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Abstract 

An exo-atmospheric nuclear detonation releases up to 80 percent of its’ energy as X-rays. 

Satellite’s solar cells and their protective coatings are vulnerable to low energy X-ray radiation. 

Cold X-rays (~1-1.5 keV) are absorbed close to the surface of materials causing the blow-off and 

rapid formation of Warm Dense Plasmas (WDPs), particularly in a gap between the unshielded 

active elements of solar cells. To understand how WDPs are created, it is necessary to investigate 

the power density distribution produced by cold X-rays for typical solar panel surface materials. 

The Monte Carlo stepping model implemented in the GEANT4 software toolkit is utilized to 

determine the power density created by cold X-rays in a multi-layered target composed of a layer 

of an active cell shielded by layers of cover glass and anti-reflective coating. The power density 

generated by cold X-rays in the unshielded semiconductor layer at different incidence angles is 

also investigated in order to account for different orientations of the satellite’s solar panels with 

respect to the point of nuclear detonation. The flux spectrum of X-rays originating from a nuclear 

blast is described by the Planck's blackbody function with the temperature from 0.1 keV to 10 keV. 

The secondary radiation (photo-electrons, fluorescence photons, Auger- and Compton-electrons) 

resulting from absorption and scattering of primary X-rays is taken into account in the 

redistribution of energy deposition within slabs. The profiles of power density within the slab 

system produced by primary cold X-rays, secondary photons and electrons are calculated as a 

function of depth. The discontinuity in power density profiles is observed at the interfaces of slabs 

due to discrete changes in stopping power between slab materials. The power density is found to 

be higher in slab materials with higher mass density. The power density profiles are then used in 

the atomistic Momentum Scaling Model (MSM) coupled with the Molecular Dynamics (MD) 

method (MSM-MD) to predict the spatiotemporal evolution of WDP in vacuum. The spatial and 
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temporal distribution of density and temperature fields of expanding WDP is evaluated from the 

MSM-MD simulations. These modeling results provide insights into the underlining physics of 

the formation and spatiotemporal evolution of WDPs induced by cold X-rays.  
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Introduction 

 

 When a nuclear blast occurs above the earth’s atmosphere, most of the radiation produced 

from the detonation is in the form of X-rays because of the absence of atmosphere. The effects of 

X-rays from upper atmospheric nuclear detonations can potentially have severe and adverse 

impacts on satellite’s solar panels and should be analyzed in order to evaluate the extent of the 

damage that can be caused. This thesis investigates the absorption of cold X-rays, which are low 

energy X-rays (~1-1.5 keV), by solar panel materials. Cold X-rays deposit the energy on the 

surface of materials. Therefore, they are harmful to solar panels of satellites in orbit because solar 

panels are extremely thin and complex pieces of equipment. If an excess amount of energy is 

deposited in the active semiconductor layer of a solar cell, this layer can melt, evaporate and 

expand as a dense plasma and short out nearby solar cells. If this occurs, the cost of repairing the 

orbital solar panels could be immense. This is why the effects of cold X-ray radiation from upper 

atmospheric nuclear detonations need to be examined in order to better understand the severity of 

repercussions that can occur.  

The damage of electronic systems has been a concern for many industries where high levels 

of radiation are constantly present. In the fields of defense, nuclear power, and space exploration, 

radiation has been an important factor when considering the lifespan of machinery. Spacecrafts 

are designed to withstand a higher degree of radiation because there is no atmosphere to filter out 

the background space radiation. However, high altitude nuclear detonations can create a fireball 

that releases most of its energy through X-ray radiation, which can create photon fluences much 

higher than satellites are manufactured to withstand. These high-altitude detonations release 70 – 

80 percent of their energy as X-rays which can damage electronic components on satellite solar 

cells [1]. In Conrad’s technical report, Collateral Damage to Satellites from an EMP Attack, the 
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effects of radiation damage to electrical systems on satellites from previous tests of high altitude 

nuclear detonations is studied. Before the moratorium on atmospheric nuclear testing in 1963, 

multiple atmospheric nuclear tests were conducted. Some of these tests caused radiation belts in 

the atmosphere that directly led to electrical damage that shortened the lifespan of several satellites 

in orbit. One specific case of this was the STARFISH PRIME nuclear test, where the TRAAC and 

Transit 4B satellites stopped functioning due to decreased power output from their solar panels. 

This damage was caused by an artificial radiation belt induced by the nuclear test of STARFISH 

PRIME [2]. According to Fishell’s study of this case, the satellite’s solar cells had a large drop in 

power in the following month after the STARFISH PRIME test which resulted in their failure. 

This case provides an example of how the induced radiation from a nuclear detonation can cripple 

a satellites function and cause serious damage to the onboard electrical components. 

 With the advances in technology allowing for the development of more refined electronics, 

this has caused many of these electrical components to reduce in size and complexity. These micro-

electronics are much more sensitive to radiation damage and current fluctuations. When radiation 

hits a material, it ionizes atoms causing electrons to be discharged. These electron vacancy’s cause 

disruptions in the surface potential difference of materials which depending on the component can 

cause irregular current flow that can be extremely damaging [1]. This extreme sensitivity of 

electrical components will only increase with their complexity, meaning that radiation damage to 

these components will become a greater threat as technology advances. 

 The research done in the field of X-ray induced damage to solar cells has a very narrow 

breadth. Most of the information gathered has either been through the study of damage done on 

satellites after upper atmospheric nuclear tests in the late 50’s and early 60’s [1], or studies done 

in lab settings. While they do exist, the number of experiments is limited. One such study was 
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done in the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) 

[3]. In this study solar cell response to X-ray pulses was analyzed to better understand damages 

caused by nuclear weapons. A high intensity laser beam was shot at a target, ionizing it to create 

a source of X-rays [3]. The X-ray radiation was absorbed by a solar cell and current vs. voltage in 

the cell was measured. Surface defects were also analyzed to determine any damage done to the 

physical structure of the cell. The results of the study showed that the solar cell had no substantial 

degradation in performance, and the cover glass on the cell was still intact. There were, however, 

cracks that appeared in the cover glass. This response showed that the cover glass was effective at 

inhibiting damage into the solar cell because most of the energy deposited into the cell was 

extremely close to the surface on the cover glass [3]. The report concluded that more research 

needed to be invested into this topic to study the effects of radiation damage to solar cell arrays, 

because this study only examined single solar cell as the target.  

 What will be discussed in this thesis are the computational efforts made to better 

understand the effects of cold X-rays on solar panels of satellites in orbit. Most of the research has 

been completed using a computer code named GEANT4 [4], which is a simulation tool used for 

analyzing the interaction of radiation with materials. This code is used to predict the effects of cold 

X-rays on solar panels by examining the energy as well as the power density deposited by X-rays 

into materials of solar cells. The validation of the code used in this research was done through 

energy deposition profiles generated through experiments and computational methods [5]. The 

power density profiles are then used in a Molecular Dynamics (MD) simulation tool named 

LAMMPS [6], which can calculate how this power density deposited into the solar cells affects 

the material. Using these computational tools, a better understanding could be grasped on the 

damage that can be caused by cold X-rays on solar cells. 
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Chapter 1: 

Physics of Radiation Interaction with Materials 

 

1.1 X-ray and Electron Interactions with Atomic Electrons  

 

  Radiation damage is part of the field of nuclear physics. Radiation is considered a 

subatomic particle with high energy that causes ionization of material. To study the transport of 

radiation in materials, the physics of particle interactions needs to be examined. In this study X-

rays are the main source of radiation, which use photons as the particle that is causing ionization. 

To better understand the effects of this radiation, the particle interactions from X-ray radiation that 

cause ionization will be analyzed.  

When X-rays interact with an atomic electron there are a couple different effects that can 

result from their collision. For the purposes of this research only photoabsorption and Compton 

scattering are substantial because the results studied are concerned with energy deposited 

throughout the material at specific locations by cold X-rays. Interactions of photons with matter is 

based on the distance a photon can travel before a collision. The probability of this collision is a 

relation between the energy of the incoming photon and the atomic number Z of material, and is 

called the absorption cross section of the atom. The absorption cross section changes based on the 

energy of the incoming particle as well as the number density of atoms in a unit space. Based on 

this absorption cross section, a property called the mean free path can be calculated. The mean free 

path is in units of distance and describes how far a particle will travel inside of a material before 

it collides with an atom. Photoabsorption is the phenomena of a photon being absorbed into an 

atom resulting in the atom entering an excited state with an increased amount of energy. This 

increase in energy can then cause a secondary reaction which is the ejection of a photoelectron. 

Once a photon collides and is photoabsorbed that is the end of a photons path. 
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The probability of photoabsorption depends on the photoabsorption cross section of a 

material. This cross section involves the intensity of the incoming photon flux described as  

𝐼(𝑥) =  𝐼𝑜𝑒𝛴𝑥 

where I(x) is the intensity of the photon flux at distance x inside the material, Io is the initial 

intensity of photons, Σ is the macroscopic cross section of interaction, and x is the distance into 

the material the photons have traveled. The macroscopic cross section is computed using the 

equation 

𝛴 = 𝑁𝜎 

where N is the atom number density of the material, and σ is the microscopic cross section of 

interaction based on the material and particle energy. These are both used to determine the collision 

density inside a material as 

𝐹 = 𝐼𝛴 

where F is the collision density in units of (collisions/cm3·s). This gives the number of collisions 

that occur in a unit space per unit time [7]. 

Compton scattering is the other photon interaction process. It occurs when a photon 

collides with an atomic electron and bounces off, only transferring a portion of its kinetic energy 

to the electron. This will slow the photon down and change its trajectory. This phenomenon must 

be tracked because when a collision occurs a portion of the photon’s energy is transferred to an 

electron, which is one of the main characteristics being studied. The relationship between the 

escape angles of an electron and photon is described as follows: 

𝑐𝑜𝑡
𝜃

2
= 1 +  

ℎ𝑣

𝑚𝑐2
𝑡𝑎𝑛𝜙 
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 where θ is the escape angle of a photon and goes from 0o to 180o, h is Planck’s constant, v is 

frequency of the photon, m is the mass of the electron, c is the speed of light, and ϕ is the escape 

angle of the electron which goes from 0o to 90o [8]. This along with the energy deposited by 

photoabsorption are what cause the energy deposition inside the material when exposed to X-ray 

radiation. 

The last case examined for the relevant interactions was the production of secondary 

photons and electrons. The energy of the ejected electron is dependent on the energy of the 

incoming photon. The energy required to remove an electron from its orbital shell is related to the 

binding energy of the electron [8]. This means that the photon must have more energy than the 

binding energy of the electron to ionize it from its shell. This also means that the energy of the 

ejected electron is equivalent to the remaining energy of the incoming photon. Therefore, the 

energy of the electron is equal to the energy of the photon after removing the binding energy of 

the electron, which is seen in the equation below [8].  

𝑇 = ℎ𝑣 − 𝐵 

where T is the kinetic energy of the emitted electron, h is Planck’s constant, v is the frequency of 

the photon, and B is the binding energy of the electron.  

 The electron response to radiation is an important reaction in the study of damage from 

radiation. When a highly energetic or charged particle collides with an electron it can result in a 

couple different reactions. When these particles interact a portion of energy is transferred from the 

particle in motion to the electron. This excited electron can either remain in the atom or be ejected 

from the orbital of the atom. If the electron is emitted, this loss of an electron is called ionization. 

The ionized atom now has a charge on it that can significantly affect the surrounding atoms. 
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Depending on which orbital the electron is emitted from an electron from a higher orbital can fall 

into the vacant spot in the lower orbital causing a release of energy in the form of a photon or 

Auger electron. The electrons that are emitted then can collide with other electrons. When the free 

electron loses energy, it emits photons with values of energy up to that of the energy lose from the 

electron. This effect of radiation produced from energy lose in electrons is called bremsstrahlung 

or breaking radiation [9]. 

Another aspect of the physics that is important to understand is how cold X-rays interact 

with matter. Cold X-rays are X-rays with energies between 1 – 1.5 keV. This is an extremely low 

energy X-ray. As discussed earlier, the absorption cross section of an atom is directly related to 

the energy of the incoming particle. As the energy of the incoming photon decreases, the 

absorption cross section increases and the mean free path decreases. This means that there is a 

higher chance of the photon interacting with a particle after a shorter distance traveled while inside 

the material. For cold X-rays most of the energy deposited is within the surface layers of the 

material because of this. One of the main reasons for studying the effects of cold X-rays on the 

surface solar panels is because solar panels are extremely thin structures and most of the energy 

will be deposited on their surface, potentially causing material deformations. 

1.2 Spectral Energy Distribution of Blackbody X-rays  

 

The blackbody X-ray spectrum is used for determining initial energy of incident photons. 

It is the energy distribution that occurs from an upper atmospheric nuclear detonation. The 

incoming X-ray energies can be calculated using a spectral blackbody Planck function in terms of 

photon energy. This was derived from Planck function in terms of frequency which is written as   
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𝑑𝑁(𝜈, 𝑇)

𝑑𝜈
=

2𝜋𝜈2

𝑐2

1

exp(ℎ𝑣 𝑘𝑇⁄ ) − 1
    [

1

𝑐𝑚2 ∙ 𝑠 ∙ 𝐻𝑧
] 

 

 

where 𝑣 is the photon frequency,  ℎ = 4.1356677 × 10−18 𝑘𝑒𝑉 ∙ 𝑠 is Planck’s constant, 𝑐 =

2.99792458 × 1010 𝑐𝑚/𝑠 is speed of light, 𝑘 = 1.380649 × 10−23 𝐽/𝐾 is Boltzmann’s constant, 

𝑇 is temperature, and 𝑘𝑇 [𝑘𝑒𝑉] is thermal energy. This spectral photon flux can be written in terms 

of photon energy 𝜀 = ℎ𝜈 as  

 

𝑑𝑁(𝜀, 𝑇)

𝑑𝜀
=

2𝜋𝜀2

𝑐2ℎ3

1

exp(𝜀 𝑘𝑇⁄ ) − 1
[

1

𝑐𝑚2 ∙ 𝑠 ∙ 𝑘𝑒𝑉
] 

 

The photon flux, i.e. number of photons emitted per second per unit surface area of a blackbody, 

can be obtained by numerical integration taken over the corresponding spectral energy intervals  

 

𝑁(∆𝜀𝑖, 𝑇) =
2𝜋

𝑐2ℎ3
∫

𝜀2

𝑒𝑥𝑝(𝜀 𝑘𝑇⁄ ) − 1

𝜀𝑖+1

𝜀𝑖

𝑑𝜀  [
1

𝑐𝑚2 ∙ 𝑠
] 

 

The numerical integration was performed using an accurate method of Gaussian quadratures. This 

gave a relationship between photon flux and photon energy. These energy and flux arrays that were 

mapped to each other were then used to create a probability density function to give an accurate 

estimation of the flux and energy values for each incoming photon. If the thermal energy is 1 keV 

the temperature is approximately 12 x 106 K. The total summed flux for this energy is 

approximately 2.4 × 1032 𝑝ℎ/(𝑐𝑚2 ∙ 𝑠). This value can be calculated numerically using the 

following equation.  
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𝐹𝑝ℎ =
4𝜋𝜁(3)

𝑐2ℎ3
𝑘3𝑇3 ≈ 2.38 × 1032  [

𝑝ℎ

𝑐𝑚2 ∙ 𝑠
] 

 
 
where 𝜁(3) ≈ 1.2 is known as Apéry’s constant. This lets us compare the calculated flux to a 

numerically found flux value to validate this method for defining flux values.  
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Chapter 2: 

Computational Models 

2.1 Monte-Carlo Method  

 

The Monte-Carlo (MC) method is a computer-based model of simulation using random 

sampling to produce accurate results in probability based problems. Particle interactions are 

simulated using this method because they work on a probabilistic model that changes based on the 

parameters of the problem being examined. The different physical properties present in which 

particles interact change the probabilities of interaction. Factors such as initial energy of the 

incoming particle, mass density of the material they interact with, as well as distance to the target 

all impact the probability of interaction. This is why a MC simulation is used in this research, to 

generate accurate results for a problem that can only be examined theoretically.  

The modeling of X-ray interactions with materials is an extremely computer resource 

intensive process. Each photon produced by the source has to be followed, and the path that the 

particle takes is estimated based on a probabilistic model, the Mote-Carlo simulation. This 

simulation uses the characteristics of the incoming photon as well as the material it is going to 

interact with to determine how the photon will behave. In the simulation conducted for this 

research the different types of interactions considered were photoabsorption, Compton scattering, 

and the production of secondary photons and electrons. 

When using the Monte-Carlo method of simulating particle interaction, a couple 

parameters need to be established. The first being the source of photons. When considering the 

source, the initial energy of the photon must first be set. The properties of the target must also be 
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set. These initial parameters are needed in order to properly run a MC simulation. However, this 

method is extremely time and resource intensive. This is because modeling these interactions is 

based on probability. If only one hundred particles from the source X-ray are followed, the 

probability distribution of how these particles interacted would almost certainly be wrong and 

would not produce a smooth trend. In order to increase the accuracy of a Monte-Carlo simulation 

an extremely large number of particles should be followed. The variance of this simulation can be 

described as 

𝜎2 =  
1

𝑁
  

where σ2 is the variance of the simulation, and N is the number of runs [10]. Variance describes 

the deviation from the mean value in probability theory. This relationship is derived from the 

Gaussian distribution applied to statistical analysis, which is used in approximating a distribution 

drawn from many outcomes and samples [10].  It shows that as the number of samples increases, 

the deviation from the mean also decreases.  

2.2 Set up of Geometry 

  

In this study, the effect of cold X-rays on a solar cell assembly was considered. The way 

in which the geometry of the solar cell was established is based on information provided by the 

US Naval Research Laboratory. The schematics of the solar cells is shown in Figure. 1, and the 

thickness, composition and mass density of each layer is reported in Table 1. 
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Figure 1: Solar Cell Configuration 

Layer Material Thickness (μm) Composition Mass 

Density 

(g/cm3) 

1 Anti-Reflective (AR) 

Coating 

.12  MgF2 3.148 

2 CMX Cover Glass 100 SiO2…….…….(63.6%) 

B2O3…….…....(10.4%) 

ZnO…………..(4.5%) 

BaO…………..(2.7%) 

K2O…………..(7.7%) 

Al2O3……........(4.7%) 

CeO2………….(4.6%) 

U3O8…….........(1.8%) 

2.6 

3 Silicone Adhesive DC 

93-500 

12 CH3[Si(CH3)2O]nSi(CH3)3 

 

*n is number of repeating 

monomer units 

.965 

4 Active Semiconductor  0.8 (GaInP) 

3.6 (GaAs) 

300 (Ge) 

*Layer is composed of 3 

subsections of GaInP, 

GaAs, and Ge 

4.475 

(GaInP) 

5.32 

(GaAs) 

5.3234(Ge) 

 

 

Table 1: Thickness, Composition and Mass Density of Solar Cell Layers 
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Using this information, a virtual box comprised of slabs representing each layer was constructed. 

The Kapton substrate was not included into the simulations of the solar cell because it is a substrate 

and any energy that penetrated this layer was considered not essential for the purposes of this 

research. 

 The other case that was studied corresponds to different angles of incident X-ray radiation 

onto the unshielded Germanium active semiconductor layer. This was done in order to examine 

how incident radiation on the unprotected side of the semiconductor would damage the component.  

The different angles are used to mimic the satellite being in different orientations with respect to 

the source of the nuclear detonation. This is the case that will be run through LAMMPS in order 

to study how the material reacts to the power density distribution imposed by the cold X-ray 

radiation. This will show whether the material will ablate and potentially interfere with adjacent 

solar cells. For this case a single layer of Germanium with thickness 5mm was exposed to direct 1 

keV X-ray radiation at 10, 45, and 80 degree angles of incidents. The setup of this case can be seen 

in Figure 2. 

 

Figure 2: Schematic of incident X-rays interacting with Germanium slab  
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2.3 MC Simulation using GEANT4 

 

 The Linux based computational physics software called GEANT4 is used to perform the 

MC simulation of X-ray transport in solar cell materials. GEANT4 is a computer program written 

and compiled in the C++ coding language. The GEANT4 software package includes the libraries 

containing the physical properties of many different materials as well as the cross sections and 

interaction processes of photons and electrons with atoms. The MC simulation of the transport of 

X-rays and secondary particles in materials is implemented into the GEANT4 software for 

conducting this research. The computer code development has involved the implementation of the 

spectral energy of blackbody X-rays, the multi-slab system to mimic a solar cell, different angles 

of incident X-rays into the active semiconductor layer of the cell, as well as the way in which data 

is collected as output from this computer code.  

 The first addition made onto the basic version of GEANT4 was the creation of a multi-slab 

system. Meaning that the program was changed from X-rays being shot at a box of one material, 

to a box of multiple layered slabs. These slabs were coded to be comprised of the same material 

and possessing the same material properties as the different components of the solar cell show in 

Figure 1 and Table 1. The slabs were then arranged and sized to match that of a single solar cell. 

This meant that the X-rays shot at the target material were being shot incident to a solar cell replica, 

and energy from these X-rays could be output based on depth of penetration across the system. 

 The next piece of code that was implemented was the method of collecting data. Collection 

of data had to be constructed for this research because the output of this simulation needed to be 

in an easy to use format so it could be displayed, and later used in the Molecular Dynamics 

software LAMMPS. The output of this simulation was two different energy distributions. The first 
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distribution was the averaged energy deposited at each point across the slabs. Energy deposition 

was calculated based on the total energy deposited at each point across the depth of the slab, and 

then divided by the total number of particles that were followed during the simulation. This gave 

an energy deposition profile across the array of slabs that comprised the solar cell and can be seen 

in Figure 4 in the results section of this paper. The other output for this simulation was the power 

density distribution of the X-rays across the solar cell array. Power Density used the spectral 

distribution of blackbody X-rays to incorporate a time variable into the output. Rather than energy 

deposited as each point, the power density at each point across the depth of the solar cell array was 

calculated and output.  

 This method of data collecting was also used in the single slab of Germanium case as well. 

The changes made to the code for this case were the angle of incidents as well as reverting the 

simulation to a single slab system. Different angles of incidents were implemented by using 

direction cosines to input the angle of the incoming particles. The energy deposition, power density 

distribution, as well as the information produced from the Molecular Dynamics software 

LAMMPS being fed into a visualization software called PyMol will be discussed in the results 

section. 

 The last piece of code that was implemented was the spectral distribution of blackbody X-

rays. The math behind this code was explained earlier in this thesis in section 1.2 Spectral energy 

distribution of blackbody X-rays. This code allowed for the flux of each particle based on initial 

energy to be calculated and used for the power density distribution output. The flux of the particles 

involves a time variable, which then allowed for the calculation of the power density at each point 

along the solar cell array. 
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2.4 Molecular Dynamics Simulation  

 

 Molecular Dynamics (MD) numerically models the motion of discrete atoms. There are 

many different applications of MD modeling, and here it will be used to analyze the response of 

the active Germanium semiconductor in the solar cell to different angles of incident X-rays. MD 

modeling was first used to simulate complex fluid interactions and was later used to model proteins 

[11]. Since then it has been expanding to fields of study in material science with the improvement 

in computational power, which allows for more atoms in simulations, and longer time intervals in 

runs. The MD modeling is used to improve understanding of how the physical material in solar 

cells responds to deposited energy from X-rays. 

The MD code being used is LAMMPS (Large-scale Atomic/Molecular Massively Parallel 

Simulator) which is a program developed for materials modeling as well as many other 

applications such as atomic, polymeric, biological, solid-state, etc. [5] The Momentum Scaling 

Model (MSM) was coupled with the MD method (MSM-MD) and implemented in LAMMPS to 

predict the ablation of materials by femtosecond laser pulses [12]. This MSM-MD approach was 

adapted and used to model the interaction of X-rays with solar cell materials. The input for 

LAMMPS is the power density distributions derived from GEANT4, which is used to model how 

the atoms in the Germanium semiconductor would respond and move after being exposed to that 

distribution of energy. The way the program is set up is by establishing the box that represents the 

environment for the MD case. This is done by establishing the lattice structure of the material, 

which is diamond for Germanium, as well as the lattice period which is the length in angstroms 

between each repeated lattice cell in the material. Then the number of times that this lattice is 

repeated in the X, Y, and Z direction of the box is declared. The energy profile from GEANT4 is 

then input into LAMMPS and the atoms inside the box are processed in the MD numerical 
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simulation to show how the atoms would move according to the material parameters and energy 

profile. This simulation will then output time moments of the material in the form of coordinates 

of the different atoms within the material that can be visualized with the help of PyMol. These 

results show the severity of material blow off from the different situations established in GEANT4. 
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Chapter 3: 

Results 

3.1 Results from GEANT4 

 

Multiple tests cases were run through the GEANT4 simulation of incident X-ray on the 

solar cells. The three cases were differentiated by the initial thermal energy of the photons which 

were 0.1, 1, and 10 keV. Each case had a probability density function (PDF) created based off the 

spectral Planck function for photon energies. The distribution of flux for each case as well as their 

PDF’s are shown below. 

 

Figure 3a: Probability Density Function for the three thermal energy cases  
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Figure 3b: Distribution of photon flux based on Planck’s function  

These plots show us that lower energy photons also have a lower flux from Figure 3b, but the 

probability of the incident photon having energy close to the mean value is also higher. 

Using the PDF of photon flux the different simulations could then be conducted. The first 

runs were energy deposition. The results from the energy deposition case are shown below in 

Figure 4. 
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Figure 4: Energy Deposition profile across solar cell 

The graph of energy deposition shows the energy deposited vs. the depth into the solar cell. The 

vertical lines represent the boundaries between the slabs. At these boundaries there are small 

discontinuities in the energy deposited for each case. This is a result of the different material 

properties changing the probability of interaction in the material. As the photons pass through the 

boundary of two layers, the probability of interaction changes as well, resulting in small jumps in 

deposited energy. From these graphs it is also clear that the lower energy X-rays deposit more total 

energy towards the surface of the material but also have less penetration into the material. 

Comparing the 0.1 keV and 10 keV cases, the 0.1 keV X-rays does not penetrate past the cover 

glass layer (CMX), while the 10 keV X-rays appears to have deposited a large amount of energy 

into the active semiconductor portion of the cell (Ge) and even had photons penetrate past this 



27 
 

layer. The 1 keV X-rays, which are the X-rays that have energy closest to that of the cold X-rays 

produced from a nuclear detonation also show energy deposited into the active solar cell 

component. This means that some of the energy did accumulate in this region and could potentially 

cause damage to the cell. 

 The next portion of data that was collected was the power density distribution across the 

solar cell. The same three cases were run to collect this data and were converted to incorporate the 

flux of the incoming particles into the data collection process. The figure below shows the results 

from this run. 

 

Figure 5: Power density distribution across solar cell 

This graph shows the power density of the three thermal energy X-ray simulations across the solar 

cell. From this a different interpretation of the X-ray penetration compared to the energy deposition 
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profiles can be observed. Here the power density present in the surface anti-reflective (AR) layer 

of the solar cell is higher for the 10 keV X-rays, where in the energy deposition profile the 0.1 keV 

X-rays had the most energy deposited here. This can be explained with the graph of photon flux’s 

in Figure 3b. Looking at this distribution, the flux of X-rays with blackbody temperature of 0.1 

keV at its peak is six orders of magnitude lower than the peak of the 10 keV X-rays This means 

that there is a much greater number of photons interacting with the material in the 10 keV case 

every second. Because of this the power absorbed by the solar cell is much higher than the 0.1 keV 

case, even though the 0.1 keV case deposits more total energy over the run. This graph also shows 

that there is a high power density in the active solar cell component for the 1 keV case. These 

results give more evidence that the X-rays from an upper atmospheric nuclear explosion could 

potentially harm a solar cell array attached to a satellite. 

 The other case examined through GEANT4 was the effect of different angle of incidence 

into the active solar cell component comprised of Germanium. This was done to show how at 

different satellite orientations to the nuclear explosion, X-rays could directly interact with the 

Germanium layer of the solar cell through the unshielded gaps between the cells. Three different 

cases were run to better understand this scenario: 10, 45, and 80 degrees from the surface. The 

results in the form of a power density distribution graph are shown below in Figure 6. 
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Figure 6: Power density distribution of different angles of incidence into Germanium layer 

Figure 6 shows the power density profiles of 1 keV X-rays incident at the three different angles 

into the unshielded Germanium slab. As expected, the shallow angle of 10 degrees from the surface 

of the material has the highest power density closest to the surface of the material, but also 

penetrates the least. Conversely, the 80-degree X-rays have the deepest penetration but lowest 

power density close to the surface. This is due to the geometry of the X-rays colliding with the 

material. For the 10-degree X-rays, the X-rays are almost parallel to the surface of the material, 

causing most of the X-rays to interact somewhere close to the surface. This also caused the rapid 

drop off in energy deeper into the Germanium slab because all the photons were interacting close 

to the surface, and therefore, did not have enough energy to penetrate deeper into the slab. The 80-

degree case is the opposite of this. Because the 80-degree case was close to a directly straight on 
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interaction, the photons could travel farther into the material before interacting, resulting in the 

trend show in Figure 6. Another interesting result from this graph was the 45-degree case. It is 

almost identical to the 80-degree case with just a little more power density close to the surface and 

a slightly shallower penetration. It appears that as the angle increases the change between the cases 

degreases.  

3.2 Results from LAMMPS 

 

 The MD simulations in LAMMPS use the power density profiles created in GEANT4 as 

inputs for the MD simulation. Using these power density distributions, a visual representation can 

be created of the material response to the X-ray interactions. LAMMPS’ MD simulation output is 

in the form of XYZ coordinate file, containing the position of particles in the Germanium slab at 

different moments. The time moments that best show the material reaction are shown below in the 

following figures which were output using the visualization software PyMol. 
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Figure 7: MD results from 10 degree case 

 

Figure 8: MD results from 45 degree case 

 

Figure 8: MD results from 80 degree case 
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The figures shown contain a couple time moments of the simulations that demonstrate the 

differences as well as similarities between the different cases. Initial time moment of 0 picoseconds 

(ps), as well as 0.5 ps, 1 ps, 2.5 ps, 5 ps, and 10 ps are shown in each case for the sake of 

comparison. These times represent the iterations of the MD simulation which were output 

periodically. Each time snapshot occurred after 500 iterations of this simulation, where each 

iteration is equal to 0.001 picoseconds (ps). The small white rectangle on the left side of each time 

moment is the surface of the Germanium slab. LAMMPS stopped the simulation at the 20th time 

moment or 10 picoseconds, which is shown in each case.  

 Looking at the cases for different angles of incidence the results from the MD simulation 

follow what would be expected from the power density profiles produced in GEANT4. The case 

of 10 degrees had the highest power density at the surface of the material, which caused a larger 

and faster blow-off of material from the Germanium slab. Time 0.5 ps from the 10-degree case has 

particles ejected at a further distance than the other two cases. This becomes more obvious at time 

1 ps and 2.5 ps where their position across the computational domain is much greater in the 10-

degree cases compared to the 45-degree and 80-degree cases. At time 2.5 ps the 10-degree case 

has material reaching and most likely extending past the computational domain of LAMMPS while 

the other two cases have not reached the end of the domain. The latter time 5 ps the ejected particles 

are already starting to leave the domain all together for the 10-degree case, but for the others there 

is still much of the ejected matter present, and it does not appear to leave the domain until time 10 

ps. 

 These results from LAMMPS validate the assumptions made from the power density 

profiles in GEANT4. Because of the high power density more damage was expected to occur from 

the 10-degree case, while the 45 and 80-degree cases were close to identical with only slight 
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variation and less severe material ejection. LAMMPS has proven to be a useful tool to help validate 

the assumptions made based off the power density profiles generated in GEANT4. 
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Conclusions 

 

 The results on the energy deposition and power density derived from GEANT4 as well as 

the MD simulations using LAMMPS provide the understanding of the material response to cold 

X-rays produced by upper atmospheric nuclear detonations. The results of power density from the 

simulated solar cell being irradiated with different temperature X-rays shows that the effects of 

cold X-rays can potentially be damaging to the active layer of a solar cell. The case of X-rays with 

blackbody temperature of 1 keV is important here because it shows that energy produced from a 

nuclear detonation can penetrate this active layer and potentially cause blow off of material and 

the formation of warm dense plasma. The difference between the energy deposition and power 

density profiles, where blackbody 10 keV X-rays have the least energy deposition and most power 

density close to the surface, is due to the photon flux. The 10 keV X-rays has a flux that is six 

order of magnitude greater than that of the 0.1 keV X-rays. This is why even though the 10 keV 

X-rays had lower energy deposited in the front layer and also higher power density. The number 

of X-rays depositing energy per unit time was much greater because of the number of photons 

being shot into the cell per unit time. 

 The simulation of different angles of X-rays incident directly onto the active layer of the 

solar cell show how the orientation of the satellite can affect the power density distribution into 

the semiconductor component of the solar cell. At very shallow angles most of the power density 

is absorbed very close to the surface, meaning that the surface material is much more likely to 

blow-off and potentially disable the solar cell. While a large power density still deposited at steeper 

incident angles in the surface and can still damage the cell, they cause less damage compared to a 

shallow angle where all the power is deposited at the surface of the material. The drop-off of power 
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density deeper into the cell is also a result of the angle of incidence. This is another result that 

shows how the shallow angles cause all the X-ray’s power to be distributed close to the surface, 

creating a larger change of material blow off.  

 Future considerations for this research would be using the power density distributions from 

GEANT4 for the full solar cell and simulate the MD response in LAMMPS to study the material 

–blow-off for the entire solar cell. Using the power density profile from GEANT4 for the whole 

solar cell in an MD simulation would provide an idea of how the solar cell would respond, and if 

any blow-off would appear. Then using the MD results from both cases, the electrical and thermal 

properties of these material ejections could be studied to discover if they would damage adjacent 

solar cells. Using this information, new methods of shielding solar cells could be analyzed and 

implemented to protect solar cells on satellites from cold X-rays produced by upper atmospheric 

nuclear detonations.   
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