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Abstract

KINGS IN THE DIRECT PRODUCT OF DIGRAPHS

By Morgan Norge, Master of Science

Virginia Commonwealth University, 2019.

Director: Richard Hammack, Professor, Department of Mathematics

and Applied Mathematics.

A k-king in a digraph D is a vertex that can reach every other

vertex in D by a directed path of length at most k. A king is a

vertex that is a k-king for some k. We will look at kings in the direct

product of digraphs and characterize a relationship between kings in

the product and kings in the factors. This is a continuation of a project

in which a similar characterization is found for the cartesian product

of digraphs, the strong product of digraphs, and the lexicographic

product of digraphs.
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1 Preliminaries

1.1 Introduction

In this thesis, we consider a problem in graph theory involving kings and

product graphs. A graph is simply a structure that is formed with a set of

vertices and a set of edges joining vertices that is used to model or

represent a relationship. Graph theory can be used in many different fields

and is therefore very useful; it is used in computer science, biochemistry,

operations research, among many others.

We are going to explore a problem that has to do with a specific type of

graph called a digraph. A digraph is also used to model a relationship, but

it gives us the ability to model relationships which are directed. For

example, a transportation system can be modeled using directed graphs. If

we use the example of a train station, and we want to model the route of a

train, directed graphs become very useful. In the example of modeling the

route of a train, each train station is represented by a vertex, and the route

of the train is represented by arcs. For example, given two train stations,

Station A and Station B, each train station is represented by a vertex,

called v and w. If the train travels from Station B to Stations A, that

relationship would be represented by an arc from vertex w to vertex v.

Specifically, we will talk about the direct product of digraphs. The direct

product has some very interesting applications, most of which lie in the
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area of computer science.

In this thesis we will determine the relationship between kings in the direct

product of digraphs and its factors. This is a continuation of a project done

with Dr. Dewey Taylor and Peter LaBarr, in which we were able to solve

the same problem for the cartesian product, the strong product, and the

lexicographic product [2].

We will be looking at kings in the direct product of finite digraphs and their

factors. Our goal is to come up with necessary and sufficient conditions on

two digraphs that ensure that their direct product will have a king, and

vice versa. We successfully do so and state our results in Chapter 4.

First, we will review some basic definitions that we will need throughout

this paper and we will introduce the direct product. Next, we will discus

kings and their background, as well as some interesting applications. We

will then move on to state some results by McAndrew that were crucial to

us in discovering our results. Finally, we will state and prove our results, as

well as explore some future directions.
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1.2 Literature Review

We will begin by reviewing some basic Graph Theory definitions that we

will need before we formally introduce the problem. First, recall that a

graph is an ordered pair, G(V,E), comprised of a set of vertices, V , and a

possibly empty set of edges, E consisting of unordered pairs of vertices.

Definition 1. A digraph D is a pair D = (V (D), A(D)) where V (D) is a

finite set whose elements are called vertices of D and A(D) is a set of

ordered pairs of distinct vertices in V (D), called arcs. We view an arc

(v1, v2) as an arrow pointing from v1 to v2.

Figure 1 shows an example of a digraph D with the vertex set

V = {v1, v2, v3, v4, v5} and the arc set

A = {(v1, v2), (v2, v3), (v3, v1), (v3, v5), (v4, v2), (v5, v4))}.

v1

v2

v3

v4

v5

Figure 1: Digraph D

Throughout this thesis, we will primarily be working with digraphs.

Definition 2. A walk in a graph is a sequence of vertices v1v2v3...vk such

that vivi+1 is an edge for each 1 ≤ i ≤ k − 1. A directed walk in a digraph

is a sequence of vertices such that vivi+1 is an arc for each 1 ≤ i ≤ k − 1.
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v1

v2

v3

v4

v5

Figure 2: Digraph D

In Figure 2, there are many directed walks; one such example is

{v1v2v3v1v2}.

Definition 3. A path in a graph is a walk in which no vertices or edges

are repeated. A directed path in a digraph is a directed walk in which no

vertices or edges are repeated.

Figure 2 has multiple examples of directed paths; one of which is

{v1v2v3v5}.

Definition 4. A cycle is a closed path. That is, a path that begins and

ends at the same vertex. A directed cycle is a closed directed path. That

is, a directed path that begins and ends at the same vertex.

v1

v2

v3

v4

v5

Figure 3: Digraph D

In Figure 3, the sequence of vertices {v1v2v3v1} forms a directed cycle.

Another example of a directed cycle in digraph D is {v1v5v3v1}.
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Definition 5. A vertex v reaches another vertex w if there is a directed

path from v to w.

Definition 6. A king in a digraph D is a vertex that can reach every other

vertex in D by a directed path. A k-king in a digraph D is a vertex that

can reach every other vertex in D by a directed path of length at most k.

The digraph D shown in Figure 4 has a 2-king at the vertex v1. Figure 5

shows an example of a digraph G with a 3-king at the vertex w4.

v1 v2

v3 v4

v5 v6

D

Figure 4: Digraph D, with a 2-king at v1

G

w1 w2 w3 w4

w5 w6 w7 w8

w9 w10 w11 w12

Figure 5: Digraph G, with a 3-king at vertex w4
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Definition 7. The direct product of two digraphs D1 and D2 is the

digraph denoted by D1 ×D2 with:

V (D1 ×D2) = V (D1)× V (D2)

and

A(D1 ×D2) = (x, x′)(y, y′) with xy ∈ A(D1) and x′y′ ∈ A(D2).

The example in Figure 6 shows the direct product of two digraphs D1 and

D2.

D1

D2 D1 ×D2

Figure 6: The direct product of D1 and D2, D1 ×D2

Note that D1 and D2 are called the factors of the product.

Definition 8. The underlying graph G of a digraph D is the graph

created using the vertex set of D and replacing the arcs in D with

undirected edges.
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Figure 7 shows an example of a digraph D with its underlying graph G.

a b c d

eD

a b c d

eG

Figure 7: Digraph D and its underlying graph G

Definition 9. A digraph D is connected if the underlying graph of D is

connected.

As previously stated, figure 7 shows a digraph D with its underlying graph

G. Since G is connected, D is also connected. The digraph D1 ×D2 in

Figure 8 is an example of a digraph that is not connected; we call such a

digraph disconnected .

v1

v2

v3

v4

v5

Figure 8: An example of a disconnected digraph

Definition 10. Given a graph G, a component is a subgraph H of G that

is maximally connected, that is, H is connected and any subgraph of G

having H as a proper subgraph is disconnected.

Figure 9 shows an example of a graph G with two components: H and J .
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G

H J

Figure 9: Graph G

Definition 11. A directed graph is strongly connected if there is a

directed path between all pairs of vertices. That is, given any two of its

vertices x and y, there is a directed path from x to y and a directed path

from y to x.

a b c

d e

D

Figure 10: Digraph D

Figure 10 shows an example of a strongly connected digraph D.

Definition 12. A strong component of a directed graph D is a maximal

strongly connected subgraph C of D.

12



a b c

d e

D

C

Figure 11: Digraph D

Figure 11 shows a digraph D with a strong component C. The arc set for

the strongly connected component C is {(a, b), (b, d), (d, a)}. The other

strong components are {c} and {e}.
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2 Kings

Kings originate from tournaments in Graph Theory. Before we can talk

about tournaments, we must first review a few definitions.

Definition 13. A complete graph Kn is a simple, undirected graph with

n vertices in which every pair of vertices is connected by a unique edge.

K5

Figure 12: K5 the complete graph on 5 vertices

Definition 14. A tournament is an orientation of a complete graph.

Now if we take K5 from Figure 12 and orient the edges, we get a

tournament:

K6

Figure 13: Tournament on K5

H. G. Landau was among the first mathematicians to study tournaments in

depth and study many of the applications of them. Landau himself used

14



tournaments to study and model dominance in flocks of chickens [1]. There

are many other very interesting applications of tournaments, such as to the

study of voting theory and to the study of social choice theory.

Definition 15. A king in a tournament is a vertex that can reach every

other vertex in the digraph through a directed path of length one or two.

Hence, every king in a tournament is a 2-king. The use of kings in this

thesis, however, differs in that k can take on any positive integer value. It

also differs in that we consider arbitrary graphs, not just tournaments.
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3 Preliminary Results

In order for a digraph to have a king, it is necessary that the digraph be

connected. When working on this problem, we knew that we would need

our factors to have some special properties to ensure that their direct

product would be connected. In fact, McAndrew [1] has a result that gives

us exactly what we need:

Theorem. If D1, D2,..., Dn are strongly connected digraphs, then

D1 ×D2 × ...×Dn has exactly

d(D1) · d(D2) · ... · d(Dn)

lcm(d(D1), d(D2), ..., d(Dn))

strong components.

McAndrew defines d(D) to be the greatest common divisor of the lengths of

all directed cycles in D.

Given two integers a and b, it is not hard to verify the simple formula

ab = lcm(a, b) · gcd(a, b).

16



For example,

12 · 15 = lcm(12, 15) · gcd(12, 15)

= 60 · 3

= 180

However, this nice formula only works for two numbers a and b, and no

more. For example,

2 · 4 = lcm(2, 4) · gcd(2, 4) = 4 · 2

2 · 4 · 8 6= lcm(2, 4, 8) · gcd(2, 4, 8) = 8 · 2.

However, if we just stick with the two numbers a and b, the formula yields

a·b
lcm(a,b)

= gcd(a, b). Thus, McAndrew’s Theorem, adapted with just two

factors, becomes the following:

Theorem. If D1 and D2 are strongly connected digraphs, then D1 ×D2 has

gcd(d(D1), d(D2)) strong components. In particular, D1 ×D2 is strongly

connected if and only if gcd(d(D1), d(D2)) = 1.

For example, consider the direct product C6 × C4, where C6 and C4 are

directed cycles on six and four vertices, respectively. The directed cycle C6

has d(C6) = 6 and the directed cycle C4 has d(C4) = 4. Then,

lcm(d(C6), d(c4)) = 12. So, by McAndrew’s Theorem, C6 × C4 should have

exactly d(c6)·d(c4)
lcm(d(c6),d(C4))

= 6·4
12

= 2 strong components. Figure 14 shows

17



C6 × C4, which has two strong components as expected. The red arcs

represent one strong component and the blue arcs represent a second strong

component.

C4

C6

C6 × C4

Figure 14: D1 ×D2
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McAndrew’s Theorem was extremely useful throughout the process of

exploring kings in the direct product of digraphs. The connection between

McAndrew’s theorem and our results may not be immediately obvious to

the reader. McAndrew defines d(D) to be the greatest common divisor of

all directed closed walks in D. We will instead define gD(v), which we will

use in place of d(D), and with an appropriately modified hypothesis.

Definition 16. Given a digraph D and v, w ∈ V (D), define gD(v) to be the

greatest common divisor of the lengths of all closed directed walks in D

containing the vertex v. If there are no directed walks through v, then

gD(v) =∞.

a b c

v d

D

Fig. 9

Figure 15: Digraph D
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In figure 15, the digraph D has closed walks {(a, b), (b, v), (v, a)},

{(b, c), (c, d), (d, b)}, {(a, b), (b, c), (c, d), (d, v), (v, a)}, and

{(a, b), (b, c), (c, d), (d, b), (b, v), (v, a)} with lengths of 3, 3, 5, and 6,

respectively. Only three out of these four walks contain v:

{(a, b), (b, v), (v, a)}, {(a, b), (b, c), (c, d), (d, v), (v, a)},

and {(a, b), (b, c), (c, d), (d, b), (b, v), (v, a)}, which have lengths 3, 5, and 6,

respectively. Therefore, digraph D shown in figure 15 has gD(v) = 1.

We use gD(v) in place of d(D) because we do not necessarily need the entire

direct product to be strongly connected in order to have a king in the

product. We will now move into proving some lemmas that will be useful to

us as we move towards proving our results.

Lemma 1. Let (v, w) be a vertex of D1 ×D2. Let C1 be the strong

component of D1 containing v and let C2 be the strong component of D2

containing w. Then C1 × C2 is strongly connected if

gcd(gD1(v), gD2(w)) = 1.

Proof. Suppose that gcd(gD1(v), gD2(w)) = 1. From the definitions, we have

d(C1) | gD1(v) and d(C2) | gD2(w). It follows that if gcd(gD1(v), gD2(w)) = 1,

then gcd(d(D1), d(D2)) = 1. Therefore, gcd(d(D1), d(D2)) = 1. Now, from

the second form of McAndrew’s theorem, C1×C2 is strongly connected.

Lemma 2. Let C be a strong component in digraph D. If P and Q are two

walks in C that begin at a vertex v and end at a vertex v′, then

20



|P | − |Q| = kgD(v) for some integer k.

Proof. Let P and Q be two walks that begin at a vertex v and end at a

vertex v′. Let R be a directed path from v′ to v. We know that this

directed path exists because v and v′ are in the same strong component.

The concatination of the walks P and R is a closed walk that contains v, so

the length of this concatination must be a multiple of gD(v). Similarly, the

concatination of the walks Q and R is a closed walk that contains v, so the

length of this concatination must also be a multiple of gD(v). Hence,

|P |+ |R| = mgD(v) and |Q|+ |R| = ngD(v), where m,n ∈ Z+. Thus,

|P |+ |R| = mgD(v)

− |Q|+ |R| = ngD(v)

|P | − |Q| = (m− n)gD(v)

Now, let m− n = k, and we have that |P | − |Q| = kgD(v).

Lemma 3. A vertex (x, y) is adjacent to a vertex (x′, y′) in D1 ×D2 if and

only if x is adjacent to x′ in D1 and y is adjacent to y′ in D2.

Proof. Let D1 and D2 be digraphs and let x, x′ ∈ V (D1) and y, y′ ∈ V (D2).

Then let D1 ×D2 represent the direct product of these two digraphs, in

which we have (x, y), (x′, y′) ∈ D1 ×D2. First, suppose that (x, y) is

21



adjacent to (x′, y′) in D1 ×D2. We need to show that x is adjacent to x′ in

D1 and y is adjacent to y′ in D2. By the definition of the direct product, an

arc from (x, y) to (x′, y′) in D1 ×D2 only exists if there is an arc from x to

x′ in D1 and an arc from y to y′ in D2. Therefore, if (x, y) is adjacent to

(x′, y′) in D1 ×D2, then x is adjacent to x′ in D1 and y is adjacent to y′ in

D2.

Now, suppose that x is adjacent to x′ in D1 and y is adjacent to y′ in D2.

We need to show that (x, y) is adjacent to (x′, y′) in D1 ×D2. By the

definition of the direct product, if we have an arc in D1 from x to x′ and an

arc in D2 from y to y′, then we have an arc from (x, y) to (x′, y′) in

D1 ×D2.
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4 Results

Theorem. The vertex (v, w) is a king in D1 ×D2 if and only if v is a king

in D1 and w is a king in D2 and gcd(gD1(v), gD2(w)) = 1.

Proof. First, suppose that (v, w) is a king in D1 ×D2. We need to show

that v is a king in D1, w is a king in D2 and gcd(gD1(v), gD2(w)) = 1.

First, we will show that v is a king in D1 and w is a king in D2. In order to

do this, we will show that given any v′ ∈ V (D1) and given any w′ ∈ V (D2),

there exists a v − v′ walk in D1 and a w − w′ walk in D2. Pick the vertex

(v′, w′) in D1 ×D2. Since (v, w) is a king in D1 ×D2, there is a directed

path from (v, w) to (v′, w′). By Lemma 3, P projects onto a walk in each of

the factors; this results in a walk from v to v′ in D1 and a walk from w to

w′ in D2. Hence, v and w are kings in D1 and D2 respectively.

Now, we want to show that gcd(gD1(v), gD2(w)) = 1. Suppose that

gcd(gD1(v), gD2(w)) = d. First, we will show that d <∞. Because (v, w) is

a king, there must exist a directed walk from (v, w) to a different vertex

(v, w1). This directed walk then projects onto D1, as shown in Figure 17.

This means that v in D1 lies on a directed cycle. Thus, gD1(v) <∞.

23



v

(v, w)

(v, w1)
C1 × C2

D1 ×D2
D2

D1

C2

C1

Figure 16: The directed walk in D1×D2 from (v, w) to (v, w1) projects to a
directed walk in D1 from v to v.

Similarly, Because (v, w) is a king, there must exist a directed walk from

(v, w) to a different vertex (v1, w). This directed walk then projects onto

D2, as shown in Figure 18. Now, w must lie on a directed cycle. Thus,

gD2(w) <∞.
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w (v, w) (v1, w)

C1 × C2

D1 ×D2
D2

D1

C2

C1

Figure 17: The directed walk in D1 ×D2 from (v, w) to (v1, w) projects to a
directed walk in D2 from w to w.

Then, since gD1(v) <∞ and gD2(w) <∞, d = gcd(gD1(v), gD2(w)) <∞.

Now that we have shown that d <∞, we will show that d = 1. Let C1 be

the strong component in D1 containing the vertex v and let C2 be the

strong component in D2 containing the vertex w. Let x ∈ V (D2) such that

S is an arc from w to x. This arc must exist because C2 is a strong

component in D2 and as shown previously, gD2(w) <∞, so there exists a

directed walk through w. Let P be a directed walk in C1 × C2 from (v, w)

25



to (v, x), which exists because (v, w) is a king. Let Q be the projection of P

onto D1, which is a closed walk from v to v in C1 and let R be the

projection of P onto D2, which is a directed path from w to x in C2.

R S P

(v, w)
w

x

v

(v, x)

Q

C1 × C2

D1 ×D2
D2

D1

C2

C1

Figure 18: P in C1×C2 projects to Q in C1, as well as R in C2. Because C2

is a strong component, a single arc, S, from w to x exists.

Then we have that |Q| = md, where m ∈ Z+. This implies that |P | = md

and |R| = md as well. By Lemma 2, we have that

|S| − |R| = pd

1−md = pd
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1 = pd + md

1 = (p + m)d.

Thus, d = 1.

Conversely, suppose that v is a king in D1 and w is a king in D2 and

gcd(gD1(v), gD2(w)) = 1. Let C1 be the strongly connected component in

D1 containing v and let C2 be the strongly connected component in D2

containing w. By Lemma 1, we know that we have a strongly connected

component C1 × C2 in D1 ×D2 containing (v, w). Pick an arbitrary vertex

(v′, w′) in D1 ×D2. In order to complete the proof, we must construct a

directed path from (v, w) to (v′, w′). This will show that (v, w) can reach

any vertex in D1 ×D2 and is a king. Clearly, if (v′, w′) is in the strong

component C1 × C2, then we are done because we are guaranteed to have a

directed path from (v, w) to (v′, w′).

Then suppose (v′, w′) is not contained in C1 × C2. Now, consider a walk

Q = vv1v2v3...vm−1v
′ of length m in D1 and a walk R = ww1w2w3...wn−1w

′

of length n in D2. We know that both Q and R must exist because v is a

king in D1 and w is a king in D2. Without loss of generality, suppose

n ≤ m. Now by the definition of the direct product, if n = m then we must

have a walk from (v, w) to (v′, w′) by the definition of the direct product.

Let’s call this walk S, where

S = (v, w), (v1, w1), (v2, w2), (v3, w3)...(vm−1, wn−1), (v
′, w′) in D1 ×D2 and

(v, w) can reach (v′, w′). Now, if n < m, or in other words |R| < |Q|, we
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want to extend the length of our walk R by m− n to create a new walk R′,

where |R′| = |Q|. This will ensure that D1 ×D2 will still have a walk from

(v, w) to (v′, w′) in D1 ×D2. We can create this new walk R′ by picking a

cycle in the strong component C2 to walk around and adding exactly m− n

arcs to our walk R to get a walk R′. In Figure 20, R is the directed path

colored blue and R′ is the concatenation of R and the arcs colored red.

(v, w)

w′

w

x

v v′

(v, x)

(v′, w′)

Q

R

R′

C1 × C2

D1 ×D2
D2

D1

C2

C1

Figure 19: D1 ×D2

Figure 20 shows one possible example of this. Now, the length of R′ is

n + m− n = m and we have a walk of length m in D2 from the vertex w to
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the vertex x that lies in C2. Thus, in D1 ×D2, there is a walk of length m

from (v, x) to (v′, w′). Since (v, x) is contained in C1 × C2, (v, w) can reach

(v, x) and, therefore, (v, w) can reach (v′, w′). Thus, (v, w) is a king and we

have our desired result.
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5 Conclusion

In the future, we hope to be able to specify the value of k associated with

the kings. We have not yet explored this extensively, but from the research

that we have done, it seems probable that we will need to break this

problem down into multiple cases. For example, if we take the direct

product of a directed 3-cycle and a directed 4-cycle, the direct product has

an 11-king.

C4

C3

C3 × C4

Figure 20: C1 × C2, where every vertex is an 11-king

Notice that every vertex in C3 is a 2-king, and every vertex in C4 is a

3-king. It is easy to see that if D1 and D2 are digraphs, then

‖D1 ×D2‖ = ‖D1‖‖D2‖. From our observations, it seems that because the

number of arcs in D1 ×D2 is the number of arcs in D1 times the number of

arcs in D2, if D1 ×D2 has a k-king, k ≤ ‖D1 ×D2‖, where ‖D‖ is the

number of arcs in D. This is just one example of a possible result regarding
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the value of k for kings in the direct product. It seems probable that there

are many different cases. We have not yet formalized or verified any results

that have to do with the value of k, but it is a question that we hope to

explore in the future.
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