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ABSTRACT  

Mineral oils and metal salts are commonly used as adjuvants to enhance acquired immunity. 

Recently, monoclonal antibodies (MAbs) and recombinant peptides agonist CD40 receptor have 

shown remarkable promise for induction of rapid and robust immune responses. Limitations of 

this approach MAb production costs and multiple administrations due to anti-MAb immune 

responses. Here we demonstrate the development of a unique and sophisticated DNA aptamer-

based alternative for CD40-directed delivery of universal antigens as an alternative in chickens, 

and potentially other vertebrate species. This receptor, expressed by antigen-presenting cells, acts 

as a costimulatory molecule for activated T helper lymphocytes. After initially selecting for high 

affinity aptamers of independent sequence, we utilized a polymerization process where multiple 

aptamers were simultaneously and sequentially arranged through rolling circle amplification 

products (RCA-p), potentially capable of binding multiple recognition sites and causing receptor 

clustering. Selected sequences were demonstrated to effectively activate chicken macrophage 

HD11 cell line through CD40 receptors, demonstrating proof of concept in vitro. Additionally, 

using limited proteolysis liquid chromatography electrospray ionization mass spectrometry (LC-

ESI-MS), we deduced the actual amino acid sequences targeted by these aptamer products, which 

are essential for activation. In chapter III, we produced a biotinylated version of an effective CD40-

activating RCA-p, and streptavidin-conjugated this RCA-p to a biotinylated peptide of the highly 

conserved type-A influenza peptide M2e. This conjugate was administered subcutaneously at 

either (25μg/bird) or (50μg/bird) at age 7 and 21 days. Anti-M2e IgG responses were determined 

at 14, 21, 28 and 35 days of age by ELISA. The RCA-p-M2e complex, at 50μg/bird, was able to 

induce robust seroconversion as early as 7 days post-immunization, with high antibody titer 

consistent through the end of the experiment. The lower dose, however, showed delayed responses 



   

 

and required the second administration. Taken together, these results constitute proof of concept 

for RCA-p-directed antigen delivery for peptide antigens and a potential tool for rapid generation 

of new vaccines against animal diseases.  

In chapter IV we discuss PCR artifacts that develop during traditional DNA aptamers selection 

and proposed a repetitive thermal correction cycles [(65°C/10min, 20°C/1min)x6] of the PCR. 

This may improve future selection of aptamers for similar purposes.  
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INTRODUCTION 

High density rearing of commercial poultry has led to concentrate the effect of many infectious 

agents with resulting economic losses (Nair, 2005; Morris et al., 2007; CIWF, UK, 2007). Many 

strategies are now in use to confront the hazard of these infectious agents such as the use of 

sanitation, biosecurity, antibacterials, antiprotozoals, anthelminthics and vaccinations (Bermudez, 

2008). The emergence of evolutionary resistance of these pathogens to such drugs has restricted 

their use in modern poultry (Peek and Landman, 2003; Dibner and Richard, 2005; Hume, 2011). 

Seeking alternatives for traditional antibacterials and antiprotozoals encourages relying on other 

strategies such as vaccination to control the diseases. 

Since the first description of vaccines, the definition of vaccinology has expanded to include 

vaccine manufacturing technologies and other (non-biological) considerations such as ethnical and 

economical evaluations (Berzofsky et al., 2004; Hardt et al., 2016; Barrett, 2016). From the 

perspective of immunoprotection, vaccines must achieve minimum levels of efficacy, potency, 

purity and safety. Veterinary vaccines, however, consider economic gain as well. In more broad 

application for vaccines, vaccines can be applied to non-infectious diseases or cancers in humans. 

In contrast, in veterinary vaccinology the principle applications are for the protection against 

animal disease, there are still very significant contributions to human health and economy 

(Meeusen et al., 2007; Roth, 2011).  

The aim of vaccination is to introduce protective antigens of virulent pathogens to the host immune 

system safely.  Individually, animals may be protected by increasing the infectious dose 50 (ID50) 

for the pathogen. Epidemiologically, a phenomenon known widely as herd immunity can occur 

when most susceptible animals are protected by vaccination. This decreases the rate of 
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transmission within populations by decreasing susceptibility to infection, and/or decreasing the 

quantity and duration of shedding of the pathogen by infected animals. As reviewed by several 

authors (Fenton and Pedersent, 2005; Fine et al., 2011; Kim et al., 2011; Balakrishnan and Rekha, 

2018) herd immunity, defined as “The level of resistance to highly transmittable pathogen within 

population”, is also referred to as “The minimum proportion of the population that show complete 

protection against particular pathogen threat”. In completely susceptible population, the number 

of likelihood secondary infections, which result from the initial index case, is known as basic 

reproductive ratio (R0, r naught), which is also known as case reproductive rate. Three potential 

values for R0: 1) R0 > 1, the index case produces more than one new secondary infection. 2) R0 =1, 

the index case produces one new secondary infection. 3) R0 < 1 the index case produces less than 

one new secondary infection. R0 is usually higher for aerosol-transmitted pathogens as opposed to 

other routes of transmission such as fecal-oral or trans-epithelial. Based upon the principle of R0, 

it is critical to estimate the number of protected individuals within the herd to secure the population 

against epidemics.  For most pathogens, successful vaccine should induce ≥ 80% herd immunity 

(Fenton and Pedersent, 2005; Fine et al., 2011; Kim et al., 2011; Balakrishnan and Rekha, 2018).   

With most vaccines, delivering an effective immunogen requires the contribution of an effective 

and safe adjuvant or adjuvant combination to link the innate and the adaptive immune responses, 

thereby guiding and exaggerating the immune response, and/or to reduce the antigenic mass within 

vaccine. Thus, effective adjuvants increase the potency and improve the efficacy of vaccines 

(Coffman et al., 2010; Bonam et al., 2017; Garçon et al., 2011).  

Acquired immune responses begins with stimulation of innate immunity. Antigen-presenting cells 

(APCs), especially dendritic cells (DCs), link the innate and acquired immune responses. These 

cells are specialized in foreign antigens uptake, processing and presentation (Schuijs et al., 2019). 
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The recognition of foreign material by APCs is through highly conserved pattern recognition 

receptors (PRRs), which attract cognate highly conserved pathogen-associated molecular patterns 

(PAMPs) on viral, bacterial and fungal pathogens such as bacterial LPS, peptidoglycan, 

unmethylated CpG DNA and viral single-stranded RNA and DNA (Thompson et al., 2011; Juul-

Madsen et al., 2012). There are several PRRs such as Toll-like receptors (TLRs), NOD-like 

receptors (NLRs) and RIG-like receptors (RLRs). These receptors are soluble, membranous or 

cytosolic. The PRRs-PAMP interaction pathway represents signal-0 in the course of immune 

response. However, many sterile inflammatory processes appear to contradict these known 

processes, which likely indicates alternative mechanisms for induction of inflammation. In many 

cases, the immune system ignores the “non-self” antigens unless they encounter PRRs on DCs and 

they are accompanied by damage to tissue. Matzinger (1994) stated that immune response elicited 

against damage-associated molecular patterns (DAMPs) is greater than that those generated 

against PAMPs alone. Inactivated pathogens, or their highly purified products, are not ideal for 

DC activation alone; therefore, traditional adjuvants are essential for efficacy of inactivated 

vaccines. Some examples of these adjuvants are aluminum salts (aluminum hydroxide and 

aluminum phosphate), oil emulsions, and purified PAMPs or similar products (Schijns et al., 2008, 

Kool et al., 2012; Wilson et al., 2012; Bonam et al., 2017). 

Well-designed vaccines with specifically effective adjuvants are favorable in modern vaccines to 

compensate the lack of virulent action of the weakened or inactivated, or low antigenic mass as in 

subunit or recombinant vaccines. In this way, adjuvants exchange false exaggeration of low–

virulent pathogens to robust immune response (McKee et al., 2007; Garçon et al., 2011; Milligan, 

2015; O’Hagan and Fox, 2015).  
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In the first generations of vaccines, aluminum salts, oil emulsions such as water-in-oil or oil-in-

water emulsions, and synthetic biological compounds had been utilized as vaccines’ adjuvants 

interchangeably. Such adjuvants rely on their chemical composition or biological activity to trigger 

local immune ‘recognition’ response in non-specific manner (Garçon et al., 2011; Di Pasquale et 

al., 2015). With the better understanding of immune response and vaccine-host relationships, the 

era of more sophisticated vaccines has emerged. These new vaccines needed new generation of 

integrated adjuvants. This has led to development of innovated molecular adjuvants such as 

monoclonal antibodies (MAbs), cytokines and recombinant peptides. These next-generation 

adjuvants have relatively recently begun to replace first generation adjuvants in order to offer more 

flexible and more efficient vaccines (Hatzifoti and Heath, 2007; Chen et al., 2010; Knudsen et al., 

2015). For example, with recombinant vaccines, immune enhancer peptide(s) are co-expressed 

with the vaccine’s immunogen. In other subunit vaccines, the adjuvant may be linked chemically 

to the immunogen compartment to form one multi-molecule unit (Layton et al., 2009; Chen et al., 

2012; Noh et al., 2015). As stated earlier, the first generation adjuvant targeting is induction of 

innate immune response, primarily through activation of PRRs. Unlike those traditional adjuvants, 

next-generation adjuvants are designed to target immune elements that lead to induction of a 

specific immune response. Examples include adjuvants that provide agonistic activity of specific 

costimulatory molecules on the surface of the APCs or interleukins. Thus, next-generation 

adjuvants trigger and modulate specific type and/or pathway of the immune response due to their 

high specificity (O’Hagan, 2015; De Veer and Meeusen, 2011). 

There are three primary objectives for this thesis. The first part discusses the use of single-stranded 

DNA aptamers, which have been specifically selected against the extra-domain of the chicken 

CD40 receptor, as a novel immunological agonist for this receptor. The process of the aptamers 
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selection was as described by Tuerk and Gold (1990), and Ellington and Szostak (1990) 

simultaneously to produce highly specific enriched aptamers. Physiologically, the CD40 and the 

CD40 ligand (CD40L) are presented as trimers. The oligomerization of the receptor-ligand 

requires the participation of the receptor and the ligand motifs, with cross-linking of the CD40 

subunits as a requisite for activation. To simulate this naturally occurring oligomerization, and to 

exaggerate the agonistic effect of our aptamers on the chicken CD40 receptor, the aptamers were 

amplified by rolling circle amplification (RCA) technique. Technically, the RCA technique yields 

single stranded DNA, presenting tandem repeats of the template. Accordingly, RCA is ideal 

potential option for spanning and crosslinking the trimer receptor and in increasing the possibility 

of receptor stimulation.  

The rationale behind targeting chicken CD40 receptor as that this costimulatory molecule acts 

synergistically with other costimulatory molecules and cytokines to modulate the acquired immune 

response. In fact, this molecule is required to amplify the action of APCs and activated T helper 

lymphocytes. Previously, Chen and coworkers (2010, 2012) have developed an anti–chicken 

CD40 MAb that effectively stimulated a chicken macrophage cell line (HD11) and as an adjuvant 

in vivo. Therefore, we sought to mimic the action of this novel MAb by replacing it with DNA 

aptamers. Similarly, our multivalent-polyvalent RCA products-produced aptamers, containing 

repeating monomeric aptamers, caused detectable stimulation of the chicken HD11 macrophage 

cell line. 

The second objective of this dissertation is focused on the evaluation of our sophisticated 

immunological adjuvant in vivo. We tested the ability of our aptamers-based RCA products to 

increase the efficacy and the potency of an immune response against a small, low immunogenic 

avian influenza virus (AIV) extracellular domain of the matrix protein 2 (M2e) peptide. The 
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extracellular domain, which is a 24-amino acid peptide, forms ion channels to deliver the viral 

RNA into the host’s cell. This peptide is a highly conserved peptide among all AIVs. However, 

this peptide induces very low immune response per se (Tarigan et al., 2015; Cho et al., 2015; 

Vuong et al., 2018). We prepared an immune complex composed of streptavidin as an 

immunologically inert central molecule. The streptavidin links two biotinylated RCA molecules 

with two biotinylated synthetic M2e peptides.  In fact, we replicated our previous work with this 

particular peptide with MAb as the adjuvant. We administered this immune complex [(2)RCA-

SA-(2)M2e)] in two doses (25μg/bird) and (50μg/bird) subcutaneously to broiler chickens at two 

time intervals. The results were encouraging and demonstrated that our aptamers could enhance 

the production of anti-M2e IgG in chicken sera. 

The third objective of this thesis deals with developing a method, which able to correct the 

common artifacts that commonly develop in PCR products during DNA aptamer selection 

processes. Commonly, this method depends on thermal treatment of the PCR byproducts to reduce 

probable heteroduplex formation. The results showed significant reduction in these byproducts and 

improved linear enrichment yield of the treated pools of aptamers. 
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CHAPTER I 

REVIEW OF LITERATURE 

1.1.INTRODUCTION 

In commercial poultry industry, there are many vaccines and vaccination programs are in use. 

Successful vaccine requires utilization of the proper route of administration, the proper timing, the 

proper antigenic mass and, with many vaccines, the proper adjuvant (Schijns, 2000). Generally, 

all inactivated, subunit and inactivated recombinant vaccines strictly require the input of adjuvants. 

As discussed above, the main objective of vaccination is to introduce the foreign antigen safely to 

the immune system aiming to decrease the pathogenicity of wild-type challenge by increasing the 

infectious dose 50 (ID50).  In poultry, the purpose of vaccination is to increase the herd immunity 

or to hyperimmunize breeders in order to protect progeny by maternal antibodies (Collett, 2013). 

Inactivated vaccines, however, usually only provide protection in advance of challenge with 

pathogens causing clinical disease and rarely prevent infection per se. Consequently, this applies 

selection pressure on wild-type pathogens toward either more virulent variants of the original 

pathogen, or toward antigenic change (escape mutants). To keep in pace with this phenomenon, 

vaccine developmental is a continuous process (Gandon et al., 2001; Davison, 2008, Gimeno, 

2008). Accordingly, development of adjuvants moved hand-in-hand with that of vaccines. 

Adjuvants have relatively recently moved from first-generation inorganic salts-based, and mineral 

oil-based adjuvants to highly sophisticated molecular adjuvants (Di Pasquale et al., 2015). Better 

understanding for several branches of disciplines such as immunology, microbiology and 

molecular biology has enabled designing better adjuvants. The demand for developing new 
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generations of adjuvants is highly linked to the mechanisms by which the virulent pathogens evade 

the host immune system (Furman and Davis, 2015). 

 

1.2.THE DISCOVERY OF VACCINES 

Chronologically, the power of vaccines in controlling infectious agents was recognized by 

medieval Far East, Central Asian, and Ottoman societies (Andre, 2003; Leung, 2011; Boyston, 

2012). The generally acknowledged birth of modern vaccinology, the science of vaccines, was first 

described in Europe in 1796 by Edward Jenner who utilized cowpox virus from infected humans 

to inoculate naïve humans, which reduced the incidence and severity of smallpox in inoculated 

people (Smith, 2011). Later, Louis Pasteur developed the first live attenuated bacterial vaccine 

against chicken cholera in 1879 (Pasteur, 1880; Smith, 2012). Contributions from other scientists 

such as Paul Ehrlich and Elie Metchnikoff were considerably valuable breakthroughs. These 

significant contributions from vaccinology were the fundamental baseline that suited better 

understanding for immunology basics such as the host’s primary and secondary immune responses 

(Grieg, 1902; Gordon, 2008; Valent et al., 2016). 

Since their discovery, vaccines have become a very important economic industry. Nowadays, the 

vaccine chosen depends on several epidemiological or biological factors. Of emerging diseases, 

the time line required for initial developing a vaccine and final approval usually takes 15 years on 

average with tremendous economic investment (Beasley, 2015). Fundamentally, there are two 

major types of vaccines, live vaccines and inactivated vaccines. However, the spectrum of this 

category extends to include many vaccine subtypes. Despite a prodigious number of recent 
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publications regarding poultry vaccination, most are struggling experimentally and have not yet 

become commercially viable. 

 

1.3.TYPES OF VACCINES 

1.3.1. Live vaccines 

Commercial live poultry vaccines are available for almost all avian pathogens. Technically, the 

development of this type of vaccines vary widely. This type may include traditional live vaccines, 

recombinant live vaccines, and vectored vaccines (Schat, 2015). This type is suitable for mass 

application methods with various routes, which largely meets low labor requirements for use in 

commercial poultry (Sharma. 1999).  

Live vaccines usually require minimal antigenic mass for protection since the immunogen is 

capable of multiplication within the host. This type has great advantages economically as it 

enhances rapid immune responses and provides for protection of mucosal surfaces. In many cases 

where very high levels of immunity are desired, live vaccines precede booster vaccinations with 

inactivated and/or subunit vaccines to prime the immune response. However, the immune response 

to these vaccines in poultry often relatively short-lived, and often requires multiple booster 

vaccinations for breeders or layers prior to onset of sexual maturity.  Another disadvantage of live 

vaccination is that these vaccines are not easy to handle, they demand specific storage conditions 

and exhibit relatively short shelf life, and require specific procedures prior use such as mixing with 

skim milk or other chlorine neutralizing agents (Box, 1984; Sharma, 1999; Gimeno, 2008; Collett, 

2013). Mucosal delivery of live Newcastle disease (ND) vaccine in combination with chitosan as 

the adjuvant showed elevated level of immune response (Rauw et al., 2010).   
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1.3.1.1.Live attenuated vaccines  

This type of vaccine, such as infectious bronchitis (IB) vaccine and infectious bursal disease (IBD) 

vaccine is commonly produced by the artificial attenuation of naturally virulent pathogens (Müller 

et al., 2012; Lim et al., 2012). The process of attenuation includes the passing of the pathogen in 

abnormal host (tissue culture, embryonating chicken eggs, or media), or inducing mutation(s) by 

knocking out certain gene(s) where the pathogen loses some pathogenicity but retains infectivity. 

(Yamaguchi et al., 1996; Steel et al., 2009).  

Some bacterial vaccine strains are genetically stable such as Salmonella Typhimurium χ3985, 

however, live attenuated vaccines are not always safe because of the possibility of reverting to 

virulence when used in the natural host, as there is evolutionary pressure for selection of increased 

reproductive fitness of the pathogen.  One method to develop live attenuated bacterial vaccines is 

transposon mutagenesis, which is sometimes a limitation of live bacterial vaccines due to fair 

randomness and large number of mutations obtained (Sampson et al., 2003). On the other hand, 

the possibility of recombination of attenuated viral vaccines has to be considered with live viral 

vaccine selection. Nevertheless, there is potentially tremendous reward as compared to relatively 

modest risk in that protection from common wild-type pathogens is possible (Hassan and Curtiss, 

1996; Drake, 1999; Watanabe et al., 2008; Barrett, 2015; Eschke et al., 2018). Live attenuated 

IBD vaccine strains are resident in most poultry farms and they may interfere with the future 

vaccination and maternal immunity leading to vaccine insufficiency (Müller et al., 2012). 

A new emerging type of live attenuated vaccines prepared by insertion certain antigen(s) related 

to virulence into vector genome such as live avirulent viral or bacterial vectors. Well-known viral 

vector systems that have been used in preparation of recombinant poultry vaccines are fowlpox 
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virus, Marek’s disease, herpesvirus of turkey (HVT), ND virus and baculovirus.  Many of these 

viral vectors expressing H5 avian influenza virus (AIV) antigen or ND virus antigen have been 

shown to be successful vaccine candidates. Many bacterial vector systems have been described in 

poultry including Salmonella spp. (Curtiss and Kelly, 1987; Boursnell et al., 1990; Beard et al., 

1991; Capua and Alexander, 2008). Yeast, such as Pichia pastoris, is also a good vector candidate 

for expression the protozoan antigens such as Eimeria spp (Zhang et al., 2014). 

1.3.1.2.Live avirulent vaccines  

Many variants of certain viral or bacterial pathogens that lack significant pathogenicity but retain 

infectivity have been utilized as live vaccines. Hitchner B1 and LaSota are good examples of 

lentogenic and mesogenic strains of the ND virus, respectively (intracerebral pathogenicity index 

–ICPI of the Hitchner B1 strain is 0.2, whereas the ICPI of the LaSota is 0.4). Avirulent stains 

naturally cause subclinical infections and may go unnoticeable. The development of modern 

molecular biology has greatly increased investigations in this regard, as clinical signs are not useful 

or reliable. Choosing low virulence strains as vaccine candidates must meet certain criteria such 

as immunogenicity and stability under field conditions. (Westbury et al., 1984; Alexander and 

Senne, 2008; Kapczynski et al., 2013). Genetically engineered bacteria can serve this purpose as 

well. There are many salmonellae and E.coli in use as vaccines or vaccine vectors (see below). 

1.3.2. Inactivated vaccines  

Inactivated vaccines are composed of whole killed viral or bacterial soma or any non-replicating 

antigen vaccine such as purified peptides and recombinant subunit vaccines (Schat, 2015). Due to 

inactivation or high selection and purity of the epitopes, these vaccines lack productivity and 

pathogenicity, which in turn affect their immunogenicity. Therefore, these types of vaccine often 
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required adjuvant, high antigenic mass, and more than one dose to maintain sufficient duration of 

protective immune response (Meeusen et al., 2007; Marangon and Busani, 2006). With the 

inactivated vaccines, the type of the adjuvant is highly directing and interfering the most features 

of the elicited immune response. Moreover, the most robust and uniform immune responses to 

inactivated vaccines usually follow priming by live vaccines. Priming-boosting strategy is most 

commonly used for relatively long-lived poultry such as breeders or layers. The immune response 

for inactivated vaccines is different from that induced by live vaccines. In inactivated vaccines, 

cellular immune response is relatively poor whereas, humoral immune response is the dominant 

and largely influenced by the presence and type of the adjuvant (Muir et al., 2000; Schijns et al., 

2014).  Live vaccines usually administered via mucosal route and capable of inducing secretory 

antibody (SIgA), which can reduce infectivity in addition to protection from disease, whereas 

inactivated vaccines are often administered via injection (Jayawardane and Spradbrow, 1995). 

Advantages of inactivated vaccines include increased safety, low cost of development for most 

vaccines, and relatively long shelf life. Killed vaccines are prepared by the inactivation of the 

pathogen by exposure to heat, gamma radiation or chemicals such as formaldehyde and β-

propiolactone (Astill et al., 2018).  

1.3.3. Toxoid vaccines  

This type of vaccine relies on using highly purified inactivated toxins of some bacteria. Such 

bacteria are known to induce the disease by releasing toxins (exotoxins mainly). This type of 

vaccines, such as diphtheria toxoid and tetanus toxoid vaccines, are quite common in human 

medicine and veterinary medicine other than avian medicine. However, in commercial poultry, 

few publications describing toxoid vaccines against necrotic enteritis and turkey cellulitis caused 
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by Clostridium perfringens (C. perfringens) and Clostridium septicum (C. septicum), respectively. 

C. perfringens-causing necrotic enteritis is with not clearly understood pathogenicity. However, 

recent publications have described the application of toxoid anti-C. perfringens vaccines to 

chickens with variable success (Keybum et al., 2013; da Costa et al., 2013). 

C. septicum, on the other hand, causes cellulitis and dermatitis in turkey during the production 

period. The alpha toxin of C. septicum is responsible for the clinical disease. In one approach, our 

laboratory developed a formalin-inactivated and adjuvanted toxoid vaccine against this disease 

with success (unpublished data). Formalin-induced detoxification occurs through chemical 

modification of the toxin. However, the exact chemical mode of modification is not clearly 

demonstrated (Thaysen-Andersen et al., 2007). Other chemical or heat treatments are used to 

detoxify the bacterial toxins (Galazka, 1993; Jones et al., 2008). Recently, recombinant, 

genetically engineered inactivated toxins have been tested in mammals as vaccine candidates 

(Gentschev et al., 2001). This kind of vaccines requires adjuvant and the immune response against 

this kind of vaccines is similar to that of the inactivated vaccines in many facets except, the 

antibody profile against toxoid vaccines is with narrow range due to fewer epitopes (Baxter, 2007). 

1.3.4. Recombinant vector vaccines and subunit vaccines 

The strategy of preparing recombinant vaccines depends on the presence of low virulent or 

avirulent live carrier, which gained the capacity to carry and deliver heterologous antigen(s) as a 

vaccine. Genetically engineered attenuated salmonellae and E. coli strains commonly used as 

delivery systems for many vaccines antigens. Insertion of specific antigen sequences into vector 

plasmids can produce co-expression of this particular antigen with the outer membrane proteins of 

the vector such as OmpA or LamB, thus improving the immune response against the selected 
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antigen(s). Immune enhancing effectors may be designed to co-express with the vaccine antigen, 

such as co-presentation as fusion protein.  Examples include E. coli heat-labile toxin subunit B, 

avian CD154 or ligands for PRRs such as IL-4. (O’Callaghan et al., 1990; Pistor and Hobom, 

1990; Cardenas and Clements, 1993; Wolfenden et al., 2010; Sawant et al., 2011). Genetically 

engineered yeast vectors (e.g. Pichia pastoris) are able to carry other pathogenic eukaryote genes 

to overcome post-translational modification and protein folding issues in eukaryotic proteins 

(Higgins, 1995). As discussed above, several avian viruses have been utilized as vaccine vectors. 

Those are all large DNA viruses with relatively large genomes (see above). 

Genetically re-assorted live attenuated Al vaccines have been described (Nogales and Martínez-

Sobrido, 2017). To produce this kind of vaccine, embryonating eggs (or susceptible cell line) are 

co-infected simultaneously with two viral strains, e.g. wild-type HPAI virus and reference 

attenuated virus that has high replication rate in the embryonating chicken egg or cell line. Re-

assorted strains can then be selected using serological tests. Recombination between the attenuated 

and the wild type viruses will result in some combinations, which include the attenuated HA 

cleavage site with the wild-type HPAI antigens.  

Reverse genetics vaccines are another type of recombinant (live) viral vaccines. DNA viruses and 

positive-sense RNA viruses were the first targets for reverse genetics vaccines development 

(Nogales and Martínez-Sobrido, 2017). However, several systems have been described for 

development reverse genetics vaccine against influenza virus (Horimoto and Kawaoka, 2006; 

Uchida et al., 2014). In one example, the HA and NA gene segments of the wild-type virus (e.g., 

H5N1) are inserted in the backbone of the laboratory attenuated virus (A/Puerto Rico/8/34 (PR8)). 

In plasmid-based technique, each of the viral cassettes were inserted into individual vector 

plasmids, i.e. 8 plasmids represent RNA polymerase I for 8 segments cDNA, and 4 plasmids 
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expressing polymerase II for viral proteins ([RdRp complex: PB2, PB1and PA] and NP for viral 

RNP assembly). The cassettes include the viral RNA polymerase I transcription cassettes with 

polymerase promotor and terminator. Multiple basic amino acids of HA from LPAI virus replace 

the motif of the HPAI virus HA counterpart. All the viral HA, NA, and other viral proteins 

complementary DNA (cDNA) are all combined in the cassettes between the promotor and the 

terminator (Neumann et al., 2005; Uchida et al., 2014). Recently, less plasmids based systems 

have been described. Adjuvants reliable for this type of vaccines could be aluminum salts, or 

squalene-based oil emulsions or other next-generation adjuvants (Nogales and Martínez-Sobrido, 

2017). 

1.3.5. Conjugate vaccines 

Some antigens of pathogens express low immunogenicity, especially in newborns, such as 

bacterial polysaccharides and bacterial capsular polysaccharides. Because these antigens are non-

proteinaceous and less antigenic, these molecules directly activate B cells with no T cells 

recruitment (T cell-independent B cell activation). The sequelae of this pathway is absence of 

memory cells, nevertheless, antibody class switching truly occurs (von Bülow et al., 2001; Shulga-

Morskaya et al., 2004). Other pathogens have certain strategies of evading the host immune system 

by concealing their surface antigens (antigenic disguise) or inhibiting certain immunological 

pathways (Finlay and McFadden, 2006).  

As the name refers, conjugate vaccines act to link host immune responses to well identified 

immunogen in conjugation with low immunogenic antigens of a disguise invader. With this type 

of vaccines, low immunogenic haptens covalently conjugated to carrier protein render them 
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inducting well-defined immune response (Avery and Goebel, 1929; Finn, 2004; Colombo et al., 

2018). 

1.3.6. DNA vaccines 

This type of vaccine makes benefit of vector plasmids harboring pathogen encoded gene(s) 

together with promotor/terminator sequences. This plasmid promotes the expression of the 

pathogen gene(s) directly onto the recipient avian cells (Meunier et al., 2016). In fact, this type of 

vaccine is a developed recombinant vaccine; it utilizes the recipient somatic cells as the expression 

system for the vaccine antigen rather than other unicellular or viral vectors. In this way, recipient 

somatic cells will present vaccine antigens on their MHC class I molecules resulting in the 

cytotoxic T cell activation pathway. Many poultry DNA vaccines have been developed against 

avian pathogens such as anti-AI vaccine (Robinson et al., 1993; Suarez and Schultz-Cherry, 2000).  

The limitation of this approach, however, is selection of the plasmid administration tool and the 

target tissue for vaccination. Some publications describe using viable attenuated viruses or bacteria 

as the plasmid injection tools. These organisms protect the plasmid from the degradation by the 

recipient nucleases and promote the uptake of the plasmid by APCs. With these delivering systems, 

humoral immune response will develop (Sizemore et al., 1995; Liu, 2003).  

1.3.7. Virus-like particles and virosome vaccines 

These types of vaccines consist of the non-genetic antigenic components of enveloped viruses, 

which are specially prepared. Virus-like particles (VLPs) and virosomes are alike with few 

differences. They both lacking the genetic materials but retaining the outer viral coat assembly and 

native antigens (Moser et al., 2013; Lua et al., 2014). VLPs are produced by recombinant 
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technology from naked and enveloped viruses by inserting certain viral protein genes in 

recombinant vector plasmid of higher eukaryotic cells of plants, insects, yeast, or embryonating 

chicken eggs. After the vector replication, the resulted VLPs are self-assembled and could be 

harvested using several techniques such as ultracentrifugation. Eventually, the VLPs consist of all 

virus antigens and lack the viral genome (Lua et al., 2014). 

Virosomes, on the other hand, are produced in vivo from enveloped viruses such as AIV by three 

steps: 1) detergent solubilization of the viral coat, 2) removing the viral nucleocapsid by 

ultracentrifugation, and 3) elution of the detergent (Stegmann et al., 1987; Huckriede et al., 2005). 

Influenza virus VLPs and virosomes have been shown to have the ability to bind to the host cell 

membrane due to the presence of biologically active hemagglutinin (HA). The immunological 

significance of the HA is that this viral protein is a major target of anti-influenza immune response 

(Huckriede et al., 2005). Recently, recombinant HA protein of influenza virus has been expressed 

in a bacterial vector, which was then conjugated with bacteriophage-derived VLPs, showed 

protection against the challenge with the wild-type virus (Jegerlehner et al., 2013). 

 

1.4.THE DISCOVERY OF VACCINE ADJUVANTS AND THEIR TYPES 

Chronologically, the discovery of the vaccine adjuvants and their development is closely related 

to the development of inactivated vaccines (Di Pasquale et al., 2015). There are several definitions 

for vaccine adjuvants or immunological adjuvants in literature. Generally, vaccine adjuvants are 

substances that promote potency, efficacy and persistence of adaptive immune response to an 

antigen. In essence, suitable adjuvants have low or non-immunogenicity de novo. Therefore, the 

development of adjuvant is closely related to the better understanding of immunology and biology. 
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With the basic level of understanding for these sciences, simple chemical adjuvants were common. 

When the discipline of immunology and microbiology expanded, more adjuvants that are more 

sophisticated then emerged. The first attempt to develop an adjuvant was reported by Gaston 

Ramon, a French veterinarian, in 1924 when he injected inactivated diphtheria or tetanus toxoid 

in combination with starch, breadcrumbs or tapioca in horses. He recorded high anti-diphtheria 

and anti-tetanus antibodies in horses that developed abscesses at the injection site (Cited by Vogel 

and Hem, 2004). Further investigation by other scientists demonstrated that aluminum salts and 

mineral oil compounds had the similar effects. In 1932, aluminum salts were approved for use in 

human vaccines. However, this adjuvant was only successful with killed vaccines and those 

vaccine that targeting humoral immune response (as reviewed by Spickler and Roth, 2003). For 

viral pathogens or intercellular pathogens in general, the cell-mediated branch of the acquired 

immune response is required. Thus, different adjuvants were required. Unlike old killed vaccines 

which may harbor traces of elements of the pathogen that can serve as a casual adjuvant, modern 

highly purified vaccines are less successful in induction an immune response de novo (O’Hagan, 

1997; Schijns, 2000). It is difficult task to create one adjuvant category because of the huge 

diversity of these molecules (biologically and chemically) and rudimentary understanding for 

required modes of action. However, with recently improved understanding of molecular 

immunology, the mechanisms of actions of adjuvants became clearer. Adjuvants can now be 

classified according to their chemical composition or their immunological action. As described by 

Schijns (2000), Schijns and co-workers (2008), and Schijns (2017), there are two immunological 

groups of adjuvants described as signal-1 enhancers/potentiators and signal-2 

enhancers/potentiators (please see below).  
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Signal-1 potentiators’ category includes TCR-peptide-MHC class II molecular interactions. 

However, this interaction is not always sufficient to ignite full immune response process because 

signal-0 (danger signal) is also required (signals 0, 1, 2 and 3 models are reviewed in detail below). 

Traditional adjuvants such as aluminum salts and oil emulsions that prolong the vaccine antigen 

release from the inoculation site are all under this category (Schijns, 2017). Unless adjuvants are 

included, inactivated vaccines may be ignored by the acquired immune system despite the presence 

of sufficient antigenic mass. It is now well understood that innate immune responses provides 

signal-0 via the interactions of PRRs-PAMPs (Spickler and Roth, 2003). As stated earlier, DAMPs 

could provide robust innate immune responses in sterile inflammation. These molecules, such as 

extracellular high mobility group box 1 (HMGB1), and extracellular heat shock proteins (HSPs), 

show the ability to trigger innate immune response via receptor for advanced glycation end 

products (RAGE) and TLR receptors, respectively (Matzinger, 1994; Tang et al., 2012). It is now 

well understood that the following adjuvants category depends on adjuvant input within the time 

course of innate and acquired immune response to adjuvanted vaccines. The exception are VLPs 

and virosomes vaccines. These vaccines may elicit protective immune response in absence of 

adjuvants (viral genomic RNA or DNA, or artificial adjuvant). This might be attributed to the 

highly concentrated and highly ordered epitopes that show tandem repeat order. In addition, these 

vaccines directly activate APCs (Schijns, 2017). 

Signal-2 potentiators, on the other hand, act to stimulate the APCs (DCs in particular) with 

concurrence of costimulatory molecules upregulation. These molecules act as adjuvants via 

agonistic engagement with specific type of PRRs on the APCs (Schijns, 2017). 
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1.4.1. Signal-1 enhancers/potentiators  

Adjuvants under this category act directly by influencing the introduction of the vaccine antigen 

to innate immune cells, more specifically, APCs. This category includes the adjuvants that extend 

the availability time of the vaccine antigen, and create danger signal to attract the interested 

inflammatory and innate immune cells. For example, this kind of adjuvants may include aluminum 

salts, oil emulsions, TLR agonists, interferon (IFN-γ), and interleukins (IL-1β) (Gupta et al., 

2014a; Gupta et al., 2014b; Ramakrishnan et al., 2015). The introductory effect of these adjuvants 

has to be accompanied by danger signal through irritation and local damage. As discussed above, 

natural immune response starts with signal-0, which represented by the DAMPs/PAMPs 

interaction with PRRs on the DCs. Next, DCs become mature with changed cytokine profile, which 

lead to homing of the mature DCs to marginal draining lymph nodes (dLN). Naïve T cells, on the 

other hand, do not have the receptors or cytokines profile to leave the secondary lymphoid organs 

or draining lymphatic vessels in mammals. Within the secondary lymphoid organs, naïve T cells 

only encounter processed and presented foreign antigen by mature DCs homing to dLN in 

mammals. DCs require input from injured tissue and other inflammatory cells in the form of 

chemokines and cytokines to direct lymphocytic chemotaxis.  

As discussed above, PAMPs-PRRs and/or coupling with DAMPs are crucial events to trigger 

innate immune responses (Coffman et al., 2010; Matzinger, 1994). The nature of the pathogenic 

antigen determines the course of the subsequent acquired immune response. When foreign antigens 

are introduced parenterally, they must cause stimulation of DCs to act as a vaccine. For example, 

with aluminum salts-based adjuvants, the traditional thinking has been that these adjuvants simply 

adsorb and slowly release the antigen locally. However, they also offer a degree of irritation, 

stimulating innate immune responses, thereby stimulating immature DCs via their PRRs. This 
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phenomenon provides multiple mechanisms for interaction of vaccine antigens with DCs. In this 

way, adjuvants such as aluminum salts may promote a prolonged immune response signal-0 

(Marrack et al., 2009). Evidence suggests that aluminum salts result in local necrosis and uric acid 

production. This pathway leads to stimulation of DCs via NOD-like receptor (NLRs) and NLRP3 

inflammasome activation (Mutwiri et al., 2011). However, several more recent observations 

suggest that the actual mechanisms involved may be more complicated. For example, in mammals, 

the cascade of DC innate activation has been reported to be dependent upon inflammasome 

formation rather than TLRs interaction. NLRP3 inflammasome signaling could instruct the 

production of pro-inflammatory cytokines such as IL-1β and IL-18 by macrophages (Eisenbarth 

et al., 2008; Vance et al., 2009; Wilson et al., 2014). As described above, this pathway is dependent 

upon priming with PAMPs-PRRs. Not all aluminum salts-based vaccines carry microbial PAMPs 

(Savelkoul et al., 2015).  

Recent studies have shown that aluminum salts have the capacity for complement fixation, 

mammalian eosinophil and neutrophil recruitment and granulomatous lesion formation but not 

direct DC maturation (Shamri et al., 2011; Ghimire, 2015). Thus, the ability of aluminum salts to 

mediate PRRs is questionable. Moreover, the mode of action of aluminum salts-based, oil-based 

emulsions, Freund’s complete and Freund’s incomplete adjuvants is not well understood. Instead, 

aluminum salts require synergistic effect of LPS to stimulate the action of caspase-1 in DCs with 

subsequent release of IL-1β and IL-18. Conversely, MyD88-knockout mice, which lack IL-1β and 

IL-18, were able to respond normally to aluminum salts-based adjuvanted vaccines (Franchi and 

Núñez, 2008; McKee et al., 2009; Mosaheb et al., 2017). Studies on water-in-oil emulsions 

suggested that the vaccine antigen enclosed in the aqueous phase of the adjuvant, whereas oil-in-

water adjuvants trap the antigen in the oil phase. Therefore, hydrophilic antigens work better with 
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water-in-oil adjuvants and hydrophobic antigens work better with oil-in-water adjuvants. Oil 

emulsions and Freund-based adjuvants suggested to work by depot-slow release of the antigen 

hypothesis (Stills, 2005; Awate et al., 2013). Furthermore, there is solid evidence that the DCs 

function to carry a vaccine antigen with labeled adjuvant to marginal LNs in mammals (Herbert, 

1968; Dupuis et al., 1998; Jansen et al., 2007). 

1.4.2. Signal-2 enhancers/potentiators  

As stated above, PRRs are the receptors responsible for recognizing the cognate PAMPs (see 

above). These receptors are the keystone in innate immune recognition pattern (O’Hagan et al., 

2017). In fact, PRRs are highly conserved among vertebrates and are able to recognize their 

counterparts of highly conserved PAMPs of bacteria, viruses and fungi. The class of PRRs 

involved in initiation of the innate immune response determines the PPR-dependent acquired 

immune response. For example, Toll-like receptors (TLRs) guide acquired immune responses 

differentially from those guided by NLRs with initiation of innate immunity. Conversely, 

Matzinger (1994) hypothesized that the immune system is more activated by danger signals rather 

than non-self signals. Accordingly, danger signal recognition via DAMPs, leads to direct or 

indirect upregulation of APC costimulatory molecules (signal-2). 

Unlike signal-1 enhancer adjuvants, signal-2 enhancer adjuvants act to deliver the vaccine antigen 

directly to immune cells instead of storage behavior. Adjuvants under this category act by altering 

the cytokines profile and/or expression of costimulatory molecules (Sprikler and Roth, 2003). 

When humoral immune response is required for protecting against certain types of pathogens, 

cytokine profiles play the critical role in determining the antibody abundance and isotype. 

Different antibody isotypes harbor different abilities in neutralization and opsonization of the 
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pathogen and complement fixation. Cytokines such as interleukins (IL-1β, IL-2 and IL-18), type I 

interferons (α and β), MGF and G-CSF may be processed chemically or by co-expression with the 

pathogen gene to act as potential adjuvants (Hilton et al., 2002; Rahman and Eo, 2012). For 

example, type I interferons induce upregulation of CD40, CD80, CD86, MHC class I and class II 

molecules. When recombinant influenza vaccine carrying interferon was administered, significant 

increased levels of protection were reported (Proietti et al., 2002; Hervas-Stubbs et al., 2011).  

Our lab group have established that using extracellular HMGB1 as an adjuvant was quite 

successful (Kuttappan et al., 2013). Extracellular HMGB1 is a ligand for RAGE, which mediates 

DC maturation (Grover et al., 2013). Finally, costimulatory molecule receptor-ligand pathways 

have been recently investigated, and shown to be effective. For example, anti-CD40 MAb showed 

sustainable adjuvant effects in this category in mice (Hatzifoti et al., 2008). More recently, an anti-

CD40 MAb has been demonstrated to be similarly effective in chickens when linked to a variety 

of antigens (Chen et al., 2010; Chen et al., 2012; Chou et al., 2016; Martin et al., 2017; Vuong et 

al., 2018). 

   

1.5.CD40 RECEPTOR 

Communication among cells occurs physically and chemically via various receptors and ligands. 

Cell interaction and cell signaling are essential tasks to induct, sustain and terminate an immune 

response. Several molecules have been characterized as costimulatory molecules within the 

adaptive immune response. Cluster of differentiation 40 (CD40) is one of these molecules that 

participates significantly in the course of developing a humoral immune response. This molecule 

was firstly reported as a surface antigen protein expressed on human bladder carcinoma cells 
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(Koho et al., 1984). Further studies have shown that this molecule is naturally expressed as a B-

lymphocyte cell surface receptor that regulates humoral immune response (Paulie et al., 1985), as 

well as on other APCs. (Stout and Suttles, 1996; van Kooten and Banchereau, 1997; Ma and Clark, 

2009; Suttles and Stout, 2009). This receptor, which belongs to tumor necrosis factor receptor 

(TNF-R) superfamily, is a 48kDa glycoprotein with extracellular domain, leader sequence, 

transmembrane domain and intracellular domain. The extracellular domain is a trimer whereas; 

the cytoplasmic domains are several TNFR-associated factors (TRAFs) (Braesch-Andersen et al., 

1989; Bajorath and Aruffo, 1997; McWhirter et al., 1999). 

The ligand for the CD40 receptor (CD154) is a 34-39kDa protein with trimeric extracellular 

domain that belongs to TNF superfamily. The ligand is transiently expressed by activated CD4+ 

TH lymphocytes. However, recent studies have shown that CD40L (CD154) is also expressed on 

DCs and activated B cells. In DCs, the regulation of adaptive immune response via this receptor 

is well identified (Ma and Clark, 2009). As described above, the expression of CD40 and CD40L 

requires proceeding signal-0 and signal-1. Naïve B cells become activated through the engagement 

of B cell receptors with foreign peptide antigen at the periphery, thereby acting as the APC for 

resting T cells at the T zone within dLN.  

Engagement of TCR on naïve T cell with presented peptide that is in association with the MHC 

class II molecule on the B cell leads to activation and differentiation of the naïve T cells into TH 

cells. Both activated cells begin to express costimulatory molecules such as CD40, CD80, CD86 

and MHC class II molecules on B cells as well as transient expression of CD40L on activated T 

cells. Therefore, activated T cells also participate in activation of B cells via CD40-CD40L 

pathway. The subsequent downstream cell signaling within activated B cells is differentiation into 
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plasma cells, which produce abundant antibodies with high affinity and specificity to the target 

antigen, as well as leading to memory cell development (Parker, 1993; Ratcliffe, 2008). 

 

1.6.CD40 RECEPTOR AGONISTS AND ANTAGONISTS 

Most publications on CD40 agonists and antagonists are dealing with mammalian anti-cancer 

therapy research and autoimmunity, respectively (Vonderheide et al., 2013; Karnell et al., 2018). 

Recent studies showed that the use of different agonistic MAbs to CD40 might lead to induction 

of adaptive immune responses or mediate cytotoxicity against specific CD40-expressing 

lymphomas. These approaches are promising tools in cancer immunotherapy (Tai et al., 2005; 

Vonderheide and Glennie, 2013). Activation of tumor-associated macrophages via CD40 revert 

the suppressive action of tumor cells, and render them active antitumor phagocytes instead of 

tumor-promoting cells. CD40 agonists stimulate other APCs by triggering tumor-specific T cell 

immune response (Beatty et al., 2011; Palma and Lewis, 2013; Vonderheide et al., 2013). Anti-

CD40 MAbs, soluble CD40L or viral-vector expressing CD40L have been shown to mimic 

humoral or cellular immune responses to a variety of T cell-dependent or independent immune 

responses (Hanyu et al., 2008; Thompson et al., 2015). 

Anti-CD40 MAbs seem to be promising vaccine adjuvants that act alone or in combination with 

other molecules in several species (Thompson et al., 2015; Martin et al., 2017). In one approach, 

our group has recently shown that targeting chicken CD40 receptors for activation with anti-

chicken CD40 MAb was extremely successful for induction of robust and long lasting immune 

responses (Chen et al., 2010; Chen et al., 2012; Chou et al., 2016). Anti-CD40 MAbs have also 

been demonstrated to induce either agonistic or antagonistic effects dependent upon site(s) of 
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CD40 binding (Yu et al., 2018). Clearly, anti-CD40 agonistics are promising immunological 

adjuvants (Martin et al., 2017).  

 

1.7.DNA APTAMERS AS RECEPTOR AGONISTS 

Aptamers, artificially prepared oligonucleotide molecules or peptides, have drawn attention as 

alternatives to MAbs in many biological systems with multiple advantages (Reverdatto et al., 

2015). Each RNA or single-strand DNA (ssDNA) molecule expresses a unique three-dimensional 

structure according to its sequence. The almost infinite number of folding patterns created by 

unique nucleotide sequences creates multiple possibilities, with low frequency, which are able to 

uniquely bind to specific complex molecules such as receptors. By creating random ssDNA 

sequences and sequentially enriching those expressing binding to a target molecule, individual 

aptamers can be selected with high affinity for those targets.  This phenomenon enables aptamers 

to have affinities and specificities to target molecules that may exceed those of MAbs to the same 

target molecules. In practice, aptamers are identified via an in vitro repetitive selection process 

from a combinatorial oligonucleotides library, which is abbreviated as SELEX, standing for 

Systematic Evolution of Ligands by EXponential enrichment. The characterization of the enriched 

aptamers is with mathematical prediction via bioinformatics. Conversely, MAbs require animals 

for production. Other characteristics of aptamers include thermostability, chemical resistance and 

reproducibility. For example, they can be shared as a known sequence rather than a biological 

product, providing an additional advantage over MAbs (Tuerk and Gold, 1990; Ellington and 

Szostak, 1990; Irvine et al., 1991; Hermann and Petel, 2000; Baker, 2015; Bradbury, 2015; Jeddi 

and Saiz, 2017). There are many proposed and proven uses of selected aptamers including 
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therapeutic applications, purification of molecules, studying biological pathways, and developing 

biomarkers (Centi et al., 2007; Dollins et al., 2008; Kunii et al., 2011; Zhang et al., 2012; Wang 

and Li, 2013). 

Few publications describe aptamers as potent immunological adjuvants. Pastor and coworkers 

(2013) showed that anti-CD28 aptamers could act as a potential adjuvant. They described different 

aptamers that acted to stimulate or block the receptor. Another study has shown that anti-OX40 

aptamers could enhance the action of an antitumor vaccine (Weinberg, 2002).   

There is currently a dearth of published information discussing the economic value of adjuvants. 

Generally, optimal price of vaccine/vaccination unit to the price of the protected 

individual/production is critical in poultry. Herein, cheaper vaccines with cheaper application 

processes are favorable for commercial poultry. Monoclonal antibody use as a commercial vaccine 

adjuvant would likely be cost-prohibitive for commercial poultry. As anti-CD40 MAb have been 

demonstrated to be highly effective in poultry (Chou et al., 2016; Vuong et al., 2018), the potential 

for cost-effective mimicry of this response through selected anti-CD40 aptamers is potentially 

appealing.   

Even within well-accepted commercial adjuvants, costs of specific adjuvants vary widely, as do 

their efficacy and duration of elicited response.  For example, aluminum salts are markedly less 

expensive than emulsion oils, but the immune response is generally higher with oil-based 

adjuvanted vaccines (Astudillo and Auge de Mello, 1980 as cited by James and Rushton, 2002; 

Rushton, 2009). Thus, it is possible that effective aptamer-directed antigen delivery methods could 

potentially be appealing from both a cost and efficacy perspective, although this has not been 

evaluated. 



28 

1.8.CONCLUSIONS 

The increasing demand for antibiotic-free animal products in concurrence with emergence of 

antibiotic resistant bacteria, and the emergence of highly devastating viral pandemics have 

contributed to strong efforts toward vaccination-mediated prophylaxis for commercial poultry 

(Hoelzer et al., 2018; de Vries et al., 2018). Developing new vaccines and updating old vaccines 

is a promising field within animal agriculture and for poultry production specifically. Improved 

understanding of poultry pathogens and avian immune responses will likely enable development 

of increasingly sophisticated and more effective vaccines. Subunit vaccines are currently the most 

intensely investigated vaccines for poultry. However, such vaccines are less immunogenic and 

need the participation of adjuvant to achieve effective immune response (Garçon et al., 2011; 

Miligan, 2015).  

Adjuvants are currently required for most candidate subunit vaccines, due to the relatively low 

immunogenicity of these antigens, and adjuvants are required for durable responses for vaccination 

of pullets intended to protect breeders for approximately one year of production. Currently used 

traditional commercial vaccine adjuvants typically enhance the immune response by facilitating 

the engulfment of the vaccine antigen. This enhancement is by promoting signal-1 or signal-2 

during the adaptive immune response. Signal-1 enhancer adjuvants promote the engulfment of the 

foreign antigen via PRRs and may promote other innate immune response elements such as 

complement fixation (Coffman et al., 2010; Schijns, 2017). Signal-2 enhancer adjuvants target 

costimulatory receptors such as CD40 as one of the central molecules in the adaptive immune 

response activation. This costimulatory molecule orchestrates the T-dependent humoral immune 

response by providing co-stimulation to both T cells and APCs. Targeting this molecule enhances 

the action of APC in multi-dimensional ways. On DCs, this molecule acts a costimulatory receptor, 
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which when engaged with CD40L on activated T cell; both cells will pass through downstream 

activation resulting in differentiation of activated T cell into TH cell subsets such as TH1, TH2, TH9, 

TH17 or Treg (Ma and Clark, 2009). The TH subset differentiation depends on the nature of the 

antigen that affects the cytokine profile of the DC, which in turn determines the TH subtype. For B 

cell mediated antibody production, isotype switching and affinity maturation are all events, which 

follow CD40-CD40L interaction through the T-dependent B cell activation pathway. Involvement 

of B cell presentation of certain antigens for naïve T cells is an essential event for effective humoral 

immune responses (Parker, 1993; Ratcliffe, 2008).  

Several publications have showed that agonists for the CD40 could trigger an immune response 

resembling the natural immune response against wild-type pathogens. These CD40 agonists could 

act successfully as adjuvants such as soluble CD40L and anti-CD40 MAbs. The MAb-adjuvanted 

vaccines showed robust immune response with haptens of low immunogenicity. One of the 

limitations of using MAbs as an adjuvant for commercial poultry vaccines is the cost and handling 

requirements of this kind of adjuvanted vaccine. Additionally, the MAbs are immunogenic 

themselves and may interfere with subsequent booster-initiated immune responses (Chen et al., 

2010; Chen et al., 2012; Chou et al., 2016; Martin et al., 2017; Vuong et al., 2018).  

This dissertation describes investigations related to selection and design of anti-CD40 aptamers as 

a potential alternative to MAb-directed CD40 activation and presentation of antigenic cargo.  The 

potential advantages of this approach could include improved stability, low cost of production, and 

robust induction of immune responses as compared to traditional adjuvants for chickens.  

In broader range, our anti-CD40 aptamers could lead to new insight of receptor activation. For 

example, the activation of the CD40 receptor by ligation with CD40 agonists on tumor-associated 
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macrophages – M2 cells reverts the inhibitory effect of these cells on cytotoxic T cell and enhance 

phagocytic activity of the M1 TAMs (Hoves et al., 2018). 
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ABSTRACT 

Cluster of differentiation 40 (CD40) is a costimulatory receptor molecule on antigen presenting 

cells (APCs) that mediates specific immune responses when interacts with its ligand 

(CD40L/CD154) on activated T helper cells. Previously, anti-chicken CD40 monoclonal antibody 

has been proven to induce similar effect on the APCs. In this study, we aimed to mimic the 

naturally or artificially occurring APCs activation by developing DNA aptamer agonist to the 

CD40 receptor. First, we developed DNA aptamers to chicken CD40 extra domain as a bait. Next, 

the selected aptamers served as templates for rolling circle amplification (RCA) procedure. RCA 

products would enhance aptamers effect by spanning larger space with stronger binding affinity to 

CD40. Eight DNA aptamer candidates were used to generate four RCA products (namely, RCAI-

RCAIV). The signal transduction ability of the RCA was evaluated on chicken HD11 macrophage 

cell line. The results showed that all RCA products (RCA I in particular) were able to activate the 

macrophage HD11 cell line. Additionally, limited proteolysis liquid chromatography electrospray 

ionization mass spectrometry experiment showed inhibition in trypsin digestion of CD40 by 

Aptamers and determined the amino acid sequences where the candidate aptamers attach the CD40 

receptor. Our work could bring new insight into the use of aptamers, in the form of RCA, for 

stimulation/blocking of many receptor-ligand interactions. 

 

Keywords: Chicken CD40 receptor agonist, DNA aptamers, Rolling circle amplification, Mass 

spectrometry 
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2.1.INTRODUCTION 

Cluster of differentiation 40 (CD40) was firstly reported as a surface antigen protein expressed on 

human bladder carcinoma cells (Koho et al., 1984). Further studies have shown that this antigen 

is naturally expressed as a B-lymphocyte cell surface receptor that regulates humoral immune 

response. Now, CD40 is a costimulatory receptor that expressed on variety of immune and non-

immune cells including antigen-presenting cells (APCs) and regulates adaptive immune response. 

The ligand for the CD40 receptor (CD40L/CD154) transiently expressed by activated CD4+ T 

helper (TH) lymphocytes (Amitage et al., 1992; Banchereau et al., 1994; Foy et al., 1996; Stout 

and Suttles, 1996; van Kooten and Banchereau, 1997; Bajorath and Aruffo, 1997; Ma and Clark, 

2009; Suttles and Stout, 2009; Kawabe et al., 2011).  

Upon maturation, DCs express CD40 as costimulatory molecules. In a classical adaptive 

immunity, four signals (0-3) are required for optimal DC/TH activation and differentiation (see 

Chapter I, Review of Literature). Immature peripheral DCs recognize highly conserved PAMPs 

and DAMPs via different receptors such as the PRRs and RAGE receptor (signal-0) (Matzinger, 

1994; Sousa, 2004; Hou et al., 2008; Kagan, 2012). Once the DC engulfs foreign antigenic peptide, 

it starts a process of maturation with processing and presenting of this peptide on its own major 

histocompatibility complex class II (MHC class II) molecule. Here, maturing DCs exhibit changes 

in cytokines production profile with concurrence homing to T zone at the draining lymph nodes. 

At this point, the DC is with less phagocytic capacity and more presenting activity. At the T zone 

of the lymph node, naïve T cell receptor (TCR) engages processed peptide on cognate MHC class 

II molecule on the DC (signal-1). This engagement activates T cell and render it expressing CD40L 

transiently with other costimulatory molecules and cytokines. The crosslinking of these 

costimulatory molecules on both cells represents signal-2. This will lead to downstream cell 
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signaling in both DCs and T cells. Cytokines from the DC such interleukin (IL)-1 family and IL-

2 serve as signal-3 for the T cells differentiation. Similarly, activated T cell produces cytokines 

that affect the same cell or neighboring cells such as IL-2 and IL-4. The type of the T cell cytokines 

depends on the type of the foreign peptide that was initially presented by the DC. The antigen-

specific signal-1 is necessarily inefficient to stimulate naïve T cell full differentiation into effector 

TH cells (subsets). T cell needs all the signals to complete proliferation and subsets differentiation 

such as TH1 or TH2 (Curtsinger et al., 1999; Erf, 2004; Corthay, 2006; Thaiss et al., 2011; Abbas 

et al., 2012). When B cells involved in antigen presentation, CD40-CD40L engagement is crucial 

event in T-cell-dependent B-cell activation and proliferation. CD40 participates in T-lymphocyte-

dependent antibody class switching, antibody affinity maturation, development of memory B cells 

and formation of the germinal centers (Noelle et al., 1992; Alvarez et al., 2008; Stavnezer, et al., 

2008; Elgueta, et al., 2009; Wu et al., 2010).  

Recent studies showed that the use of different agonists to CD40 leads to induction of adaptive 

immune response useful in cancer immunotherapy (Vonderheide and Glennie, 2013). CD40 

agonists revert the suppressive effect of tumor cells on macrophages, rendering them active 

antitumor phagocytes instead of tumor-promoting cells. CD40 agonists stimulate other APCs by 

triggering tumor-specific T cell immune response (Beatty et al., 2011; Palma and Lewis, 2013; 

Vonderheide et al., 2013). Anti-CD40 monoclonal antibodies (MAbs), soluble CD40L or viral-

vector expressing CD40L have shown to mimic humoral or cellular immune responses to a verity 

of T cell-dependent or independent immune responses (Dullforce et al., 1998; Hanyu et al., 2008; 

Thompson et al., 2015). 

In one approach, our group has recently shown that targeting chicken CD40 receptor for activation 

with anti-chicken CD40 MAb was extremely successful with robust immune responses against 
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haptens (Chen et al., 2010; Chen et al., 2012; Chou et al., 2016; Vuong et al., 2018). Anti-CD40 

MAbs showed several biological capacities such as agonistic or antagonistic effects. Anti-CD40 

agonistics are promising immunological adjuvants (Martin et al., 2017; Vuong et al., 2018). The 

limitation of using MAbs as vaccine adjuvants is the presence of the MAbs themselves due to their 

high immunogenicity that might interfere with the vaccine action, difficult and costly production 

(Chames et al., 2009).  

Therefore, the use of alternative, biologically accepted and low-immunogenic molecules, would 

be more beneficial for practical in vivo applications. Accordingly, we sought to utilize aptamers to 

substitute anti-chicken CD40 MAb. The folding pattern of single stranded oligonucleotides creates 

a molecular structure in which the ligand becomes incorporated. This phenomenon enables 

aptamers to have affinities and specificities to target molecules that may exceed those of MAbs to 

the same molecule. Many advantages of aptamers over MAbs; aptamers selection is via in vitro 

process. In addition, aptamers are thermostable, chemically resistant, reproducible and low 

immunogenic (Irvine et al., 1991; Hermann and Petel, 2000; Dollins et al., 2008; Baker, 2015; 

Bradbury, 2015; Jeddi and Saiz, 2017). 

In this study, we sought to stimulate chicken macrophage HD11 cell line by developing agonistic 

anti-chicken CD40 DNA aptamers. First, we developed anti-chicken CD40 extra domain DNA 

aptamer by systemic evolution of ligands by exponential enrichment (SELEX) procedure (Tuerk 

and Gold, 1990; Ellington and Szostak, 1990). Eight aptamer candidates reproduced in form of 

four rolling circle amplification (RCA) products (namely, RCAI –IV) (Ali et al., 2014; Lv et al., 

2015; Mohsen and Kool, 2016). RCA products exhibit thousands of tandemly repeated sequences 

of the selected aptamers to mimic the naturally occurring receptor-ligand oligomerization more 
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closely. We tested the RCA products on the HD11 cells line to record their stimulation via nitric 

oxide liberation by Griess assay (Crippen et al., 2003). 

Moreover, we specified the amino acid sequences crucial for receptor ligand interaction and 

receptor stimulation by limited proteolysis electrospray ionization liquid chromatography mass 

spectrometry (LC-ESI-MS) experiment. The pairing LC-ESI-MS with limited proteolysis studies 

to map the surface of proteins with unknown three-dimensional structures is becoming an 

invaluable technique (Sides et al., 2012). Using similar concept, we determined those sites that 

hindered to the enzyme of proteolysis and they can be detected by reduction in signal 

corresponding to the tryptic peptide associated with the site. 

 

2.2.MATERIALS AND METHODS 

2.2.1. Target protein, generation of recombinant extracellular domain of the chicken CD40.  

Our target protein was the chicken CD40 receptor; however, the recombinant protein used for the 

aptamers selection was chicken CD40 extracellular domain protein (chCD40ED). The protein was 

a kind gift from Dr. Luc R. Berghman at the University of Texas A&M. The recombinant 

chCD40ED protein was expressed in hybridomas, human embryonic kidney (HEK)-293 Freestyle 

cells in protein-free medium (Antagene Inc., Santa Clara, CA, USA) with concentration of 

1mg/ml. Briefly, total RNA was isolated from chicken spleen and cDNA was synthesized 

accordingly. The sequence encoding the chCD40ED, which was already determined, was 

amplified with nested PCR and the gene encoding the protein was cloned into expression vector 

pcDNA5 (Invitrogen) (Chen et al., 2010). 



52 

According to the mass-spectrometry analysis, the protein was with MW around 25712 Da (Figure 

2.5). The protein’s stock was diluted (w/v) with sterile 1X phosphate buffer saline (1XPBS) to 

concentration of 15μg/L and aliquoted into 1ml in sterile tubes and stored at –80°C. 

 2.2.2. Single stranded DNA library and primers  

A randomized ssDNA library, forward and reverse primers were all purchased from Integrated 

DNA Technologies, Inc. (IDT, Coralville, Iowa, USA). The oligonucleotide library design 

included flanking the variable region (40 nucleotides) with constant 20 nucleotides forward primer 

sequence at the upstream and constant 20 nucleotides reverse primer-binding site at the 

downstream. The randomized region of the library, which was with 40 nucleotides, was with 

theoretical diversity of 1X1024 random sequences (Table 2.1). The random region of the library 

designation based on equal incorporation of A, C, G and T bases at each position. The reverse 

primer was ordered as phosphorylated at the upstream to facilitate the action of the λ-exonuclease 

enzyme in the later step during the enrichment cycles. The ssDNA library and the primers were 

dissolved in sterile 1XTE buffer (Cat# T9285, Sigma-Aldrich), to 100μM according to the 

manufacturer and stored at -20ºC.   

2.2.3. In vitro aptamers selection procedure 

The procedure of aptamers selection was carried out using SELEX procedure as described 

elsewhere (Tuerk and Gold, 1990; Ellington and Szostak, 1990; Irvine et al., 1991). At the first 

round, 35μl of the ssDNA library (1μg/μl) equivalent to ~6 X 1014 units was diluted with 115μl 

binding buffer (50mM Tris HCl, 25mM NaCl, 5mM MgCl2, 10mM DTT (dithiothreitol), pH 7.5) 

(Wang et al., 2013). A denaturation process carried out by heating to the DNA library-in buffer to 

95°C for 10min. After, the mixture cooled down immediately to 4°C for 5min, and incubated at 
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room temperature (RT) for 10min. To exclude non-specific binders and filter-binders, the ssDNA 

library was passed three times through a 0.45μM nitrocellulose acetate membrane (HAWP, 

Millipore, MA, USA) using filter holder (“pop-top”, Millipore, MA, USA). The library and the 

target protein (50μl, 15μg/L) incubated together with rotation for 1hr at RT in the binding buffer. 

After the time passed, the library-protein mixture passed through the filter, and the filter washed 

3x with the binding buffer. The filter then immersed in 200μl of pre-heated (60ºC) elution buffer 

(0.4 M sodium acetate, 5mM EDTA, 7M urea; pH 5.5) for 5min. The eluted material was diluted 

with 200μl ddH2O and the DNA was precipitated with ethanol precipitation method (Wang et al., 

2013; Sypabekova et al., 2017). Each following SELEX enrichment round used only 75% of the 

volume of the target protein in the previous round while the protein concentration remained 

constant. 

2.2.4. PCR and dsDNA digestion into ssDNA 

After each enrichment cycle, the resulted dsDNA was digested into ssDNA with λ exonuclease 

enzyme (see below). The ssDNA was amplified with 25 PCR amplification cycles. The PCR was 

conducted using G2 Hot Start Green Master Mix (Cat# M7422, Promega). The 25μl reaction mix 

was 1μl (10μM) from the of the DNA library (enriched aptamers in the later cycles) as the template, 

2μl of each forward and phosphorylated reverse primers (4μM), and 12.5μl of 2X reaction buffer 

(pH 8.5). The reaction buffer composed of 2.5U of the polymerase enzyme, 400μM of each dNTPs 

and 4mM MgCl2. Nuclease-free water was added to adjust the final reaction volume to 25μl. The 

thermal cycles composed of 95°C for 5min as the denaturing step, followed by 25 thermal cycles 

composed of 95°C for 30sec, 56°C for 15sec and 72°C for 15sec. The final extension was at 72°C 

for 5min. The PCR products were monitored on 1% agarose gel stained with SYBR Safe dye 

(ThermoFisher Scientific, USA). The reverse primer was order as phosphorylated to facilitate this 
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task (Table 2.1). The PCR-resulted double-stranded DNA (dsDNA) was subjected to the action of 

λ exonuclease enzyme (Cat# M0262S, NEB, USA) to retain the ssDNA for the next round. The 

digestion reaction conditions were as recommended by the manufacturer.  

2.2.5. Cloning and sequencing 

2.2.5.1.Sanger sequencing  

As a process of monitoring, after six rounds of selection, the PCR products were cloned and 

sequences using Sanger sequencing method (Sanger et al., 1977). The cloning process utilized the 

pGEM-T and pGEM-T easy vector systems (Cat# A1360, Promega). As instructed by the 

manufacturer, the PCR product was inserted into the kit vector in ligation buffer. The insert-

containing plasmid DNA was transformed into electro-competent TOP10 E. coli (Invitrogen, 

Carlsbad, CA, USA) by pulsed high voltage electroporation (1750V for 5 milliseconds) (ECMTM 

830 electroporation generator, Fisher Scientific). After the transformation, 500μL of SOC media 

(Invitrogen, Carlsbad, CA) was added immediately and the bacteria was incubated for 2hrs at 37°C 

with shaking. The SOC medium-containing bacteria was streaked on Luria-Bertani (LB) medium 

supplemented with ampicillin (100μl/plate) (Cat # R110846, Thermo Fisher Scientific), IPTG 

(Calibiochem) (Cat # 420291, Sigma-Aldrich), and 5-bromo-4-chloro-3-indolyl-β-D-galactoside 

(X-Gal) (Cat # B1690, Thermo Fisher Scientific). After overnight incubation, the culture was 

screened and 15 white colony candidates were harvested. The identification of positively cloned 

colonies depends on the color differentiation. Bacteria do not harbor the pUC18 plasmid will be 

killed by the ampicillin. Whereas, bacteria do not carry the insert will appear in blue color colonies 

because of the X-Gal, and the bacteria that harbor the insert will appear in white colonies. One 

extra blue bacterial colony was included as a positive control for the assay. Those chosen colonies 

were lysed and the DNA was purified using QIAprep Miniprep kit (Giagen, Hilden, Germany) and 
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sent for Sanger sequencing (Eurofins MWG Operon, Louisville, KY, USA). Results were analyzed 

with ClustalW2 2.1 software (University College Dublin) (Singh and Bhatia, 2016) 

2.2.5.2.Illumina sequencing 

The procedure of high throughput Illumina sequencing was as described elsewhere (Schütze et al., 

2011; Scoville et al., 2017). The results were analyzed using “Galaxy Bioinformatics” (open 

source), and FastQC Version: 0.11.5 (Babraham Bioinformatics,  Babraham Institute, UK) (Thiel 

and Giangrande, 2016; Thiel, 2016; Randrianjatovo-Gbalou et al., 2018).  

Briefly, enriched aptamer samples from rounds 1, 2, 6, 8 and 10 were prepared for Illumina 

sequencing platforms. Each selected round’s ssDNA was barcode-tagged and used as a template 

for PCR amplification using Illumina sequencing primers (Table 2.1). The ssDNA were diluted 

with nuclease free water to have concentration of 10uM, then, the primers, which were already 

included with unique barcodes representing each SELEX cycle, have been utilized to amplify the 

templates. Twenty-five PCR cycles have been applied using KOD hot start DNA polymerase and 

buffer (Cat # 71086-3, Sigma-Aldrich, CA, USA). Then, PCR products were mixed together in 

the same volume within each category. The mixed DNA samples were PAGE-purified using 4-20 

% polyacrylamide gel (Life Technologies, NY, USA). Then, these DNA samples were mixed 

together so that approximately the same quantity of DNA from each of six samples would be 

included in the final mixed sample, based on the measurement with Qubit 2.0 Fluorometer. Finally, 

20μl of the final mixed sample (50.4 ng/ul) was sent to Genomics Core Facility at the University 

of California at Riverside, USA for Illumina sequencing using MiSeq with 151 cycles in single-

end mode. 
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The total number of the reads by the Illumina sequencing were about ~16 million reads; however, 

about 5% of the total reads were neglected due to their improper length or quality. The rest of the 

reads were tracked according to their barcodes. After analyzing the results, the highly-yielded 

enriched aptamers were tested for the free energy change (ΔG[kcal.mole-1]) of the three 

dimensional structure using the OligoAnalyzer 3.1 Tool at Integrated DNA Technologies 

(available online by Integrated DNA Technologies (IDT) website), and the most reliable ones have 

been chosen to be tested by the next step. 

2.2.6. Dot-blot hybridization assay  

Dot-blot assay was applied to detect the affinity of the candidate aptamers to the target protein. 

The assay was as described elsewhere (Vivekananda and Kiel, 2006; Wang and Li, 2013). 

According to the Sanger sequencing and the Illumina sequencing results, the candidate aptamers 

were ordered as biotinylated at the upstream (IDT, Coralville, Iowa, USA). Immune-Blot PVDF 

membrane (0.2μm, Cat # 162-0174, Bio Rad laboratories, Ca.) cut into 8 strips of 6cm2 

(1cm2/treatment). Ten microliters (15μg/mL) of the target protein was dropped onto the center of 

five of the test squares. After drying, the stripes blocked with KPL blocking buffer for 30min and 

washed for three times with 1X KPL washing buffer (Cat # 50-63-00, KPL, Gaithersburg, MD). 

Concentrations of (12, 25 and 50) μM of the aptamers (10μl each) were dropped onto the center 

of the test squares on the membranes. The membranes sat to air dry and washed (3X) with 1X KPL 

washing buffer.  Streptavidin-conjugated alkaline phosphatase (Cat # 475-300, KPL, Gaithersburg, 

MD) (diluted 1:500) poured on the membrane for 30min and another course of washing followed. 

Finally, the color developed by adding 5-bromo-4-chloro-3-indoxyl-phosphate and nitro blue 

tetrazolium (BCIP/NBT) substrate (Cat # 50-81-07, KPL, Gaithersburg, MD, USA). The reaction 

stopped by pouring tap water thoroughly. 
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2.2.7. Rolling circle amplification 

According to the dot-blot assay results, the enriched aptamers were with good affinity to the target 

protein, yet, their ability to sustain the clustering and oligomerization of the CD40 receptor in 

chicken HD11 macrophage cell line was questionable. To achieve the highest possibility for this 

process, RCA technique was suggested. Multivalent RCA products-containing polyvalent 

aptamers were acquired via aptamers-based template design (Ali et al., 2014). All the eight 

candidate aptamers were grouped into four groups with two aptamers each to design four 

complementary templates for RCA technique (Tables 2.1 and 2.3, Figure 2.1). The upstream end 

of all RCA templates was phosphorylated to sustain enzymatic ligation. The primer designation as 

20 nucleotides length complementary sequence to the upstream and the downstream extremities 

of the template together to assist the ligation (Table 2.1). Finally, a spacer complementary 

sequence (SCS) annealed thermally to ensure rigid regions among the repetitive aptamers 

sequences. The procedure of the RCA started with annealing 15-20pmol of the primer (equivalent 

up to 132ng/μl) with primer binding site on the template (1-2pmol equivalent to 129ng/μl) making 

the template as a circle with the aid of the primer, despite the template was still being nicked right 

in the middle of the primer. The primer-template mixture was heated first to 95°C for 10min, to 

56°C for 5min and then cooled down to RT in 50μL TE buffer. To ligate the nicked template, the 

ligation of the template with T4 DNA ligase enzyme (Cat# M0202S, NEB, USA) followed the 

annealing procedure. The ligation reaction conditions were as recommended by the manufacturer. 

For the polymerization, ɸ 29 DNA polymerase enzyme (Cat# M0269L, NEB, USA) was used. All 

the reaction conditions were as recommended by the manufacturer, except that the reaction was 

hold for 16hr at 30°C and then heat-inactivated at 65°C for 10min.  After each enzymatic treatment, 

the DNA was purified by ethanol precipitation method. For SCS adding, the RCA products quality 
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and quantity were evaluated using microplate reader (BioTeck). Two molecular weights of the SCS 

were mixed with one molecular weight of the RCA products. Again, the RCA products-SCS 

mixture was hold on heating for 10min at 95°C and for 50°C for 5min and then ice-cooled 

immediately to apply the annealing status.  

2.2.8. Measuring activation of chicken HD11 macrophage cell line 

Chicken HD11 macrophage cell line (Crippen et al., 2003) was propagated on 96-well plate at 

37ºC in a humidified atmosphere having 5% CO2 in Dulbecco’s modification of eagle’s medium 

(DMEM) (Mediatech, Manassas, VA) enriched with 8% fetal bovine serum (Atlanta Biologicals, 

Lawrenceville, GA) and 5% chicken serum (Sigma, St. Louis, MO). All treatments were applied 

when the confluence of the batch was 80% (Hussein and Qureshi, 1997; Crippen et al., 2003). 

After the treatment, the plate was incubated at the same conditions for extra four hours. When the 

time passed, the contents of every well was collected, centrifuged and the supernatant was 

subjected to Griess assay to detect the nitric oxide liberation in the medium. All cell line work was 

done in Dr. Berghman’s laboratory, University of Texas A&M. 

2.2.9. MALDI-TOF-MS, LC-ESI-MS/MS, and LC-ESI-MS   

For these experiments, we used SEQ1 and SEQ2 as the candidate aptamers individually or in 

combination because they showed best stimulation pattern on tissue culture experiment in form of 

RCA I. First, both protein and the individual aptamers were subjected to matrix-assisted laser 

desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) using Bruker 

Daltonics, MALDI relex III time of flight instrument to confirm the expected molecular weight 

for both protein and the aptamers. The second experiment tested the identity of the target protein. 

The protein (1μg) was subjected to full digestion with trypsin (20ng) (Promega) in 25mM 
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NH4HCO3 ~ 7.5 pH buffer at 37°C for 1hr. Following, liquid chromatography electrospray 

ionization tandem mass spectrometry (LC-ESI-MS/MS), using Agilent Bruker Daltonics Amazon-

SL, used to confirm the protein identity as the CD40 receptor from Gallus gallus as using standard 

method described in elsewhere (Kannan et al., 2007).  

Last experiment was designed to understand aptamers-protein binding process properly. We 

conducted a limited proteolysis liquid chromatography electrospray ionization mass spectrometry 

(LC-ESI-MS) experiment. The LC-ESI-MS experiment has been done using Bruker ESQUIR-LC 

quadrupole ion trap (QIT) without MS/MS and intensities of the extracted ion chromatograms 

corresponding each tryptic peptide, which were used to determine the relative inhibition for the 

enzyme activity toward the chCD40ED protein due to aptamers binding. LC-ESI-MS was operated 

using standard method protocols described elsewhere (Kannan et al., 2007; Kannan et al., 2009). 

One microgram of the chCD40ED protein was subjected to the digestion with 20ng of trypsin 

(Promega) containing 25mM NH4HCO3 ~ 7.5 pH buffer at 37°C for 1h with and without the 

candidate aptamers (individually or in combination). In addition, negative control ssDNA aptamers 

random sequence was included. After the incubation period passed, the enzyme action was 

chemically inactivated by adding 5% FA in 60% acetonitrile (ACN) and the resulted digest was 

subjected to LC-ESI-MS. 

2.2.10. Statistical analyses 

Data from nitric oxide liberation are presented as mean ± standard error. Treatments with RCA 

products were in triplicates. Multi-Way Analysis of Variance (ANOVA) followed by Tukey’s 

honest significant difference (HSD) post hoc test were used to compare means of nitric oxide 

liberation among treatments to detect significance differences between and among several 
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treatments with RCA products on tissue culture with JMP Pro software (version 13, SAS Institute 

Inc., NC, free version by University of Arkansas). The p-values are reported as significant at 

p<0.001.  

 

2.3.RESULTS AND DISCUSSION 

2.3.1. In vitro selection, identification and characterization of the aptamers 

The naturally occurring CD40/CD40L interaction is a central event in orchestrating both branches 

of any given acquired immune response. In a recent study, our group established a novel anti-

chCD40 MAb. This well-characterized MAb showed the ability to induce significant stimulation 

in chicken HD11 macrophage cell line. When this MAb administered with different routes in 

combination with a desired peptide, the CD40-targeted immunogen induces robust immune 

response and several desired effects such as immunoglobulin class switching occur (Chen et al., 

2010; Chen et al., 2012; Chou et al., 2016). However, like all MAbs, the anti-chCD40 MAb 

production would make it impractical to commercialize this as vaccine adjuvant due to high cost 

and intense labor. To avoid these undesirable side effect and cost, we investigated the ability of in 

vitro-selected DNA aptamers to mimic the same effect as in MAb as agonist to the CD40 receptor 

on the same cell line. 

The SELEX procedure that applied for selection aptamers against chCD40ED started with random 

ssDNA library and continued as repetitive 10 enrichment cycles of SELEX as described by Tuerk 

and Gold (1990). Following each enrichment cycle, PCR procedure was carried out using the 

resulted aptamers as the template to amplify the enriched aptamers for the next round. PCR is 

useful tool to increase the yield and the purity of the enriched aptamers. To resume the SELEX 
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process, the amplified dsDNA was then being digested with λ-exonuclease. To avoid losing 

aptamers with high affinity to the target protein, the molar ratio of the protein to ssDNA library 

was shifted toward protein. The protein amount was reduced by 25% in every next round with the 

same concentration to apply selection pressure toward aptamers specificity (Berens et al., 2001).  

To evaluate the selection process, ssDNA products form round six was clonally sequenced with 

Sanger sequencing method (Sanger et al., 1977). The data obtained were analyzed using 

ClustalW2 2.1 software (University Collge Dublin) (Singh and Bhatia, 2016). The result showed 

that there were two identical aptamers sequences and a third sequence with considerable consensus 

among the others. One aptamer sequence was repeated two times over the 15 samples and the other 

was with 60% consensus sequence with these two sequences (Figure 2.1). These three aptamers 

sequences were evaluated by IDT OligoAnalayzer 3.1 tool software (available online by Integrated 

DNA Technologies (IDT) website, IDT, USA) to judge their fitness. The two different sequences 

were ordered as biotinylated DNA sequence at their 5’ prime end (IDT, USA) to apply dot-blot 

assay. The highly enriched aptamers may not be always suitable for the receptor stimulation. As 

stated by Yu et al. (2018), only those MAbs who are able to bind the receptor at certain sites will 

promote agonistic activities despite of high binding affinity (Figure 2.9D).  

In the next step, the ssDNA aptamers from rounds 1, 2, 6, 8 and 10 were sequenced using high 

throughput Illumina sequencing method. According to the barcodes we included for each round, 

there were around 4X106 reads/barcode from each round. Significantly, about 95% of the row 

reads were retained as high quality aptamers sequences when filtered with the bioinformatics tools. 

Analyzing the results with Galaxy bioinformatics and FastQC showed increasing in the selected 

aptamers enrichment over rounds (Thiel and Giangrande, 2016; Thiel, 2016; Randrianjatovo-

Gbalou, 2018). The analyzed data showed that there were highly enriched six sequences (SEQ1-



62 

SEQ6) over the aptamers pool (Table 2.2, Figure 2.2). When blotting these abundant six sequences 

against each selection round, the highest represent sequences proportion were (SEQ6 and SEQ5) 

consistently. To achieve calculations, round 1 considered to be the base line or round 0 as all the 

possible sequences are represented theoretically in the pool. When measuring the proportion of the 

enriched sequences/round and relative frequency, the six sequences were variable in enrichment. 

SEQ3 and SEQ5 were with the highest relative frequency observance, both steadily enriched over 

the SELEX cycles (Table 2.2). 

Depending on the results from Sanger sequencing and Illumina sequencing, eight candidate 

aptamers sequences assessed (two sequences form Sangers and six sequences from Illumina, Table 

2.3). Dot-blot assay evaluated the ability of the eight candidate aptamers to attach the target protein 

in vitro. Candidate aptamers were ordered as biotinylated at the upstream to evaluate their ability 

to interact with the protein on Immune-Blot PVDF membrane. The results showed that all aptamers 

candidate sequences were with significant binding affinity to the target protein at concentration of 

25μM or more (Figure 2.3). All the eight aptamers were able to detect the target protein with this 

assay and the detection limit was (15:10-50)μM protein : aptamers. It is convenient to refer that 

the candidate aptamers were with the primers and primer binding sites sequences when applied 

this assay due to the possibility that these sites might share in protein interaction as well. 

2.3.2. Rolling circle amplification 

As stated earlier, due to the smaller size of our aptamers candidates in comparison to the target 

receptor (the MW of each individual candidate aptamer is estimated to be around 24kDs whereas, 

the MW of the chicken CD40 receptor extra domain trimer is around 75kDa – Figure 2.7), RCA 

technique was suggested (Figure 2.4). RCA products would increase the chance of the CD40 
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receptor activation on the chicken macrophage cell line by spanning wider area on the receptor 

and by increasing the overall affinity of the ligand(s). To achieve this task, the complimentary of 

the eight candidate aptamers sequences were dual designed as templates for RCA procedure. RCA 

technique gives long tandem repetitive sequences (several hundreds) of the original template. 

Herein, RCA products make benefit of this feature and to increase the ability of the aptamers-

CD40 receptor clustering. The RCA products were polyvalent and multivalent products. Over the 

run of the RCA procedure, the RCA products were with high molecular weight (more than 10K 

nucleotides) (Figure 2.5). The ssDNA aptamers sequences within each RCA product were 

separated by short SCS representing dsDNA to apply rigid and inert stretches within the ssDNA 

of the RCA products long tail. This RCA products-SCS complex hybridization was to exclude any 

possibility of non-specific cell line activation by RCA products. Experimentally, each RCA 

products is with tandem repeats of the two included aptamers candidates and, each neighboring 

aptamers are separated by spacer-SCS; in other words, the RCA products is a repeated sequence 

of ssDNA (aptamers) and dsDNA of spacer-SCS, reciprocally. Here, the spacer-SCS stretches 

provide stability over the structure and to act as hinge region as in antibody. Additionally, we 

noticed that using any random RCA products with no spacer-SCS added could stimulate the nitric 

oxide liberation from the chicken macrophage cell line (data not shown).  Furthermore, adding the 

SCS has prevented the clumping and precipitation of the RCA products.   

The RCA procedure passes through several enzymatic treatments in exchange with DNA 

precipitation and purification procedures. Therein, the confirmation we had on the RCA products 

configuration and RCA products-SCS annealing was the digestion with restriction enzyme (AgeI). 

The SCS was included with restriction sequence. The digestion pattern of the RCA products with 
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this enzyme showed that we actually had the correct product and correct RCA products-SCS 

hybridization, thus, there was no need for the sequencing at this step (Figure 2.6, Table–2.1).  

2.3.3. Nitric oxide liberation and Griess assay.  

The RCA products-SCS complex were used to treat the chicken HD11 macrophage cell line 

(Crippen et al., 2003). The four aptamers-dependent templates were amplified into four RCA 

products namely RCA I to RCA IV.  

The results of Griess assay showed that there were detectable elevation in nitric oxide liberation 

in the media after the incubation with the RCA products for all sequences. However, there was 

significant variability in the efficacy and potency among RCA products. RCA I was with the 

highest response. The steep of the slope response was dose-dependent and significantly appeared 

in RCA I. Of course, the results were compared with negative control RCA products (NC-RCA); 

which are RCA products that had been designed by having two DNA sequences that have not been 

enriched according to the Illumina sequencing results to develop RCA template as in positively 

selected aptamers. The results were also compared with anti-chicken CD40 MAb that is known to 

stimulate the chicken HD11 cells as the positive control (Chou et al., 2016).  

The activity and viability of the chicken HD11 cell was also measured by adding 

lipopolysaccharide (LPS) as the general positive controls for this assay. All the RCA products 

induced a detectable liberation of the nitric oxide in the media with marked peak elevation with 

RCA I (Figure 2.9A). The stimulation of chicken macrophage HD11 cells with RCA I was with 

the highest nitric oxide liberation values at all concentrations and comparable with that of the anti-

chicken CD40 MAb (Figure 2.9B) (Hussein and Qureshi, 1997; Brightbill and Modlin, 2000; 

Crippen et al., 2003; Sun et al., 2003). 
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The results also confirmed that the highly expressed aptamers were not the ideal aptamers for 

receptor stimulation. Indeed, there are specific site(s) where ligand could only promote clustering 

and oligomerization of receptor (Yu et al., 2018). There are several anti- CD40 MAb, yet only 

those who interact with cysteine-rich region apically can promote receptor oligomerization. 

2.3.4. MALDI-TOF-MS, LC-ESI-MS/MS, and LC-ESI-MS 

The rationale behind using MALDI-TOF MS experiment was to verify the identity of the chCD40ED 

protein (Bonk and Humeny, 2001). The results of this experiment showed that the MW of this protein 

was 25712 Dalton (Figure 2.7). Another LC-ESI-MS/MS experiment was used to discover the 

binding sites of CD40 partially protected by DNA (Figure 2.10) (Sundqvist et al., 2007). For this 

experiment, we used SEQ1 and SEQ2 as these sequences represented by RCA I and gave best 

stimulation on tissue culture. Intensities of the tryptic peptides involving the detection the site(s) 

where these two aptamers attach to the target protein were low in comparison to the control chCD40ED 

protein without the aptamers. These complemented results showed that there where physical linking 

between the target protein and the aptamers at least at three different peptide segments, and, this 

configuration was strong enough to protect the protein from the action of the trypsin enzyme after the 

period of digestion. Each peak indicted the protected sequence within the protein by the action of the 

aptamers separately or reciprocally. Similar to previous cell line experiment where the NC-RCA was 

able to stimulate mild nitric oxide liberation (Figure 2.9), the negative control aptamers showed 

detectable protection activity against the action of trypsin enzyme too. Still, the two positive control 

aptamers are more consistent with their protection level. Moreover, to determine the sites where the 

aptamers attract the target protein, the data from the LC-ESI-MS were subjected to virtual protein 

tertiary structure configuration analysis (PyMOL, free software at: www.pymol.org). According to 

this software, the two aptamers are attaching the target protein at the amine terminate (Figure 2.11B) 
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and the addition of the two aptamers together acted synergistically. However, the actual sites where 

each aptamers links the protein did not investigated at this point. In the process of building the tertiary 

structure of our target protein, significant amino acid sequences participated in attraction the aptamers 

sequences. The fact that this region is flabby, herein, highly resonant and cannot be detected easily 

by many 3D protein-building software. It is suitable to demonstrate that in the actual CD40-CD40L 

interaction, the ligand is spanning the inner of the receptor pulling it inward. This receptor-ligand 

clustering causes the oligomerization of the receptor (Figure 2.11D) (Reyes-Moreno et al., 2004; 

Elgueta et al., 2009), whereas, in our receptor-aptamers clustering model, the aptamers link the 

receptor apically (tandem repeats of the RCA products). The CD40 receptor is a trimer, herein, 

clustering at the proximal extremities of the receptor trimer is what may cause the same effect as in 

receptor-ligand clustering and oligomerization (Figure 2.11C). 

 

2.4.CONCLUSIONS 

Recently, developing aptamers for variety of molecules has become well-established technology. 

Aptamers and aptamers-based molecules are to replace the traditional MAbs in molecular biology. 

Indeed, expansion in this field is yet to overcome the limitations of the use of the aptamers due to 

poorly understood molecular properties of these molecules. We proved that the DNA aptamers-

based RCA products are ideally capable of conducting the activation of chicken macrophage HD11 

cell line via the CD40 receptor. In this study, we report the first description of using ssDNA 

aptamers-dependent RCA products as an agonist for the chicken CD40 receptor. The polyduplex 

synthetic aptamers in the RCA products mimics the naturally occurring receptor/ligand interaction 

and subsequent receptor oligomerization. We also utilized the use of the DNA aptamers to halt the 
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action of the trypsin enzyme on the target protein by utilizing LC-ESI-MS experiment. Herein, we 

determined the actual site where our aptamers attach the protein. We confirmed the cell line results 

by showing three amino acid stretches at the amine site of the protein where the aptamers (or the 

RCA products) attach. Despite using monomer instead of the receptor trimer as our target protein 

for aptamers selection, yet, our protein was expressed in eukaryotic cell line system, which should 

support the post-translation modification. In naturally occurring CD40-CD40L interaction 

stoichiometry, upon initial physical contact of the ligand with its cognate receptor, the receptor 

undergoes clustering at the extracellular domain, thus, signal transduction occurs through the 

cytoplasmic domain (Grassme et al., 2002). The receptor’s extracellular crosslinking is what leads 

to receptor oligomerization and this observation was recorded with the natural and artificial 

agonists of the CD40; i.e., CD40L and anti-CD40 MAbs (Bjorck et al., 1994). The ligand has to 

configure with the receptor in a specific manner to induce the response (Figure 2.11). Interestingly, 

soluble CD40L was not able to induce the expected receptor signaling nor many anti-chicken 

CD40 MAbs. The conclusion was that there is a certain pattern and site for the ligand to act as an 

agonist (Baccam and Bishop, 1999; An et al., 2011). Our aptamers did not show any agonistic 

activity when administered to the macrophage cell line as an individual nor combined aptamers. 

The macrophage stimulation only occurred with RCA products. Similarly, we have proven that 

not all the aptamers we have selected were able to oligomerize the receptor significantly; only 

those who were able to link specific receptor sites were the successful. However, we did not 

investigate nor report any antagonistic activity of the studied RCA products (Cerchia et al., 2012; 

Soldevilla et al., 2016).  

Our goal is to create synthetic molecule could be preferably beneficial when loaded with 

appropriate antigen to act as specifically designed and sophisticated adjuvant. The flexibility we 
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provide with the use of aptamers-based RCA products makes it easier to introduce the aptamers 

into the biological systems without any molecular concerns. Indeed, the RCA products are 

naturally protected against any nuclease enzyme activity at the downstream due to the attached 

circular template (data not shown) and the intentionally biotinylated at upstream end to upload 

appropriate antigen.   
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2.5.TABLES 

Table 2.1. DNA Library, primers, RCA templates and spacer complementary sequences 

designs. The random library, which is with theoretical 1X1024 unique sequences, flanked with 

forward primer sequence at the upstream and with the reveres primer-binding site at the 

downstream. Phosphorylated reverse primer ordered to facilitate exonuclease activity. Illumina 

primers were included with barcodes at the upstream to split the sequences after NGS. RCA 

templates phosphorylated at upstream to apply enzymatic ligation. 
Description DNA Sequence 

Library CCG AAT TCG AAG GAC AAG AG (N)
40

† TCT TT TAT GCT ACG TCC 

CGC 

Forward primer (FP) CCG AAT TCG AAG GAC AAG AG 

Reverse primer (RP) Phosph/GCG GGA CGT AGC ATA AAA GA 

Illumina FP AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC 

GAC GCT CTT CCG ATC TNN NNN GG(BC)‡TT– (Library FP) 

Illumina RP (Library RP)–TAG AGC ATA CGG CAG AAG ACG AAC 

RCA-I template GCA TCT GAA C GCG GGA CGT AGC ATA AAA GAC GAA TTC ACT 

GCT CCA TTT ACA CCC CAT TAC CAA TTC CAC CTC TTG TCC TTC 

GAA TTC GG GAT CCA CCG GTA GCA GCG GGA CGT AGC ATA AAA 

GAC CTA GCC CTG CTC TTC TGA TCC CTA TTC CAT GTA GCC CTA 

CTC TTG TCC TTC GAA TTC GG GGA ACG TCT T* 

RCA-II template GCA TCT GAA C GCG GGA CGT AGC ATA AAA GAG CGG GAC GTA 

GCA TAA AAG AAA ACC CAA ACT GCA CTT ACT CTT GTC CTT CGA 

ATT CGG GAT CCA CCG GTA GCA GCG GGA CGT AGC ATA AAA GAG 

AAC AAT CGG AAC TGG TCA TCC TAG GAC GTC GTG ACT TAC CTC 

TTG TCC TTC GAA TTC GG GGA ACG TCT T 

RCA-III template GCA TCT GAA C GCG GGA CGT AGC ATA AAA GAG AGA TGA CCA 

ACC ATA CTG ACT TGA CAG CAT CCC TCA TCT CTC TTG TCC TTC 

GAA TTC GG GAT CCA CCG GTA GCA GCG GGA CGT AGC ATA AAA 

GAA TGG GGG TAG TTG CAA AGG ATA GGG GTA AAA GAA ATG TTG 

CTC TTG TCC TTC GAA TTC GG GGA ACG TCT T 

RCA-IV template GCA TCT GAA C GCG GGA CGT AGC ATA AAA GAT GAG TCG TGC 

TAC CGT TCT GTC CTA ATA CTC GTT TGT CTG CTC TTG TCC TTC 

GAA TTC GG GAT CCA CCG GTA GCA GCG GGA CGT AGC ATA AAA 

GAG GAC TCG ACA CGC CGG TCT GTC CTG GGA TTC GTT TTT TCT 

CTC TTG TCC TTC GAA TTC GG GGA ACG TCT T 

RCA-NC template GCA TCT GAA C ATG GGC AGT TCA AAC TAC GAC ATA GCA GAC 

CAA GGT ATA G GAT CCA CCG GTA GCA TGA TGC AGG TCC TGT 

AAT TGG ACT GAT CAC ATA CCT AGA T GGA ACG TCT T 

RCA primer GTT CAG ATG CAA GAC GTT CC 

Spacer-complement  GAT CCA CCG GTA GCA 

† Represents random sequence  
‡ Represents barcode sequence 

*Single underline represents the primer-binding site and the double underline represents the 

spacer complementary sequence 
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Table 2.2. Aptamers proportion and relative frequency at each enrichment SELEX round. 

Sequences of each rounds marked with certain barcode to ensure accurate splitting with the proper 

software. The proportion of six highly enriched aptamer sequence/round and their relative 

frequency upon each round have been estimated.  

Round Barcode 
No. of 

Sequences/round 
Sequence 

% of enriched 

seq./round 

Relative frequency 

1 TAGATCGC 4.438 X106 

SEQ1 0.00006 0.028 

SEQ2 0.00011 0.0467 

SEQ3 0.00155 0.6449 

SEQ4 0.00048 0.1962 

SEQ5 0.00018 0.075 

SEQ6 0.00002 0.0095 

   SEQ1 0.00231 0.0945 

   SEQ2 0.00198 0.0809 

2 CTCTCTAT 3.9 X106 SEQ3 0.01408 0.5766 

   SEQ4 0.00408 0.167 

   SEQ5 0.00139 0.0568 

   SEQ6 0.00059 0.0243 

6 TATCCTCT 4.368 X106 

SEQ1 0.00104 0.0442 

SEQ2 0.00133 0.0569 

SEQ3 0.00319 0.1364 

SEQ4 0.00591 0.2531 

SEQ5 0.00053 0.0226 

SEQ6 0.01136 0.4867 

8 AGAGTAGA 4.038 X106 

SEQ1 0.02725 0.053 

SEQ2 0.07678 0.1489 

SEQ3 0.21052 0.4083 

SEQ4 0.05697 0.1104 

SEQ5 0.04211 0.0817 

SEQ6 0.10194 0.1977 

10 ACTGCATA 2.739 X106 

SEQ1 0.16631 0.0529 

SEQ2 0.31121 0.0652 

SEQ3 3.20593 0.6712 

SEQ4 0.66189 0.1385 

SEQ5 0.17813 0.0374 

   SEQ6 0.16631 0.0349 

Relative frequency calculations: Summation of the count of each enriched sequence per round 

(SEQ1+ SEQ2+…+ SEQ6) = SEQtotal, and divided each enriched sequence count by the SEQtotal 

= (SEQ1/ SEQtotal, SEQ2/ SEQtotal,…, SEQ6/ SEQtotal)  
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Table 2.3. Candidate aptamers. Eight highly enriched aptamers sequences from Sanger 

sequencing and Illumina sequencing were used to design four RCA templates. Each template, 

which composed of primer binding site, spacer and two aptamers sequences, enzymatically 

circularized with the aid of the primer.  

Description Aptamers RCA combination 

SEQ1 

(Illumina) 

CCG AAT TCG AAG GAC AAG AGG TGG AAT TGG TAA TGG 

GGT GTA AAT GGA GCA GTG AAT TCG TCT TTT ATG CTA 

CGT CCC GC 
RCA I 

SEQ2 

(Illumina) 

CCG AAT TCG AAG GAC AAG AGT AGG GCT ACA TGG AAT 

AGG GAT CAG AAG AGC AGG GCT AGG TCT TTT ATG CTA 

CGT CCC GC 

SEQ3 

(Illumina) 

CCG AAT TCG AAG GAC AAG AGT AAG TGC AGT TTG GGT 

TTT CTT TTA TGC TAC GTC CCG CTC TTT TAT GCT ACG 

TCC CGC 
RCA II 

SEQ4 

(Illumina) 

CCG AAT TCG AAG GAC AAG AGG TAA GTC ACG ACG TCC 

TAG GAT GAC CAG TTC CGA TTG TTC TCT TTT ATG CTA 

CGT CCC GC 

SEQ5 

(Illumina) 

CCG AAT TCG AAG GAC AAG AGA GAT GAG GGA TGC TGT 

CAA GTC AGT ATG GTT GGT CAT CTC TCT TTT ATG CTA 

CGT CCC GC 
RCA III 

SEQ6 

(Illumina) 

CCG AAT TCG AAG GAC AAG AGC AAC ATT TCT TTT ACC 

CCT ATC CTT TGC AAC TAC CCC CAT TCT TTT ATG CTA 

CGT CCC GC 

SEQ7 

(Sanger) 

CCG AAT TCG AAG GAC AAG AGC AGA CAA ACG AGT ATT 

AGG ACA GAA CGG TAG CAC GAC TCA TCT TTT ATG CTA 

CGT CCC GC 
RCA IV 

SEQ8 

(Sanger) 

CCG AAT TCG AAG GAC AAG AGA GAA AAA ACG AAT CCC 

AGG ACA GAC CGG CGT GTC GAG TCC TCT TTT ATG CTA 

CGT CCC GC  

*Each two aptamers sequences within the template separated by spacer complementary sequence 
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2.6.FIGURES 

 

Figure 2.1. Sanger sequencing results. Sequences of the aptamers identified after six rounds of 

SELEX selection against chCD40ED protein. The aligned sequences represent the variable regions 

only with no primer binding sites. 
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Figure 2.2. Illumina sequencing results. Normalized exponential increase of six highly enriched 

aptamer sequences among DNA pool over rounds of the enrichment cycles of SELEX. 

Normalization calculation [(frequency of aptamer sequence X 100/total number of reads)/(% the 

aptamer sequence in R1)]. R1 as the reference round (R0) since all sequences should be represented 

hypothetically.  
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Figure 2.3. Dot-blot assay results. Eight Immuno-Blot PVDF membrane stripes, each divided 

into 6cm2 activated with concentrated methanol and washed. 10μl of the chCD40ED protein 

(15μg/mL) dropped onto the center of (A, B, D-F), air dried and blocked with commercial blocking 

buffer. 20μl of each of eight biotinylated aptamers sequences (Table 3.3) dropped on the center of 

each stripe within (D-F) at concentrations 12, 25 and 50μM, respectively. 20μl biotinylated anti-

CD40 MAb positive control (10μg/mL) (A) and 1XIPBST (C) were the positive and the negative 

controls, respectively. The stripes set for 30min, washed (3x) and streptavidin-alkaline 

phosphatase was added followed by BCIP/NBT substrate.  
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Figure 2.4. Schematic illustration represents the process of ssDNA aptamers-based RCA. The 

candidate aptamers were dual configured in one template. Other constituents, such as primer 

binding site and spacer were included too. The products of the RCA are then annealed with spacer 

complementary sequence to sustain dsDNA between each two-neighbor aptamers, which in turn, 

sustains rigidity at this particular site. The two adjacent aptamers sequences would be flabby and 

the spacer-spacer complementary will be serve as the hinge region. 
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Figure 2.5: RCA products on denaturing 15%TBE urea gel. According to Illumina and Sanger 

sequencing, eight aptamers candidates were chosen to prepare four RCA templates (RCA I-IV, 

lanes 2-5, respectively).  First, the templates were annealed with single spanning primer. Then, the 

templates were ligated with T4 DNA ligase, and last, the primer-template was polymerized with 

ɸ29 DNA polymerase. The resulted RCA products were hybridized with spacer complementary to 

produce alternating repeat regions of ssDNA and dsDNA. This is to sustain the rigidity and to 

reduce aptamer-aptamer interaction configuration.  
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Figure 2.6. RCA products assessment after the digestion with AgeI restriction enzyme 

(loaded on 15% TBE urea denaturing gel). RCA products were prepared by the ligation of the 

linear ssDNA template with T4 DNA ligase (Cat# M0202S, NEB) with the presence of primer.  

After incubation with ɸ 29 DNA polymerase (Cat# M0269L, NEB), the resulting RCA products 

were digested with AgeI restriction enzyme according to manufacturer instructions (Cat# R0552S, 

NEB).  The templates were designed to produce products containing the spacer complementary to 

serve as a restriction site for this enzyme.  To prove successful incorporation of this spacer-AgeI 

region, the AgeI enzyme was incubated with RCA products in three types of buffers (NEBuffer 

1.1, NEBuffer 2.1 and NEBuffer 3.1 represented by AgeI-1, AgeI-2 and AgeI-3, respectively) to 

show cleavage of the RCA product  
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Figure 2.7. Identification of the MW of the CD40 receptor protein by mass spectrometry. 

SDS-PAGE gel loaded protein (1mg/mL) was sliced-cut and tested with MALDI-TOF-MS of the 

protein produced by trypsin digestion. The peak molecular weight of the protein is 25712 Dalton. 
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Figure 2.8. Schematic illustration represents the experimental design of LC-ESI-MS. LC-

ESI-MS was used to discover the binding sites of CD40 that were partially protected by DNA and 

to test the ability of the candidate aptamers to attach and protect the target protein from the action 

of trypsin enzyme. The enzyme was added after the incubation of the protein with the aptmaers-1 

(blue), aptamers-2 (green) separately or in combination. Of course, NC aptamers (black) was 

included in the process of testing the digestion. Mass-spectrometry assay and spectrum analysis 

were used to detect the undigested amino acid sequences.  
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Figure 2.9. Nitric oxide liberation from chicken HD11 macrophage cell line over increased 

concentrations of RCA products (A: RCA I to RCA IV in comparison with NC-RCA, B: RCA 

I in comparison with NC-RCA and anti-chCD40ED MAb). The RCA products were incubated 

overnight with the HD11 macrophage cell line in concentrations 1, 5, 10, 25, 50, 100, 200, 300 

and 350 (μg/ml) in triplicates. The nitric oxide liberated was measured using Griess assay and 

showed slop increasing in regard to dose applied. The result was compared to anti-chicken CD40 

MAb which is known to have the effect on this cell line (Chen et al., 2010) and negative control 

RCA (two aptamer candidates that were not enriched in the Illumina sequencing results). Multiple 

way ANOVA and Tukey’s honest significant difference (HSD) post hoc test were applied to detect 

significant differences within treatments. Different uppercase letters represent significant 

difference at p<0.0001. 
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Figure 2.10. LC-ESI-MS results. After incubation of recombinant chCD40ED protein (25712 D, 

gray line, gray circle) with the aptamers [SEQ1 (double line), SEQ2 (dished line, black triangle), 

SEQ1 and SEQ2 (black line, black circle), and NC-SEQ (dashed gray line)], the protein was 

subjected to trypsin digestion overnight. Three distinct regions on the protein sequence were 

protected from digestion (A, B and C). The peptide sequences were most effectively protected by 

the aptamers in combination.  



82 

 
 

Figure 2.11. Virtual tertiary structure of chCD40ED showing the potential aptamers linking 

sites.  A) Cartoon modeling shows the tertiary structure of the protein.  B) Space-filling model 

representing the virtual aptamers-protein interaction sites. Three regions (blue, yellow and orange) 

determined by MALD-TOF-MS experiment. The blue region represents long flabby peptide 

sequence where CD40L attaches. C) Top view of virtual trimer 3D structure of the chCD40ED 

(Mesh model, gray) with the potential aptamer linking sites (space filling model, blue, white and 

black). These sites located in the inner of the receptor resembling the actual ligand binding sites 

(see below). D) CD40-CD40L interaction (human) where the CD40 and the CD40L are 

incorporated. In addition, anti- CD40-MAb Fc interaction regions. With the receptor-MAb model, 

agonistic activity of the MAb increases proximally over the receptor, whereas, the antagonistic 

activity increases distally. 

Sources: A, B & C, PyMOL 2.2 software, W. L. DeLano, Schrodinger, Inc., D, cited: Yu, X. et 

al., 2018. Cancer Cell. 33, 664-675.    
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Figure 2.12. Alignment of one RCA I products unit. Hypothetically, this figure represents one 

unit of the RCA products showing the aligned three regions that are highly conserved between the 

two sequences (SEQ1 and SEQ2) (blue font). These regions might be essential in the aptamers-

protein interaction. The hairpin prediction done manually due to the presence of the spacer-spacer 

complementary region (blue trapezium), which is a dsDNA and we could not find software can 

predict the hairpin of the mixed ssDNA and dsDNA molecule.  
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ABSTRACT 

 

Cluster of differentiation 40 (CD40) receptor on antigen presenting cells, including B cell, 

engagement with CD40 ligand (CD40L/CD154) on activated T helper (TH) cell provides the 

ignition signal required for B cell proliferation, differentiation and antibody production. 

Subsequently, there would be upregulation of many required molecules during the path of acquired 

immune response. Previously, we developed DNA aptamers that were specifically selected against 

chicken CD40 receptor extracellular domain. We showed that these aptamers –in form of rolling 

circle amplification products (RCA-p) – were capable of induction stimulation in chicken 

macrophage HD11 cell line. Here, we sought to test the potential ability of these aptamers to 

enhance an acquired immune response to low immunogenic peptide hapten in vivo by actin as 

immunological adjuvant. We tested the ability of our aptamers to increase the efficacy of the 

immune response to this low-immunogenic peptide hapten by increasing IgG response in broiler 

chickens after the immunization with RCA-peptide immune complex. For this purpose, we 

prepared an immune complex composed of two biotinylated aptamers-based RCA products 

molecules conjugated with streptavidin, which in turn, conjugated with two biotinylated peptide 

molecules. We administered this immune complex to broiler chickens at two different doses 

(25μg/bird) or (50μg/bird) at age 7 and 21 days via subcutaneous route at the nape of the neck. 

The later immune response quantification of the anti-peptide IgG titer in the serum samples by 

ELISA showed that the RCA products-peptide immune complex at dose of 50μg/bird was able to 

induce robust immune response as early as 7 days post-immunization and the antibody titer 

remained high until the end of the experiment. On the other hand, immunization with the lower 

dose showed gradual increase in the antibody titer and needed a booster dose. The use of aptamers 
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as sophisticated immunological adjuvants gave promising results, and would lower the cost of 

vaccines and would change the strategy of vaccination programs. 

Key words: Broiler, DNA aptamers adjuvant, rolling circle amplification products, CD40. 
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3.1.INTRODUCTION 

Cluster of differentiation 40 (CD40) is a surface receptor glycoprotein that expressed on antigen 

presenting cells (APCs) and other non-immune cells. The ligand for this receptor is the CD40 

ligand (CD40L/CD154) which expressed by activated T helper (TH) lymphocyte transiently. This 

receptor is a member of tumor necrosis factor receptor superfamily, whereas the ligand is a member 

in tumor necrosis factor superfamily (Stout and Suttles, 1996; van Kooten and Banchereau, 1997; 

Bosson et al., 2006; Ma and Clark, 2009; Suttles and Stout, 2009). In essence, naïve T (TH/TH0) 

lymphocyte requires three constative signals for activation and differentiation. Signal-1 gained by 

T cell receptor (TCR) engagement with cognate major histocompatibility complex (MHC) class 

II/peptide on APCs, signal-2 provided by costimulatory molecules engagement on both cell types, 

and signal-3 comes from cytokines released by both activated cell types. When the third signal 

received, activated TH cell starts to differentiate into subsets of effector TH cell such as TH1 and 

TH2. The type of the T cell subset depends on the type of the foreign peptide, which in turn, guides 

the cytokine profile of both cell types. (Caux et al., 1994; Pinchuk et al., 1994; Sallusto and 

Lanzavecchia, 1994; Ma and Clark, 2009; Okoye and Wilson, 2011; Gerlach et al., 2012; Tubo 

and Jenkins, 2014). APCs, on the other hand, require signal-0 drown from chemokines for 

maturation and homing (Thaiss et al., 2011). The resulted immune response upon the engagement 

of the CD40 receptor with its ligand is different according to the type of the APC and the type of 

the foreign peptide. A well-studied pathway has demonstrated that TH cell causes DCs to promote 

CD8+ cytotoxic T lymphocyte (CTL) activation via CD40-CD40L pathway (Vonderheide and 

Glennie, 2013).  The three-cell type activation model requires that both TH and CTL cell receptors 

must engage cognate MHC class II or I co-expressed foreign antigens on the same DC. This triple 

cell engagement leads to DC activation, TH and CTL cells activation/differentiation. Schoenberger 
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et al. (1998), documented that priming DCs with agonistic anti-CD40 monoclonal antibody (MAb) 

could provide help for CTL in CD4-depleted mice. 

Macrophages produce IL-12 and receive activation from TH1 via CD40L and interferon-gamma 

(IFN-γ) in classical macrophage activation pathway. IFN-γ, which is a potent activator for 

macrophage, greatly enhances the activity of macrophages against the intracellular pathogens. 

Both CD40L and IFN-γ share synergetic effect on macrophages to facilitate their production of 

MHC class II molecule and several enzymes such as phagocyte oxidase and inducible nitric oxide 

synthase, which stimulate the production of reactive oxygen species and nitric oxide in the 

phagolysosomes, respectively. CD40L and IFN-γ are also enhance the production of lysosomal 

enzymes in the macrophages presenting peptide/MHC class II molecule to the TH cells. Similarly, 

in innate immune response, macrophages receive the same signal of activation by natural killer 

cells (Ma et al., 2003; Scott et al., 2004; Abbas et al., 2015). It has been shown that CD40 ligation 

in macrophages promoted a promising anti-cancer activity within these cells. Macrophages play 

role in stimulation of angiogenesis at the site of cancerous tissue, hence, promote cancer 

metastasis. In addition, macrophages suppress anti-cancer innate and adaptive immune response 

by suppressing NK and T cells (Noy and Pollard, 2014). Ligation of CD40 on these macrophages 

reverted their tumor-enhancing activity; and render them active antitumor participant cells. 

However, other studies showed that CD40 is expressed by the cancer cells themselves. Anti-CD40 

agonists such as MAb adjuvants induced antitumor activity by several mechanisms (Rakhmilevich 

et al., 2012). Controversially, CD40 ligation promotes anti-apoptosis in B cells while soluble 

CD40L and agonistic anti-CD40 MAb may promote apoptosis of certain CD40 expressing tumors 

without any participation of CD40 expressing immune cell (Eliopoulos et al., 2000, Vonderheide 

and Glennie, 2013).  
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Upon TCR-peptide/MHC class II engagement, immunological synapse (IS) forms. On the T 

lymphocyte side, TCR is the central molecule within this synapse, however, other costimulatory 

molecules participate considerably such as CD3 and CD28 and CD40L (Abbas et al., 2012). When 

B lymphocyte involved in formation of IS with TH, rapidly accumulated CD40L is last shortly 

(Yellin et al., 1994). The molecular mechanism of diminishing CD40L after the TH activation 

explained by several publications. Detection of soluble form of the CD40L in the media after T 

cell activation suggested the usefulness of this form for further activation of other uninvolved 

immune components (Graf et al., 1995). In a paradox, Hollenbaugh et al (1992) were able to induct 

costimulation, but not full activation, for B cells by the soluble form of the CD40L. Other 

publications suggested that after the CD40-CD40L engagement, the CD40L detached from the TH 

cells and endocytosed by the antigen-presenting B cell (Gardell and Parker, 2017). This 

phenomenon, which is antigen-dependent, is to sap activated TH cells render them recruiting 

bystander B cells.  The outcome of CD40-dependeant B cell activation with natural CD40L, 

soluble CD40L or agonistic anti-CD40 MAb resulted in B cell proliferation with increased MHC 

class II molecule expression and differentiation into plasma cells and memory cells. Plasma cells 

undergo profound production of antibody with high affinity maturation, and antibody isotype class 

switching. (Kawabe et al., 1994; Han et al, 1995; Kawabe et al., 2011; Gardell and Parker, 2017).  

Recent studies showed that the use of different agonists to CD40 receptor would lead to induction 

of acquired immune response. Agonists, such as anti-mouse CD40 monoclonal antibodies (MAbs) 

or soluble CD40L, were able to mimic the course of natural acquired immune response (Richman 

and Vonderheide, 2014a; Beatty et al., 2017). In one approach, our group had shown that the use 

of the chicken CD40 receptor, as the target for activation with anti-chicken CD40 MAb, was 

extremely successful with robust immune responses. (Chen et al., 2010; Chen et al., 2012). 
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Recently, we showed that DNA aptamers that had been specifically selected against chicken CD40 

receptor extracellular domain (chCD40ED) were capable of stimulation of chicken macrophage 

HD11 cell line (data unpublished). Thus, our DNA aptamers are one additional agonist to the CD40 

receptor. We aimed to substitute the anti-chicken CD40 MAb with DNA aptamers. Aptamers have 

many advantages over the monoclonal antibodies such as thermostability, chemical resistance, 

reproducibility, and low cost (Jayasena, 1999; Song et al., 2012).  

Anti-CD40 agonists could act as immunological adjuvants. We sought to test the ability of our 

anti-chCD40ED DNA aptamers (in form of rolling circle amplification products – RCA products) 

to act as immunological adjuvant in chicken. Herein, we might induce guided immune response 

toward peptide hapten in chickens with better potency and efficacy. For this purpose, the RCA 

products become chemically loaded with short low immunogenic peptide hapten with the aid of 

streptavidin. The peptide was a synthetic sequence of the external domain of matrix protein 2 

(M2e). This peptide is a short peptide that is unlikely to induct immune response by its own (Feng 

et al., 2006; Vuong et al., 2018). We administered the RCA products-M2e peptide immune 

complex to broiler chickens. Briefly, we conjugated two molecules of aptamers-based RCA 

products with streptavidin, which in turn, conjugated with two molecules of the peptide as the 

hapten. We administered this immune complex subcutaneously in two different doses according 

to the RCA products concentration (50μg/bird or 25μg/bird) to broiler chickens in priming and 

boosting doses at 7 and 21 days. In either RCA products dose, the peptide concentration was 

0.2μg/bird.  

The results showed that this immune complex could induce significant level of anti-peptide IgG 

antibody titer in the chicken sera as early as seven days post-immunization when 50μg/bird was 

administered. This antibody titer remained high significantly to the fourth week post-
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immunization. However, birds that had been immunized with the lower dose needed the boosting 

dose to sustain detectable level of the antibody titer at the end of the experiment. Our work would 

bring provide new foundations for peptide vaccine adjuvanted with aptamers-based adjuvants.  

 

3.2.MATRIALS AND METHODS 

3.2.1. Chickens, random mixing and management  

The conditions for animal use in this study were met the requirements of and approved by the 

Institutional Animal Care and Use Committee (IACUC) of the University of Arkansas (permit # 

18127, see appendix). Total 120 broiler one-day-old chicks were divided into six groups (n=20) bt 

different color tags in comingle pen. The chicks were Cobb-Vantress Off Sex – Male obtained on 

the day-of-hatch from the Fayetteville hatchery, Fayetteville, AR. The chicks were mechanically 

block randomized by moving 1/3 of each of the chicks from three boxes to a single new chick box, 

thus equally re-mixing each of the boxes. This was done in case boxes were derived from different 

hatchers and/or potentially different breeder sources (this variability has historically been the most 

critical for randomization effects). The management practice took the consideration of the broiler 

management guide of Cobb (cobb-ventress.com). 

3.2.2. Aptamers, rolling circle amplification products and M2e peptide 

3.2.2.1.Aptamers.  

Previously, we developed DNA aptamers targeting chicken CD40 extracellular domain 

(chCD40ED) protein in process of systemic evolution of ligands by exponential enrichment 

(SELEX) (Tuerk and Gold, 1991; Ellington, and Szostak, 1990) (unpublished data). Briefly, ten 
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rounds of enrichment via SELEX procedure needed to develop these DNA aptamers against the 

target protein. We run several assays to prove the affinity, the specificity and the biological activity 

of our aptamers toward this target protein in vitro. We successfully stimulated nitric oxide 

liberation from chicken macrophages HD11 cell line with our aptamers in form of RCA products. 

In addition, we specified the sites where our aptamers attached the target protein by running an 

LC-ESI-MS experiment (see Chapter II). 

3.2.2.2.Rolling circle amplification products.  

The anti-chCD40ED aptamers we developed were prepared in form of biotinylated RCA products. 

The biotinylation process achieved by hybridizing upstream-biotinylated primer with the template. 

Biotinylation of the RCA is to facilitate the conjugation with streptavidin in the later step.  The 

process of aptamer-dependent RCA products was as described elsewhere (Blanco et al., 1989; 

Johne et al., 2009). Briefly, our RCA technique relied on preparing RCA template depending on 

our DNA aptamers sequences. The template composed of two aptamer sequences separated by a 

spacer sequence. We circularized the template by annealing primer (20 nucleotides) that 

complementary to the upstream and the downstream of the ssDNA template and ligated of the 

nicked sequence between the primer and the template with T4 DNA ligase enzyme (Cat# M0202S, 

NEB, USA). The RCA template ordered as phosphorylated at the upstream (IDT, Coralville, Iowa, 

USA) to sustain the enzymatic ligation.  

The procedure of the RCA started with annealing 15-20pmol of the primer (equivalent up to 

132ng/μl) with primer binding site on the template (1-2pmol equivalent up to 129ng/μl). The 

primer-template mixture was heated first to 95°C for 10min, to 56°C for 5min and then cooled 
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down to RT in 50μL 1xTE buffer. To ligate the nicked template, the ligation of the template with 

T4 DNA ligase enzyme as recommended by the manufacturer (Ali et al., 2014). 

The polymerization of the template was with ɸ 29 DNA polymerase enzyme (Cat# M0269L, NEB, 

USA). All the reaction conditions were as recommended by the manufacturer except that the 

reaction was hold for 16hr at 30°C and then heat-inactivated at 65°C for 10min.  After each 

enzymatic treatment, the DNA was purified by ethanol precipitation. For SCS adding, two 

molecular weights of the SCS were mixed with one molecular weight of the RCA products. Again, 

the RCA products-SCS mixture was hold on heating for 10min at 95°C and for 50°C for 5min and 

then ice-cooled immediately to apply the annealing status. The RCA products represented tandem 

repeats of the original aptamers, hence; increase the chance for CD40 receptor activation in vivo. 

Adding SCS piece to ensure rigid sequences composed of double stranded DNA in exchange with 

our aptamer sequences to serve several purposes such as conserving the original DNA aptamers 

sequence by avoiding any form of dimerization and increasing the spanning area of our aptamers. 

3.2.2.3.Peptide immunogen.  

A commercial synthetic amino-terminus biotin labeled M2e peptide was a kind gift from Dr. Luc 

R. Berghman at the University of Texas A&M. The peptide was a biotinylated sequence 

(GenScript Inc. Piscataway, IL). This peptide, which was with the sequence 

“NAWSKEYARGFAKTGK”, representing the ectodomain of the matrix protein 2 of the influenza 

virus (Vuong et al., 2018). Conceptually, the biotinylation is to promote the conjugation of this 

peptide with streptavidin to form unit in the immune complex (see below).  
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3.2.3. Immunizing complex preparation, doses, timing and routes for administration 

Immunization complexes were prepared as described by Chen and co-workers (2012). Briefly, 

streptavidin (Thermo Fisher Scientific Inc., Rockford, IL) was used as the central molecule that 

conjugate other molecules in the immune complex (Figure 3.1). As mentioned above, the M2e 

peptide was ordered as biotinylated (GenScript Inc. Piscataway, IL), whereas the biotinylation of 

the RCA products was by ordering a biotinylated primer at the upstream to apply the RCA 

procedure. The biotinylated M2e peptide (0.2μg) was mixed with the biotinylated RCA products 

(50μg) in 1 to 1 ratio on molecular basis in 1xPBS with rotation at room temperature (RT) for 3hrs. 

The peptide-RCA products mixture then added to streptavidin in 2 to 1 ratio and stirred at 4°C for 

3hrs. Biotinylated anti-chCD40ED MAb was used as a control for our immune complex. This 

MAb was another kind gift from Dr. Luc R. Berghman at the University of Texas A&M. 

The same procedure was followed when preparing the anti-chCD40ED MAb-based immune 

complex, the M2e peptide alone, or the RCA products alone. Similarly, the peptide or the RCA 

products alone ratio to the streptavidin was 2 to 1.  

The immunizing doses and timing were as described in Table 3.1. The total volume of the 

calculated doses for either immunizing formula was 0.4mL/bird. The formulation of the 

immunizing complexes was in an emulsified PBS containing [5% (v/v) squalene, 0.4% (v/v) 

Tween 80 (Sigma-Aldrich, St. Louis, MO) in PBS]. 

3.2.4. Blood sampling 

Blood sampling was at weekly intervals in a sterile procedure. The blood were collected from the 

jugular vein at week 1 and from the brachial wing vein at the next four weeks. In the first week, 
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approximately 1 mL of blood was collected using 25G needles, 1 inch long in 5 ml syringes. In 

the next four collection procedures, 2-3 mL were collected using the same needle-syringe 

conformance. The blood samples were transferred to sterile and labeled tubes with lids. After blood 

complete clotting, blood samples were subjected to centrifugation for 5 min at 500xg and the sera 

were stored at -20°C (Lumeij, 1987; Kelly et al., 2013).  

3.2.5. Quantification of specific IgG by ELISA 

Antigen-capture ELISA was used to quantify the level of the anti-peptide IgG titer in the chicken 

sera. All serum samples were loaded in duplicates in a 96-well plate throughout the assay. The 

ELISA procedure started by incubation of the biotinylated M2e peptide (MW 2267.2Da) with 

5μg/mL goat anti-biotin antibody (MW 150kDa) (ThermoFisher Scientific Inc., Rockford, IL), in 

1 to 1 molecular ratio  in 10mL 0.05M carbonate-bicarbonate buffer (pH 9.6) for 2hrs at RT with 

rotation. 100μL of this peptide-antibody complex then coated a 96-well microtiter plate (MaxSorb, 

Thermo Fisher Scientific Inc., Rochester, NY) overnight at 4°C. Next, the un-adsorbed 

supernatants were removed and the plate was washed (3x) with 200μL 1xPBS-T for 15sec/each 

and blocked with 200μL commercial blocking buffer (Thermo Fisher Inc.) for 1h at RT. After a 

course of washing with 1xPBS-T for three times, the plate was incubated with the investigated 

sera [(100μL), diluted 1:500 in PBS to blocking buffer (1:1), 1% normal goat serum (v/v) and 1% 

normal rabbit serum (v/v)] overnight at 4°C. After a another course of washing, the plate was 

loaded with 100μL of horseradish peroxidase-conjugated, affinity purified isotype-specific rabbit 

anti-chicken IgY antibody (Thermo Fisher Scientific Inc., Rochester, NY).  

The dilution of the secondary antibody was 1:30,000 in bovine serum albumin (BSA) in blocking 

buffer and 1% normal goat serum (v/v). The plate was set for 1h at RT and a course of 5x washing 
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followed. For developing the color reaction, we used OptEIATM TMB substrate (BD, Lakes, NJ). 

The color developing process was following the manufacturer instructions and the reaction 

terminated by adding 1N sulfuric acid (50μL/well) after 5min for all the trials.  

Absorbance was measured by using BioTeK microplate reader (BioTek Instruments, Inc., 

Winooski, VT, USA) at 450nm using Gen5 version data analysis software (BioTek Inc) (Layton 

et al., 2009; Kuttappan et al., 2015).  

3.2.6. Statistical analyses 

The relative average levels of the anti-peptide antibody in the sera was normalized by calculating 

the value of each sample (n=20) to the mean value of the non-immunized group as the negative 

control (S-N). The average mean of the readings of the non-immunized birds was the baseline to 

calculate the S-N values of all groups. Results were analyzed using one-way analysis of variance 

(ANOVA) with least significant differences (L.S.D.) of the means of the S-N values and Student’s 

t-test were used to determine the significant differences between the treatments. All data were 

analyzed using JMP software (SAS institute Inc., Cary, NC, software by the University of 

Arkansas). Statistical differences of the RCA-peptide immunized group were at level p<0.0001 

(Chou et al., 2016). 
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3.3.RESULTS AND DISCUSSION 

3.3.1. Evaluation of the anti-Me2 antibody titers 

The pioneer work of activating the CD40 receptor by artificial agonists had encourage many 

laboratories to further investigating the outcome of this activation (Li and Ravetch, 2011; Richman 

and Vonderheide, 2014b). In essence, natural or artificial activation of this receptor could lead to 

many desirable effects over the course of the acquired immune response. When B cell involved in 

CD40-CD40L crosslinking, high antibody titer, antibody isotype-switching and affinity 

maturation are obvious (Amitage and Alderson, 1995; Merluzzi et al., 2004). In this experimental 

design, we tested the ability of DNA aptamers-based RCA products to act as an adjuvant directed 

toward the CD40 receptor and indirectly conjugated with influenza M2e peptide. The same RCA 

products has previously shown the ability to agonist the CD40 receptor in chicken macrophage 

HD11 cell line (data unpublished). We compared our immune complex [(2)RCA products-SA-

(2)peptide] (Figure 3.1) in two different doses with several negative control groups [SA-(2)RCA 

products alone, SA-(2)peptide alone, or non-immunized group) and with our previous immune 

complex design [(2)MAb-SA-peptide(2)] (Table 3.1). As stated by our group previously, chicken 

immunized with agonistic anti-CD40 MAb conjugated with low immunogenic peptide could 

induce high antibody titer directed against this particular peptide (Chen et al., 2012). Currently, 

our results showed that the administration of 50μg/bird of RCA products-peptide immune complex 

could induce significant level of anti-peptide IgG titer for long term at level p=0.0001 (Figure 

3.2B). The high antibody titer was detected as early as 7 days post immunization and remained 

high till the end of the experiment especially for birds with the high dose. These results are ideally 

match with our group novel work when the MAb was used as the adjuvant with the same dose and 

route (Figures 3.2A and 3.2B).  
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The same immune complex at lower dose (25μg/bird) failed to induct significant level of anti-

peptide IgG in the sera at 7 or 14 days post first immunization. However, this particular 

immunization needed boosting at day 21 to induct significant level of the antibody titer at 28 days 

post immunization (Figures 3.2A and 3.2B, Figure 3.3). Our results showed no need to use booster 

dose to gain satisfactory level of anti-peptide IgG titer at dose 50μg/bird (Table 3.2). Boosting 

could apply additional undesired effects especially in broiler chickens such as immune stress and 

cost. All birds showed retarded immune response at day 14 post immunization (boost timing) 

(Figure 3.3A). We recorded some management issues during the day before the onset of blood 

sampling. This might stressed out the birds at that particular time. However, it seems that the birds 

have compensated the immune response against the immunogen in later weeks. 

 

3.4.CONCLUSIONS AND SIGNIFICANCE 

The M2e protein is highly expressed on the surface of the naturally infected cells with influenza 

virus. However, the M2e is poorly immunogenic by its own (Black et al., 1993; Feng et al., 2006). 

It is obvious that MAb adjuvants attached to soluble peptide hapten targeting the CD40 receptor 

yields better-enhanced long lasting immune response than traditional adjuvants (Barr et al., 2003; 

Martin et al., 2017; Vuong et al., 2018). Despite the use of relatively low concentration of the 

hapten (M2e peptide), our RCA products-peptide immune complex succeeded to induct high level 

of anti-M2e IgG antibody titer in the chicken sera at dose (50μg/bird). With this dose, the elevation 

of the antibody titer started as early as seven days post-immunization and remained high to the end 

of the experiment. The action of this immune complex proves that this complex is with high 

potency and efficacy (Deng et al., 2015). These results are comparable to our lab group previous 
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work with MAb as the adjuvant with the same peptide (Chou et al., 2016; Vuong et al., 2018). 

However, lower dose of the same complex (25μg/bird) yielded only minor level of the antibody 

titer and needed a booster dose to sustain relatively acceptable level of the same antibody titer at 

the end of the experiment. 

Our immune adjuvant could guarantee the work as a universal adjuvant with any short soluble 

antigenic peptide. The immune response course with this DNA aptamers-based RCA products 

immunogenic adjuvant would pass through APCs-TH cells interaction pathway.   

Finally, aptamers are replacing the MAbs in many in vitro assays such as ELISA especially in 

vaccines assessment (Yoon et al., 2017; Trausch et al., 2017). We are first reporting targeting the 

CD40 receptor with DNA aptamers as a vaccine adjuvant. This would offer a cheaper molecule 

and easier to prepare molecule with high stability. This would improve the effectiveness of many 

vaccines not in the husbandry field but also in vaccinology in general.  
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3.5.TABLES 

Table 3.1. RCA Template, primer and spacer complementary sequence designs. The RCA 

template composed of partial primer-binding sequences at the upstream and the downstream. The 

primer utilized to circularize the template with the aid of T4 DNA ligase enzyme. The template 

composed of the complementary sequences of two aptamers separated by spacer to ensure 

individual effect of each aptamer and to avoid dimerization.  

Description Sequence (5’ 3’) 

RCA products 

template 

GCA TCT GAA C GCG GGA CGT AGC ATA AAA GAC GAA TTC ACT 

GCT CCA TTT ACA CCC CAT TAC CAA TTC CAC CTC TTG TCC TTC 

GAA TTC GG GAT CCA CCG GTA GCA GCG GGA CGT AGC ATA AAA 

GAC CTA GCC CTG CTC TTC TGA TCC CTA TTC CAT GTA GCC CTA 

CTC TTG TCC TTC GAA TTC GG GGA ACG TCT T 

RCA primer GTT CAG ATG CAA GAC GTT CC 

Spacer GAT CCA CCG GTA GCA 

Single underline represents the primer-binding site and the double underline represents the 

spacer complementary sequence 
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Table 3.2. Description of the experimental design. Six groups (n=20) were raised in a comingle 

pen and immunized with two different doses of RCA-SA-peptide immune complex (i.e. low: 

25μg/bird and high: 50μg/bird) for two times. This immune complex composition was compared 

with anti-chicken CD40 monoclonal antibody-based immune complex that has been given at 

(50μg/bird) for two times as well, and with three negative control groups. 

 

Group Description Dose/bird Prime/route Boost/route 

Non-immunized NA NA NA NA 

NC SA-peptide(2) 0.2μg D7/SC D21/SC 

NC SA-RCA(2) 50μg D7/SC D21/SC 

MAb-based adjuvant (2)MAb-SA-peptide(2) 50μg-0.2μg D7/SC D21/SC 

RCA-based adjuvant (2)RCA-SA-peptide(2) 25μg-0.2μg D7/SC D21/SC 

RCA-based adjuvant (2)RCA-SA-peptide(2) 50μg-0.2μg D7/SC D21/SC 

⸸Immune complexes was prepared in a volume of 0.4mL/dose/bird emulsified PBS (containing 

5% [v/v] squalene and 0.4% [v/v] Tween 80, pH=7.4) 
*Doses of SA-(2)peptide and (2)MAb 2C5-SA-(2)peptide were calculated according to Chen et 

al., 2012. Values represent RCA and M2e concentrations, respectively. 
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Table 3.3. Normalized S-N values of the ELISA results of the anti-M2e IgG antibody in 

chicken sera. The (S) is the average sample reading and (N) is the average mean of the readings 

of the non-immunized group. Chickens were divided randomly into 6 groups in a comingle pen 

(n=20) and immunized at two timing (days 7 and 21). Investigated immune complex (RCA-M2e) 

was with two different doses (i.e. low: 25μg/bird and high: 50μg/bird). Blood collected at weekly 

intervals to apply ELISA assay. The sera diluted at 1:500 and the assay run in duplicates. 

Significant differences between groups were calculated by comparing means ± SE of the S/N 

values by ANOVA and student t-test (JMP software, SAS institute Inc., Cary, NC, software by the 

University of Arkansas). Different letters represent significant differences at level p=0.0001 

Group D7PI  

(Mean±SE) 

D14PI  

(Mean±SE)(Boost) 

D21PI  

(Mean±SE) 

D28PI  

(Mean±SE) 

Non-immunized 1 ± 0.0341
d
 1 ± 0.0155

d
 1 ± 0.0178

d
 1 ± 0.0176

d
 

M2e only 1.1368 ± 0.0315
bc

 1.0935± 0.0128
bc

 1.0281 ± 0.0122
d
 1.0724 ± 0.022

cd
 

RCA only 1.0901 ± 0.0326
cd

 1.0597 ± 0.0301
cd

 1.0956 ± 0.0167
c
 1.1131 ± 0.0141

c
 

MAb-peptide (50μg/bird) 1.2190 ± 0.0693
a
 1.557 ± 0.0267

ab
 1.2206 ± 0.0280

b
 1.4735 ± 0.0269

a
 

RCA-peptide (25μg/bird) 1.0487 ± 0.0573
cd

 1.0561 ± 0.0159
cd

 1.2170 ± 0.0223
b
 1.2220 ± 0.0215

b
 

RCA-peptide (50μg/bird) 1.2990 ± 0.0347
a
 1.1742 ± 0.0271

a
 1.3017 ± 0.0257

a
 1.4343 ± 0.0462

a
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3.6.FIGURES  

 

Figure 3.1: schematic figure represents the design of the immune complex. Streptavidin (SA) 

is the central molecule that holds the biotinylated components of the immune complex tightly. 

RCA molecule was biotinylated to conjugate with the SA. Similarly, the biotinylated M2e peptide 

was mixed with the RCA in 1 to 1 ratio on the molecular basis. RCA-M2e mix then added to SA 

in 2 to 1 ratio on molecular basis as well. The design followed what described by Chen et al. 2010. 

Streptavidin-biotin model: Trong et al., 2011, M2e model: Cho et al., 2015.  
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Figure 3.2. Normalized ELISA results representing S-N values of the anti-M2e IgG in 

chicken sera at weekly intervals after immunization. Birds were immunized at day 7 and day 

21 via s/c route with RCA-peptide complex in two different doses (50μg/bird) or (25μg/bird) 

(n=20). The normalization calculations S-N = the average of (sample read – mean reads of the 

non-immunized group). The mean of each group calculated accordingly. The significant 

differences of the antibody titers between the group that received 50ug/bird of the RCA-peptide 

immune complex and the non-immunized group are according to ANOVA and student t-test. 

Asterisks represent statistical differences (p=0.0001) from the non-immunized control group. A) 

Results according to the timing after immunization; B) Results according to groups. 
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Figure 3.3. Normalized ELISA results representing S-N values of anti-peptide IgG in chicken 

sera at weekly intervals.  Results shown at D0-D28 post-immunization with RCA-peptide 

(50μg/bird) or RCA-peptide (25μg/bird). Birds were immunized at day 7 and day 21 

subcutaneously (n=20/group) and blood sampling performed at weekly intervals.  Birds 

immunized with the higher dose showed significant differences to the non-immunized group as 

early as D7PI, whereas, birds immunized with the lower dose showed significant differences only 

at D21PI. Results show mean ± SE and the differences are according to ANOVA and student t-

test. Asterisks represent statistical differences (*p=0.0001) from the non-immunized group. 
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ABSTARCT 

DNA aptamers are now emerging as a promising target-recognizing biomolecule of choice in 

various biomedical and biotechnological applications with multiple advantages. Traditional 

aptamer selection process is through systemic evolution of ligands by exponential enrichment 

(SELEX) procedure, which includes multiple PCR steps to amplify the enriched aptamers. During 

amplification, unwanted DNA byproducts of considerable amount are often formed. These 

spurious byproducts as characterized by DNA fragments, which appear in variable lengths on gel 

electrophoresis, are considered as the result of formation of heteroduplexes within the randomized 

region of the DNA aptamer library. These PCR byproducts negatively alter the diversity and 

composition of the DNA library. Here we describe a simple method that corrects these PCR 

byproducts efficiently. When repetitive cycles of heating-cooling (60ºC20ºC) were applied to 

the enriched aptamers, our results showed that this procedure has efficiently removed the 

formation of the byproducts, suggesting that this method can be used widely in removing 

heteroduplexes or other type of spurious byproducts formed during amplification of DNA aptamer 

library. 

Keywords: DNA aptamer, PCR byproducts, DNA heteroduplexes, SELEX. 
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4.1.INTRODUCTION 

The technique of systemic evolution of ligands by exponential enrichment (SELEX) was initially 

developed independently and simultaneously by two laboratories in 1990 (Tuerk and Gold, 1990; 

Ellington and Szostak, 1990). This technique has been used extensively to develop nucleic acid 

aptamers with high specificity and affinity to various targets for variable applications. In fact, 

aptamers have been replacing monoclonal antibodies in many biological and biochemical 

applications (Jayasena, 1999; Dollins et al., 2008; Scoville et al., 2017).  

The procedure of SELEX requires randomized oligonucleotide library that is flanked by two 

constant regions at the upstream and the downstream, which serve as primer binding sites for 

subsequent PCR amplification. Oligonucleotide library generation depends on equal opportunity 

of the four-nucleotide bases incorporated at any position within the variable region. Depending on 

the length of the random region, the predicted diversity of the oligonucleotide library is 4n where 

(4) represents the four nucleotides, i.e., A, C, G and T and n is the length of the random variable 

region. For example, a library with 40n at the random region form 1024 different sequence 

hypothetically (Vorobyeva et al., 2018). At the ends of each SELEX enrichment cycle, the PCR is 

used to amplify the enriched aptamers exponentially. In the later step, the double-stranded DNA 

products of the PCR are typically converted into single stranded DNA (ssDNA) by the digestion 

with an exonuclease enzyme (e.g. lambda exonuclease – λ- exonuclease) to resume the original 

library format for the new enrichment cycle (Avci-Adali et al., 2010). However, due to highly 

diverse sequence of the library, there is always a possibility to develop amplify spurious 

byproducts during the PCR steps. Many sequences in the random library might undergo partial 

hybridization between different sequences to form PCR byproducts with variable lengths (Smyth 

et al., 2010; Tolle et al., 2014; Thompson et al., 2002). Another source of the PCR byproducts can 
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arise when one or both primers fully or partially hybridize to other regions than the constant 

primer-annealing sites. In essence, the correct PCR products are usually mixed with one or two 

types of byproducts; i.e. smearing bands and/or ladder-like byproducts when analyzed by agarose 

gel electrophoresis. In either way, the PCR byproducts might affect negatively the diversity of the 

enriched aptamers. There are studies suggesting practical methods to resolve this issue through 

PCR re-conditioning (Smyth et al., 2010; Tolle et al., 2014; Thompson et al., 2002; Qiu et al., 

2001).  

Here, we describe a method that could efficiently correct the size and the shape of the PCR 

byproducts that occur during SELEX DNA aptamer selection. We hypothesized that the 

application of appropriate thermal cycles might partially denature these heteroduplexes, 

facilitating homoduplexes formation. PCR byproducts are considered to be formed due to the 

formation of DNA heteroduplexes when mixing more than one template sequence en masse 

(Ruano and Kidd, 1998; Kalle et al., 2014). Our thermal cycle involves raising the temperature of 

the DNA byproducts to 65°C for 10 min and cool them down to 20°C for 1 min, which was 

repeated for six times. 

With our method, however, the fully hybridized homoduplexes would not be affected due to their 

very low free energy change (ΔG) value (Petruska and Goodman, 1995). Our results showed 

marked reduction in the ladder-like and/or smearing band PCR byproducts. Analysis of the 

resulting library by Illumina sequencing demonstrated that there was a marked reduction in the 

proportion of the shorter and longer reads in the enriched library by these corrective cycles in 

comparison to the negative control library. Here, we describe a simple and an effective method 

that corrects the undesirable PCR byproducts to improve overall quality of the aptamers library. 
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4.2.MATERIALS AND METHODS 

4.2.1. DNA library and primers.  

A randomized single-stranded DNA (ssDNA) library, forward and reverse primers were purchased 

from Integrated DNA Technologies (IDT, Coralville, Iowa, USA). The library was composed of 

two parts; a variable region of 40 nucleotides, which was flanked by two constant regions that 

consisted of 20 nucleotides each at the upstream and the downstream. The fixed regions consisted 

of the sequence for annealing of the forward primer at the upstream and reverse primer binding 

site sequence at the downstream. The library sequence was 5’-CCG AAT TCG AAG GAC AAG 

AG (N)
40

 TCT TT TAT GCT ACG TCC CGC-3’, whereas the forward and the reverse primers 

sequences were: 5’-CCG AAT TCG AAG GAC AAG AG-3’ and 5’-GCG GGA CGT AGC ATA 

AAA GA-3, respectively. Our library was with 1024 sequence hypothetically. The reverse primer 

was phosphorylated at the upstream for digestion with λ-exonuclease enzyme in the later step 

during the enrichment cycles. The library and the primers were diluted in 1X Tris-EDTA buffer 

(TE buffer, ThermoFisher Scientific, USA) to sustain 100μM concentration as recommended by 

the manufacturer and were stored in -20°C. 

4.2.2. Target protein  

The target protein used for the aptamers selection was a recombinant protein of chicken CD40 

extracellular domain protein (chCD40ED). The protein was a kind gift from Dr. Berghman at the 

University of Texas A&M. Briefly according to Chen and co-workers (2010), total RNA was 

isolated from chicken spleen and cDNA was synthesized accordingly. The sequence encoding the 

chCD40ED, which was already determined, was amplified with nested PCR and the gene encoding 

the protein was cloned into expression vector pcDNA5 (Invitrogen). The chCD40ED recombinant 
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protein was expressed in hybridomas, human embryonic kidney (HEK)-293 Freestyle cells in 

protein-free medium (Antagene Inc., Santa Clara, CA, USA) with concentration of 1mg/mL. The 

protein’s stock was diluted with sterile 1X phosphate buffer saline (1XPBS, w/v) to concentration 

of 15μg/L and aliquoted into 1ml in sterile tubes and stored at –80°C. 

4.2.3. In vitro SELEX procedure  

Ten enrichment cycles were applied to develop the specific aptamers to the target protein. The 

procedure for aptamer selection was performed as described elsewhere (Tuerk and Gold, 1990; 

Ellington and Szostak, 1990). Briefly, a 35μL from the ssDNA library (1μg/μl) was mixed with 

115μL binding buffer (50mM Tris HCl, 25mM NaCl, 5mM MgCl2, 10mM DTT (dithiothreitol), 

pH 7.5) and was denatured by heating at 95°C for 10min, cooled to 4°C for 5 min and incubated 

at room temperature (RT) for 10min. The mixture filtered three times through nitrocellulose filter 

membrane (0.45um) (Ref# HAWP01300, Merck Millipore Ltd, Ireland) hold by filter holder 

(“pop-top”, Millipore, MA, USA) to get rid of non-specific bounders. 50μL (15μg/L) of the target 

protein was incubated with library-in-binding buffer with rotation for 1hr at RT. The library-

protein mixture passed through another nitrocellulose filter membrane to trap the enriched 

aptamers. The filter then immersed in 200μl of pre-heated (60ºC) elution buffer (0.4 M sodium 

acetate, 5mM EDTA, 7M urea; pH 5.5) for 5min. The eluted material was diluted with 200μl 

ddH2O and the DNA was precipitated with ethanol precipitation method (Wang and Li, 2013).  

4.2.4. Amplification and digestion of the DNA  

After each enrichment cycle, the enriched ssDNA aptamers were amplified with 25 cycles of PCR 

amplification. The PCR was conducted using G2 Hot Start Green Master Mix (Cat# M7422, 

Promega). The reaction mix was 1μl (10μM) from the of the DNA library (enriched aptamers in 
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the later cycles) as the template, 1μl of each forward and phosphorylated reverse primers (4μM), 

12.5μl of 2X reaction buffer (pH 8.5). The reaction buffer composed of 2.5U of the polymerase 

enzyme, 400μM of each dNTPs and 4mM MgCl2. Nuclease-free water was added to adjust the 

final reaction volume to 25μl. The thermal cycles composed of 95°C for 5min as the denaturing 

step, followed by 25 thermal cycles composed of 95°C for 30sec, 56°C for 15sec and 72°C for 

15sec. The final extension was at 72°C for 5min. The PCR products were monitored on 1% agarose 

gel stained with SYBR Safe dye (ThermoFisher Scientific, USA). The PCR-resulted double-

stranded DNA (dsDNA) was subjected to the action of λ exonuclease enzyme (Cat# M0262S, 

NEB, USA) to retain the ssDNA for the next round. The reverse primer was order as 

phosphorylated to facilitate this task (Table 4.1). The digestion reaction conditions were as 

described by the manufacturer. 

4.2.5. Correcting thermal cycles  

After each amplification of the enriched aptamers, the PCR products were ethanol precipitated, 

purified and re-suspended initially in 100μL 1X TE buffer (v/v). In general, the final concentration 

of the DNA in the 1X TE buffer (w/v) was ~150 ng/μl. We aliquoted the diluted DNA into 50μl 

in PCR tubes (Cat# N80105580, ThermoFisher).  Then, the purified DNA were subjected to six 

correcting thermal cycles using thermocycler (PTC-200, Peltier Thermal Cycler). The protocol 

involved raising the temperature to 65°C for 10 min, cool down to 20°C for 1min and this cycle 

was repeated for six times. After the sixth cycle, the DNA was monitored on 1% agarose gel (see 

Amplification and digestion of the double-stranded DNA). 
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 4.2.6. Illumina sequencing 

The procedure for Illumina sequencing was as previously described (Scoville et al., 2017). The 

bioinformatics analysis was performed using the free online software “Galaxy Bioinformatics” 

(open access software) (Thiel and Giangrande, 2016; Kinghorn et al., 2018).  Briefly, samples 

from rounds 1, 6, 8 and 10 were prepared for Illumina sequencing platforms. The enriched DNA 

aptamers from each selected rounds were barcode-tagged and were used as a template for PCR 

amplification using primers with Illumina adapter sequences. The DNA aptamers were diluted in 

nuclease-free water to the concentration of 10μM. The Illumina adapter primers, which also 

include unique index sequences for different samples, were utilized to amplify the templates. 

Twenty-five PCR cycles were applied using Q5 hot start high-fidelity DNA polymerase and buffer 

(Cat # M0493S, NEB). The resulting PCR products were combined at ultimately the same amount 

and concentration (50.4 ng/μl). The mixed DNA samples were PAGE-purified using 4-20 % 

polyacrylamide gel (Life Technologies, NY, USA), and was sent for Genomics Core Facility at 

the University of California at Riverside, USA for Illumina sequencing using MiSeq with 151 

cycles in single-end mode. 

The results from the Illumina sequencing were analyzed using multiple commands in the Galaxy 

tool. The total number of the reads by the Illumina sequencing were about 16 millions. These reads 

were tracked according to their index sequences. The quality of the reads, the lengths of the reads 

and the conserved sequences were investigated as described previously (Thiel and Giangrande, 

2016; Thiel, 2016). The total number of the reads by the Illumina sequencing were about ~16 

million reads, however, about 5% of the total reads was neglected due to their improper length or 

quality. The rest of the reads were tracked according to their barcodes. After analyzing the results, 

the highly-yielded aptamers were tested for the free energy change (ΔG[kcal.mole-1]) of the three 
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dimensional structure using the OligoAnalyzer 3.1 Tool available online by Integrated DNA 

Technologies (IDT) website, and the most reliable ones have been chosen to be tested by the next 

step. 

 

4.3.RESULTS AND DISCUSSION 

Standard SELEX procedure has a number of limitations that intervene the overall goal of this 

procedure of selecting specific aptamers with high affinity and specificity to the target (Lakhin et 

al., 2013). The combination of randomized ssDNA library and SELEX procedure applies selection 

pressure resembles the natural selection of function-to-structure relation in RNA (Meyers et al., 

2004; Thiel et al., 2011). Conventional PCR procedure is an additional player that causes bias 

when a random library is used as the template. The resulting issues such as incorrect hybridization 

events between primer-template, template-template, and mutation are common (Katilius et al., 

2007; Spill et al., 2016). Therefore, when using random library as the template for PCR, the 

artifacts should increase logically. Eventually, the evolution of selection pressure favor the highly 

amplifying aptamer sequences over the highly specific aptamer in later SELEX cycles (Shao  et 

al., 2011; Takahashi et al., 2016; Acinas, et al., 2005; Yufa et al., 2015; Witt et al., 2017).  

Many researchers require dealing with the formation of the PCR byproducts in order to reduce the 

development of non-specific aptamers (Blind et al., 2015; Eaton et al., 2015). In the process of 

aptamers selection, there are two common artifacts in the PCR products; these are ladder-like PCR 

products and smearing band (Figure 4.1). These PCR byproducts can appear as early as in the 

second selection round during aptamer selection and increase linearly (Figure 4.2). 
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PCR byproducts formed because of several undesirable events during the aptamers amplification 

by PCR. The random design of the variable region of the library reveals multiple potential sites 

other than the primer binding regions on the library where primers can anneal (Tolle et al., 2014; 

Yufa et al., 2015). Additionally, the partial annealing of two different DNA strands could form the 

heteroduplexes, i.e. two DNA strands act synergistically with the primer(s) to produce the 

amplicon (Musheev and Krylov, 2006; Shao et al., 2011).  

In order to investigate the template-template hybridization, we amplified the library with one 

primer only (forward or reverse) (Figure 4.3). With extension using one of the primers only, ladder-

like byproduct or smear band were efficiently removed from the library. However, the length of 

the PCR products was not typical for the library length. This could be attributed to the fact that 

there are specific sequences act to hybridize to each other to act as a primer. Therefore, using one 

primer was enough to amplify these duplexes. With the presence of one primer, the complementary 

sequence act as the second primer and vice versa. Therein, the size of the PCR byproducts depends 

on the site of template-template hybridization more than the site of primer-template hybridization. 

We concluded that this byproduct could be <2X the library size at least at the first PCR cycle. 

When the cycles continue, the byproducts size increase gradually (Acinas et al., 2005; Yufa et al., 

2015; Witt et al., 2017).  

To decrease the potential of heteroduplexes formation, we sought to apply a course of thermal 

treatment for the PCR products. The upper limit of the temperature was meant to be below the 

denaturing temperature of the fully-hybridized templates and above the annealing temperature of 

the primer-template. We tested several different temperatures (data not shown) and then we chose 

to use 65ºC as the partial denaturing temperature. The rest of the thermal course is to give the 

chance for the homoduplexes to re-anneal at 20ºC (Figure 4.4). Therefore, there is no denaturing 
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for the homoduplexes due to their very low ΔG value; instead, the heteroduplexes would be applied 

under the pressure to find their correct complementary sequences. After testing different number 

of thermal cycles, we found that six cycles of the thermal correction protocol gives the best results. 

Both the ladder-like and smearing band byproducts are sensitive to the correction with this method 

and only traces of either byproducts could be detected aftermath (Figure 4.4). 

For the Illumina sequencing results, there are several stretches over the aptamers sequences where 

they were partially matching with the reverse primer sequence (Table 4.1D). This agrees with our 

prediction for the origin of the PCR byproducts and supports Tolle and co-workers (2014) results. 

In addition, there were extra-piece in the downstream where it, in most cases, expressing partial or 

full forward primer sequence, reverse primer sequence or both as an overlapping sequence (Table 

4.1A, B, C and E). 

The format of typical Illumina sequence results is shown in (Table 4.1 A). After ten round of 

aptamers selection, the common PCR byproducts are listed in Table 4.1 (B-E).  Some aptamers 

showed incorrect sequence of the reverse primer (RP). This could be attributed to the polymerase 

enzyme proofreading capacity (McInerney et al., 2014). Other aptamer sequences showed longer 

sequence than usual with the extra piece carrying partial or complete RP sequence or forward 

primer (FP) binding site sequence. This result matches with the conclusion of previous publication 

(Tolle et al., 2014). In some instances, the long extra piece showing overlapped FP binding site 

and RP sequences.  

There were short sequences that do not carry any primer sequence. Both short and long sequences 

were increasing linearly over rounds. However, PCR products that were treated with the correction 

protocol showed lower tendency to express these artifacts. In such PCR products, the short reads 
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proportion was with steep increase in the proportion in comparison to the total reads. This could 

be explained as the short reads are the results of the amplification of homoduplexes and 

heteroduplexes. Whereas, the long reads is the results of the heteroduplexes only (Table 4.2). 

Application the correction thermal cycle for the PCR products of the 10th round succeeded to shift 

this proportion toward the normal sequence size (Table 4.3). In our results, the smearing bands 

PCR byproducts were more sensitive to the thermal correction protocol than the ladder-like ones 

(Figure 4.4). This could be explained that the smearing bands are due to the formation of three-

dimensional structure hairpin whereas, the ladder-like byproduct are due to formation of 

heteroduplexes. Unfortunately, we were facing the ladder-like byproducts in our experiment 

mostly. 

 

4.4.CONCLUSIONS 

The use of PCR is the only known reliable method to exponentially amplify the enriched aptamers 

in the SELEX method. The PCR, however, could decrease the efficiency of the SELEX method 

itself due to the presence of DNA artifacts or bias over the enriched aptamers (Tolle et al., 2014; 

Thiel et al., 2011). In fact, the presence of the artifacts in the aptamers might interfere with ligand-

target interaction yield, which would result in low quality aptamers such as aptamers with no 

specificity to the target or aptamers with low affinity to the target. There are several methods are 

in use to decrease these artifacts in PCR products. PCR reconditioning is a common procedure to 

reduce the effects of these artifacts (Thiel, 2016).  

In the current article, we described a simple, yet, effective protocol to reduce the well-known 

common PCR byproducts confronting the process of SELEX. Our method treat both ladder-like 
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and smearing band PCR byproducts at the same efficiency. Visually, the agarose gel images 

showed that the method was capable of effective correction of the ladder-like and the smearing 

band that had been detected previously on the PCR byproducts. Similarly, the Illumina sequencing 

results showed that there was marked decrease in proportion of the short and long sequences after 

the application of this protocol. The formation of these short or long PCR byproducts might be due 

to the presence of matched sequences within the random library sequence with that of forward 

primer binding site or reverse primer sequences. Additionally, the formation of heteroduplexes 

between two random sequences within the library, could act as a primer to form multiple-length 

PCR products. Finally, the ladder-like byproducts were more refractory to correction than the 

smearing bands byproducts. 
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4.5.TABLES 

Table 4.1.  The common artifacts in PCR products after the 10 rounds of aptamers selection 

by SELEX procedure. A) The common library design with barcode included. B) Reverse primer 

(RP) shows incorrect sequence. Many aptamer sequences showed longer sequence than usual with 

the extra piece carrying partial RP sequence. C) The extra piece of a long aptamers showing 

forward primer binding site (FPBS) sequence. D) The long extra piece showing overlapped FPBS 

and RP sequences. E) Normal aptamer length with partial RP sequence. 

A    

Barcode FPBS 
Variable 

region 
RP 

CTTCGGGTATCCTCTT TCCGAATTCGAAGGACAAGAG N40 TCTTTTATGCTACGTCCCGC 

 

B    

FPBS Aptamer RP* Extra piece with RP⸸ sequence 

TCCGAATTCGAA

GGACAAGAG 
N40 TCTTTTTTTCTTCCTCCCCC (N)30-40 TCTCTTTTTCCTTCTTCTT 

*RP sequence with incorrect sequence 
⸸
Extra piece with partial RP sequence (bold font) 

C    

FPBS Aptamer RP Extra piece with FB* sequence 

TCCGAATTCGA

AGGACAAGAG 
N40 TCTTTTATGCTACGTCCCGC 

NNNNTCCGAATTCGAAGGACAAGA

G (N)20-40 

*The extra piece is with RP sequence (bold font) 

D    

FPBS Aptamer RP Extra piece with overlapped FB-RB* sequence 

TCCGAATTCGA

AGGACAAGAG 
N40 

TCTTTTATGCTACGTCC

CGC 
(N)30-40 TCTTTTATGCTACGTCCCGC 

* The extra piece showing overlapped partial FPBS binding site (large font) and RP sequence (small and bold font) 

 

E   

FPBS Aptamer with partial RP sequence RP 

TCCGAATTCGAAGGACAAGAG 
(N)20-25 

TCTTTNNTGNTACNTCCCG                          
TCTTTTATGCTACGTCCCGC 
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Table 4.2. The proportion of the short (<80nt%) and long reads (>80nt%) in comparison to 

normal length sequences (80nt%). The total reads showed that there were increase in the short 

and long read percentage in the later rounds 

Round Total reads <80nt% 80nt% >80nt% 

1 4, 441, 562 0.66 95.68 3.66 

6 4, 379, 389 1 97 2 

8 4, 087, 274 4.33 90.01 5.66 

10 3, 777, 547 23.86 67.89 9.33 
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Table 4.3. The proportion of short (<80nt%) and long reads (>80nt%) in comparison to 

normal length sequences (80nt%) with and without the course of the thermal correction. 

Round 1 used as the reference round for all lengths of sequences. 

Round Total reads <80nt% 80nt% >80nt% 

1 4, 441, 562 0.66 95.68 3.66 

10 (not corrected) 3, 777, 547 23.86 67.89 8.25 

10 (corrected) 4, 549, 398 0.88 95.56 3.56 
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4.6.FIGURES 

 

 

Figure 4.1. Patterns of PCR byproducts that occur during SELEX procedure. PCR 

byproducts appear in two different patterns on 1% agarose gel. (A) ladder-like pattern of PCR 

byproducts. (B) Smear band pattern PCR byproducts. According to the DNA library design, the 

correct size of the amplicon should be 80bp. These PCR products are from rounds 10 and 8 of the 

SELEX procedure, respectively.  
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Figure 4.2. Evolution of the PCR byproducts over the SELEX rounds. Lanes 2 represent the 

DNA library, lanes 3, 4, 5 and 6 represent PCR products from rounds 1, 2, 3, and 4 respectively. 

PCR products were loaded on 1% agarose gel.  
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Figure 4.3. Amplification of aptamers pool with single primer. Aptamers form round 6 was 

used as a template for PCR. The process of amplification was carried out using forward primer 

alone (lane 2, 45 thermal cycles), reverse primer alone (lane 3, 45 thermal cycles), forward primer 

alone (lane 4, 30 thermal cycles), or forward and reverse primers together (lane 7, 45 thermal 

cycles). Lanes 5 and 6 represent negative controls with no template or no primer, respectively. 
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Figure 4.4. Application of thermal cycles to correct PCR byproducts. (A): PCR byproduct 

from the 10th enrichment cycle of SELEX procedure. The PCR byproducts appear as a ladder-like 

smear pattern (lane 2). The correction protocol included application of 65ºC for 10min, followed 

by 20ºC for 1min for 1, 2, 3, 4, 5 and 6 cycles (lanes 3-8, respectively). (B): correction of smearing 

band PCR byproducts by applying 6 cycles of the thermal protocol (lane 2 before and lane 3 after 

the correction).  
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CHAPTER V 

5.1. CONCLUSIONS AND SIGNIFICANCE 

Restrictions and strict scrutiny on antimicrobial use with absence of effective antiviral remedies in 

commercial poultry expose the vaccines as the main tool to confront the infectious agents 

(Kennedy and Read, 2017; Kennedy and Read, 2018). Traditional vaccines act to stimulate less 

effective immune responses, mainly, due to low specificity or/and low immune enhancing 

capacities of their accompanying adjuvants. Assembling an efficient vaccine with potent adjuvants 

is demanding due to emerging of low-immunogenic and more sophisticated vaccines such as 

subunit vaccines (Nobel, 2013).  

The studies presented in this dissertation aimed to determine the ability of DNA aptamers-based 

RCA products to act as an immunological adjuvant in broiler chickens. In Chapter II, I describes 

the development of agonistic DNA aptamers to chicken CD40 receptor. We hypothesized that 

ligation of CD40 receptor on macrophages with DNA aptamers would promote activation of these 

cells. First, we prepared the candidate aptamers in form of RCA products to combine the specificity 

of our aptamers with the higher affinity and large spanning are offer by the RCA products. These 

aptamers were capable to induce stimulation of chicken macrophage HD11 cell line characterized 

by dose-dependent nitric oxide liberation. In addition, I have shown the actual sites where these 

aptamers interact with the target protein, herein, specified the active sites on the receptor.  

Several attempts have achieved to develop CD40 agonistic adjuvants, mainly, by developing 

monoclonal antibodies in mammalian models (Carlring et al., 2004; Smyth and Kershaw, 2011; 

Thompson et al., 2015). Recent publications from our lab showed that anti-CD40 monoclonal 

antibody-based adjuvant could guide robust immune response when loaded with hapten peptide 
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(Chen et al., 2010; Chen et al., 2012; Chou et al., 2016). Traditionally, adaptive immune response 

ignition requires the interaction of TCR on the resting lymphocytes with peptide/MHC class II 

molecule on APCs as the first signal. Once the first signal sparked, activation of both the T 

lymphocyte and the APC with concurrence upregulation of costimulatory molecules and cytokines 

accompanies.  Follows, the second signal comes from costimulatory molecules, such as CD40, 

CD80, on the APCs with cognate ligands on activated T lymphocytes. Costimulatory molecules-

ligands interaction optimizes the T lymphocytes and APCs activation. The third signal comes from 

the cytokines that have releases by the two types of the activated immunological cells.  

When B cells present the foreign antigen to the T cell, activated B cells trigger the differentiation 

of a subset of TH cells called follicular helper T cells (TFH) in the lymphoid follicles. The TFH, in 

turn, mediate B cell differentiation and proliferation. CD40-CD40L interaction plays crucial role 

in this two-way activation pathway and formation of germinal centers. Commonly, in the dark 

zone within the germinal centers of lymphoid follicles, B cells proliferate, differentiate and expand 

within the light zone of the germinal centers. This is accompanied by emerging of long-living 

memory B cell sand antibody-producing plasma cells with antibody class switching and antibody 

affinity maturation (Crotty, 2012; Mesin et al., 2016; Vaccari and Franchini, 2018). However, 

CD40 receptor interaction pathways within these immune cells is only discussed briefly in 

mammalian species, we only predict the same effects in avian species.  

The study discussed in Chapter III presents the use of the DNA aptamers specifically selected 

against the chicken CD40 receptor in vitro to act as adjuvant when engaged with low immunogenic 

peptide hapten. Encouraged by the results from the first experiment (Chapter II), we proceeded to 

develop an immune complex composed of the enriched aptamers (in form of RCA products) in 

conjugation with peptide hapten. These aptamers should be replacing the agonistic anti-CD40 
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MAb that our lab group developed recently. To determine the ability of our DNA aptamers to work 

as an adjuvant, we created an immune complex composed of RCA-streptavidin-peptide. We 

sought to use M2e peptide in our immune complex. M2e is a conserved peptide among influenza 

viruses and it is known to induce no or low immune response by its own.  

Our immune complex showed ability to stimulate the production of anti-M2e IgG in chicken sera 

as early as 7 days post immunization. This antibody titer remained high until the age of 35 days 

28 days post immunization. However, the lower dose of the same immune complex needed a boost 

to sustain a detectable anti-M2e IgG titer. In essence, the immune complex could have been created 

easier if we selected DNA aptamers against biotin to replace the streptavidin. However, the 

streptavidin is high molecular weight protein that creates immune response by its own and may 

interfere with final immune response (Meyer et al., 2000; Yumura et al., 2012).  

Chapter IV presents an effective method for correction the PCR byproducts that confront the use 

of SELEX procedure as the main tool to develop DNA aptamers. When multi-sequence template 

used to develop PCR, as in the use of DNA library to select aptamers, heteroduplexes formed 

considerably. The formation of these heteroduplexes is due to partial matching and hybridization 

among different sequencing within the library pool or due to incorrect primer-template 

hybridization site. For either cause, the high variability of the DNA library promotes these 

undesirable hybridization. Anyway, the PCR byproducts may take ladder-like shape or smearing 

bands. These byproducts affect the yield and quality of the enriched aptamers.  In this chapter, I 

described a simple and effective thermal correction course that was applied to reduce the 

heteroduplexes formation in the PCR products. The thermal correction course composed of six 

cycles of elevation the temperature of the purified PCR products to 65°C for 10min and then cool 
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them down to 20°C for 1min, with no need for enzymatic treatment. The results confirmed high 

quality DNA yield of this method in all samples.  

Taken together, our results suggest that our DNA aptamers are qualified candidate for 

immunological adjuvant in chickens. These aptamers could be considered signal-2 enhancers 

because they facilitate an acquired immune response at the level of costimulatory molecules. Using 

low immunogenic DNA aptamers as adjuvants could mount better immune response, increase the 

safety of vaccines and offer better mate for subunit vaccines. In addition, using DNA aptamers-

based adjuvant would simultaneously lower the cost of many modern vaccines. 

The significance of this dissertation, as we proved, that ligation of CD40 receptor on APCs 

promotes induction of acquired immune response in chickens. At least, we showed this in 

macrophages and B-lymphocytes.  

As mentioned earlier, tumor-associated macrophages (TAMs) promote tumor cells proliferation 

and metastasis by enhancing angiogenesis within the tumor mass and by inhibiting the T-cell 

dependent anti-tumor immunity. The ligation of CD40 receptor on TAMs would revert their 

tumor-enhancing activity and suppressive effect on immune response in mammals. Several 

chemokines and cytokines are responsible for attraction of monocytes to tumor microenvironment 

and polarizing these monocytes into TAMs such as macrophages colony-stimulating factor and 

IL-4 and IL-10. However, the mechanisms by which TAMs enhance tumor metastasis are poorly 

understood (Wang and Joyce. 2010; Liu and Cao, 2015; Hoves et al., 2018).   

In chicken, we know that macrophages play crucial role in the pathogenesis of lymphoid leucosis 

and Marek’s disease infections. In lymphoid leucosis, medullary macrophages appear to enhance 

the virus replication and transmission to the lymphoid cells in the bursa of Fabricius. In addition, 
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macrophages suppress immune response by suppressing the normal spleen cells response in 

Marek’s disease (Lee et al., 1978; Gilka and Spencer, 1987; Barrow et al., 2003).   

Apart from using our aptamers as immunological adjuvant, these aptamers would provide 

spectacular input for dealing with oncoviruses infections in chicken such as lymphoid leukosis and 

Marek’s disease. These aptamers could polarize macrophages, herein; revert their suppressive 

effect during the pathogenesis of these diseases (Wang et al., 2018; Chakraborty et al., 2019).  

The knowledge we have that the ligation of the CD40 receptor on the tumor-associated 

macrophages reverts their tumor enhancing activity and render them active antitumor cells. 

Therefore, the aptamer-RCA coupling might have an impact on mammalian cancer research as 

well.  
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