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ABSTRACT 

Targeting Sphingosine Kinase 2 as a Treatment for Cholangiocarcinoma 

 

By Anthony Dean Stillman 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

Virginia Commonwealth University, 2019. 

Major Director: Huiping Zhou, Professor, Department of Microbiology and Immunology 

 

Cholangiocarcinoma (CCA) has a high mortality rate and its occurrence is rising. This increase 

prompts the need for improved CCA treatments. Studies have suggested that CCA is highly 

reliant on the sphingosine-1-phosphate-receptor-2 (S1PR2) and sphingosine kinase 2 (SphK2). 

Recently, a competitive SphK2 inhibitor, ABC294640, has been approved for clinical trial. 

ABC294640 has the potential to treat CCA, which is support by a phase I clinical study that was 

able to temporarily treat a patient suffering from metastasized CCA with ABC294640. To 

determine the viability of ABC294640 as a treatment for CCA, this study focused on 

determining the effects of ABC294640 on rat CCA cell lines. We found that ABC294640 

inhibited the growth and migration of CCA and CAFs cells. The growth and count of 3-D 

organotypic co-culture of  CCA and CAFs, which forms the “duct-like” structures, were reduced 

by ABC294640. The potential of inhibiting SphK2 as a treatment for CCA is supported by our 

finding of increased expression of S1PR2 and SphK2 in CCA patient liver samples. In 

conclusion, ABC294640 represents a potential therapeutic agent for CCA.
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Chapter 1: Introduction 

1.1 Cholangiocarcinoma and Risk Factors. 

Cholangiocarcinoma (CCA) is the second most common form of liver cancer, behind 

hepatocellular carcinoma (HCC). In the United States, China, and Thailand there are 1.67, 17.5, 

and 60 per 100,000 people annually diagnosed with CCA, respectively (Figure 1). The rate of 

intrahepatic CCA (iCCA) diagnosed has been gradually increasing due to the changes in global 

dietary habits, population chemical exposure, and other factors1. Patients that are diagnosed with 

early-stage CCA have a 30% chance of surviving 5-year past their diagnosis with treatment, 20% 

of CCA cases are diagnosed at early stages. Patients with the late-stage diagnosis have ~2% of 

surviving 5-year past diagnosis even with treatment2, 43.  The increasing global prevalence and 

the lack of effective treatment to combat the disease have created an urgent need for developing 

novel therapies for CCA.   

CCA is derived from the cholangiocytes that make up the lining of the bile duct and its 

branches1. The liver synthesizes bile to be stored in the gallbladder. The bile duct transports bile 

from the liver/gallbladder to the intestine3. Due to CCA heterogeneous nature, its severity can be 

defined by CCA location within the bile duct system. The bile duct has two branches that reside 

within the liver, CCA that is found within those branches or are within the liver is referred as 

intrahepatic CCA (iCCA). CCA found in the first-half of the bile duct trunk below the bile duct 

branches is perihilar CCA (pCCA). The second half of the bile duct trunk can contain distal CCA 

(dCCA). The relative occurrence and 5-year survival rate of iCCA, pCCA, and dCCA is 10% 

and ~32.5%, ~65% and ~26%, and ~25% and ~27% respectively (Figure 2)4. The diagnosis rate 

of iCCA has been increasing1. 
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Figure 1: Global Cholangiocarcinoma Incident Rate. Numbers are cholangiocarcinoma 

cases per 100,000 people per region. Intrahepatic (IH) and extrahepatic (EH) 

cholangiocarcinoma with arrows indicating tempral trends of incident and greater sign 

indicates which form is most prevalent. 
1
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Occurrence: 10% 

Survival: 25 - 40% 

Occurrence: 60 - 70% 

Survival: 11 - 41% 

Occurrence: 20 - 30% 

Survival: ~27% 

Figure 2: Classification of Cholangiocarcinoma. Types of cholangiocarcinoma 

(CCA) with associated relative occurrence and 5-year survival expectancy4.  
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The global diagnosis rate of CCA is gradually increasing1. This is due to improvement in 

diagnosis methods, an increase of individuals with established risk factors, and the emergence of 

new risk factors1. Until recently, CCA occurred in very specific parts of the world, namely north 

Thailand and southern China. The reason for the locality of the disease is due to the very specific 

environmental factor of fasciola hepatica (Liver Fluke), a parasite that infects and grows in 

human livers, causing liver fibrosis. Liver fibrosis increases the risk of developing CCA1. 

Many CCA risk factors induce liver fibrosis. Factors that induce liver fibrosis are primary 

sclerosing cholangitis, toxins (alcohol), liver cirrhosis, and HCV. Other risk factors are bile duct 

cysts, bile duct stone, inflammatory bowel disease (IBD), obesity, and diabetes (Figure 3)1,4. Out 

of these risk factors, obesity and diabetes have had the most significant global increase over 

recent times5,6, which can explain why CCA rates have been increasing outside of east Asia1.  

1.2 Cholangiocarcinoma Treatments. 

The current treatment for CCA is limited. Radiation, chemotherapy, and surgery each 

give patients a 20% chance of surviving 5-year past diagnosis9,10,11. The combination of these 

conventional treatments can increase a patient’s survival chances to 70%9. Treatments more 

specific for CCA involve surgically replacing portions of the liver and bile duct system. The 

most successful specific procedure for CCA is liver transplant increasing the patients' 5-year 

survival chances to 53%8. The effectiveness of this procedure is for two major reasons. The 

patient’s possibly cancer infiltrated liver being removed, also removing the metastasized cancer. 

And one of the major factors that promote the spread of CCA is a diseased liver, thus replacing 

the patient’s unhealthy liver with a healthy liver decreases the progression of CCA.  Liver 

transplants are rarer and far more effective then bypass procedures, which have a 5-year survival 

rate of ~0%12,13. These bypass procedures are invasive and are implemented in patients 
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Figure 3: Risk Factors. The established and possible risk factors that assist the progression of 

Cholangiocarcinoma (CCA). Risk factors are linked to liver disease
1,4

. 
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with late-stage CCA, thus these procedures only extend patient survival slightly. The biliary 

bypass is removing the bile duct and replacing it with a portion of the gut12. Stent placement is 

replacing the bile duct with a polymer tube13. The reason for the effectiveness of bypasses is it 

removes the source of CCA, the bile duct, and stopping bile acids from reaching CCA and 

cholangiocyte cells (Figure 4).  

The rise of CCA occurrence and CCA risk factors has prompted a response by the 

medical community, which has increase diagnosis methods of CCA. The ability to diagnosis 

CCA has been improved by the addition of endoscopic ultrasound and blood tests for liver 

function and tumor antigens7. Even with these additional tools, few CCA cases are caught at 

early stages when treatment is the most effective7. For the sake of global health, new novel 

medicines to treat late-stage CCA need to be developed. 

1.3 Bile Acids. 

Bile acids are a class of zwitterionic ligands/detergent produced in the liver14. Bile acids 

are stored in the gallbladder and transported down the bile duct and through the gut to act as 

detergents to help to solubilize the lipids and absorb nutrition 15. Once the bile acids have 

reached the ileal, enterohepatic circulation transports 95% of the bile acids back to the liver to be 

reused, via the portal venous system18. While on this journey, bile acids can be conjugated into 

conjugated bile acids (CBA) in the liver and deconjugated by bacteria in the colon. Glycocholic 

acid (GCA) and taurocholic acid (TCA) are the two major primary bile acids. These CBAs 

endocrinologically affect different types of cells throughout the liver and gut axis (Figure 5)15. 

The cholangiocytes and myofibroblasts that make up the bile duct possess cell surface receptors 
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that can be activated by CBA. The cellular response is based on the ratio of CBA and their target 

receptors the cell possesses19,20. The most prevalent CBA receptor are sphingosine-1-phosphate  

 

 

 

 

 

 

Figure 4: Treatments of Cholangiocarcinoma. Various types of treatments for 

cholangiocarcinoma (CCA) and the associated 5-year survival rate after diagnosis with 

treatment.
 9,8,10,11,12
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Figure 5: Bile-Acid synthesis and Intrahepatic Transport. A) Bile acid synthesis and 

conjugation that occurs in the liver. B) Intrahepatic circulation that transports the bile acids down 

the bile duct/gut followed by transport of bile acid through the ileum into the portal venous system. 

The portal venous system transports 95% of the bile acids to the liver for reuse
38,37

. 

A) B) 
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receptor 2 (S1PR2)19. This receptor is critical in CBA-induced CCA cell metabolism, 

proliferation, and migration. 

1.4 S1PRs and Sphingosine Kinase 2 (SphK2) Pathway. 

There are five sphingosine-1-phosphate receptors (S1PR1-5) and their expression varies 

on cell types. S1PRs have many downstream targets, making it difficult to target these receptors 

as a treatment without unwanted side effects21. The most prevalent of these receptors in the 

liver/bile duct is S1PR222. Both cholangiocytes and the myofibroblasts of the bile duct possess 

S1PR2 on their cell surface19,20. S1PR2 are G-protein-coupled receptors (GPCRs)22. GPCRs are a 

large family of transmembrane receptors. GPCR is composed of an extracellular surface ligand-

binding domain and an intracellular guanine nucleotide exchange factor (GEF); which is also 

composed of a complex of α, β, and γ subunits24. When a CBA or S1P binds to S1PR2, it induces 

a conformation change that activates the GEF. The activated GEF supplants the GDP on the α-

subunit with a GTP, allowing it to disassociate from the β and γ subunits. The disassociated 

subunits induce a reaction across the cell surface-associated proteins leading to the activation of 

the epidermal growth factor receptor (EGFR)24. EGFR activates the MAPK/ERK pathway, 

causing the phosphorylation of ERK1/2 into p-ERK1/2. The p-ERK1/2 is transported to the 

nucleus where it phosphorylates SphK2 at ser-351 into p-SphK225.  Activated SphK2 generates 

nuclear S1P, which is a powerful inhibitor of HDAC1/226. The inhibition of HDAC1/2 by S1P 

leads to increasing histone acetylation causing epigenetic changes and altering gene expression 

(Figure 6)27,42. The activation of S1PR2 in CCA drives the progression of cancer via SphK2 and  
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Figure 6: S1PR2/ERK/SphK2 Pathway. Conjugated bile-acid (CBA) activates 

sphingosine-1-phophate receptor 2 (S1PR2). S1PR2 G-protein-coupled complex 

releases the alpha-subunit (α1) which activates phospholipase C-beta (PLCβ) and 

Src kinase. This leads to the activation of matrix metallopeptidase, which partially 

degrades Pro-EGFR ligand. The ligand binds epidermal growth factor receptor 

(EGFR) allowing it to assist S1PR2 activate extracellular signal-regulated kinases 

1/2 (ERK1/2). ERK1/2 enters the nucleus and phosphorylates sphingosine kinase 2 

(SphK2). SphK2 phosphorylates sphingosine (Sph) into sphingosine-1-phosphate 

(S1P). S1P inhibits HDAC1/2 increasing histone acetylation thus altering gene 

expression42.  
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other pathways27,28. These pathways increase cell growth, proliferation, and metabolism27. The 

most impactful and enduring effect is the epigenetic alterations incurred by SphK2. Increase 

activity of SphK2 has been linked to increases in neoplastic transformation, tumorigenesis, 

migration, proliferation, metastasis, metabolism, drug resistance, and overall cancer 

progression27, 44 - 46. The effect of SphK2 on cell proliferation is not limited to CCA cells, it also 

affects the cancer-associated myofibroblasts (CAFs) that support CCA may use the 

S1PR2/ERK/SphK2 pathway to progress the tumor microenvironment.  

Tumor cells can recruit surrounding cells for support. A major group that supports CCA 

tumors are CAFs. CCA cells release various ligands to recruit CAFs for assistance. CAFs 

perform activities that are crucial for the survival, progression, and metastasis of the CCA 

tumor41,29. Especially α-SMA positive CAFs, which have a positive correlation with tumor size 

and negative correlation with patient survival41. The CAFs promote the tumor via altering the 

tumor microenvironment and promoting the cancer cell growth directly, essentially assisting the 

CCA to achieve the various hallmarks of cancer. To induce angiogenesis, the CAFs release 

cytokines that attract macrophages to assist in angiogenesis. The CAFs surround the cancer cells, 

sheltering the tumor from an immune response. CAFs promote CCA growth by releasing growth 

factors and directly interacting with the CCA cells. Once the tumor is large enough, the CAFs 

release proteins that break down the extracellular matrix around the tumor, releasing the CAFs 

and the contained CCA cells away from the surrounding tissue leading to metastasis. The 

cooperation of the CAF cells with the CCA tumor is necessary for the progression of the 

cancer30. 

CCA cells communicate with the CAFs via various signaling pathways. CCA cells 

excrete S1P at a heightened rate compared to healthy cholangiocytes31. This unusual high levels 
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of S1P in the tumor microenvironment is known to promote CCA cell growth and most likely 

induces cancer-promoting behavior from CAFs29. This is supported by the presence of S1PR2 in 

CAF cells20. The presence of S1PR2 in the CAFs also allows for CAFs to be promoted by CBA 

that pass through the bile duct. This sensitivity to CBA is particularly crucial due to CCA and 

CAFs tumor masses blocking the bile duct, causing a backup and buildup of CBA around the 

tumor32. The backup increases the concentration of CBA around the tumor, promoting tumor 

growth via the S1PR2/ERK/SphK2 pathway32. S1PR2/ERK/SphK2 pathways importance to 

CCA/CAFs tumor growth, communication, and metastasis makes it a prime target for cancer 

treatment (Figure 7). Due to S1PR2 and ERK importance to other pathways, targeting them 

would have off-target effects. SphK2 is at the end of the pathway, making it a prime target for 

treatment.  

SphK2 is an enzyme that binds and phosphorylates sphingosine into S1P. SphK2 kinase 

function is primarily performed in the nucleus, as discussed before26. SphK2 has a sister protein 

that resides in the cytoplasm, SphK1. The SphK1/2 sister enzymes have very similar structures at 

their kinase active sites with the main difference between the sisters being in the length and 

composition of their c-terminuses, which determines the kinases locality within the cell. When 

activated, SphK1 binds to the interior of the cell membrane to produce S1P33. When SphK2 is 

inhibited, the activity and quantity of SphK1 are upregulated within the cell to seemingly 

maintain healthy extracellular and cytoplasmic S1P levels34. This is crucial due to the overall 

importance of S1P in the cytoplasm and blood/lymph for the normal function of the body. Thus,  
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Figure 7: Cancer-Associate Myofibroblasts of Cholangiocarcinoma. Cancer-

associated myofibroblasts (CAFs), cholangiocarcinoma (CCA), and other cells types 

endocrine communication, modifying the cancer microenvironment
39

. 
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inhibiting SphK2 will only lead to a decrease of S1P in the nucleus and not the rest of the body. 

SphK1 compensation of S1P while SphK2 is inhibited further limits the possible side effects of 

inhibiting SphK2, increasing SphK2 lure as a target for CCA treatment. There are several SphK2  

inhibitors available. 

1.5 SphK2 inhibitors.  

Extensive efforts have been made to develop specific SphK2 inhibitors. Most of the 

inhibitors bind both SphK1 and 2, due to the similar structures35. Recently isotype-specific 

inhibitors have been developed. The most promising of these compounds is ABC294640, which 

is a competitive inhibitor (Figure 8). ABC294640 has already been approved for the clinical 

trial. ABC294640 treatment can be taken orally in 250 mg dosage (~ 7 µM) with limited side 

effects36. A phase I study on a group of patients with various forms of cancer was conducted with 

ABC294640. Out of the various types of cancers, the patient with metastatic CCA had the most 

positive outcome47. The mechanism of how ABC294640 affects CCA is still being explored. 

Recently, a human intrahepatic CCA cell study was conducted to determine the mechanism 

ABC294640 inhibited CCA. The study showed that ABC294640 stopped SphK2 inhibition of 

NOXA production. NOXA inhibits MCL1, an anti-apoptotic protein that is a part of the BCL2 

family, thus increasing cell apoptosis. The study concluded ABC294640 indirectly induced 

apoptosis through the promotion of NOXA production. The study also showed that BCL2 family 

inhibitors synergized with ABC294640 to increase CCA apoptosis48. The study results are 

promising but did not include a healthy control cell line and their 50 µM ABC294640 dosage is 

far above the clinical standard. Further research needs to be done to better understand how 

ABC294640 effects CCA. A more potent sphK2 inhibitor is K145 hydrochloride (K145). K145    

 



15 
 

 

 

 

 

 

 

 

Figure 8: ABC294640 Mechanism on Sphingosine Kinase 2. ABC294640 is a 

competitive inhibitor for sphingosine kinase 2 (SphK2).  ABC294640 binds the 

phosphorylation site of SphK2, blocking sphingosine (Sph) from entering the site, thus 

halting the creation of sphingosine-1-phosphate (S1P)48.  
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has not been approved for clinical use and has the same competitive inhibitor traits as 

ABC294640, but is more toxic to cells51. 

1.6 Nanoparticle Drug Delivery. 

ABC294640 hydrophobic structure impedes its transport through the body, which can be 

circumvented by Nanoparticle drug delivery. Nanoparticles are micelle like structures made of 

various smaller artificial constructs41. This artificial construction makes the nanoparticles highly 

customizable; the customizable traits are as follows41. Nanoparticles are generally 100 to 500 nm 

in diameter; the size of a nanoparticle structure dictates its ability to pass through a cell 

membrane41. The interior of the nanoparticle can be modified to be able to seat specific particles 

for transport41. The exterior of a nanoparticle can possess antibodies or other structures that help 

guide the particle to cancer. Once the nanoparticle is inside the cell, it can gradually or 

immediately release its content inside the cell (Figure 9) 41. The nanoparticle can be designed to 

contain one or multiple drugs41. All these traits make nanoparticles a great partner for 

ABC294640 delivery.   
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Figure 9: Nanoparticle Drug Delivery. Drugs encapsulated in nanoparticle micelle constructs for 

transport into the cell and drug release.      
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Chapter 2: Materials and Methods 

2.1 Materials. 

• Trypsin-EDTA, (Gibco, ThermoFisher, 25200056 ) 

• Dulbecco’s Modified Eagle Medium (DMEM), (Gibco, 11995-065) 

• Fetal Bovine Serum (FBS), (Sigma, F2442) 

• Penicillin Streptomycin (P/S), (ThermoFisher, 15140122) 

• Phosphate Buffer Solution (PBS), (Sigma-Aldrich, P5494) 

• Insulin, 100 units per 100Ml 

• Dimethyl Sulfoxide (DMSO), (Sigma-Aldrich, D2650) 

• Trypan Blue, (Sigma-Aldrich, T8154) 

• Ammonium Persulfate, (Sigma-Aldrich, A3678) 

• 30% Acrylamide/Bis Solution 29:1, (BIO-RAD, 1610156) 

• TEMED (BIO-RAD, 161-0800) 

• SDS, (sodium dodecyl sulfate, L4509) 

• HEPES, (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, Sigma-Aldrich, H-9136) 

• KCl, (potassium chloride, Sigma-Aldrich, P-3900) 

• EDTA, (Ethylenediaminetetraacetic acid, Sigma-Aldrich, ED4S) 

• EGTA, (Ethylene glycol-bis(2-aminoethlether)-N,N,N',N'-tetraacetic acid Sigma-Aldrich, 

E0396) 

• NaF, (Sodium Fluoride, Sigma-Aldrich, S-1594) 
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• Na3VO4, (Sodium orthovanadate, Sigma-Aldrich, S6508) 

• Leupeptin, (Sigma-Aldrich, 103476-89-7) 

• Aprotinin, (Sigma-Aldrich, 9087-70-1) 

• Pepstatin A, (Sigma-Aldrich, 26305-03-3) 

• PMSF, (Phenylmethanesulfonyl Fluoride, Sigma-Aldrich, P7626) 

• NaCl, (sodium chloride, ThermoFisher, S641-212) 

• TergitolTM Solution (NP-40), (Sigma-Aldrich, 1002526600) 

• β-Glycerol phosphate, (Sigma-Aldrich, G-6251) 

• Glycerol, (Sigma-Aldrich, 56-81-5) 

• Benzamidine, (Sigma-Aldrich, 206752-36-5) 

• BIO-RAD Protein Assay Dye Reagent Concentrate, (BIO-RAD, 5000006) 

• Precision Plus ProteinTM Dual Color Standards, (BIO-RAD, 161-0374) 

• Nitrocellulose Membrane Roll, (GVS North America Sanford, 1215471) 

• Tris base, (Trizma Hydrochloride, Sigma-Aldrich, T3253) 

• Glycine, (Sigma-Aldrich, G-8898) 

• Methanol, (Fisher, A454-4) 

• Dry-Milk 

• BSA, (Bovine Serum Albumin, Sigma, B4287) 

• Tween®-20, (Sigma-Aldrich, 9005-64-5) 

• ECL, (PerkinElmer, ORT2655) 

• TRIzol, (TRI-Reagent®, Sigma-Aldrich, T9424) 

• Chloroform, (Sigma-Aldrich, 67-66-3) 

• 2-propanol, (Sigma-Aldrich, I9516) 
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• Ethanol, (Koptec, 64-17-5) 

• High-Capacity cDNA Reverse Transcription Kit, (ThermoFisher, 4368814) 

• iQTM SYBR Green Supermix reagents 

• Formaldehyde, (Sigma-Aldrich, 252549) 

• Collagen I, Rat Tail, (Corning®, 354236) 

• NaOH, (Sodium hydroxide, Sigma-Aldrich, 7647-14-5) 

• Xylenes, (Histoprep, 1330-20-7) 

• Hydrogen peroxide, (Sigma-Aldrich, 216763) 

• Na2HPO4, (Sodium phosphate dibasic, Sigma-Aldrich, 7558-79-4) 

• KH2PO4, (Potassium phosphate monobasic, Sigma-Aldrich, 7778-77-0) 

• H&E staining kit, (Hematoxylin and Eosin, Abcam, ab245880) 

• VECTASTAIN® ABC HRP Kit (Peroxidase, Rat IgG, VectorLab, PK-4004) 

• DAB Peroxidase (HRP) Substrate Kit (with Nickel), 3,3’-diaminobenzidine (VectorLab, 

SK-4100) 

• VECTASHIELD® Hardset™ Antifade Mounting Medium with DAPI (VectorLab, 

H1500) 

• CCK-8, (Cell-Counting Kit-8, Dojndo, CK04) 

• ABC, (ABC294640, Selleckchem, S7174) 

• TCA, (Sodium Taurocholate Hydrate, Sigma-Aldrich, 345909) 

• TritonTM 100 (Sigma-Aldrich, T9284) 

2.2 Solutions and Buffers. 
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2.2.1 Buffer A: 10 mM, 7.4 pH, HEPES, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 2 mM 

NaF, 2 mM, 25 µg/mL leupeptin, 25 µg/mL aprotinin, 10 µg/mL pepstatin A6305-03-3), and 0.1 

mM PMSF. 

2.2.2 Buffer B: 20 mM, 7.4 pH, HEPES, 0.4 M NaCl, 1.0 mM EDTA, 1.0 mM EGTA, 2mM 

NaF, 2 Mm Na3VO4, 25 µg/mL leupeptin, 25 µg/mL aprotinin, 10 µg/mL pepstatin A, and 0.1 

mM PMSF. 

2.2.3 Total: 25 mM, 7.4 pH, β-Glycerol phosphate, 5 mM EDTA, 5 mM EGTA, 25 mM NaF, 

1mM Na3VO4, 1.0% triton X-100, 0.1.0% SDS, 10% glycerol, and 5 mM benzamidine.  

2.2.4 AP:1.0 g ammonium persulfate dissolved in 10 mL of ddH2O. 

2.2.5 SDS: 10 g Sodium dodecyl sulfate dissolved in 100 mL of ddH2O. 

2.2.6 Running Buffer x5: 125 mM Tris base, 2.5 M Glycine, SDS 5 g/mL. pH 7.4. 

2.2.7 Running Buffer: 200 mL of running buffer x5 and 800 mL of ddH2O. 

2.2.8 Transfer Buffer x10: 1.92 M glycine and 250 mM tris base. pH 7.4. 

2.2.9 Transfer Buffer: 100 mL of transfer buffer x10, 700 mL of ddH2O, and 200 mL of 

Methanol.    

2.2.10 TBS x10: 100 mM Tris base and 1.5 M NaCl. pH 7.4. 

2.2.11 TBST: 100 mL of TBS x10, 900 mL of ddH2O, and 1 mL tween®-20. 

2.2.12 1 mM EDTA: 372 mg of EDTA dissolved in 1 mL of ddH2O. pH 8.0. 

2.2.13 PBS x10: 80 g of NaCl, 2.0 g of KCl, 14.4 g of Na2HPO4, and 2.4 g of KH2PO4 

dissolved in 1.0 L. pH 7.5.  

2.2.14 PBST: 100 mL of PBS x10, 900 mL of ddH2O, 1 mL of tween®-20. 

2.2.15 2.5% BSA-PBS: 0.2% triton X-100 and 2.5% BSA in PBS buffer. 
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2.3 Cell Culture.  

2.3.1 Cell lines: Five ratcell lines were used for the various experiments in this study. BDE1 

cells are a immortalized non-tumorigenic cell line that represents the normal bile duct 

cholangiocytes cells. The following cell lines were BDEsp tumor-derived. BDEsp-TDFE4 cancer-

associated myofibroblasts (CAFs) cell line (clone E4) and BDEsp-TDEH10 cholangiocarcinoma 

(CCA) cell line (clone H10). These two cell lines were extracted from the same tumor and 

cooperate with each other. A more aggressive forms of BDEsp-TDE cell line are BDEsp-TDEneu 

and BDEsp-TDEc. BDEsp-TDEneu cells have a mutation in the HER2 gene, increasing the 

receptors expression and BDEsp-TDEc is the same cell line, without the mutation.  

2.3.2 Cell Medium: 450 mL of DMEM GIBCO medium, 50 mL of fetal bovine serum (FBS), 5 

mL of penicillin-streptomycin, 3.48 mg of transferrin, and 97 µL of insulin were mixed. The 

solution was filtered and added to 500 mL of DMEM GIBCO medium to create 10% FBS 

medium. 01% FBS medium contains 10 mL of FBS and instead of 50 mL of FBS. The medium 

was stored at 4 °C and warmed in 37 °C water bath before use. 

2.3.3 Cell Culture: All BDEsp cell lines were cultured in 10 mL of DMEM GIBCO medium 

with 10% FBS, 1% penicillin-streptomycin, 1 µmol/L of insulin, and 5 µg/mL of transferrin. The 

cells were incubated at 37 °C and 5.0% CO2 in a humidified cell culture incubator.  

2.3.4 Cell Sub culturing: Cells were allowed to incubate and divided in 100 mm plate until 

reaching 70% to 90% confluency, 3 to 4 days. In cell-hood, the medium was removed from the 

plate and 3 mL of trypsin was added. The plate was placed in the 37 °C cell incubator for 3 to 5 

minutes. Detached cells were washed off plate with trypsin and added to warm medium equal to 

trypsin in volume, to deactivate the trypsin. The medium was centrifuge for 5 minutes at 1350 
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rpm. The medium was aspirated from cell pellet. Cells were suspended in fresh warm medium 

and added to 100 mm cell plates containing 10 mL of warm DMEM medium. The cells were 

incubated at 37 °C and 5.0% CO2 in humidified cell culture incubator.   

2.3.5 Freezing: 1.0*106 Cells were suspended in 20% FBS, 10% DMSO, and 70% cell medium 

to a final volume of 1.5 mL. The solution was added to cryotube and placed in -80 °C storage for 

3 to 5 days. Then the cells were transferred to liquid nitrogen tanks for long term storage. 

2.3.6 Thawing: Frozen cells were kept in cryotube and stored in liquid nitrogen. Once removed 

from liquid nitrogen, cryotube containing cells are incubated in 37 °C water bath for one minute, 

to thaw cells. The cryotube was taken into cell-hood and cell solution was transferred into 3 mL 

of warm medium. The medium was centrifuge for 5 minutes at 1350 rpm. In the cell-hood, 

medium was removed from the cell pellet. Cells were suspended in fresh warm medium and 

added to 100 mm cell plates containing 10 mL of warm medium. Cells were incubated overnight 

at 37 °C. After overnight incubation, the medium was refreshed and the incubation of the cells 

resumed. 

2.4 Western Blot Analysis. 

2.4.1 Cytosol and Nucleoplasm Protein Lysate Extraction: Cells in a 60 mm plate at 80% to 

90% confluency were washed with 6 mL of cold PBS 3 times. 400 µL of buffer A was added to 

plate to cover cells. Cells were scraped off the plate and pipette into 1.5 mL tube. The solution 

was vortexed for 10 seconds and incubated for 15 minutes on ice. 25 µl of 10 % NP-40 is added 

to solution and vortex for 10 seconds, then incubate on ice for 30 minutes. In 4 °C, centrifuge for 

1 minute at max speed. Collect cytosol supernatants from nucleus pellet. Resuspend the nuclear 

fraction in 30 µl of buffer B with pipette. Vigorously shake the tubes for 20 minutes at 4 °C on 
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shaking platform. Spin at 4,000 rpm at 4 °C for 5 minutes. Transfer the nuclear fractions to clear 

tubes. Measure protein concertation and store at -80 °C. 

2.4.2 Cell Total Protein Lysate Extraction: Cells in a 60 mm plate at 80% to 90% confluency 

were washed with 6 mL of cold PBS, pH 7.4, 3 times. 200 µl of total protein lysis buffer was 

added to cover cells. Cells were scraped off the plate and pipette into 1.5 mL tube and vortexed 

for 10 seconds. Freeze cells at -80 °C for 2 hours. Thaw solutions on ice and centrifuge at 12,000 

rpm for 10 minutes. Collect lysate and transfer to final tube. Measure protein concentration and 

store at -80 °C. 

2.4.3 Tissue Total Protein Lysate Extraction: Add 50 mg of tissue into 1 mL of total protein 

lysis buffer. Homogenize Tissue with Precellys Evolution Homogenizer, Bertin Technologies 

(P000062-PEV00-A). Freeze cells at -80 °C for 2 hours. Centrifuge samples at 12,000 rpm for 

10 minutes. Collect lysate and transfer to the final tube. Measure protein concentration and store 

at -80 °C. 

2.4.4 Measuring Protein Concentration: Mix assay solution of 1-part Protein Assay Dye and 

4-parts deionized water. Aliquot assay solution into 500 µL fractions in 1.5 mL tube. Pipette 1.0 

µL of protein solution into assay solution fraction and mix. Pipette 200 µL of the mixture into 2 

wells of 96-well plate. Pipette 200 µL of assay solution into 2 wells of 96-well plate; this will act 

as a negative control. Measure wells absorbance at 600 nm. Calculate protein concentration.   

2.4.5 Protein Gel Electrophoresis: A fraction of protein solution containing a sum of 35 µg of 

protein was add to a 1.5 mL tube. The fraction was then diluted with ddH2O and 10 µL XT 

sample buffer x4 to a final volume of 40 µL. The mixture was then incubated in heating block at 

100 °C for 15 minutes to denature the protein. Denatured samples were incubated on ice or 

stored at -20 °C until gel is prepared. Protein gels were fixed to western electrode chamber and 
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placed in electrophoresis tank. Chambers and tank were filled with running buffer solution. 

Precision Plus ProteinTM Dual Color Standard is added to book-ending wells of the gel. 

Denatured protein fractions were pipetted into wells. Electrophoresis was started at 80 V for 15 

minutes and the rest of the run was done at 120 V. Run was complete when ladder reached the 

bottom of the gel.   

2.4.6 Gel to Membrane Protein Transfer: Protein was transferred from gel to nitrocellulose 

membrane using a wet transfer method. Gel and membrane were sandwiched together in a 

cassette with foam pad and filter paper. Cassette was placed in buffer tank and tank was filled 

with transfer buffer. Protein was then transferred from gel to membrane with 0.32 W current for 

80 minutes while kept cold.  

2.4.7 Membrane Blocking: Once the protein has been transferred, the nitrocellulose membrane 

was placed in container filled with TBST. 5.0% milk blocking solution was created by mixing 

5.0 g of dry milk into 100 mL of TBST. The TBST was poured off the membrane and blocking 

solution was added. Blocking was done for 2 hours at room temperature (RT) on rocker.  

2.4.8 Primary Antibody Incubation: 1.0% BSA solution is composed of 1.0 g of bovine serum 

albumin (BSA) in 100 mL of PBST buffer. Primary antibody solution is 1:1000 or 1:500 

antibody dilution in 1.0% BSA solution. Membranes were submerged in primary antibody 

solution and incubated overnight on a rocker at 8 °C. After incubation, membranes were washed 

with TBST three times at room temperature (RT) on rocker for 15 minutes each.  

2.4.9 Secondary Antibody Incubation: 1.0% BSA solution is composed of 1.0 g of bovine 

serum albumin (BSA) in 100 mL of TBST buffer. Secondary antibody solution is 1:1000 

antibody dilution in 1.0% BSA solution. Membranes were submerged in secondary antibody 
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solution and incubated for 1 hour on a rocker at RT. After incubation, membranes were washed 

with TBST three times at room temperature rocker for 15 minutes each.  

2.4.10 Imaging proteins: After residual secondary antibody is washed off, the membranes were 

imaged. Membranes were dried and placed in Bio-Rad Gel Doc XR+ Imaging System. Enhanced 

luminol-based chemiluminescent (ECL) was added to the surface of the protein and images were 

taken with optimal system settings.       

2.5 3-D Organotypic Culture Model of Cholangiocarcinoma. 

2.5.1 3-D Organotypic BDEsp-TDFE4 and BDEsp-TDEH10 Tumor Culturing: The following 

procedure has been previous described41 and was done under a cell-hood. The following mixture 

is for twelve 1.0 mL Organotypic disks. 11.2x106 of BDEsp-TDEH10 and 5.6x106 of BDEsp-

TDFE4 cells were diluted into 9.845 mL of 10% DMEM medium. 3.655 mL of filtered Corning® 

Collagen I, Rat Tail was added to the medium and mixed with a pipette. To induce the 

solidification of the mixture, 84.1 µL of filtered 1.0 N NaOH solution was added and followed 

by mixing with a pipette. 1.0 mL of solution was added to each well of a 12-well cell culture 

plate. The culture was then placed in the cell incubator for 1 to 2 hours, allowing the disk to 

solidify. Once solidified, the disks were transferred to two 6-well cell culture plates with 3 mL of 

warm medium. The organotypic culture was placed back into the cell incubator.  

2.5.2 3-D Organotypic Treatment, Fixing and embedding: Following was done under a cell-

hood. The treatment began the day after organotypic formation. The medium was refreshed 

before treatment was added. Treatment was refreshed every other day for eight days. After 

treatment, the organotypic cultures were washed with formaldehyde (37% wt diluted in ddH2O) 

and then incubated in 5.0 mL of formaldehyde (37% wt diluted in ddH2O) at 8 °C overnight. 

Samples were then delivered to a histology lab for embedding and sectioning.   
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2.6 Immunohistochemistry. 

2.6.1 Paraffin removal, Antigen Unmasking, Blocking: Paraffin-embedded tissue sections on 

slides are heated at 60 °C for 5 to 10 minutes. The slides are then placed in a cassette and 

undergo a serious of washes to remove the paraffin and rehydrate the samples. The serious is 

three 100% xylene submersions for 15 minutes, three 100% ethanol submersions for 10 minutes, 

75% ethanol submersions for 5 minutes, 50% ethanol submersions for 5 minutes, 25% ethanol 

submersions for 5 minutes, and a final wash with ddH2O for 5 minutes. For antigen unmasking, 

slides were placed in holder filled with 1 mM EDTA buffer pH 8.0 and sub-boiled for 35 

minutes. The container and slides were cooled in ice water for 20 minutes. Slides were washed 

for 5 minutes in ddH2O.  To block endogenous peroxidase activity, slides were incubated at RT 

in 3.0% hydrogen peroxide diluted in methanol for 30 minutes. After blocking, slides are washed 

with PBST three times for 5 minutes each. Samples were blocked for 1 hour with 0.2% Triton X 

100 and 2.5% BSA-PBS blocking solution at RT. This preparation was followed by staining and 

immunohistochemistry.  

2.6.2 Hematoxylin and Eosin: Paraffin removal, antigen unmasking, blocking of samples are 

described above. Staining was conducted with ABCAM H&E Staining Kit (ab245880). Slides 

were incubated in hematoxylin for 10 minutes at RT and in the dark. The excess staining was 

rinsed off with ddH2O for 5 minutes. Excess ddH2O was removed and slides were incubated in 

Bluing reagent (0.2% Ammonia Water Solution) for 5 minutes at RT. The excess staining was 

rinsed off with ddH2O for 5 minutes. Slides were incubated in eosin for 15 minutes at RT. The 

excess staining was rinsed off with ddH2O for 5 minutes. Slides were then washed briefly in 75% 

ethanol. Samples were then dehydrated with the following serious of washes. Three 100% 
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ethanol submersions for 10 minutes and three 100% xylene submersions for 15 minutes. Slides 

were placed flat in a hood for 1 minute to allow air drying. Permount was add on top of the 

samples and cover slide adhered. The slides were kept in the hood overnight to allow permount 

to solidify. Stained samples were then sent to MCV Clinical Support Center to be diagnosed.  

2.6.3 TROMA-III (CK-19) Staining: Paraffin removal, antigen unmasking, blocking of 

samples are described above. TROMA-III (CK-19) antibody was purchased from Developmental 

Studies Hybridoma Bank (DSHB). Samples were incubated in 1:100 TROMA-II antibody 

diluted in triton X-100 and 2.5% BSA-PBS blocking solution overnight at 8 °C. The primary 

antibody was then washed off with PBST three times for 5 minutes each. Incubation of 

secondary antibody and staining was conduct as instructed in rat specific VECTASTAIN® ABC 

HRP Kit and DAB Peroxidase (HRP) Substrate Kit (with Nickel), 3,3’-diaminobenzidine. 

Samples are stained with hematoxylin for 20 seconds and rinsed off with ddH2O for 5 minutes. 

Samples were then dehydrated with the following serious of washes. Three 100% ethanol 

submersions for 10 minutes each and three 100% xylene submersions for 15 minutes each. Slides 

were placed flat in a hood for 1 minute to allow air drying. The slides were kept in the hood 

overnight to allow permount to solidify. The slides were kept in the hood overnight to allow 

permount to solidify.  

2.6.4 Immunofluorescence: Paraffin removal, antigen unmasking, blocking of samples are 

described above. Samples were incubated in 1:20 primary antibody diluted in triton X-100 and 

2.5% BSA-PBS blocking solution overnight at 8 °C. The primary antibody was then washed off 

with PBST four times for 5 minutes each. Samples were incubated in 1:1,000 secondary antibody 

diluted in triton X-100 and 2.5% BSA-PBS blocking solution for 1 hour at RT. The secondary 

antibody was then washed off with PBST four times for 5 minutes each. Excess buffer was 
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removed and cover slips were mounted on the slides with VECTASHIELD® Hardset™ Antifade 

Mounting Medium with DAPI (H1500, Vector). Slides were then imaged with confocal 

fluorescence microscopy running on ZEISS imaging program.  

2.7 CCK-8 Viability Rate. 

2.7.1 Treatment and CCK-8 Viability Rate: 4,000 cells were added to each well of a 96-well 

plate in 100 µL of 1.0% FBS, warm DMEM medium and placed in cell incubator overnight. 100 

µL of fresh 1% FBS, warm DMEM medium containing x2 treatment concentration was added to 

each well. The plates were placed in the cell incubator for 48 hours. After incubation, an initial 

reading of 450 nm absorbance was conducted on the wells. Three of the wells in the plates were 

treated with 10 µL of 1% triton X-100 to act as negative controls. 10 µL of CCK-8 (Cell 

Counting Kit-8, Dojindo Laboratories, CK09) was added to each well. Reading of 450 nm 

absorbance was conducted between 2 and 4 hours after CCK-8 was added. The survival rate was 

then calculated with the initial and final readings. The plates had their initial readings taken at 

450 nm to provide a background reading. To create a negative control, in each plate two wells 

were treated with 10 µL of 10% triton X-100 and incubated for 15 minutes to allow all the cells 

in those well to undergo apoptosis. The cell counting was conducted with a CCK-8 kit. 10 µL of 

CCK-8 solution was added to each well and allow to incubate for 2 to 4 hours. Throughout this 

time, the plate was periodically read at 450 nm until a few of the readings had a value between 

0.9 and 1.0. The final reading was subtracted by initial reading to remove the background for 

each well, followed by the negative controls value being subtracted from the background free 

final reading to remove the absorbance caused by the natural decay of CCK-8, this would result 

in the final value (final value = (final reading – initial reading) - (Negative control – initial 

reading)). 
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2.8 Migration Assay. 

2.8.1 Migration Assay: For cell confluency to fall between 70% to 80% confluency in 6-well 

plates, 0.7x106 BDEsp-TDFE4 were added to each well in 3 mL of DMEM medium. The cells 

were placed overnight in cell incubator to allow them to adhere to the plate. A gap was made 

down the middle of the bed of cells in each well with a 20 µL pipette tip and the medium was 

refreshed with 1.0% FBS, warm DMEM medium to remove floating cells. Initial imaging of the 

gap was taken, three images per well. The wells were then treated. Imaging of the same location 

was done at 24 and 38 hours. The migration rate was then measured with ImageJ. 

2.9 Statistics. 

Each experiment was repeated at least 3 times (n ≥ 3). The results are represented as means with 

SD or SEM error bars. The analysis was performed on GraphPad Prism 8.0 (GraphPad Soft Inc., 

San Diego, CA).  The one-way analysis of variance (ANOVA) and student t-test were used to 

analyze data and determine statistical significance. Significant P-values were set to *P < 0.05, 

**P < 0.01, ***P < 0.001, and ****P < 0.0001. 
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2.10 Antibodies. 

Target Protein Molecular Weight Species Manufacturer CAT# 

SphK1 48 kDa Rabbit Santa Cruz SC-48825 

SphK2 69 kDa Rabbit ProteinTech 17096-1-AP 

S1PR2 50 kDa Mouse ProteinTech 21180-1-AP 

ERK1/2 44/42 kDa Rabbit Santa Cruz SC-154 

p-ERK1/2 44/42 kDa Mouse Santa Cruz SC-7383 

Actin 42 kDa Mouse DSHB  JLA20 

H4K5ac 11 kDa Rabbit EpiGentek A-4027-050 

H3K9ac 17 kDa Rabbit EpiGentek A-4022-025 

H2BK12ac 15 kDa Rabbit EpiGentek A-68352-050 

Histone H3 18 kDa Rabbit EpiGentek A-1112-100 

 

Target Species Species Function Manufacturer CAT# 

Rabbit Goat IM Bio-Rad 170-6515 

Mouse Goat IM Bio-Rad 170-6516 

Rabbit Goat IF Complete A21206 

Rabbit Goat IH Vector Laboratories BA-4000 

 

 

Table 1: Antibodies. A) Antibodies for immunoblotting, target, expected weight, antibody’s 

species of origin, producer, #CAS. B) Secondary antibodies and associated procedure. 

Immunoblotting (IM), immunofluorescence (IF), and immunohistochemistry (IH).  
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2.11 Nanoparticles. 

2.11.1 Nanoparticle Construction and Drug Encapsulation: Nanoparticles were constructed 

and drug was encapsulated in Dr. Zhu lab, MCV. Five differing nanoparticle subunits were used, 

each forming their own micelle structure. 2 mg of Nanoparticle subunits were dissolved in 100 

µL of tetrahydrofuran. Drug is dissolved into 250 µL of methanol. 50 µL of drug solution is 

mixed with the nanoparticle subunit solution. The combination mixture was added into 2 mL of 

ddH2O and stirred at RT overnight to allow drug encapsulation and organic reagents to 

evaporate. Solution was centrifuged at 5,000 rpm for 5 minutes to separate the unloaded drug 

and free polymer. Supernatant was filtered with 0.45 µm filter membrane, resulting in the 

solution of micelle nanoparticle loaded with drug. (Table 2) 

 

 

 

 

 

Table 2: Nanoparticle Subunits: Five different nanoparticle micelle structures were used in this study. 

Each structure was made of one type of nanoparticle subunit. Each subunit shares the mPEG5k base. 

The displayed monomer structure subunit is repeated to form polymers of various size and attached to 

the mPEG5k base. The molecular weight (kDa) of the polymer is indicated by the subscript value. The 

weight and structure of subunit effects its uptake into the cell.       
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Chapter 3: Rationale and Results 

3.0 Rationale and Aim. 

The previous studies have found that the S1PR2/SphK2-mediated signaling pathways are linked 

to CCA cell growth. The overall goal of this study is to determine the effect of inhibiting SphK2 

on CCA cell growth. 

- Sub Aim 1: Test ABC294640 ability to inhibit CCA and CAFs.  

- Sub Aim 2: Determine the mechanical effect of ABC294640 on CCA and CAFs cells.  

- Sub Aim 3: Test nanoparticle delivery of ABC294640. 

3.1 Effect of SphK2, ABC294640, on CCA and CAF cells. 

Previous research has indicated that CCA has increased the expression of S1PR2 and its 

downstream target, SphK227,44. Inhibiting S1PR2 has proven to inhibit the progression of CCA27. 

This study's focus was determining if inhibiting SphK2 halts the progression of CCA. The 

primary SphK2 competitive inhibitor chosen for this study is ABC294640, due to its approval for 

use in clinical trials37. ABC294640 dosage assay was conducted on CCA cells, to determine if 

inhibiting SphK2 activity affects the viability of CCA cells. 

Five differing rat CCA cell lines were selected that represented the spectrum of CCA. 

BDE1 cells are non-tumorigenic immortalized cholangiocytes and act as a negative control. 

BDEsp-TDEH10 is an unmodified CCA cell line. BDEsp-TDEneu and BDEsp-TDEc are more 

aggressive forms of CCA. BDEsp-TDEneu possesses a mutation that increased the expression of 

HER2. BDEsp-TDEc has an empty vector to act as a control for BDEsp-TDEneu. To determine if 

the treatment affected CAFs cells, BDEsp-TDFE4 was included in the dosage assay.  
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The cells were plated in 96-well plates to a confluency of 60% to 80%. The individual 

plates were treated with various amounts of ABC294640, ranging from 1.0 to 25.0 µM. After 48 

hours of treatment incubation, the cell viability for each treatment dosage was measured with 

CCK-8 as described in the methods. The viability levels were plotted by the relative percentage 

of survival vs. log10 of ABC294640 dosage. A dosage curve was calculated, revealing the IC50 

for each cell line (Figure 10). The general trend of these results suggests that ABC294640 

lethality to a cell line is positively correlated with the malignancy level of the cell line; with 

BDE1, the least malignant, having the highest IC50 of 16.1 µM while BDEsp-TDEneu, the most 

malignant, had the lowest IC50 of 9.6 µM, though this is not significant. Interestingly BDEsp-

TDEH10 had an IC50 of 15.1 µM while its CAF partner, BDEsp-TDFE4, had an IC50 of 14.0 µM; 

suggesting ABC294640 can also disrupt the cancer microenvironment by inhibiting the CAF 

cells.  

3.2 Viability Measure of CCA and CAF Cells Treated with ABC294640 and/or TCA. 

The activation of S1PR2, an upstream activator of SphK2, leads to an increase in the 

growth of CCA cells28. The CBA, Taurocholic acid (TCA), is a ligand of S1PR2 and has been 

linked to the increased progression of CCA19. To determine if ABC294640 can alter the 

promoting effects of TCA on CCA, a cell viability assay was conducted. To fully represent a 

CCA tumor, both CCA cells, BDEsp-TDEH10, and CAF cells, BDEsp-TDFE4, were tested. The 

two cell types were plated in 96-well plates to a confluency of 60% to 80%. The individual wells 

were treated with TCA and/or ABC294640. The TCA treatment levels were 25.0, 50.0, and 100 

µM. The ABC294640 treatment levels were 12.5 and 25.0 µM. The TCA treatment levels of the 

two cell types were plated in 96-well plates to a confluency of 60% to 80%. The individual wells  
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Figure 10: ABC294640 Dosage Assay of Cholangiocarcinoma Cell lines. ABC294640 

dosage assay of BDE1, BDEsp-TDF
H10

, BDEsp-TDE
H10

, BDEsp-TDE
neu

, and BDEsp-TDE
neu

 

cell lines. Survival vs. Log10 of ABC294640 concentration dosage curves for varies CCA and 

CAF cell lines 48 hours after treatment. SD bars, means, IC
50

 values, and R
2
 are included. n = 

3. Calculations were done on GraphPad prism. 
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were treated with TCA and/or ABC294640. The TCA treatment levels were 25.0, 50.0, and 100 

µM. The ABC294640 treatment levels were 12.5 and 25.0 µM. The TCA treatment levels of 

50.0 and 100 µM were paired with both ABC294640 treatment levels. The singular or 

combination treatments were added to the 96-well plate After 48 hours of treatment incubation, 

the cell viability for each treatment dosage was measured with CCK-8 as described in the 

methods. The viability of the various treatment types was compared to control. 

The TCA dosage of 50.0 µM significantly (P* = 0.0471) increased the viability of 

BDEsp-TDEH10 cells, while the other TCA dosages did increased viability, but not (P > 0.05) 

significantly. All Treatments including ABC294640 had significantly (12.5 µM, *P < 0.05 and 

25.0 µM, ***P < 0.001) reduced viability. Both TCA dosages (50.0 µM and 100 µM) had 

significantly (**P < 0.01) higher viability than their TCA and ABC294640 cotreatment 

counterparts. The viability of cells treated with both ABC294640 and TCA was equivalent to 

cells treated with only ABC294640. This indicates that ABC294640 can completely counter the 

promoting effect TCA has on CCA. (Figure 11) 

 TCA dosage of 100 µM significantly (P* = 0.013) decreased the viability of BDEsp-

TDFE4 cells, while the other TCA dosages did decreased viability, but not (P > 0.05) 

significantly. All Treatments including ABC294640 had significantly (12.5 µM, **P < 0.01 and 

25.0 µM, ***P < 0.001) reduced viability. TCA dosages (50.0 µM and 100 µM) had 

significantly (*P < 0.05) higher viability than their TCA and ABC294640 cotreatment 

counterparts. The viability of cells treated with both ABC294640 and TCA was equivalent to 

ABC294640 treatment. This data suggests that TCA at high dosages is toxic to BDEsp-TDFE4 

and that ABC294640 nullifies this toxicity while remaining toxic itself. (Figure 12) 
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Figure 11: BDEsp-TDEH10 Cells Viability Measure with Various Levels of TCA and/or 

ABC294640. Cells were plated in 96-well plate, 4,000 per well in 1.0% FBS medium and 

incubated overnight.  Treatment was added and incubated for 48 hours, followed by viability 

measure with CCK-8. Symbol above bars indicate significant compared to control. n = 3 and 

values are mean ± SEM. 50 µM TCA significantly (*P = 0.0471) increased viability. 

ABC294640 reduced cell viability (12.5 µM, *P < 0.05 and 25.0 µM, ***P < 0.001).  TCA 

with ABC294640 were significantly different from their only TCA counterparts (**P < 

0.01). 
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Figure 12: BDEsp-TDFE4 Cells Viability Measure with Various Levels of TCA and/or 

ABC294640. Cells were plated in 96-well plate, 4,000 per well in 1.0% FBS medium and 

incubated overnight.  Treatment was added and incubated for 48 hours, followed by 

viability measure with CCK-8. Symbol above bars indicate significant compared to 

control. n = 3 and values are mean ± SEM. 100 µM TCA significantly (*P = 0.013) 

decreased viability. ABC294640 treatments significantly reduced viability (12.5 µM, **P 

< 0.01 and 25.0 µM, ***P < 0.001. 
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3.3 Effect of ABC294640 on Taurocholic Acid-induced Formation of “Duct-Like” 

Structure in a 3-D Organotypic Culture Model of Rat CCA Cells.  

The dosage assay indicated that ABC294640 could disrupt the CCA and CAFs cells in 

tumors. To determine if ABC294640 could disrupt and inhibit tumor growth, a 3-D Organotypic 

treatment was performed. The 3-D organotypic culture is a combination of CCA, BDEsp-

TDEH10, and CAFs, BDEsp-TDFE4, cells are suspended in collagen, which forms “duct-like" 

structures. The creation of this culture has previously been described43. The cultures were treated 

for 8 days with TCA (100 µM) and/or ABC294640 (10 µM). After the treatment period, the 

cultures were fixed, sectioned, and stained with H&E (Figure 13A). The sections were imaged at 

10x magnification and the ducts were measured with ImageJ “Analyze Particle” function. The 

average size (µm2) of the “duct-like” structures were recorded. The TCA (100 µM) treatment 

(**P=0.0072) increased the size of the “duct-like” structures. The ABC294640 (10 µM) 

treatment significantly (****P < 0.0001) decreased the size of the “duct-like” structures. TCA 

and ABC294640 combination treatment had larger (*P = 0.0281) “duct-like” structure then the 

ABC294640 treatment, while still having significantly smaller (****P < 0.0001) structures then 

the TCA treatment group (Figure 13B). The count of the “duct-like” structures was recorded. 

The TCA (100 µM) treatment (**P = 0.009) increased the count of the “duct-like” structures. 

The ABC294640 (10 µM) treatment significantly (****P < 0.0001) decreased the count of the 

“duct-like” structures. TCA and ABC294640 combination treatment had fewer (****P < 0.0001) 

structures then both the control and TCA treatment groups. (Figure 13C). The TCA treatment 

was able to increase the size and amount of “duct-like” structures, indicating that activation of 

the S1PR2/SphK2 pathway does promote the growth of the simulated tumors. The inhibition of 

SphK2 by ABC294640 decreased the size and amount of the “duct-like”, as  
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Figure 13: 3-D Organotypic Co-Culture. TCA and ABC294640 Treatment of BDEsp-TDE
H10

 and 

BDEsp-TDF
E4

 Cells 3-D Organotypic Co-culture. Rat BDEsp-TDE
H10

 and BDEsp-TDF
E4

 co-culture 

were solidified together in rat tail type-1-collagen gel disk. The co-culture disk was incubated for 8 

days with 100 µM TCA and/or 10 µM ABC294640 treatments. The co-culture was fixed and sectioned. 

The section was stained with H&E. Images were taken of the “duct-like” structures in each sample. 

Duct size and count was quantified with ImageJ. Symbol above bars indicate significant compared to 

control. Line indicates mean. n = 9. (A) Representative image of H&E stained spheroid/“duct-like” 

structures for each treatment. (B) The average size (µm2) of “duct-like” structures per image. TCA 

treatment did (**P=0.0072) increase the size of “duct-like” structures. Both groups treated with 

ABC294640 had significantly (****P < 0.0001) reduced size, while the combination treated group 

had larger (*P = 0.0281) structures compared to the ABC294640 treatment group. TCA treatment and 

TCA with ABC294640 were significantly (****P < 0.0001) different. (C) Count of “duct-like” 

structure per image. 100 µM TCA had a significant ((**P = 0.009) increased count. Both groups treated 

with ABC294640 had significantly (****P < 0.0001) reduced count and had equivalent counts. TCA 

treatment and TCA with ABC294640 were significantly (****P < 0.0001) different. 
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expected. The ABC294640 and TCA combination treatment had equivalent “duct-like” structure 

count compared to ABC294640 treatment, which indicates that ABC294640 treatment could be 

halting the tumor's ability to metastasize and migrate to another portion of the culture. These 

results agree with a study that conducted the same experiment with S1PR2 inhibitor treatment28. 

3.4 Cell Migration Assay.  

CCA tumor’s metastasis and infiltration capability are largely dependent on the CAFs 

cells, which detaches from the surrounding tissue allowing the tumor to metastasize and are at 

the front of tumor migration. To determine if ABC294640 can inhibit CAFs role in cancer 

metastasis, a migration assay was conducted. The protocol of the migration assay is described in  

the methods. The cells were treated with TCA (100 µM) and/or ABC294640 (12.5 or 25 µM). 

The images were taken immediately before treatment and 36 hours after treatment. TCA (100 

µM) increased (****P < 0.0001) the migration rate of BDEsp-TDFE4. ABC294640 decreased 

(**P < 0.002) the migration rate of BDEsp-TDFE4 cells. Interestingly, 12.5 µM ABC294640 

treatment with and without TCA were equivalent. This could indicate that even at a low dosage, 

ABC294640 can block the effects of TCA. The 25 µM ABC294640 dosage was very effective 

(****P < 0.0001) at inhibiting migration, though TCA was able to counter this slightly (**P = 

0.0026). (Figure 14) 

 The same migration assay was conducted with BDEsp-TDEH10 cells with the same 

procedure. The final images were taken at 24 hours after treatment, due to BDEsp-TDEH10 higher 

migration rate. The TCA treatment increased (*P = 0.0217) the migration rate of the BDEsp-

TDEH10 cells, but not as significant (****P < 0.0001) as the BDEsp-TDFE4 cells. 12.5 µM 

ABC294640 treatment reduced (**P = 0.001) the migration rate of BDEsp-TDEH10. The 25 µM 



42 
 

ABC294640 treatment was able to significantly reduce the migration rate (**P < 0.005) of 

BDEsp-TDEH10. (Figure 15)  

The migration rate is increased by TCA (100 µM) treatment and decreased by 

ABC294640 treatment in both BDEsp-TDEH10 and BDEsp-TDFE4 cell lines. The low dosage of 

ABC294640 (12.5 µM) can counter TCA treatment. (Figures 14 and 15)  

3.5 Nanoparticle Delivery of SphK2 Inhibitor. 

Nanoparticle constructs can improve the transport of SphK2 inhibitor molecules to CCA 

cells, by removing the difficulty the hydrophobic molecules have moving through the 

plasma/lymph. We partnered with Dr. Zhu lab to develop and test nanoparticle's ability to deliver 

SphK2 inhibitors to CCA, BDEsp-TDEH10, cells and their associated CAFs, BDEsp-TDFE4. Five 

nanoparticle constructs were developed and implanted with the inhibitors, ABC294640 and 

K145. 

The two cell types were plated in 96-well plates to a confluency of 60% to 80%. The 

individual wells were treated with SphK2 inhibitor (ABC294640 and K145) within or without 

the nanoparticle construct. The ABC294640 treatment dosages were 12.5 and 25 µM. The K145 

treatment dosages were 5.0 µM and 10 µM. These dosages seem to be less effective than 

previous dosage assay, possibly due to the nanoparticle encapsulation process degrading the 

drug. The free drug went through the same process and still acts as an effective positive control.  

Treatments were added to corresponding wells of 96-well plate. After 48 hours of treatment 

incubation, the cell viability was measured with CCK-8 as described in the methods. The final 

viability of each treatment type was compared with control. 
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Figure 14: BDEsp-TDF
E4

 Migration Assay with TCA (100 µM) and/or ABC294640 (12.5 

and 25 µM) Treatments. Cells were plated to 70% - 80% confluency in 6-well plate with 10% 

FBS medium. A wound was scratched down the middle of the plate and the medium was placed 

with 1.0% FBS medium. Images were taken at 4x magnification. Initial images were taken and 

treatment was added. Final image was taken at 24 hours. (A) Initial and final images of scratch 

assay of various treatments. Experiment was replicated 3 times and each well had imaging 3 

spots, n = 9. Values are mean ± SEM. (B) Distant of migration normalized to control. TCA 

increased (****P < 0.0001) migration rate. 12.5 µM ABC294640 with TCA treatment did have 

significant (*P = 0.0481) decrease in migration and 12.5 µM ABC294640 treatment did see a 

decrease (**P = 0.002) in migration. Both treatments with 25 µM ABC294640 had significant 

(**P < 0.0001) decrease in migration. Both TCA and 12.5 µM ABC294640 combination 

treatments were equivalent to their 12.5 µM ABC294640 treatment counterpart, while TCA and 

25 µM ABC294640 treatment had increased (**P = 0.0026) migration compared to 25 µM 

ABC294640.  
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Figure 15: BDEsp-TDE
H10 

 Migration Assay with TCA (100 µM) and/or ABC294640 (12.5 

and 25 µM) Treatments. Cells were plated to 70% -  80% confluency in 6-well plate with 10% 

FBS medium. A wound was scratched down the middle of the plate and the medium was placed 

with 01% FBS medium. Images were taken at 4x magnification. Initial images were taken and 

treatment was added. Final image was taken at 36 hours. (A) Initial and final images of scratch 

assay of various treatments. (B) Distant of migration normalized to control. Experiment was 

replicated 3 times and each well had imaging 3 spots, n = 9. TCA increased (*P = 0.0217) migration 

rate. 12.5 µM ABC294640 with TCA treatment did not have significant decrease in migration, 

while 12.5 µM ABC294640 treatment did see a decrease (**P = 0.001) in migration. Both 

treatments with 25 µM ABC294640 had significant (**P < 0.005) decrease in migration. Both TCA 

and ABC294640 combination treatments were equivalent to their ABC294640 treatment 

counterpart. 
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Figure 16: Nanoparticle Delivery of SphK2 Inhibitors Viability Assay. The treatments were 

delivered in free form or in one of the 5 design nanoparticle constructs. The ABC294640 treatment 

dosages were 12.5 µM and 25 µM. The K145 treatment dosages were 5.0 µM and 10 µM. n = 3 and 

values are mean ± SEM. A) The viability measure of BDEsp-TDE
H10

. B) The viability measure in 

BDEsp-TDF
E4

. 
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In the BDEsp-TDEH10 cells, nanoparticle type 5 was the most effective in both drug types. 

In BDEsp-TDFE4, none of the nanoparticles were effective. More research and development need 

to be conducted. (Figure 16) 

3.6 Effect of SphK2 inhibitor on Histone Acetylation in rat CCA and CAFs cells. 

As described before (Figure 6), TCA can induce acetylation via the S1PR2/SphK2 

pathway. To determine if this pathway is maintained in CCA (BDEsp-TDEH10) and CAFs 

(BDEsp-TDFE4), cells were treated with TCA, and acetylated histone levels were measured with 

immunoblotting. Cells were plated to 70% to 80% confluency. The cells medium was refreshed 

with 1.0% FBS medium and allowed to incubate for 1 hour. The TCA dosages of 0, 50, 100, and 

200 µM were added to the plates and allowed to incubate for 4 hours in a cell incubator. Once 

incubation completed, the nuclear protein was extracted. Immunoblotting for H4K5, H2BK12, 

H3K9, and H3 as an internal standard was performed as described in the methods. In BDEsp-

TDEH10 the TCA treatments of 50 µM (*P < 0.05 ) and 100 µM (**P < 0.01) increased 

acetylation consistently across the various histones. In BDEsp-TDFE4 the TCA treatments did not 

increase histone acetylation. The TCA (200 µM) treatment did decrease (**P < 0.01) the 

acetylation of H3K9. This data suggests that the BDEsp-TDEH10 cells are being affected by TCA 

treatment via the S1PR2/SphK2 pathway, while the BDEsp-TDFE4 is being affected in a 

different way or on a different time scale (Figure 17). TCA treatment is inducing histone 

acetylation in BDEsp-TDEH10 cells, ABC294640 could possibly affect this increased acetylation. 

The same procedure for preparing and treating the cells was followed, except that BDEsp-

TDEH10 cells were treated with TCA (100 µM) and/or ABC294640 (25 µM). 4 hours after 

treatment, the nuclear protein was extracted. Immunoblotting for H4K5, H3K9, and H3 as an 

internal standard was performed as described in the methods. the nuclear protein was extracted. 
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Figure 17: TCA Effect on Histone Acetylation. Protein was collected from BDEsp-TDE
H10 

and 

BDEsp-TDF
E4

 cell lines treated with various TCA levels for 4 hours, followed by nuclear protein 

extraction as described in the methods and stored at -80 °C. Protein levels of H4K5, H2KB12, 

H3K9, and H3 (standard) were determined by immunoblotting analysis. (A) Representative 

images of immunoblotting of cell treated with various levels of TCA treatments. Statistical: n = 

3 and values are mean ± SEM. Student t-test was used to determine if protein levels were 

significant between treatments. (B)  Quantification of average protein levels for the four 

treatments. In BDEsp-TDE
H10 

the 50 µM (*P < 0.05) and 100 µM (**P < 0.01) of TCA treatment 

increased acetylation constantly across all type of histones. In BDEsp-TDF
E4

 the TCA treatments 

did not increase histone acetylation. The 200 µM treatment did decrease (**P < 0.01) the 

acetylation of H3K9. 
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Immunoblotting for H4K5, H3K9, and H3 as an internal standard was performed as described in 

the methods. H2KB12 was not repeated due to a lack of antibodies. The treatments changed the 

acetylation levels of histones in BDEsp-TDEH10. For H4K5 and H3K9, TCA (100 µM) increased 

(*P < 0.05) acetylation, TCA (100 µM) with ABC294640 (25 µM) decreased (*P < 0.05) 

acetylation, and ABC294640 (25 µM) treatment’s histone acetylation level was equivalent to the 

control. The difference of acetylation is significant (**P < 0.01) between TCA (100 µM) with or 

without ABC294640 (25 µM). There was no significant difference between ABC294640 (25 

µM) treatments with or without TCA (100 µM). ABC294640 is halting the acetylation induced 

by TCA treatment, yet doesn’t reliably decrease acetylation by itself. This makes ABC294640 a 

more promising CCA treatment if the drug specifically targets cells with highly active SphK2. 

(Figure 17)    

3.7 Hematoxylin and Eosin Staining of Human Samples. 

To determine if the CCA patients had liver maladies, samples were assessed by a 

histologist. The sample slides were stained with hematoxylin and eosin (H&E) and sent for 

evaluation. The CCA patient samples had signs of various liver malformations and damage. This 

includes steatosis, Cirrhosis, fibrosis, mild cholestasis, ductal proliferation, and polymorphous 

infiltrate. These results confirm that CCA patients’ livers were undergoing stress associated with 

CCA (Figure 19). 

3.8 TROMA-III (CK-19) Staining of Human Samples. 

CK-19 is a marker for fibrosis and for cancer infiltration. CCA patient’s samples were 

probed for CK-19, followed by immunohistochemistry staining. CCA patients had a slight  
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Figure 18: Effect of TCA and/or ABC294640 Treatment of Histone Acetylation in CCA Cells.   

Protein was collected from BDEsp-TDE
H10

 cell lines treated with various TCA (100 µM) and/or 

ABC294640 (25 µM) for 4 hours, followed by nuclear protein extraction as described in the methods 

and stored at -80 °C. Protein levels of H4K5, H2KB12, H3K9, and H3 (standard) were determined 

by immunoblotting analysis. (A) Representative images of immunoblotting of cell of TCA and/or 

ABC294640 treatments. (B)  Quantification of average protein levels for the four treatments. 

Statistical significance: n = 3 and values are mean ± SEM. Student t-test was used to determine if 

protein levels were significant between treatments. For both H4K5 and H3K9, TCA (100 µM) has 

increased (H4K5: **P = 0.0035, H3K9: *P = 0.0358) acetylation, TCA (100 µM) with ABC294640 

(25 µM) has decreased (H4K5: *P = 0.0373, H3K9: **P = 0.0225) acetylation, and ABC294640 (25 

µM) doesn’t have a change in acetylation. The difference of acetylation is significant (H4K5: **P = 

0.0019, H3K9: **P = 0.0085) between TCA (100 µM) with or without ABC294640 (25 µM). There 

was no significant difference between ABC294640 (25 µM) treatments with or without TCA (100 

µM).  
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Figure 19: H&E staining of liver sections originated from CCA patients or patients that 

passed away due to brain trauma (Controls). Samples were stained with H&E and 

analyzed by a histologist. Images of 4x and 10x magnification accompanied by histologist 

diagnosis of sample. CCA patient samples had various signs of liver disease that is linked to 

CCA. These includes steatosis, Cirrhosis, fibrosis, mild cholestasis, ductal proliferation, and 

polymorphous infiltrate.  
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Figure 20: Immunohistochemistry TROMA-III (CK-19) staining of liver sections originated 

from CCA patients or patients that passed away due to brain trauma (Controls). TROMA-III 

(CK-19) is a marker for fibrosis. Samples were probed with TROMA-III (CK-19) followed by 

immunohistochemistry staining. CCA patient liver samples had slightly increased levels of CK-19. 
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increase in CK-19 expression compared to control, but not significantly. This collaborates with 

the histologist's conclusion on the H&E stained samples (Figure 20).    

3.9 Quantifying Protein Expression of Human Liver Samples. 

Protein levels of S1PR2, SphK2, and SphK1 in CCA patients were measured. Total 

protein lysate was collected from CCA patients and control patients (head trauma) liver samples. 

Three portions from different parts of the liver were collected for each sample. The protein 

samples were collected and immunoblot as described in the methods. The CCA patient samples 

have increased levels of S1PR2 (**P = 0.0033) compared to the control. This paired with the 

increased (*P = 0.0497) levels of SphK2 indicates the S1PR2/SphK2 pathway is upregulated in 

CCA patient liver. A slight increase in SphK1 was detected which can contribute to the 

activation of the S1PR2 via S1P.  

3.10 Sphingosine Kinase 2 and Sphingosine-1-Phosphate Receptor 2 Immunofluorescence 

Histochemistry of Human Samples. 

To support the protein quantification results of the human samples, immunofluorescence 

histochemistry of SphK2 and S1PR2 was conducted. The sample slides were prepared as 

described in the methods and probed for SphK2 and S1PR2. The samples tested positive for both 

probed proteins and it appears that the CCA samples possessed higher levels of both proteins 

(Figure 22).  
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Figure 21: Immunoblotting of Human Samples. Protein was collected from human liver 

samples the originated from CCA patients or patients that passed away due to brain trauma 

(Controls). 50 mg of liver tissue was homogenized in 1.0 mL of total protein lysis buffer and 

stored at -80 °C. Protein levels of SphK2, S1PR2, SphK1, and Actin (standard) were 

determined by immunoblotting analysis. Statists: 3 liver section from each 8 samples from 

each group, n = 24. Values are mean ± SEM. Student t-test was used to determine if protein 

levels were significant between groups. (A) Representative images of immunoblotting for 

individual patient samples. (B)  Quantification of average protein levels for the two groups. 

S1PR2 (**P = 0.0033) was significant, SphK1 (P = 0. 5697) was insignificant, and SphK2 

(*P = 0.0497) was significant.  
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Figure 22: Immunofluorescence Imaging of Patient Samples. Immunofluorescence 

probing of liver sections originated from CCA patients or patients that passed away due to 

brain trauma (Controls). Samples were probed for SphK2 or S1PR2, followed by DAPI 

staining. Images were taken with a fluorescence confocal microscope. IgG negative control 

Included. It appears that the CCA samples contained higher levels of SphK2 and S1PR2. 
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Chapter 4: Discussion 

Cholangiocarcinoma (CCA) diagnosis rate has been increasing, especially outside the 

regions it is traditionally found1. 20% of CCA cases are identified at the early stage of the 

disease, this allows for early treatment giving the patient a 30% to surviving 5-year past 

diagnosis. Patients diagnosed at the late stages of CCA have ~2% of survival over the same time 

period, even with treatment2, 43. The increasing rate of CCA in the global population and the 

ineffectiveness of treatment at the early and late stages of the disease have created a growing 

need for novel CCA treatments. Current research indicates that the activation of sphingosine-1-

phosphate-receptor-2 (S1PR2) promotes the progression of CCA, possibly through sphingosine 

kinase 2 (SphK2)27. S1PR2 activation leads to the activation of SphK2 in the nucleus, where 

SphK2 indirectly deactivates HDAC1/2 leading to increased histone acetylation and alteration of 

gene expression26. This epigenetic effect could be the reason for SphK2 activity being associated 

with cancer neoplastic transformation, tumorigenesis, migration, proliferation, metastasis, 

metabolism, drug resistance, and overall cancer progression27, 44 - 46. SphK2 links to cancer 

progression make it a prime target for treatment.  

Recently ABC294640, an SphK2 competitive inhibitor, has been approved for the 

clinical trial at 250 mg oral daily dosage (~ 7 µM)36,47. In phase I clinical study with a panel of 

patients with different cancers, a patient suffering from metastatic CCA was given a daily 

regimen of 250 mg ABC294640 treatment. This CCA patient had the best outcome out of the 

study, which is encouraging and anecdotal47. ABC294640 ability to treat CCA is not well 

understood. This study examined if ABC294640 can halt or reverse the progression of CCA and 

the underlining mechanism of this effect.  
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This study employed various rat CCA, CAF, and cholangiocytes cell lines. To ensure that 

the ABC294640 treatment could effectively inhibit CCA progression at a reasonable dosage, a 

dosage assay was done on the panel of CCA cell types. The cells least affected by the treatment 

were the healthy cholangiocytes, BDE1, with an IC50 of 16.1 µM, which suggests that 

ABC294640 treatment is less toxic to healthy cells compared to the cancer cell lines, though this 

is speculative. The CCA cell lines BDEsp-TDEH10, BDEsp-TDEC, and BDEsp-TDEneu had IC50 

of 15.1 µM, 10.2 µM, and 9.6 µM respectively (Figure 10). A recent study on human 

intrahepatic CCA cell lines found ABC294640 treatment reduced the viability in the human 

CCA cell lines47, indicating ABC294640 can be an effective treatment for targeting patient’s 

CCA cells. Interestingly, cancer-associated myofibroblasts (CAFs) cell line, BDEsp-TDFE4, had 

a similar IC50, 14 µM, to the CCA cell lines (Figure 10). CAFs are important for the 

development of the cancer microenvironment as the CCA cell themselves29, thus ABC294640 is 

capable of inhibiting CAFs bolster its use as a CCA treatment. Since all the CCA cell lines had 

similar responses, we decided to focus on BDEsp-TDEH10 representing CCA and BDEsp-TDFE4 

representing CAFs. 

S1PR2 activation of SphK2 is necessary for SphK2 rule in CCA progression27. To 

determine if the S1PR2 pathway was intact and if the pathway could be blocked by ABC294640, 

a viability assay of BDEsp-TDFE4 and BDEsp-TDEH10 was conducted. The CBA ligand, 

taurocholic acid (TCA), was used to activate S1PR2 pathway. Surprisingly the TCA (100 µM) 

treatment reduced the viability of CAFs, BDEsp-TDFE4, but the ABC294640 treatments 

continued to reduce the cell viability with or without the presence of TCA (Figure 12). More 

predictively, the CCA cells, BDEsp-TDEH10, viability was increased be the TCA treatments. The 

ABC294640 treatments were able to completely counter the effects of TCA, with cells treated 
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with ABC294640 and TCA having equivalent viability to cells treated with only ABC294640 

(Figure 11). This suggests that the ABC294640 can completely block the TCA ability, via 

S1PR2/SphK2 pathway, to increase cell viability.  

After determining ABC294640 can effectively inhibit the CCA and CAFs that compose 

CCA tumors, treatment of the simulated tumor was conducted. The 3-D organotypic culture was 

made with BDEsp-TDFE4 and BDEsp-TDEH10, which together form “duct-like” structures that 

are a simulation of CCA tumors. The cultures were treated with TCA to promote and/or 

ABC294640 to inhibit the progression of the simulated CCA tumors. TCA treatment increased 

the size and number of the “duct-like” structures, indicating that promoting the S1PR2 pathway 

quickens the growth and possibly metastasis of the CCA. ABC294640 treatment did the opposite 

even in the cotreatment with TCA (Figure 13). This indicates that ABC294640 can stop tumor 

growth and metastasis even when the activity of S1PR2 and SphK2 is increased. This outcome is 

supported by a study that had a similar result with S1PR2 inhibitor instead of an SphK2 

inhibitor27.     

To conform ABC294640 ability to halt CCA migration/metastasis, a migration assay was 

conducted with BDEsp-TDFE4 and BDEsp-TDEH10. The migration assay was done with TCA 

and/or ABC294640 treatments (Figures 14 and 15). In both cell lines, TCA significantly 

increased and ABC294640 decreased migration, supporting ABC294640 ability to inhibit CCA 

metastasis. ABC294640 ability to inhibit CAFs, BDEsp-TDFE4, migration rate is important, due 

to CAFs rule of spearheading migration for the CCA tumors29.  

It was previously discussed that SphK2 indirectly increases the level of histone 

acetylation26. To determine if this pathway was present in BDEsp-TDFE4 and BDEsp-TDEH10 

cell lines, the cells were treated with various levels of TCA and then the histone acetylation 



58 
 

levels were measured with immunoblotting. In CCA, BDEsp-TDEH10, the 50 and 100 µM TCA 

treatments increased histone acetylation. The CAFs, BDEsp-TDFE4, histone acetylation 

decreased after TCA treatment, but this was only significant with H3K9 at 200 µM dosage 

(Figure 17). The S1PR2/SphK2/HDAC1/2 pathway is functional in the BDEsp-TDEH10 cell line, 

allowing it to be a modal to determine if ABC294640 treatment could affect histone acetylation. 

The same experiment was repeated on BDEsp-TDEH10 with TCA (100 µM) and/or ABC294640 

(25 µM) treatments. The TCA treatment maintained its ability to increase histone acetylation. 

More interestingly is ABC294640 didn’t reliably decrease acetylation by itself, but when paired 

with TCA the histone acetylation levels significantly dropped (Figure 18). This can indicate that 

ABC294640's ability to decrease histone acetylation is only effective when SphK2 activity is 

increased by S1PR2 and not when Sphk2 is at basal activity levels.  

The ABC294640 seems to be effective at halting the S1PR2/SphK2 pathway in the CCA 

cell model. More evidence needs to be present to support ABC294640 as a possible clinical 

treatment for CCA. To confirm if ABC294640 target pathway was significantly present in 

patients diagnosed with CCA, SphK2 and S1PR2 quantification was conducted on patient liver 

samples. The liver disease state of the patients was confirmed with H&E and CK-19 staining of 

the sample slides, which both showed the patients had various signs of liver disease (Figures 19 

and 20). The SphK2 and S1PR2 levels were measured with immunoblotting and 

immunofluorescence, both methods conforming an increase in SphK2 and S1PR2 in CCA 

patients compared to controls (Figure 21 and 22). The increased expression of SphK2 and 

S1PR2 in CCA patient samples supports the singular phase I clinical study that indicated 

ABC294640 as an effective treatment for CCA47.  
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Based on this study, ABC294640 shows great promise as a CCA treatment for the 

following reasons. The drug has higher toxicity to CCA cell lines compared to the healthy 

cholangiocyte cell line. The inhibiting effects were also effective on CAFs, which are important 

for CCA progression. The treatment stopped the metastasis and growth of tumors, even in the 

presence of the CCA promoter, TCA. The drug's mechanical effect of stopping histone 

acetylation may only affect cells with highly active SphK2, which makes the drug more specific 

toward CCA cells. Finally, the target pathway is highly expressed in human CCA samples.  

An unanswered question in this study is how ABC294640 is inhibiting CAFs. Neither 

TCA or ABC294640 treatment affects CAF cells as expected. In fact, TCA seems to increase the 

CAFs migration rate, while decreasing histone acetylation and viability. With ABC294640 

functionally being the opposite of TCA, you would expect that ABC294640 would at least not 

affect CAFs cell viability, but it decreases it. This may be due to ABC294640 inhibiting SphK2 

in another portion of the cell, such as the cytoplasm or mitochondria49,50. This needs to be further 

studied. 

In conclusion, ABC294640 seems to effectively decrease CCA cells’ migration and 

viability by stopping SphK2 from increase histone acetylation and ABC294640 is inhibiting 

CAFs by some unidentified mechanism. The drug is also able to halt growth and metastasis of 

CCA tumors. CCA reliance on increased SphK2 activity is supported by SphK2 and S1PR2 

levels of the CCA patient samples. More research should be done to determine how ABC294640 

can be safely used as a clinical treatment for CCA.             
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