
Université de Montréal

Auto-Encoders, Distributed Training and
Information Representation in Deep Neural Networks

par Guillaume Alain

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Thèse présentée en vue de l’obtention du grade de

Doctorat en Informatique

Octobre 2018

c�Guillaume Alain, 2018

Résumé

L’objectif de cette thèse est de présenter ma modeste contribution à l’e↵ort
collectif de l’humanité pour comprendre l’intelligence et construire des machines
intelligentes. Ceci est une thèse par articles (cinq au total), tous représentant une
entreprise personnelle dans laquelle j’ai consacré beaucoup d’énergie.

Les articles sont présentés en ordre chronologique, et ils touchent principalement
à deux sujets : l’apprentissage de représentations et l’optimisation. Les articles des
chapitres 3, 5 et 9 sont dans la première catégorie, et ceux des chapitres 7 et 11
sont dans la seconde catégorie.

Dans le premier article, nous partons de l’idée de modéliser la géométrie des
données en entrâınant un auto-encodeur débruitant qui reconstruit les données
après qu’on les ait perturbées. Nous établissons un lien entre les auto-encodeurs
contractifs et les auto-encodeurs débruitants. Notre contribution majeure consiste
à démontrer mathématiquement une propriété intéressante qu’ont les solutions op-
timales aux auto-encodeurs débruitants lorsqu’ils sont définis à partir de bruit
additif gaussien. Plus spécifiquement, nous démontrons qu’ils apprennent le score
de la densité de probabilité. Nous présentons un ensemble de méthodes pratiques
par lesquelles ce résultat nous permet de transformer un auto-encodeur en modèle
génératif. Nous menons certaines expériences dans le but d’apprendre la géométrie
locale des distributions de données.

Dans le second article, nous continuons dans la même ligne d’idées en construi-
sant un modèle génératif basé sur l’apprentissage de distributions conditionnelles.
Cet exercice se fait dans un cadre plus général et nous nous concentrons sur les pro-
priétés de la chaine de Markov obtenu par échantillonnage de Gibbs. À l’aide d’une
petite modification lors de la construction de la chaine de Markov, nous obtenons
un modèle que l’on nomme Generative Stochastic Networks. Plusieurs copies de ce
modèle peuvent se combiner pour créer une hiérarchie de représentations abstraites
servant à mieux représenter la nature des données. Nous présentons des expériences
sur l’ensemble de données MNIST et sur le remplissage d’images trouées.

Dans notre troisième article, nous présentons un nouveau paradigme pour l’opti-
misation parallèle. Nous proposons d’utiliser un ensemble de noeuds de calcul pour
évaluer les coe�cients nécessaires à faire de l’échantillonnage préférentiel sur les
données d’entrâınement. Cette idée ressemble beaucoup à l’apprentissage avec cur-
riculum qui est une méthode dans laquelle l’ordre des données fournies au modèle
est choisi avec beaucoup de soin dans le but de faciliter l’apprentissage. Nous com-

i

parons les résultats expérimentaux observés à ceux anticipés en terme de réduction
de variance sur les gradients.

Dans notre quatrième article, nous revenons au concept d’apprentissage de re-
présentations et nous cherchons à savoir s’il serait possible de définir une notion
utile de “contenu en information” dans le contexte de couches de réseaux neuro-
naux. Ceci nous intéresse en particulier parce qu’il y a une sorte de paradoxe avec
les réseaux profonds qui sont déterministes. Les couches les plus profondes ont des
meilleures représentations que les premières couches, mais si l’on regarde stricte-
ment avec le point de vue de l’entropie (venant de la théorie de l’information) il
est impossible qu’une couche plus profonde contienne plus d’information qu’une
couche à l’entrée. Nous développons une méthode d’entrâınement de classifieur li-
néaire sur chaque couche du modèle étudié (dont les paramètres sont maintenant
figés pendant l’étude). Nous appelons ces classifeurs des“sondes linéaires de classifi-
cation”, et nous nous en servons pour mieux comprendre la dynamique particulière
de l’entrâınement d’un réseau profond. Nous présentons des expériences menées sur
des gros modèles (Inception v3 et ResNet-50), et nous découvrons une propriété
étonnante : la performance de ces sondes augmente de manière monotone lorsque
l’on descend dans les couches plus profondes.

Dans le cinquième article, nous retournons à l’optimisation, et nous étudions la
courbure de l’espace de la fonction de perte. Nous regardons les vecteurs propres
dominants de la matrice hessienne, et nous explorons les gains potentiels dans
ces directions s’il était possible de faire un pas d’une longueur optimale. Nous
sommes principalement intéressés par les gains dans les directions associées aux
valeurs propres négatives car celles-ci sont généralement ignorées par les méthodes
populaire d’optimisation convexes. L’étude de la matrice hessienne demande des
coûts énormes en calcul, et nous devons nous limiter à des expérience sur les données
MNIST. Nous découvrons que des gains très importants peuvent être réalisés dans
les directions de courbure négative, et que les longueurs de pas optimales sont
beaucoup plus grandes que celles suggérées par la littérature existante.

Mots clés: apprentissage profond, réseaux neuronaux, apprentissage de repré-
sentations, auto-encodeurs débruitants, optimisation non-convexe.

ii

Summary

The goal of this thesis is to present a body of work that serves as my modest
contribution to humanity’s quest to understand intelligence and to implement in-
telligent systems. This is a thesis by articles, containing five articles, not all of
equal impact, but all representing a very meaningful personal endeavor.

The articles are presented in chronological order, and they cluster around two
general topics : representation learning and optimization. Articles from chapters
3, 5 and 9 are in the former category, whereas articles from chapters 7 and 11 are
in the latter.

In the first article, we start with the idea of manifold learning through training a
denoising auto-encoder to locally reconstruct data after perturbations. We establish
a connection between contractive auto-encoders and denoising auto-encoders. More
importantly, we prove mathematically a very interesting property from the optimal
solution to denoising auto-encoders with additive gaussian noise. Namely, the fact
that they learn exactly the score of the probability density function of the training
distribution. We present a collection of ways in which this allows us to turn an
auto-encoder into a generative model. We provide experiments all related to the
goal of local manifold learning.

In the second article, we continue with that idea of building a generative model
by learning conditional distributions. We do that in a more general setting and
we focus more on the properties of the Markov chain obtained by Gibbs sampling.
With a small modification in the construction of the Markov chain, we obtain the
more general Generative Stochastic Networks, which we can then stack together into
a structure that can represent more accurately the di↵erent levels of abstraction
of the data modeled. We present experiments involving the generation of MNIST
digits and image inpainting.

In the third article, we present a novel idea for distributed optimization. Our
proposal uses a collection of worker nodes to compute the importance weights to be
used by one master node to perform Importance Sampling. This paradigm has a
lot in common with the idea of curriculum learning, whereby the order of training
examples is taken to have a significant impact on the training performance. We
present results to compare the potential reduction in variance for gradient estimates
with the practical reduction in variance observed.

In the fourth article, we go back to the concept of representation learning by
asking whether there would be any measurable quantity in a neural network layer

iii

that would correspond intuitively to its “information contents”. This is particularly
interesting because there is a kind of paradox in deterministic neural networks :
deeper layers encode better representations of the input signal, but they carry less
(or equal) information than the raw inputs (in terms of entropy). By training a
linear classifier on every layer in a neural network (with frozen parameters), we
are able to measure linearly separability of the representations at every layer. We
call these linear classifier probes, and we show how they can be used to better
understand the dynamics of training a neural network. We present experiments
with large models (Inception v3 and ResNet-50) and uncover a surprizing property
: linear separability increases in a strictly monotonic relationship with the layer
depth.

In the fifth article, we revisit optimization again, but now we study the neg-
ative curvature of the loss function. We look at the most dominant eigenvalues
and eigenvectors of the Hessian matrix, and we explore the gains to be made by
modifying the model parameters along that direction with an optimal step size.
We are mainly interested in the potential gains for directions of negative curvature,
because those are ignored by the very popular convex optimization methods used
by the deep learning community. Due to the large computational costs of anything
dealing with the Hessian matrix, we run a small model on MNIST. We find that
large gains can be made in directions of negative curvature, and that the optimal
step sizes involved are larger than the current literature would recommend.

Keywords: deep learning, neural networks, representation learning, denoising
auto-encoders, non-convex optimization.

iv

Contents

Résumé . i

Summary . iii

Contents . v

List of Figures . x

List of Tables . xii

Chapter 1: Machine Learning . 1
1.1 Machine Learning . 1

1.1.1 Bayesian Inference . 1
1.1.2 Point Estimates . 3
1.1.3 Parametric Models . 4
1.1.4 Supervised vs Unsupervised Learning 5
1.1.5 Loss Minimization . 6
1.1.6 Generalization . 7

1.2 Deep Learning . 10
1.2.1 Overview . 10
1.2.2 Neural networks . 10
1.2.3 Backpropagation . 13
1.2.4 Auto-encoders . 13

1.3 Optimization . 14
1.3.1 Desiderata . 14
1.3.2 Gradient descent methods 15
1.3.3 Early stopping . 16
1.3.4 Parallelization . 17

Chapter 2: Prologue to first paper : What Regularized Auto-
Encoders Learn from the Data-Generating Distribution 19
2.1 Article Details . 19
2.2 Context . 19
2.3 Contributions . 20

v

2.4 Recent Developments . 20

Chapter 3: What Regularized Auto-Encoders Learn from the Data-
Generating Distribution . 21
3.1 Introduction . 21
3.2 Contractive and Denoising Auto-Encoders 23
3.3 Minimizing the Loss to Recover Local Features of p(·) 29

3.3.1 Empirical Loss . 29
3.3.2 Perfect World Scenario . 30
3.3.3 Simple Numerical Example 30
3.3.4 Vector Field Around a Manifold 31
3.3.5 Missing �2 . 34
3.3.6 Limited Parameterization 34
3.3.7 Relation to Denoising Score Matching 35
3.3.8 Estimating the Hessian . 37

3.4 Sampling with Metropolis-Hastings 37
3.4.1 Estimating Energy Di↵erences 38
3.4.2 Sampling . 38
3.4.3 Spurious Maxima . 39

3.5 Conclusion . 41

Appendices
3.A Exact Solution for DAE . 43
3.B Relationship between Contractive Penalty and Denoising Criterion . 44
3.C Calculus of Variations . 44
3.D Local Mean . 49

3.D.1 Definitions for Local Distributions 49
3.E Asymptotic formulas for localized moments 51
3.F Integration on balls and spheres . 53

Chapter 4: Prologue to second paper : Generative Stochastic Net-
works . 56
4.1 Article Details . 56
4.2 Context . 56
4.3 Contributions . 57
4.4 Recent Developments . 57

Chapter 5: Generative Stochastic Networks 58
5.1 Introduction . 58
5.2 Summing over too many major modes 62
5.3 Generative Stochastic Networks . 64

5.3.1 Denoising auto-encoders to model probability distributions . 64
5.3.2 Walkback algorithm for training denoising auto-encoders . . 68

vi

5.3.3 Walkbacks with individual scaling factors to handle uncertainty 72
5.3.4 Extending the denoising auto-encoder to more general GSNs 73
5.3.5 Random variable as deterministic function of noise 79
5.3.6 Handling missing inputs or structured output 81
5.3.7 Dependency Networks as GSNs 85

5.4 Related work . 86
5.5 Experimental results . 87

5.5.1 Experimental results regarding walkback in DAEs 88
5.5.2 Experimental results for GSNs with latent variables 90
5.5.3 Experimental results for GSNs with the scaling factors for

walkbacks . 94
5.6 Conclusion . 96

Appendices
5.A Argument for consistency based on local noise 98
5.B General conditions for claming inputs 101

Chapter 6: Prologue to third paper : Distributed Importance Sam-
pling . 105
6.1 Article Details . 105
6.2 Context . 105
6.3 Contributions . 105
6.4 Recent Developments . 106

Chapter 7: Distributed Importance Sampling 107
7.1 Introduction . 107
7.2 Scaling Deep Learning by Distributing Importance Sampling 108
7.3 Importance Sampling in theory . 109

7.3.1 Classic case in single dimension 109
7.3.2 Extending beyond a single dimension 110
7.3.3 Dealing with minibatches 112

7.4 Distributed implementation of ISSGD 114
7.4.1 Using an oracle to train on a single machine 114
7.4.2 Implementing the oracle using multiple machines 115
7.4.3 Exact implementation vs relaxed implementation 117

7.5 Experimental results . 117
7.5.1 Dataset and model . 117
7.5.2 Reduced training time and better prediction error 119
7.5.3 Variance reduction . 121

7.6 Future work . 123
7.7 Conclusion . 123

Appendices

vii

7.A Importance sampling in theory . 124
7.A.1 Extending beyond a single dimension 124
7.A.2 Dealing with minibatches 127
7.A.3 Using only a subset of the weights 129
7.A.4 Approximating kgtruek2

2
. 130

7.A.5 Smoothing probability weights 130

Chapter 8: Prologue to fourth paper : Understanding intermediate
layers using linear classifier probes 132
8.1 Article Details . 132
8.2 Context . 132
8.3 Contributions . 133
8.4 Recent Developments . 133

Chapter 9: Understanding intermediate layers using linear classifier
probes . 134
9.1 Introduction . 134
9.2 Related Work . 135

9.2.1 Linear classification with kernel PCA 135
9.2.2 Generalization and transferability of layers 136
9.2.3 Relevance Propagation . 136
9.2.4 SVCCA . 137

9.3 Monitoring with probes . 138
9.3.1 Information theory, and monotonic improvements to linear

separability . 138
9.3.2 Linear classifier probes . 139
9.3.3 Practical concern : Ltrain

k
vs Lvalid

k
. 140

9.3.4 Practical concern : Dimension reduction on features 141
9.3.5 Basic example on MNIST 141
9.3.6 Other objectives . 143

9.4 Experiments with popular models 143
9.4.1 ResNet-50 . 143
9.4.2 Inception v3 . 143

9.5 Diagnostics for failing models . 145
9.5.1 Pathological behavior on skip connections 145

9.6 Discussion and future work . 146
9.7 Conclusion . 147

Appendices
9.A Diode notation . 147
9.B Training probes with finished model 148

viii

9.C Inception v3 . 149

Chapter 10: Prologue to fifth paper : Negative eigenvalues of the
Hessian in deep neural networks . 151
10.1 Article Details . 151
10.2 Context . 151
10.3 Contributions . 151

Chapter 11: Negative eigenvalues of the Hessian in deep neural
networks . 153
11.1 Introduction . 153
11.2 Experiments . 154

11.2.1 Methodology . 154
11.2.2 Negative curvature is only local 155
11.2.3 Minimizing loss in directions of negative curvature 155

11.3 Future work and conclusion . 156

Appendices
11.A Jacobian Vector Product . 157
11.B Progression of eigenvalues during training 158
11.C Optimal step sizes . 159
11.D On estimating the Hessian . 160
11.E Suggestion for new optimization method 161
11.F Extra plots . 162

Chapter 12: General Conclusion . 164

Bibliography . 166

ix

List of Figures

1.1 Simplified representation of a neural network 11
1.2 Loss train/valid/test . 17

3.1 Data points on manifold . 24
3.2 Ideal reconstruction function . 24
3.3 Density and energy derivative . 31
3.4 Score versus DAE and RCAE . 32
3.5 Vector field around spiral manifold 33
3.6 Projections of samples from 10-d manifold 40
3.7 Problems with spurious attractors 41

5.1 GSN on a corrupted sample . 59
5.2 Walkback method on spurious attractors 68
5.3 DAE on samples from 10-d manifold 89
5.4 Markov Chain samples with walkback algorithm 90
5.5 GSN architecture with multiple levels 91
5.6 MNIST digits from GSN . 93
5.7 MNIST digits from GSN mixing well 94
5.8 GSN samples for TFD . 95
5.9 Walkback scaling factor . 96
5.10 GSN samples for TFD . 97
5.11 Markov Chain on many modes . 99

7.1 Interactions between ISSGD components 118
7.2 Losses ISSGD versus regular SGD 120
7.3 Test prediction error ISSGD versus regular SGD 121
7.4 Covariance comparisons for ISSGD with damping 122

9.1 Lion picture versus hex dump . 139
9.2 Elementary convnet with inserted probes 142
9.3 Test error on MNIST for each probes 142
9.4 Probes on ResNet-50 with ImageNet 144
9.5 Inception v3 model after 2 weeks of training 145
9.6 Pathological skip connection being diagnosed 146
9.7 Diode notation . 148

x

9.8 Sketch of Inception model . 149
9.9 Probes on Inception at four checkpoints 150

11.1 Actual loss vs quadratic approximation, zoomed in 156
11.2 Actual loss vs quadratic approximation, zoomed out 156
11.3 Best loss decrease . 157
11.4 Optimal step sizes . 157
11.5 Log of absolute value of eigenvalues on MNIST 159
11.6 Log of absolute value of eigenvalues on CIFAR-10 159
11.7 Best loss improvements on di↵erent intervals 162
11.8 Optimizal step sizes on di↵erent intervals 163

xi

List of Tables

5.1 Test set log-likelihood lower bound with Parzen density estimator . 94

7.1 Test Error on Permutation Invariant SVHN Dataset 119

xii

List of Abbreviations

ADAM Adaptative Moment Estimation

AGI Artificial General Intelligence

AI Artificial Intelligence

AIS Annealed Importance Sampling

ASGD Asynchronous Stochastic Gradient Descent

BBTP Backpropagation Through Time

BFGS Broyden–Fletcher–Goldfarb–Shanno

CAE Contractive Auto-Encoder

CCA Canonical Correlation Analysis

DAE Denoising Auto-Encoder

DBM Deep Boltzmann Machine

DBN Deep Belief Network

DL Deep Learning

GPU Graphical Processing Unit

GSN Generative Stochastic Network

I.I.D Independent and Identically-Distributed

ISSGD Importance Sampling Stochastic Gradient Descent

USGD Uniform Stochastic Gradient Descent

KL Kullback-Leibler

MCMC Markov Chain Monte Carlo

ML Machine Learning

MLP Multi-Layer Perceptron

MP-DBMLP Multi-Prediction Deep Boltzmann Machine

PCA Principal Component Analysis

RAM Random Access Memory

xiii

(continued)

RBM Restricted Boltzmann Machine

RCAE Reconstruction Contractive Auto-Encoder

RL Reinforcement Learning

RMSProp Root Mean Square Propagation

RNN Recursive Neural Network

SGD Stochastic Gradient Descent

SVCCA Singular Vector Canonical Correlation Analysis

Specific models or datasets :

CIFAR-10 Canadian Institute for Advanced Research (a dataset)

CIFAR-100 Canadian Institute for Advanced Research (a dataset)

MNIST Modified National Institute of Standards and Technology (a dataset)

ResNet-50 Residual Networks (a model)

ResNet-101 Residual Networks (a model)

SVHN Street View House Number (a dataset)

TFD Toronto Face Dataset (a dataset)

VGG-16 Visual Group Geometry (a model)

VGG-19 Visual Group Geometry (a model)

xiv

Acknowledgments / Remerciements

Sincere thanks to my family and to these other people who play an important
role in my life.

Many thanks to Yoshua Bengio for bringing me on the team in 2012. At the
time, I felt that I had been forced to leave Machine Learning because there were
too few industry jobs in the field. Joining your lab certainly has been one of the
pivotal events in my life. Thank you also for your role as my doctoral advisor. How
the world has changed between 2012 and 2018!

There have been many friendships formed during my years at the lab. I will not
attempt to enumerate all of them, so I will make a super short list (alphabetically
ordered) of special shout-outs to : Yann Dauphin, Vincent Dumoulin, Mathieu
Germain, Ian Goodfellow, Pascal Lamblin, Luca Rigazio, David Warde-Farley.

Certain people played a key role in the internships that I did during the course
of my PhD. Those internships meant a lot to me and they were one of the reasons
why I wanted to do a PhD.

Many thanks to Douglas Eck for giving me a chance on my first internship at
Google Brain in Mountain View. I had a wonderful time with the Magenta team.
I got to be part of something special. Thanks to Otavio Good, Zina Good, Beth
Arena, and Katy Levinson for being awesome.

Thanks to Nicolas Le Roux and Pierre-Antoine Manzagol for the role that you
played in my internship at Google Brain in Montreal.

Thanks to Doina Precup, Shilbl Mourad and Sasha Vezhnevets for the oppor-
tunity to do an internship at Deep Mind in London.

xv

1Machine Learning

The objective of this chapter is to provide an overview of the concepts required
to understand the articles contained in this thesis.

This is not going to be a miniature version of a textbook on Deep Learning.
We will assume that the reader is familiar with Computer Science, Linear Algebra,
Vector Calculus, Probability and Statistics.

We will even go so far as to assume that the reader is has at least some familiarity
with the basic elements of Machine Learning and Deep Learning. There is no value
in us spending 2-4 pages explaining what convolution neural networks are, but
it’s certainly necessary to mention the concept, define it summarily, explain why it
matters, and give a reference to a good textbook. We will not discuss every possible
flavour of neural networks, and we will focus on the ones used in our articles.

That being said, we will nonetheless build a narrative that starts with Bayes’
rule and leads to training deep neural networks. But we will make this a short
journey that goes directly where we need to be.

1.1 Machine Learning

1.1.1 Bayesian Inference

It is my personal opinion that the vast majority of core concepts in Machine
Learning can be traced back to Bayesian inference or be re-cast in those terms. It
all boils down to Bayes’ rule, and to practical trade-o↵s necessary in order to apply
Bayes’ rule in a computationally-tractable way.

For two discrete random variables A and B, the join distribution P (A,B) can
be expressed in two ways using conditional distributions :

P (A,B) = P (B|A)P (A)

= P (A|B)P (B).

1

From this we get Bayes’ rule which says that

P (B|A) = P (A|B)P (B)/P (A)

/ P (A|B)P (B) if P (A) > 0.

This applies as much to discrete variables as to continuous random variables, or
with any Lebesgue measure. In the case of continuous random variables, Bayes’
rule is stated using probability density functions.

This can be applied directly to a situation in which we have a collection of data
D and a model M, both of which are represented as random variables. The prior
P (M) is specified, and the task of defining a model M is to provide a definition for
the conditional distribution P (D|M). Then we can obtain a posterior distribution
over models by using Bayes’ rule

P (M|D) = P (D|M)P (M)/P (D)

/ P (D|M)P (M).

We generally do not worry about the condition P (D) > 0 when dealing with
empirical data, because it seems safe to assume that, if we have observed the data
D, then it must have nonzero probability (or a nonzero probability density).

For any new data point X encountered, we can use Bayes’ rule to evaluate the
probability of X given D by integrating over models M.

P (X|D) =

Z

M

P (X|M)P (M|D)dM (1.1)

Just by applying basic rules of Probability and Statistics, we end up with a kind
of mechanical artificial intelligence that can make predictions for new observations
based on previous observations. Our prior assumptions about the model distri-
bution also play a role, but that role decreases in importance as the sample size
grows.

It is worth noting that the starting point to most approaches is always to assume
and that data points D = {x1, . . . , xN} are independent and identically distributed
(IID) conditional on the choice of model M. This allows the factoring of

P (D|M) = ⇧N

n=1
P (xn|M). (1.2)

Equation (1.1) relies implicitly on the assumption that P (X|M, D) = P (X|M),
which is usually satisfied trivially in cases where D = {x1, . . . , xN} and where
{x1, . . . , xN , X} are IID.

2

1.1.2 Point Estimates

If we study more closely Equation (1.1), there are other practical details left
unaddressed. Namely,

— How can we define a family of models M that is su�ciently rich to capture
complex distributions of data?

— How are we supposed to evaluate P (X|M) and P (D|M) in practical terms
on a computer?

— What is a reasonable prior distribution to use?
— Can we approximate the value of that integral by using a limited number of

points instead of integrating over all possible models?

When the rubber meets the road, someone needs to write code that actually
executes and returns values for P (D|M). The literature on Probability and Statis-
tic does provide a fair number of useful distributions (e.g. Multinomial, Poisson)
suitable to model a variety of phenomenons involving a single variable. However
these distributions are not suitable at all to the task of representing a distribution
on images with 28⇥ 28 pixels. As we will discuss in Section 1.2, this is where Deep
Learning provides us with a powerful set of tools.

Performing the full integration over all the family of models is not cheap. If we
use a limited number of models, we are going to be able to compute the integral,
but we are probably not going to have models that represent well the actual data
(with the exception of toy examples in which the data was generated by us with
one of those models). One of the popular solutions is to consider a large family of
models, but to estimate the integral with only one representative. We are going
to pick the single model M⇤ that does the best job at estimating

P (X|D) ⇡ P (X|M
⇤). (1.3)

This model is called a point estimate. It is also convenient to refer to it as the
model “trained on the data D”.

One of the common choices for a single model are the Maximum Likelihood
Estimate (MLE)

MMLE , argmax
M

P (D|M) (1.4)

or the Maximum A Posteriori estimate (MAP)

MMAP , argmax
M

P (D|M)P (M). (1.5)

3

In either case, we get a single model to be used later to evaluate the likelihood
of new observations, and we make the claim that the integral is approximated
su�ciently well by that estimate for practical purposes. One still needs to exercise
caution to avoid selecting models that put zero probability weight on new data
points never encountered so far.

1.1.3 Parametric Models

We will shift now directly to the specific notation that we want to use to deal
with neural networks (later defined in Section 1.2.2).

A parametric model is a collection of models (commonly referred to as a “model
family”), indexed by a set of parameters (that can usually be flattened out and
concatenated into a single vector of real numbers). At times we really want the
di↵erent components of the parameters to stand out on their own, but at other
times we want to treat everything as a single vector ✓ to simplify our analysis.
This vector fits in a predetermined finite amount of memory.

This is made to contrast with a non-parametric model where no such finite
vector can be identified, usually because the model trained has an infinite capacity
to memorize meaningful data points. Parzen Windows or Gaussian Processes are
examples of non-parametric models.

The question of whether neural networks are parametric models, or non-parametric
models, can be decided either way depending on what we include in our definition.
If we consider a specific neural network architecture (sometimes with a name such
as ”Inception v3”), then they are parametric models. If we consider instead a fam-
ily of neural networks that can be scaled up as we get more data (by adding more
layers or more hidden units), then it is possible to make the case that they are
non-parametric.

In practice, neural networks architectures are often scaled up to whatever is
required to fit the data (and to generalize), so long as the training procedure does
not become prohibitive. However, there are plenty of cases in which a popular
architecture is selected based on its merits proven in a similar domain, and that
architecture decision is never revisited. That latter usage would make neural net-
works fall squarely in the realm of parametric models.

Needless to say, those distinctions are meant to be useful cognitive tools, and
when we stretch definitions too far they can stop being useful.

4

1.1.4 Supervised vs Unsupervised Learning

One of the many ways to organize the domain of Machine Learning is to talk
about supervised learning versus unsupervised learning. This is only a rough split,
but it’s a meaningful one.

Supervised learning deals with problems where we have data in the form of pairs
(x, y) 2 D, where x is the input and y is the output. There is always a notion of
ground truth, or target, to be learned by our models. This class of problems tends
to be easier, even to the degree that some Machine Learning experts like to make
the scandalous claim that “supervised learning is a solved problem, because it’s
just a question of having enough data, model capacity, and computation”. There
is some truth to that claim, but the main point is that the alternatives are much
more di�cult.

A good deal of the recent fame of Deep Learning stems from the fact that it is
one of the most powerful methods to solve many supervised learning problems. By
framing certain problems as supervised learning problems, we can use all the power
of Deep Learning to solve them. This is one of the ways in which Deep Learning
made Reinforcement Learning shine in recent years (Mnih et al., 2013).

Unsupervised learning by itself does not have a single clear objective. We have
data x 2 D and we want to do something useful with it. One natural task to
attempt is to model the density of the underlying distribution. This can be used
to sample new data from the inferred distribution. Obviously, this task requires
that we make a good number of assumptions about the distributions that we are
dealing with. Examples of unsupervised learning include clustering methods such
as k-means, or general density modeling with Gaussian mixtures models.

The idea of semi-supervised learning is that we may find ourselves with a limited
amount of labeled data (rare and expensive), and a lot of unlabeled data (plentiful
and cheap). We want to solve a typical supervised learning problem, such as image
classification, but we want to leverage the fact that we have access to a lot of other
images of the same objects that simply happen to be unlabeled. At worse, we can
simply ignore the unlabeled data. At best, we can use meaningful patterns from
the unlabeled data to make the classifier be just as good as though in had been
trained with all the data being labeled.

Just to highlight how this separation is not as clean cut as we might like to
imagine, we could consider the concept of transfer learning as being related to
semi-supervised learning, but not fitting quite in that category. With transfer
learning, we have labeled data for our current supervised learning problem, but

5

we also have the resulting model and data from another related experiment. How
can we make use of that labeled data for a di↵erent task? What if the labels are
related, if they overlap somewhat, but are not quite the same? For example, a set
of high-resolution pictures of dogs and cats can be used to supplement a dataset of
low-resolution pictures of other animals.

In our article in Chapter 3, we train auto-encoders to perform density modeling.
This fits in the unsupervised training category, but the way that we train our
auto-encoders is very much through a supervised training approach.

In the articles in Chapters 7, 9 and 11, we are using supervised learning problems
as means to explore di↵erent aspects of training and properties of neural networks.

1.1.5 Loss Minimization

The practice of minimizing a loss instead of maximizing a likelihood (or equiv-
alently a log likelihood) is commonplace, and it is even more natural in a setting
where we start from the perspective that we really want a point estimate ✓MAP. The
log likelihood is turned into a summation of loss contributions for every point of
the training set, and the prior distribution on models is turned into a regularization
term that involves the model parameters ✓ but not the training set.

That is, the problem of

✓MAP , argmax
✓

NX

n=1

log p✓(xn|✓) + log p(✓)

is turned into

✓
⇤ , argmin

✓

NX

n=1

loss✓(xn) +R(✓).

The loss terms are defined by how well our model is performing on training samples,
and the regularization term R(✓) is selected to favor certain parameter configura-
tions over others (e.g. those with small norms, or with more zero coe�cients).

One of the common situations encountered in Machine Learning is to have a
probability density function p✓(y|x) where x is the input to the model and y is
the output variable to be predicted. In the simplest case of deterministic neu-
ral networks, a function ỹ = f✓(x) maps the input x to the output ỹ. We then
apply a certain probabilistic interpretation to this, which defines a valid density
p✓(y|x) = p (y|ỹ = f✓(x)). In practice, however, we often leave out the probabilistic

6

interpretation and we simply define a loss that incentivizes ỹ to match with some
specified ground truth y (e.g. an input image x with a correct label y). We get

L(✓) ,
NX

n=1

loss(yn, f✓(xn)) +R(✓). (1.6)

The task of training a machine learning model is thus transformed into an opti-
mization problem, and we can try to minimize L(✓) using optimization techniques
with varying degrees of success. Certain models might be able to achieve lower loss
in theory, but they might be harder to minimize in practice. See Section 1.3 for
more on that discussion. More flexibility is not always better.

Moreover, because of the fact that
— we are using a model that does not necessarily reflect the real complexity of

the data observed,
— we are using a point estimate instead of performing an exact Bayesian ap-

proach,
we may end up solving the wrong problem, so to speak. This leads to the discussion
of generalization, which is a very important property that we require of any model
that is meant to be used on new data not seen during training.

1.1.6 Generalization

There would be no point to Machine Learning if the techniques that produced
great results on our training data did not also produce good results on new data
never seen before. Like many other concepts in Machine Learning, this also applies
to many aspects of training young humans (i.e. rote memorization versus focus on
learning patterns).

The conceptual framework here is that there exists some distribution to be
learned, and we are going to have access to samples Dtrain drawn from that distri-
bution. Let us go back to the supervised training example where the output y has
to be predicted based on the input x. The real loss that we want to minimize is

L(✓) = E(x,y) [loss(y, f✓(x))] (1.7)

but we have only access to an empirical estimate

Ltrain(✓) =
1

|Dtrain|

X

(xn,yn)2Dtrain

loss(yn, f✓(xn)) (1.8)

7

for a fixed Dtrain that is often expensive to acquire.

The good thing is that Ltrain(✓) is an unbiased estimator of L(✓), and we can
hope to reduce its variance su�ciently close to zero by using a large training set
Dtrain. This means that, for any given ✓ that is independent from Dtrain, we have
that

EDtrain [Ltrain(✓)] = L(✓). (1.9)

We will now take a moment to derive an important inequality that involves taking
the minimum of Ltrain(✓) with respect to ✓ 2 ⇥.

If we have two functions {f✓(x), g✓(x)} parameterized by ✓, then let us consider
for a moment the operation min✓ applied to a linear combination ↵f + (1 � ↵)g.
We can show that this operation is concave

↵min
✓

f✓(x) + (1� ↵)min
✓

g✓(x) min
✓

[↵f✓(x) + (1� ↵)g✓(x)] (1.10)

because of the fact the left side is free to pick a di↵erent value of ✓ for each term.

We can apply Jensen’s inequality (flipped because of concavity) to get that, for
any random variable X we have that

EX

h
min
✓

f✓(X)
i
 min

✓

EX [f✓(X)] . (1.11)

This can be applied to

EDtrain

h
min
✓

Ltrain(✓)
i
 min

✓

EDtrain [Ltrain(✓)] = min
✓

L(✓). (1.12)

In practical terms, this means that we have to be careful whenever we take a
min✓ using a particular Dtrain. We can achieve lower values that would not be
possible if we performed the same minimization using an infinite stream of data
from the true generating distribution (i.e. with no particular fixed training samples
being prioritized).

This is a mathematical way to express the phenomenon known as overfitting.
It happens when the model parameters are able to fit certain spurious patterns
found in the specific Dtrain used, which are not at all patterns that the underlying
distribution would exhibit.

Generalization loosely refers to the fact that those patterns modeled by the
parameters ✓ will be relevant to yet-unseen samples drawn from the data-generating
distribution. The ability to generalize is one of the most important properties
sought, and there are a collection of techniques and good practices that revolve
around making sure that models that we train will generalize to the best of their

8

ability.

It is common practice to split all of our data into three sets : training set,
validation set, and test set. These names are often shortened to train, valid, and
test.

The training set is used to find model parameters ✓ by minimizing the loss
function. When comparing multiple models, we need to use the validation set in
order to decide which model has been potential to generalize to new data. Then,
the test set can be used to assess the kind of performance that we should expect
from new data. The important caveat is that whenever we perform a minimization
operation over parameters or over models, we obtain a loss value that is no longer
an unbiased representative of the performance on new data.

The motivation behind having a validation set is that, in practice, we perform a
loss minimization for a given model when we train the model, but we also perform
a loss minimization over many models to see which one has the more potential.
Very often, this takes the form of hyperparameter optimization, which is simply a
way to explore a parametrized space of model architectures (i.e. di↵erent models)
and variations on optimization techniques. We need a way to assess which of those
models will have the best performance on unseen data, so we use the validation set
for that purpose. However, once we select the best model in that way, we cannot
trust the validation loss as a good measurement of that performance. We then have
to use the test set for that purpose. All of this is basically a consequence of the
mathematical equation (1.12).

The regularizer term R(✓) used influences the generalization of the model, often
by preventing the model to scale its parameters by a large amount, which often
corresponds to having the model claim its absolute certainty about certain predic-
tions. While absolute certainty is good for minimizing the training loss, it can be
catastrophic when the model is wrong on new data.

Note that there is always the underlying assumption that the new data that we
are going to see when deploying the model is going to have the same kind of usable
pattern than in the data available for training. Otherwise, there is no learning
possible at all.

The actual optimization problem of minimizing a loss function with respect to
parameters ✓ is discussed in Section 1.3. It depends so much on the particular
model used that we cannot discuss it before at least introducing the deep neural
networks used. In that subsection we will also discuss early stopping, which is one
of the most important ways to mitigate overfitting.

9

1.2 Deep Learning

1.2.1 Overview

Deep Learning is a subfield of Machine Learning that focuses on a particular
family of models called neural networks. These models are now so popular that
we will refer the reader to the best book on the topic (Goodfellow, Bengio, and
Courville, 2016) instead of explaining in details what are neural networks, convo-
lutional layers, and all the possible variations on those ideas (e.g. Dropout, Batch
Normalization).

Moreover, the articles presented in this thesis make no use of Restricted Boltz-
mann Machines (RBM), Recurrent Neural Networks (RNN), or Generative Adver-
sarial Networks (GAN). This absence of those models in the theoretical chapter of
the thesis should not be interpreted as a statement about their lack of relevance.
On the contrary, they are now so well-known that it is easy to read about them in
Goodfellow, Bengio, and Courville (2016).

We will nonetheless describe here the specific case of a small convolutional neural
network that represents very well the core concepts present in most neural networks,
so that the reader at least has a rough idea of the main idea. This is not to limit
the scope of how neural networks can be defined, but simply to ground certain
concepts. Indeed, this approach goes well with the mindset of Machine Learning,
in which certain concepts are better expressed by a collection of examples than by
a set of rules.

1.2.2 Neural networks

We will focus here on an example of a typical deep neural network taking the
form of a sequence of layers, which take a vector as input and output a vector.
Those layers are strung together so that the output of layer k becomes the input
of layer k + 1. This is illustrated in Figure1.1.

The input of the first layer becomes the input of the neural network itself, and
the same principle applies for the output of the last layer. Usually the neural
network takes some training data X as input, and it outputs ỹ, meant to be a kind
of prediction about X, which is then compared to the ground truth y.

We train the model so as to encourage the outputs ỹ match the ground truth
y, which is usually defined in terms of minimizing a loss function involving ỹ and
y. This is done by setting the value of the model parameters ✓ so as to achieve
that goal. In some cases we can use a loss based on the Euclidean norm kỹ � yk

2

2
.

10

Figure 1.1 – Simplified representation of a neural network with 3 hidden layers. The details of
every layer are unspecified.

In other cases, such as classification problems, we can use a softmax cross-entropy
loss.

Often the intermediate layers are referred to as hidden layers, the intermediate
values are described as hidden units (or neurons). This leads to the notation Hk

for the hidden units, and for layers to be defined as mappings from Hk to Hk+1.
The whole pipeline from input to output is often referred to as forward propagation,
and backward propagation refers to a specific technique to compute the gradients
with respect to all the parameters (see Section 1.2.3).

The model parameters are often more conveniently expressed as a set of parameters
each belonging to a particular layer of their own. The fully-connected layer is one
of the most common type, and it has a weight matrix and a bias vector (often
denoted by W and b respectively). If the input of the layer is Hk, then the output
of the layer is Hk+1 = s (Hk ·W + b), where s is some activation function such as
the sigmoid function, the hyperbolic tangent, or a rectifier leading to Regularized
Linear Units (ReLU).

The replacement of the sigmoid activation function by ReLUs was one of the
most important ingredients to allow the training of deeper neural networks.

One of the many ways to create new kinds of neural networks is to require
that certain weights on di↵erent layers be equal (in practice achieved by reusing
the same underlying variable). This basically means that the same layer (i.e. the
same input-output mapping) is being applied multiple times. Recurrent Neural
Networks (RNN) use this approach to implement a neural network that extends to
many times steps (sometimes with undetermined or variable total length).

Apart from the fully-connected layer, another very common type of layer is
the convolutional layer, which makes up the first set of layers in a convolutional

11

neural network. The convolution operation can be applied on inputs in 1, 2, or
3 spatial dimensions, plus an extra dimension for the channels. There is a slight
conflict of nomenclature between fields so that what is called “convolution” in Deep
Learning is called “correlation” in Signal Processing. This is a detail that anyone
using an automatic di↵erentiation tool (e.g. Theano, Tensorflow, Torch) can a↵ord
to ignore.

Technically, a convolution layer is the same as a fully-connected layer on which
a set of very intricate constraints on the weights are being applied. This is simply
a consequence of the fact that, mathematically speaking, a convolution is a linear
map. The great advantage of a convolution layer resides in 1) the greatly-reduced
number of parameters to be learned, and 2) the inference bias of the model which is
particularly suitable for detecting the kind of features required to process images.
That is to say that convolutional neural networks exploit the kind of patterns that
we naturally find in images (e.g. translation invariance, or neighbouring pixels
have highly dependent values), and this gives them a great advantage over the
usual fully-connected networks. They require less data to train, less computation,
and one could argue that they have a better chance at generalizing well to new
data. This kind of claim, of course, depends entirely on the actual data that we
are trying to model.

The classic convolutional neural network for image classification has a few con-
volutional layers followed by a few fully-connected layers. At the end there is a
softmax that is used to obtain a probability distribution over the finite number of
classes. Then the model is trained by minimizing the cross-entropy loss.

The softmax function is a mapping from Rd
! Rd defined as

softmax (v1, . . . , vd) =
1

Z
(ev1 , . . . , evd) where Z =

X

i

e
vi .

The name come from the fact that it is a smoother version of themaximum function
that would return a vector with 1.0 in the location of the largest element and zero
elsewhere.

This combines rather well with the cross-entropy, which is defined between two
discrete distributions p and q as

H(p, q) = �
X

x

p(x) log q(x).

In the context of neural networks, we often take p as the target and q as the output
of the last layer of the neural network (i.e. right after the softmax).

12

1.2.3 Backpropagation

Because almost all neural network models are trained with methods based on
gradient descent (see Section 1.3), it is necessary that the loss be di↵erentiable with
respect to the parameters of the model. The chain rule from di↵erential calculus
expresses the exact way in which a sequence of operations can be di↵erentiated
with respect to some input variable. Using Newton’s notation, it is conveniently
expressed as

[f(g(x))]0 = f
0(g(x))g0(x). (1.13)

When it comes to neural networks, this turns into a harder problem because vector
calculus quickly produces high-dimensional tensors with intricate interactions that
are hard to write on paper and lead to obfuscated bugs when implemented in code.
Moreover, the sequential nature of neural networks means that this computation
has a very standard structure by which the values for all the layers are computed
from first to last (forward propagation), and then the derivatives can be computed
from last layer to first (backward propagation). The values from the forward pass
are needed for the backward pass. Many of those intermediate values should be
cached and certain branches of computation can be entirely pruned away.

While it is very important to know about backpropagation, modern tools such as
Theano, PyTorch and Tensorflow (Al-Rfou et al., 2016; Paszke et al., 2017; Abadi
et al., 2015) take charge of that computation to make sure that it is done e�ciently
and correctly.

1.2.4 Auto-encoders

The general idea of an auto-encoder is a function f✓ : A! A, from some domain
A back to itself. Due to particular constraints during training, we expect to obtain
a function that focuses on the most important patterns of the data being fed in.
This is achieved by using a loss function that encourages the outputs to match the
inputs. We want to be careful so as to avoid learning exactly the identity function
because that trivial solution does not contain anything specific to our training data.

For example, if the domain is Rd and we represent the data as a random variable
X taking values in Rd, we can choose a loss that involves the expected Euclidean
norm

EX

⇥
kf✓(X)�Xk

2
⇤

(1.14)

and we can add a regularization term R(✓) = k✓k2 on the magnitude of the weights.

Another alternative is the denoising auto-encoder, which becomes the main ob-
ject studied in our article presented in Chapter 3. Instead of using the Euclidean

13

norm from Equation (1.14), there is some random noise being added :

E(X,noise)

⇥
kf✓(X + noise)�Xk

2
⇤
. (1.15)

In the early days of Deep Learning, auto-encoders were also used as unsupervised
pre-training to initialize the weights of deep neural networks. A analysis of this
technique is found in Erhan et al. (2010). This technique is no longer necessary
to train deep neural networks because the use of ReLUs as activation functions
prevents hidden units from saturating pathologically like they did with sigmoid or
tanh activation functions.

In the case of unsupervised pre-training, the idea was that it set up the network
in way that made sure that important patterns present in the input data would
be propagated to deeper layers. There was also the idea that deeper layers would
be dealing with more “abstract” or “high-level” patterns made up by combining the
simpler patterns from the first layers. This concept plays an important part in our
article presented in Chapter 5 where we stack multiple auto-encoders.

1.3 Optimization

1.3.1 Desiderata

The easiest model to train is the model without any parameters. The optimiza-
tion problem is trivial, and the model is useless.

On the other side, we might imagine a model where the parameters can represent
every possible circuit design for a computer. While it might be possible to construct
a basic arithmetic circuit by brute-force search through all the configurations, it
would be absolutely impossible to design an entire computer that way (and it’s not
how humans do it in practice because we can exploit structure and modularity).

Neural networks seem to exist at the right place between those two extremes.
This has a lot to do with their incredible flexibility and the fact that they can be
trained with gradient descent methods. There is a lot of research that goes into
the training techniques, which are essentially optimization methods to minimize
the loss L(✓) with respect to its parameters ✓.

We could even go so far as to say that, at the current time, when we talk about
deep neural networks, we are actually talking about a very restricted subset of

14

configurations that are achievable through simple optimization methods. We still
do not know if that severely limits our range of expressiveness in practice, or not
at all.

1.3.2 Gradient descent methods

All the optimization techniques used in Deep Learning are derived from Gradient
Descent (sometimes called Batch Gradient Descent). It starts with the idea of
performing updates

✓t+1 = ✓t � ↵
@L(✓)

@✓

����
✓=✓t

(1.16)

with a learning rate ↵ > 0. By making certain assumptions about the loss, or by
having the learning rate ↵t ! 0 with the correct schedule, we can prove that this
process converges to a local minimum of the loss L(✓). We avoid here the exact
analysis of these conditions, but we would direct to reader to Nocedal and Wright
(2006) for more details.

One modification to Gradient Descent is to compute the gradient on only a
subset of the training set each time (often called a minibatch). This estimate has
the correct expectation, but it has a certain variance that introduces an element
of stochasticity in the optimization process. This is called Stochastic Gradient
Descent (SGD) and it is very common in Deep Learning for two main reasons :

— The datasets tend to be very large, and we can perform many good updates
to our parameters for only a fraction of the cost if we use minibatches instead.

— The hardware is usually designed in a way that the operations can be done
cheaply on a minibatch of size 32 or 64.

This means that we are using gradient estimators instead of the exact @L(✓)

@✓

���
✓=✓t

.

There are many ways to tweak SGD to obtain similar algorithms that perform
better on neural networks. One of the interesting variations to SGD is to use
momentum methods that emulate the same kind of dynamics as when we have a
ball rolling in a particular direction with small random impulses being applied. The
forces influencing the ball might be in one general direction, and we want this to
be reflected in the trajectory by averaging the small contributions. This mitigates
the erratic behavior of SGD.

Another approach to optimization is to start instead with a second-order method
called Newton’s method, which uses the Hessian matrix of second-order derivatives.

15

When ✓ 2 Rd, the Hessian matrix

H(✓) =
@
2
L(✓)

@✓2
(1.17)

takes d
2 for storage and requires d

3 operations to invert. The nice thing about
Newton’s method is that it can converge very fast to a solution when we are facing a
convex optimization problem. However we know that deep neural network losses are
not convex in general, even though it is reasonable to think that the optimization
procedure eventually enters a convex bowl near some local minima.

The impossible computational requirements mean that Newton’s method is not
usable to train deep neural networks. Fortunately, there are many ways to adapt
it for that purpose. The simplest way is to assume that the Hessian matrix is
diagonal. It then becomes easy to estimate it and to compute its inverse. This
assumption can address certain issues about the scale of di↵erent parameters, but
it basically assumes that each parameter coe�cient is independent of each other.
These methods are called quasi-Newton methods because they are not quite second-
order methods.

In this family of quasi-Newton methods, we find Adam (Kingma and Ba, 2015),
Adagrad (Duchi, Hazan, and Singer, 2010), Adadelta (Zeiler, 2012), and RMSProp
(Tieleman and Hinton, 2012). In all cases, these methods are implicitly using the
assumption that the diagonal elements of the Hessian are greater or equal to zero.
This assumption is true when we are dealing with a convex optimization problem,
but things may not be convex when dealing with a deep neural network. This
motivates our investigation in the article presented in Chapter 11.

We still face the same opportunity for mini-batches when dealing with the Hes-
sian matrix as when dealing with gradients. We can use of the same kind of
techniques to keep a moving estimate of the diagonal of the Hessian matrix. This
estimate is updated at every mini-batch, and this provides a certain degree of sta-
bilization or robustness. Like all other techniques in Machine Learning, this could
be described as a kind of inference bias, i.e. a preference for certain kinds of pat-
terns at the detriment of others. The ultimate test is always to check if we perform
better or worse on actual data.

1.3.3 Early stopping

One of the important things to keep in mind when using gradient descent meth-
ods in Deep Learning is that we often do not want to actually minimize our loss

16

all the way to convergence ✓t ! ✓
⇤. We often want to stop at the moment where

the loss on the validation set stops improving. See Figure 1.2.

This is another of those implicit assumptions about Deep Learning. We assume
that, by training with gradient descent methods, our model is going to start by
picking up the dominant patterns that are common to the train/valid/test data.
It will minimize the loss on all three, and eventually it will get to point where we
should stop because overfitting occurs. This approach is called early stopping.

Figure 1.2 – Cartoon representation of loss on training, validation and test set. Note how the
training loss can decrease down to zero but this would not necessarily cause the validation loss or
test loss go down to zero. We often want to use the validation loss to decide on a good moment
to stop the optimization procedure.

Experimentally, this method works really well. The intuitive explanation is
somewhat naive, because in reality overfitting is not a sudden regime change. It
is possible to construct examples where the model being trained is picking up on
spurious patterns right from the start of training. In a way, the moment when we
want to stop training is when we start investing more in spurious patterns (that do
not generalize) to the detriment of the meaningful patterns (that do generalize).

1.3.4 Parallelization

When it comes to training deep neural networks, a lot of the recent advances
are made possible by specialized hardware, mostly through the form of graphic
accelerator chips (GPU).

Most of the gradient descent methods to train deep neural networks could theo-
retically be parallelized by simply computing the gradients on larger mini-batches.
If we could magically double the size of our mini-batches without a↵ecting the

17

computational costs, this would be a great way to train our models faster. Paral-
lelizing and distributing computation is not an easy task. It depends a lot on the
communication speed/cost between the di↵erent computing devices linked. Two
GPUs on the same machine are usually better connected than two GPUs on dif-
ferent machines. This provides an opportunity to design algorithms specifically
tailored to our particular hardware configuration, but it also poses a challenge for
the reproducibility of science.

Model parallelism is about splitting a given model between many computing
devices (GPUs, CPUs, or other machines) to process mini-batches in a sequential
way. Data parallelism involves having a copy of the model on each computing
device and processing a di↵erent chunk of data on each.

The usual paradigm for distributed training is to have a parameter server that
serves as authority on the model parameters. Then we have multiple worker nodes
that compute gradients for mini-batches and send the aggregated values to the
parameter server. They need to sync the parameters to keep up to date with the
model parameters as much as possible to avoid stale gradients (based on older
parameter values). Stale gradients tend to be useful to the extent that they can
nevertheless serve as good approximations to the current value of the gradients. But
if the model parameters change too much this can harm the training procedure. The
ability for worker nodes to sync with the parameter server (or multiple parameter
servers) is entirely a hardware issue, but it is still possible for us to design our
algorithms that are more robust to stale gradients.

Certain methods are said to be synchronous when they require specific coordi-
nation between the worker nodes. For example, the Synchronous SGD method has
each worker nodes process one mini-batch each and wait for every other worker to
be done before processing the next mini-batch. Other methods are said to be asyn-
chronous when those constraints are not present (e.g. asynchronous SGD). Those
two concepts are found elsewhere in Computer Science and the same principles
apply. Analyzing asynchronous algorithms is more complicated, but they usually
tend to make better utilization of the hardware because they can schedule work
with less delays. When dealing with stale parameters or gradients, the situation
can get very complicated because some configurations might work with one dataset
and model, but not on others.

In our article presented in Chapter 7, we propose a method to parallelize training
of deep neural networks using a di↵erent paradigm.

18

2

Prologue to first paper :

What Regularized

Auto-Encoders Learn from
the Data-Generating

Distribution

2.1 Article Details

What Regularized Auto-Encoders Learn from the Data-Generating
Distribution, by Guillaume Alain and Yoshua Bengio, in International Conference
of Representation Learning (2013) (Oral Presentation), and Journal of Machine
Learning Research 15 (2014).

Personal Contribution. The mathematical results of paper were derived by me. I
also wrote, ran and analyzed all the experiments. The problem itself was identified
by Yoshua Bengio and he provided a lot of the context to allow me to focus on
the mathematical side of things. While the core of the paper was written by me,
the introduction and the proper way to place the theory in the existing literature
comes from Yoshua Bengio.

2.2 Context

Auto-encoders are one of those elementary ideas that ends up in many places
because many methods can be framed as an auto-encoder (e.g. PCA as a two-
stage auto-encoder with a bottleneck). Auto-encoders were also one of the ways
that deep neural networks used to be initialized. This was a way to ensure that
many layers of neurons were not going to discard previous information by being
initialized with random parameters. It is natural to expect that other members of
our group at the University of Montreal were studying the interesting properties
of various kinds of auto-encoders (Rifai et al., 2011a; Rifai et al., 2011b; Vincent
et al., 2008a).

One of the intuitive ideas floating around was that of the “manifold hypothesis”,
a concept which is almost intentionally vague so as to be able to refer to its many
manifestations. The essence of the idea is that the data distributions concentrate
near lower-dimensional sets and could be mapped to a patchwork of local repre-
sentations (in lower dimension) that truly encapsulate the meaningful patterns.
By “walking on the manifold”, one would end up generating good samples that

19

look as though they are from the original distribution, instead of bad samples that
look like they have random pixels being flipped. This explains the focus on “local
reconstruction” found in the appendix of the article.

2.3 Contributions

This paper starts by demonstrating a certain kind of equivalence between con-
tractive auto-encoders and denoising auto-encoders. The most important contri-
bution is that it establishes a mathematical connection between denoising auto-
encoders and the score of p(x), where p(x) is the actual probability density function
from which the training data was drawn.

We demonstrate how the optimal solution of a denoising auto-encoder with
additive gaussian noise could then be used to construct a Markov chain whose
stationary distribution is p(x). This produces a generative model with certain
desirable mathematical guarantees, but also certain practical limitations.

See Section 1.2.4 for more mathematical context.

2.4 Recent Developments

This paper led directly to the elaboration of the generative stochastic networks
(see paper presented in Chapter 5).

A paper from Kamyshanska and Memisevic (2015) studied the consequences of
our results by imposing certain constraints on the auto-encoders so that the vector
field becomes conservative (in terms of energy in the physical sense).

Our article has always been in a strange position because it has one foot in Deep
Learning and one foot in stochastic di↵erential equations. A recent paper (Sonoda
and Murata, 2016) was published where this is taken farther than we could have
carried it. There are a lot of tools from Optimal Transport that we were clearly
not familiar with. It is interesting to note that, in parallel, many researchers from
Deep Learning came to find out about the field of Optimal Transport because of
the famous paper on Wasserstein GANs (Arjovsky, Chintala, and Bottou, 2017).

20

3
What Regularized

Auto-Encoders Learn from
the Data-Generating

Distribution

What do auto-encoders learn about the underlying data-generating distribution?
Recent work suggests that some auto-encoder variants do a good job of capturing
the local manifold structure of data. This paper clarifies some of these previous
observations by showing that minimizing a particular form of regularized recon-
struction error yields a reconstruction function that locally characterizes the shape
of the data-generating density. We show that the auto-encoder captures the score
(derivative of the log-density with respect to the input). It contradicts previous
interpretations of reconstruction error as an energy function. Unlike previous re-
sults, the theorems provided here are completely generic and do not depend on
the parameterization of the auto-encoder: they show what the auto-encoder would
tend to if given enough capacity and examples. These results are for a contrac-
tive training criterion we show to be similar to the denoising auto-encoder training
criterion with small corruption noise, but with contraction applied on the whole
reconstruction function rather than just encoder. Similarly to score matching, one
can consider the proposed training criterion as a convenient alternative to maxi-
mum likelihood because it does not involve a partition function. Finally, we show
how an approximate Metropolis-Hastings MCMC can be setup to recover samples
from the estimated distribution, and this is confirmed in sampling experiments.

3.1 Introduction

Machine learning is about capturing aspects of the unknown distribution from
which the observed data are sampled (the data-generating distribution). For many
learning algorithms and in particular in manifold learning, the focus is on identi-
fying the regions (sets of points) in the space of examples where this distribution
concentrates, i.e., which configurations of the observed variables are plausible.

Unsupervised representation-learning algorithms try to characterize the data-
generating distribution through the discovery of a set of features or latent variables
whose variations capture most of the structure of the data-generating distribution.
In recent years, a number of unsupervised feature learning algorithms have been
proposed that are based on minimizing some form of reconstruction error, such

21

as auto-encoder and sparse coding variants (Olshausen and Field, 1997; Bengio
et al., 2007b; Ranzato et al., 2007b; Jain and Seung, 2008; Ranzato, Boureau,
and LeCun, 2008; Vincent et al., 2008a; Kavukcuoglu et al., 2009; Rifai et al.,
2011a; Rifai et al., 2011b; Gregor, Szlam, and LeCun, 2011). An auto-encoder
reconstructs the input through two stages, an encoder function f , which outputs
a learned representation h = f(x) of an example x, and a decoder function g,
such that g(f(x)) ⇡ x for most x sampled from the data-generating distribution.
These feature learning algorithms can be stacked to form deeper and more abstract
representations. Deep learning algorithms learn multiple levels of representation,
where the number of levels is data-dependent. There are theoretical arguments
and much empirical evidence to suggest that when they are well-trained, deep
learning algorithms (Hinton, Osindero, and Teh, 2006; Bengio, 2009a; Lee et al.,
2009; Salakhutdinov and Hinton, 2009a; Bengio and Delalleau, 2011; Bengio et
al., 2013a) can perform better than their shallow counterparts, both in terms of
learning features for the purpose of classification tasks and for generating higher-
quality samples.

Here we restrict ourselves to the case of continuous inputs x 2 Rd with the data-
generating distribution being associated with an unknown target density function,
denoted p. Manifold learning algorithms assume that p is concentrated in regions
of lower dimension (Cayton, 2005; Narayanan and Mitter, 2010), i.e., the training
examples are by definition located very close to these high-density manifolds. In
that context, the core objective of manifold learning algorithms is to identify where
the density concentrates.

Some important questions remain concerning many of feature learning algo-
rithms based on reconstruction error. Most importantly, what is their training cri-
terion learning about the input density? Do these algorithms implicitly learn about
the whole density or only some aspect? If they capture the essence of the target
density, then can we formalize that link and in particular exploit it to sample from
the model? The answers may help to establish that these algorithms actually learn
implicit density models, which only define a density indirectly, e.g., through the
estimation of statistics or through a generative procedure. These are the questions
to which this paper contributes.

The paper is divided in two main sections, along with detailed appendices with
proofs of the theorems. Section 3.2 makes a direct link between denoising auto-
encoders (Vincent et al., 2008a) and contractive auto-encoders (Rifai et al., 2011a),
justifying the interest in the contractive training criterion studied in the rest of the
paper. Section 3.3 is the main contribution and regards the following question:
when minimizing that criterion, what does an auto-encoder learn about the data-
generating density? The main answer is that it estimates the score (first derivative
of the log-density), i.e., the direction in which density is increasing the most, which
also corresponds to the local mean, which is the expected value in a small ball

22

around the current location. It also estimates the Hessian (second derivative of the
log-density).

Finally, Section 3.4 shows how having access to an estimator of the score can
be exploited to estimate energy di↵erences, and thus perform approximate MCMC
sampling. This is achieved using a Metropolis-Hastings MCMC in which the energy
di↵erences between the proposal and the current state are approximated using the
denoising auto-encoder. Experiments on artificial data sets show that a denois-
ing auto-encoder can recover a good estimator of the data-generating distribution,
when we compare the samples generated by the model with the training samples,
projected into various 2-D views for visualization.

3.2 Contractive and Denoising Auto-Encoders

Regularized auto-encoders (see Bengio, Courville, and Vincent 2012 for a review
and a longer exposition) capture the structure of the training distribution thanks
to the productive opposition between reconstruction error and a regularizer. An
auto-encoder maps inputs x to an internal representation (or code) f(x) through
the encoder function f , and then maps back f(x) to the input space through a
decoding function g. The composition of f and g is called the reconstruction
function r, with r(x) = g(f(x)), and a reconstruction loss function ` penalizes
the error made, with r(x) viewed as a prediction of x. When the auto-encoder
is regularized, e.g., via a sparsity regularizer, a contractive regularizer (detailed
below), or a denoising form of regularization (that we find below to be very similar
to a contractive regularizer), the regularizer basically attempts to make r (or f) as
simple as possible, i.e., as constant as possible, as unresponsive to x as possible. It
means that f has to throw away some information present in x, or at least represent
it with less precision. On the other hand, to make reconstruction error small on
the training set, examples that are neighbors on a high-density manifold must be
represented with su�ciently di↵erent values of f(x) or r(x). Otherwise, it would
not be possible to distinguish and hence correctly reconstruct these examples. It
means that the derivatives of f(x) or r(x) in the x-directions along the manifold
must remain large, while the derivatives (of f or r) in the x-directions orthogonal
to the manifold can be made very small. This is illustrated in Figure 3.1. In the
case of principal components analysis, one constrains the derivative to be exactly
0 in the directions orthogonal to the chosen projection directions, and around 1
in the chosen projection directions. In regularized auto-encoders, f is non-linear,
meaning that it is allowed to choose di↵erent principal directions (those that are
well represented, i.e., ideally the manifold tangent directions) at di↵erent x’s, and

23

Figure 3.1 – Regularization forces the auto-encoder to become less sensitive to the input, but
minimizing reconstruction error forces it to remain sensitive to variations along the manifold of
high density. Hence the representation and reconstruction end up capturing well variations on
the manifold while mostly ignoring variations orthogonal to it.

x"

r(x)"

x1" x2" x3"
Figure 3.2 – The reconstruction function r(x) (in turquoise) which would be learned by
a high-capacity auto-encoder on a 1-dimensional input, i.e., minimizing reconstruction
error at the training examples xi (with r(xi) in red) while trying to be as constant as pos-
sible otherwise. The figure is used to exaggerate and illustrate the e↵ect of the regularizer
(corresponding to a small �2 in the loss function L later described by Equation 3.6. The
dotted line is the identity reconstruction (which might be obtained without the regular-
izer). The blue arrows shows the vector field of r(x) � x pointing towards high density
peaks as estimated by the model, and estimating the score (log-density derivative), as
shown in this paper.

this allows a regularized auto-encoder with non-linear encoder to capture non-
linear manifolds. Figure 3.2 illustrates the extreme case when the regularization
is very strong (r wants to be nearly constant where density is high) in the special
case where the distribution is highly concentrated at three points (three training
examples). It shows the compromise between obtaining the identity function at the
training examples and having a flat r near the training examples, yielding a vector
field r(x)� x that points towards the high density points.

Here we show that the denoising auto-encoder (Vincent et al., 2008a) with very
small Gaussian corruption and squared error loss is actually a particular kind of
contractive auto-encoder (Rifai et al., 2011a), contracting the whole auto-encoder
reconstruction function rather than just the encoder, whose contraction penalty

24

coe�cient is the magnitude of the perturbation. This was first suggested in Rifai
et al. (2011a).

The contractive auto-encoder, or CAE (Rifai et al., 2011a), is a particular form
of regularized auto-encoder which is trained to minimize the following regularized
reconstruction error:

LCAE = E
"
`(x, r(x)) + �

����
@f(x)

@x

����
2

F

#
(3.1)

where r(x) = g(f(x)) and ||A||
2

F
is the sum of the squares of the elements of A. Both

the squared loss `(x, r) = ||x� r||
2 and the cross-entropy loss `(x, r) = �x log r �

(1 � x) log(1 � r) have been used, but here we focus our analysis on the squared
loss because of the easier mathematical treatment it allows. Note that success in
minimizing the CAE criterion strongly depends on the parameterization of f and g

and in particular on the tied weights constraint used, with f(x) = sigmoid(Wx+b)
and g(h) = sigmoid(W T

h + c). The above regularizing term forces f (as well as
g, because of the tied weights) to be contractive, i.e., to have singular values less
than 1. 1 Larger values of � yield more contraction (smaller singular values) where
it hurts reconstruction error the least, i.e., in the local directions where there are
only little or no variations in the data. These typically are the directions orthogonal
to the manifold of high density concentration, as illustrated in Figure 3.2.

The denoising auto-encoder, or DAE (Vincent et al., 2008a), is trained to mini-
mize the following denoising criterion:

LDAE = E [`(x, r(N(x)))] (3.2)

where N(x) is a stochastic corruption of x and the expectation is over the training
distribution and the corruption noise source. Here we consider mostly the squared
loss and Gaussian noise corruption, again because it is easier to handle them math-
ematically. In many cases, the exact same proofs can be applied to any kind of
additive noise, but Gaussian noise serves as a good frame of reference.

Theorem 1. Let p be the probability density function of the data. If we train a
DAE using the expected quadratic loss and corruption noise N(x) = x+ ✏ with

✏ ⇠ N
�
0, �2

I
�
,

1. Note that an auto-encoder without any regularization would tend to find many leading
singular values near 1 in order to minimize reconstruction error, i.e., preserve input norm in all
the directions of variation present in the data.

25

then the optimal reconstruction function r
⇤(x) will be given by

r
⇤(x) =

E✏ [p(x� ✏)(x� ✏)]

E✏ [p(x� ✏)]
(3.3)

for values of x where p(x) 6= 0.

Moreover, if we consider how the optimal reconstruction function r
⇤

�
(x) behaves

asymptotically as � ! 0, we get that

r
⇤

�
(x) = x+ �

2
@ log p(x)

@x
+ o(�2) as � ! 0. (3.4)

The proof of this result is found in the Appendix. We make use of the small o
notation throughout this paper and assume that the reader is familiar with asymp-
totic notation. In the context of Theorem 1, it has to be understood that all the
other quantities except for � are fixed when we study the e↵ect of � ! 0.

Equation 3.3 reveals that the optimal DAE reconstruction function at every
point x is given by a kind of convolution involving the density function p, or
weighted average from the points in the neighbourhood of x, depending on how
we would like to view it. A higher noise level � means that a larger neighbourhood
of x is taken into account. Note that the total quantity of “mass” being included in
the weighted average of the numerator of (3.3) is found again at the denominator.

Gaussian noise is a simple case in the sense that it is additive and symmetrical,
so it avoids the complications that would occur when trying to integrate over the
density of pre-images x

0 such that N(x0) = x for a given x. The ratio of those
quantities that we have in Equation 3.3, however, depends strongly on the decision
that we made to minimize the expected square error.

When we look at the asymptotic behavior with Equation 3.4, the first thing
to observe is that the leading term in the expansion of r⇤

�
(x) is x, and then the

remainder goes to 0 as � ! 0. When there is no noise left at all, it should be clear
that the best reconstruction target for any value x would be that x itself.

We get something even more interesting if we look at the second term of Equa-
tion 3.4 because it gives us an estimator of the score from

@ log p(x)

@x
= (r⇤

�
(x)� x) /�2 + o(1) as � ! 0. (3.5)

This result is at the core of our paper. It is what allows us to start from a trained
DAE, and then recover properties of the training density p(x) that can be used to
sample from p(x).

26

Most of the asymptotic properties that we get by considering the limit as the
Gaussian noise level � goes to 0 could be derived from a family of noise distribution
that approaches a point mass distribution in a relatively “nice” way.

An interesting connection with contractive auto-encoders can also be observed
by using a Taylor expansion of the denoising auto-encoder loss and assuming only
that r�(x) = x+ o(1) as � ! 0. In that case we get the following proposition.

Proposition 1. Let p be the probability density function of the data. Consider a
DAE using the expected quadratic loss and corruption noise N(x) = x + ✏, with
✏ ⇠ N (0, �2

I). If we assume that the non-parametric solutions r�(x) satisfies

r�(x) = x+ o(1) as � ! 0,

then we can rewrite the loss as

LDAE = E
"
kr(x)� xk

2

2
+ �

2

����
@r(x)

@x

����
2

F

#
+ o(�2) as � ! 0.

The proof is in Appendix and uses a simple Taylor expansion around x.

Proposition 1 shows that the DAE with small corruption of variance �2 is similar
to a contractive auto-encoder with penalty coe�cient � = �

2 but where the con-
traction is imposed explicitly on the whole reconstruction function r(·) = g(f(·))
rather than on f(·) alone. 2

This analysis motivates the definition of the reconstruction contractive auto-
encoder (RCAE), a variation of the CAE where loss function is instead the squared
reconstruction loss plus contractive penalty on the reconstruction:

LRCAE = E
"
kr(x)� xk

2

2
+ �

2

����
@r(x)

@x

����
2

F

#
. (3.6)

This is an analytic version of the denoising criterion with small noise �2, and also
corresponds to a contractive auto-encoder with contraction on both f and g, i.e.,
on r.

Because of the similarity between DAE and RCAE when taking � = �
2 and

because the semantics of �2 is clearer (as a squared distance in input space), we
will denote �2 for the penalty term coe�cient in situations involving RCAE. For
example, in the statement of Theorem 2, this �2 is just a positive constant; there is

2. In the CAE there is a also a contractive e↵ect on g(·) as a side e↵ect of the parameterization
with weights tied between f(·) and g(·).

27

no notion of additive Gaussian noise, i.e., �2 does not explicitly refer to a variance,
but using the notation �2 makes it easier to intuitively see the connection to the
DAE setting.

The connection between DAE and RCAE established in Proposition 1 also serves
as the basis for an alternative demonstration to Theorem 1 in which we study the
asymptotic behavior of the RCAE solution. This result is contained in the following
theorem.

Theorem 2. Let p be a probability density function that is continuously di↵eren-
tiable once and with support Rd (i.e., 8x 2 Rd we have p(x) 6= 0). Let L�2 be the
loss function defined by

L�2(r) =

Z

Rd

p(x)

"
kr(x)� xk

2

2
+ �

2

����
@r(x)

@x

����
2

F

#
dx (3.7)

for r : Rd
! Rd assumed to be di↵erentiable twice, and 0 �

2
2 R used as factor

to the penalty term.

Let r⇤
�2(x) denote the optimal function that minimizes L�2. Then we have that

r
⇤

�2(x) = x+ �
2
@ log p(x)

@x
+ o(�2) as �

2
! 0. (3.8)

Moreover, we also have the following expression for the derivative

@r
⇤

�2(x)

@x
= I + �

2
@
2 log p(x)

@x2
+ o(�2) as �

2
! 0. (3.9)

Both these asymptotic expansions are to be understood in a context where we
consider

�
r
⇤

�2(x)

�2�0

to be a family of optimal functions minimizing L�2 for their

corresponding value of �2. The asymptotic expansions are applicable point-wise in
x, that is, with any fixed x we look at the behavior as �2

! 0.

The proof is given in the appendix and uses the Euler-Lagrange equations from
the calculus of variations.

28

3.3 Minimizing the Loss to Recover Local
Features of p(·)

One of the central ideas of this paper is that in a non-parametric setting (without
parametric constraints on r), we have an asymptotic formula (as the noise level
� ! 0) for the optimal reconstruction function for the DAE and RCAE that allows
us to recover the score @ log p(x)

@x
.

A DAE is trained with a method that knows nothing about p, except through
the use of training samples to minimize a loss function, so it comes as a surprise
that we can compute the score of p at any point x.

In the following subsections we explore the consequences and the practical aspect
of this.

3.3.1 Empirical Loss

In an experimental setting, the expected loss (3.7) is replaced by the empirical
loss

L̂ =
1

N

NX

n=1

��r(x(n))� x

(n)
��2
2
+ �

2

����
@r(x)

@x

����
x=x(n)

����
2

F

!

based on a sample
�
x
(n)
 N
n=1

drawn from p(x).

Alternatively, the auto-encoder is trained online (by stochastic gradient updates)
with a stream of examples x(n), which corresponds to performing stochastic gradient
descent on the expected loss (3.7). In both cases we obtain an auto-encoder that
approximately minimizes the expected loss.

An interesting question is the following: what can we infer from the data-
generating density when given an auto-encoder reconstruction function r(x)?

The premise is that this auto-encoder r(x) was trained to approximately min-
imize a loss function that has exactly the form of (3.7) for some �2

> 0. This is
assumed to have been done through minimizing the empirical loss and the distri-

bution p was only available indirectly through the samples
�
x
(n)
 N
n=1

. We do not
have access to p or to the samples. We have only r(x) and maybe �2.

We will now discuss the usefulness of r(x) based on di↵erent conditions such as
the model capacity and the value of �2.

29

3.3.2 Perfect World Scenario

As a starting point, we will assume that we are in a perfect situation, i.e., with
no constraint on r (non-parametric setting), an infinite amount of training data,
and a perfect minimization. We will see what can be done to recover information
about p in that ideal case. Afterwards, we will drop certain assumptions one by
one and discuss the possible paths to getting back some information about p.

We use notation r�2(x) when we want to emphasize the fact that the value of
r(x) came from minimizing the loss with a certain fixed �2.

Suppose that r�2(x) was trained with an infinite sample drawn from p. Suppose
also that it had infinite (or su�cient) model capacity and that it is capable of
achieving the minimum of the loss function (3.7) while satisfying the requirement
that r(x) be twice di↵erentiable. Suppose that we know the value of �2 and that we
are working in a computing environment of arbitrary precision (i.e., no rounding
errors).

As shown by Theorem 1 and Theorem 2, we would be able to get numerically
the values of @ log p(x)

@x
at any point x 2 Rd by simply evaluating

r�2(x)� x

�2
!

@ log p(x)

@x
as �

2
! 0. (3.10)

In the setup described, we do not get to pick values of �2 so as to take the limit
�
2
! 0. However, it is assumed that �2 is already su�ciently small that the above

quantity is close to @ log p(x)

@x
for all intents and purposes.

3.3.3 Simple Numerical Example

To give an example of this in one dimension, we will show what happens when we
train a non-parametric model r̂(x) to minimize numerically the loss relative to p(x).
We train both a DAE and an RCAE in this fashion by minimizing a discretized
version of their losses defined by equations (3.2) and (3.6). The goal here is to
show that, for either a DAE or RCAE, the approximation of the score that we get
through Equation 3.5 gets arbitrarily close to the actual score @

@x
log p(x) as � ! 0.

The distribution p(x) studied is shown in Figure3.3 (left) and it was created to
be simple enough to illustrate the mechanics. We plot p(x) in Figure3.3 (left) along
with the score of p(x) (right).

The model r̂(x) is fitted by dividing the interval [�1.5, 1.5] into M = 1000
partition points x1, . . . , xM evenly separated by a distance �. The discretized

30

(a) p(x) = 1

Z
exp(�E(x)) (b) @

@x
log p(x) = � @

@x
E(x)

Figure 3.3 – The density p(x) and its score for a simple one-dimensional example.

version of the RCAE loss function is

MX

i=1

p(xi)� (r̂(xi)� xi)
2 + �

2

M�1X

i=1

p(xi)�

✓
r̂(xi+1)� r̂(xi)

�

◆2

. (3.11)

Every value r̂(xi) for i = 1, . . . ,M is treated as a free parameter. Setting to
0 the derivative with respect to the r̂(xi) yields a system of linear equations in
M unknowns that we can solve exactly. From that RCAE solution r̂ we get an
approximation of the score of p at each point xi. A similar thing can be done for
the DAE by using a discrete version of the exact solution (3.3) from Theorem 1.
We now have two ways of approximating the score of p.

In Figure 3.4 we compare the approximations to the actual score of p for de-
creasingly small values of � 2 {1.00, 0.31, 0.16, 0.06}.

3.3.4 Vector Field Around a Manifold

We extend the experimentation of Section 3.3.3 to a 1-dimensional manifold in
2-D space, in which one can visualize r(x)�x as a vector field, and we go from the
non-parametric estimator of the previous section to an actual auto-encoder trained
by numerically minimizing the regularized reconstruction error.

Two-dimensional data points (x, y) were generated along a spiral according to
the following equations:

x = 0.04 sin(t), y = 0.04 cos(t), t ⇠ Uniform (3, 12) .

31

Figure 3.4 – Comparing the approximation of the score of p given by discrete versions of
optimally trained auto-encoders with infinite capacity. The approximations given by the RCAE
are in orange while the approximations given by the DAE are in purple. The results are shown
for decreasing values of � 2 {1.00, 0.31, 0.16, 0.06} that have been selected for their visual appeal.
As expected, we see in that the RCAE (orange) and DAE (purple) approximations of the score
are close to each other as predicted by Proposition 1. Moreover, they are also converging to the
true score (green) as predicted by Theorem 1 and Theorem 2.

A denoising auto-encoder was trained with Gaussian corruption noise � = 0.01.
The encoder is f(x) = tanh(b + Wx) and the decoder is g(h) = c + V h. The
parameters (b, c, V,W) are optimized by BFGS to minimize the average squared
error, using a fixed training set of 10 000 samples (i.e., the same corruption noises
were sampled once and for all). We found better results with untied weights, and
BFGS gave more accurate models than stochastic gradient descent. We used 1000
hidden units and ran BFGS for 1000 iterations.

The non-convexity of the problem makes it such that the solution found de-
pends on the initialization parameters. The random corruption noise used can also
influence the final outcome. Moreover, the fact that we are using a finite training
sample size with reasonably small noise may allow for undesirable behavior of r
in regions far away from the training samples. For those reasons, we trained the
model multiple times and selected two of the most visually appealing outcomes.

32

These are found in Figure 3.5 which features a more global perspective along with
a close-up view.

(a) r(x)� x vector field, acting as sink,
zoomed out

(b) r(x)� x vector field,
close-up

Figure 3.5 – The original 2-D data from the data-generating density p(x) is plotted along with
the vector field defined by the values of r(x)� x for trained auto-encoders (corresponding to the

estimation of the score @ log p(x)
@x).

Figure 3.5 shows the data along with the learned score function (shown as a
vector field). We see that that the vector field points towards the nearest high-
density point on the data manifold. The vector field is close to zero near the
manifold (i.e., the reconstruction error is close to zero), also corresponding to peaks
of the implicitly estimated density. The points on the manifolds play the role of
sinks for the vector field. Other places where reconstruction error may be low, but
where the implicit density is not high, are sources of the vector field. In Figure 3.5b
we can see that we have that kind of behavior halfway between two sections of the
manifold. This shows that reconstruction error plays a very di↵erent role as what
was previously hypothesized: whereas in Ranzato, Boureau, and LeCun (2008)
the reconstruction error was viewed as an energy function, our analysis suggests
that in regularized auto-encoders, it is the norm of an approximate score, i.e., the
derivative of the energy w.r.t. input. Note that the norm of the score should be
small near training examples (corresponding to local maxima of density) but it
could also be small at other places corresponding to local minima of density. This
is indeed what happens in the spiral example shown. It may happen whenever there
are high-density regions separated by a low-density region: tracing paths from one
high-density region to another should cross a “median” lower-dimensional region
(a manifold) where the density has a local maximum along the path direction.
The reason such a median region is needed is because at these points the vectors
r(x)�x must change sign: on one side of the median they point to one of the high-
density regions while on the other side they point to the other, as clearly visible in

33

Figure 3.5b between the arms of the spiral.

We believe that this analysis is valid not just for contractive and denoising auto-
encoders, but for regularized auto-encoders in general. The intuition behind this
statement can be firmed up by analyzing Figure 3.2: the score-like behavior of
r(x) � x arises simply out of the opposing forces of (a) trying to make r(x) = x

at the training examples and (b) trying to make r(x) as regularized as possible (as
close to a constant as possible).

Note that previous work (Rifai et al., 2012a; Bengio et al., 2013a) has already
shown that contractive auto-encoders (especially when they are stacked in a way
similar to RBMs in a deep belief net) learn good models of high-dimensional data
(such as images), and that these models can be used not just to obtain good rep-
resentations for classification tasks but that good quality samples can be obtained
from the model, by a random walk near the manifold of high-density. This was
achieved by essentially following the vector field and adding noise along the way.

3.3.5 Missing �
2

When we are in the same setting as in Section 3.3.2 but the value of �2 is
unknown, we can modify (3.10) a bit and avoid dividing by �

2. That is, for a
trained reconstruction function r(x) given to us we just take the quantity r(x)� x

and it should be approximately the score up to a multiplicative constant. We get
that

r(x)� x /
@ log p(x)

@x
.

Equivalently, if one estimates the density via an energy function (minus the unnor-
malized log density), then x� r(x) estimates the derivative of the energy function.

We still have to assume that �2 is small. Otherwise, if the unknown �2 is too
large we might get a poor estimation of the score.

3.3.6 Limited Parameterization

We should also be concerned about the fact that r(x)�x is trying to approximate
�

@E(x)

@x
as �2

! 0 but we have not made any assumptions about the space of
functions that r can represent when we are dealing with a specific implementation.

When using a certain parameterization of r such as the one from Section 3.3.3,
there is no guarantee that the family of functions in which we select r each represent
a conservative vector field (i.e., the gradient of a potential function). Even if we
start from a density p(x) / exp(�E(x)) and we have that r(x)� x is very close to

34

�
@

@x
E(x) in terms of some given norm, there is not guarantee that there exists an

associated function E0(x) for which r(x)� x / �
@

@x
E0(x) and E0(x) ⇡ E(x).

In fact, in many cases we can trivially show the non-existence of such a E0(x)
by computing the curl of r(x). The curl has to be equal to 0 everywhere if r(x)
is indeed the derivative of a potential function. We can omit the x terms from
the computations because we can easily find its antiderivative by looking at x =
1

2

@

@x
kxk

2

2
.

Conceptually, another way to see this is to argue that if such a function E0(x)
existed, its second-order mixed derivatives should be equal. That is, we should
have that

@
2
E0(x)

@xi@xj

=
@
2
E0(x)

@xj@xi

8i, j,

which is equivalent to
@ri(x)

@xj

=
@rj(x)

@xi

8i, j.

Again in the context of Section 3.3.3, with the parameterization used for that
particular kind of denoising auto-encoder, this would yield the constraint that
V

T = W . That is, unless we are using tied weights, we know that no such po-
tential E0(x) exists, and yet when running the experiments from Section 3.3.3 we
obtained much better results with untied weights. To make things worse, it can also
be demonstrated that the energy function that we get from tied weights leads to a
distribution that is not normalizable (it has a divergent integral over Rd). In that
sense, this suggests that we should not worry too much about the exact parame-
terization of the denoising auto-encoder as long as it has the required flexibility to
approximate the optimal reconstruction function su�ciently well.

3.3.7 Relation to Denoising Score Matching

There is a connection between our results and previous research involving score
matching for denoising auto-encoders. We will summarize here the existing results
from Vincent (2011) and show that, whereas they have shown that denoising auto-
encoders with a particular form estimated the score, our results extend this to a very
large family of estimators (including the non-parametric case). This will provide
some reassurance given some of the potential issues mentioned in Section 3.3.6.

Motivated by the analysis of denoising auto-encoders, the authors of Vincent
(2011) are concerned with the case where we explicitly parameterize an energy
function E(x), yielding an associated score function (x) = �@E(x)

@x
and we stochas-

tically corrupt the original samples x ⇠ p to obtain noisy samples x̃ ⇠ q�(x̃|x). In
particular, the article analyzes the case where q� adds Gaussian noise of variance

35

�
2 to x. The main result is that minimizing the expected square di↵erence between
 (x̃) and the score of q�(x̃|x),

Ex,x̃

"���� (x̃)�
@ log q�(x̃|x)

@x̃

����
2
#
,

is equivalent to performing score matching (Hyvärinen, 2005) with estimator (x̃)
and target density q�(x̃) =

R
q�(x̃|x)p(x)dx, where p(x) generates the training sam-

ples x. Note that when a finite training set is used, q�(x̃) is simply a smooth of the
empirical distribution (e.g., the Parzen density with Gaussian kernel of width �).
When the corruption noise is Gaussian, q�(x̃|x)

@x̃
= x�x̃

�2 , from which we can deduce
that if we define a reconstruction function

r(x̃) = x̃+ �
2
 (x̃), (3.12)

then the above expectation is equivalent to

Ex,x̃

"����
r(x̃)� x̃

�2
�

x� x̃

�2

����
2
#
=

1

�2
Ex,x̃

⇥
kr(x̃)� xk

2
⇤

which is the denoising criterion. This says that when the reconstruction function
r is parameterized so as to correspond to the score of a model density (as per
Equation 3.12, and where is a derivative of some log-density), the denoising
criterion on r with Gaussian corruption noise is equivalent to score matching with
respect to a smooth of the data-generating density, i.e., a regularized form of score
matching. Note that this regularization appears desirable, because matching the
score of the empirical distribution (or an insu�ciently smoothed version of it) could
yield undesirable results when the training set is finite. Since score matching has
been shown to be a consistent induction principle (Hyvärinen, 2005), it means that
this denoising score matching (Vincent, 2011; Kingma and LeCun, 2010; Swersky et
al., 2011) criterion recovers the underlying density, up to the smoothing induced by
the noise of variance �2. By making �2 small, we can make the estimator arbitrarily
good (and we would expect to want to do that as the amount of training data
increases). Note the correspondence of this conclusion with the results presented
here, which show (1) the equivalence between the RCAE’s regularization coe�cient
and the DAE’s noise variance �2, and (2) that minimizing the equivalent analytic
criterion (based on a contraction penalty) estimates the score when �

2 is small.
The di↵erence is that our result holds even when r is not parameterized as per
Equation 3.12, i.e., is not forced to correspond with the score function of a density.

36

3.3.8 Estimating the Hessian

Since we have r(x)�x

�2 as an estimator of the score, we readily obtain that the
Hessian of the log-density, can be estimated by the Jacobian of the reconstruction
function minus the identity matrix:

@
2 log p(x)

@x2
⇡ (

@r(x)

@x
� I)/�2

as shown by Equation 3.9 of Theorem 2.

In spite of its simplicity, this result is interesting because it relates the derivative
of the reconstruction function, i.e., a Jacobian matrix, with the second derivative
of the log-density (or of the energy). This provides insights into the geometric
interpretation of the reconstruction function when the density is concentrated near
a manifold. In that case, near the manifold the score is nearly 0 because we are
near a ridge of density, and the density’s second derivative matrix tells us in which
directions the first density remains close to zero or increases. The ridge directions
correspond to staying on the manifold and along these directions we expect the
second derivative to be close to 0. In the orthogonal directions, the log-density
should decrease sharply while its first and second derivatives would be large in
magnitude and negative in directions away from the manifold.

Returning to the above equation, keep in mind that in these derivations �2 is
near 0 and r(x) is near x, so that @r(x)

@x
is close to the identity. In particular, in

the ridge (manifold) directions, we should expect @r(x)

@x
to be closer to the identity,

which means that the reconstruction remains faithful (r(x) = x) when we move
on the manifold, and this corresponds to the eigenvalues of @r(x)

@x
that are near 1,

making the corresponding eigenvalues of @
2
log p(x)

@x2 near 0. On the other hand, in

the directions orthogonal to the manifold, @r(x)

@x
should be smaller than 1, making

the corresponding eigenvalues of @
2
log p(x)

@x2 negative.

Besides first and second derivatives of the density, other local properties of
the density are its local mean and local covariance, discussed in the Appendix,
Section 3.D.

3.4 Sampling with Metropolis-Hastings

In this section we show how a technique to generate samples from a given de-
noising auto-encoder by using Metropolis-Hastings.

37

We start by explaining how to compute di↵erences in energies Section 3.4.1, and
then we use this in Section 3.4.2 to generate samples. We provide an experimental
example and we discuss the potential problems that this method has.

This section serves as a demonstration that the main result of this paper, i.e.,
the connection between denoising auto-encoders and the score @ log p(x)

@x
, is more than

just an observation : it can have practical uses.

3.4.1 Estimating Energy Di↵erences

One of the immediate consequences of Theorem 2 and Equation 3.10 is that,
while we cannot easily recover the energy E(x) itself, it is possible to approximate
the energy di↵erence E(x⇤)� E(x) between two states x and x

⇤. This can be done
by using a first-order Taylor approximation

E(x⇤)� E(x) =
@E(x)

@x

T

(x⇤
� x) + o(kx⇤

� xk).

To get a more accurate approximation, we can also use a path integral from x to
x
⇤ that we can discretize in su�ciently many steps. With a smooth path �(t) :

[0, 1]! Rd, assuming that � stays in a region where our DAE/RCAE can be used
to approximate @E

@x
well enough, we have that

E(x⇤)� E(x) =

Z
1

0

@E

@x
(�(t))

�T
�
0(t)dt. (3.13)

The simplest way to discretize this path integral is to pick points {xi}
n

i=1
spread at

even distances on a straight line from x1 = x to xn = x
⇤. We approximate (3.13)

by

E(x⇤)� E(x) ⇡
1

n

nX

i=1

@E

@x
(xi)

�T
(x⇤
� x) (3.14)

3.4.2 Sampling

With Equation 3.13 from Section 3.4.1 we can perform approximate sampling
from the estimated distribution, using the score estimator to approximate energy
di↵erences which are needed in the Metropolis-Hastings accept/reject decision. Us-
ing a symmetric proposal q(x⇤

|x), the acceptance ratio is

↵ =
p(x⇤)

p(x)
= exp(�E(x⇤) + E(x))

38

which can be computed with (3.13) or approximated with (3.14) as long as we
trust that our DAE/RCAE was trained properly and has enough capacity to be a
su�ciently good estimator of @E

@x
. An example of this process is shown in Figure 3.6

in which we sample from a density concentrated around a 1-d manifold embedded
in a space of dimension 10. For this particular task, we have trained only DAEs
and we are leaving RCAEs out of this exercise. Given that the data is roughly
contained in the range [�1.5, 1.5] along all dimensions, we selected a training noise
level �train = 0.1 so that the noise would have an appreciable e↵ect while still being
relatively small. As required by Theorem 1, we have used isotropic Gaussian noise
of variance �2

train
.

The Metropolis-Hastings proposal q(x⇤
|x) = N (0, �2

MH
I) has a noise parameter

�MH that needs to be set. In the situation shown in Figure 3.6, we used �MH = 0.1.
After some hyperparameter tweaking and exploring various scales for �train, �MH,
we found that setting both to be 0.1 worked well.

When �train is too large, the DAE trained learns a “blurry”version of the density
that fails to represent the details that we are interested in. The samples shown in
Figure 3.6 are very convincing in terms of being drawn from a distribution that
models well the original density. We have to keep in mind that Theorem 2 describes
the behavior as �train ! 0 so we would expect that the estimator becomes worse
when �train is taking on larger values. In this particular case with �train = 0.1, it
seems that we are instead modeling something like the original density to which
isotropic Gaussian noise of variance �2

train
has been added.

In the other extreme, when �train is too small, the DAE is not exposed to any
training example farther away from the density manifold. This can lead to various
kinds of strange behaviors when the sampling algorithm falls into those regions and
then has no idea what to do there and how to get back to the high-density regions.
We come back to that topic in Section 3.4.3.

It would certainly be possible to pick both a very small value for �train = �MH =
0.01 to avoid the spurious maxima problem illustrated in Section 3.4.3. However,
this leads to the same kind of mixing problems that any kind of MCMC algorithm
has. Smaller values of �MH lead to higher acceptance ratios but worse mixing
properties.

3.4.3 Spurious Maxima

There are two very real concerns with the sampling method discussed in Sec-
tion 3.4.2. The first problem is with the mixing properties of MCMC and it is
discussed in that section. The second issue is with spurious probability maxima
resulting from inadequate training of the DAE. It happens when an auto-encoder

39

original sampled original sampled

Figure 3.6 – Samples drawn from the estimate of @E
@x given by a DAE by the Metropolis-Hastings

method presented in Section 3.4. By design, the data density distribution is concentrated along
a 1-d manifold embedded in a space of dimension 10. This data can be visualized in the plots
above by plotting pairs of dimensions (x0, x1), . . . , (x8, x9), (x9, x0), going in reading order from
left to right and then line by line. For each pair of dimensions, we show side by side the original
data (left) with the samples drawn (right).

lacks the capacity to model the density with enough precision, or when the training
procedure ends up in a bad local minimum (in terms of the DAE parameters).

This is illustrated in Figure 3.7 where we show an example of a vector field
r(x) � x for a DAE that failed to properly learn the desired behavior in regions
away from the spiral-shaped density.

40

(a) DAE misbehaving when away from
manifold

(b) sampling getting trapped into bad
attractor

Figure 3.7 – (a) On the left we show a r(x)�x vector field similar to that of the earlier Figure3.5.
The density is concentrated along a spiral manifold and we should have the reconstruction function
r bringing us back towards the density. In this case, it works well in the region close to the spiral
(the magnitude of the vectors is so small that the arrows are shown as dots). However, things
are out of control in the regions outside. This is because the level of noise used during training
was so small that not enough of the training examples were found in those regions.
(b) On the right we sketch what may happen when we follow a sampling procedure as described in
Section 3.4.2. We start in a region of high density (in purple) and we illustrate in red the trajectory
that our samples may take. In that situation, the DAE/RCAE was not trained properly. The
resulting vector field does not reflect the density accurately because it should not have this
attractor (i.e., stable fixed point) outside of the manifold on which the density is concentrated.
Conceptually, the sampling procedure visits that spurious attractor because it assumes that it
corresponds to a region of high probability. In some cases, this e↵ect is regrettable but not
catastrophic, but in other situations we may end up with completely unusable samples. In the
experiments, training with enough of the examples involving su�ciently large corruption noise
typically eliminates that problem.

3.5 Conclusion

Whereas auto-encoders have long been suspected of capturing information about
the data-generating density, this work has clarified what some of them are actu-
ally doing, showing that they can actually implicitly recover the data-generating
density altogether. We have shown that regularized auto-encoders such as the de-
noising auto-encoder and a form of contractive auto-encoder are closely related
to each other and estimate local properties of the data-generating density: the
first derivative (score) and second derivative of the log-density, as well as the local
mean. This contradicts the previous interpretation of reconstruction error as being
an energy function (Ranzato, Boureau, and LeCun, 2008) but is consistent with
our experimental findings. Our results do not require the reconstruction function
to correspond to the derivative of an energy function as in Vincent (2011), but hold
simply by virtue of minimizing the regularized reconstruction error training crite-

41

rion. This suggests that minimizing a regularized reconstruction error may be an
alternative to maximum likelihood for unsupervised learning, avoiding the need for
MCMC in the inner loop of training, as in RBMs and deep Boltzmann machines,
analogously to score matching (Hyvärinen, 2005; Vincent, 2011). Toy experiments
have confirmed that a good estimator of the density can be obtained when this cri-
terion is non-parametrically minimized. The experiments have also confirmed that
an MCMC could be setup that approximately samples from the estimated model,
by estimating energy di↵erences to first order (which only requires the score) to
perform approximate Metropolis-Hastings MCMC.

Many questions remain open and deserve further study. A big question is how to
generalize these ideas to discrete data, since we have heavily relied on the notions
of scores, i.e., of derivatives with respect to x. A natural extension of the notion of
score that could be applied to discrete data is the notion of relative energy, or energy
di↵erence between a point x and a perturbation x̃ of x. This notion has already
been successfully applied to obtain the equivalent of score matching for discrete
models, namely ratio matching (Hyvärinen, 2007). More generally, we would like to
generalize to any form of reconstruction error (for example many implementations
of auto-encoders use a Bernoulli cross-entropy as reconstruction loss function) and
any (reasonable) form of corruption noise (many implementations use masking or
salt-and-pepper noise, not just Gaussian noise). More fundamentally, the need to
rely on � ! 0 is troubling, and getting rid of this limitation would also be very
useful. A possible solution to this limitation, as well as adding the ability to handle
both discrete and continuous variables, has recently been proposed while this article
was under review (Bengio et al., 2013b).

It would also be interesting to generalize the results presented here to other
regularized auto-encoders besides the denoising and contractive types. In partic-
ular, the commonly used sparse auto-encoders seem to fit the qualitative pattern
illustrated in 3.2 where a score-like vector field arises out of the opposing forces of
minimizing reconstruction error and regularizing the auto-encoder.

We have mostly considered the harder case where the auto-encoder parameter-
ization does not guarantee the existence of an analytic formulation of an energy
function. It would be interesting to compare experimentally and study mathe-
matically these two formulations to assess how much is lost (because the score
function may be somehow inconsistent) or gained (because of the less constrained
parameterization).

42

3.A Exact Solution for DAE

There is a way to get an exact solution to the DAE loss (3.2) without assuming
that � ! 0 or that the noise is Gaussian (but still using the quadratic loss).

We let p be the density function of the data such that 8x 2 Rd
, p(x) > 0, and we

use additive isotropic Gaussian noise of variance �2. We are in the non-parametric
setting in which we are minimizing

LDAE =

Z

Rd

E✏⇠N (0,�2I)

⇥
p(x) kr(x+ ✏)� xk

2

2

⇤
dx (3.15)

with respect to the function r : Rd
! Rd.

By using an auxiliary variable x̃ = x+ ✏, we can rewrite this loss in a way that
puts the quantity r(x̃) in focus and allows us to perform the minimization with
respect to each choice of r(x̃) independently. That is, we have that

LDAE =

Z

Rd

E✏⇠N (0,�2I)

⇥
p(x̃� ✏) kr(x̃)� x̃+ ✏k

2

2

⇤
dx̃ (3.16)

which can be di↵erentiated with respect to the quantity r(x̃) and set to be equal
to 0. Denoting the optimum by r

⇤(x̃), we get

0 = E✏⇠N (0,�2I) [p(x̃� ✏)r
⇤(x̃)� x̃+ ✏] (3.17)

E✏⇠N (0,�2I) [p(x̃� ✏)r
⇤(x̃)] = E✏⇠N (0,�2I) [p(x̃� ✏)(x̃� ✏)] (3.18)

r
⇤(x̃) =

E✏⇠N (0,�2I) [p(x̃� ✏)(x̃� ✏)]

E✏⇠N (0,�2I) [p(x̃� ✏)]
(3.19)

Conceptually, this means that the optimal DAE reconstruction function at every
point x̃ 2 Rd is given by a kind of convolution involving the density function p, or
weighted average from the points in the neighbourhood of x̃, depending on how we
would like to view it. A higher noise level � means that a larger neighbourhood of
x̃ is taken into account. Note that the total quantity of “mass” being included in
the weighted average of the numerator of (3.19) is found again at the denominator.

43

3.B Relationship between Contractive Penalty
and Denoising Criterion

Theorem 1. When using corruption noise N(x) = x+ ✏ with

✏ ⇠ N
�
0, �2

I
�
,

the objective function LDAE is

LDAE =

E
⇥
kx� r(x)k2

⇤
+ �

2E
"����
@r(x)

@x

����
2

F

#!
+ o(�2)

as � ! 0.

Proof. With a Taylor expansion around x we have that

r(x+ ✏) = r(x) +
@r(x)

@x
✏+ o(�2).

Substituting this into LDAE we have that

LDAE = E

1

2

���x�
⇣
r(x) + @r(x)

@x
✏+ o(�2)

⌘���
2
�

=
⇣
E [kx� r(x)k2]� 2E[✏]TE

h
@r(x)

@x

T

(x� r(x))
i⌘

+Tr

⇣
E
⇥
✏✏

T
⇤
E
h
@r(x)

@x

T
@r(x)

@x

i⌘
+ o(�2)

= 1

2

✓
E [kx� r(x)k2] + �

2E
���@r(x)

@x

���
2

F

�◆
+ o(�2) (3.20)

where in the second line we used the independence of the noise from x and
properties of the trace, while in the last line we used E

⇥
✏✏

T
⇤
= �

2
I and E[✏] = 0

by definition of ✏.

3.C Calculus of Variations

Theorem 2. Let p be a probability density function that is continuously di↵eren-
tiable once and with support Rd (i.e., 8x 2 Rd we have p(x) 6= 0). Let L�2 be the

44

loss function defined by

L�2(r) =

Z

Rd

p(x)

"
kr(x)� xk

2

2
+ �

2

����
@r(x)

@x

����
2

F

#
dx

for r : Rd
! Rd assumed to be di↵erentiable twice, and 0 �

2
2 R used as factor

to the penalty term.

Let r⇤
�2(x) denote the optimal function that minimizes L�2. Then we have that

r
⇤

�2(x) = x+ �
2
@ log p(x)

@x
+ o(�2) as �

2
! 0.

Moreover, we also have the following expression for the derivative

@r
⇤

�2(x)

@x
= I + �

2
@
2 log p(x)

@x2
+ o(�2) as �

2
! 0.

Both these asymptotic expansions are to be understood in a context where we con-
sider

�
r
⇤

�2(x)

�2�0

to be a family of optimal functions minimizing L�2 for their

corresponding value of �2. The asymptotic expansions are applicable point-wise in
x, that is, with any fixed x we look at the behavior as �2

! 0.

Proof. This proof is done in two parts. In the first part, the objective is to get to
Equation 3.23 that has to be satisfied for the optimum solution.

We will leave out the �2 indices from the expressions involving r(x) to make the
notation lighter. We have a more important need for indices k in rk(x) that denote
the d components of r(x) 2 Rd.

We treat �2 as given and constant for the first part of this proof.

In the second part we work out the asymptotic expansion in terms of �2. We
again work with the implicit dependence of r(x) on �2.

(part 1 of the proof)

We make use of the Euler-Lagrange equation from the Calculus of Variations.
We would refer the reader to either (Dacorogna, 2004) or Wikipedia for more on
the topic. Let

f(x1, . . . , xn, r, rx1 , . . . , rxn) = p(x)

"
kr(x)� xk

2

2
+ �

2

����
@r(x)

@x

����
2

F

#

where x = (x1, . . . , xd) , r(x) = (r1(x), . . . , rd(x)) and rxi =
@f

@xi
.

We can rewrite the loss L(r) more explicitly as

45

L(r) =

Z

Rd

p(x)

"
dX

i=1

(ri(x)� xi)
2 + �

2

dX

i=1

dX

j=1

@ri(x)

@xj

2
#
dx

=
dX

i=1

Z

Rd

p(x)

"
(ri(x)� xi)

2 + �
2

dX

j=1

@ri(x)

@xj

2
#
dx (3.21)

to observe that the components r1(x), . . . , rd(x) can each be optimized sepa-
rately.

The Euler-Lagrange equation to be satisfied at the optimal r : Rd
! Rd is

@f

@r
=

dX

i=1

@

@xi

@f

@rxi

.

In our situation, the expressions from that equation are given by

@f

@r
= 2(r(x)� x)p(x)

@f

@rxi

= 2�2
p(x)

h
@r1
@xi

@r2
@xi

· · ·
@rd
@xi

iT

@

@xi

✓
@f

@rxi

◆
= 2�2

@p(x)

@xi

h
@r1
@xi

@r2
@xi

· · ·
@rd
@xi

iT

+2�2
p(x)

h
@
2
r1

@x
2
i

@
2
r2

@x
2
i

· · ·
@
2
rd

@x
2
i

iT

and the equality to be satisfied at the optimum becomes

(r(x)� x)p(x) = �
2

dX

i=1

2

664

@p(x)

@xi

@r1
@xi

+ p(x)@
2
r1

@x
2
i

...
@p(x)

@xi

@rd
@xi

+ p(x)@
2
rd

@x
2
i

3

775 . (3.22)

As Equation 3.21 hinted, the expression (3.22) can be decomposed into the
di↵erent components rk(x) : Rd

! R that make r. For k = 1, . . . , d we get

46

(rk(x)� xk)p(x) = �
2

dX

i=1

✓
@p(x)

@xi

@rk(x)

@xi

+ p(x)
@
2
rk(x)

@x
2

i

◆
.

As p(x) 6= 0 by hypothesis, we can divide all the terms by p(x) and note that
@p(x)

@xi
/p(x) = @ log p(x)

@xi
.

We get

rk(x)� xk = �
2

dX

i=1

✓
@ log p(x)

@xi

@rk(x)

@xi

+
@
2
rk(x)

@x
2

i

◆
. (3.23)

This first thing to observe is that when �2 = 0 the solution is just rk(x) = xk,
which translates into r(x) = x. This is not a surprise because it represents the
perfect reconstruction value that we get when we the penalty term vanishes in the
loss function.

(part 2 of the proof)

This linear partial di↵erential Equation 3.23 can be used as a recursive relation
for rk(x) to obtain a Taylor series in �2. The goal is to obtain an expression of the
form

r(x) = x+ �
2
h(x) + o(�2) as �

2
! 0 (3.24)

where we can solve for h(x) and for which we also have that

@r(x)

@x
= I + �

2
@h(x)

@x
+ o(�2) as �

2
! 0.

We can substitute in the right-hand side of Equation 3.24 the value for rk(x) that
we get from Equation 3.24 itself. This substitution would be pointless in any other
situation where we are not trying to get a power series in terms of �2 around 0.

47

rk(x) = xk +�2

dX

i=1

✓
@ log p(x)

@xi

@rk(x)

@xi

+
@
2
rk(x)

@x
2

i

◆

= xk +�2

dX

i=1

@ log p(x)

@xi

@

@xi

xk + �

2

dX

j=1

✓
@ log p(x)

@xj

@rk(x)

@xj

+
@
2
rk(x)

@x
2

j

◆!!

+�2

dX

i=1

@
2
rk(x)

@x
2

i

= xk +�2

dX

i=1

@ log p(x)

@xi

I (i = k) + �
2

dX

i=1

@
2
rk(x)

@x
2

i

+�22

dX

i=1

dX

j=1

✓
@ log p(x)

@xi

@

@xi

✓
@ log p(x)

@xj

@rk(x)

@xj

+
@
2
rk(x)

@x
2

j

◆◆

rk(x) = xk +�2
@ log p(x)

@xk

+ �
2

dX

i=1

@
2
rk(x)

@x
2

i

+ �
22

⇢(�2
, x)

Now we would like to get rid of that �2
P

d

i=1

@
2
rk(x)

@x
2
i

term by showing that it is

a term that involves only powers of �22 or higher. We get this by showing what we
get by di↵erentiating the expression for rk(x) in line (3.25) twice with respect to
some l.

@rk(x)

@xl

= I (i = l) + �
2
@
2 log p(x)

@xl@xk

+ �
2
@

@xl

dX

i=1

@
2
rk(x)

@x
2

i

+ �
2
⇢(�2

, x)

!

@
2
rk(x)

@x
2

l

= �
2
@
3 log p(x)

@x
2

l
@xk

+ �
2
@

@x
2

l

dX

i=1

@
2
rk(x)

@x
2

i

+ �
2
⇢(�2

, x)

!

Since �2 is a common factor in all the terms of the expression of @
2
rk(x)

@x
2
l

we get

what we needed. That is,

rk(x) = xk + �
2
@ log p(x)

@xk

+ �
22

⌘(�2
, x).

48

This shows that

r(x) = x+ �
2
@ log p(x)

@x
+ o(�2) as �

2
! 0

and
@r(x)

@x
= I + �

2
@
2 log p(x)

@x2
+ o(�2) as �

2
! 0

which completes the proof.

3.D Local Mean

In preliminary work (Bengio, Alain, and Rifai, 2012), we studied how the optimal
reconstruction could possibly estimate so-called local moments. We revisit this
question here, with more appealing and precise results.

What previous work on denoising and contractive auto-encoders suggest is that
regularized auto-encoders can capture the local structure of the density through the
value of the encoding (or reconstruction) function and its derivative. In particular,
Rifai et al. (2012b) and Bengio, Alain, and Rifai (2012) argue that the first and
second derivatives tell us in which directions it makes sense to randomly move
while preserving or increasing the density, which may be used to justify sampling
procedures. This motivates us here to study so-called local moments as captured
by the auto-encoder, and in particular the local mean, following the definitions
introduced in Bengio, Alain, and Rifai (2012).

3.D.1 Definitions for Local Distributions

Let p be a continuous probability density function with support Rd
. That is,

8x 2 Rd we have that p(x) 6= 0. We define below the notion of a local ball B�(x0),
along with an associated local density, which is the normalized product of p with
the indicator for the ball:

B�(x0) = {x s.t. kx� x0k2 < �}

Z�(x0) =

Z

B�(x0)

p(x)dx

p�(x|x0) =
1

Z�(x0)
p(x)I (x 2 B�(x0))

49

where Z�(x0) is the normalizing constant required to make p�(x|x0) a valid pdf
for a distribution centered on x0. The support of p�(x|x0) is the ball of radius �
around x0 denoted by B�(x0). We stick to the 2-norm in terms of defining the balls
B�(x0) used, but everything could be rewritten in terms of another p-norm to have
slightly di↵erent formulas.

We use the following notation for what will be referred to as the first two local
moments (i.e., local mean and local covariance) of the random variable described
by p�(x|x0).

m�(x0)
def

=

Z

Rd

xp�(x|x0)dx

C�(x0)
def

=

Z

Rd

(x�m�(x0))(x�m�(x0))
T
p�(x|x0)dx

Based on these definitions, one can prove the following theorem.

Theorem 3. Let p be of class C3 and represent a probability density function. Let
x0 2 Rd with p(x0) 6= 0. Then we have that

m�(x0) = x0 + �
2

1

d+ 2

@ log p(x)

@x

����
x0

+ o
�
�
3
�
.

This links the local mean of a density with the score associated with that density.
Combining this theorem with Theorem 2, we obtain that the optimal reconstruction
function r

⇤(·) also estimates the local mean:

m�(x)� x =
�
2

�2(d+ 2)
(r⇤(x)� x) + A(�) + �

2
B(�2) (3.25)

for error terms A(�), B(�2) such that

A(�) 2 o(�3) as � ! 0,

B(�2) 2 o(1) as �
2
! 0.

This means that we can loosely estimate the direction to the local mean by the
direction of the reconstruction:

m�(x)� x / r
⇤(x)� x. (3.26)

50

3.E Asymptotic formulas for localized moments

Proposition 4. Let p be of class C2 and let x0 2 Rd. Then we have that

Z�(x0) = �
d

⇡
d/2

� (1 + d/2)

p(x0) + �

2
Tr(H(x0))

2(d+ 2)
+ o(�3)

�

where H(x0) =
@
2
p(x)

@x2

���
x=x0

. Moreover, we have that

1

Z�(x0)
= �

�d
� (1 + d/2)

⇡d/2

1

p(x0)
� �

2
1

p(x0)2
Tr(H(x0))

2(d+ 2)
+ o(�3)

�
.

Proof.

Z�(x0) =

Z

B�(x0)

"
p(x0) +

@p(x)

@x

����
x0

(x� x0) +
1

2!
(x� x0)

T
H(x0)(x� x0)

+
1

3!
D

(3)
p(x0)(x� x0) + o(�3)

�
dx

= p(x0)

Z

B�(x0)

dx + 0 +
1

2

Z

B�(x0)

(x� x0)
T
H(x0)(x� x0)dx + 0 + o(�d+3)

= p(x0)�
d

⇡
d/2

� (1 + d/2)
+ �

d+2
⇡
d/2

4� (2 + d/2)
Tr (H(x0)) + o(�d+3)

= �
d

⇡
d/2

� (1 + d/2)

p(x0) + �

2
Tr(H(x0))

2(d+ 2)
+ o(�3)

�

We use Proposition 10 to get that trace come up from the integral involving
H(x0). The expression for 1/Z�(x0) comes from the fact that, for any a, b > 0 we
have that

1

a+ b�2 + o(�3)
=

a
�1

1 + b

a
�2 + o(�3)

=
1

a

✓
1� (

b

a
�
2 + o(�3)) + o(�4)

◆

=
1

a
�

b

a2
�
2 + o(�3) as � ! 0.

by using the classic result from geometric series where 1

1+r
= 1� r+ r

2
� . . . for

|r| < 1.

Now we just apply this to

51

1

Z�(x0)
= �

�d
� (1 + d/2)

⇡d/2

1h
p(x0) + �2

Tr(H(x0))

2(d+2)
+ o(�3)

i

and get the expected result.

Theorem 5. Let p be of class C3 and represent a probability density function. Let
x0 2 Rd with p(x0) 6= 0. Then we have that

m�(x0) = x0 + �
2

1

d+ 2

@ log p(x)

@x

����
x0

+ o
�
�
3
�
.

Proof. The leading term in the expression for m�(x0) is obtained by transforming
the x in the integral into a x� x0 to make the integral easier to integrate.

m�(x0) =
1

Z�(x0)

Z

B�(x0)

xp(x)dx = x0 +
1

z�(x0)

Z

B�(x0)

(x� x0)p(x)dx.

Now using the Taylor expansion around x0

m�(x0) = x0 +
1

Z�(x0)

Z

B�(x0)

(x� x0)

"
p(x0) +

@p(x)

@x

����
x0

(x� x0)

+
1

2
(x� x0)

T
@
2
p(x)

@x2

����
x0

(x� x0) + o(kx� x0k
2)

#
dx.

Remember that
R
B�(x0)

f(x)dx = 0 whenever we have a function f is anti-

symmetrical (or “odd”) relative to the point x0 (i.e., f(x � x0) = f(�x � x0)).

This applies to the terms (x� x0)p(x0) and (x� x0)(x� x0)
@
2
p(x)

@x2

���
x=x0

(x� x0)T .

Hence we use Proposition 9 to get

m�(x0) = x0 +
1

Z�(x0)

Z

B�(x0)

"
(x� x0)

T
@p(x)

@x

����
x0

(x� x0) + o(kx� x0k
3)

#
dx

= x0 +
1

Z�(x0)

�
d+2

⇡
d
2

2�
�
2 + d

2

�
!
@p(x)

@x

����
x0

+ o(�3).

52

Now, looking at the coe�cient in front of @p(x)

@x

���
x0

in the first term, we can use

Proposition 4 to rewrite it as

1

Z�(x0)

�
d+2

⇡
d
2

2�
�
2 + d

2

�
!

= �
�d

� (1 + d/2)

⇡d/2

1

p(x0)
� �

2
1

p(x0)2
Tr(H(x0))

2(d+ 2)
+ o(�3)

�
�
d+2

⇡
d
2

2�
�
2 + d

2

�

= �
2

�
�
1 + d

2

�

2�
�
2 + d

2

�

1

p(x0)
� �

2
1

p(x0)2
Tr(H(x0))

2(d+ 2)
+ o(�3)

�
= �

2
1

p(x0)

1

d+ 2
+ o(�3).

There is no reason the keep the ��4
�(1+ d

2)
2�(2+ d

2)
1

p(x0)
2
Tr(H(x0))

2(d+2)
in the above expression

because the asymptotic error from the remainder term in the main expression is
o(�3). That would swallow our exact expression for �4 and make it useless.

We end up with

m�(x0) = x0 + �
2

1

d+ 2

@ log p(x)

@x

����
x0

+ o(�3).

3.F Integration on balls and spheres

This result comes fromMulti-dimensional Integration : Scary Calculus Problems
from Tim Reluga (who got the results from How to integrate a polynomial over a
sphere by Gerald B. Folland).

Theorem 6. Let B =
n
x 2 Rd

���
P

d

j=1
x
2

j
 1

o
be the ball of radius 1 around the

origin. Then

Z

B

dY

j=1

|xj|
aj
dx =

Q
�
⇣

aj+1

2

⌘

�
�
1 + d

2
+ 1

2

P
aj

�

for any real numbers aj � 0.

53

Corollary 7. Let B be the ball of radius 1 around the origin. Then

Z

B

dY

j=1

x
aj

j
dx =

8
<

:

Q
�

⇣
aj+1

2

⌘

�(1+ d
2+

1
2

P
aj)

if all the aj are even integers

0 otherwise

for any non-negative integers aj � 0. Note the absence of the absolute values
put on the x

aj

j
terms.

Corollary 8. Let B�(0) ⇢ Rd be the ball of radius � around the origin. Then

Z

B�(0)

dY

j=1

x
aj

j
dx =

8
<

:
�
d+

P
aj

Q
�

⇣
aj+1

2

⌘

�(1+ d
2+

1
2

P
aj)

if all the ajare even integers

0 otherwise

for any non-negative integers aj � 0. Note the absence of the absolute values on
the x

aj

j
terms.

Proof. We take the theorem as given and concentrate here on justifying the two
corollaries.

Note how in Corollary 7 we dropped the absolute values that were in the original
Theorem 6. In situations where at least one aj is odd, we have that the function
f(x) =

Q
d

j=1
x
aj

j
becomes odd in the sense that f(�x) = �f(x). Because of the

symmetrical nature of the integration on the unit ball, we get that the integral is
0 as a result of cancellations.

For Corollary 8, we can rewrite the integral by changing the domain with yj =
xj/� so that

�
�

P
aj

Z

B�(0)

dY

j=1

x
aj

j
dx =

Z

B�(0)

dY

j=1

(xj/�)
aj
dx =

Z

B1(0)

dY

j=1

y
aj�

d
dy.

We pull out the �d that we got from the determinant of the Jacobian when
changing from dx to dy and Corollary 8 follows.

Proposition 9. Let v 2 Rd and let B�(0) ⇢ Rd be the ball of radius � around the
origin. Then

54

Z

B�(0)

y < v, y > dy =

�
d+2

⇡
d
2

2�
�
2 + d

2

�
!

v

where < v, y > is the usual dot product.

Proof. We have that

y < v, y > =

2

64
v1y

2

1

...
vdy

2

d

3

75

which is decomposable into d component-wise applications of Corollary 8. This
yields the expected result with the constant obtained from �

�
3

2

�
= 1

2
�
�
1

2

�
= 1

2

p
⇡.

Proposition 10. Let H 2 Rd⇥d and let B�(x0) ⇢ Rd be the ball of radius � around
x0 2 Rd. Then

Z

B�(x0)

(x� x0)
T
H(x� x0)dx = �

d+2
⇡
d/2

2� (2 + d/2)
trace (H) .

Proof. First, by substituting y = (x� x0) /� we have that this is equivalent to
showing that

Z

B1(0)

y
T
Hydy =

⇡
d/2

2� (2 + d/2)
trace (H) .

This integral yields a real number which can be written as

Z

B1(0)

y
T
Hydy =

Z

B1(0)

X

i,j

yiHi,jyjdy =
X

i,j

Z

B1(0)

yiyjHi,jdy.

Now we know from Corollary 8 that this integral is zero when i 6= j. This gives

X

i,j

Hi,j

Z

B1(0)

yiyjdy =
X

i

Hi,i

Z

B1(0)

y
2

i
dy = trace (H)

⇡
d/2

2� (2 + d/2)
.

55

4
Prologue to second paper :

Generative Stochastic
Networks

4.1 Article Details

GSNs: generative stochastic networks, by Guillaume Alain, Yoshua Ben-
gio, Li Yao, Jason Yosinski, Éric Thibodeau-Laufer, Saizheng Zhang and Pascal
Vincent, in Information and Inference: A Journal of the IMA, Volume 5, Issue 2,
1 June 2016, Pages 210–249.

Personal Contribution. This paper existed in multiple forms before it was turned
into this journal paper (Bengio et al., 2013c; Bengio et al., 2014a). Most of the
mathematical theory was developed by Yoshua Bengio and I, building on our pre-
vious paper (presented in Chapter 3). Most of the theoretical aspects of this paper
were written by me. Most of the practical experiments were conducted by the
other co-authors, who worked on various workshop submissions that ended up be-
ing included in this journal paper eventually. I wove all those experiments into a
coherent whole.

4.2 Context

Denoising auto-encoders presented in our previous paper were using additive
Gaussian noise (though the results are still easy to extend slightly to some other
types of noise). We realized the generality of building Markov chains based on
learning two conditional distributions that could be used for Gibbs Sampling. This
was a natural direction to take next.

This paper is derived from the following two other publications from the same
set of authors.

— Deep generative stochastic networks trainable by backprop, by Yoshua
Bengio, Eric Laufer, Guillaume Alain and Yosinski, Jason, in International
Conference on Machine Learning (2014)

56

— Generalized denoising auto-encoders as generative models, by Yoshua
Bengio, Li Yao, Guillaume Alain and Pascal Vincent, in Advances in Neural
Information Processing Systems (2013)

4.3 Contributions

We introduce generative stochastic models as a way to extend the previous
study of denoising auto-encoders. This is a method by which we are learning two
conditional distributions, usable with Gibbs Sampling to create a Markov chain,
where one of the two variables has the same distribution as the training data. By
working directly with the Markov chain, we were also able to add one more connec-
tion between hidden states, which led to the formulation of Generative Stochastic
Networks (GSN).

After demonstrating mathematically why the basic idea works, we stack those
models in order to build a bigger model that has a chance at exploiting the structure
of the random variables in a meaningful way.

We make the di�cult assumption that the user can indeed represent su�ciently
well any conditional distribution, which is not achieved by the usual deterministic
neural networks. We explain how we can balance this assumption at the cost of
having consecutive samples that are more correlated.

We show that this method can be used to clamp certain variables and sam-
ple the other variables (e.g. image inpainting). We also introduce the walkback
loss criterion, which becomes relevant when we are training generative stochastic
networks.

See Section 1.2.4 for more mathematical context.

4.4 Recent Developments

Soon after the idea of GSNs was published, we saw other researchers apply them
to protein structure prediction (Zhou and Troyanskaya, 2014a).

Then Generative Adversarial Networks were published and they had a major
impact in the field. They completely took over because they had a much better
way to resolve the problem of multimodal predictions (Goodfellow et al., 2014a).

57

5 Generative Stochastic
Networks

We introduce a novel training principle for generative probabilistic models that
is an alternative to maximum likelihood. The proposed Generative Stochastic Net-
works (GSN) framework generalizes Denoising Auto-Encoders (DAE) and is based
on learning the transition operator of a Markov chain whose stationary distribu-
tion estimates the data distribution. The transition distribution is a conditional
distribution that generally involves a small move, so it has fewer dominant modes
and is unimodal in the limit of small moves. This simplifies the learning prob-
lem, making it less like density estimation and more akin to supervised function
approximation, with gradients that can be obtained by backprop. The theorems
provided here provide a probabilistic interpretation for denoising autoencoders and
generalize them; seen in the context of this framework, auto-encoders that learn
with injected noise are a special case of GSNs and can be interpreted as generative
models. The theorems also provide an interesting justification for dependency net-
works and generalized pseudolikelihood and define an appropriate joint distribution
and sampling mechanism, even when the conditionals are not consistent. GSNs can
be used with missing inputs and can be used to sample subsets of variables given
the rest. Experiments validating these theoretical results are conducted on both
synthetic datasets and image datasets. The experiments employ a particular archi-
tecture that mimics the Deep Boltzmann Machine Gibbs sampler but that allows
training to proceed with backprop through a recurrent neural network with noise
injected inside and without the need for layerwise pretraining.

5.1 Introduction

Research in deep learning (see Bengio (2009b) and Bengio, Courville, and Vin-
cent (2013) for reviews) grew from breakthroughs in unsupervised learning of rep-
resentations, based mostly on the Restricted Boltzmann Machine (RBM) (Hinton,
Osindero, and Teh, 2006), auto-encoder variants (Bengio et al., 2007a; Vincent
et al., 2008b), and sparse coding variants (Lee et al., 2007; Ranzato et al., 2007a).
However, the most impressive recent results have been obtained with purely su-
pervised learning techniques for deep networks, in particular for speech recogni-
tion (Dahl et al., 2010; Deng et al., 2010; Seide, Li, and Yu, 2011) and object

58

P(X)

X

C(X̃|X)

X̃

P(X|X̃)

P(X)

X

P(H|X)

H

P(X|H)

Figure 5.1 – Top: A denoising auto-encoder defines an estimated Markov chain where the
transition operator first samples a corrupted X̃ from C(X̃|X) and then samples a reconstruction
from P✓(X|X̃), which is trained to estimate the ground truth P (X|X̃). Note how for any given
X̃, P (X|X̃) is a much simpler (roughly unimodal) distribution than the ground truth P (X) and
its partition function is thus easier to approximate. Bottom: More generally, a GSN allows the
use of arbitrary latent variables H in addition to X, with the Markov chain state (and mixing)
involving both X and H. Here H is the angle about the origin. The GSN inherits the benefit of
a simpler conditional and adds latent variables, which allow more powerful deep representations
in which mixing is easier (Bengio et al., 2013a).

59

recognition (Krizhevsky, Sutskever, and Hinton, 2012). The latest breakthrough
in object recognition (Krizhevsky, Sutskever, and Hinton, 2012) was achieved with
fairly deep convolutional networks with a form of noise injection in the input and
hidden layers during training, called dropout (Hinton et al., 2012).

In all of these cases, the availability of large quantities of labeled data was
critical.

On the other hand, progress with deep unsupervised architectures has been
slower, with the established approaches with a probabilistic footing being the Deep
Belief Network (DBN) (Hinton, Osindero, and Teh, 2006) and the Deep Boltzmann
Machine (DBM) (Salakhutdinov and Hinton, 2009c). Although single-layer unsu-
pervised learners are fairly well developed and used to pre-train these deep models,
jointly training all the layers with respect to a single unsupervised criterion remains
a challenge, with a few techniques arising to reduce that di�culty (Montavon and
Muller, 2012; Goodfellow et al., 2013b). In contrast to recent progress toward joint
supervised training of models with many layers, joint unsupervised training of deep
models remains a di�cult task.

In particular, the normalization constant involved in complex multimodal prob-
abilistic models is often intractable and this is dealt with using various approx-
imations (discussed below) whose limitations may be an important part of the
di�culty for training and using deep unsupervised, semi-supervised or structured
output models.

Though the goal of training large unsupervised networks has turned out to
be more elusive than its supervised counterpart, the vastly larger available vol-
ume of unlabeled data still beckons for e�cient methods to model it. Recent
progress in training supervised models raises the question: can we take advantage
of this progress to improve our ability to train deep, generative, unsupervised, semi-
supervised (Goodfellow, Bengio, and Courville, 2016), transfer learning (Yosinski
et al., 2014a; Galanti, Wolf, and Hazan, 2016) or structured output (Li, Tarlow,
and Zemel, 2013) models?

This paper lays theoretical foundations for a move in this direction through the
following main contributions:

1 – Intuition: In Section 5.2 we discuss what we view as basic motivation for
studying alternate ways of training unsupervised probabilistic models, i.e., avoiding
the intractable sums or maximization involved in many approaches.

2 – Training Framework: We start Section 5.3 by presenting our recent work
on the generative view of denoising auto-encoders (Section 5.3.1). We present the
walkback algorithm which addresses some of the training di�culties with denoising
auto-encoders (Section 5.3.2).

60

We then generalize those results by introducing latent variables in the framework
to define Generative Stochastic Networks (GSNs) (Section 5.3.4). GSNs aim to es-
timate the data-generating distribution indirectly, by parametrizing the transition
operator of a Markov chain rather than directly parametrizing a model P (X) of the
observed random variable X. Most critically, this framework transforms the unsu-
pervised density estimation problem into one which is more similar to supervised
function approximation. This enables training by (possibly regularized) maximum
likelihood and gradient descent computed via simple back-propagation, avoiding
the need to compute intractable partition functions. Depending on the model,
this may allow us to draw from any number of recently demonstrated supervised
training tricks. For example, one could use a convolutional architecture with max-
pooling for parametric parsimony and computational e�ciency, or dropout (Hinton
et al., 2012) to prevent co-adaptation of hidden representations. See also the work
on learning invariant representations in this issue (Cheng, Chen, and Mallat, 2016;
Anselmi, Rosasco, and Poggio, 2016).

3 – General theory: Training the generative (decoding / denoising) compo-
nent of a GSN P (X|h) with noisy representation h is often far easier than modeling
P (X) explicitly (compare the blue and red distributions in Figure 5.1). We prove
that if our estimated P (X|h) is consistent (e.g. through maximum likelihood), then
the stationary distribution of the resulting Markov chain is a consistent estimator
of the data-generating density, P (X) (Section 5.3.1 and Appendix 5.A).

4 – Consequences of theory: We show that the model is general and extends
to a wide range of architectures, including sampling procedures whose computation
can be unrolled as a Markov Chain, i.e., architectures that add noise during inter-
mediate computation in order to produce random samples of a desired distribution
(Theorem 3). An exciting frontier in machine learning is the problem of modeling
so-called structured outputs, i.e., modeling a conditional distribution where the
output is high-dimensional and has a complex multimodal joint distribution (given
the input variable). We show how GSNs can be used to support such structured
output and missing values (Section 5.3.6).

5 – Example application: In Section 5.5.2 we show an example application of
the GSN theory to create a deep GSN whose computational graph resembles the one
followed by Gibbs sampling in deep Boltzmann machines (with continuous latent
variables), but that can be trained e�ciently with back-propagated gradients and
without layerwise pretraining. Because the Markov Chain is defined over a state
(X, h) that includes latent variables, we reap the dual advantage of more powerful
models for a given number of parameters and better mixing in the chain as we
add noise to variables representing higher-level information, first suggested by the
results obtained by Bengio et al. (2013a) and Luo et al. (2013). The experimental
results show that such a model with latent states indeed mixes better than shallower
models without them (Table 5.1).

61

6 – Dependency networks: Finally, an unexpected result falls out of the
GSN theory: it allows us to provide a novel justification for dependency net-
works (Heckerman et al., 2000) and for the first time define a proper joint distribu-
tion between all the visible variables that is learned by such models (Section 5.3.7).

5.2 Summing over too many major modes

The approach presented in this paper is motivated by a di�culty often en-
countered with probabilistic models, especially those containing anonymous latent
variables. They are called anonymous because no a priori semantics are assigned
to them, like in Boltzmann machines, and unlike in many knowledge-based graph-
ical models. Whereas inference over non-anonymous latent variables is required to
make sense of the model, anonymous variables are only a device to capture the
structure of the distribution and need not have a clear human-readable meaning.

However, graphical models with latent variables often require dealing with either
or both of the following fundamentally di�cult problems in the inner loop of train-
ing, or to actually use the model for making decisions: inference (estimating the
posterior distribution over latent variables h given inputs x) and sampling (from
the joint model of h and x). However, if the posterior P (h|x) has a huge number
of modes that matter, then the approximations made may break down.

Many of the computations involved in graphical models (inference, sampling,
and learning) are made intractable and di�cult to approximate because of the large
number of non-negligible modes in the modeled distribution (either directly P (x)
or a joint distribution P (x, h) involving latent variables h). In all of these cases,
what is intractable is the computation or approximation of a sum (often weighted
by probabilities), such as a marginalization or the estimation of the gradient of the
normalization constant. If only a few terms in this sum dominate (corresponding
to the dominant modes of the distribution), then many good approximate methods
can be found, such as Monte-Carlo Markov chains (MCMC) methods.

Deep Boltzmann machines (Salakhutdinov and Hinton, 2009c) combine the dif-
ficulty of inference (for the positive phase where one tries to push the energies
associated with the observed x down) and also that of sampling (for the nega-
tive phase where one tries to push up the energies associated with x’s sampled
from P (x)). Sampling for the negative phase is usually done by MCMC, although
some unsupervised learning algorithms (Collobert and Weston, 2008; Gutmann
and Hyvarinen, 2010; Bordes et al., 2013) involve “negative examples” that are
sampled through simpler procedures (like perturbations of the observed input, in a
spirit reminiscent of the approach presented here). Unfortunately, using an MCMC

62

method to sample from P (x, h) in order to estimate the gradient of the partition
function may be seriously hurt by the presence of a large number of important
modes, as argued below.

To evade the problem of highly multimodal joint or posterior distributions, the
currently known approaches to dealing with the above intractable sums make very
strong explicit assumptions (in the parametrization) or implicit assumptions (by
the choice of approximation methods) on the form of the distribution of interest.
In particular, MCMC methods are more likely to produce a good estimator if the
number of non-negligible modes is small: otherwise the chains would require at
least as many MCMC steps as the number of such important modes, times a factor
that accounts for the mixing time between modes. Mixing time itself can be very
problematic as a trained model becomes sharper, as it approaches a data-generating
distribution that may have well-separated and sharp modes (i.e., manifolds) (Bengio
et al., 2013a).

We propose to make another assumption that might su�ce to bypass this mul-
timodality problem: the e↵ectiveness of function approximation. As is typical in
machine learning, we postulate a rather large and flexible family of functions (such
as deep neural nets) and then use all manner of tricks to pick a member from that
combinatorially large family (i.e. to train the neural net) that both fits observed
data and generalizes to unseen data well.

In particular, the GSN approach presented in the next section relies on estimat-
ing the transition operator of a Markov chain, e.g. P (xt|xt�1) or P (xt, ht|xt�1, ht�1).
Because each step of the Markov chain is generally local, these transition distribu-
tions will often include only a very small number of important modes (those in the
neighborhood of the previous state). Hence the gradient of their partition function
will be easy to approximate. For example consider the denoising transitions studied
by Bengio et al. (2013d) and illustrated in Figure 5.1, where x̃t�1 is a stochasti-
cally corrupted version of xt�1 and we learn the denoising distribution P (x|x̃). In
the extreme case (studied empirically here) where P (x|x̃) is approximated by a
unimodal distribution, the only form of training that is required involves function
approximation (predicting the clean x from the corrupted x̃).

Although having the true P (x|x̃) turn out to be unimodal makes it easier to find
an appropriate family of models for it, unimodality is by no means required by the
GSN framework itself. One may construct a GSN using any multimodal model for
output (e.g. mixture of Gaussians, RBMs, NADE, etc.), provided that gradients
for the parameters of the model in question can be estimated (e.g. log-likelihood
gradients).

The approach proposed here thus avoids the need for a poor approximation of
the gradient of the partition function in the inner loop of training, but still has
the potential of capturing very rich distributions by relying mostly on “function

63

approximation”.

Besides the approach discussed here, there may well be other very di↵erent ways
of evading this problem of intractable marginalization, discussed in Section 5.4.

5.3 Generative Stochastic Networks

In this section we work our way from denoising auto-encoders (DAE) to gen-
erative stochastic networks (GSN). We illustrate the usefulness of denoising auto-
encoders being applied iteratively as a way to generate samples (and model a dis-
tribution). We introduce the walkback training algorithm and show how it can
facilitate the training.

We generalize the theory to GSNs, and provide a theorem that serves as a
recipe as to how they can be trained. We also reference a classic result from matrix
perturbation theory to analyze the behavior of GSNs in terms of their stationary
distribution.

We then study how GSNs may be used to fill missing values and theoretical con-
ditions for estimating associated conditional samples. Finally, we connect GSNs to
dependency nets and show how the GSN framework fixes one of the main problems
with the theoretical analysis of dependency nets and propose a particular way of
sampling from them.

5.3.1 Denoising auto-encoders to model probability distri-
butions

Assume the problem we face is to construct a model for some unknown data-
generating distribution P (X) given only examples of X drawn from that distribu-
tion. In many cases, the unknown distribution P (X) is complicated, and modeling
it directly can be di�cult.

A recently proposed approach using denoising auto-encoders (DAE) transforms
the di�cult task of modeling P (X) into a supervised learning problem that may
be much easier to solve. The basic approach is as follows: given a clean example
data point X from P (X), we obtain a corrupted version X̃ by sampling from some
corruption distribution C(X̃|X). For example, we might take a clean image, X, and
add random white noise to produce X̃. We then use supervised learning methods
to train a function to reconstruct, as accurately as possible, any X from the data
set given only a noisy version X̃. As shown in Figure 5.1, the reconstruction
distribution P (X|X̃) may often be much easier to learn than the data distribution

64

P (X), because P (X|X̃) tends to be dominated by a single or few major modes (such
as the roughly Gaussian shaped density in the figure). What we call a major mode
is one that is surrounded by a substantial amount of probability mass. There may
be a large number of minor modes that can be safely ignored in the context of
approximating a distribution, but the major modes should not be missed.

But how does learning the reconstruction distribution help us solve our original
problem of modeling P (X)? The two problems are clearly related, because if we
knew everything about P (X), then our knowledge of the C(X̃|X) that we chose
would allow us to precisely specify the optimal reconstruction function via Bayes
rule: P (X|X̃) = 1

z
C(X̃|X)P (X), where z is a normalizing constant that does not

depend on X. As one might hope, the relation is also true in the opposite direction:
once we pick a method of adding noise, C(X̃|X), knowledge of the corresponding
reconstruction distribution P (X|X̃) is su�cient to recover the density of the data
P (X).

In the later Section 5.3.4, we will define a variable H to stand in the place of X̃,
and H will correspond to something more general (due to its usage in the context
of a Markov chain, and the addition of other dependencies). Until then, for the
current purposes we will use the notation X̃ which suggests that it corresponds to
the intuitive idea of the “noisy version of X”.

In a recent paper, Alain and Bengio (2013) showed that denoising auto-encoders
with small Gaussian corruption and squared error loss estimated the score (deriva-
tive of the log-density with respect to the input) of continuous observed random
variables, thus implicitly estimating P (X). The following Proposition 1 generalizes
this to arbitrary variables (discrete, continuous or both), arbitrary corruption (not
necessarily asymptotically small), and arbitrary loss function (so long as they can
be seen as a log-likelihood).
Proposition 1. Let P (X) be the training distribution for which we only have em-
pirical samples. Let C(X̃|X) be the fixed corruption distribution and P✓(X|X̃) be
the trained reconstruction distribution (assumed to have su�cient capacity). We
define a Markov chain that starts at some X0 ⇠ P (X) and then iteratively sam-
ples pairs of values (Xk, X̃k) by alternatively sampling from C(X̃k|Xk) and from
P✓(Xk+1|X̃k).

X X X X X0

1

1

2

2

3

3 k

X X X X X~
k0

~ ~ ~ ~

Let ⇡ be the stationary distribution of this Markov chain when we consider only
the sequence of values of {Xk}

1

k=0
.

If we assume that this Markov chain is irreducible, that its stationary distribution
exists, and if we assume that P✓(X|X̃) is the distribution that minimizes optimally

65

the following expected loss

L =

Z

X̃

Z

X

P (X)C(X̃|X) logP✓(X|X̃)dXdX̃,

then we have that the stationary distribution ⇡ is the same as the training distri-
bution P (X).

Proof. If we look at the density P (X̃) =
R
P (X)C(X̃|X)dX̃ that we get for X̃ by

applying C(X̃|X) to the training data from P (X), we can rewrite the loss as a KL
divergence
Z

X̃

Z

X

P (X)C(X̃|X) logP✓(X|X̃)dXdX̃ = �KL
⇣
P (X)C(X̃|X)kP✓(X|X̃)P (X̃)

⌘
+cst

where the constant is independent of P✓(X|X̃). This expression is maximized when
we have a P✓(X|X̃) that satisfies

P (X)C(X̃|X) = P✓(X|X̃)P (X̃). (5.1)

In that case, we have that

P✓⇤(X|X̃) =
P (X)C(X̃|X)

P (X̃
= P (X|X̃)

where P (X|X̃) represents the true conditional that we get through the usual ap-
plication of Bayes’ rule.

Now, when we sample iteratively between C(X̃k|Xk) and P✓⇤(Xk+1|X̃k) to get
the Markov chain illustrated above, we are performing Gibbs sampling. We under-
stand what Gibbs sampling does, and here we are sampling using the two possible
ways of expressing the joint from equation (5.1). This means that the stationary
distribution ⇡ of the Markov chain will have P (X) as marginal density when we
look only at the Xk component of the chain.

Beyond proving that P (X|X̃) is su�cient to reconstruct the data density, Propo-
sition 1 also demonstrates a method of sampling from a learned, parametrized
model of the density, P✓(X), by running a Markov chain that alternately adds
noise using C(X̃|X) and denoises by sampling from the learned P✓(X|X̃), which is
trained to approximate the true P (X|X̃).

Before moving on, we should pause to make an important point clear. Alert
readers may have noticed that P (X|X̃) and P (X) can each be used to reconstruct

66

the other given knowledge of C(X̃|X). Further, if we assume that we have chosen
a simple C(X̃|X) (say, a uniform Gaussian with a single width parameter), then
P (X|X̃) and P (X) must both be of approximately the same complexity. Put
another way, we can never hope to combine a simple C(X̃|X) and a simple P (X|X̃)
to model a complex P (X). Nonetheless, it may still be the case that P (X|X̃) is
easier to model than P (X) due to reduced computational complexity in computing
or approximating the partition functions of the conditional distribution mapping
corrupted input X̃ to the distribution of corresponding clean input X. Indeed,
because that conditional is going to be mostly assigning probability to X locally
around X̃, P (X|X̃) has only one or a few major modes, while P (X) can have a
very large number of them.

So where did the complexity go? P (X|X̃) has fewer major modes than P (X),
but the location of these modes depends on the value of X̃. It is precisely this map-
ping from X̃ ! mode location that allows us to trade a di�cult density modeling
problem for a supervised function approximation problem that admits application
of many of the usual supervised learning tricks.

In the Gaussian noise example, what happens is that the tails of the Gaussian
are exponentially damping all but the modes that are near X, thus preserving the
actual number of modes but considerably changing the number of major modes. In
the Appendix we also present one alternative line of reasoning based on a corruption
process C(X̃|X) that has finite local support, thus completely removing the modes
that are not in the neighborhood of X. We argue that even with such a corruption
process, the stationary distribution ⇡ will match the original P (X), so long as one
can still visit all the regions of interest through a sequence of such local jumps.

Two potential issues with Proposition 1 are that 1) we are learning distribution
P✓(X|X̃) based on experimental samples so it is only asymptotically minimizing
the desired loss, and 2) we may not have enough capacity in our model to estimate
P✓(X|X̃) perfectly.

The issue is that, when running a Markov chain for infinitely long using a slightly
imperfect P✓(X|X̃), these small di↵erences may a↵ect the stationary distribution
⇡ and compound over time. We are not allowed to “adjust” the P✓(X|X̃) as the
chain runs.

This is addressed by Theorem 4 cited in the later Section 5.3.4. That theorem
gives us a result about continuity, so that, for “well-behaved” cases, when P✓(X|X̃)
is close to P (X|X̃) we must have that the resulting stationary distribution ⇡ is
close to the original P (X).

67

Figure 5.2 – Walkback samples get attracted by spurious modes and contribute to removing
them. Segment of data manifold in violet and example walkback path in red dotted line, starting
on the manifold and going towards a spurious attractor. The vector field represents expected
moves of the chain, for a unimodal P (X|X̃), with arrows from X̃ to X. The name walkback is
because this procedure forces the model to learn to walk back from the random walk it generates,
towards the X’s in the training set.

5.3.2 Walkback algorithm for training denoising auto-encoders

In this section we describe the walkback algorithm which is very similar to the
method from Proposition 1, but helps training to converge faster. It di↵ers in the
training samples that are used, and the fact that the solution is obtained through
an iterative process. The parameter update changes the corruption function, which
changes the X̃ in the training samples, which influences the next parameter update,
and so on.

Sampling in high-dimensional spaces (like in experiments in Section 5.5.1) us-
ing a simple local corruption process (such as Gaussian or salt-and-pepper noise)
suggests that if the corruption is too local, the DAE’s behavior far from the train-
ing examples can create spurious modes in the regions insu�ciently visited during
training. More training iterations or increasing the amount of corruption noise
helps to substantially alleviate that problem, but we discovered an even bigger
boost by training the Markov chain to walk back towards the training examples (see
Figure 5.2). We exploit knowledge of the currently learned model P✓(X|X̃) to de-
fine the corruption, so as to pick values of X̃ that would be obtained by following
the generative chain: wherever the model would go if we sampled using the gener-
ative Markov chain starting at a training example X, we consider to be a kind of
“negative example” X̃ from which the auto-encoder should move away (and towards
X). The spirit of this procedure is thus very similar to the CD-k (Contrastive Di-
vergence with k MCMC steps) procedure proposed to train RBMs (Hinton, 1999;
Hinton, Osindero, and Teh, 2006).

68

We start by defining the modified corruption process Ck(X̃|X) that samples k

times alternating between C(X̃|X) and the current P✓(X|X̃).

We can express this recursively if we let C1(X̃|X) be our original C(X̃|X), and
then define

Ck+1(X̃|X) =

Z

X̃0

Z

X0
C(X̃|X

0)P✓(X
0
|X̃

0)Ck(X̃
0
|X)dX 0

dX̃
0 (5.2)

Note that this corruption distribution Ck(X̃|X) now involves the distribution P✓(X|X̃)
that we are learning.

With the help of the above definition of Ck(X̃|X), we define the walkback cor-
ruption process Cwb(X̃|X). To sample from Cwb, we first draw a k distributed ac-
cording to some distribution, e.g., a geometric distribution with parameter p = 0.5
and support on k 2 {1, 2, . . .}), and then we sample according to the corresponding
Ck(X̃|X). Other values than p = 0.5 could be used, but we just want something
convenient for that hyperparameter. Conceptually, the corruption process Cwb

means that, from a starting point X we apply iteratively the original C and P✓,
and then we flip a coin to determine if we want to do it again. We re-apply until
we lose the coin flip, and then this gives us a final value for the sample X̃ based
on X.

The walkback loss is given by

Lwb '
1

N

NX

i=1

logP✓(X
(i)
|X̃

(i)) (5.3)

for samples (X(i)
, k

(i)
, X̃

(i)) drawn from X ⇠ P (X), k ⇠ Geometric(0.5) and X̃ ⇠

Ck(X̃|X). Minimizing this loss is an iterative process because the samples used in
the empirical expression depend on the parameter ✓ to be learned. This iterated
minimization is what we call the walkback algorithm. Samples are generated with
the current parameter value ✓t, and then the parameters are modified to reduce the
loss and yield ✓t+1. We repeat until the process stabilizes. In practical applications,
we do not have infinite-capacity models and we do not have a guarantee that the
walkback algorithm should converge to some ✓⇤.

Reparametrization Trick

Note that we do not need to analytically marginalize over the latent variables
involved: we can back-propagate through the chain, considering it like a recurrent
neural network with noise (the corruption) injected in it. This is an instance of
the so-called reparametrization trick, already proposed in (Bengio, 2013; Kingma,

69

2013; Kingma and Welling, 2014). The idea is that we can consider sampling from
a random variable conditionally on others (such as X̃ given X) as equivalent to
applying a deterministic function taking as argument the conditioning variables
as well as some i.i.d. noise sources. This view is particularly useful for the more
general GSNs introduced later, in which we typically choose the latent variables
to be continuous, i.e., allowing to backprop through their sampling steps when
exploiting the reparametrization trick.

Equivalence of the Walkback Procedure

With the walkback algorithm, one can also decide to include or not in the
loss function all the intermediate reconstruction distributions through which the
trajectories pass. That is, starting from some X0, we sample

X0 ⇠ P (X) X̃0 ⇠ C(X̃0|X0),

X1 ⇠ P✓(X1|X̃0) X̃1 ⇠ C(X̃1|X1)

X2 ⇠ P✓(X2|X̃1) X̃2 ⇠ C(X̃2|X2)
...

...

Xk�1 ⇠ P✓(Xk�1|X̃k�2) X̃k�1 ⇠ C(X̃k�1|Xk�1)

and we use all the pairs (X, X̃k) as training data for the walkback loss at equation
(5.3).

The following proposition looks very similar to Proposition 1, but it uses the
walkback corruption instead of the original corruption C(X̃|X). It is also an iterated
process through which the current value of the parameter ✓t sets the loss function
that will be minimized by the updated ✓t+1.

Proposition 2. Let P (X) be the training distribution for which we only have
empirical samples. Let ⇡(X) be the implicitly defined asymptotic distribution of
the Markov chain alternating sampling from P✓(X|X̃) and C(X̃|X), where C is the
original local corruption process.

If we assume that P✓(X|X̃) has su�cient capacity and that the walkback al-
gorithm converges (in terms of being stable in the updates to P✓(X|X̃)), then
⇡(x) = P (X).

That is, the Markov chain defined by alternating P✓(X|X̃) and C(X̃|X) gives us
samples that are drawn from the same distribution as the training data.

Proof. Consider that during training, we produce a sequence of estimators P✓t(X|X̃)
where P✓t corresponds to the t-th training iteration (modifying the parameters after

70

each iteration). With the walkback algorithm, P✓t�1 is used to obtain the corrupted
samples X̃ from which the next model P✓t�1 is produced.

If training converges in terms of ✓t ! ✓
⇤, it means that we have found a value

of P✓⇤(X|X̃) such that

✓
⇤ = argmin

✓

1

N

NX

i=1

logP✓(X
(i)
|X̃

(i))

for samples (X(i)
, X̃

(i)) drawn from X ⇠ P (X), X̃ ⇠ Cwb(X̃|X).

By Proposition 1, we know that, regardless of the the corruption Cany(X̃|X)
used, when we have a P✓(X|X̃) that minimizes optimally the loss

Z

X̃

Z

X

P (X)Cany(X̃|X) logP✓(X|X̃)dXdX̃

then we can recover P (X) by alternating between Cany(X̃|X) and P✓(X|X̃).

Therefore, once the model is trained with walkback, the stationary distribution
⇡ of the Markov chain that it creates has the same distribution P (X) as the training
data.

Hence if we alternate between the original corruption C(X̃|X) and the walkback
solution P✓⇤(X|X̃), then the stationary distribution with respect to X is also P (X).

Note that this proposition applies regardless of the value of geometric distri-
bution used to determine how many steps of corruption will be used. It applies
whether we keep all the samples along the way, or only the one at the last step.
It applies regardless of if we use a geometric distribution to determine which Ck to
select, or any other type of distribution.

A consequence is that the walkback training algorithm estimates the same dis-
tribution as the original denoising algorithm, but may do it more e�ciently (as we
observe in the experiments), by exploring the space of corruptions in a way that
spends more time where it most helps the model to kill o↵ spurious modes.

The Markov chain that we get with walkback should also generally mix faster,
be less susceptible to getting stuck in bad modes, but it will require a P✓⇤(X|X̃)
with more capacity than originally. This is because P✓⇤(X|X̃) is now less local,
covering the values of the initial X that could have given rise to the X̃ resulting
from several steps of the Markov chain.

71

5.3.3 Walkbacks with individual scaling factors to handle
uncertainty

The use of the proposed walkback training procedure is e↵ective in suppressing
the spurious modes in the learned data distribution. Although the convergence is
guaranteed asymptotically, in practice, given limited model capacity and training
data, it has been observed that the more walkbacks in training, the more di�cult it
is to maximize P✓(X|X̃). This is simply because more and more noise is added in
this procedure, resulting in X̃ that is further away from X, therefore a potentially
more complicated reconstruction distribution.

In other words, P✓(X|X̃) needs to have the capacity to model increasingly com-
plex reconstruction distributions. As a result of training, a simple, or usually uni-
modal P✓(X|X̃) is most likely to learn a distribution with a larger uncertainty than
the one learned without walkbacks in order to distribute some probability mass
to the more complicated and multimodal distributions implied by the walkback
training procedure. One possible solution to this problem is to use a multimodal
reconstruction distribution such as in Ozair, Yao, and Bengio (2014), Larochelle
and Murray, 2011, or Dinh, Krueger, and Bengio (2014). We propose here an-
other solution, which can be combined with the above, that consists in allowing a
di↵erent level of entropy for di↵erent steps of the walkback.

Scaling trick in binary X

In the case of binary X, the most common choice of the reconstruction distri-
bution is the factorized Multinoulli distribution where P✓(X|X̃) =

Q
d

i=1
P✓(X i

|X̃)
and d is the dimensionality of X. Each factor P✓(X i

|X̃) is modeled by a Bernoulli
distribution that has its parameter pi = sigmoid(fi(X̃)) where fi(·) is a general non-
linear transformation realized by a neural network. We propose to use a di↵erent
scaling factor ↵k for di↵erent walkback steps, resulting in a new parameterization
p
k

i
= sigmoid(↵kfi(X̃)) for the k-th walkback step, with ↵k > 0 being learned.

↵k e↵ectively scales the pre-activation of the sigmoid function according to the
uncertainty or entropy associated with di↵erent walkback steps. Naturally, later
reconstructions in the walkback sequence are less accurate because more noise has
been injected. Hence, given the ki-th and kj-th walkback steps that satisfy ki < kj,
the learning will tend to result in ↵ki > ↵kj because larger ↵k correspond to less
entropy.

72

Scaling trick in real-valued X

In the case of real-valued X, the most common choice of P✓(X|X̃) is the fac-
torized Gaussian. In particular, each factor P✓(X i

|X̃) is modeled by a Normal
distribution with its parameters µi and �i. Using the same idea of learning sepa-
rate scaling factors, we can parametrize it as P✓(X i

|X̃) = N (µi,↵k�
2

i
) for the k-th

walkback step. ↵k is positive and also learned. However, Given the ki-th and kj-th
walkback steps that satisfy ki < kj, the learning will result ↵ki < ↵kj , since in this
case, larger ↵k indicates larger entropy.

Sampling with the learned scaling factors

After learning the scaling factors ↵k for k di↵erent walkback steps, the sampling
is straightforward. One noticeable di↵erence is that we have learned k Markov
transition operators. Although, asymptotically all k Markov chains generate the
same distribution of X, in practice, they result in di↵erent distributions because
of the di↵erent ↵k learned. In fact, using ↵1 results in having samples that are
sharper and more faithful to the data distribution. We verify the e↵ect of learning
the scaling factor further in the experimental section.

5.3.4 Extending the denoising auto-encoder to more gen-
eral GSNs

The denoising auto-encoder Markov chain is defined by X̃t ⇠ C(X̃|Xt) and
Xt+1 ⇠ P✓(X|X̃t), where Xt alone can serve as the state of the chain. The GSN
framework generalizes the DAE in two ways:

1. the “corruption” function is not fixed anymore but a parametrized function
that can be learned and corresponds to a “hidden” state (so we write the
output of this function H rather than X̃); and

2. that intermediate variable H is now considered part of the state of the
Markov chain, i.e., its value of Ht at step t of the chain depends not just on
the previous visible Xt�1 but also on the previous state Ht�1.

For this purpose, we define the Markov chain associated with a GSN in terms of a
visible Xt and a latent variable Ht as state variables, of the form

Ht+1 ⇠ P✓1(H|Ht, Xt)

Xt+1 ⇠ P✓2(X|Ht+1).

73

X2X0 X1

H0 H
1 H2

This definition makes denoising auto-encoders a special case of GSNs. Note that,
given that the distribution of Ht+1 may depend on a previous value of Ht, we find
ourselves with an extra H0 variable added at the beginning of the chain. This H0

complicates things when it comes to training, but when we are in a sampling regime
we can simply wait a su�cient number of steps to burn in.

Main result about GSNs

The next theoretical results give conditions for making the stationary distribu-
tions of the above Markov chain match a target data-generating distribution. It
basically says that, in order to estimate the data-generating distribution P (X0), it
is enough to achieve two conditions.

The first condition is similar to the one we obtain when minimizing denoising
reconstruction error, i.e., we must make sure that the reconstruction distribution
P (X1|H1) approaches the conditional distribution P (X0|H1), i.e., the X0’s that
could have given rise to H1.

The second condition is novel and regards the initial state H0 of the chain, which
influences H1. It says that P (H0|X0) must match P (H1|X0). One way to achieve
that is to initialize H0 associated with a training example X0 with the previous
value of H1 that was sampled when example X0 was processed. In the graphical
model in the statement of Theorem 3, note how the arc relating X0 and H0 goes in
the X0 ! H0 direction, which is di↵erent from the way we would sample from the
GSN (graphical model above), where we have H0 ! X0. Indeed, during training,
X0 is given, forcing it to have the data-generating distribution.

Note that Theorem 3 is there to provide us with a guarantee about what happens
when those two conditions are satisfied. It is not originally meant to describe a
training method.

In Section 5.3.4 we explain how to these conditions could be approximately
achieved.

Theorem 3. Let (Ht, Xt)
1

t=0
be the Markov chain defined by the following graphical

model.

74

X2X0 X1

H0 H
1 H2

If we assume that the chain has a stationary distribution ⇡H,X , and that for every
value of (x, h) we have that

— all the P (Xt = x|Ht = h) = g(x|h) share the same density for t � 1
— all the P (Ht+1 = h|Ht = h

0
, Xt = x) = f(h|h0

, x) shared the same density
for t � 0

— P (H0 = h|X0 = x) = P (H1 = h|X0 = x)
— P (X1 = x|H1 = h) = P (X0 = x|H1 = h)

then for every value of (x, h) we get that
— P (X0 = x|H0 = h) = g(x|h) holds, which is something that was assumed

only for t � 1
— P (Xt = x,Ht = h) = P (X0 = x,H0 = h) for all t � 0
— the stationary distribution ⇡H,X has a marginal distribution ⇡X such that

⇡ (x) = P (X0 = x).
Those conclusions show that our Markov chain has the property that its samples in
X are drawn from the same distribution as X0.

Proof. The proof hinges on a few manipulations done with the first variables to
show that P (Xt = x|Ht = h) = g(x|h), which is assumed for t � 1, also holds for
t = 0.

For all h we have that

P (H0 = h) =

Z
P (H0 = h|X0 = x)P (X0 = x)dx

=

Z
P (H1 = h|X0 = x)P (X0 = x)dx (by hypothesis)

= P (H1 = h).

The equality in distribution between (X1, H1) and (X0, H0) is obtained with

P (X1 = x,H1 = h) = P (X1 = x|H1 = h)P (H1 = h)

= P (X0 = x|H1 = h)P (H1 = h) (by hypothesis)

= P (X0 = x,H1 = h)

= P (H1 = h|X0 = x)P (X0 = x)

= P (H0 = h|X0 = x)P (X0 = x) (by hypothesis)

= P (X0 = x,H0 = h).

75

Then we can use this to conclude that

P (X0 = x,H0 = h) = P (X1 = x,H1 = h)

=) P (X0 = x|H0 = h) = P (X1 = x|H1 = h) = g(x|h)

so, despite the arrow in the graphical model being turned the other way, we have
that the density of P (X0 = x|H0 = h) is the same as for all other P (Xt = x|Ht = h)
with t � 1.

Now, since the distribution of H1 is the same as the distribution of H0, and the
transition probability P (H1 = h|H0 = h

0) is entirely defined by the (f, g) densities
which are found at every step for all t � 0, then we know that (X2, H2) will have
the same distribution as (X1, H1). To make this point more explicitly,

P (H1 = h|H0 = h
0) =

Z
P (H1 = h|H0 = h

0
, X0 = x)P (X0 = x|H0 = h

0)dx

=

Z
f(h|h0

, x)g(x|h0)dx

=

Z
P (H2 = h|H1 = h

0
, X1 = x)P (X1 = x|H1 = h

0)dx

= P (H2 = h|H1 = h
0)

This also holds for P (H3|H2) and for all subsequent P (Ht+1|Ht). This relies on
the crucial step where we demonstrate that P (X0 = x|H0 = h) = g(x|h). Once
this was shown, then we know that we are using the same transitions expressed in
terms of (f, g) at every step.

Since the distribution of H0 was shown above to be the same as the distribution
of H1, this forms a recursive argument that shows that all the Ht are equal in
distribution to H0. Because g(x|h) describes every P (Xt = x|Ht = h), we have
that all the joints (Xt, Ht) are equal in distribution to (X0, H0).

This implies that the stationary distribution ⇡X,H is the same as that of (X0, H0).
Their marginals with respect to X are thus the same.

Intuitively, the proof of Theorem 3 achieves its objective by forcing all the
(Ht, Xt) pairs to share the same joint distribution, thus making the marginal over
Xt as t!1 (i.e. the stationary distribution of the chain ⇡) be the same as P (X0),
i.e., the data distribution. On the other hand, because it is a Markov chain, its
stationary distribution does not depend on the initial conditions, making the model
generate from an estimator of P (X0) for any initial condition.

To apply Theorem 3 in a context where we use experimental data to learn a
model, we would like to have certain guarantees concerning the robustness of the

76

stationary density ⇡X . When a model lacks capacity, or when it has seen only
a finite number of training examples, that model can be viewed as a perturbed
version of the exact quantities found in the statement of Theorem 3.

Note that we can modify the training suggested in Theorem 3 to use walkback
as described in Section 5.3.2 by unrolling the chain and using a contribution to
the loss at every time step. This is explored later in the experiment described by
Figure 5.5.

A note about consistency

A good overview of results from perturbation theory discussing stationary dis-
tributions in finite state Markov chains can be found in (Cho et al., 2000). We
reference here only one of those results.

Theorem 4. Adapted from (Schweitzer, 1968)

Let K be the transition matrix of a finite state, irreducible, homogeneous Markov
chain. Let ⇡ be its stationary distribution vector so that K⇡ = ⇡. Let A = I�K and
Z = (A+ C)�1 where C is the square matrix whose columns all contain ⇡. Then,
if K̃ is any transition matrix (that also satisfies the irreducible and homogeneous
conditions) with stationary distribution ⇡̃, we have that

k⇡ � ⇡̃k
1
 kZk

1

���K � K̃

���
1

.

This theorem covers the case of discrete data by showing how the stationary
distribution is not disturbed by a great amount when the transition probabilities
that we learn are close to their correct values. We are talking here about the
transition between steps of the chain (X0, H0), (X1, H1), . . . , (Xt, Ht), which are
defined in Theorem 3 through the (f, g) densities.

In practice we have not attempted to estimate how large would be the constant
kZk

1
in the case of a GSN featuring only discrete states. Theorem 4 serves more

as a comforting reminder that, for a “good” transition operator, i.e. one that does
not yield unreachable states, if we have a close approximation to that operator,
then we will get a close approximatin to the stationary state.

Training criterion for GSNs

So far we avoided discussing the training criterion for a GSN. Various alterna-
tives exist, but this analysis is for future work. Right now Theorem 3 suggests the
following rules :

77

— Define g(x|h) = P (X1 = x|H1 = h), i.e., the decoder, to be the esti-
mator for P (X0 = x|H1 = h), e.g. by training an estimator of this con-
ditional distribution from the samples (X0, H1), with reconstruction likeli-
hood, logP (X1 = x0|H1), as this would asymptotically achieve the condition
P (X0|H1) = P (X1|H1). To see that this is true, consider the following.
We sample X0 from P (X0) (the data-generating distribution) and H1 from
P (H1|H0, X0). Refer to one of the next bullet points for an explanation
about how to get values for H0 to be used when sampling from P (H1|H0, X0)
here. This creates a joint distribution over (X0, H1) that has P (X0|H1) as a
derived conditional. Then we train the parameters of a model P✓(X1|H1) to
maximize the log-likelihood

Ex0⇠P (X0),h1⇠P (H1|x0)[logP✓(X1 = x0|h1)]

=

Z

x0,h1

P (x0, h1) logP✓(X1 = x0|H1 = h1)dx0dh1

=

Z

h1

P (h1)

Z

x0

P (X0 = x0|H1 = h1) logP✓(X1 = x0|H1 = h1)dx0dh1

=� EH1 [KL(P (X0|H1)||P✓(X1|H1))] + const. (5.4)

where the constant does not depend on ✓, and thus the log-likelihood is
maximized when

P✓(X1 = x|H1 = h) = P (X0 = x|H1 = h).

Note that P✓(X1 = x|H1 = h) is not a typo. It represents the value of the
density P✓(X1|H1) evaluated at (X1, H1) = (x0, h1).

— Pick the transition distribution f(h|h0
, x) to be useful, i.e., training it towards

the same objective, i.e., sampling an h
0 that makes it easy to reconstruct x.

One can think of f(h|h0
, x) as the encoder, except that it has a state which

depends on its previous value in the chain.
— To approach the condition P (H0 = h|X0 = x0) = P (H1 = h|X0 = x0),

one interesting possibility is the following. For each X0 in the training set,
iteratively sample H1|(H0, X0) and substitute the value of H1 as the updated
value of H0. Repeat until you have achieved a kind of “burn in”. Note that,
after the training is completed, when we use the chain for sampling, the
samples that we get from its stationary distribution do not depend on H0.
Another option is to store the value of H1 that was sampled for the particular
training example x0, and re-use it as the initial H0 the next time that x0 is
presented during training. These techniques of substituting H1 into H0 are
only required during training. In our experiments, we actually found that
a fixed H0 = 0 worked as well, so we have used this simpler approach in
the reported experiments. Bear in mind that this iterative trick satisfies the

78

equality P (H0 = h|X0 = x0) = P (H1 = h|X0 = x0) only approximately.
That approximation might be close enough for all practical purposes, but it
is just a trick to satisfy a requirement that would otherwise not be obvious
to satisfy.

— The rest of the chain for t � 1 is defined in terms of (f, g).

5.3.5 Random variable as deterministic function of noise

There are several equivalent ways of expressing a GSN. One of the interesting for-
mulations is to use deterministic functions of random variables to express the densi-
ties (f, g) used in Theorem 3. With that approach, we define Ht+1 = �✓1(Xt, Zt, Ht)
for some independent noise source Zt, and we insist that Xt cannot be recovered
exactly from Ht+1, to avoid a situation in which the Markov chain would not be
ergodic. The advantage of that formulation is that one can directly back-propagate
the reconstruction log-likelihood logP (X1 = x0|H1 = f(X0, Z0, H0)) into all the
parameters of f and g, using the reparametrization trick discussed above in Sec-
tion 5.3.2. This method is described in (Williams, 1992).

In the setting described at the beginning of Section 5.3, the function playing the
role of the “encoder”was fixed for the purpose of the theorem, and we showed that
learning only the “decoder” part (but a su�ciently expressive one) su�ced. In this
setting we are learning both, which can cause certain broken behavior.

One problem would be if the created Markov chain failed to converge to a sta-
tionary distribution. Another such problem could be that the function �(Xt, Zt, Ht)
learned would try to ignore the noise Zt, or not make the best use out of it. In
that case, the reconstruction distribution would simply converge to a Dirac at the
input X. This is the analogue of the constraint on auto-encoders that is needed to
prevent them from learning the identity function. Here, we must design the family
from which f and g are learned such that when the noise Z is injected, there are
always several possible values of X that could have been the correct original input.

Another extreme case to think about is when �(X,Z,H) is overwhelmed by
the noise and has lost all information about X. In that case the theorems are
still applicable while giving uninteresting results: the learner must capture the
full distribution of X in P✓2(X|H) because the latter is now equivalent to P✓2(X),
since �(X,Z,H) no longer contains information about X. This illustrates that
when the noise is large, the reconstruction distribution (parametrized by ✓2) will
need to have the expressive power to represent multiple modes. Otherwise, the
reconstruction will tend to capture an average output, which would visually look
like a fuzzy combination of actual modes. In the experiments performed here,
we have only considered unimodal reconstruction distributions (with factorized
outputs), because we expect that even if P (X|H) is not unimodal, it would be

79

Data: Training data x
(n)
2 Rd for n = 1, . . . , N .

Input: Encoder (chosen and fixed) with density f(h|h0
, x) from which we

can sample e�ciently.
Decoder with density g✓(x|h) parameterized with ✓ 2 ⇥.
Initial parameter ✓0 2 ⇥ for g✓(x|h).

Output: Optimized parameter ✓⇤ 2 ⇥.

1 Function Main training loop
/* This is the standard SGD algorithm with learning rate
↵. You can use your own version with mini-batches and
momentum/adagrad/rmsprop. */

2 s = 0
3 repeat
4 x any example at random from the training set

/* the derivative r✓L✓(x) can come from either the
usual loss or the walkback loss */

5 ✓s+1 ✓s � ↵r✓L✓(x)
6 s s+ 1
7 until the solution ✓s is satisfactory
8 return ✓s
9 end

10 Function compute r✓L✓(x(n)) /* usual SGD for x
(n) */

11 x0 x
(n)

12 h1 any plausible initial value (e.g. (0, 0, . . . , 0))
13 for i = 1, . . . , nbr of burnin steps do
14 h0 h1

15 h1 sampled from f(h1|h0, x0)
16 end
17 return r✓ log g✓(x0|h1)
18 end

19 Function compute r✓L✓(x(n)) /* walkback SGD for x
(n) */

20 x0 x
(n)

21 h1 any plausible initial value (e.g. (0, 0, . . . , 0))
22 for i = 1, . . . , nbr of burnin steps do
23 h0 h1

24 h1 sampled from f(h1|h0, x0)
25 end
26 T sampled from GeometricDistribution(p = 0.5)
27 for t = 1, . . . , T do
28 ht sampled from f(ht|ht�1, xt�1)
29 xt sampled from g(xt|ht)
30 end
31 return r✓ log g✓(x0|hT)
32 end

Algorithm 1: Description of the training procedure suggested by Theorem 3.

80

dominated by a single mode when the noise level is small. However, future work
should investigate multimodal alternatives.

A related element to keep in mind is that one should pick the family of condi-
tional distributions P✓2(X|H) so that one can sample from them and one can easily
train them when given (X,H) pairs, e.g., by maximum likelihood.

Note that, in Algorithm 1, we return the value of r✓ log g✓(x0|hT) on the last
line. That value can be computed with backpropagation through time (BPTT) if
we consider the fact that hT inherently depends on the parameter ✓. The abil-
ity to backpropagate the derivative through the stochastic steps allows us to use
r✓ log g✓(x0|hT (✓)) as the training signal. Depending on the implementation lan-
guage (i.e. whether it features automatic di↵erentiation or not), this step can be
simple or very complicated.

5.3.6 Handling missing inputs or structured output

In general, a simple way to deal with missing inputs is to clamp the observed
inputs and then run the Markov chain with the constraint that the observed inputs
are fixed and not resampled at each time step, whereas the unobserved inputs
are resampled each time, conditioned on the clamped inputs. This procedure is
illustrated later in Figure 5.6 in the experimental section.

Part of the appeal of generative models over classfiers is that they allow us to get
more information out of the model, and here were focus on the possibility of asking
questions to the model by clamping certain values or certain components. For
example, supposing for a moment that we had a generative model of the population
of the Earth, we could clamp the age to 30 and the city to New York, and then
look at the distribution of vacation days per year, or the number of siblings.

The theory in this section about clamping is mostly to confirm that it behaves as
one would expect, and that we indeed get samples drawn from the conditionals that
we would expect to have. We are not training the model with clamped variables.
We are only running the chain with clamped variables after the model has been
trained.

In the context of the GSN described in Section 5.3.4 using the two distributions

Ht+1 ⇠ P✓1(H|Ht, Xt)

Xt+1 ⇠ P✓2(X|Ht+1)

we need to make some adjustments to P✓2(X|Ht+1) to be able to sample X condi-
tioned on some of its components being clamped. We also focus on the case where
there are no connections between the Ht ! Ht+1. That is, we study the more

81

basic situation where we train an denoising auto-encoder instead of a GSN that
has connections between the hidden units.

Let S be a set of values that X can take. For example, S can be a subset of the
units of X that are fixed to given values. We can talk about clamping X 2 S, or
just “clamping S” when the meaning is clear.

To give another example, if x = (xa, xb) has two components, that subset S can
a↵ect one of the components by selecting something such as

S = {(xa, xb)|xb = 7} ,

or it can a↵ect the two components by selecting a S such as

S = {(xa, xb)|xa + xb = 0} .

Both possibilities are compatible with the notation that we use. We encourage the
reader to imagine a choice S that a↵ects only a subset of the components (such a
certain pixels in an image) when following through the reasoning, but to remember
that the possibilities are more general than this.

In order to sample from a distribution with clamped S, we need to be able to
sample from

Ht+1 ⇠ P✓1(H|Xt)

Xt+1 ⇠ P✓2(X|Ht+1, X 2 S).

This notation might be strange at first, but it’s as legitimate as conditioning on 0 <

X when sampling from any general distribution. It involves only a renormalization
of the resulting distribution P✓2(X|Ht+1, X 2 S).

In a general scenario with two conditional distributions (P✓1 , P✓2) playing the
roles of f(x|h) and g(h|x), i.e. the encoder and decoder, we can make certain basic
assumptions so that the asymptotic distributions of (Xt, Ht) and (Xt, Ht+1) both
exist. There is no reason to think that those two distributions are the same, and
it is trivial to construct counter-examples where they di↵er greatly.

However, when we train a DAE with infinite capacity, Proposition 1 shows that
the optimal solution leads to those two joints being the same. That is, the two
trained conditional distributions f(h|x) and g(x|h) are mutually compatible. They
form a single joint distribution over (X,H). We can sample from it by the usual
Gibbs sampling procedure. Moreover, the marginal distribution over X that we
obtain will match that of the training data. This is the motivation for Proposition
1.

Knowing that Gibbs sampling produces the desired joint distribution over (X,H),

82

we can now see how it would be possible to sample from (X,H)|(X 2 S) if we are
able to sample from f(h|x) and g(x|h, x 2 S). Note that it might be very hard to
sample from g(x|h, x 2 S), depending on the particular model used. We are not
making any assumption on the factorization of g(x|h), much like we are not making
any assumption on the particular representation (or implementation) of g(x|h).

In Section 5.3.4 we address a valid concern about the possibility that, in a
practical setting, we might not train g(x|h) to achieve an exact match of the density
of X|H. That g(x|h) may be very close to the optimum, but it might not be able
to achieve it due to its finite capacity or its particular parametrization. What
does that imply about whether the asymptotic distribution of the Markov chain
obtained experimentally compared to the exact joint (X,H) ?

We deal with this issue in the same way as we dealt with it when it arose in the
context of Theorem 3. The best that we can do is to refer to Theorem 4 and rely on
an argument made in the context of discrete states that would closely approximate
our situation (which is in either discrete or continuous space).

Our Markov chain is homogeneous because it does not change with time. It can
be made irreducible by imposing very light constraints on f(h|x) so that f(h|x) > 0
for all (x, h). This happens automatically when we take f(h|x) to be additive
Gaussian noise (with fixed parameters) and we train only g(x|h). In that case, the
optimum g(x|h) will assign non-zero probability weight on all the values of x.

We cannot guarantee that a non-optimal g(x|h) will not be broken in some way,
but we can often get g(x|h) to be non-zero by selecting a parametrized model that
cannot assign a probability of exactly zero to an x. Finally, to use Theorem 4 we
need to have that the constant kZk

1
from that Theorem 4 to be non-zero. This

is a bit more complicated to enforce, but it is something that we will get if the
transition matrix stays away from the identity matrix. That constant is zero when
the chain is close to being degenerate.

Theorem 4 says that, with those conditions verified, we have that an arbitrarily
good g(x|h) will lead to an arbitrarily good approximation of the exact joint (X,H).

Now that we know that this approach is grounded in sound theory, it is certainly
reasonable to try it in experimental settings in which we are not satisfying all the
requirements, and see if the results are useful or not. We would refer the reader
to our experiment shown in Figure 5.6 where we clamp certain units and resample
the rest.

To further understand the conditions for obtaining the appropriate conditional
distributions on some of the visible inputs when others are clamped, we consider
below su�cient and necessary conditions for making the stationary distribution
of the clamped chain correspond to the normalized distribution (over the allowed
values) of the unclamped chain.

83

Proposition 5. Let f(h|x) and g(x|h) be the encoder and decoder functions such
that they are mutually compatible. That is, there exists a single join ⇡(X,H) such
that f(h|x) = ⇡(h|x) and g(x|h) = ⇡(x|h), and we can sample from that joint using
Gibbs sampling.

Note that this happens when we minimize

EX

log

Z
g(x|h)f(h|x)dh

�

or when we minimize the walkback loss (see Proposition 2).

Let S ✓ X be a set of values that X can take (e.g. some components of X can
be assigned certain fixed values), and such that P(X 2 S) > 0. Let ⇡(x|x 2 S)
denote the conditional distribution of ⇡(X,H) on which we marginalize over H and
condition on X 2 S. That is

⇡(x|x 2 S) =
⇡(x)R

S
⇡(x0)dx0

/ ⇡(x)I(x 2 S)

where I(x 2 S) denotes an indicator function that takes the value 1 when x 2 S

and 0 otherwise.

Let g(x|h, x 2 S) denote a restriction of the decoder function that puts probability
weight only on the values of x 2 S. That is,

g(x|h, x 2 S) / g(x|h)I(x 2 S).

If we start from some x0 2 S and we run a Markov chain by alternating between
f(h|x) and g(x|h, x 2 S), then the asymptotic distribution of that chain with
respect to X will be the same as ⇡(x|x 2 S).

Proof. Proposition 5 follows almost automatically from applying Proposition 1 and
restricting the domain of X to S. The requirement that f(h|x) and g(x|h) be
mutually compatible gives us the existence and unicity of ⇡(X,H).

The fact that we can use Gibbs sampling to sample from ⇡(X,H) tells us that
we can sample from ⇡(X,H|X 2 S) also with Gibbs sampling. By running a
Markov chain as described in the statement of the proposition, starting with some
x0 2 S and alternating between f(h|x) and g(x|h, x 2 S), we get samples drawn
from ⇡(X,H|X 2 S).

The marginal with respect to X of ⇡(X,H|X 2 S) is simply

⇡(x|x 2 S) =

Z

H

⇡(x, h|x 2 S)dh

84

which is just the original density ⇡(X) re-normalized to its new domain S.

⇡(x|x 2 S) =
⇡(x)R

S
⇡(x0)dx0

Note that the assumption about mutually compatibility in Proposition 5 is not
trivial to satisfy. We address this situation in Section 5.B of the Appendix.

5.3.7 Dependency Networks as GSNs

Dependency networks (Heckerman et al., 2000) are models in which one esti-
mates conditionals Pi(xi|x�i), where x�i denotes x \ xi, i.e., the set of variables
other than the i-th one, xi. Note that each Pi may be parametrized separately,
thus not guaranteeing that there exists a joint of which they are the conditionals.
Instead of the ordered pseudo-Gibbs sampler defined in Heckerman et al. (2000),
which resamples each variable xi in the order x1, x2, . . ., we can view dependency
networks in the GSN framework by defining a proper Markov chain in which at
each step one randomly chooses which variable to resample. The corruption pro-
cess therefore just consists of H = f(X,Z) = X�s where X�s is the complement
of Xs, with s a randomly chosen subset of elements of X (possibly constrained
to be of size 1). Furthermore, we parametrize the reconstruction distribution as
P✓2(X = x|H) = �x�s=X�sP✓2,s(Xs = xs|x�s) where the estimated conditionals
P✓2,s(Xs = xs|x�s) are not constrained to be consistent conditionals of some joint
distribution over all of X.

Proposition 6. If the above GSN Markov chain has a stationary distribution,
then the dependency network defines a joint distribution (which is that stationary
distribution), which does not have to be known in closed form. Furthermore, if the
conditionals P (Xs|X�s) are consistent estimators of the ground truth conditionals,
then that stationary distribution is a consistent estimator of the ground truth joint
distribution.

The proposition can be proven by immediate application of Proposition 1 with
the above particular GSN model definitions.

This joint stationary distribution can exist even if the conditionals are not con-
sistent. To show that, assume that some choice of (possibly inconsistent) condi-
tionals gives rise to a stationary distribution ⇡. Now let us consider the set of
all conditionals (not necessarily consistent) that could have given rise to that ⇡.
Clearly, the conditionals derived from ⇡ by Bayes rule are part of that set, but there
are infinitely many others (a simple counting argument shows that the fixed point

85

equation of ⇡ introduces fewer constraints than the number of degrees of freedom
that define the conditionals). To better understand why the ordered pseudo-Gibbs
chain does not benefit from the same properties, let us see how the pseudo-Gibbs
chain could be extended to become a Markov chain. For this, we need to add a
component of the state that remembers which of the variables we just resampled
at each step. However, that Markov chain could be periodic, because we cycle in
a deterministic way through all the index values. This would make it di�cult to
guarantee ergodicity or the existence of a stationary distribution, which is required
for our convergence theorem (Proposition 1).

However, by introducing randomness in the choice of which variable(s) to re-
sample next, we obtain aperiodicity and ergodicity, yielding as stationary distri-
bution a mixture over all possible resampling orders. These results also show in
a novel way (see e.g. Hyvärinen (2006) for earlier results) that training by pseu-
dolikelihood or generalized pseudolikelihood provides a consistent estimator of the
associated joint, so long as the GSN Markov chain defined above is ergodic. This
result can be applied to show that the multi-prediction deep Boltzmann machine
(MP-DBM) training procedure introduced by Goodfellow et al. (2013b) also corre-
sponds to a GSN. This has been exploited in order to obtain much better samples
using the associated GSN Markov chain than by sampling from the corresponding
DBM (Goodfellow et al., 2013b).

5.4 Related work

GSNs and the Markov chain interpretation of denoising auto-encoders are related
to an number of other interesting deep generative models that have been proposed,
especially very recently. All these approaches attempt to bypass the intractability
of the likelihood that arises when introducing latent variables.

One option is to change the family of functions to guarantee that the likelihood
is tractable, e.g., with sum-product networks (Poon and Domingos, 2011). In that
spirit, the extreme solution is to completely eliminate latent variables, with models
that can however still perform very well, like NADE (Larochelle and Murray, 2011)
or even recurrent neural networks (if the stationarity assumption makes sense).

Another is to perform or learn approximate inference or use an approximate
method to estimate the log-likelihood gradient, and most approaches follow such
a path. Algorithms for training Boltzmann machines (especially the Restricted
Boltzmann Machine or RBM) such as contrastive divergence (Hinton, 2000; Hinton,
Osindero, and Teh, 2006) and persistent contrastive divergence (Younes, 1998;
Tieleman, 2008) directly aim at estimating the gradient of the log-likelihood using

86

a Monte-Carlo Markov Chain (MCMC). Exact inference in a Deep Boltzmann
Machine or DBM (Salakhutdinov and Hinton, 2009b) is also intractable but can be
approximated by MCMC or by a mean-field variational approximation. In terms
of architecture, the GSN with latent variable is to the denoising auto-encoder what
the DBM is to the RBM. In fact, as shown in the next section, we can design a
GSN whose computations closely mimicks the sampling (or inference) process of a
DBM.

Another approach that requires a sequence of sampling steps and that is maybe
more related to denoising auto-encoders and GSNs is the “nonequilibrium thermo-
dynamics” approach of Sohl-Dickstein et al. (2015). In both papers we find the
idea of repeatedly introducing noise into the empirical distribution as well as the
idae of learning the probabilistic “noise inversion” process, which ends up being
the generative process for the trained model. However, the details di↵er, especially
regarding the training objective.

Another family of approaches regards directed generative models in which the
approximate inference is computed and learned by a separate “encoder” network,
while the generative path corresponds to a kind of “decoder”. This line of work
started with the Helmholtz machine (Hinton et al., 1995; Dayan et al., 1995) and its
wake-sleep algorithm. More recently, it was followed up by the various variational
auto-encoders or VAEs (Kingma and Welling, 2014; Gregor et al., 2014; Mnih
and Gregor, 2014; Rezende, Mohamed, and Wierstra, 2014), and related directed
models (Bornschein and Bengio, 2014; Ozair and Bengio, 2014). No MCMC is
necessary in these approaches. Like in GSNs these models parametrize P (X|H).
The main di↵erence comes in the parametrization of P (H). In the VAE and other
Helmholtz machines, the top-level prior P (H) has a simple analytic parametric
form, such as a Gaussian. In the GSN, we have instead that P (H) is the stationary
distribution of a Markov chain. It has no analytic formulation but may represent
a distribution with a more complex structure. This extra representational power
may potentially come at a price when the corresponding Markov chain does not
mix well.

5.5 Experimental results

The theoretical results on Generative Stochastic Networks (GSNs) open for ex-
ploration a large class of possible parametrizations and training procedures which
share the property that they can capture the underlying data distribution through
the GSN Markov chain. What parametrizations will work well? Where and how
should one inject noise to best balance fast mixing with making the implied condi-
tional easy to model? We present results of preliminary experiments with specific

87

selections for each of these choices, but the reader should keep in mind that the
space of possibilities is vast.

We start in Section 5.5.1 with results involving GSNs without latent variables
(denoising auto-encoders in Section 5.3.1 and the walkback algorithm presented
in Section 5.3.2). Then in Section 5.5.2 we proceed with experiments related to
GSNs with latent variables (model described in Section 5.3.4). Section 5.5.3 ex-
tends experiments of the walkback algorithm with the scaling factors discussed in
Section 5.3.3. A Theano 1 (Bergstra et al., 2010a) implementation is available 2,
including the links of datasets.

5.5.1 Experimental results regarding walkback in DAEs

We present here an experiment performed with a non-parametric estimator on
two types of data and an experiment done with a parametric neural network on
the MNIST dataset.

Non-parametric case. The mathematical results presented here apply to any
denoising training criterion where the reconstruction loss can be interpreted as a
negative log-likelihood. This remains true whether or not the denoising machine
P (X|X̃) is parametrized as the composition of an encoder and decoder. This is
also true of the asymptotic estimation results in Alain and Bengio (2013). We
experimentally validate the above theorems in a case where the asymptotic limit
(of enough data and enough capacity) can be reached, i.e., in a low-dimensional
non-parametric setting. Fig. 5.3 shows the distribution recovered by the Markov
chain for discrete data with only 10 di↵erent values. The conditional P (X|X̃) was
estimated by multinomial models and maximum likelihood (counting) from 5000
training examples. 5000 samples were generated from the chain to estimate the
asymptotic distribution ⇡n(X). For continuous data, Figure 5.3 also shows the
result of 5000 generated samples and 500 original training examples with X 2 R10,
with scatter plots of pairs of dimensions. The estimator is also non-parametric
(Parzen density estimator of P (X|X̃)).

MNIST digits. We trained a DAE on the binarized MNIST data (thresholding
at 0.5). The 784-2000-784 auto-encoder is trained for 200 epochs with the 50000
training examples and salt-and-pepper noise (probability 0.5 of corrupting each
bit, setting it to 1 or 0 with probability 0.5). It has 2000 tanh hidden units and is
trained by minimizing cross-entropy loss, i.e., maximum likelihood on a factorized
Bernoulli reconstruction distribution. With walkback training, a chain of 5 steps
was used to generate 5 corrupted examples for each training example. Figure 5.4

1. http://deeplearning.net/software/theano/
2. https://github.com/yaoli/GSN

88

Figure 5.3 – Top left: histogram of a data-generating distribution (true, blue), the empirical dis-

tribution (red), and the estimated distribution using a denoising maximum likelihood estimator.

Other figures: pairs of variables (out of 10) showing the training samples and the model-generated

samples.

shows samples generated with and without walkback. The quality of the samples
was also estimated quantitatively by measuring the log-likelihood of the test set
under a non-parametric density estimator P̂ (x) = mean

X̃
P (x|X̃) constructed from

10,000 consecutively generated samples (X̃ from the Markov chain). The expected
value of E[P̂ (x)] over the samples can be shown (Bengio, Yao, and Cho, 2013) to
be a lower bound (i.e. conservative estimate) of the true (implicit) model density
P (x). The test set log-likelihood bound was not used to select among model ar-
chitectures, but visual inspection of samples generated did guide the preliminary
search reported here. Optimization hyper-parameters (learning rate, momentum,
and learning rate reduction schedule) were selected based on the training objec-
tive. We compare against a state-of-the-art RBM (Cho, Raiko, and Ilin, 2013)
with an AIS log-likelihood estimate of -64.1 (AIS estimates tend to be optimistic).
We also drew samples from the RBM and applied the same estimator (using the
mean of the RBM’s P (x|h) with h sampled from the Gibbs chain), and obtained
a log-likelihood non-parametric bound of -233, skipping 100 MCMC steps between
samples (otherwise numbers are very poor for the RBM, which mixes poorly). The
DAE log-likelihood bound with and without walkback is respectively -116 and -

89

142, confirming visual inspection suggesting that the walkback algorithm produces
less spurious samples. However, the RBM samples can be improved by a spatial
blur. By tuning the amount of blur (the spread of the Gaussian convolution), we
obtained a bound of -112 for the RBM. Blurring did not help the auto-encoder.

Figure 5.4 – Successive samples generated by Markov chain associated with the trained DAEs

according to the plain sampling scheme (left) and walkback sampling scheme (right). There are

less “spurious” samples with the walkback algorithm.

5.5.2 Experimental results for GSNs with latent variables

We propose here to explore families of parametrizations which are similar to ex-
isting deep stochastic architectures such as the Deep Boltzmann Machine (DBM) (Salakhut-
dinov and Hinton, 2009c). Basically, the idea is to construct a computational graph
that is similar to the computational graph for Gibbs sampling or variational infer-
ence in Deep Boltzmann Machines. However, we have to diverge a bit from these
architectures in order to accommodate the desirable property that it will be pos-
sible to back-propagate the gradient of reconstruction log-likelihood with respect
to the parameters ✓1 and ✓2. Since the gradient of a binary stochastic unit is 0
almost everywhere, we have to consider related alternatives. An interesting source
of inspiration regarding this question is a recent paper on estimating or propa-
gating gradients through stochastic neurons (Bengio, 2013). Here we consider the
following stochastic non-linearities: hi = ⌘out + tanh(⌘in + ai) where ai is the linear
activation for unit i (an a�ne transformation applied to the input of the unit, com-
ing from the layer below, the layer above, or both) and ⌘in and ⌘out are zero-mean
Gaussian noises.

To emulate a sampling procedure similar to Boltzmann machines in which the
filled-in missing values can depend on the representations at the top level, the
computational graph allows information to propagate both upwards (from input

90

to higher levels) and downwards, giving rise to the computational graph structure
illustrated in Figure 5.5, which is similar to that explored for deterministic recur-
rent auto-encoders (Seung, 1998; Behnke, 2001; Savard, 2011). Downward weight
matrices have been fixed to the transpose of corresponding upward weight matrices.
The multiple layers all have a di↵erent set of parameters {W1,W2,W3, . . .}, and the
two illustrations from Figure 5.5 shows how we can conceptually view the model on
the right as being equivalent to the model on the left. The correspondence between
the roles of the Ht on the left and the nodes on the right are highlighted with the
orange-colored ellipses.

X0# X1# X2#

H3#H2#H1# …"
X0#

H1#

W1# W1#W1#
T# W1#

W2# W2#
T#

W3#

W1#
T# W1#

T#

W2# W2#
T# W2#

W3#
T# W3# W3#

T#

Sample#X1# Sample#X2# sample#X3#target# target# target#

H3#H2#

Figure 5.5 – Left: Generic GSN Markov chain with state variables Xt and Ht. Right: GSN
Markov chain inspired by the unfolded computational graph of the Deep Boltzmann Machine
Gibbs sampling process, but with backprop-able stochastic units at each layer. The training
example X = x0 starts the chain. Either odd or even layers are stochastically updated at
each step. All xt’s are corrupted by salt-and-pepper noise before entering the graph (lightning
symbol). Each xt for t > 0 is obtained by sampling from the reconstruction distribution for that
step, P✓2(Xt|Ht). The walkback training objective is the sum over all steps of log-likelihoods of
target X = x0 under the reconstruction distribution. In the special case of a unimodal Gaussian
reconstruction distribution, maximizing the likelihood is equivalent to minimizing reconstruction
error; in general one trains to maximum likelihood, not simply minimum reconstruction error.

With the walkback algorithm, a di↵erent reconstruction distribution is obtained
after each step of the short chain started at the training example X. It means that
the computational graph from X to a reconstruction probability at step k actually
involves generating intermediate samples as if we were running the Markov chain
starting at X. In the experiments, the graph was unfolded so that 2D sampled
reconstructions would be produced, whereD is the depth (number of hidden layers).
The training loss is the sum of the reconstruction negative log-likelihoods (of target
X) over all 2D reconstructions.

Experiments evaluating the ability of the GSN models to generate good samples
were performed on the MNIST dataset and the Toronto Face Database (TFD),
following the setup in Bengio et al. (2013a).

Theorem 3 requires H0 to have the same distribution as H1 (given X0) during
training, and this may be achieved by initializing each training chain with H0 set
to the previous value of H1 when the same example X0 was shown. However, it
turned out that even with a dumb initialization of H0, good results were obtained
in the experiments below. In the Algorithm 1 that comes from Theorem 3, the

91

requirement that P (H0 = h|X0 = x0) = P (H1 = h|X0 = x0) is only satisfied
approximately (by iterating a number of burn-in steps), so a poor initialization of
H0 can be seen as performing zero burn-in steps.

Networks with 2 and 3 hidden layers were evaluated and compared to regular
denoising auto-encoders. The latter has just 1 hidden layer and no state to state
transition, i.e., the computational graph can be split into separate graphs for each
reconstruction step in the walkback algorithm. They all have tanh hidden units
and pre- and post-activation Gaussian noise of standard deviation 2, applied to all
hidden layers except the first. In addition, at each step in the chain, the input (or
the resampled Xt) is corrupted with salt-and-pepper noise of 40% (i.e., 40% of the
pixels are corrupted, and replaced with a 0 or a 1 with probability 0.5). Training is
over 100 to 600 epochs at most, with good results obtained after around 100 epochs,
using stochastic gradient descent (minibatch size of one example). Hidden layer
sizes vary between 1000 and 1500 depending on the experiments, and a learning
rate of 0.25 and momentum of 0.5 were selected to approximately minimize the
reconstruction negative log-likelihood. The learning rate is reduced multiplicatively
by 0.99 after each epoch. Following Breuleux, Bengio, and Vincent (2011), the
quality of the samples was also estimated quantitatively by measuring the log-
likelihood of the test set under a Parzen density estimator constructed from 10,000
consecutively generated samples (using the real-valued mean-field reconstructions
as the training data for the Parzen density estimator). This can be seen as a lower
bound on the true log-likelihood, with the bound converging to the true likelihood
as we consider more samples and appropriately set the smoothing parameter of the
Parzen estimator. 3

Results are summarized in Table 5.1. As in Section 5.5.1, the test set Parzen
log-likelihood bound was not used to select among model architectures, but vi-
sual inspection of generated samples guided this preliminary search. Optimization
hyper-parameters (learning rate, momentum, and learning rate reduction schedule)
were selected based on the reconstruction log-likelihood training objective. The
Parzen log-likelihood bound obtained with a two-layer model on MNIST is 214 (±
standard error of 1.1), while the log-likelihood bound obtained by a single-layer
model (regular denoising auto-encoder, DAE in the table) is substantially worse,
at -152±2.2.

In comparison, Bengio et al. (2013a) report a log-likelihood bound of -244±54
for RBMs and 138±2 for a 2-hidden layer DBN, using the same setup. We have
also evaluated a 3-hidden layer DBM (Salakhutdinov and Hinton, 2009c), using
the weights provided by the author, and obtained a Parzen log-likelihood bound of

3. However, in this paper, to be consistent with the numbers given in Bengio et al. (2013a)
we used a Gaussian Parzen density, which makes the numbers not comparable with the AIS
log-likelihood upper bounds for binarized images reported in other papers for the same data.

92

32±2. See http://www.utstat.toronto.edu/~rsalakhu/DBM.html for details.

Interestingly, the GSN and the DBN-2 actually perform slightly better than
when using samples directly coming from the MNIST training set, perhaps because
the mean-field outputs we use are more “prototypical” samples.

Figure 5.6 shows two runs of consecutive samples from this trained model, illus-
trating that it mixes quite well (faster than RBMs) and produces rather sharp digit
images. The figure shows that it can also stochastically complete missing values:
the left half of the image was initialized to random pixels and the right side was
clamped to an MNIST image. The Markov chain explores plausible variations of
the completion according to the trained conditional distribution.

Figure 5.6 – Top: two runs of consecutive samples (one row after the other) generated from
2-layer GSN model, showing fast mixing between classes and nice sharp images. Note: only every
fourth sample is shown. Bottom: conditional Markov chain, with the right half of the image
clamped to one of the MNIST digit images and the left half successively resampled, illustrating
the power of the generative model to stochastically fill-in missing inputs. One of the examples of
undesirable behaviors happens on the last row when the digit that we obtain is a mix between
the digits 3,7 and 9.

93

Figure 5.7 – Left: consecutive GSN samples obtained after 10 training epochs. Right: GSN
samples obtained after 25 training epochs. This shows quick convergence to a model that samples
well. The samples in Figure 5.6 are obtained after 600 training epochs.

Table 5.1 – Test set log-likelihood lower bound (LL) obtained by a Parzen density estimator
constructed using 10,000 generated samples, for di↵erent generative models trained on MNIST.
The LL is not directly comparable to AIS likelihood estimates because we use a Gaussian mixture
rather than a Bernoulli mixture to compute the likelihood, but we can compare with Rifai et al.
(2012a), Bengio et al. (2013a), and Bengio et al. (2013d) (from which we took the last three
columns). A DBN-2 has 2 hidden layers, a CAE-1 has 1 hidden layer, and a CAE-2 has 2. The
DAE is basically a GSN-1, with no injection of noise inside the network. The last column uses
10,000 MNIST training examples to train the Parzen density estimator.

GSN-2 DAE RBM DBM-3 DBN-2 MNIST

Log-likelihood lower bound 214 -152 -244 32 138 24

Standard error 1.1 2.2 54 1.9 2.0 1.6

5.5.3 Experimental results for GSNs with the scaling fac-
tors for walkbacks

We present the experimental results regarding the discussion in Section 5.3.3.
Experiments are done on both MNIST and TFD. For TFD, only the unsupervised
part of the dataset is used, resulting 69,000 samples for train, 15,000 for validation,
and 15,000 for test. The training examples are normalized to have a mean 0 and a
standard deviation 1.

For MNIST the GSNs we used have 2 hidden layers with 1000 tanh units each.
Salt-and-pepper noise is used to corrupt inputs. We have performed extensive
hyperparameter search on both the input noise level between 0.3 and 0.7, and
the hidden noise level between 0.5 and 2.0. The number of walkback steps is also

94

Figure 5.8 – Consecutive GSN samples from a model trained on the TFD dataset. At the end
of each row, we show the nearest example from the training set to the last sample on that row to
illustrate that the distribution is not merely copying the training set.

randomly sampled between 2 and 6. All the experiments are done with learning the
scaling factors, following the parameterization in Section 5.3.3. Following previous
experiments, the log-probability of the test set is estimated by the same Parzen
density estimator on consecutive 10,000 samples generated from the trained model.
The � parameter in the Parzen estimator is cross-validated on the validation set.
The sampling is performed with ↵1, the learned scaling factor for the first walkback
step. The best model achieves a log-likelihood LL=237.44 on MNIST test set,
which can be compared with the best reported result LL=225 from Goodfellow
et al. (2014a).

On TFD, we follow a similar procedure as in MNIST, but with larger model
capacity (GSNs with 2000-2000 tanh units) and a wider hyperparameter range on
the input noise level (between 0.1 and 0.7), the hidden noise level (between 0.5
and 5.0), and the number of walkback steps (between 2 and 6). For comparison,
two types of models are trained, one with the scaling factor and one without. The
evaluation metric is the same as the one used in MNIST experiments. We compute
the Parzen density estimation on the first 10,000 test set examples. The best model
without learning the scaling factor results in LL = 1044, and the best model with
learning the scaling factor results in 1215 when the scaling factor from the first
walkback step is used and 1189 when all the scaling factors are used together with
their corresponding walkback steps. As two further comparisons, using the mean

95

over training examples to train the Parzen density estimator results in LL = 632,
and using the validation set examples to train the Parzen estimator obtains LL =
2029 (this can be considered as an upper bound when the generated samples are
almost perfect). Figure 5.10 shows the consecutive samples generated with the
best model, compared with Figure 5.8 that is trained without the scaling factor. In
addition, Figure 5.9 shows the learned scaling factor for both datasets that confirms
the hypothesis on the e↵ect of the scaling factors made in Section 5.3.3.

Figure 5.9 – Learned ↵k values for each walkback step k. Larger values of ↵k correspond to
greater uncertainty for TFD (real-valued) and less uncertainty for MNIST (binary), due to the
di↵ering methods of parameterization given in Section 5.3.3 and 5.3.3. Thus, both learned factors
reflect the fact that there is greater uncertainty after each consecutive walkback step.

5.6 Conclusion

We have introduced a new approach to training generative models, called Gener-
ative Stochastic Networks (GSN), which includes generative denoising auto-encoders
as a special case (with no latent variable). It is an alternative to directly per-
forming maximum likelihood on an explicit P (X), with the objective of avoiding
the intractable marginalizations and partition function that such direct likelihood
methods often entail. The training procedure is more similar to function approx-
imation than to unsupervised learning because the reconstruction distribution is
simpler than the data distribution, often unimodal (provably so in the limit of very
small noise). This makes it possible to train unsupervised models that capture
the data-generating distribution simply using backprop and gradient descent in a

96

Figure 5.10 – Consecutive GSN samples from a model trained on the TFD dataset. The scaling
factors are learned. The samples are generated by using the scaling factor from the first walkback
step. Samples are sharper compared with Figure (5.8). This is also reflected by an improvement
of 140 in Parzen-estimated log-likelihood.

computational graph that includes noise injection. The proposed theoretical re-
sults state that under mild conditions (in particular that the noise injected in the
networks prevents perfect reconstruction), training a su�cient-capacity model to
denoise and reconstruct its observations (through a powerful family of reconstruc-
tion distributions) su�ces to capture the data-generating distribution through a
simple Markov chain. Another view is that we are training the transition operator
of a Markov chain whose stationary distribution estimates the data distribution,
which has the potential of corresponding to an easier learning problem because the
normalization constant for this conditional distribution is generally dominated by
fewer modes. These theoretical results are extended to the case where the corrup-
tion is local but still allows the chain to mix and to the case where some inputs are
missing or constrained (thus allowing to sample from a conditional distribution on
a subset of the observed variables or to learned structured output models). The
GSN framework is shown to lend to dependency networks a valid estimator of the
joint distribution of the observed variables even when the learned conditionals are
not consistent, also allowing to prove in a new way the consistency of generalized
pseudolikelihood training, associated with the stationary distribution of a corre-
sponding GSN (that randomly chooses a subset of variables and then resamples
it). Experiments have been conducted to validate the theory, in the case where the
GSN architecture is a simple denoising auto-encoder and in the case where the GSN
emulates the Gibbs sampling process of a Deep Boltzmann Machine. A quantitative
evaluation of the samples confirms that the training procedure works very well (in

97

this case allowing us to train a deep generative model without layerwise pretrain-
ing) and can be used to perform conditional sampling of a subset of variables given
the rest. After early versions of this work were published (Bengio et al., 2014b), the
GSN framework has been extended and applied to classification problems in sev-
eral di↵erent ways (Goodfellow et al., 2013b; Zhou and Troyanskaya, 2014b; Zöhrer
and Pernkopf, 2014) yielding very interesting results. In addition to providing a
consistent generative interpretation to dependency networks, GSNs have been used
to provide one to Multi-Prediction Deep Boltzmann Machines (Goodfellow et al.,
2013b) and to provide a fast sampling algorithm for deep NADE (Yao et al., 2014).

5.A Argument for consistency based on local
noise

This section presents one direction that we pursed initially to demonstrate that
we had certain consistency properties in terms of recovering the correct stationary
distribution when using a finite training sample. We discuss this issue when we
cite Theorem 4 from the literature in Section 5.3.4 and thought it would be a good
idea to include our previous approach in this Appendix.

The main theorem in Bengio et al. (2013d) (stated in supplemental as Theorem
S1) requires that the Markov chain be ergodic. A set of conditions guaranteeing
ergodicity is given in the aforementioned paper, but these conditions are restric-
tive in requiring that C(X̃|X) > 0 everywhere that P (X) > 0. The e↵ect of
these restrictions is that P✓(X|X̃) must have the capacity to model every mode of
P (X), exactly the di�culty we were trying to avoid. We show here how we may
also achieve the required ergodicity through other means, allowing us to choose
a C(X̃|X) that only makes small jumps, which in turn only requires P✓(X|X̃) to
model a small part of the space around each X̃.

Let P✓n(X|X̃) be a denoising auto-encoder that has been trained on n training
examples. P✓n(X|X̃) assigns a probability to X, given X̃, when X̃ ⇠ C(X̃|X).
This estimator defines a Markov chain Tn obtained by sampling alternatively an
X̃ from C(X̃|X) and an X from P✓(X|X̃). Let ⇡n be the asymptotic distribution
of the chain defined by Tn, if it exists. The following theorem is proven by Bengio
et al. (2013d).

Theorem S1. If P✓n(X|X̃) is a consistent estimator of the true conditional dis-
tribution P (X|X̃) and Tn defines an ergodic Markov chain, then as n ! 1,
the asymptotic distribution ⇡n(X) of the generated samples converges to the data-
generating distribution P (X).

98

In order for Theorem S1 to apply, the chain must be ergodic. One set of con-
ditions under which this occurs is given in the aforementioned paper. We slightly
restate them here:

Figure 5.11 – If C(X̃|X) is globally supported as required by Corollary 1 (Bengio et al., 2013e),
then for P✓n(X|X̃) to converge to P (X|X̃), it will eventually have to model all of the modes
in P (X), even though the modes are damped (see “leaky modes” on the left). However, if we
guarantee ergodicity through other means, as in Corollary 2, we can choose a local C(X̃|X) and
allow P✓n(X|X̃) to model only the local structure of P (X) (see right).

Corollary 1. If the support for both the data-generating distribution and denoising
model are contained in and non-zero in a finite-volume region V (i.e., 8X̃, 8X /2

V, P (X) = 0, P✓(X|X̃) = 0 and 8X̃, 8X 2 V, P (X) > 0, P✓(X|X̃) > 0, C(X̃|X) >
0) and these statements remain true in the limit of n!1, then the chain defined
by Tn will be ergodic.

If conditions in Corollary 1 apply, then the chain will be ergodic and Theorem S1
will apply. However, these conditions are su�cient, not necessary, and in many
cases they may be artificially restrictive. In particular, Corollary 1 defines a large
region V containing any possible X allowed by the model and requires that we
maintain the probability of jumping between any two points in a single move to

99

be greater than 0. While this generous condition helps us easily guarantee the
ergodicity of the chain, it also has the unfortunate side e↵ect of requiring that, in
order for P✓n(X|X̃) to converge to the conditional distribution P (X|X̃), it must
have the capacity to model every mode of P (X), exactly the di�culty we were
trying to avoid. The left two plots in Figure 5.11 show this di�culty: because
C(X̃|X) > 0 everywhere in V , every mode of P (X) will leak, perhaps attenuated,
into P (X|X̃).

Fortunately, we may seek ergodicity through other means. The following corol-
lary allows us to choose a C(X̃|X) that only makes small jumps, which in turn only
requires P✓(X|X̃) to model a small part of the space V around each X̃.

Let P✓n(X|X̃) be a denoising auto-encoder that has been trained on n training
examples and C(X̃|X) be some corruption distribution. P✓n(X|X̃) assigns a prob-
ability to X, given X̃, when X̃ ⇠ C(X̃|X) and X ⇠ P(X). Define a Markov chain
Tn by alternately sampling an X̃ from C(X̃|X) and an X from P✓(X|X̃).

Corollary 2. If the data-generating distribution is contained in and non-zero in
a finite-volume region V (i.e., 8X /2 V, P (X) = 0, and 8X 2 V, P (X) > 0)
and all pairs of points in V can be connected by a finite-length path through V

and for some ✏ > 0, 8X̃ 2 V, 8X 2 V within ✏ of each other, C(X̃|X) > 0 and
P✓(X|X̃) > 0 and these statements remain true in the limit of n ! 1, then the
chain defined by Tn will be ergodic.

Proof. Consider any two pointsXa andXb in V . By the assumptions of Corollary 2,
there exists a finite length path between Xa and Xb through V . Pick one such finite
length path P . Chose a finite series of points x = {x1, x2, . . . , xk} along P , with
x1 = Xa and xk = Xb such that the distance between every pair of consecutive
points (xi, xi+1) is less than ✏ as defined in Corollary 2. Then the probability of
sampling X̃ = xi+1 from C(X̃|xi)) will be positive, because C(X̃|X)) > 0 for all
X̃ within ✏ of X by the assumptions of Corollary 2. Further, the probability of
sampling X = X̃ = xi+1 from P✓(X|X̃) will be positive from the same assumption
on P . Thus the probability of jumping along the path from xi to xi+1, Tn(Xt+1 =
xi+1|Xt = xi), will be greater than zero for all jumps on the path. Because there is
a positive probability finite length path between all pairs of points in V , all states
commute, and the chain is irreducible. If we consider Xa = Xb 2 V , by the same
arguments Tn(Xt = Xa|Xt�1 = Xa) > 0. Because there is a positive probability
of remaining in the same state, the chain will be aperiodic. Because the chain is
irreducible and over a finite state space, it will be positive recurrent as well. Thus,
the chain defined by Tn is ergodic.

Although this is a weaker condition that has the advantage of making the de-
noising distribution even easier to model (probably having less modes), we must

100

be careful to choose the ball size ✏ large enough to guarantee that one can jump
often enough between the major modes of P (X) when these are separated by zones
of tiny probability. ✏ must be larger than half the largest distance one would have
to travel across a desert of low probability separating two nearby modes (which
if not connected in this way would make V not anymore have a single connected
component). Practically, there is a trade-o↵ between the di�culty of estimating
P (X|X̃) and the ease of mixing between major modes separated by a very low
density zone.

5.B General conditions for claming inputs

In Proposition 5 we gave a su�cient condition for “clamping S” to work in the
context of a Markov chain based on an encoder distribution with density f(h|x)
and a decoder distribution with density g(x|h), which was that that f(h|x) and
g(x|h) should bemutually compatible. In practice, however, themutually compatible
condition is hard to satisfy.

In this section, we give a weaker su�cient condition for handling missing inputs
by clamping observed inputs instead of requiring f(h|x) and g(x|h) to be mutually
compatible. In Proposition 3 and Proposition 4 below, we also discuss the case
when such weaker su�cient condition becomes necessary. Finally, Proposition 5
builds the connection between this weaker condition and the mutually compatible
condition.

Proposition 3. Assume we have an ergodic Markov chain with state space in X⇥H

and transition operators having density f(h|x) and g(x|h). Its unique stationary
distribution is ⇡(x, h) over X ⇥H which satisfies:

Z

X⇥H

⇡(x, h)f(h0
|x)g(x0

|h
0)dxdh = ⇡(x0

, h
0).

In other words, f(h0
|x)g(x0

|h
0) defines the transition probability of the Markov chain

from state (x, h) to state (x0
, h

0). Assume that we start from (X0, H0) = (x0, h0)
where x0 2 S, S ✓ X (S can be considered as a constraint over X) and we sample
(Xt+1, Ht+1) by first sampling Ht+1 with encoder f(Ht+1|Xt) and then sampling
Xt+1 with decoder g(Xt+1|Ht+1, Xt+1 2 S), the new stationary distribution we reach
is ⇡S(x, h).

Then a su�cient condition for

⇡S(x) = ⇡(x|x 2 S)

101

is for ⇡(x|x 2 S) to satisfy

Z

S

⇡(x|x 2 S)f(h0
|x)dx = ⇡(h0

|x 2 S) (5.5)

where ⇡(x|x 2 S) and ⇡(h0
|x 2 S) are conditional distributions

⇡(x|x 2 S) =
⇡(x)R

S
⇡(x0)dx0

, ⇡(h0
|x 2 S) =

R
S
⇡(x, h0)dxR

S⇥H
⇡(x, h)dxdh

.

Proof. Based on the assumption that the chain is ergodic, we have that ⇡S(X,H)
is the unique distribution satisfying

Z

S⇥H

⇡S(x, h)f(h
0
|x)g(x0

|h
0
, x

0
2 S)dxdh = ⇡S(x

0
, h

0). (5.6)

Now let us check if ⇡(x, h|x 2 S) satisfies the equation above.

The Markov chain described in the statement of the proposition is defined by
looking at the slices (Xt, Ht). Because the Xt is sampled using decoder g(x|h) given
Ht, so the condtional distribution of Xt give Ht is just g(Xt|Ht). Because this is
also true when t goes to infinity where Xt and Ht reach the stationary distribution,
so for the stationary distribution we have g(x|h) = ⇡(x|h). This relation still holds
even if we put the S constraint on x

g(x0
|h

0
, x

0
2 S) = ⇡(x0

|h
0
, x

0
2 S).

Now if we substitute ⇡S(x, h) by ⇡(x, h|x 2 S) in Equation 5.6, the left side of
Equation 5.6 becomes

Z

S⇥H

⇡(x, h|x 2 S)f(h0
|x)⇡(x0

|h
0
, x

0
2 S)dxdh

= ⇡(x0
|h

0
, x

0
2 S)

Z

S

(

Z

H

⇡(x, h|x 2 S)dh)f(h0
|x)dx

= ⇡(x0
|h

0
, x

0
2 S)

Z

S

⇡(x|x 2 S)f(h0
|x)dx

= ⇡(x0
|h

0
, x

0
2 S)⇡(h0

|x 2 S) (using Equation 5.5)

= ⇡(x0
|h

0
, x

0
2 S)⇡(h0

|x
0
2 S)

= ⇡(x0
, h

0
|x

0
2 S).

This shows that ⇡(x, h|x 2 S) satisfies Equation 5.6. Due to the ergodicity of the
chain, the distribution ⇡S(x, h) that satisfies Equation 5.6 is unique, so we have

102

⇡S(x, h) = ⇡(x, h|x 2 S). By marginalizing over h we get

⇡S(x) = ⇡(x|x 2 S).

Proposition 3 gives a su�cient condition for dealing with missing inputs by
clamping observed inputs. Note that this condition is weaker than the mutually
compatible condition discussed in Section 5.3.6. Furthermore, under certain cir-
cumstances, this su�cient condition becomes necessary, and we have the following
proposition :
Proposition 4. Assume that the Markov chain in Proposition 3 has finite discrete
state space for both X and H. The condition in Equation 5.5 in Proposition 3
becomes a necessary condition when all discrete conditional distributions g(x|h, x 2
S) are linearly independent.

Proof. We follow the same notions in Proposition 3 and now we have ⇡S(x) =
⇡(x|x 2 S). Because ⇡S(x) is the marginal of the stationary distribution reached
by alternatively sampling with encoder f(H|X) and decoder g(X|H,X 2 S), we
have that ⇡(x|x 2 S) satisfies

Z

S

⇡(x|x 2 S)(

Z

H

f(h0
|x)⇡(x0

|h
0
, x

0
2 S)dh0)dx = ⇡(x0

|x
0
2 S)

which is a direct conclusion from Equation 5.6 when considering the fact that
⇡S(x) = ⇡(x|x 2 S) and g(x0

|h
0
, x

0
2 S) = ⇡(x0

|h
0
, x

0
2 S). If we re-arrange the

integral in the above equation, we get:
Z

H

⇡(x0
|h

0
, x

0
2 S)(

Z

S

⇡(x|x 2 S)f(h0
|x)dx)dh0 = ⇡(x0

|x
0
2 S). (5.7)

Note that
R
S
⇡(x|x 2 S)f(h0

|x)dx is the same as the left side of Equation 5.5 in
Proposition 3 and it can be seen as some function F (h0) satisfying

R
H
F (h0)dh0 =

1. Because we have considered a GSN over a finite discrete state space X =
{x1, · · · , xN} and H = {h1, · · · , hM}, the integral in Equation 5.7 becomes the
linear matrix equation

G · F = Px,

where G(i, j) = g(x0

i
|h

0

j
, x

0
2 S) = ⇡(x0

i
|h

0

j
, x

0
2 S), F(i) = F (h0

i
) and Px(i) =

⇡(x0

i
|x

0
2 S). In other word, F is a solution of the linear matrix equation

G · Z = Px.

From the definition of G and Px, it is obvious that Ph is also a solution of this
linear matrix equation, if Ph(i) = ⇡(h0

i
|x

0
2 S). Because all discrete conditional

103

distributions g(x|h, x 2 S) are linear independent, which means that all the column
vectors of G are linear independent, then this linear matrix equation has no more
than one solution. Since Ph is the solution, we have F = Ph, equivalently in
integral form

F (h0) =

Z

S

⇡(x|x 2 S)f(h0
|x)dx = ⇡(h0

|x 2 S)

which is the condition Equation 5.5 in Proposition 3.

Proposition 4 says that at least in discrete finite state space, if the g(x|h, x 2
S) satisfies some reasonable condition like linear independence, then along with
Proposition 3, the condition in Equation 5.5 is the necessary and su�cient condition
for handling missing inputs by clamping the observed part for at least one subset S.
If we want this result to hold for any subset S, we have the following proposition:

Proposition 5. If the condition in Equation 5.5 in Proposition 3 holds for any
subset of S that S ✓ X , then we have

f(h0
|x) = ⇡(h0

|x)

In other words, f(h|x) and g(x|h) are two conditional distributions obtained by
conditioning from a single joint distribution ⇡(x, h).

Proof. Because S can be any subset of X , of course that S can be a set which
only has one element x0, i.e., S = {x0}. Now the condition in Equation 5.5 in
Proposition 3 becomes

1 · f(h0
|x = x0) = ⇡(h0

|x = x0).

Because x0 can be an arbitrary element in X , we have

f(h0
|x) = ⇡(h0

|x), or f(h|x) = ⇡(h|x).

Since from Proposition 3 we already know that g(x|h) is ⇡(x|h), we have that f(h|x)
and g(x|h) are mutually compatible, that is, they are two conditional distributions
obtained by normalization from a single joint distribution ⇡(x, h).

According to Proposition 5, if condition in Equation 5.5 holds for any subset S,
then f(h|x) and g(x|h) must be mutually compatible to the single joint distribution
⇡(x, h).

104

6
Prologue to third paper :

Distributed Importance

Sampling

6.1 Article Details

Variance Reduction in SGD by Distributed Importance Sampling, by
Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron Courville, Yoshua Ben-
gio, in International Conference on Learning Representation (2016) (Workshop).

Personal Contribution. The original idea is from Yoshua Bengio. I developed
the mathematics, did the analysis, and wrote the vast majority of the code. I also
ran most of the experiments, but I had help from my co-authors for that part of
the work. I also wrote all the actual paper, in the many forms that it took over
time.

6.2 Context

When Deep Learning models take one week to train on one GPU, there are
plenty of opportunities to scale up training by processing multiple parts of the
data simultaneously. Because of bandwidth limitations, the cost of sending copies
of the model parameters or gradients can be o↵set by accepting to work with local
copies of parameters that are somewhat stale. This causes many kinds of problems
because we can no longer even claim that the gradient estimates from the SGD
method are unbiased.

6.3 Contributions

There are many possible alternative strategies to allow distributed training, but
they tend to focus on the same paradigm in which a parameter server interacts with
workers as a way to coordinate the model parameters and/or the gradient updates.

105

Our contribution is to propose that the workers could actually be doing some-
thing completely di↵erent : computing norms of gradients. Those norms can be
computed for every training sample, and we populate a database with those val-
ues. This elaborate system enables one single master worker to train a model using
Importance Sampling as a way to pick the best training points so as to minimize
the variance of the gradient update estimator. Less variance should lead to faster
convergence. The cost of using stale model parameters in the other workers means
that the Importance Sampling weights are also stale to some degree, but this does
not a↵ect the expectation of the gradient estimates. It simply means that the
variance reduction that we anticipate may be less than we expect.

6.4 Recent Developments

I have learned through personal communication with researchers at Google Brain
that this approach was explored internally as a potential way to accelerate their
distributed training. They were able to use more computation to evaluate the
variance of gradient norms on CIFAR-10 with the ResNet model. It turned out
that the training samples tended to have gradient norms that did not vary by much,
so this approach would not benefit them very much in that particular case.

One very recent paper (Katharopoulos and Fleuret, 2018) presents a method
to perform Importance Sampling to train Deep Learning models. It alternates
between regular SGD and Importance Sampling SGD over a certain subset of the
training data. To decide which step to perform next, it tracks a certain quantity
related to all upper bound on the gradient norms.

106

7 Distributed Importance

Sampling

Humans are able to accelerate their learning by selecting training materials that
are the most informative and at the appropriate level of di�culty. We propose
a framework for distributing deep learning in which one set of workers search for
the most informative examples in parallel while a single worker updates the model
on examples selected by importance sampling. This leads the model to update
using an unbiased estimate of the gradient which also has minimum variance when
the sampling proposal is proportional to the L2-norm of the gradient. We show
experimentally that this method reduces gradient variance even in a context where
the cost of synchronization across machines cannot be ignored, and where the
factors for importance sampling are not updated instantly across the training set.

7.1 Introduction

Many of the advances in Deep Learning from the past 5-10 years can be at-
tributed to the increase in computing power brought by specialized hardware (i.e.
GPUs). The whole field of Machine Learning has adapted to this reality, and one
of the latest challenges has been to make good use of multiple GPUs, potentially
located on separate computers, to train a single model.

One widely studied solution is Asynchronous Stochastic Gradient Descent (ASGD),
which is a variation on SGD in which the gradients are computed in parallel, prop-
agated to a parameter server, and where we drop certain synchronization barriers
to allow the algorithm to run faster. This method was introduced by Bengio et al.
(2003) in the context of neural language models, and extended to model-parallelism
and demonstrated on a large scale by Dean et al. (2012).

One of the important limitations of ASGD is that it requires a lot of band-
width to propagate the parameters and the gradients. Moreover, many theoretical
guarantees are lost due to the fact that synchronization barriers are removed and
stale gradients are being used. Some theoretical guarantees can still be made in
the context of convex optimization (see Agarwal and Duchi (2011), Recht et al.
(2011), Lian et al. (2015)), but any result from convex optimization applied to
neural networks (highly non-convex) has to be used with fingers crossed.

107

In this paper we present a di↵erent principle for distributed training based on
importance sampling. We demonstrate many interesting theoretical results, and
show some experiments to validate our ideas. The reader should view these experi-
ments as a proof of concept rather than as an appeal to switch from Asynchronous
SGD to Importance Sampling SGD. In fact, we can imagine our method being a
supplement to ASGD.

Throughout this paper, we will use the word stale to refer to the fact that
certain quantities are slightly outdated, but usually not to the point of being com-
pletely unusable. These stale values are usually gradients computed from a set of
parameters ✓t when some reference model is now dealing with parameters ✓t+�t.

In Section 7.2 we will explain our distributed Importance Sampling SGD ap-
proach. In Section 7.3 we revisit a classical result from the importance sampling
literature and demonstrate a more general result that applies to high dimensions.
We also present a technique that can be used to compute e�ciently the gradient
norms for all the individual members of a minibatch. In Section 7.4 we discuss our
particular implementation for distributed training. In Section 7.5 we show experi-
ments to illustrate both the reduction in variance and the increase in performance
that it can bring.

The main contribution of this paper is to open the door via theoretical and ex-
perimental results to a novel approach to distributed training based on importance
sampling, to focus the attention of the learner on the most informative examples
from the learning point of view.

7.2 Scaling Deep Learning by Distributing
Importance Sampling

One of the most important constraints on ASGD is the fact that it requires a
large amount of bandwidth. Indeed, all the workers connecting to the parameter
server are required to regularly fetch a fresh copy of the parameters, and all their
computed gradients have to be pushed to the parameter server. For every minibatch
processed by a worker computing a gradient, the memory size of that gradient
vector is equal to the memory size of the parameter vector for the model (i.e. every
parameter value gets a gradient value). Delaying synchronization can result in
“stale” gradients, that is, gradients that are computed from a set of parameters
that have been fetched from the parameter server too long ago to be relevant.

The approach that we are taking in this paper is to focus on the most “useful”
training samples instead of giving equal attention to all the training set. Humans

108

can learn from a small collection of examples, and a good tutor is able to pick
examples that are useful for a student to learn the current lesson. This work can
therefore be seen as a follow-up on the curriculum learning ideas (Bengio et al.,
2009), where the model itself is used to figure out which examples are currently
informative for the learner. The method that we present in this paper will incor-
porate that intuition into a training algorithm that is justified by theory rooted in
importance sampling (Tokdar and Kass, 2010).

The approach of calibrating the importance sampling coe�cients in order to
minimize variance during SGD is also presented by Bouchard et al. (2015), in their
method called “Adaptive Weighted SGD”, in which they adjust the coe�cients
by performing an intermediate gradient step to learn the best sampling proposal.
They demonstrate how this can lead to improvements in convergence speed and
generalization performance. In our paper, we show how an exact method can be
used to get those optimal coe�cients.

Compared to ASGD, our approach can be used to alleviate some of the commu-
nication costs. Instead of communicating the gradients on minibatches, the workers
communicate one floating-point number per training sample. In a situation where
the parameters can be of size ranging from 100 MB to 1GB, this cuts down the
network transfers significantly. The parameters still have to be sent on the network
to update the workers, however, but that cost can be amortized over a long period
if the algorithm turns out to be robust to the use of older parameters in order to
select the important samples. Our experiments confirm that hypothesis.

7.3 Importance Sampling in theory

7.3.1 Classic case in single dimension

Importance sampling is a technique used to reduce variance when estimating an
integral of the form

Z
p(x)f(x)dx = Ep(x) [f(x)]

⇡
1

N

NX

n=1

f(xn) with xn ⇠ p(x)

through a Monte-Carlo estimate based on samples drawn from p(x). Here f(x) can
only take on real values, but x can be anything as long as it’s compatible with the
probability density function p(x).

109

It relies on a sampling proposal q(x), for which 0 < q(x) whenever 0 < p(x),
and the observation that

Ep(x) [f(x)] = Eq(x)

p(x)

q(x)
f(x)

�
. (7.1)

Since all the quantities in the following empirical sum are independent,

1

N

NX

n=1

p(xn)

q(xn)
f(xn) with xn ⇠ q(x)

we can directly verify they are unbiased and then try to minimize their variance.
The unbiasedness follows directly from equation (7.1), and with a little work can
prove that that the variance is minimized when

q
⇤(x) / p(x) |f(x)| . (7.2)

7.3.2 Extending beyond a single dimension

In this section we generalize the classic importance sampling to allow the func-
tion f to take values in Rd. The result referenced here as Theorem 1 is contained
in the work of Zhao and Zhang (2014), but it is stated there without proof, and it
is embedded in their specific context.

Minimizing the variance is a well-defined objective in one dimension, but when
going to higher dimensions we have to decide what we would like to minimize.

For our application, a natural choice of objective function (Bouchard et al.,
2015) would be the trace of the covariance matrix of the proposal distribution,
Tr(⌃), because it corresponds to the sum of all the eigenvalues of ⌃, which is a
positive semi-definite matrix. It also corresponds to sum of all the variances for
each individual component of the gradient vector. We can also imagine minimizing
k⌃(q)k2

F
, but in this case this would yield a di↵erent q⇤ for which we do not know

of an analytical form.

A nice consequence of our choice is that, when d = 1, this Tr(⌃) will get back
the classic result from the importance sampling literature. This is an pre-requisite
for any general result.

Theorem 1. Optimal Importance Sampling Proposal

Let X be a random variable in Rd1 and f(x) be any function from Rd1 to Rd2.
Let p(x) be the probability density function of X , and let q(x) be a valid proposal

110

distribution for importance sampling with the goal of estimating

Ep [f(x)] =

Z
p(x)f(x)dx = Eq

p(x)

q(x)
f(x)

�
. (7.3)

The context requires that q(x) > 0 whenever p(x) > 0. We know that the
importance sampling estimator

p(x)

q(x)
f(x) with x ⇠ q (7.4)

has mean µ = Ep [f(x)] so it is unbiased.

Let ⌃(q) be the covariance of that estimator, where we include q in the notation
to be explicit about the fact that it depends on the choice of q.

Then the trace of ⌃(q) is minimized by the following optimal proposal q⇤ :

q
⇤(x) =

1

Z
p(x) kf(x)k

2
where Z =

Z
p(x) kf(x)k

2
dx (7.5)

which achieves the optimal value

Tr(⌃(q⇤)) = (Ep [kf(x)k2])
2
� kµk

2

2
.

Proof. See Appendix Section 7.A.1.

Note that in Theorem 1 we refer to a general function f . It should be understood
by the reader that we are really interested in the particular situation in which f

represents the gradient of a loss function with respect to the parameters of a model
to be trained. However, since our results are meant to be more general than that,
we tried to avoid contaminating them with those specific details, and decided to
stick with f(x) instead of talking about r✓L(xn).

Also, as a side-note, some readers would feel that it is strange to be taking the
integral of a vector-valued function f(x), but we would like to remind them that
this is always what happens when we consider the expectation of a random variable
in R2.

From Theorem 1 we can get the following Corollary 2. Here we introduce the
notation !̃n to refer to un-normalized probability weights used in importance sam-
pling (along with their normalized equivalents !n), which we are going to need
later in the paper. In Corollary 2, we do not assume that the probability weights

111

are selected to be norms of gradients, but this is how they are going to be used
throughout Section 7.4.
Corollary 2. Using the context of importance sampling as described in Theorem 1,
let q(x) be a proposal distribution that is proportional to p(x)h(x) for some function
h : X ! R+. As always, we require that h(x) > 0 whenever f(x) > 0.

Then we have that the trace of the covariance of the importance sampling esti-
mator is given by

Tr(⌃(q)) =

✓Z
p(x)h(x)dx

◆ Z
p(x)
kf(x)k2

2

h(x)
dx

!
� kµk

2

2
,

where µ = Ep(x) [f(x)]. Moreover, if p(x) is not known directly, but we have access
to a dataset D = {xn}

1

n=1
of samples drawn from p(x), then we can still define

q(x) / p(x)h(x) by associating the probability weight !̃n = h(xn) to every xn 2 D.

To sample from q(x) we just normalize the probability weights

!n =
!̃nP
N

n=1
!̃n

and we sample from a multinomial distribution with argument (!1, . . . ,!N) to pick
the corresponding element in D.

In that case, we have that

Tr(⌃(q)) =

1

N

NX

n=1

!̃n

!
1

N

NX

n=1

kf(xn)k
2

2

!̃n

!
� kµk

2

2

=

1

N

NX

n=1

!n

!
1

N

NX

n=1

kf(xn)k
2

2

!n

!
� kµk

2

2
.

Proof. See Appendix Section 7.A.1.

7.3.3 Dealing with minibatches

To apply the principles of ISSGD, we need to be able to evaluate kg(xn)k2
e�ciently for all the elements of the training set, where g here is the gradient of
the loss with respect to all the parameters of the model.

In the current landscape of machine learning, using minibatches is a fact of
life. Any training paradigm has to take that into consideration, and this can be a
challenge when one considers that the gradient for a single training sample is as big

112

the parameters themselves. This fact is generally not a problem since the gradients
are aggregated for all the minibatch at the same time, so the cost of storing the
gradients is comparable to the cost of storing the model parameters.

In this particular case, what we need is a recipe to compute the gradient norms
directly, without storing the gradients themselves. The recipe in question, for-
mulated here as proposition 3, was published by Goodfellow (2015) slightly prior
to our work. It applies to the fully-connected layers, but unfortunately not to
convolutional layers.
Proposition 3. Consider a multi-layer perceptron (MLP) applied to minibatches
of size N , and with loss L = L1+. . .+LN , where Ln represents the loss contribution
from element n of the minibatch.

Let (W, b) be the weights and biases at any particular fully-connected layer so
that XW + b = Y , where X are the inputs to that layer and Y are the outputs.

The gradients with respect to the parameters are given by

@L

@W
=

@L1

@W
+ . . .+

@LN

@W

@L

@b
=

@L1

@b
+ . . .+

@LN

@b

where the values
�
@Ln
@W

,
@Ln
@b

�
refer to the particular contributions coming from ele-

ment n of the minibatch. Then we have that

����
@Ln

@W

����
2

F

= kX[n, :]k2
2

·

����
@L

@Y
[n, :]

����
2

2����
@Ln

@W

����
2

2

=

����
@L

@Y
[n, :]

����
2

2

where the notation X[n, :] refers to row n of X, and similarly for @L

@Y
[n, :].

That is, we have a compact formula for the Euclidean norms of the gradients of
the parameters, evaluated for each N elements of the minibatch independently.

Proof. See Appendix Section 7.A.2.

Note that proposition 3 applies to MLPs that have all kinds of activation func-
tions and/or pooling operations, as long as the parameters (W, b) are not shared
between layers. We can ignore the activation functions when applying proposi-
tion 3 because the activation functions do not have any parameters, and the linear
operation part (matrix multiplication plus vector addition) simply uses whatever

113

quantities are backpropagated without knowing what comes after in the sequence
of layers.

Despite the fact that convolutions are linear operations (in the mathematical
sense), this formula fails to apply to convolutions because of their sparsity patterns
and their parameter sharing.

In a situation where we face convolutional layers along with fully-connected
layers, proposition 3 applies to the fully-connected layers. For our purpose of
performing importance sampling, this is not satisfying because we would have to
find another way to compute the gradient norms for all the parameters. One might
suggest to abandon the plan of achieving optimal importance sampling and simply
ignore the contributions of sparsely-connected layers, but we do not investigate this
strategy in this paper.

7.4 Distributed implementation of ISSGD

7.4.1 Using an oracle to train on a single machine

Assume for a moment that we are training on a single machine, and that we have
access to an oracle that could instantaneously evaluate !̃n = kg(xn)k2 on all the
training set, then it is easy to implement importance sampling in an exact fashion.
These !̃n depend on the model parameters currently sitting on the GPU, but we
assume the oracle is nevertheless able to come up with the values.

We compose minibatches of size M based on a re-weighting of the training set
by sampling (with replacement) the values of xn with probability proportional to
!̃n. Let (i1, . . . , iM) be the indices sampled to compose that minibatch, that is, we
are going to use samples (xi1 , . . . , xiM) to perform forward-prop, backward-prop,
and update the parameters. We have to scale the loss accordingly, as prescribed
by importance sampling, so we end up using the loss

L✓(minibatch) =

1

N

NX

n=1

!̃n

!
1

M

MX

m=1

1

!̃im

L✓(xim).

As as sanity check, we can see that this falls back to the usual value of 1

M
if we

find ourselves in a situation where all the !̃n are equal, which corresponds to the
situation where the minibatch is composed from samples from the training set
selected uniformly at random.

114

We can see from Corollary 2 that the expected trace of the covariance matrix
over the whole training set is given by

Tr(⌃(q)) =

1

N

NX

n=1

!̃n

!
1

N

NX

n=1

kg(xn)k
2

2

!̃n

!
� kg

true
k
2

2
. (7.6)

The constant kgtruek2
2
does not depend on the choice of q so we will leave it out of

the current discussion. Refer to Section 7.A.4 for more details about it.

The oracle allows us to achieve the ideal Importance Sampling SGD, and this
quantity becomes

Tr(⌃(qideal)) =

1

N

NX

n=1

!̃n

!2

� kg
true
k
2

2
. (7.7)

In this situation, we are using qideal as notation instead of q⇤. This is because we
will want to contrast this situation with qunif and qstale that we will define shortly.

When performing SGD training with qideal, we can plot those values of equation
(7.7) as we go along, and we can compare at each time step the Tr(⌃(qideal)) with
the value of Tr(⌃(qunif)) that we would currently have if we were using uniform
sampling to construct the minibatches. The latter are given by

Tr(⌃(qunif)) =
1

N

NX

n=1

kg(xn)k
2

2
� kg

true
k
2

2
. (7.8)

In Figure7.4 we will see those quantities compared during an experiment where
we do not have access to an oracle, but where we can still evaluate what would
have been the Tr(⌃(qideal)) that we would have had if we had an oracle. This is
relatively easy to evaluate by using equation (7.7).

7.4.2 Implementing the oracle using multiple machines

In practical terms, we can implement a close approximation to that oracle by
throwing more computational resources at the problem. One machine is selected
to be the master, running ISSGD, and it will query a database in order to read
the probability weights !̃n. Computing those probability weights and pushing
them on the database is the job of a collection of workers. The workers spend all
their lifetimes doing two things : getting recent copies of the parameters from the
database, and updating the values of !̃n to keep them as fresh as possible. The
master communicates its current model parameters to the database as regularly as

115

possible, but it tries to do a non-trivial amount of training in-between.

Both the master and the workers have access to a GPU to process minibatches,
but only the master will update the parameters (through ISSGD). The master is
almost oblivious to the existence of the workers. It communicates its parameters
to the database, and it gets a set of probability weights {!̃n}

N

n=1
whenever it asks

for them.

The presence of the database between the master and the workers allows the
master to“fire and forget” its parameter updates. They are pushed to the database,
and the workers will retrieve them when they are ready to do so. The same goes
for the workers pushing their updates for the !̃n. They are not communicating
directly with the master. Among other things, this also allows for us to potentially
use any database tool to get more performance (e.g. sharding), but we currently
are not doing anything fancy in that regards.

Because of the various costs and delays involved in the system, the master
should not expect the values of !̃n to be perfectly up-to-date. That is, the master
has parameters ✓t+�t on its GPU, but it is receiving weights !̃n that are based on
parameters ✓t. We refer to those weights as being stale.

There are degrees of staleness, and the usefulness of a weight computed 5 minutes
ago di↵ers greatly from that of a weight computed 2 seconds ago. We refer to qstale

as the proposal that is based on all the weights from the previous iteration. It serves
its role as pessimistic estimator, which is generally worse than what we are actually
using. It is also easier to compute because we can get it from values stored in the
database without having to run the model on anything more.

Our evaluation of Tr(⌃(qstale)) is based on assuming that all the probability
weights come from the previous set of parameters, so they are certain to be out-
dated. Now it becomes a question of how much we are hurt by staleness. Without
trying to introduce too much notation, for the next equation we will let !̃old

n
refer

to the outdated weights at a given time. Then we have that

Tr(⌃(qstale)) =

1

N

NX

n=1

!̃
old

n

!
1

N

NX

n=1

(!̃n)2

!̃old
n

!
� kg

true
k
2

2
. (7.9)

We know for a fact that Tr(⌃(qideal)) is the lower bound on all the possible
Tr(⌃(q)). When the weights are not in a horrible state due to excessive staleness,
we generally observe experimentally that the following inequality holds:

Tr(⌃(qideal)) Tr(⌃(qstale)) Tr(⌃(qunif)).

This has proven to be verified for the all the practical experiments that we have

116

done, and it does not even depend on the training being done by importance sam-
pling. Again, this is not an equality that holds all the time, and setting the prob-
ability weights !̃n to be randomly generated values will break that inequality.

7.4.3 Exact implementation vs relaxed implementation

To illustrate the whole training mechanism, we start in Figure7.1 by showing
a synchronized version of ISSGD. In that diagram, we show the database in the
center, and we have horizontal dotted lines to indicate where we would place syn-
chronization barriers. This would happen after the master sends the parameters
to the database, because it can decide then to wait for the workers to update all
the probability weights !̃n. The workers themselves could work their way through
all the training set before checking for recent parameter updates present on the
database. This is rather excessive, which is why we use those synchronization bar-
riers only to perform sanity checks, or to study the properties that ISSGD if it was
performed in the complete absence of staleness.

This kind of relaxation is analogous to how ASGD discards the synchronization
barriers to trade away correctness to gain performance. However, in the case of
ISSGD, stale probability weights may lead to more variance but we will always
get an unbiased estimator of the true gradient, even when we get rid of all the
synchronization barriers.

In the Appendix we discuss three aspects of how training can be adapted to be
more practical and robust. In Section 7.A.3 we discuss the possibility of using only
a subset of the probability weights, filtering them based on how recently they have
been updated. In Section 7.A.4 we discuss how to approximate kgtruek2

2
, which is

not a quantity that we absolutely need to compute for perform training, but which
is something that we like to monitor to assess the benefits of using ISSGD instead
of regular SGD. In Section 7.A.5 we add a smoothing constant to the probability
weights in order to make training more robust to sudden changes in gradients.

7.5 Experimental results

7.5.1 Dataset and model

We evaluated our model on the Street View House Numbers (SVHN) dataset
from Netzer et al. (2011). We used the cropped version of the dataset (sometimes

117

one master multiple workers

read and send model parameters
receive and load model parameters

compute for all training
samples divided across workers

send all as they are computed
receive all

normalize the weights received

sample M indices from a
multinomial with

load a minibatch
to perform one step of model training
with SGD (optional momentum) on loss

update model parameters

(equipped with a GPU) (each equipped with a GPU)

Figure 7.1 – The actual distributed training experiment that we run relies on 3 kinds of actors.
We have one master process that is running ISSGD. We have one database process in charge
of storing and exchanging all kinds of measurements, as well as the parameters when they are
communicated by the master to the workers. We have multiple worker processes, each with one
GPU, in charge of evaluating the quantities necessary for the master to do importance sampling.
The master has to read the model parameters from the GPU before sending them to the database,
and the workers also have to load them unto the GPU after receiving them. The horizontal dotted
lines represent synchronization barriers that we can enforce to have an exact method, or that we
can drop to have faster training in practice.

referred to as SVHN-2), which contains about 600,000 32x32 RGB images of house
number digits from Google Street View.

Since there is no standard validation set, we randomly split 5% of the data to
form our own validation set. Since our per-example gradient norm computation
(from Section 7.3.3) does not work with parameter sharing models (such as RNNs
and Convnets), we consider the permutation invariant version of the SVHN task, in
which the model is forced to discard the spatial structure of the pixels. While the
permutation-invariant task is not practically relevant (as the spatial structure of
the pixels is useful), it is commonly used as a testbed for studying fully connected

118

Model Test Error

SGD (Davis and Arel, 2013) 9.31
SGD (ours) 0.0754

Importance Sampling SGD 0.0756

Table 7.1 – Test Error on Permutation Invariant SVHN Dataset.Our results are
aggregated from 50 runs with random initialization, and we report the average prediction error
(as percentage) over the final 10% iterations. In this case, the measured results are similar when
using early stopping on validation set.

neural networks (Goodfellow et al., 2013a; Srivastava et al., 2013).

This is not meant to be a paper about exploring a variety of models, and since
we stick with the permutation-invariant task this already limits our ability to use
more interesting models. In any case, we picked an MLP with 4 hidden layers, each
with 2048 hidden units and with a ReLU at its output (except for a softmax at the
final layer). We are very much aware that a convolutional model would perform
better.

We have used Theano (Bergstra et al., 2010b; Bastien et al., 2012) to implement
the model, and Redis as a database solution. The master and workers are each
equipped with a k20 GPU.

7.5.2 Reduced training time and better prediction error

We compare in Figure7.2 the training loss for a model trained with ISSGD (in
green) and regular SGD (in blue). We used 3 workers to help with the master.
In the case of regular SGD, we also used a worker in the background to be able
to compute statistics as we go along without imposing that burden on the process
training the model. To make sure that the results are not due to the random
initialization of parameters, we ran this experiment 50 times. We report here the
median (thicker line), and the quartiles 1 and 3 above and below (thinner lines).
This represents a “tube” into which half of the trajectories fit.

In all the figures from this section, we always compare the same two sets of
hyperparameters. On the left we always have a setting where the learning rate is
higher (0.01) and where we smoothe the probability weights by adding a constant
(+10.0) to them (see Section 7.A.5 in the Appendix for more explanations on this
technique). On the right we always have a setting where the learning rate is smaller
(0.001) and where the smoothing constant is also smaller (+1.0).

In Figure7.2 we can see that in both cases ISSGD minimizes the train loss more
quickly than regular SGD, and it actually reaches 0.0. This obviously corresponds

119

(a) train loss, learning rate 0.01 (b) train loss, learning rate 0.001

(c) train prediction error,
learning rate 0.01

(d) train prediction error,
learning rate 0.001

Figure 7.2 – Here on the two top plots (a, b), we compare the training loss optimized with two
sets of hyperparameters. On (a) we use a higher learning rate, but also a higher smoothing of the
importance weights to stabilize the algorithm. In the two left plots (a, b), these are the actual
quantities that are getting minimized by our procedure. We can see that, in both cases, ISSGD
minimizes the loss more quickly than regular SGD, and it actually reaches 0.0. Those results are
the median quantities reported during 50 runs for each set of hyperparamters, using a di↵erent
random initialization. We also show the quartiles 1 and 3 in thinner lines to get an idea of the
distributions. In the two bottom plots (c, d) we also report the prediction error on the training
set for each method. Note the di↵erent time scale on plots with di↵erent learning rates.

to overfitting, but since we are presenting here an optimization method, it seems
natural to celebrate the fact that it can minimize the objective function faster and
better.

In Figure7.3 we show the test prediction error. These results are not so easy
to interpret, and we see that faster convergence does not always lead to a better
generalization error. This suggests that regular SGD benefits here from a kind of
regularization e↵ect.

120

(a) prediction error test,learning rate 0.01 (b) prediction error test,learning rate 0.001

Figure 7.3 – Here we report the prediction error on the test set. Just like in Figure7.2, we report
the median results over 50 runs with the same two sets of hyperparameters. In a fairly consistent
way, we have that one setup has a better generalization error for ISSGD (on the left plot), and
the opposite happens in the other scenario (right plot). We believe that this can be explained by
ISSGD converging quickly to a configuration that minimizes the loss perfectly, after which it just
gives up trying to do better. Regular SGD, on plot (b), would appear to experience some kind of
regularization due to its variance, and it would continue to optimize over the course of 6 hours
instead of only one hour (as shown on Figure7.2b).

We also report in Table 7.1 what are the final prediction errors for both meth-
ods (averaged over the last 10% of the timesteps plotted). We picked the set of
hyperparameters that had the best validation prediction error and reported the
test prediction errors. Unsurprizingly, this corresponds to using the result from
Figure7.3a for ISSGD and Figure7.3b for regular SGD. The final values are very
similar for the two methods.

7.5.3 Variance reduction

Here we look at the values of values of Tr(⌃(q)) during the ISSGD training from
the previous section (which led to Figure7.2 and Figure7.3).

We would like to compare the values of Tr(⌃(q)) for (qideal, qstale, qunif). Note
that qunif does not mean here that we trained with the regular SGD (that assigns
the same probability to each training example). It means that, during ISSGD
training, we can report the value of Tr(⌃(q)) that we would get if we performed
the next step with regular SGD. In Figure7.4, we refer to this as “SGD, ideal”. We
compare it to “ISSGD, ideal”, which corresponds to the best possible situation for
our method, Tr(⌃(qideal)), which is not necessarily achieved in practice.

121

In Section 7.A.5 of the Appendix we describe how we add a constant to the
probability weights in order to make the method more robust. We are trading
away potential gains to make training more stable.

On both plots of Figure7.4 we show the “ideal”measurements that we would get
with exact probability weights, and we compare with the“stale”measurements that
we get with probability weights used in the actual experiments, which are all stale
to varying degrees. On those stale curves, we show the e↵ects of using the actual
additive constant to the probability weights, and the e↵ects of using an alternate
one. Bear in mind that, in both cases, the validation loss reached its minimum in
around 30 minutes, and these plots are shown for 2.5 hours. Also, these are the
Tr(⌃(q)) with respect to the gradient on the training set. One naturally expects
that gradient to converge to 0.0 during the overfitting regime.

(a) learning rate ↵ = 0.01, additional
smoothing +10.0

(b) learning rate ↵ = 0.001, additional
smoothing +1.0

Figure 7.4 – Square root of trace of covariance for di↵erent proposals q. We show here the median
results aggregated over 50 runs of ISSGD. These plots come from the same hyperparameters used
for Figure7.2. On the left plot, we use a higher learning rate in the hopes of making convergence
faster. This required the probability weights to be smoothed by adding a constant (+10.0) to
all the probability weights, and this washed away a part of the variance-reduction benefits of
using ISSGD. On the right plot, we used a smaller learning rate, and we still got comparably
fast convergence. However, because of the additive constant +1.0 used, these runs were closer to
the ideal ISSGD setting. The point of these plots is to show that with ISSGD we can a smaller
measurement of Tr(⌃(q)). This happens clearly on the right plot, but not as convincingly on the
left.

Note that in Figure7.4 we report the square root of those values in order to have
it be on the same scale and the gradients themselves (this is analogous to reporting
� instead of �2).

122

7.6 Future work

One of the constraints that we are facing is that proposition 3 works with mod-
els with only fully-connected layers. This rules out all the convolutional neural
networks, which are very popular and very useful.

One alternative would be to use an approximate formula for the individual gra-
dient norms for convolutional layers. Either something naive (such as applying
proposition 3 without proper justification), or possibly even ignoring the contri-
butions from those layers. This would yield an importance sampling scheme that
would be of lesser quality, but it would also be hard to evaluate how much we
actually su↵er for that.

We have avoided direct comparisons with ASGD in this paper because we are not
currently in possession of a good production-quality ASGD implementation. We
would certainly like to see how ASGD could be combined with ISSGD, whether
this would create positive interactions or whether the two methods would impede
each other.

Note that there are alternative ways to combine our method with ASGD, and
they are not equally promising. Our recommendation would be to get rid of the
master/workers distinction and have only workers (or “peers”) along with a pa-
rameter server (or shared memory, or whatever synchronization method is used
to aggregate the gradients and parameters). Whenever a gradient contribution is
computed, the importance weights can be obtained at the same time. These can
be shared in the same way that the gradients are shared, so that all the workers
are able to use the importance weights to run ISSGD steps.

7.7 Conclusion

We have introduced a novel method for distributing neural network training
by using multiple machines to search for the most informative examples to train
on. This method led to significant improvements in training time on permutation
invariant SVHN. Our results demonstrated that importance sampling reduced the
variance of the gradient estimate, even in the distributed setting where the impor-
tance weights are not exact. One area for future work is extending this method to
models that use parameter sharing (such as convnets and RNNs), either by finding
a new formula for per-example gradient norms or by finding an approximation to
the gradient norm that is easy to compute. Finally, much of the most successful
work on data parallel distributed deep learning has used a variant of Asynchronous
SGD. It would be useful to understand exactly how our method compares with

123

Asynchronous SGD and to see if further improvement is gained by using both
approaches simultaneously.

7.A Importance sampling in theory

7.A.1 Extending beyond a single dimension

Theorem 1. Optimal Importance Sampling Proposal

Let X be a random variable in Rd1 and f(x) be any function from Rd1 to Rd2.
Let p(x) be the probability density function of X , and let q(x) be a valid proposal
distribution for importance sampling with the goal of estimating

Ep [f(x)] =

Z
p(x)f(x)dx = Eq

p(x)

q(x)
f(x)

�
. (7.10)

The context requires that q(x) > 0 whenever p(x) > 0. We know that the
importance sampling estimator

p(x)

q(x)
f(x) with x ⇠ q (7.11)

has mean µ = Ep [f(x)] so it is unbiased.

Let ⌃(q) be the covariance of that estimator, where we include q in the notation
to be explicit about the fact that it depends on the choice of q.

Then the trace of ⌃(q) is minimized by the following optimal proposal q⇤ :

q
⇤(x) =

1

Z
p(x) kf(x)k

2
where Z =

Z
p(x) kf(x)k

2
dx (7.12)

which achieves the optimal value

Tr(⌃(q⇤)) = (Ep [kf(x)k2])
2
� kµk

2

2
.

Proof. This proof is almost exactly the same as the well-known result in one dimen-
sion involving Jensen’s inequality. Everything follows from the decision to minimize
Tr (⌃) and the choice of q⇤. Nevertheless, we include it here so the reader can get
a feeling for where q

⇤ comes into play.

124

When sampling from q(x) instead of p(x), we are looking at how the unbiased
estimator

Eq(x)

p(x)

q(x)
f(x)

�

which has mean µ and covariance ⌃(q). We make use of the fact that the trace is a
linear function, and that Tr(µµT) = kµk2

2
. The trace of the covariance is given by

Tr (⌃(q))

= Tr

✓
Eq(x)

⇣
p(x)

q(x)
f(x)� µ

⌘⇣
p(x)

q(x)
f(x)� µ

⌘T�◆

= Tr

✓
Eq(x)

⇣
p(x)

q(x)
f(x)

⌘⇣
p(x)

q(x)
f(x)

⌘T�
� µµ

T

◆

= Eq(x)

Tr

✓⇣
p(x)

q(x)
f(x)

⌘⇣
p(x)

q(x)
f(x)

⌘T◆�
� kµk

2

2

= Eq(x)

���p(x)

q(x)
f(x)

���
2

2

�
� kµk

2

2
. (7.13)

There is nothing to do about the kµk2
2
term since it does not depend on the

proposal q(x). Using Jensen’s inequality, we get that

Eq(x)

"����
p(x)

q(x)
f(x)

����
2

2

#
� Eq(x)

����
p(x)

q(x)
f(x)

����
2

�2

=

✓Z
q(x)

p(x)

q(x)
kf(x)k

2
dx

◆2

=
�
Ep(x) [kf(x)k2]

�2
.

This means that, for any proposal q(x), we cannot do better than
�
Ep(x) [kf(x)k2]

�2
�

kµk
2

2
. All that is left is to take the proposal q⇤ in the statement of the theorem, to

evaluate Tr(⌃(q⇤)) and to show that it matches that lower bound.

125

We have that

Tr(⌃(q⇤)) = Eq⇤(x)

"����
p(x)

q⇤(x)
f(x)

����
2

2

#
� kµk

2

2

=

Z
q
⇤(x)

✓
p(x)

q⇤(x)

◆2

kf(x)k2
2
dx� kµk

2

2

=

Z
p(x)2

q⇤(x)
kf(x)k2

2
dx� kµk

2

2
(7.14)

=

Z
p(x)2Z

p(x) kf(x)k
2

kf(x)k2
2
dx� kµk

2

2

where Z =

Z
p(x) kf(x)k

2
dx

=
�
Ep(x) [kf(x)k2]

�2
� kµk

2

2

which is the minimal value achievable, so q
⇤ is indeed the best proposal in terms

of minimizing Tr(⌃(q)).

Note also that the single-dimension equivalent, mentioned in Section 7.3.1, is
a direct Corollary of this proposition, because the Euclidean norm turns into the
absolute value.

Corollary 2. Using the context of importance sampling as described in Theorem 1,
let q(x) be a proposal distribution that is proportional to p(x)h(x) for some function
h : X ! R+. As always, we require that h(x) > 0 whenever f(x) > 0.

Then we have that the trace of the covariance of the importance sampling esti-
mator is given by

Tr(⌃(q)) =

✓Z
p(x)h(x)dx

◆ Z
p(x)
kf(x)k2

2

h(x)
dx

!
� kµk

2

2
,

where µ = Ep(x) [f(x)]. Moreover, if p(x) is not known directly, but we have access
to a dataset D = {xn}

1

n=1
of samples drawn from p(x), then we can still define

q(x) / p(x)h(x) by associating the probability weight !̃n = h(xn) to every xn 2 D.

To sample from q(x) we just normalize the probability weights

!n =
!̃nP
N

n=1
!̃n

and we sample from a multinomial distribution with argument (!1, . . . ,!N) to pick
the corresponding element in D.

126

In that case, we have that

Tr(⌃(q)) =

1

N

NX

n=1

!̃n

!
1

N

NX

n=1

kf(xn)k
2

2

!̃n

!
� kµk

2

2

=

1

N

NX

n=1

!n

!
1

N

NX

n=1

kf(xn)k
2

2

!n

!
� kµk

2

2
.

Proof. We start from equation (7.13), which applies to a general proposal q. In
fact, we make it to equation (7.14) still without making assumptions on q. At that
point we can look at the normalizing constant of q, which is equal to

Z =

Z
p(x)h(x)dx =

1

N

NX

n=1

h(xn) =
1

N

NX

n=1

!̃n.

Then we have that

Tr(⌃(q)) =

Z
p(x)2Z

p(x)h(x)
kf(x)k2

2
dx� kµk

2

2
(7.15)

where Z =
1

N

NX

n=1

!̃n

= (Z)

 Z
p(x)
kf(x)k2

2

h(x)
dx

!
(7.16)

=

1

N

NX

n=1

!̃n

!
1

N

NX

n=1

kf(xn)k
2

2

!̃n

!
(7.17)

The equivalent formula for !n instead of !̃n follows from dividing the left expression
by
P

N

n=1
!̃n and multiplying the expression on the right by that constant.

7.A.2 Dealing with minibatches

Proposition 3. Consider a multi-layer perceptron (MLP) applied to minibatches
of size N , and with loss L = L1+. . .+LN , where Ln represents the loss contribution
from element n of the minibatch.

Let (W, b) be the weights and biases at any particular fully-connected layer so
that XW + b = Y , where X are the inputs to that layer and Y are the outputs.

127

The gradients with respect to the parameters are given by

@L

@W
=

@L1

@W
+ . . .+

@LN

@W

@L

@b
=

@L1

@b
+ . . .+

@LN

@b

where the values
�
@Ln
@W

,
@Ln
@b

�
refer to the particular contributions coming from ele-

ment n of the minibatch. Then we have that

����
@Ln

@W

����
2

F

= kX[n, :]k2
2

·

����
@L

@Y
[n, :]

����
2

2����
@Ln

@W

����
2

2

=

����
@L

@Y
[n, :]

����
2

2

,

where the notation X[n, :] refers to row n of X, and similarly for @L

@Y
[n, :].

That is, we have a compact formula for the Euclidean norms of the gradients of
the parameters, evaluated for each N elements of the minibatch independently.

Proof. The usual backpropagation rules give us that

@L

@W
= X

T
@L

@Y
and

@L

@b
=

NX

n=1

@L

@Y
[n, :].

All the backpropagation rules can be inferred by analyzing the shapes of the quan-
tities involved and noticing that only one answer can make sense. If we focus on
Ln for some n 2 {1, . . . , N}, then we can see that

@Ln

@W
= X[n, :]T

@L

@Y
[n, :] and

@L

@b
=
@L

@Y
[n, :]. (7.18)

Note here that X[n, :]T @L

@Y
[n, :] is the outer product of two vectors, which yields a

rank-1 matrix of the proper shape for @Ln
@W

. Similarly, we have that X[n, :]X[n, :]T =
kX[n, :]k2

2
is a 1x1 matrix, which can be treated as a real number in all situations.

The conclusion for
��@Ln

@b

��2
2
follows automatically from taking the norm of the cor-

responding expression in equation (7.18). Some more work is required for
��@Ln

@W

��2
2
.

We will make use of the three following properties of matrix traces.
— kAk

2

F
= Tr(AAT)

— Tr(ABC) = Tr(BCA) = Tr(CAB)
— Tr(kA) = kTr(A) for k 2 R

128

We have that

����
@Ln

@W

����
2

F

= Tr

X[n, :]T

@Ln

@Y
[n, :]

✓
X[n, :]T

@Ln

@Y
[n, :]

◆T
!

= Tr

✓
X[n, :]T

@Ln

@Y
[n, :]

@Ln

@Y
[n, :]TX[n, :]

◆

= Tr

✓
X[n, :]X[n, :]T

@Ln

@Y
[n, :]

@Ln

@Y
[n, :]T

◆

= kX[n, :]k2
2

·

����
@L

@Y

����
2

2

.

One might wonder why we are interested in computing the Frobenius norm of
the matrix @Ln

@W
instead of its L2-norm. The reason is that when running SGD we

serialize all the parameters as a flat vector, and it is the L2-norm of that vector
that we want to compute. We flatten the matrices, and the following equality
reveals why this means that we want the Frobenius norms of our matrix-shaped
parameters :

kAk
2

F
= kA.flatten()k2

2
.

Distributed implementation of ISSGD

7.A.3 Using only a subset of the weights

Of the many hyperparameters that are available to adjust the behavior of the
master and workers, we have the possibility the use a staleness threshold that
filters out all the xn candidates whose corresponding !̃n have not been updated
su�ciently recently.

For many of the experiments that we ran on SVHN, where we used a training set
of roughly 570k samples, with 3 workers, a staleness threshold of 4 seconds leads
to 15% of the probability weights to be kept. The other 85% are filtered out. This
filtering is rather fair in that it does not favor any sample a priori. Every !̃n stands
equal chances of having been recomputed last.

We have tried training without that staleness threshold and it is hard to see a
di↵erence. Adding more workers naturally lowers the average staleness of probabil-
ity weights, because more workers can update them more frequently. If it were not

129

the cost of communicating the model parameters, we could argue that a su�ciently
large number of workers would simulate an oracle perfectly.

7.A.4 Approximating kgtruek
2
2

To report values of Tr(⌃(q)), we need to be able to compute the actual ex-
pected gradient over the whole training set. We refer to that quantity as the true
gradient g

true = 1

N

P
g(xn), but we never really compute it due to practical rea-

sons. This would entail reporting the gradient for each chunk of the training set
and aggregating everything. This is precisely the kind of thing that we avoid with
ISSGD.

Instead we compute the gradients of the parameter for each minibatch, and we
report the L2-norm of those. We then average those values. This produces an
upper-bound to the actual value of kgtruek

2
.

One important thing to note is that the equations (7.7), (7.8) and (7.9) each have
the kgtruek2

2
term, so any approximation of that term, provided that it is the same

for all three, will not alter the respective order of Tr(⌃(qideal)),Tr(⌃(qstale)),Tr(⌃(qunif))

Moreover, when are getting close to the end of the training, we should have that
kg

true
k
2
is getting close to zero. That is, the gradient is zero when we are close to an

optimum. This does not meant that the individual gradients are all zero, however.
But when our upper-bound on kgtruek

2
is getting close to being insignificant, then

we can tell for sure that our values computed for the three Tr(⌃(q)) are very close
to their exact values.

7.A.5 Smoothing probability weights

Sometimes we can end up with probability weights that fluctuate too rapidly.
This can lead to some problems in a situation where one training sample xn is
assigned a small probability weight ✏, when compared to the other probability
weights. Things normally balance out because xn has a probability proportional to
✏, and when it gets selected its gradient contribution g(xn) gets scaled by 1/✏. The
resulting contribution is a gradient of norm ⇡ 1.

However, when that gradient changes quickly (and probability weight along with
it), it is possible to get into a situation where the gradient computed on the master is
now much larger (due to the parameters having changed), and it still gets divided
by ✏ when selected. This does not a↵ect the bias, but it a↵ects the stability of
the method in the long term. When running for an indefinitely long period, it is

130

dangerous to having a time bomb in the algorithm that has a small probability of
ruining everything.

To counter this e↵ect, or just to make the training a bit smoother, we decided
to add a smoothing constant to all the probability weights !̃n before normalizing
them. The larger the constant, the more this will make ISSGD resemble regular
SGD. In the limit case where this constant is infinite, this turns exactly into regular
SGD.

We had some ideas for using an adaptive method to compute this smoothing
constant, but this was not explored due to the large number of other hyperparam-
eters to study. One suggestion was to look at the entropy of the distribution of
the {!n}

1

n=0
that determine which training sample are going to be used. With a

smoothing constant su�ciently large, we can bring this entropy down to any target
level (or down to regular SGD when that constant is infinite).

131

8
Prologue to fourth paper :

Understanding intermediate

layers using linear classifier

probes

8.1 Article Details

Understanding intermediate layers using linear classifier probes, by
Guillaume Alain and Yoshua Bengio, in International Conference on Learning Rep-
resentation (2017) (Workshop).

Personal Contribution. This work was all done by me. Naturally, it goes without
saying that other people were involved in fruitful discussions about this topic, as
always.

8.2 Context

This initial research project that led me to the idea of the linear classifier probes
was that I wanted to train a hierarchy of models of increasing complexity, leading
all the way to a very deep neural network that was basically impossible to train
using only traditional backpropagation from the last layer.

Every model in the collection (except the simplest) relied on a support (a simpler
network), much like a plant can rely on a support (a vertical pole) to help it stand
up and grow. See Romero et al. (2014) for a more explicit implementation of the
analogy. This was both an attempt to train a model of ridiculous depth (two
thousand layers, before the publication of ResNet), and to have a way to grow a
model that exhibits a clear hierarchy of structure.

To monitor this operation, I wanted to develop a tool that would allow me to
see how each component was doing. I wanted to be able to visualize how complex
models would flail around unproductively up until the moment where their support
reached a reasonable state of training. This would set up a kind of chain reaction,
like a fuse that burned from one end to the other, from simpler to more complex
models. This could be visualized easily by plotting how good each model was (in
terms of prediction accuracy of the final layer), but it also made sense in this

132

case to want to include the prediction accuracy of every internal layer. Hence the
introduction of linear classifier probes.

This original idea described above was not published, and the later work by
Larsson, Maire, and Shakhnarovich (2016) shows a very similar architecture. This
context is to convey the idea that the original motivation behind this article on
linear classifier probes was about structure and hierarchy of representations.

8.3 Contributions

We introduce the concept of the linear classifier probe. We add a collection of
linear classifiers to be trained using the features of various layers of a model, and
make sure that they do not backpropagate into the original model. While it could
generalized, this concept applies only to classification problems at the moment.

Technically speaking, this gives us a measurement of how well those features can
be used for the original classification problem. Intuitively, however, this can guide
our understanding about the “quantity of useful information present in each layer”.
We can diagnose certain problems with models by looking at this measurement.

More importantly, we have observed a very interesting phenomenon while train-
ing deep neural networks for image classification by monitoring them with those
probes. We have observed that the layer representations are naturally acting in
a “greedy” fashion, such that every subsequent layer tends to be better than its
predecessors in terms of features for linear classification. While this experiment
observation is intuitively plausible, it does run contrary to the hypothesis that a
deep neural network might “invest” some layers to refine a rich representation that
pay o↵ only at the last layer of the model where the softmax classifier is found.

8.4 Recent Developments

This paper was submitted in many di↵erent forms over the course of⇠ 2 years. It
was successfully accepted as a conference workshop twice. One of the consequences
of this delay is that the idea of linear classifier probes made its way elsewhere, and
there is now a very impressive paper by colleagues at Google Brain (Raghu et al.,
2017) where a similar idea is presented. Their particular tool is more general and
even more insightful (albeit more complex and costly) than my own take on linear
classifier probes.

133

9
Understanding intermediate

layers using linear classifier

probes

Neural network models have a reputation for being black boxes. We propose to
monitor the features at every layer of a model and measure how suitable they are
for classification. We use linear classifiers, which we refer to as “probes”, trained
entirely independently of the model itself.

This helps us better understand the roles and dynamics of the intermediate
layers. We demonstrate how this can be used to develop a better intuition about
models and to diagnose potential problems.

We apply this technique to the popular models Inception v3 and Resnet-50.
Among other things, we observe experimentally that the linear separability of fea-
tures increase monotonically along the depth of the model.

9.1 Introduction

The recent history of deep neural networks features an impressive number of
new methods and technological improvements to allow the training of deeper and
more powerful networks.

Deep neural networks still carry some of their original reputation of being black
boxes, but many e↵orts have been made to understand better what they do, what
is the role of each layer (Yosinski et al., 2014b), how we can interpret them (Zeiler
and Fergus, 2014) and how we can fool them (Biggio et al., 2013; Szegedy et al.,
2013).

In this paper, we take the features of each layer separately and we fit a lin-
ear classifier to predict the original classes. We refer to these linear classifiers
as “probes” and we make sure that we never influence the model itself by taking
measurements with probes. We suggest that the reader think of those probes as
thermometers used to measure the temperature simultaneously at many di↵erent
locations.

More broadly speaking, the core of the idea is that there are interesting quantities
that we can report based on the features of many independent layers if we allow

134

the “measuring instruments” to have their own trainable parameters (provided that
they do not influence the model itself).

In the context of this paper, we are working with convolutional neural networks
on image classification tasks on the MNIST and ImageNet (Russakovsky et al.,
2015) datasets. Naturally, we fit linear classifier probes to predict those classes,
but in general it is possible to monitor the performance of the features on any other
objective.

Our contributions in this paper are twofold.

Firstly, we introduce these “probes” as a general tool to understand deep neural
networks. We show how they can be used to characterize di↵erent layers, to debug
bad models, or to get a sense of how the training is progressing in a well-behaved
model. While our proposed idea shares commonalities with Montavon, Braun, and
Müller (2011), our analysis is very di↵erent.

Secondly, we observe that the measurements of the probes are surprizingly mono-
tonic, which means that the degree of linear separability of the features of layers
increases as we reach the deeper layers. The level of regularity with which this hap-
pens is surprizing given that this is not technically part of the training objective.
This helps to understand the dynamics of deep neural networks.

Note that this paper is an update on our previous work (Alain and Bengio,
2016).

9.2 Related Work

Many researchers have come up with techniques to analyze certain aspects of
neural networks which may guide our intuition and provide a partial explanation
as to how they work.

In this section we will provide a survey of the literature on the subject, with a
little more focus on papers related our current work.

9.2.1 Linear classification with kernel PCA

In our paper we investigate the linear separability of the features found at in-
termediate layers of a deep neural network.

A similar starting point is presented by Montavon, Braun, and Müller (2011).
In that particular case, the authors use kernel PCA to project the features of a

135

given layer onto a new representation which will then be used to fit the best linear
classifier. They use a radial basis function as kernel, and they choose to project
the features of individual layers by using the d leading eigenvectors of the kernel
PCA decomposition. They investigate the e↵ects that d has on the quality of the
linear classifier.

Naturally, for a su�ciently large d, it would be possible to overfit on the training
set (given how easy this is with a radial basis function), so they consider the
situation where d is relatively small. They demonstrate that, for deeper layers
in a neural network, they can achieve good performance with smaller d. This
suggests that the features of the original convolution neural network are indeed
more “abstract” as we go deeper, which corresponds to the general intuition shared
by many researchers.

They explore convolution networks of limited depth with a restricted subset of
10k training samples of MNIST and CIFAR-10.

9.2.2 Generalization and transferability of layers

There are good arguments to support the claim that the first layers of a con-
volution network for image recognition contain filters that are relatively “general”,
in the sense that they would work great even if we switched to an entirely di↵er-
ent dataset of images. The last layers are specific to the dataset being used, and
have to be retrained when using a di↵erent dataset. In Yosinski et al. (2014b) the
authors try to pinpoint the layer at which this transition occurs, but they show
that the exact transition is spread across multiple layers. In Donahue et al. (2014)
the authors study the transfer of features from the last few layers of a model to a
novel generic task. In Zeiler and Fergus (2014) the authors show that the filters
are picking up certain patterns that make sense to us visually, and they show a
method to visually inspect the filters as input images.

9.2.3 Relevance Propagation

In Bach et al. (2015), the authors introduce the idea of Relevance Propagation
as a way to identify which pixels of the input space are the most important to
the classifier on the final layer. Their approach frames the “relevance” as a kind of
quantity that is to be preserved across the layers, as a sort of shared responsibility
to be divided among the features of a given layer.

In Binder et al. (2016) the authors apply the concept of Relevance Propagation
to a larger family of models. Among other things, they provide a nice experiment
where they study the e↵ects of corrupting the pixels deemed the most relevant, and

136

they show how this a↵ects performance more than corrupting randomly-selected
pixels (see Figure 2 of their paper). See also Lapuschkin et al. (2016). Other
research dealing with Relevance Propagation includes Arras et al. (2017) where
this is applied to RNN in text.

We would also note that a good number of papers on interpretability of neural
networks deals with “interpretations” taking the form of regions of the original
image being identified, or where the pixels in the original image receive a certain
value of how relevant they are (e.g. a heat map of relevance).

In those cases we rely on the human user to parse the regions of the image with
their vision so as to determine whether the region indeed makes sense or whether
the information contained within is irrelevant to the task at hand. This is analogous
to the way that image-captioning attention (Xu et al., 2015) can highlight portions
of the input image that inspired specific segments of the caption.

An interesting approach is presented in Mahendran and Vedaldi (2015), Ma-
hendran and Vedaldi (2016), and Dosovitskiy and Brox (2016) where the authors
analyze the set of “equivalent” inputs in the sense that some of the features at a
given layer should be preserved. Given a layer to study, they apply a regularizer
(e.g. total variation) and use gradient descent in order to reconstruct the pre-image
that yields the same features at that layer, but for which the regularizer would be
minimized. This procedure yields pre-images that are of the same format as the
input image, and which can be used to get a sense of what are the components of
the original image that are preserved. For certain tasks, one may be surprised as
to how many details of the input image are being completely discarded by the time
we reach the fully-connected layers at the end of a convolution neural network.

9.2.4 SVCCA

In Raghu, Yosinski, and Sohl-Dickstein (2017) and Raghu et al. (2017) the
authors study the question of whether neural networks are trained from the first
to the last layer, or the other way around (i.e. “bottom up” vs “top down”). The
concept is rather intuitive, but it still requires a proper definition of what they
mean. They use Canonical Correlation Analysis (CCA) to compare two instances
of a given model trained separately. Given that two di↵erent instances of the
same model might assign entirely di↵erent roles to their neurons (on corresponding
layers), this is a comparison that is normally impossible to even attempt.

On one side, they take a model that has already been optimized. On the other
side, they take multiple snapshots of a model during training. Every layer of one
model is being compared with every other layer of the other. The values computed
by CCA allows them to report the correlation between every pair of layers. This

137

shows how quickly a given layer of the model being trained is going to achieve a
configuration equivalent to the one of the optimized model. They find that the
early layers reach their final configuration, so to speak, much earlier than layers
downstream.

Given that any two sets of features can be compared using CCA, they also
compare the correlation between any intermediate layer and the ground truth.
This gives a sense of how easy it would be to predict the target label using the
features of any intermediate layer instead of only using the last layer (as convnet
usually do). Refer to Figure 6 of Raghu et al. (2017) for more details. This aspect
of Raghu et al. (2017) is very similar to our own previous work (Alain and Bengio,
2016).

9.3 Monitoring with probes

9.3.1 Information theory, and monotonic improvements to
linear separability

The initial motivation for linear classifier probes was related to a reflection about
the nature of information (in the entropy sense of the word) passing from one layer
to the next.

New information is never added as we propagate forward in a model. If we
consider the typical image classification problem, the representation of the data is
transformed over the course of many layers, to be finally used by a linear classifier
at the last layer.

In the case of a binary classifier (say, detecting the presence or absence of a lion
in a picture of the savannah like in Figure9.1), we could say that there was at most
one bit of information to be uncovered in the original image. Lion or no lion ? Here
we are not interested in measuring the information about the pixels of an image
that we want to reconstruct. That would be a di↵erent problem.

This is illustrated in a formal way by the Data Processing Inequality. It states
that, for a set of three random variables satisfying the dependency

X ! Y ! Z

then we have that
I(X;Z) I(X;Y)

where I(X, Y) is the mutual information.

138

(a) hex dump of picture of a lion
(b) same lion in human-readable format

Figure 9.1 – The hex dump represented at the left has more information contents than the
image at the right. Only one of them can be processed by the human brain in time to save their
lives. Computational convenience matters. Not just entropy.

The task of a deep neural network classifier is to come up with a representation
for the final layer that can be easily fed to a linear classifier (i.e. the most elementary
form of useful classifier). The cross-entropy loss applies a lot of pressure directly
on the last layer to make it linearly separable. Any degree of linear separability in
the intermediate layers happens only as a by-product.

On one hand, we have that every layer has less information than its parent layer.
On the other hand, we observe experimentally in Section 9.3.5, 9.4.1 and 9.4.2 that
features from deeper layers work better with linear classifiers to predict the target
labels. At first glance this might seem like a contradiction.

One of the important lessons is that neural networks are really about distill-
ing computationally-useful representations, and they are not about information
contents as described by the field of Information Theory.

9.3.2 Linear classifier probes

Consider the common scenario in deep learning in which we are trying to classify
the input data X to produce an output distribution over D classes. The last layer
of the model is a densely-connected map to D values followed by a softmax, and
we train by minimizing cross-entropy.

At every layer we can take the features Hk from that layer and try to predict
the correct labels y using a linear classifier parameterized as

fk : Hk ! [0, 1]D

hk 7! softmax (Whk + b) .

139

where hk 2 H are the features of hidden layer k, [0, 1]D is the space of categorical
distributions of the D target classes, and (W, b) are the probe weights and biases
to be learned so as to minimize the usual cross-entropy loss.

Let L
train

k
be the empirical loss of that linear classifier fk evaluated over the

training set. We can also define L
valid

k
and L

test

k
by exporting the same linear

classifier on the validation and test sets.

Without making any assumptions about the model itself being trained, we can
nevertheless assume that these fk are themselves optimized so that, at any given
time, they reflect the currently optimal thing that can be done with the features
present.

We refer to those linear classifiers as “probes” in an e↵ort to clarify our think-
ing about the model. These probes do not a↵ect the model training. They only
measure the level of linear separability of the features at a given layer. Blocking
the backpropagation from the probes to the model itself can be achieved by using
tf.stop_gradient in Tensorflow (or its Theano equivalent), or by managing the
probe parameters separately from the model parameters.

Note that we can avoid the issue of local minima because training a linear
classifier using softmax cross-entropy is a convex problem.

In this paper, we study
— how Lk decreases as k increases (see Section 9.3.1),
— the usefulness of Lk as a diagnostic tool (see Section 9.5.1).

9.3.3 Practical concern : L
train
k

vs L
valid
k

The reason why we care about optimality of the probes in Section 9.3.2 is because
it abstracts away the problem of optimizing them. When a general function g(x) has
a unique global minimum, we can talk about that minimum without ambiguity even
though, in practice, we are probably going to use only a convenient approximation
of the minimum.

This is acceptable in a context where we are seeking better intuition about deep
learning models by using linear classifier probes. If a researcher judges that the
measurements are useful to further their understanding of their model (and act on
that intuition), then they should not worry too much about how close they are to
optimality.

This applies also to the question of whether we should prioritize Ltrain

k
or Lvalid

k
.

We would argue that Lvalid

k
seems like a more meaningful quantity to monitor, but

140

depending on our experimental setup it might not be easy to track L
valid

k
in all

circumstances.

Moreover, for the purposes of many of the experiments in this paper we chose to
report the classification error instead of the cross-entropy, since this is ultimately
often the quantity that matters the most. Reporting the top5 classification error
could also have been possible.

9.3.4 Practical concern : Dimension reduction on features

Another practical problem can arise when certain layers of a neural network have
an exceedingly large quantity of features. The first few layers of Inception v3, for
example, have a few million features when we multiply height, width and channels.
This leads to parameters for a single probe taking upwards of a few gigabytes of
storage, which is disproportionately large when we consider that the entire set of
model parameters takes less space than that.

In those cases, we have three possible suggestions for trimming down the space
of features on which we fit the probes.

— Use only a random subset of the features (but always the same ones). This
is used on the Inception v3 model in Section 9.4.2.

— Project the features to a lower-dimensional space. Learn this mapping. This
is probably a worse idea than it sounds because the projection matrix itself
can take a lot of storage (even more than the probe parameters).

— When dealing with features in the form of images (height, width, channels),
we can perform 2D pooling along the (height, width) of each channel. This
reduces the number of features to the number of channels. This is used on
the ResNet-50 model in Section 9.4.1.

In practice, when using linear classifier probes on any serious model (i.e. not
MNIST) we have to choose a way to reduce the number of features used.

Note that we also want to avoid a situation where our probes are simply overfit-
ting on the features because there are too many features. It was recently demon-
strated that very large models can fit random labels on ImageNet (Zhang et al.,
2016). This is a situation that we want to avoid because the probe measurements
would be entirely meaningless in that situation. Dimensionality reduction helps
with this concern.

9.3.5 Basic example on MNIST

In this section we run the MNIST convolutional model provided by the tensor-
flow/models github repository (image/mnist/convolutional.py). We selected

141

that model for reproducibility and to demonstrate how to easily peek into popular
models by using probes.

We start by sketching the model in Figure 9.2. We report the results at the
beginning and the end of training on Figure 9.3. One of the interesting dynamics
to be observed there is how useful the first layers are, despite the fact that the
model is completely untrained. Random projections can be useful to classify data,
and this has been studied by others (Jarrett, Kavukcuoglu, and Lecun, 2009).

input
images

conv 5x5
32 filters

ReLU maxpool
2x2

conv 5x5
64 filters

ReLU
maxpool

2x2
matmul ReLU matmul

output
logits

convolution
layer

convolution
layer

fully-connected
layer

fully-connected
layer

Figure 9.2 – This graphical model represents the neural network that we are going to use for
MNIST. The model could be written in a more compact form, but we represent it this way
to expose all the locations where we are going to insert probes. The model itself is simply two
convolutional layers followed by two fully-connected layer (one being the final classifier). However,
we insert probes on each side of each convolution, activation function, and pooling function. This
is a bit overzealous, but the small size of the model makes this relatively easy to do.

(a) After initialization, no training. (b) After training for 10 epochs.

Figure 9.3 – We represent here the test prediction error for each probe, at the beginning and at
the end of training. This measurement was obtained through early stopping based on a validation
set of 104 elements. The probes are prevented from overfitting the training data. We can see
that, at the beginning of training (on the left), the randomly-initialized layers were still providing
useful transformations. The test prediction error goes from 8% to 2% simply using those random
features. The biggest impact comes from the first ReLU. At the end of training (on the right),
the test prediction error is improving at every layer (with the exception of a minor kink on
fc1_preact).

142

9.3.6 Other objectives

Note that it would be entirely possible to use linear classifier probes on a di↵erent
set of labels. For the same reason as it is possible to transfer many layers from
one vision task to another (e.g. with di↵erent classes), we are not limited to fitting
probes using the same domain.

Inserting probes at many di↵erent layers of a model is essentially a way to ask
the following question:

Is there any information about factor
present in this part of the model ?

9.4 Experiments with popular models

9.4.1 ResNet-50

The family of ResNet models (He et al., 2016) are characterized by their large
quantities of residual layers mapping essentially x 7! x+ r(x). They have been
very successful and there are various papers seeking to understand better how they
work (Veit, Wilber, and Belongie, 2016; Larsson, Maire, and Shakhnarovich, 2016;
Singh, Hoiem, and Forsyth, 2016).

Here we are going to show how linear classifier probes might be able to help
us a little to shed some light into the ResNet-50 model. We used the pretrained
model from the github repo (fchollet/deep-learning-models) of the author of
Keras (Chollet, 2015).

One of the questions that comes up when discussing ResNet models is whether
the successive layers are essentially performing the same operation over many times,
refining the representation just a little more each time, or whether there is a more
fundamental change of representation happening.

In particular, we can point to certain places in ResNet-50 where the image size
diminishes and we increase the number of channels. This happens at three places
in the model (identified with blank lines in Table 9.4a).

9.4.2 Inception v3

We have performed an experiment using the Inception v3 model on the ImageNet
dataset (Szegedy et al., 2015; Russakovsky et al., 2015). We show using colors in

143

probe valid
layer topology prediction
name error

input 1 (224, 224, 3) 0.99

add 1 (28, 28, 256) 0.94
add 2 (28, 28, 256) 0.89
add 3 (28, 28, 256) 0.88

add 4 (28, 28, 512) 0.87
add 5 (28, 28, 512) 0.82
add 6 (28, 28, 512) 0.79
add 7 (28, 28, 512) 0.76

add 8 (14, 14, 1024) 0.77
add 9 (14, 14, 1024) 0.69
add 10 (14, 14, 1024) 0.67
add 11 (14, 14, 1024) 0.62
add 12 (14, 14, 1024) 0.57
add 13 (14, 14, 1024) 0.51

add 14 (7, 7, 2048) 0.41
add 15 (7, 7, 2048) 0.39
add 16 (7, 7, 2048) 0.31

(a) Validation errors for
probes. Comparing dif-
ferent layers. Pre-trained
ResNet-50 on ImageNet
dataset.

(b) Inserting probes at meaningful layers of ResNet-50.
This plot shows the rightmost column of the table in
Figure 9.4a. Reporting the validation error for probes
(magenta) and comparing it with the validation error of
the pre-trained model (green).

Figure 9.4 – For the ResNet-50 model trained on ImageNet, we can see deeper features are
better at predicting the output classes. More importantly, the relationship between depth and
validation prediction error is almost perfectly monotonic. This suggests a certain “greedy” aspect
of the representations used in deep neural networks. This property is something that comes
naturally as a result of conventional training, and it is not due to the insertion of probes in the
model.

Figure 9.5 how the predictive error of each layer can be measured using probes.
This can be computed at many di↵erent times of training, but here we report only

144

after minibatch 308230, which corresponds to about 2 weeks of training.

This model has a few particularities, one of which is that it features an auxiliary
branch that contributes to training the model (it can be discarded afterwards, but
not necessarily). We wanted to investigate whether this branch is“leading training”,
in the sense that its classifier might have lower prediction error than the main head
for the first part of the training.

This is something that we confirmed by looking at the prediction errors for the
probes, but the di↵erence was not very large. The auxiliary branch was ahead of
the main branch by just a little.

The smooth gradient of colors in Figure 9.5 shows how the linear separability
increases monotonically as we probe layers deeper into the network.

Refer to the Appendix Section 9.C for a comparison at four di↵erent moments
of training, and for some more details about how we reduced the dimensionality of
the feature to make this more tractable.

0.0 1.0probe training error auxiliary head

main headminibatches
308230

Figure 9.5 – Inception v3 model after 2 weeks of training. Red is bad (high prediction error)
and green/blue is good (low prediction error). The smooth color gradient shows a very gradual
transition in the degree of linear separability (almost perfectly monotonic).

9.5 Diagnostics for failing models

9.5.1 Pathological behavior on skip connections

In this section we show an example of a situation where we can use probes to
diagnose a training problem as it is happening.

We purposefully selected a model that was pathologically deep so that it would
fail to train under normal circumstances. We used 128 fully-connected layers of
128 hidden units to classify MNIST, which is not at all a model that we would
recommend. We thought that something interesting might happen if we added
a very long skip connection that bypasses the first half of the model completely
(Figure 9.6a).

145

With that skip connection, the model became trainable through the usual SGD.
Intuitively, we thought that the latter portion of the model would see use at first,
but then we did not know whether the first half of the model would then also
become useful.

Using probes we show that this solution was not working as intended, because
half of the model stays unused. The weights are not zero, but there is no useful
signal passing through that segment. The skip connection left a dead segment and
skipped over it.

The lesson that we want to show the reader is not that skip connections are
bad. Our goal here is to show that linear classification probes are a tool to under-
stand what is happening internally in such situations. Sometimes the successful
minimization of a loss fails to capture important details.

X H0 H1 H127 Ŷ

Ŷ-1 Ŷ0 Ŷ1 Ŷ127

H64

Ŷ64

(a) Model with 128 layers. A skip
connection goes from the beginning
straight to the middle of the graph.

(b) probes after 500
minibatches

(c) probes after 2000
minibatches

Figure 9.6 – Pathological skip connection being diagnosed. Refer to Appendix Section 9.A for
explanations about the special notation for probes using the “diode” symbol.

9.6 Discussion and future work

We have presented a combination of both a small convnet on MNIST and larger
popular convnets Inception v3 and ResNet-50. It would be nice to continue this
work and look at ResNet-101, ResNet-151, VGG-16 and VGG-19. A similar thing
could be done with popular RNNs also.

To apply linear classifier probes to a di↵erent context, we could also try any
setting where either Generative Adversarial Networks (Goodfellow et al., 2014b) or
adversarial examples are used (Szegedy et al., 2013).

The idea of multi-layer probes has been suggested to us on multiple occasions.
This could be seen as a natural extension of the linear classifier probes. One
downside to this idea is that we lose the convexity property of the probes. It might
be worth pursuing in a particular setting, but as of now we feel that it is premature

146

to start using multi-layer probes. This also leads to the convoluted idea of having
a regular probe inside a multi-layer probe.

One completely new direction would be to train a model in a way that actively
discourages certain internal layers to be useful to linear classifiers. What would be
the consequences of this constraint? Would it handicap a given model or would the
model simply adjust without any trouble? At that point, we are no longer dealing
with non-invasive probes, but we are feeding a strange kind of signal back to the
model.

Finally, we think that it is rather interesting that the probe prediction errors
are almost perfectly monotonically decreasing. We suspect that this warrants a
deeper investigation into the reasons why that it happens, and it may lead to the
discovery of fundamental concepts to understand better deep neural networks (in
relation to their optimization). This is connected to the work done by Jastrzebski
et al. (2017).

9.7 Conclusion

In this paper we introduced the concept of the linear classifier probe as a con-
ceptual tool to better understand the dynamics inside a neural network and the
role played by the individual intermediate layers.

We have observed experimentally that an interesting property holds : the level
of linear separability increases monotonically as we go to deeper layers. This is
purely an indirect consequence of enforcing this constraint on the last layer.

We have demonstrated how these probes can be used to identify certain prob-
lematic behaviors in models that might not be apparent when we traditionally have
access to only the prediction loss and error.

We are now able to ask new questions and explore new areas.

We hope that the notions presented in this paper can contribute to the under-
standing of deep neural networks and guide the intuition of researchers that design
them.

9.A Diode notation

We have the following suggestion for extending traditional graphical models to
describe where probes are being inserted in a model. See Figure 9.7.

147

Due to the fact that probes do not contribute to backpropagation, but they
still consume the features during the feed-forward step, we thought that borrowing
the diode symbol from electrical engineering might be a good idea. A diode is a
one-way valve for electrical current.

This notation could be useful also outside of this context with probes, when-
ever we want to sketch a graphical model and highlight the fact that the gradient
backpropagation signal is being blocked.

X H0 H1 HK Ŷ

Ŷ-1 Ŷ0 Ŷ1 ŶK

Figure 9.7 – Probes being added to every layer of a model. These additional probes are not
supposed to change the training of the model, so we add a little diode symbol through the arrows
to indicate that the gradients will not backpropagate through those connections.

9.B Training probes with finished model

Sometimes we do not care about measuring the probe losses/accuracy during
training, but we have a model that is already trained and we want to report the
measurements on that static model.

In that case, it is worth considering whether we really want to augment the model
by adding the probes and training the probes by iterating through the training set.
Sometimes the model itself is computationally expensive to run and we can only
do 150 images per second. If we have to do multiple passes over the training set
in order to train probes, then it might be more e�cient to run the whole training
set and extract the features to the local hard drive. Experimentally, in the case
for the pre-trained model Resnet-50 (Section 9.4.1) we found that we could process
approximately 100 training samples per second when doing forward propagation,
but we could run through 6000 training samples per second when reading from the
local hard drive. This makes it a lot easier to do multiple passes over the training
set.

148

9.C Inception v3

In Section 9.3.4 we showed results from an experiment using the Inception v3
model on the ImageNet dataset (Szegedy et al., 2015; Russakovsky et al., 2015).
The results shown were taken from the last training step only.

Here we provide in Figure 9.8 a sketch of the original Inception v3 model, and
in Figure 9.9 we show results from 4 particular moments during training. These
are spread over the 2 weeks of training so that we can get a sense of progression.

Figure 9.8 – Sketch of the Inception v3 model. Note the structure with the “auxiliary head”
at the bottom, and the “inception modules” with a common topology represented as blocks that
have 3 or 4 sub-branches.

As discussed in Section 9.3.4, we had to resort to a technique to limit the number
of features used by the linear classifier probes. In this particular experiment, we
have had the most success by taking 1000 random features for each probe. This
gives certain layers an unfair advantage if they start with 4000 features and we
kept 1000, whereas in other cases the probe insertion point has 426, 320 features
and we keep 1000. There was no simple “fair” solution. That being said, 13 out of
the 17 probes have more than 100, 000 features, and 11 of those probes have more
than 200, 000 features, so things were relatively comparable.

149

Inception v3

auxiliary head

main head
minibatches
001515

0.0 1.0

probe training prediction error

auxiliary head

main head
minibatches
050389

auxiliary head

main head
minibatches
100876

auxiliary head

main head
minibatches
308230

Figure 9.9 – Inserting a probe at multiple moments during training the Inception v3 model on
the ImageNet dataset. We represent here the prediction error evaluated at a random subset of
1000 features. As expected, at first all the probes have a 100% prediction error, but as training
progresses we see that the model is getting better. Note that there are 1000 classes, so a prediction
error of 50% is much better than a random guess. The auxiliary head, shown under the model,
was observed to have a prediction error that was slightly better than the main head. This is not
necessarily a condition that will hold at the end of training, but merely an observation. Red is
bad (high prediction error) and green/blue is good (low prediction error).

150

10
Prologue to fifth paper :

Negative eigenvalues of the

Hessian in deep neural

networks

10.1 Article Details

Negative eigenvalues of the Hessian in deep neural networks. Guillaume
Alain, Nicolas Le Roux and Pierre-Antoine Manzagol. In International Conference
on Learning Representation (2018) (Workshop).

This work was done during an internship with the Google Brain team in Montréal.

Personal Contribution. The article was written by me (with feedback from my
co-authors). Implementation and experiments were all done by me. The analysis
and decisions about research directions was done with Nicolas Le Roux and Pierre-
Antoine Manzagol.

10.2 Context

The popular optimization methods for training neural networks are all convex
optimization methods. In practice this means that directions of negative curvature
in the loss surface are basically ignored. This works well despite the fact there are
plenty of saddle points and directions of negative curvature (present at least during
the earlier steps of training).

On one side, it seems foolish to limit ourselves to convex optimization methods.
On the other side, it is hard to know what are the key properties of the non-convex
loss of neural networks that should be exploited, and whether those properties hold
across multiple architectures of neural networks.

10.3 Contributions

We look at the Hessian matrix of the loss in neural networks, we extract the
directions with the most important positive and negative curvatures, and we study

151

the loss along those dimensions. The Hessian matrix itself is too large to store in
memory (or to compute), so we have to resort to computational tricks to extract its
eigenvectors with the largest magnitude of eigenvalues (both positive and negative).
We show how there are important gains to be made in the directions of negative
curvature, and how the learning rates along those directions can be chosen to be
much larger than the current literature suggests.

152

11
Negative eigenvalues of the

Hessian in deep neural

networks

We study the loss function of a deep neural network through the eigendecom-
position of its Hessian matrix. We focus on negative eigenvalues, how important
they are, and how to best deal with them. The goal is to develop an optimization
method specifically tailored for deep neural networks.

11.1 Introduction

The current mode of operation in the field of Deep Learning is that we accept
the fact that saddle points are everywhere (Dauphin et al., 2014; Choromanska
et al., 2015) and that many local minima are of such high quality that we do
not need to worry about not having the global minimum. Practitioners sweep
a large collection of hyperparameter configurations, they use early stopping to
prevent overfitting, and they train their models with optimization methods such as
RMSProp (Tieleman and Hinton, 2012) and ADAM (Kingma and Ba, 2015).

Most optimization methods used in deep learning today were developed with the
convex setting in mind. We currently do not have an e�cient way to specifically
manage the negative eigenvalues of the Hessian matrix (which contains the second
order derivatives and describes the curvature of the loss). We want to develop
specific methods adapted to our particular kind of non-convex problems. Such
methods will handle regions of negative curvature in a particular way, because this
phenomenon is not present in convex optimization. There has been other work done
in that domain, namely Dauphin et al. (2014) who identify the dominant eigen-
vectors of the Hessian and then use a trust region method inside of the subspace
defined by those eigenvectors.

We present here experimental results that
— help us better understand what is happening in the directions of negative

curvature,
— suggest that we should be using a much larger step size in those directions.

153

11.2 Experiments

11.2.1 Methodology

We will treat our minimization problem purely from an optimization perspective,
and we will not study generalization error here. Naturally, in practice we have to
pay a great deal of attention to the generalization of a model, but for the purposes
of our analysis of the Hessian of neural networks, these concerns would constitute
confounding factors. We want to focus on the challenges of minimizing a loss that
features saddle points and local minima.

The size of the Hessian matrix scales proportionally to the square of the number
of parameters, so there is no way to compute and store the entire Hessian. We can
still extract certain properties of the Hessian despite this, but we find ourselves
limited to smaller models and datasets (i.e. some iterative algorithms from linear
algebra require exact dot products, and would not necessarily be robust to the use
of minibatches of random subsamples drawn from a dataset).

We are going to use the architecture of the classic LeNet (LeCun et al., 1989)
convolution neural network, but with ReLU as activation function. It has two
convolutional layers, two fully connected layers, and a softmax on the last layer,
for a total number of approximately d = 3.3 ⇥ 106 parameter coe�cients. We
performed experiments with MNIST (LeCun and Cortes, 1998).

We have to keep in mind that there is no guarantee that phenomena observed
in this setup will also be found in a much larger convolutional neural network such
as Inception (Szegedy et al., 2015), or one with a di↵erent design such as ResNet
(He et al., 2016).

While we are training our model using the typical minibatch gradient descent
with RMSProp (batch size 32), it makes sense for our analysis to study the loss
L(✓) averaged over the full training set instead of minibatches. The same applies
for the gradient g(✓) 2 Rd and the Hessian matrix H(✓) 2 Rd⇥d. We made the
decision to concatenate all the parameters from all layers into a single vector in Rd.
Though results on the Hessian of individual layers were not included in this study,
we believe they would also be of interest for a better understanding of deep neural
networks.

Note that all the eigenvalues are real-valued because of the symmetry of the
Hessian matrix, so they can be ordered as �1 � �2 � . . . � �d. See Appendix
Section 11.A for details on how we can compute the k largest or smallest eigenpairs
(�i, vi).

154

11.2.2 Negative curvature is only local

At any training step t, we can select an eigenpair (�i, vi) and measure the loss
function when we project the gradient g(✓t) in the direction vi. With a step size of
↵ 2 R, we look at

L(✓t � ↵
⇥
g(✓)Tvi

⇤
vi). (11.1)

This becomes particularly interesting when �i is negative and when we make the
mild assumption that vi in not perfectly orthogonal to the gradient (i.e. g(✓)Tvi 6=
0).

Since we observed a common behaviour all along the optimization, we show here
the results for an arbitrary iteration (t = 50). We use ↵ 2 [�0.1, 0.1] in Figure 11.1
and ↵ 2 [�1, 1] in Figure 11.2. We compare the exact empirical loss (orange curve)
alongside the quadratic approximation (green/blue curve) of the same function
given by the negative eigenvalue �i.

For small values of ↵, the actual loss matches the curvature su�ciently well,
but for larger values of ↵ the two are qualitatively di↵erent. Because the loss is
bounded below, it would be impossible for the loss to go down to �1. When using
a regularizer such as an L2-norm penalty, the loss grows to 1 when k✓k ! 1.

Note that, if we were to optimize for long enough, we would get into the neigh-
borhood of a local minimum and we would not observe any negative eigenvalues
anymore. In that later regime, there is nothing to gain from having an optimizer
designed to deal with negative eigenvalues. However, there are no theoretical re-
sults clarifying when that regime starts. In practice, when early stopping is used as
an approach to avoid overfitting, is it also unclear in what regime we stop training.

11.2.3 Minimizing loss in directions of negative curvature

What is the connection between �i and the optimal step size to be taken in the
direction of vi?

We go back to the question of finding the optimal ↵ to minimize the line search
problem in Equation (11.1). It is simple enough (albeit costly) to run through the
whole training set and evaluate the loss at multiple values of ↵, spanning a few
orders of magnitude. For all the eigenpairs (�i, vi) that we have access to, we can
look at

— what is the best loss decrease that we can obtain by moving along vi? (see
Figure 11.3)

— what is the optimal step size ↵⇤ to achieve it? (see Figure 11.4)

155

Figure 11.1 – Looking at the total loss when
moving by ↵ in the direction of most negative
curvature. Evaluated at training step t = 50.
Zoomed in.

Figure 11.2 – Same direction of negative
curvature as Figure 11.1, but zoomed out.

Figures 11.3 and 11.4 suggest that important gains are to be made in directions
of negative curvature, and that in directions of negative curvature the optimal step
sizes are of a greater order of magnitude than in directions of positive curvature.
Refer to Appendix Section 11.C for a longer discussion about optimal step sizes.
Note that in Figures 11.3 and 11.4 we are showing a certain range where we find
eigenvalues � 2 [�1, 1]. This is the most informative plot for us, but we are not
showing everything here. Keep in mind also that we are using numerical methods
that report eigenvalues with the largest magnitude |�|, so those figures are missing
more than 99.99% of the eigenvalues with very small magnitude. This is why those
figures do not have any points shown around the origin.

11.3 Future work and conclusion

The current results need to be validated in more settings of architectures and
optimizers.

Considerable work was required for us to extract negative eigenvalues for every
checkpoint of training. This is not a pratical thing to do during training. In
Appendix 11.E we propose a new method that maintains an estimate of the most
negative eigenvector and uses it to update the parameters. We have not yet tried
this method in practice.

The main contribution of our work is that we have observed and studied an
example where the directions of negative curvature are not being exploited properly

156

Figure 11.3 – Best loss decrease possible
(y-axis) when following eigenvector associated
with � (x-axis). Lower is better. Directions
of negative curvature (left side) were empiri-
cally observed to bring larger improvements in
the loss than directions of positive curvature
(right side). Earlier time steps t are shown
blue, and later are shown in green. In terms of
Equation (11.1), this plot shows the relation
between �i and L(↵⇤).

Figure 11.4 – Reporting the actual optimal
step sizes found empirically. In terms of the
variables involved in Equation (11.1), this plot
shows the relation between �i (x-axis) and
1/↵⇤ (y-axis). On the right side of the plot,
we can report that in direction of positive cur-
vature we have that 1/↵⇤

⇡ �i. On the left side
of the plot, the small values reported mean that
the optimal step sizes were quite large. Earlier
time steps t are shown red, and later are shown
in yellow.

by the popular convex optimizer. We have seen how great gains could be made in
those directions. This reinforces the belief that there are opportunities to develop
new optimization techniques that capitalize on the specific case of neural networks.

11.A Jacobian Vector Product

With d = 3.3⇥ 106, the storage required to store the symmetric Hessian matrix
with float32 coe�cients is approximately 20 terabytes, which makes it close to im-
possible to store in RAM. The task of computing all the d eigenvalues is absolutely
out of reach, but by using the ”Jacobian Vector Product” trick (Townsend, 2017),
along with Scipy (Jones, Oliphant, and Peterson, 2014; Lehoucq, Sorensen, and
Yang, 1998), we can compute the k largest or smallest eigenpairs (�i, vi).

The Scipy library function scipy.sparse.linalg.eigsh is able to accept either
a symmetric matrix, or a function that computes the product v 7! H(✓)v. We
define a Python function that makes many internal calls to Tensorflow to iterate
over the whole training set (or a fixed subset thereof). We aggregate the results

157

and return them. This enables a Scipy library function to make calls to Tensorflow
without being aware of it.

Following again the notation Section 11.2.1, we order the eigenvalues as �1 �
�2 � . . . � �d. They are all real-valued because the Hessian matrix is symmetric
and contains only real coe�cients.

We are mainly interested in the eigenvalues closest to ±1, so we define the
following notation to refer to the k most extreme eigenpairs on each side.

LA(k) = {(�1, v1), . . . , (�k, vk)}

SA(k) = {(�d�k+1, vd�k+1), . . . , (�d, vd)} .

Note that the costs of computing those sets depends a lot of the magnitude of
the eigenvalues. In practice we observed that the LA eigenvalues have a much larger
magnitude than the SA (see Appendix 11.B). This leads to the task of computing
LA(20) being much cheaper than SA(3), despite the fact that it involves more
eigenvalues.

For reasons of computational costs, we resorted to using a fixed subset of the
training set when we performed the eigendecompositions (done after training).

11.B Progression of eigenvalues during training

In Figure 11.5 and Figure 11.6 we show the evolution of the eigenvalues on
models training on MNIST and CIFAR10. The largest eigenvalues LA(20) are
shown in blue/green, while the smallest eigenvalues SA(3) are shown in red. We
use log-scale on the vertical axis, so this means that the smallest eigenvalues, which
are negative, are plotted as log |�|. We also report the total loss as a dotted black
curve, also in log-scale, with their scale shown in the right side of the figures.

The first surprising observation that we made was that the largest and smallest
eigenvalues are not a↵ected a lot during training. They stabilize very quickly (2000
minibatches of size 32 is only slightly more than a full epoch) while the loss is
still in the process in being minimized. Note that this does not necessarily mean
that the leading eigenvector v1 stays constant during all that time. The leading
eigenvalue might hover around �1 = 4.0, but its associated vector v1 can change.

It is worth keeping in mind that the traditional SGD with RMSProp does not
focus specifically on the directions of negative curvature, so plots like those of
Figure 11.5 and Figure 11.6 might turn out di↵erent if an optimizer focused on
exploiting those directions. We might “exhaust” or “harvest” the most dominant

158

Figure 11.5 – Visualizing log |�| for eigen-
values of Hessian on MNIST, computed
separately at many moments of training.
Largest in blue/green, smallest in red.

Figure 11.6 – Same as left figure, but with
CIFAR-10. We are not sure how to interpret
the spikes. They are similar to the kind of
spikes in Dauphin et al. (2014) in their Fig-
ure 3 (c) and (f).

ones, and then find ourselves new directions in which the negative curvature is now
the most extreme.

One of the motivations for studying the evolution of the Hessian matrix is that
its stability is important in certain optimization methods where an estimate of
the Hessian is refined over many consecutive steps. If the actual Hessian changes
too drastically, then the estimate is not going to be meaningful, and this may be
detrimental to the optimizer.

11.C Optimal step sizes

A strictly-convex loss function f(✓) has a positive-definite Hessian matrix H(✓)
for all values of ✓. That is, all its eigenvalues will be strictly greater than zero.

To perform an update with Newton’s method, we update the parameters ✓t
according to

✓t+1 = ✓t � ↵H(✓t)
�1
g(✓t)

where g(✓t) is the gradient of f(✓) and ↵ is the learning rate.

In the special case when f(✓) is quadratic, the Hessian is constant and we can
use one Newton update with ↵ = 1 to jump directly to the optimum. We can
compute what that means in terms of the optimal step size to update ✓ along the
direction of one of the eigenvector vi.

159

Let {(�1, v1), . . . , (�d, vd)} be the eigendecomposition of the Hessian matrix. If
we project the gradient in the basis of eigenvectors, we get

g(✓) =
NX

i=1

⇥
g(✓)Tvi

⇤
vi.

Note that H�1
vi =

1

�i
vi, so we have that

H
�1
g(✓) =

NX

i=1

⇥
g(✓)Tvi

⇤ 1

�i
vi.

Thus, when minimizing a strictly-convex quadratic function f(✓), the optimal
step size along the direction of an eigenvector is given by

↵
⇤ = argmin

↵

L
�
✓ � ↵

⇥
g(✓)Tvi

⇤
vi

�
=

1

�i
. (11.2)

If we are dealing with a strictly-convex function that is not quadratic, then the
Hessian is not constant and we will need more than one Newton update to converge
to the global minimum. We can still hope that a step size of 1/�i would be a good
value to use.

With a deep neural network, we no longer have any guarantees. We can still
measure optimal step sizes experimentally, which is what we have done in Sec-
tion 11.2.3. We saw in Figure 11.4 that the optimal step sizes in directions vi of
positive curvature matched rather well with the value of 1/�i. It has been suggested
in Dauphin et al. (2014) that in directions of negative curvature, the optimal step
size could be 1/ |�i|, but our empirical results are much larger than that. Again,
we have to keep in mind that a general theory cannot be extrapolated from only
one model and one dataset.

11.D On estimating the Hessian

Given that the full Hessian matrix has more than 1013 coe�cients, and that
the entire training set has 50000 ⇤ 282 coe�cients, we might be concerned about
whether the value of the Hessian is possible to estimate statistically.

In a way, much like the loss L(✓) =
P

N

n=1
L✓(xi, yi) is an exact quantity defined

over the whole training set, the Hessian is the same. The notion of an estimator
variance would come into play if we estimated H(✓) from a minibatch instead.

160

Given the computational costs of evaluating L(✓) andH(✓) on the whole training
set every time that the Scipy function scipy.sparse.linalg.eigsh wants us to
evaluate the Jacobian vector product, we tried to see if it was possible to get away
with only using 5% of the training set for that purpose. That 5% has to always
contain the same samples, or otherwise we violate assumptions made by Scipy (in
a way similar to how the usual quicksort implementation would fail if comparisons
were no longer deterministic).

Now H5%(✓) is an estimator of H(✓), and we have verified experimentally that
the first elements of the eigenspectrum of those two matrices are close enough for
the purposes of our analysis. We did this by comparing LA(10) and SA(10) in
both cases, checking the di↵erences between eigenvalues and the angles between
the eigenvectors. It was important to check to see if we would have numerical
instabilities with a regime using less data.

11.E Suggestion for new optimization method

Considerable work was required for us to extract negative eigenvalues for every
checkpoint of training. This is not a practical thing to do during training, so we
want to introduce here the idea of keeping a running approximation of the smallest
eigenvector of the Hessian.

We know that the Jacobian vector product H(✓)v can be evaluated on a mini-
batch at the same time that we compute the gradient. Some people report an
overhead of 4⇥ the computational costs, but we have not measured any bench-
marks in that regards.

The smallest eigenvector is a unit vector v that minimizes the value of m(v) =
v
T
H(✓)v. This is a quadratic in the coe�cients of v (along with a constraint on the

norm of v), and it’s something that we can minimize using a method similar to SGD.
We can easily see that rvm(v) = 2H(✓)v, so we can minimize simultaneously m(v)
and the usual model loss L(✓). This means that we can keep a running estimate
(�̃, ṽ) of (�d, vd), and we can alternate between one update to ✓ with the usual
RMSProp/Adam optimizer, and then one update in the direction of

⇥
g(✓)T ṽ

⇤
ṽ.

Di↵erent learning rates could be used for those updates. If we wanted to minimize
the overhead, we could also scale back to do those updates less frequently.

This is not something that we have tried in practice, but it would be the most
direct way to implement a training method based on the ideas of this paper.

161

11.F Extra plots

We provide here a few extra plots to accompany Figure 11.3 and Figure 11.4 in
order to paint a more complete picture.

Figure 11.7 – Same as Figure11.3 but with a di↵erent interval. On the left we have the interval
[�5, 5], and on the right we look more closely to the origin. We are using a color gradient to
di↵erentiate blue points coming from an earlier training step (closer to t = 0) and green points
coming later in the optimization. It is not easy to interpret whether there is a significant di↵erence
between the two. In terms of Equation (11.1), these plots show the relation between �i and L(↵⇤).

162

Figure 11.8 – Same as Figure11.4 but with a di↵erent interval. On the left we have the interval
[�5, 5], and on the right we look at [�100, 100]. We are using a color gradient to di↵erentiate red
points coming from an earlier training step (closer to t = 0) and yellow points coming later in
the optimization. One of the interesting observations is that the direct correspondence between
1/↵⇤ (the y-axis) and � (the x-axis) seems to hold relatively well for larger values �. We knew
from Figure11.4 that it approximately held for small positive values of �, which is something that
can also be observed on the left plot here. In terms of the variables involved in Equation (11.1),
these plots show the relation between �i (x-axis) and 1/↵⇤ (y-axis).

163

12 General Conclusion

My first two articles are both facing with the challenge of having a generative
model that can handle multiple output modes instead of only averaged values. My
research at the MILA started in a time before generative adversarial networks were
invented, because that particular issue is now much better handled by GANs.

However, one of the other important themes is that of structured representations,
and that one is far from being solved. In fact, one could point to many of the current
endeavors in RL to exploit hierarchies of abstract representations (unsuccessfully
so far). Or to the challenges currently faced by GANs producing artwork that is
amazing in a local sense but utterly boring in a global sense (e.g. a beautiful haiku
verse in the middle of a nonsensical essay). This is going to be a very important
aspect of the future of AI.

This is one of the reasons why I initially came up with the idea of the linear
classifier probes presented in my third article. I wanted a way to be able to poke
around internally and to be able to explore structure instead of taking neural
networks as a big blob of neurons with an interface only at the input and output
layers. I wanted to be able to monitor what was happening when I was training a
hierarchy of models of increasing complexity that relied on each other.

My third and fifth articles are about optimization. Sometimes we need to explore
new neural net architectures, but sometimes we just need to find better ways to
optimize the ones that we currently have. Personally, I found that it was challenging
to run meaningful experiments in optimization because of the amount of engineering
required and the dependence on the specific hardware used. That being said, I am
happy to know that the idea from my third paper was actually tested out by an
intern at Google Brain.

Personally, the articles that I am the most proud of are the ones on denoising
auto-encoders and linear classifier probes. The former presents a genuinely mean-
ingful result, and the latter presents a practical useful tool which has a chance at
being included in future Deep Learning libraries.

Anyone who recently finished a PhD in Deep Learning is going to write about
how much things have changed during their time. Sometimes it can be disorienting,

164

but I am excited about the new era of Deep Learning, because now we can focus
more on higher-level concepts instead of minor tweaks to layers of neurons. We can
spend more time pondering the meaning of intelligence instead of debugging our
backpropagation algorithms.

Much like our intuition about geometry guided the development of mathematics,
our intuition about teaching humans, and learning from others, is the powerful
navigation tool that drives our quest for artificial general intelligence.

165

Bibliography

Abadi, Mart́ın et al. (2015). TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. url: https://www.
tensorflow.org/.

Agarwal, Alekh and John C Duchi (2011). “Distributed delayed stochastic opti-
mization”. In: Advances in Neural Information Processing Systems, pp. 873–
881.

Al-Rfou, Rami et al. (2016). “Theano: A Python framework for fast computation
of mathematical expressions”. In: arXiv e-prints abs/1605.02688. url: http:
//arxiv.org/abs/1605.02688.

Alain, Guillaume and Yoshua Bengio (2013). “What Regularized Auto-Encoders
Learn from the Data Generating Distribution”. In: International Conference
on Learning Representations (ICLR’2013).

— (2016). “Understanding intermediate layers using linear classifier probes”. In:
arXiv preprint arXiv:1610.01644.

Anselmi, Fabio, Lorenzo Rosasco, and Tomaso Poggio (2016). “On Invariance and
Selectivity in Representation Learning”. In: Information and Inference to ap-
pear.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). “Wasserstein gan”.
In: arXiv preprint arXiv:1701.07875.

Arras, Leila et al. (2017). “Explaining recurrent neural network predictions in sen-
timent analysis”. In: arXiv preprint arXiv:1706.07206.

Bach, Sebastian et al. (2015). “On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation”. In: PloS one 10.7, e0130140.

Bastien, Frédéric et al. (2012). Theano: new features and speed improvements. Deep
Learning and Unsupervised Feature Learning NIPS 2012 Workshop.

Behnke, Sven (2001). “Learning Iterative Image Reconstruction in the Neural Ab-
straction Pyramid”. In: Int. J. Computational Intelligence and Applications
1.4, pp. 427–438.

Bengio, Y. et al. (2003). “A Neural Probabilistic Language Model”. In: JMLR 3,
pp. 1137–1155.

Bengio, Y. et al. (2007a). “Greedy Layer-Wise Training of Deep Networks”. In:
NIPS’2006.

Bengio, Yoshua (2009b). Learning deep architectures for AI. Now Publishers.

166

Bengio, Yoshua (2009a). “Learning deep architectures for AI”. In: Foundations and
Trends in Machine Learning 2.1. Also published as a book. Now Publishers,
2009., pp. 1–127.

— (2013). Estimating or Propagating Gradients Through Stochastic Neurons. Tech.
rep. arXiv:1305.2982. Universite de Montreal.

Bengio, Yoshua, Guillaume Alain, and Salah Rifai (2012). Implicit Density Esti-
mation by Local Moment Matching to Sample from Auto-Encoders. Tech. rep.
Arxiv report 1207.0057. Université de Montréal.

Bengio, Yoshua, Aaron Courville, and Pascal Vincent (2012). Representation Learn-
ing: A Review and New Perspectives. Tech. rep. arXiv:1206.5538.

— (2013). “Representation Learning: A Review and New Perspectives”. In: IEEE
Trans. Pattern Analysis and Machine Intelligence (PAMI) 35.8, pp. 1798–
1828.

Bengio, Yoshua and Olivier Delalleau (2011). “On the Expressive Power of Deep
Architectures”. In: ALT’2011.

Bengio, Yoshua, Li Yao, and Kyunghyun Cho (2013). Bounding the Test Log-
Likelihood of Generative Models. Tech. rep. U. Montreal, arXiv:1311.6184.

Bengio, Yoshua et al. (2007b). “Greedy Layer-Wise Training of Deep Networks”.
In: Advances in Neural Information Processing Systems 19 (NIPS’06). Ed. by
Bernhard Schölkopf, John Platt, and Thomas Ho↵man. MIT Press, pp. 153–
160.

Bengio, Yoshua et al. (2009). “Curriculum Learning”. In: ICML’09.
Bengio, Yoshua et al. (2013a). “Better Mixing via Deep Representations”. In: Pro-

ceedings of the 30th International Conference on Machine Learning (ICML’13).
ACM. url: http://icml.cc/2013/.

Bengio, Yoshua et al. (2013b). Generalized Denoising Auto-Encoders as Generative
Models. Tech. rep. arXiv:1305.6663. Universite de Montreal.

Bengio, Yoshua et al. (2013c). “Generalized denoising auto-encoders as generative
models”. In: Advances in Neural Information Processing Systems, pp. 899–907.

— (2013d). “Generalized Denoising Auto-Encoders as Generative Models”. In:
NIPS’2013.

— (2013e). “Generalized Denoising Auto-Encoders as Generative Models”. In:
NIPS’2013.

Bengio, Yoshua et al. (2014a). “Deep generative stochastic networks trainable by
backprop”. In: International Conference on Machine Learning, pp. 226–234.

Bengio, Yoshua et al. (2014b). Deep Generative Stochastic Networks Trainable by
Backprop. Tech. rep. arXiv:1306.1091.

Bergstra, James et al. (2010a). “Theano: a CPU and GPU Math Expression Com-
piler”. In: Proceedings of the Python for Scientific Computing Conference (SciPy).
Austin, TX.

167

Bergstra, James et al. (2010b). “Theano: a CPU and GPU Math Expression Com-
piler”. In: Proceedings of the Python for Scientific Computing Conference (SciPy).
Oral Presentation. Austin, TX.

Biggio, Battista et al. (2013). “Evasion attacks against machine learning at test
time”. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, pp. 387–402.

Binder, Alexander et al. (2016). “Layer-wise relevance propagation for neural net-
works with local renormalization layers”. In: International Conference on Ar-
tificial Neural Networks. Springer, pp. 63–71.

Bordes, Antoine et al. (2013). “A Semantic Matching Energy Function for Learning
with Multi-relational Data”. In: Machine Learning: Special Issue on Learning
Semantics.

Bornschein, Jörg and Yoshua Bengio (2014). Reweighted Wake-Sleep. Tech. rep.
arXiv:1406.2751.

Bouchard, Guillaume et al. (2015). “Accelerating Stochastic Gradient Descent via
Online Learning to Sample”. In: CoRR abs/1506.09016. url: http://arxiv.
org/abs/1506.09016.

Breuleux, Olivier, Yoshua Bengio, and Pascal Vincent (2011). “Quickly Generating
Representative Samples from an RBM-Derived Process”. In: Neural Computa-
tion 23.8, pp. 2053–2073.

Cayton, Lawrence (2005). Algorithms for manifold learning. Tech. rep. CS2008-
0923. UCSD.

Cheng, Xiuyuan, Xu Chen, and Stéphane Mallat (2016). “Deep Haar Scattering
Networks”. In: Information and Inference to appear.

Cho, Grace E. et al. (2000). “Comparison Of Perturbation Bounds For The Station-
ary Distribution Of A Markov Chain”. In: Linear Algebra Appl 335, pp. 137–
150.

Cho, KyungHyun, Tapani Raiko, and Alexander Ilin (2013).“Enhanced gradient for
training restricted boltzmann machines”. In: Neural computation 25.3, pp. 805–
831.

Chollet, François et al. (2015). Keras. https://github.com/fchollet/keras.
Choromanska, Anna et al. (2015). “The loss surfaces of multilayer networks”. In:

Artificial Intelligence and Statistics, pp. 192–204.
Collobert, R. and J. Weston (2008). “A Unified Architecture for Natural Language

Processing: Deep Neural Networks with Multitask Learning”. In: ICML’2008.
Dacorogna, B. (2004). Introduction to the Calculus of Variations. World Scientific

Publishing Company.
Dahl, George E. et al. (2010). “Phone Recognition with the Mean-Covariance Re-

stricted Boltzmann Machine”. In: NIPS’2010.
Dauphin, Yann N et al. (2014). “Identifying and attacking the saddle point problem

in high-dimensional non-convex optimization”. In: Advances in neural infor-
mation processing systems, pp. 2933–2941.

168

Davis, A. and I. Arel (2013). “Low-Rank Approximations for Conditional Feed-
forward Computation in Deep Neural Networks”. In: ArXiv e-prints. arXiv:
1312.4461 [cs.LG].

Dayan, Peter et al. (1995). “The Helmholtz machine”. In: Neural computation 7.5,
pp. 889–904.

Dean, J. et al. (2012). “Large Scale Distributed Deep Networks”. In: NIPS’2012.
Deng, L. et al. (2010). “Binary Coding of Speech Spectrograms Using a Deep Auto-

encoder”. In: Interspeech 2010. Makuhari, Chiba, Japan.
Dinh, Laurent, David Krueger, and Yoshua Bengio (2014). NICE: Non-linear In-

dependent Components Estimation. arXiv:1410.8516.
Donahue, Je↵ et al. (2014). “Decaf: A deep convolutional activation feature for

generic visual recognition”. In: International conference on machine learning,
pp. 647–655.

Dosovitskiy, Alexey and Thomas Brox (2016).“Inverting visual representations with
convolutional networks”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4829–4837.

Duchi, John, Elad Hazan, and Yoram Singer (2010). Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization. Tech. rep. UCB/EECS-2010-
24. EECS Department, University of California, Berkeley. url: http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-24.html.

Erhan, Dumitru et al. (2010).“Why does unsupervised pre-training help deep learn-
ing?” In: Journal of Machine Learning Research 11.Feb, pp. 625–660.

Galanti, Tomer, Lior Wolf, and Tamir Hazan (2016). “A PAC Theory of the trans-
ferable”. In: Information and Inference to appear.

Goodfellow, I. (2015). “E�cient Per-Example Gradient Computations”. In: ArXiv
e-prints. arXiv: 1510.01799 [stat.ML].

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

Goodfellow, Ian et al. (2014a).“Generative adversarial nets”. In: Advances in neural
information processing systems, pp. 2672–2680.

— (2014b).“Generative adversarial nets”. In: Advances in neural information pro-
cessing systems, pp. 2672–2680.

Goodfellow, Ian J. et al. (2013a).Maxout Networks. Tech. rep. Arxiv report 1302.4389.
Université de Montréal. url: http://arxiv.org/abs/1302.4389.

Goodfellow, Ian J. et al. (2013b). “Multi-Prediction Deep Boltzmann Machines”.
In: Advances in Neural Information Processing Systems 26 (NIPS 2013). NIPS
Foundation (http://books.nips.cc).

Gregor, Karol, Arthur Szlam, and Yann LeCun (2011). “Structured Sparse Coding
via Lateral Inhibition”. In: Advances in Neural Information Processing Systems
(NIPS 2011). Vol. 24.

Gregor, Karol et al. (2014). “Deep AutoRegressive Networks”. In: International
Conference on Machine Learning (ICML’2014).

169

Gutmann, M. and A. Hyvarinen (2010). “Noise-contrastive estimation: A new esti-
mation principle for unnormalized statistical models”. In: AISTATS’2010.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778.

Heckerman, David et al. (2000). “Dependency networks for inference, collaborative
filtering, and data visualization”. In: 1, pp. 49–75.

Hinton, Geo↵rey E. (1999). “Products of Experts”. In: ICANN’1999.
— (2000). Training Products of Experts by Minimizing Contrastive Divergence.

Tech. rep. GCNU TR 2000-004. Gatsby Unit, University College London.
Hinton, Geo↵rey E., Simon Osindero, and Yee Whye Teh (2006). “A fast learning

algorithm for deep belief nets”. In: Neural Computation 18, pp. 1527–1554.
Hinton, Geo↵rey E. et al. (1995).“The wake-sleep algorithm for unsupervised neural

networks”. In: Science 268, pp. 1558–1161.
Hinton, Geo↵rey E. et al. (2012). Improving neural networks by preventing co-

adaptation of feature detectors. Tech. rep. arXiv:1207.0580.
Hyvärinen, Aapo (2005). “Estimation of non-normalized statistical models using

score matching”. In: 6, pp. 695–709.
— (2006). “Consistency of pseudolikelihood estimation of fully visible Boltzmann

machines”. In: Neural Computation.
— (2007). “Some extensions of score matching”. In: Computational Statistics and

Data Analysis 51, pp. 2499–2512.
Jain, Viren and Sebastian H. Seung (2008). “Natural Image Denoising with Con-

volutional Networks”. In: pp. 769–776.
Jarrett, Kevin, Koray Kavukcuoglu, Yann Lecun, et al. (2009). “What is the best

multi-stage architecture for object recognition?” In: 2009 IEEE 12th Interna-
tional Conference on Computer Vision. IEEE, pp. 2146–2153.

Jastrzebski, Stanis law et al. (2017). “Residual Connections Encourage Iterative
Inference”. In: arXiv preprint arXiv:1710.04773.

Jones, Eric, Travis Oliphant, and Pearu Peterson (2014). {SciPy}: open source
scientific tools for {Python}.

Kamyshanska, Hanna and Roland Memisevic (2015). “The potential energy of an
autoencoder”. In: IEEE transactions on pattern analysis and machine intelli-
gence 37.6, pp. 1261–1273.

Katharopoulos, Angelos and François Fleuret (2018).“Not All Samples Are Created
Equal: Deep Learning with Importance Sampling”. In: International Confer-
ence on Machine Learning.

Kavukcuoglu, Koray et al. (2009). “Learning Invariant Features through Topo-
graphic Filter Maps”. In: IEEE, pp. 1605–1612.

Kingma, Diederik and Jimmy Ba (2015). “Adam: A method for stochastic opti-
mization”. In: Proceedings of the 3rd International Conference on Learning
Representations (ICLR).

170

Kingma, Diederik and Yann LeCun (2010).“Regularized estimation of image statis-
tics by Score Matching”. In: Advances in Neural Information Processing Sys-
tems 23. Ed. by J. La↵erty et al., pp. 1126–1134.

Kingma, Diederik P. (2013). Fast Gradient-Based Inference with Continuous Latent
Variable Models in Auxiliary Form. Tech. rep. arxiv:1306.0733.

Kingma, Durk P. and Max Welling (2014). “Auto-encoding variational Bayes”.
In: Proceedings of the International Conference on Learning Representations
(ICLR).

Krizhevsky, A., I. Sutskever, and G. Hinton (2012). “ImageNet Classification with
Deep Convolutional Neural Networks”. In: NIPS’2012.

Lapuschkin, Sebastian et al. (2016). “Analyzing classifiers: Fisher vectors and deep
neural networks”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2912–2920.

Larochelle, H. and I. Murray (2011). “The Neural Autoregressive Distribution Es-
timator”. In: AISTATS’2011.

Larsson, Gustav, Michael Maire, and Gregory Shakhnarovich (2016). “Fractalnet:
Ultra-deep neural networks without residuals”. In: arXiv preprint arXiv:1605.07648.

LeCun, Yann and Corinna Cortes (1998). The MNIST database of handwritten
digits.

LeCun, Yann et al. (1989).“Backpropagation applied to handwritten zip code recog-
nition”. In: Neural computation 1.4, pp. 541–551.

Lee, Honglak et al. (2007). “E�cient sparse coding algorithms”. In: MIT Press,
pp. 801–808.

Lee, Honglak et al. (2009). “Convolutional deep belief networks for scalable unsu-
pervised learning of hierarchical representations”. In: Montreal, Canada.

Lehoucq, Richard B, Danny C Sorensen, and Chao Yang (1998). ARPACK users’
guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi
methods. SIAM.

Li, Yujia, Daniel Tarlow, and Richard Zemel (2013).“Exploring Compositional High
Order Pattern Potentials for Structured Output Learning”. In: CVPR’2013.

Lian, Xiangru et al. (2015). “Asynchronous Parallel Stochastic Gradient for Non-
convex Optimization”. In: Advances in Neural Information Processing Systems,
pp. 2719–2727.

Luo, Heng et al. (2013).“Texture modeling with convolutional spike-and-slab RBMs
and Deep Extensions”. In: AISTATS’2013.

Mahendran, Aravindh and Andrea Vedaldi (2015). “Understanding deep image rep-
resentations by inverting them”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5188–5196.

— (2016). “Visualizing deep convolutional neural networks using natural pre-
images”. In: International Journal of Computer Vision 120.3, pp. 233–255.

Mnih, Andriy and Karol Gregor (2014). “Neural variational inference and learning
in belief networks”. In: ICML’2014.

171

Mnih, Volodymyr et al. (2013). “Playing atari with deep reinforcement learning”.
In: arXiv preprint arXiv:1312.5602.

Montavon, GrÃŠgoire, Mikio L Braun, and Klaus-Robert Müller (2011). “Kernel
analysis of deep networks”. In: Journal of Machine Learning Research 12.Sep,
pp. 2563–2581.

Montavon, Gregoire and Klaus-Robert Muller (2012). “Deep Boltzmann Machines
and the Centering Trick”. In: Neural Networks: Tricks of the Trade. Ed. by
Grégoire Montavon, Genevieve Orr, and Klaus-Robert Müller. Vol. 7700. Lec-
ture Notes in Computer Science, pp. 621–637.

Narayanan, Hariharan and Sanjoy Mitter (2010). “Sample Complexity of Testing
the Manifold Hypothesis”. In: NIPS’2010.

Netzer, Y. et al. (2011). Reading Digits in Natural Images with Unsupervised Fea-
ture Learning. Deep Learning and Unsupervised Feature Learning Workshop,
NIPS.

Nocedal, Jorge and Stephen J. Wright (2006). Numerical Optimization. second.
New York, NY, USA: Springer.

Olshausen, B. A. and D. J. Field (1997). “Sparse coding with an overcomplete basis
set: a strategy employed by V1?” In: Vision Research 37, pp. 3311–3325. url:
http://view.ncbi.nlm.nih.gov/pubmed/9425546.

Ozair, Sherjil and Yoshua Bengio (2014). Deep Directed Generative Autoencoders.
Tech. rep. U. Montreal, arXiv:1410.0630.

Ozair, Sherjil, Li Yao, and Yoshua Bengio (2014). Multimodal Transitions for Gen-
erative Stochastic Networks. Tech. rep. U. Montreal, arXiv:1312.5578.

Paszke, Adam et al. (2017). “Automatic di↵erentiation in PyTorch”. In:
Poon, Hoifung and Pedro Domingos (2011). “Sum-Product Networks: A New Deep

Architecture”. In: Barcelona, Spain.
Raghu, Maithra, Jason Yosinski, and Jascha Sohl-Dickstein (2017). “Bottom Up

or Top Down? Dynamics of Deep Representations via Canonical Correlation
Analysis”. In: arxiv.

Raghu, Maithra et al. (2017). “SVCCA: Singular Vector Canonical Correlation
Analysis for Deep Understanding and Improvement”. In: arXiv preprint arXiv:1706.05806.

Ranzato, M. et al. (2007a). “E�cient Learning of Sparse Representations with an
Energy-Based Model”. In: NIPS’2006.

Ranzato, Marc’Aurelio, Y-Lan Boureau, and Yann LeCun (2008). “Sparse feature
learning for deep belief networks”. In: Cambridge, MA: MIT Press, pp. 1185–
1192.

Ranzato, Marc’Aurelio et al. (2007b). “E�cient Learning of Sparse Representations
with an Energy-Based Model”. In: MIT Press, pp. 1137–1144.

Recht, Benjamin et al. (2011). “Hogwild: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent”. In: NIPS’2011.

172

Rezende, Danilo J., Shakir Mohamed, and Daan Wierstra (2014). Stochastic Back-
propagation and Approximate Inference in Deep Generative Models. Tech. rep.
arXiv:1401.4082.

Rifai, Salah et al. (2011a). “Contractive Auto-Encoders: Explicit invariance during
feature extraction”. In: Proceedings of theTwenty-eight International Confer-
ence on Machine Learning (ICML’11).

Rifai, Salah et al. (2011b). “The Manifold Tangent Classifier”. In: NIPS’2011. Stu-
dent paper award.

Rifai, Salah et al. (2012a). “A Generative Process for Sampling Contractive Auto-
Encoders”. In: Proceedings of the Twenty-nine International Conference on
Machine Learning (ICML’12). Edinburgh, Scotland, U.K.: ACM. url: http:
//icml.cc/discuss/2012/590.html.

— (2012b). “A Generative Process for Sampling Contractive Auto-Encoders”. In:
ICML’2012.

Romero, Adriana et al. (2014).“Fitnets: Hints for thin deep nets”. In: arXiv preprint
arXiv:1412.6550.

Russakovsky, Olga et al. (2015). “ImageNet Large Scale Visual Recognition Chal-
lenge”. In: International Journal of Computer Vision (IJCV) 115.3, pp. 211–
252. doi: 10.1007/s11263-015-0816-y.

Salakhutdinov, R. and G.E. Hinton (2009b). “Deep Boltzmann Machines”. In: AIS-
TATS’2009.

— (2009a). “Deep Boltzmann Machines”. In: Proceedings of the Twelfth Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS 2009).
Vol. 8.

Salakhutdinov, Ruslan and Geo↵rey E. Hinton (2009c). “Deep Boltzmann Ma-
chines”. In: AISTATS’2009, pp. 448–455.

Savard, François (2011). “Réseaux de neurones à relaxation entrâınés par critère
d’autoencodeur débruitant”. MA thesis. U. Montréal.

Schweitzer, Paul J (1968).“Perturbation theory and finite Markov chains”. In: Jour-
nal of Applied Probability, pp. 401–413.

Seide, Frank, Gang Li, and Dong Yu (2011). “Conversational Speech Transcrip-
tion Using Context-Dependent Deep Neural Networks”. In: Interspeech 2011,
pp. 437–440.

Seung, Sebastian H. (1998).“Learning continuous attractors in recurrent networks”.
In: MIT Press, pp. 654–660.

Singh, Saurabh, Derek Hoiem, and David Forsyth (2016). “Swapout: Learning an
ensemble of deep architectures”. In: Advances In Neural Information Process-
ing Systems, pp. 28–36.

Sohl-Dickstein, Jascha et al. (2015). Deep unsupervised learning using nonequilib-
rium thermodynamics.

Sonoda, Sho and Noboru Murata (2016). “Decoding Stacked Denoising Autoen-
coders”. In: arXiv preprint arXiv:1605.02832.

173

Srivastava, Rupesh K et al. (2013). “Compete to Compute”. In: Advances in Neural
Information Processing Systems 26. Ed. by C.J.C. Burges et al., pp. 2310–
2318. url: http://media.nips.cc/nipsbooks/nipspapers/paper_files/
nips26/1109.pdf.

Swersky, Kevin et al. (2011). “On autoencoders and score matching for Energy
Based Models”. In: ICML’2011. ACM.

Szegedy, Christian et al. (2013). “Intriguing properties of neural networks”. In:
arXiv preprint arXiv:1312.6199.

Szegedy, Christian et al. (2015). “Going deeper with convolutions”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–
9.

Tieleman, Tijmen (2008). “Training restricted Boltzmann machines using approxi-
mations to the likelihood gradient”. In: Helsinki, Finland, pp. 1064–1071.

Tieleman, TTijmen and Geo↵rey Hinton (2012). Lecture 6.5—RmsProp: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
Networks for Machine Learning.

Tokdar, Surya T. and Robert E. Kass (2010). “Importance sampling: a review”.
In: Wiley Interdisciplinary Reviews: Computational Statistics 2.1, pp. 54–60.
issn: 1939-0068. doi: 10.1002/wics.56. url: http://dx.doi.org/10.1002/
wics.56.

Townsend, Jamie (2017). A new trick for calculating Jacobian vector products.
https://j-towns.github.io/2017/06/12/A-new-trick.html. [Online;
accessed 20-Jan-2018].

Veit, Andreas, Michael J Wilber, and Serge Belongie (2016). “Residual networks
behave like ensembles of relatively shallow networks”. In: Advances in Neural
Information Processing Systems, pp. 550–558.

Vincent, Pascal (2011). “A Connection between Score Matching and Denoising
Autoencoders”. In: Neural Computation 23.7, pp. 1661–1674.

Vincent, Pascal et al. (2008a). “Extracting and Composing Robust Features with
Denoising Autoencoders”. In: Proceedings of the Twenty-fifth International
Conference on Machine Learning (ICML’08). Ed. by William W. Cohen, An-
drew McCallum, and Sam T. Roweis. ACM, pp. 1096–1103.

— (2008b). “Extracting and Composing Robust Features with Denoising Autoen-
coders”. In: ICML 2008.

Williams, Ronald J. (1992).“Simple Statistical Gradient-Following Algorithms Con-
nectionist Reinforcement Learning”. In: Machine Learning 8, pp. 229–256.

Xu, Kelvin et al. (2015). “Show, attend and tell: Neural image caption genera-
tion with visual attention”. In: International Conference on Machine Learning,
pp. 2048–2057.

Yao, Li et al. (2014). On the Equivalence Between Deep NADE and Generative
Stochastic Networks. Tech. rep. U. Montreal, arXiv:1409.0585.

174

Yosinski, Jason et al. (2014a). “How transferable are features in deep neural net-
works?” In: NIPS’2014.

— (2014b). “How transferable are features in deep neural networks?” In: Advances
in neural information processing systems, pp. 3320–3328.

Younes, Laurent (1998).“On The Convergence Of Markovian Stochastic Algorithms
With Rapidly Decreasing Ergodicity Rates”. In: Stochastics and Stochastics
Models, pp. 177–228.

Zeiler, Matthew D (2012). “ADADELTA: an adaptive learning rate method”. In:
arXiv preprint arXiv:1212.5701.

Zeiler, Matthew D and Rob Fergus (2014). “Visualizing and understanding con-
volutional networks”. In: European conference on computer vision. Springer,
pp. 818–833.

Zhang, Chiyuan et al. (2016). “Understanding deep learning requires rethinking
generalization”. In: arXiv preprint arXiv:1611.03530.

Zhao, P. and T. Zhang (2014). “Stochastic Optimization with Importance Sam-
pling”. In: ArXiv e-prints. arXiv: 1401.2753 [stat.ML].

Zhou, Jian and Olga G Troyanskaya (2014a). “Deep supervised and convolutional
generative stochastic network for protein secondary structure prediction”. In:
arXiv preprint arXiv:1403.1347.

Zhou, Jian and Olga G. Troyanskaya (2014b). “Deep Supervised and Convolutional
Generative Stochastic Network for Protein Secondary Structure Prediction”.
In: ICML’2014.

Zöhrer, Matthias and Franz Pernkopf (2014). “General Stochastic Networks for
Classification”. In: NIPS’2014.

175

