]
.

(2.7.1)

When ∆z approaches 0 along the imaginary axis, f ′(z0) could be written as:

= lim
∆y→0

lim
∆x→0

[
∆u(x0, y0) + i∆v(x0, y0)

∆x+ i∆y

]
= lim

∆y→0

[
∆u(x0, y0) + i∆v(x0, y0)

0 + i∆y

] (2.7.2)

Satisfying equations 2.7.1 and 2.7.2 is equivalent of having ∂f
∂z = ∂u

∂x + i ∂v∂x = −i ∂u∂y + ∂v
∂y . So, in

order to be complex differentiable, f should satisfy ∂u
∂x = ∂v

∂y and ∂u
∂y = − ∂v

∂x . These are called the

Cauchy–Riemann equations and they give a necessary condition for f to be complex differentiable or

"holomorphic". Given that u and v have continuous first partial derivatives, the Cauchy-Riemann

equations become a sufficient condition for f to be holomorphic.
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2.7.3. The Generalized Complex Chain Rule for a Real-Valued Loss Function

If L is a real-valued loss function and z is a complex variable such that z = x + i y where

x, y ∈ R, then:

∇L(z) =
∂L

∂z
=
∂L

∂x
+ i

∂L

∂y
=

∂L

∂<(z)
+ i

∂L

∂=(z)
= <(∇L(z)) + i= (∇L(z)). (2.7.3)

Now if we have another complex variable t = r + i s where z could be expressed in terms of t and

r, s ∈ R, we would then have:

∇L(t) =
∂L

∂t
=
∂L

∂r
+ i

∂L

∂s

=
∂L

∂x

∂x

∂r
+
∂L

∂y

∂y

∂r
+ i

(
∂L

∂x

∂x

∂s
+
∂L

∂y

∂y

∂s

)
=
∂L

∂x

(
∂x

∂r
+ i

∂x

∂s

)
+
∂L

∂y

(
∂y

∂r
+ i

∂y

∂s

)
=

∂L

∂<(z)

(
∂x

∂r
+ i

∂x

∂s

)
+

∂L

∂=(z)

(
∂y

∂r
+ i

∂y

∂s

)
= <(∇L(z))

(
∂x

∂r
+ i

∂x

∂s

)
+ =(∇L(z))

(
∂y

∂r
+ i

∂y

∂s

)
.

(2.7.4)

2.7.4. Computational Complexity and FLOPS

In terms of computational complexity, the convolutional operation and the complex batchnorm

are of the same order as their real counterparts. However, as a complex multiplication is 4 times

more expensive than its real counterpart, all complex convolutions are 4 times more expensive as

well.

Additionally, the complex BatchNorm is not implemented in cuDNN and therefore had to be

simulated with a sizeable sequence of elementwise operations. This leads to a ballooning of the

number of nodes in the compute graph and to inefficiencies due to lack of effective operation fusion.

A dedicated cuDNN kernel will, however, reduce the cost to little more than that of the real-valued

BatchNorm.

Ignoring elementwise operations, which constitute a negligible fraction of the floating-point

operations in the neural network, we find that for all architectures in 2.1 and for all of CIFAR10,

CIFAR100 or SVHN, the inference cost in real FLOPS per example is roughly identical. It is ∼ 265

MFLOPS for the R-valued variant and ∼ 1030 MFLOPS for the C-valued variant of the architecture,

approximately quadruple.
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2.7.5. Convolutional LSTM

A Convolutional LSTM is similar to a fully connected LSTM. The only difference is that,

instead of using matrix multiplications to perform computation, we use convolutional operations.

The computation in a real-valued Convolutional LSTM is defined as follows:

it = σ(Wxi ∗ xt + Whi ∗Wt−1 + bi)

f t = σ(Wxf ∗ xt + Whf ∗ ht−1 + bf )

ct = f t ◦ ct−1 + it ◦ tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc)

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + bo)

ht = ot ◦ tanh(ct)

(2.7.5)

Where σ denotes the sigmoidal activation function, ◦ the elementwise multiplication and ∗ the real-

valued convolution. it, f t, ot represent the vector notation of the input, forget and output gates

respectively. ct and ht represent the vector notation of the cell and hidden states respectively. the

gates and states in a ConvLSTM are tensors whose last two dimensions are spatial dimensions. For

each of the gates, Wxgate and Whgate are respectively the input and hidden kernels.

For the Complex Convolutional LSTM, we just replace the real-valued convolutional operation

by its complex counterpart. We maintain the real-valued elementwise multiplication. The sigmoid

and tanh are both performed separately on the real and the imaginary parts.
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(a) An illustration of the complex convolution op-

erator.

(b) A complex convolutional residual network

(left) and an equivalent real-valued residual net-

work (right).

Figure 2.1. Complex convolution and residual network implementation details.
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Figure 2.2. Precision-recall curve
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Figure 2.3. Predictions (Top) vs. ground truth (Bottom) for a music segment from the

test set.

Figure 2.4. Learning curve for speech spectrum prediction from dev set.
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2.7.6. Complex Standardization and Internal Covariate Shift

Figure 2.5. Depiction of Complex Standardization in Deep Complex Networks. At left, Naive

Complex Standardization (division by complex standard deviation); At right, Complex Standard-

ization (left-multiplication by inverse square root of covariance matrix between < and =). The

250 input complex scalars are at the bottom, with <(v) plotted on x (red axis) and =(v) plotted

on y (green axis). Deeper representations correspond to greater z (blue axis). The gray ellipse

encloses the input scalars within 1 standard deviation of the mean. Red ellipses enclose all scalars

within 1 standard deviation of the mean after “standardization”. Blue ellipses enclose all scalars

within 1 standard deviation of the mean after left-multiplying all the scalars by a random 2 × 2

linear transformation matrix. With the naive standardization, the distribution becomes progres-

sively more elliptical with every layer, eventually collapsing to a line. This ill-conditioning manifests

itself as NaNs in the forward pass or backward pass. With the complex standardization, the points’

distribution is always successfully re-circularized.
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2.7.7. Phase Information Encoding

(a) CReLU (b) zReLU

(c) modReLU

Figure 2.6. Phase information encoding for each of the activation functions tested for the Deep Complex Net-

work. The x-axis represents the real part and the y-axis represents the imaginary part; The bottom figure corresponds

to the case where b < 0 for modReLU. The radius of the white circle is equal to |b|. In case where b ≥ 0, the whole

complex plane would be preserving both phase and magnitude information and the whole plane would have been

colored with orange. Different colors represents different encoding of the complex information in the plane. We can

see the for both zReLU and modReLU, the complex representation is discriminated into two regions, i.e., the one that

preserves the whole complex information (colored in orange) and the one that cancels it (colored in white). However,

CReLU discriminates the complex information into 4 regions where in two of which, phase information is projected

and not canceled. This allows CReLU to discriminate information more easily with respect to phase information

than the other activation functions. For both zReLU and modReLU, we can see that phase information may be

preserved explicitly through a number of layers when these activation functions are operating in their linear regime,

prior to a layer further up in a network where the phase of an input lies in a zero region. CReLU has more flexibility

manipulating phase as it can either set it to zero or π/2, or even delete the phase information (when both real and

imaginary parts are canceled) at a given level of depth in the network.
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Conclusion

In the introduction, we remarked on the utility of complex numbers in digital signal processing, and

raised an important question: Why is it that so few neural networks use complex numbers for signal

processing, if they are such a natural medium for expressing the frequency content of a signal?

We then demonstrated that natively complex-valued deep neural networks can match or out-

perform real-valued networks on image and audio tasks, which indicates they should be considered

seriously in the future for general-purpose, deep-neural-network-based signal-processing tasks.

In the process of doing so, we have identified several traps that may have led to the failure

of past efforts to use complex numbers. Specifically, due to the properties of complex numbers,

deep neural networks need adapted weights initialization procedures, a significantly modified batch

normalization layer, and careful attention to the choice of non-linearity.

Using our proposed complex weight initializations, deep neural networks using complex numbers

avoid exploding or vanishing gradients, just as the Glorot and He initializations once did for real-

valued neural networks.

We empirically demonstrate that our Complex Batch Normalization layer solves a pathology of

complex numbers, namely the tendency for their distribution to collapse down to a highly elliptical

distribution, thus avoiding among others numerical problems (like NaN-raising) that otherwise plague

the training of complex-valued networks.

And we show that complex numbers are especially sensitive to the choice of non-linearity. We find

that the non-linearity we term CReLU is an excellent choice for deep feedforward neural networks

and find, contra existing literature, that modReLU and zReLU are poor ones.

Deep Complex Networks thus open the door to a modest and incremental, but still significant,

gain in many sub-fields of artificial intelligence concerned with digital signal processing. It promises

even more significant gains where the input data is naturally complex-valued, such as quantum

particle physics and wireless signal/radar return processing.
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