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Abstract

STATISTICAL DESIGNS FOR NETWORK A/B TESTING

by Victoria V. Pokhilko

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University

Directors: Dr. D’Arcy Mays, Associate Professor, Department of Statistical

Sciences and Operation Research

Dr. Qiong Zhang, Assistant Professor, School of Mathematical and Statistical

Sciences, Clemson University

A/B testing refers to the statistical procedure of conducting an experiment to

compare two treatments, A and B, applied to different testing subjects. It is widely

used by technology companies such as Facebook, LinkedIn, and Netflix, to com-

pare different algorithms, web-designs, and other online products and services. The

subjects participating in these online A/B testing experiments are users who are

connected at different scales on social networks. Two connected subjects are similar

in terms of their social behaviors, education and financial background, and other

demographic aspects. Hence, it is only natural to assume that their reactions to

online products and services are related to their network adjacency.

In Chapter 2, we propose to use the conditional auto-regressive model to present

the network structure and include the network effects in the estimation and infer-

ence of the treatment effect. A D-optimal design criterion is developed based on the

proposed model. Mixed integer programming formulations are developed to obtain

the D-optimal designs. The effectiveness of the proposed method is shown through

numerical results with synthetic networks and real social networks.

xii



Designs for Network A/B Testing

In Chapter 3 we propose a re-randomization approach to constructing an experi-

mental design for A/B testing procedure, where stopping criterion for re-randomization

are formulated based on D-optimal design objectives and CAR model assumptions.

We test the performance of our method on synthetic networks and compare the

results with exact D-optimal and random designs.

Finally in Chapter 4 we develop a Bayesian sequential experimental design for

A/B testing that incorporates the network information and structure into network

covariates that are consequently used in a Bayesian model. We propose several al-

gorithms that describe the procedure, test the performance of our covariate assisted

Bayesian model on synthetic and real-world networks and compare the results to

a Bayesian sequential model that does not use network covariates in its posterior

updates.

Chapter 0 Victoria Pokhilko 1



Chapter 1

Introduction

A/B testing has been widely used online to test which of two alternatives, A or B,

is better. Those alternatives could be options of an online commercial, web page

alternatives, or any new online feature that needs to be tested for an overall suc-

cess of implementation. The measures of success can be numerical values of profits,

sales, return on investment, number of clicks, etc. Usually A/B testing is run by

selecting a group of subjects upon which the experiment is being conducted, and

by randomly assigning those subjects to either treatment or control groups. This

procedure works well when the subjects or users are not related to each other, i.e.,

independent. However, often with online experiments on social networks, the users

are connected to their friends and may exert influence on each other when making

decisions about offered alternatives. From a statistical perspective, the challenging

aspect of these applications is how to account for the presence of connections, or

network data, observed before experimentation, possibly with uncertainty. While

there is a well-developed literature on several aspects of the statistical analysis of

network data (Goldenberg et al., 2010; Kolaczyk and Csárdi, 2014), the literature

on methods for experimentation and causal analyses that use observed connections

is still growing (Rosenbaum, 2007; Hudgens and Halloran, 2008; Toulis and Kao,

2013; Ogburn and VanderWeele, 2017).

The need to account for network connections in A/B testing has led scholars to

focus on two specific problem settings: network interference, where the potential

2



Designs for Network A/B Testing

outcomes of unit i are functions of the treatment assigned to unit i and of the treat-

ments assigned to other units that are related to unit i through the network (Toulis

and Kao, 2013; Ugander et al., 2013; Aronow et al., 2017; Eckles et al., 2017); and

network-correlated outcomes, where the network informs the correlation among the

potential outcomes because the potential outcomes of unit i depend on its covariates,

and the covariates of units that are connected are more similar than the covariates

of those that are not (McPherson et al., 2001; Shalizi and Thomas, 2011; Manski,

2013). In this work, we focus on the second setting: network correlated outcomes.

Our research is targeted at creating designs of online A/B testing experiments that

incorporate network information either in terms of network structure or network

covariates, or both.

This dissertation is organized as three different projects presented in Chapters

2, 3 and 4. In Chapter 2 we focus on the construction of A/B testing experimental

designs for network-correlated outcomes when users who are connected in a network

share some common social and demographic backgrounds. We propose a spatial

network model for A/B testing, called conditional auto-regressive model or CAR

(Schmidt and Nobre, 2014) to incorporate the correlated network structure in the

analysis. To conduct the experiment on the test subjects that form the network, we

choose the D-optimal design based on the proposed model. The D-optimal design is

the optimal solution of minimizing the determinant of the generalized variance ma-

trix of the parameter estimates for the pre-specified model (Fedorov, 2010; Wu and

Hamada, 2011) with respect to the experimental design setting. In the A/B test-

ing experiment, the key parameter is the treatment effect, and thus the D-optimal

criterion measures the variance of the estimated treatment effect. Mixed integer

programming formulations are developed to optimize the D-optimal utility function

with respect to the treatment assignments of the test subjects, i.e., the experimental

design in our context. Finally, we conduct simulation studies on synthetic and real

social networks to demonstrate the performances of the proposed methods compared

to the random designs, which do not consider the network structure.

Chapter 1 Victoria Pokhilko 3



Designs for Network A/B Testing

In Chapter 3 we continue working with the assumptions of Chapter 2. We fo-

cus on the construction of A/B testing experimental designs on social networks,

assuming that users connected on the network are similar to a certain degree and

that the relationship among those users can be described by CAR model. To con-

duct the experiment on the test subjects that form the network, we propose an

algorithm for re-randomization procedure and formulate stopping criteria that are

based on the D-optimal design objectives of the CAR model (Pokhilko et al., 2019).

Finally, we conduct simulation studies on synthetic networks to demonstrate the

performances of the proposed method compared to the D-optimal designs: original-

MIP and modified-MIP (Pokhilko et al., 2019); and random designs, which do not

consider the network structure.

In Chapter 4 we develop a Bayesian sequential experimental design for A/B

testing on social networks. We consider the case when network members’ responses

are continuous and we use normal conjugate priors to sequentially update a Bayesian

model. Since the subjects participating in these online A/B testing experiments are

users who are connected in different scales of social networks, two connected subjects

are similar in terms of their social behaviors, education and financial background,

and other demographic aspects. Hence, it is only natural to assume that their

reactions to online products and services are related to their network adjacency.

Therefore, we summarize information about the network into covariates, such as

neighborhood size, average A and/or B response in user’s first tier neighborhood,

and add those covariates into the Bayesian model. We propose an algorithm to

sequentially update our model parameters based on new experimental outcomes

and use a variance reduction term to choose treatment allocation at each step of

the procedure. Finally, we test the performance of our covariate-assisted Bayesian

model on synthetic and real-world networks and compare the results to a Bayesian

sequential model that does not use network covariates in its posterior updates.

4 Chapter 1 Victoria Pokhilko



Chapter 2

D-optimal Design for Network

A/B Testing

2.1 Introduction

The theory of A/B testing dates back to Ronald Fisher’s experiments at the Rotham-

sted Agricultural Experimental Station in England in the 1920s (Yates, 1964). It

deals with the allocation of two treatment options A and B to experimental units,

and the analysis of outcome data. A standard statistical A/B testing framework is

the Rubin causal model (Rubin, 1974). A key assumption made in the Rubin causal

model is the Stable Unit Treatment Value Assumption (SUTVA), which states that

the behavior of each test subject in the experiment depends only on the individual

treatment and not on the treatments of others. Under this assumption, there are

many literature studies on the experimental designs for A/B testing with a given

set of covariates associated with each experimental unit, for example, Morgan and

Rubin (2012), Hore et al. (2014), and Bertsimas et al. (2015). Also, if a certain

model assumption is given, this experimental allocation problem can be done by

constructing an optimal design, such as Basse and Airoldi (2015) and Bhat et al.

(2017).

Recently, A/B testing has been widely used online to test which alternative or

5
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treatment out of the two, A or B, leads to better outcomes. For example, in Xu et al.

(2015), the authors described the situations where A/B testing experiments are used

by social network sites such as Facebook, LinkedIn, and Twitter to evaluate user

engagement or satisfaction from a new service, feature, or product, so as to make

data-driven decisions. The treatments could be options of an online commercial,

web page designs, different recommendation algorithms, or any new online features

that need to be evaluated so that the companies can make informed decisions. The

response measures of the experiments can be numerical values of profits, sales, return

on investment, click through rate, etc. In these situations, although the covariate

information of an individual user is likely to be known to the experimenter, due to the

privacy concern of the users or the privacy policy of the companies, the covariate

information may not be completely available. On the other hand, the network

structure of the users is more likely to be available to the experimenter. Then the

problem is to assign those subjects to either the treatment or control group by

incorporating the network structure. Many other existing works have also assumed

various scenarios where the network structure is known by the experimenter, such

as Gui et al. (2015), Eckles et al. (2017), Ogburn et al. (2017), Basse and Airoldi

(2018a), Chen et al. (2018), and Nandy et al. (2019).

Much literature on social network focuses on the network interference, which

assumes that the potential outcome for a unit is associated with the treatments of

its neighboring units. Under this assumption, cluster-based randomized treatment

allocation has been developed to tackle this problem. Such examples can be found

in Xu et al. (2015), Saveski et al. (2017) and Pouget-Abadie et al. (2017). In this

work, we assume that the outcomes of two connected nodes are positively correlated

because the features of these two nodes are more similar than those of the uncon-

nected nodes. This assumption rules out the presence of network interference and is

referred to as the network-correlated outcomes in Basse and Airoldi (2018b). Basse

and Airoldi (2018b) proposed a general framework to deal with design allocation un-

der network-correlated outcomes. The randomized experimental approach is used
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to minimize the mean squared error of the estimated treatment effect under a class

of models. If a reasonable model can be assumed for the effects of the treatment

and network (Chen et al., 2018), the classic model-based optimal design (Atkinson

et al., 2007; Wu and Hamada, 2011) can also be used for A/B testing experiments.

This type of approach also requires the accompanying of an optimization strategy

to find such optimal designs. Unfortunately, there has not been much development

in this direction and we decide to fill the gap.

In this work, we focus on the construction of A/B testing experimental designs

for network-correlated outcomes when users who are connected in a network share

some common social and demographic backgrounds. We propose a spatial network

model for A/B testing, called conditional auto-regressive model or CAR (Schmidt

and Nobre, 2014) to incorporate the correlated network structure in the analysis. To

conduct the experiment on the test subjects that form the network, we choose the

D-optimal design based on the proposed model. The D-optimal design is the opti-

mal solution of minimizing the determinant of the generalized variance matrix of the

parameter estimates for the pre-specified model (Fedorov, 2010; Wu and Hamada,

2011) with respect to the experimental design setting. In the A/B testing experi-

ment, the key parameter is the treatment effect, and thus the D-optimal criterion

measures the variance of the estimated treatment effect. Mixed integer program-

ming formulations are developed to optimize the D-optimal utility function with

respect to the treatment assignments of the test subjects, i.e., the experimental de-

sign in our context. Finally, we conduct simulation studies on synthetic and real

social networks to demonstrate the performances of the proposed method compared

to the random designs that do not consider the network structure.
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2.2 D-Optimal Design for CAR Model

2.2.1 Network A/B Testing with CAR Model

We consider an A/B testing experiment conducted on a social network with n nodes.

The social network is considered to be an undirected graph in the context of this

paper. The edges of this network are recorded by an n× n adjacency matrix W =

{wij} whose (i, j)-th entry is wij. The diagonal entries wii’s of this matrix are zeros,

whereas the off-diagonal entries are

wij =


1, if node i and node j are adjacent

0, otherwise.

We call that two nodes are adjacent if they are connected by an edge. We denote

mi =
∑n

j=1 wij as the degree of the ith vertex, and N =
∑
i

mi =
∑
i

∑
j

wij as twice

of the total number of edges of the network. The experimental design is the plan to

allocate A or B treatment to each node. Let x = (x1, . . . , xn)> with xi ∈ {1,−1} for

i = 1, . . . , n be the design of the i-th node and the two settings {1,−1} represent

A and B treatments. We denote the scalar response observation of the i-th node by

yi. In this work, we focus on the case where the response is continuous and assume

a linear regression model for the response as follows.

yi = β0 + xiβ + δi, (2.1)

where β0 is the intercept, β represents the treatment effect, and δi is a zero mean

random variable. For the experiments on networks, two connected users share sim-

ilarities in their social behaviors and other backgrounds, and thus their responses

are often correlated. To incorporate this social correlation, we model δi in (2.1) by

the conditional auto-regressive (CAR) model (Besag, 1974)

δi|δ−i ∼ N

(
ρ
∑
j 6=i

wijδj
mi

,
σ2

mi

)
, (2.2)
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where δ−i = {δ1, . . . , δi−1, δi+1, . . . , δn}, and σ2 is the variance parameter that is

assumed to be a constant in our scope, and |ρ| < 1 is the correlation parameter of

the CAR model. If ρ = 0, δi’s are independent with each other, which corresponds

to the extreme case when the network only has n nodes but without any edges. As

noted in Section 2.1, the connected users tend to have similar reactions to the same

treatment. Hence, without loss of generality, we restrict the correlation parameter

to be non-negative, i.e., 0 ≤ ρ < 1.

The covariance model in (2.2) can be expressed in a multivariate normal form

given by the following proposition:

Proposition 2.2.1 By the Brook’s Lemma (Brook, 1964), δ = (δ1, . . . , δn)> in (2.2)

follows a multivariate normal distribution:

δ ∼MVN n(0, σ2(D − ρW )−1) (2.3)

where D = diag(m1, . . . ,mn) with mi’s denoting the degree of the ith node.

The proof of Proposition 2.2.1 is deferred to Appendix 2.7.1. The maximum

likelihood method can be used to fit the model (2.1) with δi from (2.2) and estimate

the model parameters. The goal of A/B testing is to accurately assess the treatment

effect β. Next, we determine values of xi’s using D-optimal design to improve the

accuracy of the estimate β̂. D-optimal design has been one of the classical design of

experiments methods (Kiefer et al., 1959; Atwood, 1969; Pukelsheim, 1993; Atkin-

son et al., 2007; Fedorov, 2010; Wu and Hamada, 2011). Based on various model

assumption, D-optimal design can be applied to linear regression models (Woods,

2005), generalized linear models and nonlinear models (Atkinson and Woods, 2015;

Yang et al., 2013). Here we apply the D-optimal design in order to minimize the

variance of the estimated treatment effect β, under the strong model assumption

(2.1).
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2.2.2 D-optimal Design for CAR Model

In this work, we assume that the network structure is known, i.e., the network

adjacency matrix W is known. Given the network structure, the covariance matrix

in (2.3) is available, but it still contains unknown parameters σ2 and ρ. The goal is

to develop the D-optimal design under this CAR model assumption. Using a well-

known weighted least squares result (Draper and Smith, 1966), we can estimate the

parameters β0 and β in (2.1) by

(β̂0, β̂)> = (X>V −1X)−1XV −1y,

where X = (1,x) is an n× 2 design matrix with i-th row (1, xi), y = (y1, . . . , yn)>,

and V = (D − ρW )−1, and the variance matrix of (β̂0, β̂)> is

Var
{

(β̂0, β̂)>
}

= σ2(X>V −1X)−1 = σ2(X>(D − ρW )X)−1. (2.4)

Under our model assumption in (2.1), the D-optimal design is determined by max-

imizing the determinant of the matrix X>(D − ρW )X in (2.4) with respect to

x = (x1, . . . , xn)> ∈ {−1, 1}n, i.e.,

argmaxx∈{−1,1}n{D(x) := |X>(D − ρW )X|}. (2.5)

Notice that,

X>(D−ρW )X =

 (1− ρ)N
∑
i

mixi − ρ
∑
i

∑
j>i

wij(xi + xj)∑
i

mixi − ρ
∑
i

∑
j>i

wij(xi + xj) N − ρ
∑
i

∑
j

wijxixj

 ,

where N =
∑
i

mi =
∑
i

∑
j

wij. Then

D(x) = (1− ρ)N(N − ρ
∑
i

∑
j

wijxixj)− (1− ρ)2(
∑
i

mixi)
2. (2.6)
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Furthermore, since

{
X>(D − ρW )X

}−1
=

1

D(x)

N − ρ
∑
i

∑
j

wijxixj −(1− ρ)
∑
i

mixi

−(1− ρ)
∑
i

mixi (1− ρ)N

 ,

the variance of β̂ can be expressed by

Var(β̂) =
σ2(1− ρ)N

D(x)
.

Given a network, σ2(1 − ρ)N is a constant. Therefore, the D-optimal design also

minimizes the variance of the treatment effect. Based on (2.6), Proposition 2.2.2

gives a simplified objective function to obtain the D-optimal design.

Proposition 2.2.2 Under model assumptions (2.1) and (2.2), the D-optimal design

x is the solution of the following optimization problem.

argmaxx∈{−1,1}nD(x) = argminx∈{−1,1}n

a∑
i

∑
j

wijxixj +

(∑
i

mixi

)2
 ,

(2.7)

where a = ρ
1−ρN .

The proof of this proposition is provided in Appendix A2. We now provide

some insights into the desired optimal design. Since the objective function in (2.7)

can be decomposed to a weighted sum of
∑

ij wijxixj and

(∑
i

mixi

)2

, the desired

optimal design should achieve smaller values on both of terms. This observation

provides insights of the features of the desired optimal design: (1) the first term∑
ij wijxixj suggests that the two connected nodes should be assigned to different

treatments; (2) the second term indicates that if we treat the size of neighborhood

as a feature associated with each node, then the design allocation is desired to be

“orthogonal” with this feature. Based on (2.7), Proposition 2.2.3 gives an upper

bound on D-optimality measure.
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Proposition 2.2.3 Under model assumptions (2.1) and (2.2) and D-optimal design

obtained in Proposition 2.2.2, we have the following upper bound for the D-optimality

measure.

D(x) ≤ (1− ρ2)N2 (2.8)

The proof of this proposition is provided in the Appendix A3. Using the upper

bound obtained in (2.8), we have the following definition.

Definition 2.2.1 (D-efficiency) Under model assumptions (2.1) and (2.2) and

upper bound obtained in Proposition 2.2.3, we define D-efficiency measure by:

D(x)

(1− ρ2)N2
(2.9)

This D-efficiency measure ranges from 0 to 1, which evaluates the quality of

the design without concerning the scale of the D(x). A larger value of D-efficiency

corresponds to a better design. The definition of the D-efficiency is consistent with

the conventional version in literature (Atkinson et al., 2007), which would be the

1/pth root of (2.9) for p experimental factors. Here p = 1 as there is only one

experimental factor involved and no other covariates appear in the CAR model nor

in the D-optimality.

2.3 Mixed Integer Programming Formulations for

D-optimal Design

Since the decision space in (2.7) is {−1, 1}n, the optimization problem is an inte-

ger programming problem (Wolsey and Nemhauser, 2014). To solve this problem,

this section formulates the D-optimal design problem into a mixed integer program-

ming problem with the original objective function in (2.7) and a modified objective

function. The two formulations are described in Section 2.3.1 and 2.3.2, respectively.
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2.3.1 A Mixed Integer Programming Formulation for D-

optimal Design

By observing that (
∑
i

mixi)
2 =

∑
i

m2
i +

∑
i

∑
j 6=i

mimjxixj, we express the objective

function in (2.7) by

a
∑
i

∑
j

wijxixj +
∑
i

∑
j 6=i

mimjxixj =
∑
i

∑
j 6=i

bijxixj,

where bij = awij+mimj. By introducing new variables vi = (xi+1)/2 and uij = vivj,

we can formulate the original optimization problem (2.7) into the following mixed

integer linear program (MIP) problem.

min

[∑
i

∑
j 6=i

bijuij −
∑
i

∑
j 6=i

bijvi

]
(2.10)

subject to uij ≤ vi, uij ≤ vj

uij ≥ vi + vj − 1,

uij ∈ R, uij ≥ 0,

vi ∈ {0, 1}, for i = 1, . . . , n, j = 1, . . . , n.

Figure 2.1: D-optimal Design obtained from the mixed integer programming
formulation in Section 2.3.1. Two colors represents -1 or 1 allocation.
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Figure 2.1 depicts an example of solving this MIP problem to construct a D-

optimal design to a network of size 20. Notice that bij depends on the value of

a, which is a function of the correlation parameter ρ in (2.2). It is impractical

to assume that ρ can be accurately estimated before data collection. Using the

Bayesian framework, we can derive the Bayesian D-optimal design criterion which is

the expectation of D-optimality measure D(x) with respect to a user-specified prior

distribution of ρ. From (2.7), we can see that the expected D-optimality measure

only depends on the expected value of the ratio ρ/(1 − ρ), which essentially is a

tuning parameter. Instead of the Bayesian approach, we decide to take an equivalent

route by modifying the objective function and moving this tuning parameter into

the constraint.

2.3.2 A Mixed Integer Programming Formulation for a Mod-

ified D-optimality Criterion

As we point out above, reducing values of
∑
i

∑
j

wijxixj or (
∑
i

mixi)
2 would improve

D-efficiency defined in (2.9). To remove the parameter a from the objective function

in (2.7), an alternative solution is to use
∑
i

∑
j

wijxixj as the objective function, and

bound the value of (
∑
i

mixi)
2 by a constraint. We modify the optimization problem

in (2.7) to be

minx∈{−1,1}n
∑
i

∑
j

wijxixj (2.11)

s.t. − φ ≤
∑
i

mixi ≤ φ, and xi ∈ {−1, 1} for i = 1, . . . , n,

where φ > 0 is a prespecified parameter.

Now we discuss how to specify the tuning parameter φ. For different networks,

the ranges of
∑
i

mixi can be different. So we need to transfer the value of φ by

normalizing it to a unified range for different networks. We derive the suitable

range of φ by considering the theoretical quantiles of
∑
i

mixi when xi’s are randomly

generated. Assume that xi is a random variable taking value from {−1, 1} with equal
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weights. Hence,

E

(
n∑
i=1

mixi

)
=

n∑
i=1

miExi = 0 and Var

(
n∑
i=1

mixi

)
=

n∑
i=1

m2
iVar(xi) =

n∑
i=1

m2
i .

If n−2
∑n

i=1m
2
i <∞ and n−1mi → 0 for i = 1, . . . , n, we have that

∑n
i=1 mixi/

√∑n
i=1 m

2
i

asymptotically follows a standard normal distribution by the Lindeberg’s Central

Limit Theorem. Therefore, as n→∞,

P

−Φ−1(α)

√∑
i

m2
i <

∑
mixi < Φ−1(α)

√∑
i

m2
i

 = 2α− 1,

where Φ(·) is the cumulative distribution function of the standard normal distribu-

tion, and α ∈ (0.5, 1). By

φ = Φ−1(α)

√∑
i

m2
i ,

φ is increasing with α. After this transformation, the parameter φ has been re-scaled

to α, whose range is not associated with the network structure.

Define vi and ui for i = 1, . . . , n in the same way as in Section 2.3.1, the problem

in (2.11) becomes

min

[∑
i

∑
j 6=i

wijuij −
∑
i

∑
j 6=i

wijvi

]
(2.12)

subject to
∑
i

mivi ≤
1

2

N + Φ−1(α)

√∑
i

m2
i


∑
i

mivi ≥
1

2

N − Φ−1(α)

√∑
i

m2
i


uij ≤ vi, uij ≤ vj

uij ≥ vi + vj − 1,

uij ∈ R, uij ≥ 0,

vi ∈ {0, 1}, for i = 1, . . . , n, j = 1, . . . , n.
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The solution of (2.12) gives an approximate D-optimal design under a prespecified

α value. In practice, we may obtain designs from multiple α values and the corre-

sponding D-efficiencies defined in (2.9). We can choose the design that returns the

highest D-efficiency.

As a summary, this section proposed two MIP-based approach, and we provide

their definition as follows:

Definition 2.3.1 Original-MIP design is an exact D-optimal design generated by

solving reformulated mixed-integer optimization problem in (2.10).

Definition 2.3.2 Modified-MIP design is an approximate D-optimal design gener-

ated by solving reformulated mixed-integer optimization problem in (2.12).

Here are some remarks on the differences between those two reformulated opti-

mization problems. First, solving the original-MIP in Section 2.3.1 gives the exact

D-optimal design, whereas solving the modified-MIP in Section 2.3.2 does not guar-

antee that the exact D-optimal design can be found. Second, the original-MIP

requires that the correlation parameter ρ to be known, whereas the modified-MIP

does not. Third, the original numbers of decision variables in both formation are

n(n − 1)/2 + n. However, uij can be removed if the corresponding coefficient (bij

in original-MIP or wij in modified-MIP) is 0. Since wij is more likely to be zero

than bij, we expect that the number of decision variables of the formulation for the

modified-MIP is often much smaller than that of the original-MIP. Although both

programming formulations are NP-hard, our observation based on the simulation

study in Section 2.4 is that the reduction of the number of decision variables often

leads to less computation in solving MIP.

2.4 Numerical Study on Synthetic Networks

This section compares three methods: original-MIP in Definition 2.3.1, modified-

MIP in Definition 2.3.2, and random design. In this work, the random design is
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referred to as the procedure that randomly allocates -1 or 1 with equal probability

to each node.

We generate random networks to compare the three methods. For a network

with n nodes, the n × n adjacency matrix records the edges of this network. We

randomly assign 0 and 1 to the upper or lower off-diagonal entries of this matrix.

The proportion of ones is specified to be p. As defined in Section 2.2.1, the zero

entry means that the two corresponding nodes are not adjacent, whereas one entry

means the opposite. The proportion p is referred to as the density of this network.

Once we construct the designs using the three methods for a given network, we

compare the designs on three aspects, computational efficiency, D-efficiency, and

the empirical variance of the estimated β in (2.1).

2.4.1 Computational Efficiency

Network Density =  0.1 Network Density =  0.2 Network Density =  0.3

10 20 30 40 10 20 30 40 10 20 30 40

0

4

8

12

Network Size

lo
g(

T
im

e)

method Modified_MIP Original_MIP

Figure 2.2: Logarithm of running times in seconds of original-MIP and
modified-MIP. For original-MIP, ρ = 0.2; for modified MIP, α = 0.6.

In terms of computational efficiency, we compare the computational time of

solving the objective functions of original-MIP and modified-MIP with GUROBI

solver (http://www.gurobi.com/). We set the network correlation coefficient to

be ρ = 0.2 for the original-MIP and the tuning parameter to be α = 0.6 for the

modified-MIP. For original-MIP, the longest allowable running time is 24 hours,

Chapter 2 Victoria Pokhilko 17

http://www.gurobi.com/


Designs for Network A/B Testing

whereas for modified-MIP, the longest allowable running time is 4 hours. Exceeding

that limit, the solver is terminated whether it reaches the optimal solution or not,

and we report the optimality gap:

optimality gap =
ub− lb
ub

,

where ub and lb are estimated upper and lower bounds of the objective function.

A smaller optimality gap indicates that the objective value corresponding to the

current solution is closer to the true optimal objective value. As pointed out ear-

lier, the number of decision variables of the modified-MIP is likely much smaller

than that of original-MIP, thus the modified-MIP would take less time to run than

original-MIP. To confirm this, the running time (in seconds) of these two methods

with networks of different sizes are given in Figure 2.2. It shows that the running

time required to solve original-MIP increases dramatically as both network size and

density increase. For the small networks in this simulation, the original-MIP is al-

ready time-consuming thus it is not practical to be applied to the real-world social

networks whose size is usually of thousands. Since the tuning parameter α deter-

mines the feasible region of the modified-MIP, we conduct an additional simulation

whose results are shown in Table 2.4 in Appendix 2.7.4. It implies that the value

of α does not affect the computational time of modified-MIP significantly in our

numerical experiments.

2.4.2 D-efficiency

The section compares the D-efficiency of the three design methods, whose value in

(2.9) depends on the true correlation parameter ρ of the CAR model. We randomly

generate a network of size n = 50 and density p = 0.1. For the modified-MIP, we vary

the value of α from 0.6, 0.7, to 0.8, and the running time of each case is less than one

minute in GUROBI. For the random design, because P(xi = 1) = P(xi = −1) = 1/2,
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the expected D-efficiency is given by

N2 − (1− ρ)
∑n

i=1m
2
i

(1 + ρ)N2
,

which only depends on the network. The optimal criterion of the original-MIP

contains an unknown parameter ρ. We specify ρ = 0.2 to generate the design,

whereas in computing the D-efficiency, we vary the true value of ρ from 0 to 0.9.

The optimality gap of the original-MIP after 24 hours is 10.0863%.

Table 2.1 gives the D-efficiency values. Both MIP based methods are better

than the random design, especially when the correlation parameter is not zero.

Also, the D-efficiency of modified-MIP under different α values is comparable with

the original-MIP method.

Table 2.1: The D-Efficiency measures of different methods for a network of size
n = 50 with density p = 0.1

Method ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.6 ρ = 0.8 ρ = 0.9
Random 0.98 0.90 0.82 0.76 0.62 0.55 0.53

Original-MIP 1.00 0.96 0.93 0.90 0.84 0.80 0.79
Modified-MIP (α = 0.6) 1.00 0.96 0.93 0.90 0.84 0.80 0.79
Modified-MIP (α = 0.7) 1.00 0.96 0.92 0.90 0.83 0.80 0.79
Modified-MIP (α = 0.8) 1.00 0.96 0.92 0.90 0.83 0.80 0.79

2.4.3 Empirical Variance

We now compare the designs in terms of the empirical variance of the estimates β̂.

Using the random network we investigated in Table 2.1, and a pre-specified correla-

tion coefficient ρ, we generate δδδ in (2.2) from the multivariate normal distribution

as expressed in (2.3). Set the values of the parameters as β0 = 0, β = 2 and σ2 = 1

in the model (2.1). Given the design of xi, we generate the response yi for each node

as in (2.1) and (2.2). Recall that, our response are generated from CAR model. We

consider β̂ from the CAR model as the estimates for all three methods. For random

design, we also include a modeling alternative linear regression model (LM), which

is not the true model in our comparison. For the CAR model, the parameters β0,
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β and ρ are estimated by the maximum likelihood method using R package spdep

(Bivand et al., 2005). By repeating this procedure for R = 500 times, we measure

the accuracy of an estimate by calculating its sample variance :

V̂(β̂) =
1

R− 1

R∑
l=1

(
β̂l −

1

R

R∑
k=1

β̂k

)2

,

where β̂1, . . . , β̂R are the R = 500 copies of the estimates for β. Under our response

generation scheme, the bias of the estimate β̂ is tiny for all the methods. Hence, the

mean squared error of β̂ is dominated by the variance of β̂, and the bias is negligible.

So we ignore the bias and report empirical variance only. Notice that the modified-

MIP and the original-MIP generate deterministic designs for a given network, to

the contrary of the random design. To make the three approaches comparable, 100

random designs are generated and we report the average value of V̂(β̂) over the 100

random designs. The empirical variance values of β̂ for each method are given in

Table 2.2. As in Table 2.1, we also vary the value of the tuning parameter α from

0.6, 0.7, to 0.8 for the modified-MIP, and fix ρ = 0.2 for the original-MIP to generate

design. The value of ρ used in design generation is not equal to its real value for

generating responses when ρ = 0, 0.1, 0.2, 0.3, 0.6, 0.8 and 0.9 in Table 2.2. For

the random design, we consider the β estimated from both CAR and LM, although

the data are generated from the CAR model. We summarize our main observations

from Table 2.2 as follows:

• For a non-zero correlation coefficient (i.e.,ρ > 0), the variances of MIP based

methods are smaller than the random design.

• The variances resulted from modified-MIP are comparable with those from

original-MIP.

As shown in Table 2.2, the performance of modified-MIP is comparable with that

of original-MIP for small networks. But it is much more practical because it takes

less time to generate a design using GUROBI and does not require the correlation

coefficient value ρ. Even though it does involve the prespecified parameter α, its
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Table 2.2: Empirical variances of β̂ based on designs generated from different
methods for a network of size n = 50 and density p = 0.1

Method ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.6 ρ = 0.8 ρ = 0.9
Original-MIP 0.0046 0.0043 0.0041 0.0038 0.0033 0.0030 0.0029
Modified-MIP (α = 0.6) 0.0044 0.0043 0.0040 0.0037 0.0033 0.0031 0.0030
Modified-MIP (α = 0.7) 0.0049 0.0043 0.0043 0.0038 0.0034 0.0030 0.0030
Modified-MIP (α = 0.8) 0.0047 0.0042 0.0042 0.0038 0.0034 0.0030 0.0029
Random (CAR) 0.0047 0.0047 0.0046 0.0046 0.0046 0.0048 0.0047
Random (LM) 0.0045 0.0045 0.0044 0.0045 0.0047 0.0051 0.0052

performance is robust to the value of α. So we choose α = 0.6 in remaining nu-

merical examples and only compare the random design and modified-MIP for larger

networks.

Finally we test our method on larger networks. Since the original-MIP was not

computationally efficient on networks with more than 50 nodes, we compare the

modified-MIP design with random designs for large networks. We calculate the

variance of β̂ over 500 replications and use different values of ρ in the generation of

response vectors. For modified-MIP, the optimality gap achieves 38.52% after four

hours. From Table 2.3, the variance of β̂ was lower for modified-MIP design in com-

parison to random designs. As ρ increased, the results show improved advantages

of modified-MIP compared to random designs.

Table 2.3: Empirical variances of β̂ based on designs generated from different
methods for a network of size n = 500 and density p = 0.01

Method ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.6 ρ = 0.8 ρ = 0.9
Modif-MIP (CAR) 0.00042 0.00035 0.00039 0.00031 0.00030 0.00029 0.00028
Random (CAR) 0.00041 0.00041 0.00041 0.00041 0.00041 0.00041 0.00042
Random (LM) 0.00041 0.00041 0.00041 0.00041 0.00043 0.00046 0.00048

2.5 Numerical Study on Real-world Networks

This section studies two examples of real-world networks and compares the perfor-

mance of our proposed modified-MIP design in Definition 2.3.2 to the performance

of random designs. Section 2.5.1 considers examples of ego networks from Facebook.

Section 2.5.2 considers examples of large networks containing multiple clusters.
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2.5.1 Ego Networks

We consider seven ego networks extracted from Facebook (Leskovec and Mcauley,

2012). These networks are collected from survey participants who used the Facebook

App. Ego networks consist of a focal node (“ego”) and the nodes to whom ego is

directly connected to (these are called “alters”) plus the ties, if any, among the

alters. Each alter in an ego network has his/her own ego network, and all ego

networks interlock to form the human social network. The focal node represents the

main character or person in the ego network and the alters are the “friends” in his

circle or people he is connected with. Those friends can also be connected among

themselves, forming their own ego networks, and that is represented by the ties or

edges among alters. The sizes of these seven ego networks are n = 52, 61, 168, 224,

333, 534 and 1034 respectively. The densities of them range from 0.03 to 0.15. We

use the modified-MIP with α = 0.6 to construct the designs. As in Section 2.4, the

maximum running time is set to be 4 hours in GUROBI. The optimality gaps of

these networks are 0%, 0%, 33.6%, 54.67%, 48.56%, 58.99% and 90.67%. Figure 2.3

depicts the designs generated from the modified-MIP for the ego networks of size 52

and 61.

Figure 2.3: Left: ego network of size 52; right: ego network of size 61. The two
different colors represent design allocation to -1 or 1 using modified-MIP

After obtaining designs for each ego network, we evaluate the empirical variances

of β̂, which is calculated the same as in Section 2.4. The true correlation parameter
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Figure 2.4: Empirical variances of β̂ of seven ego networks. MIP running time 4
hours for all ego-networks.

ρ is specified to be 0, 0.1, 0.2, 0.3, 0.6, 0.8 and 0.9. Three methods are compared:

1) the modified-MIP with β̂ estimated using the CAR model; 2) the random design

with β̂ estimated using the CAR model; 3) the random design with β̂ estimated using

a linear regression model (LM). The results are provided in Figure 2.4. We can see

that in most cases the modified-MIP gives smaller variances than the random design

when ρ grows large. However, the advantage of modified-MIP is not significant when

the correlation parameter ρ is as small as 0.1. We also recorded additional simulation

results on the performance of the modified-MIP designs with β̂ estimated using a

linear regression model (LM) in Figure 2.7 of Appendix 2.7.4.
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2.5.2 Large Networks with Disjoint Clusters

For extremely large networks (i.e., more than 10,000 nodes), it is impossible to

generate exact optimal design based on MIP. An alternative is to separate those

large networks into relatively small networks, compute the optimal design for each

small networks, and then combine the allocation results from all the small networks

to conduct analysis. We consider a sample from Facebook network available at

https://snap.stanford.edu/data/. To sample the network, we randomly selected

K disjoint clusters or sub-networks, each cluster with approximately 50 nodes. Each

sub-network is disjoint, it consists of separate groups of individuals, who may be

related to each other within each sub-network, but have no relations to each other

between different sub-networks. The K clusters form a network on which we apply

our design. We pick K = 20, 30, and 40 and the corresponding networks consist of

approximately 1000 to 2000 nodes. Then, we simulate the responses for each cluster

of the large network. For each cluster, the correlation parameter ρ is randomly

generated from a uniform distribution. We consider two scenarios: ρ ∼ U(0.15, 0.25)

and ρ ∼ U(0.7, 0.9). Other parameters are specified the same as in Section 2.4. The

empirical variances are computed the same way as in Section 2.4. The estimates of

β can be obtained by fitting the CAR model or a linear regression model. Repeating

this procedure 100 times, we assess the accuracy of the estimates by their sample

variances.

We now discuss how to generate the MIP based designs for such large networks

with disjoint clusters. For a network of size over 500, it is nearly impossible to

directly obtain the MIP based designs with optimality gap of zero. Since the large

network is constructed by disjoint clusters, we can alternatively generate the MIP

based design for each smaller cluster, and then combine them to obtain the design

for the entire large network. Let W1, . . . ,WK be the adjacency matrices of K disjoint

clusters. For each of them, we generate the two-level design using the modified-MIP

described in Section 3.2. We denote the resulted design as xik for k = 1, . . . , K and

i = 1, . . . , nk, where xik ∈ {−1, 1} is the treatment assignment for the i-th node
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Figure 2.5: Boxplots of Empirical variances of β̂ for large networks with clusters.
In response generation we used ρ ∼ U(0.15, 0.25).

from the k-th network. Therefore, a combined design for the large network can be

{ckxik : i = 1, . . . , nk, k = 1, . . . K}, where ck ∈ {−1, 1}. By varying the choices of

ck for k = 1, . . . , K, the total number of combined designs for the large network is

2K . We take an additional step to choose the optimal value of ck’s by minimizing

argminc∈{−1,1}K

(
K∑
k=1

ck

nk∑
i=1

mikxik

)2

,

where c = (c1, . . . , cK), and mik is the total number of neighbors for the i-th node

from the k-th network, which leads that
∑nk

i=1 mikxik is a known constant. The

optimal solution of c gives the smallest value of (
∑

imixi)
2 in (2.7) for the large

network. This optimization problem is the same as original-MIP in Section 2.3.1.

For K = 20, 30 or 40, this problem can be solved by GUROBI efficiently.

For K = 20, 30 or 40, we generate 100 large networks with disjoint clusters as

described above and compare the empirical variances of β̂ of the three methods as

in Section 2.5.1. The empirical variances of the 100 large networks for each K and

different ρ used in response generation are depicted in Figures 2.5 and 2.6. In all the

cases we see that the median of empirical variances of modified-MIP is the smallest.

According to the results from the Wilcox’s rank sum test, the median of modified-

MIP is significantly smaller than that of the random design for each case. The

improvement of using modified-MIP is more significant in 2.6 with ρ ∼ U(0.7, 0.9)

than 2.5 with ρ ∼ U(0.15, 0.25).
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Figure 2.6: Boxplots of Empirical variances of β̂ for large networks with clusters.
In response generation we used ρ ∼ U(0.7, 0.9).

2.6 Discussion

This chapter proposes using the D-optimal design for A/B testing conducted on

a social network. We use the CAR model to characterize the dependence of the

responses from the adjacent nodes in a network. Mixed integer programming for-

mulations are proposed to solve the D-optimal objectives and construct the designs.

Numerical examples are provided to show the effectiveness of the proposed method.

Notice that our D-optimal design is proposed under the CAR model assumption

with the given network structure. Readers should be cautious to examine the CAR

model assumption when the data are collected, which can be done through proce-

dures such as the likelihood ratio test. When a network model assumption is not

available, a randomized design is a robust strategy. If the network structure is un-

known, we can impose a Gaussian graphical prior to the network structure, and then

develop the optimal design to incorporate the uncertainty of network structure.

In addition to CAR, spatial autoregressive model (SAR, Wall (2004)) is another

popular alternative to model the network-based outcome correlation. The major

difference between SAR and CAR lies in their the covariance matrices. As noted

earlier, the covariance matrix of δ under CAR can be expressed in (2.3). If we

simply assume that the error term δ in (2.3) has a covariance matrix as in SAR,

Wall (2004) indicates that the covariance matrix becomes σ2(In − ρW )>(In − ρW ),

where In is the n×n identity matrix. Therefore, its corresponding formulation of the
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D-optimality measure D(x) will still be a quadratic function of x. The parameters

of this quadratic function is different from the objective function we have obtained in

(2.6). Under this situation, the MIP formulation developed in Section 2.3.1 can still

be used to solve the optimal design problem for SAR. However, the computational

efficient modified-MIP formulation in Section 2.3.2 will not hold for SAR any more.
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2.7 Appendix

2.7.1 The proof of Proposition 2.2.1

We first state the Brook’s Lemma (Brook, 1964).

Lemma 2.7.1 (Brook’s Lemma) Let Y ∈ Rn be a vector of n random variables,

Y = (Y1, Y2, . . . , Yn)>. Define Y 0 = (Y01, Y02, . . . , Y0n)> ∈ Rn, where Y01, Y02, . . . , Y0n

are copies of realizations of Y1, Y2, . . . , Yn. The following result holds.

P (Y )

P (Y 0)
∝

n∏
i=1

P (Yi|Y01, . . . , Y0i−1, Yi+1, . . . , Yn)

P (Y0i|Y01, . . . , Y0i−1, Yi+1, . . . , Yn)
,

where P (·) denotes the probability density function, and P (·|·) denotes the condi-

tional probability density function.

Let w̃ij = wij/mi, σ
2
i = σ2/mi and δ0 = (δ01, δ02, . . . , δ0n)> is a realization

of δ with probability density function P (δ). Using Brook’s Lemma and model

assumptions (2.1) and (2.2), we have that

P (δ)

P (δ0)
∝

n∏
i=1

P (δi|δ01, . . . , δ0i−1, δi+1, . . . , δn)

P (δ0i|δ01, . . . , δ0i−1, δi+1, . . . , δn)
∝

n∏
i=1

exp{− 1
2σ2
i
(δi − ρ

∑
j>i w̃ijδj)

2}
exp{− 1

2σ2
0i

(0− ρ
∑

j>i w̃ijδj)
2}

∝ exp{
n∑
i=1

[− 1

2σ2
i

(δi − ρ
∑
j>i

w̃ijδj)
2 +

1

2σ2
i

(ρ
∑
j>i

w̃ijδj)
2]}

∝ exp{
n∑
i=1

[− 1

2σ2
i

(δ2
i − 2ρδi

∑
j>i

w̃ijδj + (ρ
∑
j>i

w̃ijδj)
2 − (ρ

∑
j>i

w̃ijδj)
2)]}

∝ exp{
n∑
i=1

[− 1

2σ2
i

(δ2
i − 2ρδi

∑
j>i

w̃ijδj)]} ∝ exp{− 1

2σ2

n∑
i=1

mi(δ
2
i − 2ρδi

∑
j>i

w̃ijδj)}

∝ exp{− 1

2σ2
(
n∑
i=1

miδ
2
i − 2ρ

n∑
i=1

∑
j>i

δimiw̃ijδj)}

∝ exp{− 1

2σ2
(
n∑
i=1

miδ
2
i − 2ρ

n∑
i=1

∑
j>i

δi
miwij
mi

δj)}

∝ exp{− 1

2σ2
(
n∑
i=1

miδ
2
i − 2ρ

n∑
i=1

∑
j>i

δiwijδj)} ∝ exp{− 1

2σ2
δT (D − ρW )δ, }

which is proportional to the probability density function of the multivariate normal
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distribution MVN n(0, σ2(D − ρW )−1). Therefore,

δ = (δ1, . . . , δn)> ∼MVN n(0, σ2(D − ρW )−1).

2.7.2 Proof of Proposition 2.2.2

Following the expression in (2.5), we have that

maxx∈{−1,1}n [D(x)]

= maxx∈{−1,1}n [(1− ρ)N(
∑
i

mix
2
i − ρ

∑
i

∑
j

wijxixj)− (1− ρ)2(
∑
i

mixi)
2]

= maxx∈{−1,1}n [N2 − ρN
∑
i

∑
j

wijxixj − (1− ρ)(
∑
i

mixi)
2],

which is equivalent to

= minx∈{−1,1}n

[
ρN
∑
i

∑
j

wijxixj + (1− ρ)(
∑
i

mixi)
2

]

= minx∈{−1,1}n

[
a
∑
i

∑
j

wijxixj + (
∑
i

mixi)
2

]
,

where x = (x1, . . . , xn), xi ∈ {−1, 1}, and a = ρ
1−ρN .

2.7.3 Proof of Proposition 2.2.3

Since a is non-negative, a lower bound of the objective function in (2.7),

min
x∈{−1,1}n

{
a
∑
i

∑
j

wijxixj + (
∑
i

mixi)
2

}
,

can be attained by minimizing
∑
i

∑
j

wijxixj and

(∑
i

mixi

)2

, separately. The lower

bound of
∑
i

∑
j

wijxixj is −
∑
i

∑
j

wij if xi 6= xj for all (i, j) with wij = 1. The

lower bound of

(∑
i

mixi

)2

is zero if
∑
i

mixi = 0, which represents that the nodes

allocated with −1 and the nodes allocated with 1 have equal number of first order
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neighborhoods. Equivalently, we can obtain an upper bound for the D-optimality

measure

D(x) ≤ (1− ρ)(
n∑
i=1

mi)
2 + (1− ρ)ρ

n∑
i=1

mi

n∑
i=1

n∑
j=1

wij = (1− ρ2)N2.

2.7.4 Additional Numerical Results on the Computational

Times of Modified-MIP

Table 2.4 gives the time (in seconds) took for GUROBI to solve modified-MIP

for different network sizes and different choices of α. Similar to the original-MIP,

the running times of modified-MIP increase for larger networks. According to the

formulation in (2.12), smaller α values correspond to tighter constraints. From the

instances in Table 2.4, the computational times of modified-MIP tend to be robust

to the value of α.

Table 2.4: Running times (in sec) of modified-MIP for different values of α
averaged across 20 network sizes n keeping network density p = 0.1.

α n = 20 n = 30 n = 40 n = 50
0.55 0.47 1.63 3.61 13.26
0.6 0.58 1.31 3.95 24.80
0.7 0.57 1.40 3.67 13.65
0.8 0.60 1.43 2.12 21.65
0.9 0.58 1.47 4.36 17.08

2.7.5 Numerical Results under Model Misspecification

This section provides some numerical results under model misspecification. In Sec-

tion 2.7.5.1 we evaluate the robustness of our approach when the true correlation

parameters are misspecified under a Gaussian distribution. Section 2.7.5.2 provides

a case with non-Gaussian outcomes.
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2.7.5.1 Model Misspecification under Gaussian Distribution

Following the same numerical setting in Table 2.3, Table 2.5 provides simulation

results conducted on the modified-MIP with β̂ estimated using a linear regression

model (LM). In this Table, the column ρ = 0 corresponds to the case that the

responses are generated from a linear model without correlation structure.

When the outcomes are generated from a linear model (i.e., ρ = 0), LM is the true

model, whereas CAR is the misspecified model. However, the empirical variances

of CAR and LM are the same under modified-MIP or Random design. Since there

is no network correlation under ρ = 0, modified-MIP can not outperform random

design. When the outcomes are generated from the CAR model with ρ > 0, the

CAR model always leads smaller empirical variances than LM when ρ is relatively

large under both modified-MIP and Random design. Also, modified-MIP has better

performances compared to the random design for both models.

Table 2.5: Empirical variances of β̂ based on Linear model-misspecification for a
network of size n = 500 and density p = 0.01

Method ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.6 ρ = 0.8 ρ = 0.9
Modif-MIP (CAR) 0.00042 0.00035 0.00039 0.00031 0.00030 0.00029 0.00028
Modif-MIP (LM) 0.00042 0.00036 0.00040 0.00032 0.00032 0.00033 0.00031
Random (CAR) 0.00041 0.00041 0.00041 0.00041 0.00041 0.00041 0.00042
Random (LM) 0.00041 0.00041 0.00041 0.00041 0.00043 0.00046 0.00048

Figure 2.7 compares empirical variances of β̂ simulated from seven ego networks

described in Section 2.5.1. In this figure, we include the results from LM under

the design of Modified-MIP. As in Table 2.5, ρ = 0 is associated with the situa-

tion that the outcomes are generated from a linear model. The figure shows similar

information with Table 2.5: 1) when the outcomes are generated without network

correlation, the design approach which includes network correlation (Modified-MIP)

may not significantly worsen the performance compared to the random design for

most networks; 2) when the outcomes are generated with a relatively large net-

work correlation (say, ρ > 0.5), Modified-MIP always improves the performances of

random design.
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Figure 2.7: Empirical variances of β̂ of seven ego networks. MIP running time 4
hours for all ego-networks.

2.7.5.2 Model Misspecification under Gamma Distribution

This section evaluates the performances of modified-MIP when the outcomes are

not generated from a Gaussian distribution. We use the same network as in Table

2.5. The network outcomes are generated as follows:

yi = β0 + xiβ + δi,

where δi ∼ N(ρ
∑

i 6=j wijzj/mi, σ
2/mi) and zj ∼ Gamma(1, 1). Therefore, the out-

comes are not from a Gaussian distribution. The design approach Modified-MIP is

still based on the CAR model, and we evaluate its performance under model mis-

specification. As we can observe from the results of Table 2.6, random designs have

a better performance (smaller variance of β̂) than the design generated using our
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proposed method. The results show that, as many other model-based optimal design

approaches, our proposed method has some limitations. It can be critically impor-

tant to examine the model assumption before determine the design approaches.

Table 2.6: Empirical variances of β̂ based on Gamma model-misspecification case
for a network of size n = 500 and density p = 0.01

Method ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.6 ρ = 0.8 ρ = 0.9
Modif-MIP (CAR) 0.00011 0.00012 0.00014 0.00018 0.00037 0.00058 0.00070
Modif-MIP (LM) 0.00011 0.00012 0.00014 0.00018 0.00038 0.00058 0.00070
Random (CAR) 0.00011 0.00011 0.00013 0.00015 0.00026 0.00037 0.00044
Random (LM) 0.00011 0.00011 0.00013 0.00015 0.00026 0.00037 0.00044
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Chapter 3

A Re-randomization Experimental

Design Approach for Network

A/B Testing

3.1 Introduction

A/B testing is a statistical experiment that aims to estimate the effects of two treat-

ments: A and B. It has been used on unprecedented scale by many online companies,

such as Amazon, LinkedIn, Facebook and other companies that have at their dis-

posal the information about the structure of their social network users. For example,

if the goal is to test which web page design, A or B, produces a higher click-through

rate or results in more revenue, we can select 2 groups of users on the network and

conduct the experiment to estimate the treatment effect. Randomization is consid-

ered to be the “gold standard” for estimating causal effects, but we want to assign

those subjects to either treatment or control group by incorporating the network

structure. We believe that a network structure contains information about users

connected on a network and we assume that the outcomes of two connected nodes

are positively correlated because the features of these two nodes are more similar

than those of the unconnected nodes. Pokhilko et al. (2019) propose original-MIP
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and modified-MIP designs based on D-optimality criteria, making the assumption

of network correlated outcomes that are modeled using conditional auto-regressive

model or CAR (Schmidt and Nobre, 2014). In this chapter we continue working

with D-optimal design objectives and network correlated outcomes and propose a

re-randomization approach to constructing experimental designs for A/B testing on

social networks.

Re-randomization has been widely used in practice mainly as a remedy when

a random design creates groups that are notably unbalanced in terms of subjects’

covariate information. Re-randomization ensures the balance, while also retaining

the benefits of randomization. Checking the design for balance and re-randomizing

when needed has been advocated repeatedly. Sprott and Farewell (1993) and Wor-

rall (2010) recommend re-randomization, when an “obvious” confounding is noticed

under current randomization allocation. Rubin (2008) advises to re-randomize, if

important imbalances occur and continue to do so until balance is achieved, record-

ing the reasons for discarding randomizations. Cox (2009) and Krause and Howard

(2003) advocate to create multiple randomizations and select the one with the most

balance. Soares and Wu (1985) suggest to specify a bound for the difference in

treatment and control covariate means for each covariate and re-randomize until

all differences are within these bounds. Some scientific literature even discuss the

danger of relying on pure randomization to balance the experimental design (Rubin,

2008; Urbach, 1985; Krause and Howard, 2003; Rosenberger et al., 2008; Worrall,

2010). Also, much work has been done historically on whether purposefully balanced

designs should be preferred over randomization (Gosset, 1938; Yates, 1939; Green-

berg, 1951; Harville, 1975; Arnold, 1986). The implications of re-randomization

have also been theoretically explored. Morgan and Rubin (2012) define the sufficient

conditions under which re-randomization is valid, provide corresponding theoretical

results and describe in detail the procedure for implementing re-randomization.

Despite the fact that re-randomization is widely used in practice (Holschuh, 1980;

Urbach, 1985; Bailey and Rowley, 1987; Imai et al., 2008; Bruhn and McKenzie,
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2009), some criticism of it exists in the scientific literature (Fisher, 1992; Anscombe,

1948; Grundy and Healy, 1950; Holschuh, 1980; Bailey, 1983; Urbach, 1985; Bailey

and Rowley, 1987). Main critiques of re-randomization are related to not speci-

fying the rejection criteria in advance and that forms of analysis using Gaussian

distribution theory are no longer valid. Morgan and Rubin (2012) state that “re-

randomization changes the distribution of the test statistic ... by decreasing the

true standard error, thus traditional methods of analysis that do not take this into

account will result in overly conservative inferences in the sense that tests will reject

true null hypotheses less often than the nominal level and confidence intervals will

cover the true value more often than the nominal level”. However, those criticisms of

re-randomizing can be addressed by specifying an objective re-randomization rule

before the procedure and then analysing results using randomization-based infer-

ence, since re-randomization can be accounted for during analysis (Anscombe, 1948;

Kempthorne, 1955; Tukey, 1993; Moulton, 2004; Rosenberger and Lachin, 2015).

Although a few re-randomization methods have been proposed (Moulton, 2004;

Maclure et al., 2006; Bruhn and McKenzie, 2009; Cox, 2009), none of them explore

re-randomization experimental design on a social network, and we decide to fill the

gap. In this chapter, we focus on the construction of A/B testing experimental de-

signs for network-correlated outcomes when users are connected on a network and

share some common demographic and social features. We use CAR (Schmidt and

Nobre, 2014) spatial network model to incorporate the correlated network struc-

ture in the analysis. To conduct the experiment on the test subjects that form the

network, we propose an algorithm for re-randomization procedure and formulate

stopping criteria that are based on the D-optimal design objectives of the CAR

model (Pokhilko et al., 2019). The main goal of the proposed stopping criteria is

to find a random design that can approximate the exact D-optimal design in its

objectives. In the A/B testing experiment, the key parameter is the treatment

effect, and thus the D-optimal criterion measures the variance of the estimated

treatment effect. Finally, we conduct simulation studies on synthetic networks to
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demonstrate the performances of the proposed re-randomization method compared

to the D-optimal designs: original-MIP and modified-MIP (Pokhilko et al., 2019);

and random designs, which do not consider the network structure.

3.2 D-optimal Design for CAR Model

In this section we provide theoretical details for the model that we use, outline the

assumptions for the model and list all the definitions. In this Chapter we use the

same model set up as in Pokhilko et al. (2019). We consider A/B testing experiments

on undirected social networks. The connections or edges of the network are recorded

by an n× n adjacency matrix W = {wij} whose (i, j)-th entry is wij. The diagonal

entries wii’s of this matrix are zeros, whereas the off-diagonal entries are

wij =


1, if node i and node j are adjacent

0, otherwise.

We call that two nodes are adjacent if they are connected by an edge. We denote

mi =
∑n

j=1wij as the degree of the ith vertex, and N =
∑
i

mi =
∑
i

∑
j

wij as twice

of the total number of edges of the network. Our goal is to create an experimental

design to allocate A or B treatment to each node. Let x = (x1, . . . , xn)>, with

xi ∈ {1,−1} for i = 1, . . . , n, be the design of the i-th node and the two settings

{1,−1} represent A and B treatments. We denote the scalar response observation

of the i-th node by yi. In this paper, we focus on the case where the response is

continuous and assume a linear regression model for the response as follows.

yi = β0 + xiβ + δi, (3.1)

where β0 is the intercept, β represents the treatment effect, and δi is a zero mean

random variable. For the experiments on social networks, two connected users share

similarities in their social behaviors and other backgrounds, and thus their responses
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are often correlated. To incorporate this social correlation, we model δi in (3.1) by

the conditional auto-regressive (CAR) model (Besag, 1974)

δi|δ−i ∼ N

(
ρ
∑
j 6=i

wijδj
mi

,
σ2

mi

)
, (3.2)

where δ−i = {δ1, . . . , δi−1, δi+1, . . . , δn}, and σ2 is the variance parameter that is

assumed to be known in our scope, and ρ is the correlation parameter of the CAR

model. We restrict the correlation parameter ρ to be non-negative, i.e., 0 ≤ ρ < 1,

since connected users tend to have similar reactions to the same treatment. If ρ = 0,

it corresponds to the extreme case when users of the network are independent of

each other, i. e., have no edges or connection.

According to Proposition 2.1 in Pokhilko et al. (2019) the covariance model in

(3.2) can be expressed in the following multivariate normal form:

δ ∼MVN n(0, σ2(D − ρW )−1)

where D = diag(m1, . . . ,mn) with mi’s denoting the degree of the ith node.

The maximum likelihood method can be used to fit the model (3.1) with δi from

(3.2) and estimate the model parameters. The goal of A/B testing is to accurately

assess the treatment effect β. Next, we use D-optimal design (Kiefer et al., 1959;

Atwood, 1969; Pukelsheim, 1993; Atkinson et al., 2007; Woods, 2005; Atkinson and

Woods, 2015) to improve the accuracy of the estimated treatment effect β under

the strong model assumption (3.1). According to Proposition 2.2 in Pokhilko et al.

(2019), such D-optimal design x is the solution to the following optimization prob-

lem:

argmaxx∈{−1,1}nD(x) = argminx∈{−1,1}n

a∑
i

∑
j

wijxixj +

(∑
i

mixi

)2
 ,

(3.3)

where a = ρ
1−ρN .

Since the objective function in (3.3) can be decomposed to a weighted sum
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of
∑

ij wijxixj and

(∑
i

mixi

)2

, the desired optimal design should achieve smaller

values on both terms. This observation provides insights of the features of the desired

optimal design: (1) the first term
∑

ij wijxixj suggests that the two connected nodes

should be assigned to different treatments; (2) the second term indicates that if we

treat the size of neighborhood as a feature associated with each node, then the

design allocation is desired to be “orthogonal” with this feature.

3.3 Re-randomization Formulation for D-optimal

Design

To develop a re-randomization design we focus on optimization problem (3.3). Due

to computational constraints it is quite difficult, if not impossible, to obtain the

D-optimal design by solving this optimization program directly. Pokhilko et al.

(2019) proposed a modified mixed integer program that produced an approximation

to a D-optimal design (3.3) that had significant savings in terms of computational

time. In this paper we propose a re-randomization design as an alternative to the

D-optimal design formulation (3.3).

If we assume that xi is a random variable taking value from {−1, 1} with equal

weights and let

T1(x) = x>Wx =
∑
ij

wijxixj,

then

E(T1(x)) = E

(∑
i

∑
j

wijxixj

)
=
∑
i

∑
j

wijE[xixj] = 0 and

Var(T1(x)) = Var

(∑
i

∑
j

wijxixj

)
=
∑
i

∑
j

w2
ijVar(xixj) =

∑
i

∑
j

wij.

and we have the following theorem.

Theorem 3.3.1 Consider that x1, . . . , xn in x are independent and identically dis-

tributed random variables from the discrete distribution with P(xi = 1) = P(xi =
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−1) = 0.5. If the network structure is fixed, as n→∞,

T1(x)√∑
wij

d−→ N(0, 1)

The proof of this theorem is to be published in the work of Zhang and Kang

early 2020. Similarly, if we let

T2(x) = (
n∑
i

mixi)
2,

then

E(T2(x)) = E

(
n∑
i=1

mixi

)
=

n∑
i=1

miExi = 0 and

Var(T2(x)) = Var

(
n∑
i=1

mixi

)
=

n∑
i=1

m2
iVar(xi) =

n∑
i=1

m2
i .

and the following theorem follows.

Theorem 3.3.2 Consider that x1, . . . , xn in x are independent and identically dis-

tributed random variables from the discrete distribution with P(xi = 1) = P(xi =

−1) = 0.5. If the network structure is fixed, and as n→∞

n−2

n∑
i=1

m2
i <∞ and n−1mi → 0

then

T2(x)∑n
i=1m

2
i

d−→ χ2
1, as n→∞.

The proof of the Theorem 3.3.2 is provided in Appendix 3.6.1.

Since our goal is to minimize T1(x) and T2(x), we keep generating random designs

x ∈ {−1, 1}n until we find one x that satisfies the following conditions:

T1(x)√∑
wij
≤ Zα1 and

T2(x)∑n
i=1 m

2
i

≤ χ2
1,α2

,

where Zα1 and χ2
1,α2

are values of standard normal and chi-squared with 1 degree
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of freedom distributions corresponding to their α1 and α2 percentiles and α1 and

α2 are chosen to be arbitrarily small numbers. Algorithm 1 describes the procedure

for estimating treatment effect and calculating its variance using re-randomization

design. Since for the same network multiple re-randomization designs can be gen-

erated, in this paper we will average the results from 100 re-randomization designs

to get the final estimates.

Algorithm 1: Procedure for Calculating the Empirical Variance of the
Treatment Effect Using Re-randomization Design

Input: Adjacency Matrix, W; percentiles, α1 and α2; number of
re-randomization designs, I = 100; sample size or number of
replications for treatment effect estimation, J = 500

1 for i← 1 to I do
2 Construct re-randomization design, x:
3 repeat
4 Create a random design x

5 until x, s.t., T1(x)√∑
wij
≤ Zα1 and T2(x)∑n

i=1m
2
i
≤ χ2

1,α2
;

6 Calculate V̂(β̂i):
7 for j ← 1 to J do
8 Conduct the experiment using the design x and observe user

responses y
9 Estimate the treatment effect βj

10 end

11 V̂(β̂i) = 1
J−1

∑J
l=1

(
β̂l − 1

J

∑J
k=1 β̂k

)2

12 end

13 Calculate V̂(β̂) =
∑I

i=1 V̂(β̂i)/I

3.4 Numerical Study on Synthetic Networks

In this chapter we compare the performances of the four designs: original-MIP and

modified-MIP designs defined in Pokhilko et al. (2019), re-randomization designs

generated using the proposed method and completely random designs. We generate

those designs on synthetic networks as described in Pokhilko et al. (2019). We

conduct the comparison in terms of the empirical variance of the β estimate and

D-efficiency. Random designs are produced by randomly allocating 1 or -1 with

equal probability to each node or experimental unit.

Chapter 3 Victoria Pokhilko 41



Designs for Network A/B Testing

3.4.1 D-efficiency

Here we compare the D-efficiencies of the four designs. We took the results from Ta-

ble 1 of Pokhilko et al. (2019) and added D-efficiency calculated on re-randomization

designs. We set α1 = α2 and vary their product to be either 0.05 or 0.001. We want

to see if re-randomization designs produced with those two scenarios have different

D-efficiencies. For this purpose, we calculate empirical D-efficiency (as defined in

Pokhilko et al. (2019)) averaged over 100 re-randomization designs. The results are

depicted in Table 3.1. We summarize the results from Tables 3.1 as follows:

• Both MIP based designs produce higher D-efficiencies than completely random

and re-randomization design (when correlation parameter ρ 6= 0), and those

differences get larger as ρ increases.

• D-efficiency of re-randomization design is higher than D-efficiency of com-

pletely random designs for all values of correlation parameter ρ.

• Re-randomization designs generated using smaller value of α1 · α2 have larger

D-efficiency than those produced using larger value of α1 · α2.

Table 3.1: The D-Efficiency measures of designs generated using 4 different
methods for a fixed network of size n = 50 and density p = 0.1

Method ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.6 ρ = 0.8 ρ = 0.9
Random 0.98 0.90 0.82 0.76 0.62 0.55 0.53

Rerand (α1 · α2 = 0.05) 1.00 0.92 0.85 0.79 0.67 0.60 0.58
Rerand (α1 · α2 = 0.001) 1.00 0.92 0.86 0.80 0.68 0.62 0.60

Original-MIP 1.00 0.96 0.93 0.90 0.84 0.80 0.79
Modified-MIP (α = 0.6) 1.00 0.96 0.93 0.90 0.84 0.80 0.79
Modified-MIP (α = 0.7) 1.00 0.96 0.92 0.90 0.83 0.80 0.79
Modified-MIP (α = 0.8) 1.00 0.96 0.92 0.90 0.83 0.80 0.79

3.4.2 Empirical Variance

In this section we compare the empirical variances of β̂ that were estimated using

four different designs: original-MIP, modified-MIP, re-randomization and completely

random designs. We use the results from Table 2 of Pokhilko et al. (2019) and the
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same small network of size 50 and density p = 0.1 to add the empirical variances

calculated based on re-randomization designs using α1 · α2 = 0.05 and α1 · α2 =

0.001, where α1 = α2 in both cases. To generate empirical variances we use the

same procedure outlined in Pokhilko et al. (2019). To make the four approaches

comparable, 100 re-randomization designs are produced and for each design the

procedure is repeated R = 500 times to measure the accuracy of β estimate by

calculating its sample variance:

V̂(β̂) =
1

R− 1

R∑
l=1

(
β̂l −

1

R

R∑
k=1

β̂k

)2

,

where β̂1, . . . , β̂R are the R = 500 copies of the estimates for β. After that we

average the value of V̂ (β̂) over the 100 re-randomization designs and report it in

Table 3.2. We summarize the results from Table 3.2 as follows:

• When correlation coefficient ρ is small (ρ < 0.3), re-randomization designs

produce the smallest variance.

• When correlation coefficient ρ increases (ρ ≥ 0.3), MIP based designs produce

the smallest variance.

• For all ρ values re-randomization designs produce smaller variance than ran-

dom designs.

• The empirical variances of re-randomization designs with different values of

α1 · α2 are comparable; designs produced with α1 · α2 = 0.001 have slightly

smaller variances than designs produced with α1 · α2 = 0.05, where α1 = α2.

Next we tested the performance of the four methods on a larger network of size

500 with network density p = 0.01. We used the results from Table 3 of Pokhilko

et al. (2019) as a base and added the results of using re-randomization designs on the

same network for comparison. Since previous results showed that the performance

of re-randomization designs was robust to the choice of α1 ·α2, going forward we will
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Table 3.2: Empirical variances of β̂ based on designs generated from different
methods for a network of size n = 50 and density p = 0.1

Method ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.6 ρ = 0.8 ρ = 0.9
Original-MIP 0.0046 0.0043 0.0041 0.0038 0.0033 0.0030 0.0029
Modified-MIP (α = 0.6) 0.0044 0.0043 0.0040 0.0037 0.0033 0.0031 0.0030
Modified-MIP (α = 0.7) 0.0049 0.0043 0.0043 0.0038 0.0034 0.0030 0.0030
Modified-MIP (α = 0.8) 0.0047 0.0042 0.0042 0.0038 0.0034 0.0030 0.0029
Rerand (α1 · α2 = 0.05) 0.0040 0.0040 0.0040 0.0039 0.0038 0.0038 0.0038
Rerand (α1 · α2 = 0.001) 0.0040 0.0039 0.0039 0.0038 0.0037 0.0036 0.0036
Random (CAR) 0.0047 0.0047 0.0046 0.0046 0.0046 0.0048 0.0047
Random (LM) 0.0045 0.0045 0.0044 0.0045 0.0047 0.0051 0.0052

only test re-randomization designs produced using α1 · α2 = 0.001, where α1 = α2.

For all the designs we also consider the β estimated from both CAR and linear

regression model (LM), although the data are generated from the CAR model. We

summarize our main observations from Table 3.3 as follows:

• Re-randomization and random designs are comparable to each other: as cor-

relation coefficient ρ grows large, re-randomization designs have slightly lower

variance in comparison to completely random designs.

• The variances produced using modified-MIP designs tend to decrease as cor-

relation coefficient ρ grows large.

• The difference in variances between modified-MIP and all other designs in-

creases as ρ increases.

• Variances calculated under model misspecification (LM) are comparable to the

true case when ρ is small and tend to increase as ρ increases.

• When we compare the Tables 3.2 and 3.3 we observe that the differences in

variance between re-randomization and random designs decrease as network

size grows large.
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Table 3.3: Empirical variances of β̂ based on designs generated from different
methods for a network of size n = 500 and density p = 0.01

Method ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.6 ρ = 0.8 ρ = 0.9
Modif-MIP (CAR) 0.00042 0.00035 0.00039 0.00031 0.00030 0.00029 0.00028
Re-random (CAR) 0.00041 0.00041 0.00040 0.00040 0.00040 0.00040 0.00040
Random (CAR) 0.00041 0.00041 0.00041 0.00041 0.00041 0.00041 0.00042
Modif-MIP (LM) 0.00042 0.00036 0.00040 0.00032 0.00032 0.00033 0.00031
Re-random (LM) 0.00041 0.00041 0.00041 0.00040 0.00042 0.00044 0.00046
Random (LM) 0.00041 0.00041 0.00041 0.00041 0.00043 0.00046 0.00048

3.4.3 Empirical Variance under Gamma Distribution Model

Misspecification

In this section we evaluate the performances of designs generated using the four dif-

ferent methods when the outcomes are not generated from a Gaussian distribution.

We test this on small and large networks that we used in Tables 3.2 and 3.3. The

network outcomes are generated as follows:

yi = β0 + xiβ + δi,

where δi ∼ N(ρ
∑

i 6=j wijzj/mi, σ
2/mi) and zj ∼ Gamma(1, 1). Therefore, the out-

comes are not from a Gaussian distribution. The modified-MIP and re-randomization

designs are still based on the CAR model, and we evaluate their performance under

this model misspecification. The results are depicted in Tables 3.4 and 3.5 and are

summarized as follows:

• All designs have similar variance for small values of correlation coefficient

ρ < 0.3.

• As correlation coefficient grows large (ρ ≥ 0.3), so does the difference in vari-

ance between modified-MIP and randomization-based designs. The variance

of modified-MIP designs becomes larger than randomization-based designs as

ρ increases.

• For all values of ρ, re-randomization and random designs have approximately
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the same variance.

• The network size does not appear to have an effect on the performance of all

the designs other than relative size of the variance.

Table 3.4: Empirical variances of β̂ based on Gamma model-misspecification case
for a network of size n = 50 and density p = 0.1

Method ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.6 ρ = 0.8 ρ = 0.9
Modif-MIP (CAR) 0.0010 0.0010 0.0012 0.0016 0.0035 0.0055 0.0068
Re-random (CAR) 0.0011 0.0011 0.0013 0.0015 0.0026 0.0037 0.0044
Random (CAR) 0.0011 0.0011 0.0013 0.0015 0.0026 0.0037 0.0044
Modif-MIP (LM) 0.0009 0.0010 0.0012 0.0015 0.0035 0.0055 0.0068
Re-random (LM) 0.0010 0.0011 0.0012 0.0014 0.0025 0.0036 0.0043
Random (LM) 0.0011 0.0011 0.0012 0.0014 0.0025 0.0036 0.0043

Table 3.5: Empirical variances of β̂ based on Gamma model-misspecification case
for a network of size n = 500 and density p = 0.01

Method ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.6 ρ = 0.8 ρ = 0.9
Modif-MIP (CAR) 0.00011 0.00012 0.00014 0.00018 0.00037 0.00058 0.00070
Re-random (CAR) 0.00011 0.00012 0.00013 0.00015 0.00026 0.00037 0.00044
Random (CAR) 0.00011 0.00011 0.00013 0.00015 0.00026 0.00037 0.00044
Modif-MIP (LM) 0.00011 0.00012 0.00014 0.00018 0.00038 0.00058 0.00070
Re-random (LM) 0.00011 0.00012 0.00013 0.00015 0.00026 0.00037 0.00044
Random (LM) 0.00011 0.00011 0.00013 0.00015 0.00026 0.00037 0.00044

3.5 Discussion

In this paper we introduce a re-randomization strategy to producing designs for

A/B testing on networks with known structures. Numerical examples on synthetic

networks are provided to show the effectiveness of the proposed method. Our ap-

proach outperforms random designs in terms of decreasing variance of treatment

effect estimate, but cannot beat the performance of optimal designs, both original

and modified-MIP. Our approach works especially well on smaller networks, but

as a network size increases, the performance of re-randomization designs becomes

comparable to random designs. In case of violation of the model assumptions, our

proposed method outperforms optimal designs and is comparable to random designs.

46 Chapter 3 Victoria Pokhilko



Designs for Network A/B Testing

So the benefits of our method is that it is more robust to model misspecification

than modified-MIP designs.

3.6 Appendix

3.6.1 The proof of Theorem 3.3.2

Let Yi = mixi. Then Yis are independent random variables with a finite variance.

If n−2
∑n

i=1 m
2
i <∞ and n−1mi → 0 as n→∞, we have that

mi√∑n
i=1 m

2
i

→ 0.

Therefore, the Lindeberg’s condition

n∑
i=1

E

[
(Yi − EYi)

2I(|Yi − EYi|2 > εVar(
n∑
i=1

Yi))

]
= o

(
Var(

n∑
i=1

Yi)

)

holds for any ε > 0 as n→∞. According to the Lindeberg’s central limit theorem,

∑n
i=1 Yi√∑n
i=1m

2
i

d−→ N(0, 1)

as n→∞. Then the conclusion holds.
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Chapter 4

Covariate-Assisted Bayesian

Sequential Design for Network

A/B Testing

4.1 Introduction

Though the idea of A/B testing dates back to Sir Ronald A. Fisher’s experiments

at the Rothamsted Agricultural Experimental Station in England in the 1920s, the

advent of the internet and smartphones has given web and app developers a new

edge for implementing these tests at large scales. In its basic form, consider two

possible alternatives, denoted A and B. The technique consists of directing small

portions of user traffic to experimental designs of an app, an online commercial,

a game, or a website, and the designers can employ noisy feedback from users to

optimize any observable metric with respect to the product’s configuration. Based

on the particular phase of a product’s life, the click-through rate might be more rel-

evant objective to optimize for an ad, whereas for a game it may be some measure

of user engagement; new subscriptions may be more valuable than user retention or

revenue, or vice versa.

The important question is how to optimally sample these subsets of users in
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order to find the best product with high probability within a predetermined sample

budget, or how to direct traffic sequentially in order to optimize a cumulative met-

ric while incurring the least opportunity cost (Chapelle and Li, 2011; Kohavi et al.,

2009; Scott, 2010). Eckles et al. (2017) worked on design of treatment and control

assignment that considers the ability to perform random assignment to treatments

that is correlated in the network, such as through graph cluster randomization. Gui

et al. (2015) proposed an efficient and effective estimator for Average Treatment Ef-

fect (ATE) that considers the interference between users in real online experiments.

It is defined as the difference of the average outcomes between applying treatment

to the entire user population and applying control to the entire user population. In

reality, however, a user can only receive one treatment at a time. In our research

we focus on dynamic design, where we utilize sequential Bayesian assignment of

alternatives based on user network information.

Much research has been done and recorded in scientific literature on Bayesian op-

timization. In academia, it is impacting a wide range of areas, including robotics (Li-

zotte et al., 2007; Martinez-Cantin et al., 2007), environmental monitoring (Marchant

and Ramos, 2012), information extraction (Wang et al., 2014), algorithm configura-

tion (Hutter et al., 2011; Wang et al., 2016), automatic machine learning (Bergstra

et al., 2011; Xia et al., 2017; Hoffman et al., 2014; Wu, 2017; Snoek et al., 2012;

Swersky et al., 2013; Thornton et al., 2013), sensor networks (Srinivas et al., 2009),

adaptive Monte Carlo (Mahendran et al., 2012) and experimental design (Azimi

et al., 2012). Fundamentally, Bayesian optimization is a sequential model-based

approach to finding a global maximizer (or minimizer) of an unknown objective

function f :

x∗ = arg max
x∈X

f(x)

where X is a design space of interest. In this setting, at step t, a sequential search

algorithm selects a location xt+1, at which to query f and observe yt+1. After

T queries, the algorithm makes a final recommendation x̂N , which represents the

algorithm’s best estimate of the optimizer.
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Shahriari et al. (2016) identifies two key ingredients of Bayesian optimization.

The first ingredient has a surrogate model with a prior distribution that captures

our beliefs about the behavior of an unknown objective function and an observa-

tion model that describes how the data is generated. The second ingredient is an

acquisition or loss function that optimizes the sequence of queries. When we take

a closer look at the first ingredient, based on a specific problem, we can employ

Bayesian optimization with parametric or nonparametric models. A good example

of Bayesian optimization using parametric modeling would be Thompson sampling

(Thompson, 1933) in the Beta-Bernoulli bandit model (Agrawal and Goyal, 2012)

with 2 arms. The objective is to identify which arm of the bandit to pull, e.g., which

drug to administer, which movie to recommend, or which advertisement to display.

In this chapter we develop a Bayesian sequential experimental design for A/B

testing on social networks. We consider the case when responses of network mem-

bers are continuous and we use normal conjugate priors to sequentially update a

Bayesian model. We summarize information about network into covariates, such as

neighborhood size, average A and/or B response in user’s first tier neighborhood

and others, and add those covariates into the Bayesian model. We propose an al-

gorithm to sequentially update our model parameters based on new experimental

outcomes and use variance reduction term to choose treatment allocation at each

step of the procedure. Finally, we test the performance of our covariate-assisted

Bayesian model on synthetic and real-world networks and compare the results to

a Bayesian sequential model that does not use network covariates in its posterior

updates.

4.2 Covariate-Assisted Bayesian D-Optimal De-

sign for Network AB Testing

Assume that a marketing manager at a company wants to test two alternative de-

signs of an advertisement on a certain network community, for example, on Facebook
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members. Each Facebook member has its own network of friends who might have

previously been selected for participation in A/B testing procedure. We want to

incorporate that information in the Bayesian model and test the hypothesis that

a model that takes into consideration the information about the network performs

better than a model that does not consider such information. We can build a model

that summarizes the information about the network into covariates. Possible co-

variates can be a number of friends that a users has or a number of members in

the first tier neighborhood, a number of members in the first tier neighborhood who

responded favorably to an alternative A, an average value of A responses in a user’s

first tier neighborhood, an average value of B responses in a user’s first tier neigh-

borhood, and others. We can extend the number of covariates to represent members

of second tier neighborhood or friends of the friends, etc. Let’s assume that we have

d network covariates and treatment options A and B are represented by a vector

x ∈ {−1, 1}. Then we consider the following model with normal conjugate priors:

y = GTφ+ ε = xβ + zTγ + ε (4.1)

where

• G =

x
z

, x ∈ {−1, 1} is a treatment assignment and z = [1, z1, . . . , zd]
T ∈

Rd+1 are intercept and network covariates,

• ε ∼ N(0, η2) is an error term, where η2 is known or estimated from historical

data,

• φ =

β
γ

 ∼MVNd+2(θ, V ) is a prior distribution, where θ =

 θ1

θ−1

 and

V =

σ2 rT

r Σ


• θ1 and σ2 are scalars, θ−1 and r are (d+1)×1 vectors and Σ is a (d+1)×(d+1)

matrix.
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• y|φ ∼ N(Gφ, η2)

We plan to conduct the experiment sequentially, one at a time. New experiment

is chosen by minimizing VAR(β|yt+1), with regards to both x and z. In order for us

to know what is VAR(β|yt+1), we need to know the distribution of β|yt+1. For that

we first need to find the posterior distribution of φ|yt+1. It can be expressed in a

multivariate normal form given by the following proposition:

Proposition 4.2.1 Using the Bayesian paradigm and model assumptions of (4.1),

the posterior distribution of φ|yt+1 follows a multivariate normal distribution:

φ|yt+1 ∼MVNp+1(θt +
yt+1 −GT

t+1θt
η2 +GT

t+1VtGt+1

VtGt+1, Vt −
VtGt+1G

T
t+1Vt

η2 +GT
t+1VtGt+1

),

where yt+1 is a new response observed after applying treatment xt+1 and Gt+1 con-

tains a vector of updated network covariates, zt+1, and the treatment allocation, xt+1,

at step t+ 1.

The proof of this proposition is provided in Appendix 4.7.1. Therefore at step t+1

after observing the response yt+1 we update the parameters of posterior distribution

φ|yt+1 as follows:

θt+1 = θt +
yt+1 −GT

t+1θt
η2 +GT

t+1VtGt+1

VtGt+1

Vt+1 = Vt −
VtGt+1G

T
t+1Vt

η2 +GT
t+1VtGt+1

We found the distribution of φ|yt+1, now we can provide the information about

the distribution of β|yt+1, given by the following Proposition.

Proposition 4.2.2 Under model assumptions (4.1) and Proposition 4.2.1, the dis-

tribution of β|yt+1 ∼ N(θ1,t+1, σ
2
t+1), where

E[β|yt+1] = θ1,t+1 = θ1,t +
(yt+1 − xt+1θ1,t − zTt+1θ−1,t)(σ

2
t xt+1 + rTt zt+1)

η2 + x2
t+1σ

2
t + 2xt+1zTt+1rt + zTt+1Σtzt+1

V AR[β|yt+1] = σ2
t+1 = σ2

t −
(σ2

t xt+1 + rTt zt+1)2

η2 + x2
t+1σ

2
t + 2xt+1zTt+1rt + zTt+1Σtzt+1

(4.2)
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The proof of Proposition 4.2.2 is provided in Appendix 4.7.2. The second term

in (4.2) is a variance reduction term, which is the amount by which we expect

the variance to decrease after observing the next response. We can calculate the

variance reduction term for both treatment allocation x ∈ {−1, 1} and for the next

step, allocate x for which the variance reduction term is the largest.

For comparison, we consider the simpler model without network covariates, which

is the original model (4.1) when z = 1. Then the model (4.1) simplifies as follows:

y = GTφ+ ε = xβ + γ + ε (4.3)

where

• G =

x
1

, x ∈ {−1, 1} is a treatment assignment

• ε ∼ N(0, η2) is an error term, where η2 is known or estimated from historical

data

• φ =

β
γ

 ∼MVN2(θ, V ) is a prior distribution, where θ =

θ1

θ2

 and

V =

σ2 r

r ω


• y|φ ∼ N(Gφ, η2)

Then under model assumptions (4.3) and Propositions 4.2.1 and 4.2.2, the dis-

tribution of β|yt+1 ∼ N(θ1,t+1, σ
2
t+1), where

θ1,t+1 = θ1,t +
(yt+1 − xt+1θ1,t − θ2,t)(σ

2
t xt+1 + rt)

η2 + x2
t+1σ

2
t + 2xt+1rt + ω2

t

σ2
t+1 = σ2

t −
(σ2

t xt+1 + rt)
2

η2 + x2
t+1σ

2
t + 2xt+1rt + ω2

t

Again, we can calculate a variance reduction term for both alternatives x ∈

{−1, 1} and at step t + 1 allocate design point x for which the variance reduction

term is maximum.
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4.3 Proposed Algorithms

We want to compare the performance of the model with network covariates (4.1)

and the model without network covariates (4.3) on simulated data. We have two

alternatives, A and B, that we want to test within a network. As users come in

sequentially, we want to use their network information to make a decision about

what design to offer. For the simulation study we propose an Algorithm 2 that

involves a model with network covariates (4.1) and Algorithm 3 for a model without

network covariates (4.3). In both algorithms, when a new user arrives for testing we

calculate a variance reduction term - we call it ν, for both alternatives of the design

vector x ∈ {−1, 1} and assign the user a treatment for which ν is the largest. After

that we observe the user’s response, update networks covariates and/or parameters

of a prior distribution. Then a new user comes in and we repeat the procedure until

we reach a stopping criteria. In our study we use a maximum number of steps as a

stopping criteria.

For the numerical simulation that follows we consider 4 network covariates:

• z1i is a number of friends that user i has in his network or the number of

members in his first tier neighborhood.

• z2i is a number of members in the first tier neighborhood of user i, who re-

sponded favorably to treatment A or x = 1.

• z3i is an average value of responses to treatment A or x = 1 in a user i first

tier neighborhood.

• z4i is an average value of responses to treatment B or x = −1 in a user i first

tier neighborhood.

It is worth to point out that we use the network covariates from the previous step

t to calculate the variance reduction term ν, unlike proposed in the equation (4.2).

Since covariates z3i and z4i are dependent of the response y, in order to update
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them, we need to observe the response yt+1, which is not possible at that point in

the process.

Algorithm 2: Bayesian Sequential Design for A/B Testing Using a Model
With Network Covariates

Input: W : network structure; η2: error term variance
1 Estimate θ, V : initial hyperparameters of the MVN prior;
2 t = 0
3 repeat
4 Observe network information z of a respondent t+ 1
5 Calculate variance reduction term ν for both alternatives x ∈ (−1, 1):

6 νx =
(σ2
t x+rTt zt)

2

η2+x2σ2
t+2xzTt rt+z

T
t Σtzt

7 if ν1 > ν−1 then
8 xt+1 = 1
9 else

10 xt+1 = −1
11 end
12 Observe response yt+1 based on selected alternative xt+1

13 Update network information zt+1

14 Update hyperparameters θ and V , where Gt+1 = [xt+1, zt+1]T :

15 θt+1 = θt +
Yt+1−GTt+1θt

η2+GTt+1VtGt+1
VtGt+1

16 Vt+1 = Vt −
VtGt+1GTt+1Vt

η2+GTt+1VtGt+1

17 Record the value of θ1,t+1

18 t = t+ 1

19 until Stopping Criteria reached ;

We test the performance of our proposed Bayesian sequential design, that uses a

model with network covariates against a design that does not use network covariates,

using synthetic and real-world networks. We define the social network to be an

undirected graph in the context of this work. The edges of this network are recorded

by an n× n adjacency matrix W = {wij} whose (i, j)-th entry is wij. The diagonal

entries wii’s of this matrix are zeros, whereas the off-diagonal entries are

wij =


1, if node i and node j are adjacent

0, otherwise.

We call that two nodes are adjacent if they are connected by an edge. To generate a

response yt+1 during the simulation we use Conditional Autoregressive (CAR) model
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Algorithm 3: Bayesian Sequential Design for A/B Testing Using a Model
Without Network Covariates

Input: W : network structure; η2: error term variance
1 Estimate θ, V : initial hyperparameters of the MVN prior;
2 t = 0
3 repeat
4 Calculate variance reduction term ν for both alternatives x ∈ (−1, 1):

5 νx =
(σ2
t x+rt)2

η2+x2σ2
t+2xrt+ω2

t

6 if ν1 > ν−1 then
7 xt+1 = 1
8 else
9 xt+1 = −1

10 end
11 Observe response yt+1 based on selected alternative xt+1

12 Update hyperparameters θ and V , where Gt+1 = [xt+1, 1]T :

13 θt+1 = θt +
Yt+1−GTt+1θt

η2+GTt+1VtGt+1
VtGt+1

14 Vt+1 = Vt −
VtGt+1GTt+1Vt

η2+GTt+1VtGt+1

15 Record the value of θ1,t+1

16 t = t+ 1

17 until Stopping Criteria reached ;

(Besag, 1974):

yi = α + xiβ + δi, (4.4)

where

δi|δ−i ∼ N

(
ρ
∑
j 6=i

w̃ijδj, τ
2
i

)
, (4.5)

δ−i = {δ1, . . . , δi−1, δi+1, . . . , δn}, τ 2
i = τ 2/z1i, with z1i as described above, τ 2 is

assumed to be known, w̃ij = wij/z1i (row-standardized neighborhood matrix) and

xi ∈ {−1, 1} is a treatment assignment. Since we make an assumption that users

connected on a network tend to have similar reactions to the same treatment, we

restrict the correlation parameter of the CAR model, ρ to be non-negative, i.e.,

0 ≤ ρ < 1. Under the CAR model assumptions (4.4) and (4.5), Brook’s Lemma

(Brook, 1964) and Proposition 2.1 in Pokhilko et al. (2019), the covariance model

in (4.5) can be expressed in a multivariate normal form:

δ = (δ1, . . . , δn)> ∼MVN n(0, τ 2(D − ρW )−1),

56 Chapter 4 Victoria Pokhilko



Designs for Network A/B Testing

where D = diag(z11, . . . , z1n) and W is a neighborhood or adjacency matrix.

Now a few words about estimating initial hyperparameters θ and V of the MVN

prior in model (4.1). We estimate them in batch from historical data that are

simulated on a small subset of the network. Approximately 10% of total number

of users on the network is randomly selected for those purposes. Then we create a

random treatment allocation vector x ∈ {−1, 1}. Based on the design x we generate

a vector of responses using CAR model (4.4). Without loss of generality we assume

that α = 0. Using the design x and response y, we create the network covariates.

After that we estimate the hyperparameters θ and V for the model with covariates

(4.1) by fitting the Multiple Linear Regression model:

y = θ1x+ θ−1z + ε

and for the model without covariates (4.3) by fitting the Simple Linear Regression

y = θ1x+ θ2 + ε

Finally, we use the initial parameters of the prior distribution of φ as an input

for the main simulation.

4.4 Numerical Study on Synthetic Networks

This section compares two approaches: network method, that uses network covari-

ates as described in Algorithm 2 and independent approach, that does not use the

network covariates using Algorithm 3. The comparison will be done on random net-

works. For a network with n nodes, the n×n adjacency matrix records the edges of

this network. We randomly assign 0 and 1 to the upper or lower off-diagonal entries

of this matrix. The proportion of ones is specified to be p. The zero entry means

that the two corresponding nodes are not adjacent, whereas the entry of one means

the opposite. The proportion p is referred to as the density of this network.
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We proceed by first generating 1000 random networks of size 1000 and density

p = 0.05. We assumed that true value of β = 0.05. For each network we generated

one realization of the response based on either a covariate-assisted model or a model

without covariates. As a result we had 1000 updated parameters, θ and σ2 at each

step t and for each model. Next we evaluated the performance of each simulation

scenario described by Algorithms 2 and 3 by first plotting at each step t = 1 . . . T of

the procedure the probability of correct selection, Pcs =
∑K
k=1 I{θk>0}

K
, whereK = 1000

is a total number of parameter estimates we have at each step t and T = 800 is a total

number of steps. We also plotted sum of squared errors or SSE =
∑K

k=1(θk − β)2,

calculated at each step t of the procedure. The complete procedure is described in

Algorithm 4.

Algorithm 4: Comparison of Bayesian Sequential Designs for A/B Testing
Procedure With and Without Network Covariates on Multiple Networks

Input: ρ: network correlation parameter; τ/β: noise-to-signal ratio;
K: number of random networks; T : total number of steps

1 for k ← 1 to K do
2 Create a random network
3 Algorithm 2
4 Algorithm 3

5 end

6 Calculate SSE for both models at each step t: SSE =
∑K

k=1(θk − β)2

7 Calculate probability of correct selection, Pcs, for both models at each step

t: Pcs =
∑K
k=1 I{θk>0}

K

8 Plot Pcs and SSE for both models at each step t

We repeated the procedure in Algorithm 4 for different values of ρ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9}

and noise-to-signal ratios, τ/β ∈ {10, 100}, that were used in response generation.

The results are depicted in Figures 4.1, 4.2, 4.3 and 4.4. Figure 4.1 shows Pcs for

noise-to-signal ratio of 10. We observe that for all values of ρ, Pcs is 1 for both meth-

ods and all steps. In Figure 4.2 we increase noise-to-signal ratio to 100. We observe

that Pcs is higher for a model without covariates for all values of the correlation

parameter ρ.

Figures 4.3 and 4.4 show SSE at each step t for different values of ρ and noise-

to-signal ratio. We observe that SSE is the smallest for a model without covariates
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Figure 4.1: Probability of correct selection calculated at each step of the
procedure, using noise-to-signal ratio of 10 over 1000 random networks of size 1000

and density 0.05

regardless the choice of ρ or noise-to-signal ratio. We can conclude that a covariate

assisted model loses in terms of Pcs and SSE to a model without covariates as tested

on synthetic random networks.

4.5 Numerical Study on Real-World Networks

This section studies an example of real-world network and compares the performance

of our proposed covariate assisted model to the performance of a model without

covariates. We consider one of the ego networks extracted from Facebook (Leskovec

and Mcauley, 2012). These networks are collected from survey participants who

used the Facebook App. Ego networks consist of a focal node (“ego”) and the nodes

to whom ego is directly connected to (these are called “alters”) plus the ties, if any,

among the alters. Each alter in an ego network has his/her own ego network, and all

ego networks interlock to form the human social network. The focal node represents

the main character or person in the ego network and the alters are the “friends”

in her circle or people she is connected with. Those friends can also be connected

among themselves, forming their own ego networks, and that is represented by the
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Figure 4.2: Probability of correct selection calculated at each step of the
procedure, using noise-to-signal ratio of 100 over 1000 random networks of size

1000 and density 0.05
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Figure 4.3: SSE calculated at each step of the procedure, using noise-to-signal
ratio of 10 over 1000 random networks of size 1000 and density 0.05
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Figure 4.4: SSE calculated at each step of the procedure, using noise-to-signal
ratio of 100 over 1000 random networks of size 1000 and density 0.05

ties or edges among alters.

For our simulation we select an ego network of size 1034 that has a density

p = 0.05. Since we only have one network, in order for us to calculate probability

of correct selection Pcs and SSE, we generate K = 100 iterations or realizations of

response using CAR model assumptions (4.4) and (4.5) at each step of the procedure,

t. As a result we have 100 parameter estimates, θ and σ2, for each step t and each

model. The updated version of the procedure is provided in Algorithm 5.

We repeat the process described in Algorithm 5 for different values of ρ ∈

{0, 0.1, 0.3, 0.5, 0.7, 0.9} and noise-to-signal ratios, τ/β ∈ {10, 100}. The results

of the simulation are provided in Figures 4.5, 4.6, 4.7 and 4.8. Figure 4.5 shows Pcs

for noise-to-signal ratio of 10. We observe that for all values of ρ, Pcs is 1, except

for the model without covariates falling behind for a first few steps of the procedure

for ρ = 0 and 0.7. In Figure 4.6 we increase noise-to-signal ratio to 100. We observe

that Pcs is higher for a covariate assisted model, especially at the beginning of the

learning procedure, for all values of the correlation parameter, ρ.

Figures 4.7 and 4.8 show SSE at each step t for different values of ρ and noise-

to-signal ratio. We observe that SSE is the smallest for a covariate assisted model
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Algorithm 5: Comparison of Bayesian Sequential Designs for A/B Testing
Procedure With and Without Network Covariates on a Single Network

Input: W : network adjacency matrix; ρ: network correlation parameter;
τ/β: noise-to-signal ratio, K: total number of iterations; T : total
number of steps

1 for k ← 1 to K do
2 Generate a vector of errors, δ
3 Estimate hyperparameters, θ0 and V0

4 Algorithm 2
5 Algorithm 3

6 end

7 Calculate SSE for both models at each step t: SSE =
∑K

k=1(θk − β)2

8 Calculate probability of correct selection, Pcs, for both models at each step

t: Pcs =
∑K
k=1 I{θk>0}

K

9 Plot Pcs and SSE for both models at each step t

regardless the choice of ρ and noise-to-signal ratio. We can conclude that a covariate

assisted model outperforms a model without covariates in terms of Pcs and SSE, as

tested on the real-world network.

4.6 Discussion

In this paper we introduce a covariate assisted Bayesian sequential design for A/B

testing on social networks. We use the CAR model to characterize the dependence

of the responses from the adjacent nodes in a network. Numerical examples on

synthetic and real-world networks are provided to show the effectiveness of the

proposed method. Our approach outperforms a model without network covariates

on Facebook ego networks in terms of decreasing SSE of treatment effect estimate,

and increasing probability of correct selection, Pcs, but loses in performance to a

model without covariates when tested on purely random synthetic networks. The

choice of a network correlation parameter, ρ, used in response generation during the

simulation study, shows no effect on the performance of both models. This means

that the covariate assisted model is robust to the degree of network dependency

assumed for user responses as long as the proposed method is applied on clustered

social networks.
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Figure 4.5: Probability of correct selection calculated at each step of the
procedure, using noise-to-signal ratio of 10 over one Facebook ego network of size

1034 and density 0.05
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Figure 4.6: Probability of correct selection calculated at each step of the
procedure, using noise-to-signal ratio of 100 over one Facebook ego network of size

1034 and density 0.05
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Figure 4.7: SSE calculated at each step of the procedure, using noise-to-signal
ratio of 10 over one Facebook ego network of size 1034 and density 0.05
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Figure 4.8: SSE calculated at each step of the procedure, using noise-to-signal
ratio of 100 over one Facebook ego network of size 1034 and density 0.05
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4.7 Appendix

4.7.1 The Proof of Proposition 4.2.1

We want to derive the posterior distribution of φt+1|yt+1 at step t + 1. To make

the description complete, we follow the standard development of Bayesian theory in

scientific literature. Using the model (4.1), we get:

f(φt+1|yt+1) =
f(φt+1, yt+1)

f(yt+1)
∝ f(yt+1|φt+1)f(φt+1)

∝ exp{− 1

2δ2
(yt+1 −GT

t+1φt+1)2}exp{−1

2
(φt+1 − θt)TΣ−1

t (φt+1 − θt)}

∝ exp{−1

2
[
y2
t+1

δ2
−
yt+1G

T
t+1φt+1

δ2
−
φTt+1Gt+1yt+1

δ2
+ φTt+1

Gt+1G
T
t+1

δ2
φt+1

+ φTt+1Σ−1
t φt+1 − φTt+1Σ−1

t θt − θTt Σ−1
t φt+1 + θTt Σ−1

t θt]}

After isolating the terms related to φt+1 we get:

f(φt+1|yt+1) ∝ exp{ − 1

2
[φTt+1(Σ−1

t +
Gt+1G

T
t+1

δ2
)φt+1 − φTt+1(Σ−1

t θt +
yt+1

δ2
Gt+1)

− (θTt Σ−1
t +

yt+1

δ2
GT
t+1)φt+1]}

Let A = Σ−1
t +

Gt+1GTt+1

δ2
and b = Σ−1

t θt + yt+1

δ2
Gt+1. Then

f(φt+1|yt+1) ∝ exp{−1

2
[φTt+1Aφt+1 − φTt+1b− bTφt+1]}

∝ exp{−1

2
[φTt+1Aφt+1 − φTt+1b− bTφt+1 + bTA−1b]}

∝ exp{−1

2
[φTt+1Aφt+1 − φTt+1AA

−1b− bTA−1Aφt+1 + bTA−1AA−1b]}

Let Σt+1 = A−1 and θt+1 = A−1b, then

f(φt+1|yt+1) ∝ exp{−1

2
[φTt+1Σ−1

t+1φt+1 − φTt+1Σ−1
t+1θt+1 − θTt+1Σ−1

t+1φt+1 + θTt+1Σ−1
t+1θt+1]}

∝ exp{−1

2
(φt+1 − θt+1)TΣ−1

t+1(φt+1 − θt+1)}

We end up with a kernel of a multivariate normal distribution with a mean vector
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θt+1 = A−1b = (Σ−1
t +

Gt+1GTt+1

δ2
)−1(Σ−1

t θt+
yt+1

δ2
Gt+1) and a covariance matrix Σt+1 =

A−1 = (Σ−1
t +

Gt+1GTt+1

δ2
)−1. To further simplify the mean and covariance of the

posterior function, we will use a formula from the work of Sherman and Morrison

(1950) and Bartlett (1951):

(B + uvT )−1 = B−1 − B−1uvTB−1

1 + vTB−1u
,

where B ∈ Rn×n is an invertible square matrix and u, v ∈ Rn are vectors. Applying

this formula, we get the following results:

Σt+1 = (Σ−1
t +

Gt+1G
T
t+1

δ2
)−1 = Σt −

ΣtGt+1G
T
t+1Σt

δ2
/(1 +

GT
t+1ΣtGt+1

δ2
)

= Σt −
ΣtGt+1G

T
t+1Σt

δ2

δ2

δ2 +GT
t+1ΣtGt+1

= Σt −
ΣtGt+1G

T
t+1Σt

δ2 +GT
t+1ΣtGt+1

θt+1 = (Σt −
ΣtGt+1G

T
t+1Σt

δ2 +GT
t+1Σ−1

t Gt+1

)−1(Σ−1
t θt +

yt+1

δ2
Gt+1)

= θt +
yt+1

δ2
ΣtGt+1 −

ΣtGt+1G
T
t+1ΣtΣ

−1
t θt

δ2 +GT
t+1ΣtGt+1

−
ΣtGt+1G

T
t+1ΣtGt+1yt+1

δ2(δ2 +GT
t+1ΣtGt+1)

= θt +
yt+1ΣtGt+1(δ2 +GT

t+1ΣtGt+1)− ΣtGt+1G
T
t+1ΣtGt+1yt+1

δ2(δ2 +GT
t+1ΣtGt+1)

−
ΣtGt+1G

T
t+1θt

δ2 +GT
t+1ΣtGt+1

=
yt+1δ

2ΣtGt+1 + yt+1ΣtGt+1G
T
t+1ΣtGt+1 − yt+1ΣtGt+1G

T
t+1ΣtGt+1

δ2(δ2 +GT
t+1ΣtGt+1)

+ θt −
ΣtGt+1G

T
t+1θt

δ2 +GT
t+1ΣtGt+1

= θt +
yt+1ΣtGt+1

δ2 +GT
t+1ΣtGt+1

−
GT
t+1θtΣtGt+1

δ2 +GT
t+1ΣtGt+1

= θt +
yt+1 −GT

t+1θt
δ2 +GT

t+1ΣtGt+1

ΣtGt+1

Therefore after observing our first response yt+1, the posterior distribution of

φt+1|yt+1 ∼MVNd+1(θt +
yt+1−GTt+1θt

δ2+GTt+1ΣtGt+1
ΣtGt+1,Σt −

ΣtGt+1GTt+1Σt

δ2+GTt+1ΣtGt+1
).

4.7.2 The proof of Proposition 4.2.2

Under model assumptions (4.1) and Proposition 4.2.1, we update the parameters of

the prior distribution φ|y using:

θ = θ +
y −GT θ

δ2 +GTV G
V G (4.6)
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V = V − V GGTV

δ2 +GTV G
(4.7)

where θ =

 θ1

θ−1

, G =

x
z

 and V =

σ2 ρT

ρ Σ


To ease the notation, we omit the step numbering in the subscripts of the above

equations. Then β|y is normally distributed with the mean θ1 and variance σ2 from

parameters θ and V of posterior distribution. Since we need to express θ1 and σ2 in

terms of updated values, we focus on the following terms from equations (4.6) and

(4.7):

V GGTV =

σ2 ρT

ρ Σ


x
z

[x z

]σ2 ρT

ρ Σ


=

σ2x+ ρTz

ρx+ Σz

[σ2x+ zTρ xρT + zTΣ

]

=

 (σ2x+ ρTz)2 (σ2x+ ρTz)(xρT + zTΣ)

(ρx+ Σz)(σ2x+ ρTz) (ρx+ Σz)(xρT + zTΣ)



GTV G =

[
x z

]σ2 ρT

ρ Σ


x
z

 = (xσ2 + zTρ)x+ (xρT + zTΣ)z

= x2σ2 + 2xzTρ+ zTΣz

GT θ =

[
x z

] θ1

θ−1

 = xθ1 + zTθ−1

V G =

σ2 ρT

ρ Σ


x
z

 =

σ2x+ ρTz

xρ+ Σz


Putting the values GTV G, GT θ, the element of the first row and first column
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of V GGTV matrix and the first element of the vector V G into equations (4.6) and

(4.7), we get the mean and variance of β|y. Then the conclusion holds.

4.7.3 Preliminary Study

Covariate Effect Estimation

First we want to estimate the effect of d network covariates by running multiple

linear regression model

y = xβ + zTγ + ε, (4.8)

where x ∈ {−1, 1} is a treatment allocation, zT ∈ Rd+1 is a vector of network covari-

ates and an intercept, described in Section 4.3, and ε ∼ N(0, η2) is an error term.

We want to compare the average p-values of those covariate coefficient estimates

for various values of ρ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9} and different noise-to-signal ratios

τ/β ∈ {10, 100}, used in simulation. We consider 3 scenarios:

1. We create a random network of size 1000 and density 0.05 and random treat-

ment allocation vector x ∈ {−1, 1}. Then we generate a response vector y

using CAR model (4.4). After that we collect the network covariate matrix z.

Next we fit the multiple linear regression model 4.8 and record the p-values

for covariate coefficient estimates. We repeat this procedure on 100 random

networks, each time generating a new random treatment allocation vector and

recording the p-values. Finally, we average those p-values to be displayed in

Figure 4.9. This analysis is repeated for each combination of ρ and noise-to-

signal ratio used in response generation.

2. We create a random network of size 1000 and density 0.05 and random treat-

ment allocation vector x ∈ {−1, 1}. Then we generate a response vector y

using CAR model (4.4). After that we collect the network covariate matrix z.

Next we fit the multiple linear regression model 4.8 and record the p-values for

covariate coefficient estimates. We repeat this procedure 100 times using the

same network, but each time re-generating random treatment allocation x and
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response y. This analysis is done for each combination of ρ and noise-to-signal

ratio used in response generation, and the results are depicted in Figure 4.10.

3. Finally we repeat the procedure described in the second scenario, but instead

of a randomly generated network we use a Facebook ego network of size 1034

and density 0.05. The results of this analysis is depicted in Figure 4.11.

Figure 4.9: Significance of covariates for different values of ρ (top) and
noise-to-signal ratios (right), evaluated over 100 random networks of size 1000 and

density 0.05

Figure 4.10: Significance of covariates for different values of ρ (top) and
noise-to-signal ratios (right), evaluated over a fixed random network of size 1000

and density 0.05

The results are similar for the three scenarios and are as follows:
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Figure 4.11: Significance of covariates for different values of ρ (top) and
noise-to-signal ratios (right), evaluated over Facebook ego network of size 1034 and

density 0.05

• p-values for the covariate estimates of z1 and z2 are not significant regardless

of the parameter settings ρ and noise-to-signal ratio;

• the results are similar for different settings of noise-to-signal ratio;

• p-values for the covariate estimates of z3 and z4 tend to decrease as ρ increases.

Nested Models Comparison

Now we want to compare two nested models: the simple model without the network

covariates y = xβ+ γ+ ε and the model with covariates y = xβ+zTγ+ ε. We need

to decide if a more complex model is “better” at predicting the data than a simpler

one. If the more complex model does not significantly contribute more information,

then there’s no reason to accept the parameters estimated there from. The simpler,

“more parsimonious” model is preferred on all grounds. We set up our hypothesis

as follows and use χ2 test for nested models comparison: Ho : γ1 = γ2 = γ3 = γ4 = 0

versus Hα : At least one γi 6= 0.

We use similar scenarios as in Section 4.7.3:

1. We create a random network of size 1000 and density 0.05 and random treat-

ment allocation vector x ∈ {−1, 1}. Then we generate a response vector y
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using CAR model (4.4). After that we collect the network covariate matrix z.

Next we conduct χ2 test for nested models (with and without covariates) and

record the p-values from the test. We repeat this procedure on 100 random

networks, each time generating a new random treatment allocation vector and

recording the p-values from χ2 test. Finally, we average those p-values to be

displayed in Figure 4.12. This analysis is repeated for each combination of ρ

and noise-to-signal ratio used in response generation.

2. We create a random network of size 1000 and density 0.05 and random treat-

ment allocation vector x ∈ {−1, 1}. Then we generate a response vector y

using CAR model (4.4). After that we collect the network covariate matrix z.

Next we conduct χ2 test for nested models (with and without covariates) and

record the p-values from the test. We repeat this procedure 100 times using

the same network, but each time re-generating random treatment allocation

x and response vector y. This analysis is done for each combination of ρ and

noise-to-signal ratio used in response generation, and the results are depicted

in Figure 4.10.

3. Finally we repeat the procedure described in the second scenario, but instead

of a randomly generated network we use a Facebook ego network of size 1034

and density 0.05. The results of this analysis is depicted in Figure 4.11.

In all cases we observe that network covariates contribute significant information

to the model when high values of correlation parameter ρ are used in simulation

regardless of the choice of noise-to-signal ratio.

4.7.4 Additional Numerical Results on Synthetic Networks

Large Noise-to-Signal Ratio

Here we compare the performance of a covariate assisted model to a model without

covariates using a large noise-to-signal ratio. We repeated the experiment described

in Section 4.4, using τ/β = 1000. The results are provided in Figures 4.15 and 4.16.
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Figure 4.12: χ2 test of nested models (with and without covariates) for different
values of ρ and noise-to-signal ratios (top), evaluated over 100 random networks of

size 1000 and density 0.05

Figure 4.13: χ2 test of nested models (with and without covariates) for different
values of ρ and noise-to-signal ratios (top), evaluated over a fixed random network

of size 1000 and density 0.05

From Figure 4.15 we observe that the covariate assisted model performs better when

ρ = 0.1 and 0.9, a model without covariates outperforms the covariate-assisted model

when ρ = 0.3, and for other values of ρ the results are inconclusive. The SSEs from

Figure 4.16 are very similar for both models.

Testing a Subset of Covariates over a Fixed Random Network

According to the results of the preliminary study in Appendix 4.7.3, certain co-

variates tend to be more significant than others. In this section we compare the
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Figure 4.14: χ2 test of nested models (with and without covariates) for different
values of ρ and noise-to-signal ratios (top), evaluated over a Facebook ego network

of size 1034 and density 0.05

performance of the model without network covariates to the model that uses only

a subset of covariates considered in this paper, namely, z3 and z4, where z3 is an

average value of responses to treatment A or x = 1 in a user’s first tier neighborhood

and z4 is an average value of responses to treatment B or x = −1 in a user’s first

tier neighborhood.

We follow the procedure outlined in Algorithm 5. For the simulation we use a

single random network of size 1000 and density p = 0.05. Since we only have one

network, in order for us to calculate probability of correct selection Pcs and SSE, we

generate 100 realizations of response using CAR model assumption (4.4) and (4.5)

at each step of the procedure, t. As a result we have 100 updates of parameters θ

and σ2 for each step t and each model.

The outcomes of the simulation are depicted in Figures 4.17, 4.18, 4.19 and 4.20.

For noise-to-signal ratio of 10 both models correctly select the sign of the true pa-

rameter with probability of 1 for all values of network correlation parameter ρ, as

shown in Figure 4.17. However, as we increase noise-to-signal ratio to 100, Figure

4.18 illustrates that a model without covariates performs better for all cases of ρ.

This and the fact that SSEs for all ρ and noise-to-signal ratio appear to be smaller

for a model without covariates (Figures 4.19 and 4.20) conform with the results of
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Figure 4.15: Probability of correct selection calculated at each step of the
procedure, using noise-to-signal ratio of 1000 over 1000 random networks of size

1000 and density 0.05

Rho =  0.5 Rho =  0.7 Rho =  0.9

Rho =  0 Rho =  0.1 Rho =  0.3

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

2.5

5.0

7.5

10.0

2.5

5.0

7.5

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

step

S
S

E

Method Covariate Assisted Model Model Without Covariates

Figure 4.16: SSE calculated at each step of the procedure, using noise-to-signal
ratio of 1000 over 1000 random networks of size 1000 and density 0.05
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Figure 4.17: Probability of correct selection calculated at each step of the
procedure, using noise-to-signal ratio of 10 and a subset of covariates over a fixed

random network of size 1000 and density 0.05

section 4.4.

4.7.5 Additional Numerical Results on Real-World Networks

Large Noise-to-Signal Ratio

We want to compare the performance of a covariate assisted model to a model

without covariates on a Facebook ego network of size 1034 using a large noise-to-

signal ratio. We repeated the experiment described in Section 4.5, using a noise-

to-signal ratio of 1000. The results are provided in Figures 4.21 and 4.22. From

Figure 4.21 we observe a lot of variability in Pcs for both models. It looks like there

is too much noise in the response and both models are struggling with learning

the true parameter of β distribution. From Figure 4.22 the SSE of the covariate

assisted model are smaller than SSE of the model without covariates for all values

of network correlation parameter, ρ, especially at the first few hundrends of steps of

the learning process.
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Figure 4.18: Probability of correct selection calculated at each step of the
procedure, using noise-to-signal ratio of 100 and a subset of covariates over a fixed

random network of size 1000 and density 0.05
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Figure 4.19: SSE calculated at each step of the procedure, using noise-to-signal
ratio of 10 and a subset of covariates over a fixed random network of size 1000 and

density 0.05

76 Chapter 4 Victoria Pokhilko



Designs for Network A/B Testing

Rho =  0.5 Rho =  0.7 Rho =  0.9

Rho =  0 Rho =  0.1 Rho =  0.3

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

0.03

0.05

0.07

0.09

0.11

0.04

0.06

0.08

0.05

0.07

0.09

0.11

0.050

0.075

0.100

0.03

0.04

0.05

0.06

0.07

0.08

0.04

0.06

0.08

step

S
S

E

Method Covariate Assisted Model Model Without Covariates

Figure 4.20: SSE calculated at each step of the procedure, using noise-to-signal
ratio of 100 and a subset of covariates over a fixed random network of size 1000

and density 0.05
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Figure 4.21: Probability of correct selection calculated at each step of the
procedure, using noise-to-signal ratio of 1000 over a Facebook ego network of size

1034 and density 0.05
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Figure 4.22: SSE calculated at each step of the procedure, using noise-to-signal
ratio of 1000 over a Facebook ego network of size 1034 and density 0.05

Testing a Subset of Covariates

In this section we compare the performance of the model without network covariates

to the model that uses only a subset of covariates considered in this paper, namely,

z3 and z4, where z3 is an average value of responses to treatment A or x = 1 in a

user’s first tier neighborhood and z4 is an average value of responses to treatment

B or x = −1 in a user’s first tier neighborhood. Those two covariates proved to be

more significant than others in the preliminary study that is described in Appendix

4.7.3.

We follow the procedure outlined in Algorithm 5. For the simulation we use a

Facebook ego network of size 1034 and density p = 0.05. Since we only have one

network, in order for us to calculate probability of correct selection Pcs and SSE, we

generate 100 realizations of response using CAR model assumption (4.4) and (4.5)

at each step of the procedure, t. As a result we have 100 updates of parameters θ

and σ2 for each step t and each model.

The outcomes of the simulation are depicted in Figures 4.23, 4.24, 4.25 and

4.26. For noise-to-signal ratio of 10 both models correctly select the sign of the

true parameter with probability of 1 for most values of correlation parameter ρ,
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Figure 4.23: Probability of correct selection calculated at each step of the
procedure, using noise-to-signal ratio of 10 and a subset of covariates over a

Facebook ego network of size 1034 and density 0.05

except for a model without covariates falling slightly behind a covariate assisted

model for ρ = 0 and 0.7, as shown in Figure 4.23. Figure 4.24 illustrates that as

we increase noise-to-signal ration to 100, a covariate assisted model outperforms a

model without covariates for all cases of ρ. This and the fact that SSEs for all ρ

and noise-to-signal ratio appear to be smaller for a covariate assisted model (Figures

4.25 and 4.26) conform with the results of section 4.5.

Additional Results on Facebook ego network of size 747

Here we conduct a simulation study, as described in Section 4.5, but on a different

Facebook ego network of size 747 and density 0.11. The results of the simulation

are provided in Figures 4.27, 4.28, 4.29 and 4.30. Figure 4.27 shows Pcs for noise-to-

signal ratio of 10. We observe that for all values of ρ, Pcs is 1, except for the model

without covariates falling slightly behind for ρ = 0, 0.3 and 0.9. In Figure 4.28 we

increase noise-to-signal ratio to 100. We observe that Pcs is higher for a covariate

assisted model for all values of the correlation parameter, ρ.

Figures 4.29 and 4.30 show SSE at each step t for different values of ρ and noise-
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Figure 4.24: Probability of correct selection calculated at each step of the
procedure, using noise-to-signal ratio of 100 and a subset of covariates over a

Facebook ego network of size 1034 and density 0.05
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Figure 4.25: SSE calculated at each step of the procedure, using noise-to-signal
ratio of 10 and a subset of covariates over a Facebook ego network of size 1034 and

density 0.05
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Figure 4.26: SSE calculated at each step of the procedure, using noise-to-signal
ratio of 100 and a subset of covariates over a Facebook ego network of size 1034

and density 0.05

to-signal ratio. We observe that SSE is the smallest for a covariate assisted model

regardless the choice of ρ and noise-to-signal ratio. We can conclude that a covariate

assisted model outperforms a model without covariates in terms of Pcs and SSE, as

tested on this real-world network, which conforms with the results in Section 4.5.
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Figure 4.27: Probability of correct selection calculated at each step of the
procedure, using noise-to-signal ratio of 10 over one Facebook ego network of size

747 and density 0.05
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Figure 4.28: Probability of correct selection calculated at each step of the
procedure, using noise-to-signal ratio of 100 over one Facebook ego network of size

747 and density 0.05
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Figure 4.29: SSE calculated at each step of the procedure, using noise-to-signal
ratio of 10 over one Facebook ego network of size 747 and density 0.05
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Figure 4.30: SSE calculated at each step of the procedure, using noise-to-signal
ratio of 100 over one Facebook ego network of size 747 and density 0.05
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Chapter 5

Conclusion

In this research we worked on creating three experimental statistical designs for A/B

testing on social networks. For all three projects we assume that we can describe

the relationship of network members with each other using CAR model, and that re-

sponses y to treatments, A or B, are continuous. In Chapter 2 we formulated a mixed

integer program or MIP to find an exact D-optimal design for network A/B testing,

that we call an Original-MIP, and used GUROBI commercial solver to compute the

design. We also proposed an approximation to the design or Modified-MIP, that not

only has significant savings in computational time, but also has a very comparable

performance to Original-MIP. Next we tested our proposed methods on synthetic

and real networks and compared their performance to random designs. What we

observed is that both methods have smaller variance of the treatment effect than

random when network correlation parameter ρ grows large. When ρ is small, the

performance of our methods was comparable to random designs.

As network size grows large, it becomes very difficult if not impossible for the

solver to bring the optimality gap to zero in reasonable time. However we observed

that even the solution for the designs with high optimality gaps still resulted in

smaller variances for the treatment effect during our testing. Finally, for cases of

very large networks we proposed to separate the network into relatively small net-

works, compute the optimal design for each small network, and then combine the

allocation results together. We tested this algorithm on a sample from Facebook
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network and observed very similar result, that as ρ grows large, the variance of the

treatment effect calculated using Modified-MIP was significantly smaller than vari-

ance calculated from purely random designs. Overall the results proved to be very

favorable to the proposed methods as long as the model assumptions hold. When

model assumptions are violated, the use of random designs are preferred.

In Chapter 3 we continue to work with D-optimal designs. First we showed that

the terms of the MIP formulation for D-optimal design follow well known statisti-

cal distributions. Based on that information we proposed an algorithm to create

re-randomization design where the rejection criteria is set up based on the distribu-

tion of the terms in original MIP formulation for D-optimal designs (3.3). Then we

tested the proposed method on synthetic networks and compared its performance

to Original-MIP, Modified-MIP and purely random designs. We observed that on

small networks re-randomization designs have the best performance in terms of the

variance of treatment effect when the correlation parameter ρ is small, but as ρ

increases, Original and Modified-MIP designs outperform re-randomization design.

As network size increases, however, the performance of re-randomization designs

become more comparable and show marginal improvement over random designs.

Finally, in terms of computational time and model misspecification, the proposed

re-randomization design outperforms Original and Modified-MIP designs in all con-

sidered scenarios.

In Chapter 4 we took a Bayesian optimization approach to creating sequential

designs for network A/B testing. Here we were using normal conjugate priors to

update our beliefs about the distribution of the treatment effect, and we included

network information in the model by means of network covariates. Then we com-

pared the Bayesian model without network covariates to the proposed model that

uses network covariates on synthetic and real networks. We have done numerous

testing on multiple and single networks, varying the network correlation parameter,

ρ, and noise-to-signal ratio, τ/β, that we used in response generation. Our main

observation was that the structure of the network was of the most importance, and
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regardless of the choice of ρ and τ/β, our proposed method performed better than

a model without covariates only on real or clustered networks. The testing done

on synthetic random networks showed that a model without covariates had smaller

SSE and higher probability of correct selection, Pcs, for any combinations of ρ and

τ/β.
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