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Currently, there is an increasing demand for natural therapies and herbal 

products to treat various ailments. It is generally believed that natural therapies have 

fewer side-effects than traditional western medicine; however, they are often used in 

different strengths and formulations without consistency of the levels of target 

compounds or knowledge about toxicity. Due to this growing trend, a comprehensive 

chemical evaluation of plants used for medicinal purposes is necessary. 

Pseudognaphalium obtusifolium is a plant that has been used historically by 

Native Americans as an herbal medicine. It is a flowering plant belonging to the 

Asteraceae family indigenous to the Eastern United States.  There are documented 

accounts of the Native Americans using the herb therapeutically. Reportedly, they used 

the plant to prepare tea and as filler for bedding.  Additionally, they smoked the plant 

material. 
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To date, there has been little research published on the chemical composition of 

this plant. Thus, the objective of this work was to conduct a chemical survey of P. 

obtusifolium using methodologies that would simulate the three historical routes of 

administration (tea, bedding material, and smoke inhalation).  

To determine the types of compounds that may be found in the plant, initial 

experiments using pressurized solvent extraction (PSE) with an ethanolic solvent were 

performed followed by analysis using gas chromatography – mass spectrometry (GC-

MS) in scan mode.  This extraction technique enabled a broad range of compounds to 

be identified.  

For the analysis of the tea, the leaves and the flowers were ground and analyzed 

separately. The “tea” simulation was then performed using a water extraction which was 

then back extracted into dichloromethane for GC-MS analysis in Selected Ion 

Monitoring (SIM) mode.  Seventeen target compounds (terpenes, terpinoids, flavanoids, 

etc.) were quantified using this method. 

A bedding material simulation was performed using headspace solid phase 

micro-extraction (HS-SPME) to collect the volatile and/or semi-volatile components of 

the headspace. The compounds collected on the SPME fiber were then analyzed by 

GC-MS in scan and SIM modes to qualitatively and quantitatively determine the types of 

chemical compounds (most of which were terpenes) that may be off-gassed from 

bedding material.  This analysis compared levels of compounds in two different crop 

years and four terpene compounds were quantified. 
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To simulate smoking of the plant material, the leaves and flowers were fashioned 

into smoking articles. Sample collection was performed by a smoking machine and 

smoke condensate was collected. The smoke condensate was then analyzed by GC-

MS in scan mode.  As combustion and pyrolysis of plant material are known to produce 

toxic products, specific potentially harmful compounds were investigated and quantified. 

This chemical analysis of P. obtusifolium identified target compounds that can be 

found in the three simulated usage forms.  Identification of these compounds gives 

insight on why the Native Americans may have used P. obtusifolium as an herbal 

medicine.  Among the detected compounds, there were many unknowns.  Elucidating 

these unknown compounds will be important in the effort to understand the full chemical 

profile of this plant.   
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1 Introduction  
 

Identification and chemical characterization of our native flora is an important area 

of scientific research. Structurally diverse natural flora can provide a valuable source of 

therapeutic agents that can be useful in the treatment of disease. There are multiple 

documented historical accounts that show that people used the plants found in their 

environment for medicinal purposes.   

 Historic use of plants as medicine 
 

A classic example of people historically using plants for medicine is the treatment 

for malaria. The Center for Disease Control and Prevention (CDC) describes malaria as 

a mosquito-borne disease transmitted by the Anopheles mosquito [1].  The mosquito 

infected with the parasite Plasmodium falciparum or Plasmodium malariae transmits the 

parasite to humans following a bite [2]. When people are infected with the parasite they 

usually present with high fevers, followed by a host of other symptoms such as flu-like 

conditions, nausea, vomiting and, in extreme conditions, death [1].  In the 1630’s Spanish 

conquistadors introduced the bark of the cinchona tree (Cinchona officianalis) to Spain. 

This bark was used by native Peruvians to cure fevers and treat other symptoms of 

malaria [3].  It has commonly been referred to as Jesuit’s bark, cardinal’s bark, or sacred 

bark, and the cure quickly spread across all of Europe [4].  For approximately 300 years, 

the bark of the cinchona tree was the only known effective remedy for malaria [3,4] .  

For the treatment of malaria, the bark of the cinchona tree was first dried, ground 

to a fine powder, and then mixed into a liquid (commonly wine) before being consumed 

[3]. While this method was effective in the treatment of the disease, the cure could be 
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compromised if the bark that was not from the cinchona tree or the cinchona tree bark 

was not well preserved. To standardize treatment, in the 1820’s two professors, Pierre 

Joseph Pelletier and Joseph Caventou, at the School of Pharmacy in Paris, isolated the 

active compound, quinine, from the tree bark enabling the physicians to prescribe the 

drug more accurately [4]. The professors also found that not only quinine was effective 

against malaria, but they were also able to isolate other cinchona alkaloids, including 

quinidine, cinchonine, and cinchonidine that were also effective anti-malarials [4]. In 1944, 

due to wartime pressure, American chemists Woodward and Doering accomplished a 

formal synthesis of quinine without the aid of natural sources [5]. Today malaria is still 

relevant; the CDC estimates that in 2016 there were 216 million cases of malaria 

worldwide with 445,000 cases ending in death [6]. Quinine is one of the drugs still used 

as a treatment for malaria [7]. For a short time, it was replaced by chloroquine but due 

the increasing chloroquine resistance by the organism Plasmodium falciparum it is again 

a key drug of choice for malaria treatment [3,7]. 

Aspirin is another common medicine whose inspiration for synthesis came directly 

from historical use of a plant.  In the 18th century Reverend Edward Stone reasoned that 

since cinchona bark was effective in the treatment of fevers, due to its same bitter taste, 

willow bark could also be used in the treatment of fevers [8].  While his scientific method 

does not meet today’s standard, he successfully treated people suffering from fevers with 

the willow bark. Later, researchers learned that salicin and other similar natural 

compounds isolated from willow bark, collectively called salicylates, effectively reduced 

fever, pain, and swelling [8]. The success of these willow tree natural product isolates led 

the German company, Bayer, to design a compound modeled after salicin and other 
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active metabolites that could compete with the natural salicylates available at that time 

[4].  Bayer designed O-acetylsalicyclic acid which is now recognized by the common drug 

name of aspirin [4].  Aspirin is still found in our medicine cabinets today where it is still 

used as an analgesic to treat fever, pain, and inflammation.  

Currently another concern is increasing antibiotic resistance to β-lactam 

antibiotics.  The Centers for Disease Control (CDC) has implicated methicillin – resistant 

S. aureus (MSRA), a bacterium, as being responsible for doubling the amount of 

hospitalizations from 127,036 to 278,203 from 1999-2005 in the United States [9]. This 

bacterium is commonly found on skin of healthy individuals and often becomes difficult to 

treat once it becomes resistant to multiple antibiotics [10]. Antibiotic resistance could lead 

to mortality and already some drugs of last resort such as vancomycin, which is a 

nephrotoxin, are becoming increasing ineffective in treating the disease [10,11].  

In 2015, Harrison et al. were able to recreate a 1000-year-old antimicrobial remedy 

for MRSA using plants found in a 10th century Anglo-Saxon medical text (Bald’s 

Leechbook) [12]. The cure was listed in the medical text under Bald’s eyesalve which was 

designed to treat eye infection. Reproducing the cure which consisted of garlic, leek, 

oxgall, wine, and brass was not effortless; the curative was written in Old English and first 

needed to be translated [12]. Next, there were no detailed amounts of each component. 

The research group found, upon reconstruction of this cure, reproducible results in the 

eradication of established Staphylococcus aureus biofilms in an in vitro model of soft 

tissue infection [12]. This cure known as an “ancientbiotic” outperformed vancomycin and 

was also able to eradicate MSRA in chronic mouse wounds that were infected with MSRA 

[12]. The Harrison group made three specific conclusions from this study: 1) plants and 



4 
 

plant models can continue to help in the development of new drug therapies, also 2) 

remedies of the past should be explored to see if they are capable of yielding new 

treatments for disease. 3) A more combinatorial approach capitalizing on the synergy of 

bioactive compounds may often be more therapeutic than the isolation of single target 

molecules [12]. This point is even further reinforced by the Harrison group which found 

that the combination of ingredients listed in the medieval text were crucial for full activity 

against MSRA [12].  

 Demand for natural therapies vs. understanding of safety and efficacy 

 

Currently there is an increasing demand for natural therapies and the use of 

herbal products to treat various ailments. While scientific evidence exists regarding 

some complementary and alternative medicine (CAM) therapies, for most herbal 

medicines, there are key questions that are yet to be answered through well-designed 

scientific studies such as whether these therapies are safe and whether they work for 

the purposes for which they are used [13]. It is generally believed that natural therapies 

have fewer undesirable side-effects, but this is not true in all cases of natural product 

use.  Furthermore, since there is limited regulation, they are often used in different 

strengths and formulations without consistency in content or knowledge about toxicity 

[14]. For this reason, The World Health Organization (WHO) published guidelines in 

1998 that establish quality, safety, and stability protocols for plant materials [15].  These 

guidelines are tailored to industries that may use natural products commercially and 

have little effect on the home user. Plant products used as therapeutics have many 

challenging factors that could possibly affect the quality of the natural remedy [16].   
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A factor that is difficult to control from one plant to the next is the level of 

bioactive compounds. Bioactive compounds may be affected by many genetic and 

environmental factors. Some environmental factors that affect plant growth and 

development are temperature, carbon dioxide, light, water, nutrients, and breeding [17]. 

Variability can also come from the modes in which the plant is prepared for consumption 

[14].  

Another factor that may lead to variation in the levels of bioactive species in plant 

material when testing is the multiple ways in which herbal solutions are stored and 

prepared after harvesting.  Tseng et al. studied the effects of different drying methods 

and storage times in two grape cultivars to determine which condition yielded the 

greatest retention of bioactive compounds. Even though they determined the drying 

methods that retained the highest levels of bioactive compounds, these yields were 

reduced significantly after 16 weeks of storage at 15 ± 2 ºC [18].  

 Historical usage of Pseudognaphalium obtusifolium as a medicinal plant 

P. obtusifolium is of interest because there are multiple documented accounts 

where parts of the plant have been used historically for medicinal purposes [19–24].  It 

also has an aromatic smell characteristic of terpenes which can also suggest bioactivity 

[25,26]. Historically the leaves and flowers of this plant have been used by Native 

American tribes as a medicinal herb in a variety of ways.  The Peterson Field Guide to 

Medicinal Plants and Herbs of Eastern and Central North American, documents ways 

Indigenous Americans used the herb to cure a variety of ailments such as sore throats, 

pneumonia, cold, fever, upset stomach, abdominal cramps, rheumatism, vaginal 
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discharge disorder, bowel disorders, asthma, coughs, mouth ulcers, tumors, and as a 

diuretic [22].  The field guide lists the plant as also being a mild nerve sedative and 

antispasmodic [22].  

It has been reported that the Creek Native American tribe referred to the herb as 

Ahålobaktsi or Halobåktci [24].  The annual report also records that the Creek used the 

herb as a cure for mumps, bad colds, upset stomachs, and as a rest aid. The Creek 

also used this herb to add a “perfume” to other medicines [24].  

 A 1983 dissertation by Croom has provided a more detailed summary than other 

accounts of the use of this plant by the Lumbee Native American tribe.  In the Croom 

account, P. obtusifolium was one of the more popular plants of the Lumbee and was 

used in many herbal remedies to treat colds, flu, neuritis, asthma, coughs, and 

pneumonia [23]. The Lumbee also stuffed pillows (e.g., bedding) with the herb to 

prevent asthma attacks [23].  The herb is typically combined with other plants, but it is 

also used alone [19,23].   Smoking the herb is not mentioned in the Lumbee Native 

American historical account; however, other sources indicate that the plant was also 

smoked to treat asthma [20,21].  

In a study of Lumbee traditional medicine in 2017, Rochet et al. tested water 

extracts of P. obtusifolium in addition to eight other plants. The extracts were prepared 

with 10 grams of the whole plant in 50-100 mL of water and were found to have a total 

polyphenolic content of 2.8 % using the Folin-Ciocalteu assay [27]. According to the 

study design, they found that P. obtusifolium extracts did not alleviate neurotoxicity 

caused by Parkinson’s disease related systems which was one of the focal points of 

their research [27]. There have been other groups that have done exploratory work to 
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investigate the herb’s anticancer properties [28]; however, aside from the study by the 

Rochet et al. research group, there has been no published research on the compounds 

found in this plant.   

  Pseudognaphalium obtusifolium identification 

  
P. obtusifolium has been identified as being indigenous to the eastern United 

States.   P. obtusifolium is an annual flowering plant belonging to the Asteraceae family. 

It is found in dry clearings, fields, and woodland edges. The plant can grow to heights of 

approximately 1-2 feet tall with densely woolly stems (Figure1A and D) [22]. The leaves 

are green on top and silvery or white underneath (Figure1B).  The numerous alternate 

leaves are narrow and attached directly to the base of the plant without a stalk 

(Figure1B) [29,30].  The small, off-white flowers are numerous consisting of many flower 

heads (Figure1C and D) [29,30].  The flowers become an off-white to tan color once 

dried.  

 Some observations made during the growing period is that the plant can grow in 

full sun but seems to thrive better in partial shade and dry sandy soil. The leaves and 

flowers have a complex fragrant aroma that can be described as “piney/lemony” with 

additional “caramel or maple syrup” notes. The aroma is more pronounced in the dried 

plant. 
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Figure 1. Stages of Pseudognaphalium obtusifolium development: (Left to right) A) June- July 
young plants; B) August - September flowers forming; C) and D) September – October plant in 
bloom. 

   

 Overview of sample preparation and extraction techniques 
 

The chemical profiling of P. obtusifolium  was tailored for the three common 

usage forms (tea, bedding material, and smoke inhalation) [21,23].  Pressurized solvent 

extraction and liquid/liquid solvent extraction were used to characterize compounds 

found in the tea while headspace extraction was used to identify compounds found in 

the bedding material. Compounds in the smoke were identified using smoke collection 

and extraction techniques. 

1.5.1 Pressurized Solvent Extraction (PSE)  
 

Solid-liquid extraction techniques are used for preparative purposes when analytes 

require separation from a solid sample matrix. The most widely used solid-liquid 

extraction technique for extracting bioactive compounds is Soxlet extraction [31]. Soxhlet 

extraction is not ideal for characterization of plant material because during Soxhlet 

extraction, heated solvent continuously flows over the solid material. This constant heated 
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flux coupled with lengthy extraction times could cause analyte degradation for heat labile 

compounds. Due this possibility alternative extraction techniques were explored. 

Pressurized solvent extraction (PSE) also known as, pressurized fluid extraction 

(PFE), and accelerated fluid extraction (ASE) or enhanced solvent extraction (ESE), was 

chosen as an extraction method because it uses elevated temperature and pressure to 

increase both the rate and efficiency of the extraction thus allowing for shorter extraction 

times [32]. The elevated pressure allows the plant cell structures to be ruptured and the 

analytes more easily released, which leads to low solvent expenditures and faster 

extraction times [32]. PSE is usually automated; therefore, it also provides some 

standardization to the extraction process. For plant matrices, this standardization is 

necessary because there are many other factors that are difficult to control.  

PSE yielded an aqueous extract but most of the less polar bioactive compounds, 

which were the target for this study, are more soluble in an organic phase. For this reason, 

the second step of the extraction process used liquid/liquid extraction to partition or 

separate the compounds based on their relative solubilities in two immiscible liquids. In 

this way the liquid/liquid extraction step also provides some measure of sample clean-up 

because many of the aqueous components may not be as soluble in an organic solvent 

extraction. Liquid/liquid extraction is described by equation 1 [33]: 

Equation 1: 

Kd=
Co

Ca
 

where Kd is the distribution ratio, Co is the concentration of the target analyte in organic 

phase and Ca is the concentration of the target analyte in aqueous phase [33]. 
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The Kd may be influenced by many factors such as temperature and pH of the solution.   

1.5.2 Solid Phase Extraction (SPE) 
 

Another extraction technique that was used in this study was solid phase 

extraction (SPE). This preparative extraction technique used for liquid samples is 

beneficial for reducing undesirable components of the plant matrix that can interfere 

with isolation of the desired analytes. In SPE desirable components of the plant extract 

can be retained on the solid phase (also referred to as the sorbent phase) and eluted 

with a compatible solvent yielding a cleaner sample for analysis [34,35]. Conversely, the 

undesirable elements of the plant matrix can be retained by the sorbent phase which 

also yield a cleaner sample.  

 There are a range of phases that are commercially available; they include silica, 

activated carbon, C18, C8, C5, C4, phenyl, diol, amino bonded silica, ion exchange 

phases and polymer phases [34]. There are also salting out extraction techniques such 

as Quick, Easy, Cheap, Effective, Rugged, and Safe (QueChERS) which combine salts 

and SPE materials to enhance extractions [35,36].  

Activated carbon, C18, and QueChERS were experimented with in this work. 

Activated carbon removes nonpolar compounds such as compounds responsible for 

pigmentation as well as sterols. C18 phases are beneficial for removing nonpolar 

interferences such as fats and waxes.   QueChERS is a technique that combines salting 

out with sorbent phases [35,36]. Salting out describes an event where the solubility of a 

nonelectrolyte substance in water decrease with increasing salt concentration [35,36]. 

The QueChERS technique in this study used NaCl combined with the sorbent MgSO4. 
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The purpose of MgSO4 was to remove excess water from the extraction matrix.  Sample 

cleanup steps are important because they may prolong the life of the GC or UPLC 

column while also improving sample recoveries and accuracy [37]. 

1.5.3 Headspace Extraction  
 

When identifying compounds found in the bedding material, another sample 

extraction technique referred to as headspace extraction was employed. Headspace 

extraction is a technique that is used to characterize gas phase components that are a 

part of a solid or liquid sample. The headspace sampling technique, referred to as static 

headspace is represented by a closed sampling system where vapor phase and the 

sample are in equilibrium [38]. In static headspace the sample may be heated for a set 

time so that the volatile components of the sample are in equilibrium between the gas-

phase and the sample.  The power of the headspace separation technique comes from 

the fact that the more volatile compounds move into the gas phase while the heavier, 

less volatile compounds remain in the bulk sample.  When equilibrium is reached a 

portion of the gas phase is collected and analyzed by GC-MS.  The headspace 

equilibrium is described by the equation 2 below [38].  

Equation 2 

A∝Cg=
Co 

K+
Vg
Vs

 

The variable A represents the GC-MS peak area. Cg is the analyte concentration 

in gas-phase. Co is the analyte concentration in the sample. K is the partition coefficient 
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of a given compound between the gas-phase and sample-phase. Vg is the volume of 

the gas-phase. Vs is the volume of the sample phase [38].  The variables in this 

equation can be optimized to yield increased peak areas.   

 

 Headspace using solid phase microextraction (SPME)  
 

The headspace application used for this study was performed using solid phase 

microextraction (SPME) fibers (see Figure 2.A). In this method, a thin coat of polymer is 

added to a thin silica support [39]. Particles embedded in the polymer as well as the 

polymer itself have extraction and sample concentration capabilities.   A needle protects 

the fiber (Figure 2.A) which is then fitted into a SPME fiber holder (Figure 2.B) for 

injection onto the GC column [39].

 

Figure 2. SPME fiber assembly: (A) the exposed fiber inside the SPME fiber assembly; (B) the 
holder assembly used for injection onto the GC. 
 

Once gas-phase molecules are trapped by the fiber, they are introduced directly into the 

heated GC injector port where they are then thermally desorbed from the fiber and 

introduced to the GC column [36,37]. The SPME process should be optimized for the 

samples of interest so that reproducible data are acquired.  

The sampling process starts when the gas-phase molecules in the headspace 

extracted by the porous coating comes to equilibrium with the molecules in the sample 

in the closed sampling system.  Equation 2 above describes the partition coefficient of a 
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given analyte between gas-phase and sample-phase. Equation 3 describes the 

distribution constant between the fiber coating and sample [39]:  

Equation 3 

Kes=
Cfs

Cs
 

The variable, Kes, represents the analyte distribution constant between the fiber and 

coating. Cfc is the analyte concentration of the fiber coating, and Cs is the analyte 

concentration in the sample [30]. 

The distribution constant, Kes, is affected by sample dilution, temperature, ionic 

strength, pH, and organic solvent. Optimization of the before-mentioned parameters 

improves sensitivity of the technique.  

1.5.4 Smoke collection and extraction  
 

Since the plant was smoked by the Native Americans, an extraction of the smoke 

was performed for chemical profiling of the smoke condensate. The plant material was 

stuffed into a cylindrical paper article resembling an unfiltered cigarette.  Sample 

collection was performed using an automated smoking machine which simulates 

smoking of the smoking article.  It should be noted that no smoking machine can 

replicate all the patterns of individual smokers [40]. Rather, machine testing seeks to 

characterize the analytes found in smoke and provides a level of standardization across 

smoke testing laboratories [40]. Smoke is usually divided into two phases, a particulate-

phase and a vapor-phase [41].  To trap the particulate-phase, smoke from the smoking 

article is collected on a cellulose acetate pad [40]. The cellulose acetate pad is then 

extracted with the appropriate extraction solution for collection of target analytes.  To 
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trap molecules in the vapor-phase, the smoke is pulled into a glass smoke collection 

trap called an impinger. The impinger is filled with the appropriate extraction solution 

that effectively traps target analytes of interest and can be cooled if necessary, to 

increase the trapping efficiency for target compounds.  The cellulose acetate pad can 

be combined with the impinger trapping system when also exploring compounds that 

may be found in the particulate-phase [40]. After smoke condensate collection, the 

extraction solution can be analyzed by various analytical methods.  

The simulation of smoking was a combination non-targeted and targeted 

analytical approach (Figure 14.A). Smoke collection techniques were used to obtain a 

liquid sample for a non-targeted gas chromatography-mass spectrometry (GC-MS) 

analysis while a targeted approach was used to access the levels of select carbonyls by 

Ultra-Performance Liquid Chromatography with Photodiode Array (UPLC-PDA) 

detection.  

 Sample separation and detection techniques 

Once sample collection and extraction are complete, the extract needs to 

undergo some form of elucidation analysis so that the compounds in the extract are 

identified.  In this work, gas chromatography coupled with mass spectrometry (GC-MS) 

is used almost exclusively for characterization of compounds. Smoke condensate 

chemical profiling was the one exception where Ultra-Performance Liquid 

Chromatography with Photodiode Array Detection (UPLC-PDA) was used in addition to 

the GC-MS technique.   
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1.6.1 Ultra-Performance Liquid Chromatography with Photodiode Array 
(UPLC-PDA) detection  

 

UPLC relies on a series of pumps to pass pressurized solvent through a column 

coated with absorbent packing materials (stationary phase) [42]. These pumps can 

operate at high pressures (15,000 – 20,000 psi) which allows smaller (<2 µm) stationary 

phase particles to be used at increased linear velocities. Increased linear velocities 

improve analyte resolution while decreasing analysis runtimes.  This stationary phase 

separates the target analytes from the extraction mixture based on the interactions of 

the analytes with the solvent mobile phase and the column materials. UPLC systems 

can separate analyte mixtures based on the polarity, molecular size, or electrical charge 

of the compound. For separation by polarities, there are two types of partition 

chromatography, normal phase and reversed phase. Normal phase employs a highly 

polar column stationary phase in tandem with a nonpolar mobile phase for separation. 

Reversed phase uses a nonpolar column stationary phase with a relatively polar mobile 

phase for analyte separation [42]. The work for this study was done using reversed 

phase techniques where nonpolar C18 ligands were attached to the silica column 

packing material.  

The UPLC was coupled with a PDA detector for analyte detection. A PDA 

detector is capable of measuring sample extract components that have an absorption 

spectrum in the ultraviolet or visible region of light. The light from a deuterium lamp is 

directed into the flow cell containing the sample mixture.  A diffraction grating splits the 

light into different wavelengths and diverts the light to multiple photodiode arrays 

fabricated with semiconductor material [43].  This material converts the light signal into 
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an electrical signal that corresponds to a wide range of wavelengths. The measurement 

is acquired by adjusting the deuterium lamp so that the wavelength of light from single 

or multiple predetermined wavelength(s) is directed into the flow cell. The flow cell is 

filled with sample and mobile phase solvent from the UPLC.  Absorbance is measured 

by measuring the difference in light intensity between the front and the back of the flow 

cell. Continuous eluate flow from the UPLC allows spectra to be obtained by 

absorbance measurements measured in ≤ 1 second intervals. Retention times are used 

to identify components by spectral comparison [43].  Ideally the spectrum is compared 

with a standard analyte for compound identification and quantification.  

1.6.2 Gas Chromatography Mass Spectrometry (GC-MS) detection  

Gas chromatography mass spectrometry (GC-MS) in scan mode (non-targeted 

approach) and SIM (targeted approach) are powerful analysis techniques. The GC aids 

in the separation of a sample extract by separating volatile and semi-volatile compounds 

in a complex mixture into individual compounds and works best for small molecules (< 

600 Daltons)[44–46].  Once a sample extract is injected onto the capillary column of the 

GC, it is propelled though the stationary phase of the column by an inert gas called a 

carrier gas (in all experiments, helium was used as the carrier gas).  The stationary phase 

is the coating on the inside wall of the column that interacts with the sample extract while 

the components of the sample are transported down the column by the carrier gas [44–

46].  The temperature affects how the sample interacts with the column; therefore, the 

column temperature can be adjusted to assist with analyte separation. The strength of 

these interactions, between the analytes in the sample and the column stationary phase 
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facilitate the compounds’ separation.  The stationary phase of the column is selected 

based on the types of compounds that will be targeted for analysis [44–46].  

As compounds exit the GC column, they are detected using mass spectrometry 

[45].  In the most commonly used ionization mode, electron ionization (EI), the 

compounds exiting the column are bombarded with 70 eV electrons that fragments the 

compounds into positively charged ions.  The most common MS is the single quadrupole 

where ions are separated  based on their different mass to charge ratios (m/z) using 

alternating DC and RF current as the ions are propelled through them using a network of 

electrostatic lenses [45].  After separation by the mass analyzer the ions are detected 

with an electron multiplier.  Computer software produces a mass spectrum of the ionized 

peak intensity as a function of the m/z ratios of the fragments. Full scan is a quadrupole 

setting that can monitor a range of compounds with fragments of typically 50-600 m/z in 

size.  By starting with a lower m/z of 50, background ions which may be the result of 

residual air and carrier ions are excluded [46].  

Due to the consistent fragmentation patterns resulting from 70 eV EI, computer 

spectral libraries can aid in the interpretation of these mass spectra and provide 

rudimentary compound identification [46]. The use of the full scan setting in conjunction 

with spectral mass libraries is ideal for identifying compounds and compound classes that 

may be found in an unknown sample [46]. Computerized AMDIS (automated mass 

spectral deconvolution and identification system) software compares the m/z 

fragmentation patterns of the experimental data to the patterns in the spectral libraries. 

Quality matches are assigned based upon the m/z found and the ratio of their intensities 

[46]. For common compound identifications using AMDIS, usually identifications above 
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80 are reliable, 70–79 are often correct, and 60–69 are uncertain [47].  For this body of 

work, the spectral match was set at ≥ 80 to decrease the chance of peak misidentification 

by the AMDIS software algorithms. Peaks were positively identified at a spectral match ≥ 

80 if no certified standard was available.  It is understood; however, that even the best 

match qualities do not always positively identify an unknown peak.  Likewise, in many 

instances poor match qualities may often correctly identify a compound, thus it is 

important to provide confirmation with reference compounds when available. 

Selective Ion Monitoring (SIM) is another capability of the quadrupole analyzer. In 

SIM mode, one or multiple target masses are monitored over the course of the 

chromatographic separation [46].  With this technique, the sensitivity can increase up to 

three orders of magnitude because the mass analyzer is not sampling a complete range 

of masses.  A computerized system can select for different targeted masses over the 

course of the separation.  This technique is helpful if the peak is only partially resolved 

because a unique ion can be selected which may not be a part of a co-eluting peak [46]. 

 Sample analysis quantification techniques 

This study used external calibration curves which are constructed using known 

concentrations of a standard compound for sample quantification. This work was also 

performed with and internal standard method to quantify data where a known amount of 

the internal standard is added both to standards and unknown samples to use the ratio 

of the response between the analyte and the internal standard to determine analyte 

concentrations.  Standard addition was used to determine method accuracy with the 

determination of % recovery.   
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1.7.1 Calibration curves based on external and internal standards 
 

External standards are used when injections are reproducible and there are not 

multiple sample preparation steps.  An external standard response factor is calculated 

using the following equation [45]. 

Equation 4 

RF=
Areastd

Concstd
 

The variable, RF, represents the response factor.  Areastd is the peak area of the 

standard analyte. Concstd is the concentration of the standard. This method is easily 

generalized with the use of multiple standards to create a calibration curve.  

If the sample preparation procedure has multiple extraction steps the use of an 

internal standard calibration method will improve the reproducibility of the quantitation 

[46]. The internal standard is an analyte added to all samples (including calibration 

curves and blanks) in a known amount. Since the internal standard is added to all 

samples the signal from the unknown analyte can be compared to the signal from the 

calibration standards to quantify the unknown compound (see Figure 3). This is detailed 

in the calculation scheme below (see Equations 5-7).  
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Figure 3. Example chromatogram of compound X and internal standard 

 

Equation 5             

RRF=
AreaX

AreaISTD
×  ConcISTD 

The Relative Response Factor (RRF) is represented by Equation 5, where AreaX is the 

area of the unknown compound. AreaISTD is the area of the corresponding internal 

standard peak and ConcISTD is the concentration of the internal standard for the 

calibration standard. 

 This method can also be generalized for the use of multiple standard samples 

using linear regression of a calibration curve. The concentration of the target analytes is 

then determined from the calculated RRF for the sample and the y-intercept as shown 

with the following equation [46]: 

Equation 6 

Concunknown= 
RRF- Intercept

slope  

C
on

ce
nt

ra
tio

n 
Time 
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The variable, Concunknown, represents the calculated analyte concentration (µg/mL). The 

variables, intercept (which is the y-intercept) and slope are from the calibration curve 

equation. The concentration of the analyte can then be converted into µg/gram 

concentration units as shown in Equation 7. 

 
Equation 7 
 

Conc ( µg g)= Concunkown⁄ ×
Vol
wgt 

Conc (µg/g) is the amount of analyte in one gram of P. obtusifolium. Concunknown (µg/mL) 

is the sample concentration of P. obtusifolium from the calibration. Vol is the volume 

(mL) of the extraction solution.  Wtg is the P. obtusifolium sample mass weight (g). 

 
The internal standard must be well resolved from the peaks of interest and not be 

found in the sample [45].  Preferably, the internal standard should also be available in 

high purity.  Multiple extraction steps were associated with the complex matrix of P. 

obtusifolium plant material (see section 2.5.2); therefore, an internal standard method 

was needed. 

1.7.2 Recovery experiments to evaluate method performance 

Ideally a certified reference material with a known concentration would be 

evaluated by the established method. The method procedure would then be evaluated 

against how closely the quantitated concentration matched the established 

concentration of the certified material.  If there is no certified reference material, method 

performance can be evaluated by recovery experiments. The purpose of assessing 
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recovery for this work was to demonstrate that the concentration of the target analyte 

reported is “true”. The “trueness” of a value is used to evaluate extraction efficiency.  

Since the term “recovery” has been described and calculated in many ways both 

the term and the procedure for evaluating recovery must be described.  This work uses 

the 1999 technical report, “Harmonised Guidelines for the use of Recovery Information 

in Analytical Measurement”, to define the type of recovery used for this work [48].  The 

1999 technical report describes the type of recovery performed in this work as 

“surrogate” recovery where the recovery of a pure compound or element specifically 

added to the test material as a spike as depicted in Figure 4 and Equation 8 [48]. 

The report that the1999 technical report based its definitions on was published by 

the International Union of Pure and Applied Chemistry Analytical (IUPAC) in conjunction 

with the International Standard Organization (ISO) and The Association of Official 

Analytical Chemists (AOAC); these organizations standardize common terms and 

procedures on an international and global level [48]. 

 

Figure 4. Illustration of surrogate recovery method 
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Equation 8        

% Surrogate Recovery =  �
Spike Sample Conc - Unspiked Sample Conc

Spike Concentration �× 100% 

The Spike Sample Concentration is the sample concentration determined 

experimentally in the spiked matrix. The Unspiked Sample Concentration is the sample 

concentration determined experimentally before the addition of a spike. Spike 

Concentration is the concentration that corresponds to the spike amount added. 

 Before surrogate recovery is performed, acceptance criteria should be 

established for the results.  For instance, it may be reasonable to expect given the 

complex matrices and extraction steps that % recovery will have some uncertainty 

associated with the measurement. This uncertainty should be reported in the method so 

that the limitation of the analytical measurement is recognized [48].  

2 Overview: Chemical characterization of P. obtusifolium based on historical use 
 

As previously discussed, this study explores chemical characterization of P. 

obtusifolium based on the historical practices. Following historical usage forms 

capitalizes on the understanding of the plant that the native people developed through 

years of use.  This work explored the chemical composition of simulated tea, bedding, 

and smoke exhaust. The leaves and flowers were analyzed separately to determine if 

they yielded the same chemical profiles. 

The experimental approach used in this work is shown graphically in Figure 5.  

First, a chemical survey was conducted to determine which types of compounds may be 

found by using a hydroethanolic extract of the plant. This first step provided insight as to 
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what compounds could be found in a solvent extraction. Next, a chemical profile was 

performed on an aqueous extract. This extract was modeled after the way Native 

Americans used the plant to prepare a tea.  The aqueous extract will be referred to as 

the tea simulation or tea. The headspace sample collection technique was used to 

elucidate compounds that may be found when the plant material was used as bedding 

material. Smoking the leaves of the plant was also documented; therefore, a smoking 

simulation of the plant was performed to determine compounds that may be found when 

smoked. 
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Figure 5. Schematic of chemical characterization plan for P. obtusifolium based on 
historical use 
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 Plant material collection 
 

Plants used for this study were obtained from Tellico, TN (Wild Pantry) and 

grown to maturity in Richmond, VA.  The plants used in this study were formally 

identified by botanist John Hayden working in conjunction with Lewis Ginter Botanical 

Gardens of Richmond, VA. Formal identification was necessary because there are 

many references to common names. The Oklahoma Museum of Natural History records 

11 common names for this plant: common everlasting, Indian posy, sweet everlasting, 

life everlasting, sweet-scented life everlasting, blunt-leaved everlasting, old field balsam, 

white balsam, catfoot, rabbit tobacco, and fragrant cudweed [20]. This herbal plant has 

also been reclassified from Gnaphalium obtusifolium to its current name 

Pseudognaphalium obtusifolium [29].  

 Preparation of plant material for study 
 

Plant flowers and leaves were harvested in Richmond, VA during the fall seasons of 

2017 and 2018.  Croom documents that the plants were typically harvested after the fall 

frost or during the winter but also states that the Lumbee would also gather the leaves 

once they turned brown [23]. Once the mature flowers developed, they were allowed to 

dry on the plant. No further drying was performed in keeping with efforts to duplicate 

historical usage, and because further drying could possibly reduce the volatile 

components of the plant.  The dried leaves and flowers were then separated from the 

whole plant. Next, a cryogenic grinding technique was used to preserve the volatile 

components of the sample and provide sample homogenization across the entire study. 

Liquid nitrogen (-196 ºC) was chosen to grind the samples because its low temperature 
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significantly reduces the vapor pressure of the sample components so that the volatile 

components are largely preserved.  Liquid nitrogen also makes the sample brittle which 

allows it to be ground at shorter grinding times which also reduces sample exposure to 

high grinding temperatures.  For this study, all samples were cryo-ground with liquid 

nitrogen using a Retch Grindomix GM200 at a grinding speed of 6000 rpm for 30 

seconds.  After grinding, the leaves and flowers both had a soft and light textured 

“fleecy” consistency (see Figure 6).  The leaves and flowers were then stored 

separately in glass amber bottles or Mylar bags at room temperature until further 

analysis.  

 

Figure 6. Ground leaves and flowers of P. obtusifolium. A) Shows the ground leaves and B) 
depicts the ground flowers of P. obtusifolium. 

 

 Initial analyte screening of plant material 
 

Before starting the chemical characterization of analytes in the tea, a screening 

experiment was done using 70:30 ethanol: water extraction solution.  This 

hydroethanolic extract was selected because in an evaluation of several medicinal 

plants ethanolic extractions of 50% and 70% ethanol: water were shown to have 

increased extraction efficiencies of bioactive compounds [49]. The results of the 
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screening experiment are used to target bioactive compounds that may be found in the 

tea or other usage forms. 

2.3.1 Initial Pressurized Solvent Extraction (PSE) of plant material (70:30 
ethanol: water extraction) 

 

Extraction of bioactive ingredients was key to the chemical profiling investigation 

because P. obtusifolium was used by Native Americans to provide a therapeutic benefit.  

To maximize the extraction bioactive components, pressurized solvent extraction (PSE) 

was used to extract the leaves and flowers with a hydroethanolic extract as the solvent. 

In the current literature, PSE is often used to extract bioactive ingredients from natural 

sources [31]. The elevated pressure allows the plant cell structures to be ruptured at 

decreased temperatures, thus improving the rate of and the efficiency of the extraction 

[32]. In this study an automated Pressurized Solvent Extractor (SpeedExtractor E-

914/E916 manufactured by Buchi) was used which adds uniformity to the extraction 

procedure.  There is also normal variability that exists with plant material. To this end, 

all instrument parameters in the preparation of plant extracts should be as standardized 

as possible.   

In this extraction approximately 4 grams of the leaves and flower were extracted 

separately.  The plant material (leaf and flower) was weighed directly into stainless steel 

120 mL extraction cells. The void space in the 120 mL cell after the plant material was 

added was maximized with steel ball bearings. The amount of steel ball bearings were 

weighed so the same mass could be used each time the extraction was performed.  The 

extraction parameters for the SpeedExtractor E-914/E916 are detailed in Table 1 below. 
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Table 1. Pressurized Solvent Extraction Parameters 

Parameter Description 

Temperature 100ºC 

Pressure 150 bar 

Solvent 70:30 ethanol: water 

Extraction cell 120 mL 

Time 60 minutes 
 

2.3.2 Initial GC-MS identification of compounds present in the plant material 
 

  High analyte yields were important so that the filtrate could be injected directly on 

the column of the GC-MS in SCAN mode. Other GC-MS parameters for the 

hydroethanolic screening experiment are found in Table 2.  

 

Table 2. GC-MS Parameters for the Hydroethanolic Screening Experiment 

Parameter Description 
Column DB-17MS (30 m X 0.25 mm X 0.25 µm) 
Injection temperature 250 ˚C 
Injection mode Split (50:1) 
Injection volume 1 µL 

Temperature gradient 40 ˚C hold for 1.25 minutes 
ramp 15˚C/minute to 300 ˚C 

Analysis time 77 minutes 
Ion source Electron ionization 
Transfer line temperature 280 ˚C 
Ionization energy 70 eV 
Source temperature 230 ˚C 
Acquisition type SCAN mode 

 

The compounds and classes of compounds found in the hydroethanolic extraction was 

used solely as a guide to understand the types of compounds potentially present in P. 
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obtusifolium.  This also enabled optimization of extraction and GC conditions when 

exploring usage forms (tea, bedding, and smoke). 

 

 

Figure 7. Chromatogram of 70:30 ethanolic extract in SCAN mode where some peaks were 
identified by spectral match. Unlabeled peaks could not be identified with a match factor ≥ 80. 
Peak details are given in Tables 3 and 4. 

 

Figure 7 shows a total ion chromatogram (TIC) of the GC separation and the MS 

detection of the hydroethanolic extract in full SCAN mode. Approximately 36 % of the 

peaks were identified in the chromatogram and of the 43 compounds identified by 

spectral match, 11 of these compounds were confirmed using purchased reference 

compounds and these are noted in Tables 3 and 4.  The identified peaks are numbered 

and correspond to Tables 3 and 4, where the compound class, retention time (RT), and 

Library Quality Matches are provided.   Compound identification in analysis of GC-MS 
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data is achieved by matching the experimental mass spectra to the mass spectra in the 

NIST reference library [50].  

As mentioned in section 1.6.2, only peaks with a match quality ≥ 80 were 

considered identified with the understanding that even the best match qualities do not 

always positively identify an unknown peak thus it is important to provide confirmation 

with reference compounds.  

Table 3. Terpenes Found in the 70:30 Ethanol: Water Screening Experiment  

Class RT 
order Compound CAS No Quality 

Match 

Confirmation 
by reference 
compound 

terpenes 

11.55 (R)-(+)-limonene 5989-27-5 98 yes 
18.31 (−)-menthol 2216-51-5 91 yes 
25.44 β-ylangene 20479-06-5 95 no 
25.57 β-caryophyllene 87-44-5 99 yes 
25.76 β-copaene 18252-44-3 99 no 
27.17 alloaromadendrene 25246-27-9 95 no 
27.79 γ-muurolene 30021-74-0 96 no 
27.94 α-muurolene 31983-22-9 96 no 
28.20 (+)-β-selinene 17066-67-0 95 yes 
29.28 γ-cadinene 39029-41-9 98 no 
29.50 δ-cadinene 483-76-1 95 no 
31.60 α-calacorene 21391-99-1 98 no 
32.74 (-)-caryophyllene oxide 1139-30-6 99 no 
32.93 α-elemene 5951-67-7 90 no 
33.60 cadina-1(2),4-diene 16728-99-7 93 no 
33.76 humulene-1,2-epoxide 19888-34-7 91 yes 

34.21 2-isopropyl-5-methyl-9-methylene-
bicyclo[4.4.0]dec-1-ene 150320-52-8 96 no 

34.35 (-)-α-cadinol 481-34-5 99 no 
44.25 kaur-16-ene 562-28-7 99 no 

terpene 
alcohol 48.54 trans-sinapyl alcohol 20675-96-1 96 no 
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Table 4. Other Compounds Found in the 70:30 Ethanol: Water Screening Experiment 

Class RT 
order Compound CAS No Quality 

Match 

Confirmation 
by reference 
compound 

acid  

4.77 acetic acid  64-19-7 90 no 
35.91 tetradecanoic acid  544-63-8 98 no 
40.95 n-hexadecanoic acid  57-10-3 99 no 
45.91 linoleic acid 60-33-3 99 no 
46.52 linolenic acid 463-40-1 97 no 
20.31 benzoic acid 65-85-0 93 no 

aldehyde 13.69 benzaldehyde 100-52-7 93 yes 
alkane 56.90 nonacosane 630-03-5 90 no 

ester 

11.80 ethyl hexanoate 123-66-0 98 yes 
12.30 hexyl acetate 142-92-7 86 yes 
14.88 isoamyl isovalerate 659-70-1 91 yes 
16.89 ethyl 2-methyl-2-propionylacetate 759-66-0 91 no 

20.65 ethyl benzoate 93-89-0 93 yes 

ketone 

24.24 3-ethyl-4-methyl-1H-pyrrole-2,5-dione 20189-42-8 94 no 

24.39 4-phenyl-2-butanone 2550-26-7 98 no 

37.25 6,10,14-trimethyl-2-pentadecanone 502-69-2 99 no 

50.80 5-Methyl-5-(4,8,12-
trimethyltridecyl)dihydrofuran-2(3H)-one 96168-15-9 99 no 

57.51 pinostrobin chalcone 18956-15-5 99 no 
flavonoid 59.93 pinocembrin 480-39-7 99 yes 
phenol 26.52 hydroquinone 123-31-9 81 no 

sterols 
47.52 trans-geranylgeraniol 24034-73-9 99 no 
69.63 stigmasterol 83-48-7 96 no 
71.30 gamma sitosterol 83-47-6 99 no 

 

 Characterization of compounds found in the tea simulation 
 

 A chemical survey was performed in an aqueous extract with the objective to 

more closely model the Native American preparation of an herbal tea.  For this reason, 

the aqueous extract is referred to as the “tea simulation” or “tea” in this document.  A 

tea extract was chosen because the leaves and flowers were chewed or prepared as a 

tea for coughs or colds according the Peterson Field Guide to Medicinal Plants and 
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Herbs [22]. There is no known recorded account of an exact recipe detailing how much 

of the herb is used for tea; however, most accounts boiled the plant material [19,23]. 

2.4.1 Aqueous Pressurized Solvent Extraction (PSE) of plant material 
 

In keeping with the objective of staying close to the historical account, water was 

used for PSE extraction. With the exception of water as the solvent all other parameters 

were kept the same as the hydroethanolic extraction shown in Table 1. Plant material 

from the 2017 crop only was used for the tea simulation.  

2.4.2  Liquid/liquid extraction procedures 
 

A water extraction closely mimics a natural extraction; however, when GC-MS 

analysis is performed, it is not without problems. Ideally it would be advantageous to 

inject the aqueous extract directly on the GC-MS column; however, many bioactive 

analytes have more nonpolar character and, therefore, are poorly soluble in water which 

also leads to poor reproducibility. In addition to this, a water sample injected into the GC 

must first pass the injection port where vapor expansion (a 1 µL aliquot of water has a 

vapor expansion volume of approximately 1000 µL) occurs because of the high injection 

port temperature [51].  The high vapor expansion of water causes the sample to expand 

or “flash” to the top of the injection port.  This phenomenon is called backflash. During 

this event, the entire sample is not introduced to the column where it can cause sample 

loss and poor reproducibility [51].  Loss of resolution, poor peak shape, and ghost peaks 

are also problems associated with backflash. This is not ideal if reproducible injections 

are desired. Backflash can be minimized by using split injections or a solvent with a low 

expansion coefficient [51].  Plants have complex plant matrices that often require clean 
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up steps that amplify the analyte of interest [52]. Complex matrices also may cause 

non-reproducible injections and thereby yield poor quantitative analysis results.   To 

address this problem, a quick, single step, extraction clean-up step (Figure 8) was 

developed that considered the relatively small sample size (~50 mL). Using the cleanup 

scheme shown in Figure 8 reproducible GC-MS injections were achieved. 

 

Figure 8. Leaf and flower sample cleanup procedure. The aqueous extract was simultaneously 
cleaned and back-extracted with dichloromethane (DCM). 

 

In deciding what the best solvent would be for liquid/liquid extraction, hexane was 

first considered due to its lower density of approximately 0.65 g/cm3  at 20 °C [53]; it is 

positioned above the water extract. This positioning made it easier to pipet off the top 

organic hexane layer for GC-MS analysis.  It also makes the freeze pour method of 

extraction easier. In the freeze pour method, samples were frozen at -80 °C for 5 

minutes.  The hexane layer was then easily extracted when pipetting without having to 

be mindful of the frozen aqueous layer.  However, it was observed that hexane was not 

able to successfully extract the majority of compounds that had been identified in the 

70:30 ethanoic extraction.   

Add extract + 
ISTD to test tube 
with C18 powder

Vortex for 1-2 
seconds

Centrifuge at 
1500 rpm for 3 

minutes
Add 
DCM

Filter bottom 
DCM  layer 

through a 0.45 
µm PVDF filter

Analyze 
filtrate by 
GC-MS
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Next, dichloromethane (DCM) was explored as a possible solvent choice for 

liquid/liquid extraction.   DCM has a density of approximately 1.33 g/cm3 at 20 °C [53]; 

because its density is higher than water, it formed the bottom layer in the liquid/liquid 

extraction making the separation process more cumbersome. DCM forms a separate 

layer from water but unlike hexane which was clear, a brown hydrosol is also formed in 

the DCM layer. This hydrosol makes reproducible injections unlikely.  Due to the 

hydrosol formation, an additional cleanup step for the DCM extract was necessary. To 

make the DCM layer more homogenous, C18 particles, QuEChERS (NaCl/MgSO4), and 

activated carbon were added to the aqueous sample matrix in an attempt to shuttle 

compounds that have a slightly higher affinity for the organic phase into the DCM layer.  

Activated carbon was used to try to remove the larger lipid molecules so that the smaller 

bioactive compounds could be separated from the matrix for more accurate GC-MS 

interpretation.  

 It was challenging to find clean-up steps that were optimal for all compounds 

identified in the 70:30 ethanoic extraction (see Tables 3 and 4).  Three compounds from 

the hydroethanolic extraction were chosen to be indicators of extraction performance.  

These compounds, 4-phenyl 2-butanone, α-caryophyllene, and pinocembrin, were 

selected because they could be positively identified by a standard match as well as they 

were representative compounds that proved to be problematic in some extraction 

protocols.  In exploring extraction aids, the performance of C18 particles were evaluated 

for sample clean-up. An addition of C18 particles to the DCM extraction step removed 

enough of the colloidal layer that the sample could be injected on the instrument and 

yield reproducible injections.  A 50 mg amount of activated carbon was added to see if 
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the compound yields could be improved.  It was found that activated carbon decreased 

the yields of pinocembrin. It was speculated that the reduction for pinocembrin could be 

associated with the high surface area of the activated carbon. Activated carbon also 

reduced the area counts of other compounds significantly than if C18 particles were used 

exclusively.   QuEChERS (MgSO4/NaCl) when evaluated alone could not sufficiently 

reduce the hydrosol formation in the DCM layer so that reproducible injections were 

achieved.  When C18 particles were added in 50 mg increments to a 1 mL aliquot of 

extracted sample, area counts for 4-phenyl 2- butanone were increased; however, there 

was a decrease in other analyte areas. As shown in Table 5, there was no net benefit to 

peak areas when QuEChERS was used.  When using C18 particles only, there remained 

peaks that were not optimized; however, the peak shape was improved over other 

extraction aids (activated carbon and QuEChERS).  Table 5 shows that C18 particles 

alone performed better than the other extraction aids in removing the lipids, waxes, and 

colorizing agents to such an extent as to produce reproducible injections and suitable 

Gaussian peak shapes over a wide range of compounds. 

Table 5. Peak Areas of Analytes used as Indicators of Extraction Performance 

Target Compounds QuEChERS + 
C18 particles 

Activated carbon 
+ C18 particles C18 particles 

4-phenyl 2-butanone 49901 20101 29171 
α-caryophyllene 152 155 599 
pinocembrin 6310 not detected 8186 

1Poor peak shape  

 Since the extraction procedure had multiples steps, it was necessary to ensure 

reproducible extractions. To achieve this, 1-octanol was used as an internal standard 

(ISTD) and a biphasic extraction (see extraction scheme in Figure 8), was performed 

where the 1 mL of aqueous plant extract was added to a test tube containing 300 mg of 
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C18 particles and vortexed for 1-2 seconds. Next, a 1 mL aliquot of DCM was added to 

the test tube.  The mixture was then centrifuged for 5 minutes at 3000 rpm. After 

centrifugation, a 2 mL syringe was fitted with a PVDF 0.45 µm filter and the organic 

sample layer was introduced into the syringe.  In the case that aqueous layer was also 

pipetted, it was easily identified in the narrow syringe by a color change in the sample. 

The aqueous organic layer remained brown-colored while the DCM layer was lightly 

colored and clear.   The layers were easily identifiable, and the bottom DCM layer could 

now be quickly filtered directly into a GC autosampler vial.  All standards were prepared 

in DCM because many of the compounds had greater solubility in DCM than water.  

After a mixed standard solution was prepared, aliquots of the standard solution mix 

were then added to water in equal ratios and liquid/liquid extraction was performed.  

Since most standard solutions were clear, extra care was taken during the extraction 

procedure; however, the two phases could still be easily identified in the 2 mL syringe.  

It was noted that if the liquid and C18 particle ratios were constant, the extraction 

volumes could be varied as needed. 

2.4.3 GC-MS identification and quantification of compounds found in tea 
 

The 70:30 ethanolic extraction spectral match information was helpful especially 

because the extract could be injected directly on the column “as is”.  Peaks from this 

extract were large enough to be viewed in the GC-MS scan mode.  However, the plant 

extract in water had reduced extraction efficiency and required multiple clean-up steps 

to achieve reproducible injection results.   In contrast to the hydroethanolic extract, 

lower analyte concentrations were found in the aqueous extract, SIM mode became 

necessary to effectively detect many analytes and generate quantitative data. The 
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internal standard was added after PSE, at the beginning of the liquid/liquid extraction 

step to account for analyte loss during sample clean-up. The final DCM extracts were 

injected directly into the GC-MS.     

The GC-MS system used for this study consisted of a 7890B GC coupled to a 

5977A mass selective detector (Agilent Technologies, Inc.) with a PAL LSI 85 

autosampler system.  The GC-MS method parameters are detailed in Table 6.  

Table 6. GC-MS Parameters 

Parameter Description 
Column DB-5MS (30 m X 0.25 mm X 0.25 µm) 
Injection temperature 250 ˚C 
Injection mode Split (50:1) 
Injection volume 1 µL 

Temperature gradient 

40 ˚C hold for 1.25 minutes 
ramp 15 ˚C/minute to 130 ˚C 
ramp 5˚C/minute to 169 ˚C 
ramp 15˚C/minute to 250 ˚C 
ramp 15˚C/minute to 300 ˚C 

Run time 23.78 minutes 
Ion source Electron ionization 
Transfer line temperature 280 ˚C 
Ionization energy 70 eV 
Source temperature 230 ˚C 
Acquisition type SIM mode 

 

Data analysis was carried out using Agilent MassHunter Quantitative Analysis 

software (version B.07.01).  Compound identification was done by comparing each 

mass spectrum with the spectrum in the National Institute of Standards and 

Technology (NIST) 2014 spectral library. There were many instances where the 

match quality of the peak was poor (< 80) therefore the peak could not be 

confidently identified with a spectrum in the NIST library.   Compound identification 

was also done by comparing the retention time and mass spectra with that of a 

known reference standard.  
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 For the aqueous extraction, a partial validation of the method was conducted 

to ensure that the method can give accurate sample concentrations for the analytes 

that had been identified. Table 7 has the results of the validation method parameters 

that were investigated including calibration, linearity, repeatability, accuracy.  

Table 7. Method Optimization Parameters 

Compound  (R
2
)1 Std. 

Error2 
PQL 

(µg/mL)3 

Standard 1 
Repeat-
ability 

(%RSD)4 

Accuracy 
leaf extract          

% recovery (n=3)               
flower extract           

% recovery (n=3) 
low 

level 
mid 
level 

high 
level 

low 
level 

mid 
level 

high 
level 

benzaldehyde 0.996 0.0318 0.0295 4.2 109 109 100 110 77 93 
4-phenyl-2-butanone 0.996 0.0304 0.0792 1.0 99 90 91 104 74 88 

ethyl hexanoate 0.995 0.0328 0.0754 2.6 108 71 93 104 75 93 
hexyl acetate 0.995 0.0352 0.0082 3.9 113 109 102 102 84 91 

isoamyl isovalerate 0.996 0.0260 0.0060 6.6 93 98 97 90 98 73 
ethyl benzoate 0.999 0.0097 0.0005 3.5 110 100 96 104 86 89 

ethyl hydrocinnamate 0.999 0.0154 0.0003 3.3 112 106 112 116 105 105 
dimethyl 3,3'-

thiodipropanoate 0.995 0.0122 0.141 3.6 108 101 89 101 84 83 

1-dodecanol 0.995 0.0351 0.198 18.3 106 104 110 93 92 103 
pinostrobin 0.999 0.0229 0.0913 3.1 119 112 121 105 120 111 

pinocembrin 0.995 0.0398 1.13 2.8 103 74 102 78 91 110 
β-caryophyllene 0.998 0.0459 0.0003 3.4 95 101 104 92 82 99 
α-caryophyllene 0.997 0.0280 0.0110 2.6 114 81 88 99 70 77 

linalool 0.996 0.0327 0.0598 5.2 108 88 88 102 76 86 
butylated hydroxytoluene 

(BHT) 0.994 0.0825 0.326 7.0 131 88 84 104 124 130 

menthol 0.995 0.0328 0.0670 4.1 101 88 88 117 79 87 
(-)-caryophyllene oxide 0.997 0.025 0.184 3.4 73 82 96 71 73 88 
1Correlation coefficient  
2Standard error 
3PQL = Practical limit of quantitation 
4Relative standard deviation of standard 1 

 
 
The practical quantitation limit (PQL) is defined as the concentration of the lowest 

standard (standard 1) [54].  The %RSD for all replicate injections of standard 1 were 

under 10% with the exception of 1-dodecanol which indicates that for this compound 
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further optimization is needed.  Calibration curves showed good linearity where all 

coefficients of determinations (R2) were > 0.990. This demonstrates that the variability in 

the results is explained by the calibration curve 99% of the time and the remaining 1% 

may derive from other sources such as natural variability and measurement error or 

failure of the straight-line model to entirely correlate the relationship between the 

unknown analyte and the concentration.  Weighting was used with each calibration 

curve since all the calibration curves in this study covered several orders of magnitude.  

Most calibration curves show increased error with increased concentration; therefore, 

weighting allows the data at the low end of the calibration curve to have a better fit when 

a least squares regression is used to fit the sample data to the calibration curve [55].  

The simplest appropriate weighting model applied to all calibration curves was 1/x 

weighting. The results of the calibration curve demonstrate that the GC-MS method 

used was suitable for determining the concentration of these analytes in the sample 

extract.  

Accuracy is defined as the difference between the measured value and the true 

value [56,57].  For this work, analyte % recovery was used as one of the indicators for 

accuracy.  The ICH guidelines state that the chemist may need recovery information 

over all concentration ranges [48,57] .  If complete coverage is not available, it may be 

suitable to estimate recovery at some critical level of analyte concentration [48].  In this 

work, the calibration curve was established to bracket the range of the sample.  The 

sample extract was fortified with known quantities of the target compounds at the low, 

medium, and high levels in the range of the calibration curve. Percent recovery was 

performed in triplicate for each level (low, medium and high) and calculated according to 
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Equation 8 (section 1.7.2). Surrogate recoveries for all analytes were between 70 – 

130%. The accuracy associated with the method is represented by the recoveries for 

each compound.  The average (n=3) concentration (µg/g) for all analytes is given by 

Equation 9 using pinocembrin as the analyte for the example calculation. 

Equation 9 

Concleaf=(Conc µg mL⁄ )× �
EV
Wtg�× �

TAV
SAV�=128 µg

g� of pinocembrin in leaf  

 
The concentration (µg/g) of the analyte in leaf (Concleaf) is determined by  

the concentration from the calibration curve, Conc µg/mL (pinocembrin = 10.1 µg/mL).  

EV (50 mL), is the extraction volume used to extract the plant material. The weight, Wtg 

(4 g), represents the sample mass.  Total aliquot volume, TAV (1.01 mL), is calculated 

by adding the amount of internal standard (0.01 mL of 1-octanol) and the sample 

analyte volume, SAV (1 mL). The flower and leaf extracts were analyzed separately.  

The calibration curve was quantitated using 1/x weighting. The range of the calibration 

curve, the average of the samples (n=3), standard deviation, and %RSD are presented 

in Tables 8 and 9.  
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Table 8. Analysis of the Flower Extract 

Class  Compound CAS No 
Calibration 

Range                         
(µg/mL) 

Average       
(µg/g) 
n=3 

SD1 %RSD2 

carbonyls benzaldehyde 100-52-7 0.03-0.5 1.6 0.016 0.99 
4-phenyl-2-butanone 2550-26-7  0.07-1.4 3.5 0.043 1.21 

esters 

ethyl hexanoate  123-66-0 0.07-1.3 0.69 0.039 5.64 
hexyl acetate 142-92-7 0.007-0.14 0.63 0.025 3.99 
isoamyl isovalerate 659-70-1 0.006-0.12 0.093 0.01 9.99 
ethyl benzoate 93-89-0 0.0005-0.01 0.0045 0.00074 16.5 
ethyl hydrocinnamate  2021-28-5 0.0003-0.005 0.0037 0.00012 3.22 
dimethyl 3,3'-thiodipropanoate 4131-74-2 0.09-1.9 1.9 0.048 2.53 

fatty alcohols 1-dodecanol 112-53-8 0.21-4.2 48 0.16 0.34 

flavonoids pinostrobin 480-37-5 0.09-5.8 19 1.9 10.2 
pinocembrin 480-39-7 1.01-12.1 66 3.3 5.1 

terpenes β-caryophyllene 87-44-5 0.003-0.006 0.0064 0.0013 20.1 
α-caryophyllene 6753-96-6 0.009-0.27 0.061 0.0039 6.42 

terpene alcohol linalool 78-70-6 0.05-1.0 13 0.07 0.546 

phenols butylated hydroxytoluene (BHT) 128-37-0 0.422-4.22 6.9 0.14 2.04 
menthol 89-78-1 0.06-1.1 7.6 0.15 1.91 

terpenoid (-)-caryophyllene oxide  1139-30-6  0.18-3.7 2.1 0.22 10.4 
1Standard deviation 
2Relative standard deviation 

 
Table 9. Analysis of the Leaf Extract 

Class  Compound CAS No 
Calibration 

Range                         
(µg/mL) 

Average       
(µg/g) 
n=3 

SD1 %RSD2 

carbonyls benzaldehyde 100-52-7 0.03-0.5 1.97 0.07 3.33 
4-phenyl-2-butanone 2550-26-7  0.07-1.4 5.00 0.21 4.26 

esters 

ethyl hexanoate  123-66-0 0.07-1.3 0.77 0.013 1.64 
hexyl acetate 142-92-7 0.007-0.14 0.64 0.039 6.06 
isoamyl isovalerate 659-70-1 0.006-0.12 0.028 0.012 42.4 
ethyl benzoate 93-89-0 0.0005-0.01 0.011 0.001 9.12 
ethyl hydrocinnamate  2021-28-5 0.0003-0.005 0.0072 0.00026 3.52 
dimethyl 3,3'-thiodipropanoate 4131-74-2 0.09-1.9 1.87 0.031 1.66 

fatty alcohol 1-dodecanol 112-53-8 0.21-4.2 40 1.7 4.15 

flavonoids pinostrobin 480-37-5 0.09-5.8 5.11 0.30 5.92 
pinocembrin 480-39-7 1.01-12.1 128 11 8.8 

terpene β-caryophyllene 87-44-5 0.0003-0.006 0.068 0.00037 5.42 
α- caryophyllene 6753-96-6 0.009-0.27 0.095 0.0063 6.66 

terpene alcohol linalool 78-70-6 0.05-1.0 1.5 0.079 5.12 

phenols butylated hydroxytoluene (BHT) 128-37-0 0.422-4.22 5.76 0.78 13.5 
menthol 89-78-1 0.06-1.1 6.91 0.13 1.93 

terpenoid (-)-caryophyllene oxide  1139-30-6  0.18-3.7 1.89 0.012 0.065 
1Standard deviation 
2Relative standard deviation 
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2.4.4 Discussion of bioactive compounds found in the tea simulation 
 

Of the 17 compounds that were quantified, there are only three compounds 

(dimethyl 3,3'-thiodipropanoate, pinostrobin, and, pinocembrin) that have no flavor 

profile associated with them (see Table 10).   Table 10 shows the chemical class, 

compound name, CAS number, the flavor profile described by the Flavor and Extract 

Manufacturer’s Association (FEMA), and a FEMA number if it exists [58]. The diverse 

taste profile includes apple, chamomile, floral, and wood flavors.  The taste profile may 

explain why Croom records P. obtusifolium as one of the most popular plants of the 

Lumbee tribe as it was a part of many herbal remedies [23].  

Table 10. Flavor Profile of Seventeen Quantitated Compounds 

Class Compound CAS # FEMA flavor profile or 
reference flavor profile 

FEMA # or 
reference 

carbonyls 
benzaldehyde 100-52-7 bitter almond, burnt sugar, 

cherry, malt, roasted pepper 2127 

4-phenyl-2-butanone 2550-26-7 floral, herbal, strawberry TGSC2 

esters 

ethyl hexanoate 123-66-0 apple peel 2439 

hexyl acetate 142-92-7 apple, banana, grass, herb, 
pear 2565 

isoamyl isovalerate 659-70-1 green 2085 

ethyl benzoate 93-89-0 chamomile, celery, fat, flower, 
fruit 2422 

ethyl 3-phenylpropionate 2021-28-5 flower, honey 2455 
dimethyl 3,3'-

thiodipropanoate 4131-74-2 NA1 NA1 

fatty alcohol 1-dodecanol 112-53-8 soapy, waxy TGSC2 

flavonoids 
pinostrobin 480-37-5 NA1 NA1 
pinocembrin 480-39-7 NA1 NA1 

terpenes 
β-caryophyllene 87-44-5 fried, spice, wood 2252 
α-caryophyllene 6753-98-6 woody TGSC2 

terpene 
alcohol linalool 78-70-6 coriander, floral, lavender, 

lemon, rose 2635 

phenols butylated hydroxytoluene 128-37-0 toasted cereal 2184 
menthol 89-78-1 mint, cool  2665 

terpenoid (-)-caryophyllene oxide 1139-30-6 herb, must, spice, wood 4085 
1NA indicates that a flavor profile was not found 
2Information from The Good Scents Company (TGSC) website accessed May 2019  
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Table 11 shows that many of the compounds that have flavor profiles have also 

been identified as having potential therapeutic properties by literature sources.  

Table 11. Potential Therapeutic Properties of Seventeen Quantitated Compounds 

Class  Compound CAS No Potential properties References 

carbonyl 
benzaldehyde 100-52-7 anti-cancer [59] 

4-phenyl-2-butanone 2550-26-7 appetite enhancing [60] 

ester 

ethyl hexanoate 123-66-0 antimicrobial [61] 
hexyl acetate 142-92-7 1NA 1NA 

isoamyl isovalerate 659-70-1 1NA 1NA 
ethyl benzoate 93-89-0 1NA 1NA 

ethyl 
hydrocinnamate 2021-28-5 1NA 1NA 

dimethyl 3,3'-
thiodipropanoate 4131-74-2 1NA 1NA 

fatty 
alcohol 1-dodecanol 112-53-8 antibacterial [62,63] 

flavonoid 

pinostrobin 480-37-5 cancer chemoprevention activity & 
anti proliferative, antioxidant [64,65] 

pinocembrin 480-39-7 
neuroprotective activity, cancer 

chemoprevention activity, 
antimicrobial 

[66,67] 

terpene 
β-caryophyllene 87-44-5 anticancer and analgesic [68] 
α-caryophyllene 6753-98-6 anti-inflammatory [69] 

terpene 
alcohol linalool 78-70-6 anxiolytic [70] 

phenols 

butylated 
hydroxytoluene 128-37-0 antioxidant, anti-hepatocarcinogen [71,72] 

menthol 89-78-1 antimicrobial, antiviral, antioxidant, 
cooling agent [73] 

terpenoid (-)-caryophyllene 
oxide 1139-30-6 anticancer and analgesic [68] 

1. NA indicates that no potential properties have been identified. 

 

Interestingly, the presence of the fatty alcohol, 1-dodecanol, or more commonly 

referred to as lauryl alcohol, was not surprising because the tea simulation had a soapy 

consistency. The two flavonoids (both also found in honey) that were positively 
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identified were pinostrobin and pinocembrin [65]. This was of interest because these 

compounds have a wide range of biological activity.  Pinostrobin is a potent inducer of 

mammalian phase 2 chemoprotective and antioxidant enzymes [65].  Other studies 

such as Junior et al. highlight the antiproliferative effects of pinostrobin against the 

breast cancer cell line (MCF-7; GI50 <0.25 µg/mL) and the leukemia cell line (K562; GI50 

= 0.91 µg/mL) [64]. The GI50 is the concentration of the drug that inhibits 50 % of 

maximal cell proliferation.  The concentration for pinostrobin determined by analysis of 

the flower and leaves in the tea simulation were approximately 1.5 µg/mL and 0.4 

µg/mL respectively. Rasul et al. highlighted some biological effects of pinocembrin. This 

compound has shown cytotoxicity against the leukemia cell line (HL-60; IC50 < 100 

ng/mL) [66].  Pinocembrin has also shown antimicrobial activity against P. italicum and 

C. albicans with a minimal inhibitory concentration of 100 µg/mL [66]. The concentration 

for pinocembrin determined by analysis of the flower and leaves in the tea simulation 

were approximately 5.2 µg/mL and 10.1 µg/mL respectively. The concentration for 

pinostrobin and pinocembrin reflect the relative concentration achieved when 4 grams of 

flower or leaf material is extracted with 50 mL of water by PSE.  Additionally, 

pinocembrin may be used as a neuroprotective due to its anti-excitotoxic effects; it also 

has been shown to reduce brain edema by global cerebral ischemia-reperfusion 

(GCI/R) [66]. Brain edema is defined as an abnormal accumulation of fluid associated 

with volumetric enlargement of the brain. This is the type of brain edema a person may 

experience after cardiac arrest [74].  

The amount of plant material used for extraction can be increased to increase 

overall compound yields. It should be noted; however, that when the therapeutic profiles 
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of the 17 compounds identified in Table 11 from the tea simulation are viewed 

collectively, they seem to correlate with the Native American use for colds, flu, 

pneumonia, fevers, mouth ulcers, and tumors [22,23].  

 Characterization of key compounds found in bedding simulation 
 

As outlined in Figure 5, a chemical survey was performed using headspace (HS) 

coupled with GC-MS.  The focus was on headspace because there are two documented 

accounts of the leaves or flowers being used as a stuffing for pillows referred to as 

bedding.  In one account, the dried flowers were used as a sedative filling for the pillows 

of those that may have had pulmonary tuberculosis [75]. In another account the leaves 

only were used by the Native Americans to prevent asthma attacks [23].  The goal in 

this study was to understand the rationale behind the Native American historical use of 

P. obtusifolium as a bedding material by using (HS)-GC-MS to explore the volatile 

composition of this herb.  

2.5.1 Headspace-Solid Phase Microextraction (HS-SPME) with GC-MS to 
identify volatile compounds found in bedding 

 

Sample preparation for the headspace analysis is described in section 2.2 

Aliquots of the cryo-ground plant material were weighed into 20 mL headspace vials 

with septa screw tops and used for analysis. 

As mentioned before, the headspace technique used for this work was performed 

using solid phase microextraction (SPME) fibers. Extraction and concentration 

simultaneously occur on the fiber when gas-phase molecules are adsorbed onto the 

surface of the polydimethylsiloxane (PDMS) film.  The porous particles embedded in the 
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PDMS film that are responsible for adsorption were a combination of carboxen (CAR) 

and divinylbenzene (DVB). The particle size for the CAR particle is between 300 to 400 

µm and has a pore size of approximately 0.5 - 0.8 nm [76]. The particle sizes for the 

DVB particle range from approximately 150 – 1000 µm with pore sizes of approximately 

2 – 50 nm [76]. The small pore size of the CAR particles makes it more efficient for the 

adsorption of volatile, low molecular weight (40 -150 g/mol) species. Conversely, the 

larger pore size of the DVB particles makes it suitable for adsorption of higher molecular 

weight (50-300 g/mol) semi-volatile species from the headspace.  For this work, a 

PDMS fiber embedded with CAR and DVB particles was chosen for its ability to extract 

both volatile and semi-volatile sample components.   

Once gas-phase molecules are trapped by the fiber, they are introduced directly 

into the heated GC injector port where they are then thermally desorbed from the fiber 

and introduced to the GC column.  The SPME process should be optimized for the 

samples of interest in order to acquire reproducible data.  As mentioned in section 

1.5.3.1, the distribution constant, Kes, is affected by sample dilution, temperature, ionic 

strength, pH, and organic solvent. According to the design of this study, only sample 

dilution was considered as a factor to influence Kes. No additives were introduced into 

the extraction procedure such as solvents or salts in keeping with what analytes would 

normally be found in the headspace when used as a bedding material. For this same 

reason temperature was also not optimized.  The plant material was sampled at two 

temperatures, ambient and 40 °C.  The two temperature conditions represent the range 

of compounds may be inhaled from the bedding material from the moment of human 

contact until the bedding is heated a few degrees (°C) beyond normothermia.   
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The only other parameter that needed to be adjusted was the sample dilution 

parameter.  Sample dilution was varied by increasing or decreasing the sample size in a 

20 mL headspace vial with a screw top septum cap.  The final headspace parameters 

used for qualitative GC-MS profiling are shown in Table 12. 

Table 12. HS-SPME and GC-MS Parameters 

Sample (weighed in 20 mL headspace vial) 0.1 g of dried ground leaf/flower material 
Sample incubation time 5 minutes 
Sample incubation temperature 40 °C or ambient 
Sample extraction time 1 minutes 
Desorption 1 minute @ 250 °C 
Post fiber conditioning time 5 minutes @ 270 °C 
Fiber DVB/CAR/PDMS 

Temperature gradient 
55 ˚C hold for 0.5 minutes 
ramp 13 ˚C/minute to 257 ˚C 
ramp 60˚C/minute to 300 ˚C 

GC-MS analysis time 16.75 minutes 
Column Restek (1301sil MS) 30 m x 0.25mm ID x 1.00 µm 
Oven 250 °C 
Carrier gas helium 
Acquisition type SCAN and SIM 

 
Figure 9. GC-MS chromatogram of the leaf headspace sample with a sample incubation 
temperature of 40°C. The legend for this figure is shown in Table 13. 

After headspace optimization, analysis of the vapor phase sample was performed by 

GC-MS with a SCAN range of m/z 40-400.  
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The identification was done using the spectral searching against the National 

Institute of Standards and Technology (NIST) database.  A certified reference standard 

match was also used for spectral identification where possible; however, some 

compounds identified by the NIST spectral match program were not available for 

purchase. Approximately 66 % of the peaks in the leaf and 40 % of the peaks in the 

flower were identified.  Figure 9 shows a typical chromatogram for the chemical profile 

of the headspace for the leaf sample (a chromatogram of the flower headspace sample 

is included in the Appendix).  The legend for Figure 9, detailed in Table 13, denotes 

compounds that were identified by both spectral match and/or a certified reference 

standard. 

Table 13. Legend for Compounds Identified in the 2018 Leaf Headspace at 40 °C 

Peak # RT Peak name CAS 
1 6.214 α-pinene 80-56-8 
2 6.492 camphene 79-92-5 
3 6.900 β-mycrene 123-35-3 
4 7.521 R)-(+)-limonene  5989-27-5 
5 7.881 γ-terpinene 99-85-4 
6 8.730 linalool 78-70-6 
7 9.660 ethyl octanoate 106-32-1 
8 10.103 methyl salicylate 119-36-8 
9 10.822 ethyl nonanoate 123-29-5 

10 10.290 α-copaene 3856-25-5 
11 11.900 ethyl decanoate 113-38-3 
12 12.455 β-caryophyllene 87-44-5 
13 12.831 α-caryophyllene 6753-98-6 
14 13.060 α-muurolene 31983-22-9 
15 13.158 α-selinene  473-13-2 
16 13.256 δ-cadinene 483-76-1 
17 13.419 calmamene 483-77-2 
18 13.681 calacorene 293-02-3 
19 14.743 γ-muurolene 30021-74-0 
20 15.053 cadelene  483-78-3 
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2.5.2 Identification and comparison of volatile species in 2017 and 2018 crop 
years 

 

The leaf and flower samples were analyzed separately. Two crop years (2017 

and 2018) were analyzed and compared for the leaf and flower in triplicate aliquots for 

ambient and 40 °C.  The ground leaf and flower analyzed with the sample incubation 

time of 40 °C showed increased sample yields for both the 2017 and 2018 crop years 

over the samples collected at ambient temperature; therefore, only the graphs of the 

comparisons at the 40 °C conditions are reported. The Croom account of the Lumbee 

Native Americans discussed that the bedding material was used for one year [23]. 

There are significant differences in the analyte concentration levels between the crop 

years (see Figure 10 and Figure 11).

 

 Figure 10. Qualitative headspace analysis of the 2017 vs. 2018 leaf at 40 °C. 

Comparison of the headspace analysis extracted at 40 °C for the 2017 and 2018 

crop years revealed that camphene, γ-terpinene, methyl salicylate, α-caryophyllene, and 
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γ-gurjunene were not found in detectable levels in scan mode for the 2017 crop. 

Conversely, γ-valerolactone, valencene, α-selinene, ethyl decanoate, α-amorphene, and 

ethyl hexanoate were not found in detectable levels in the headspace of the 2018 crop. 

Notably, β-caryophyllene followed by α-caryophyllene and α-pinene in the 2018 (40 °C) 

crop had higher total ion counts than all other compounds.  

 

Figure 11. Qualitative headspace analysis of the 2017 vs. 2018 flower at 40º C. 

 

A comparison of the 2017 and 2018 headspace flower (40 °C) samples revealed 

that for all identified compounds, methyl salicylate is only found in the 2017 (40 °C) 

flower sample. This was of note because it was found in detectable levels in the 2018 

(40 °C) leaf sample but not the 2017 (40 °C) leaf sample. With the exception of methyl 

salicylate, ethyl octanoate, and ethyl nonanoate all identifiable compounds showed 

increased ion counts in the 2018 (40 °C) flower sample relative to the 2017 (40 °C) 

sample.  Overall, β-caryophyllene had the highest ion counts in the 2018 crop followed 
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by ethyl nonanoate, α-pinene, and α-caryophyllene. Ethyl nonanoate, followed by β-

caryophyllene, and α-caryophyllene had the highest ion counts in the headspace of the 

2017 flower crop. 

Many of the compounds identified by NIST spectral match or by standard 

confirmation in the headspace of the 2018 (40 °C) flower vs. 2018 (40 °C) leaf 

comparison were higher in the leaf.  As shown in Figure 12, of the compounds identified 

γ-gurjunene was only found in the leaf; however, 5 compounds (camphene, γ-terpinene, 

methyl salicylate, γ-muurolene, and γ-gurjunene) were only found in the 2018 leaf. 

 

Figure 12. Qualitative headspace analysis of the 2018 leaf vs. flower sample at 40°C. 

2.5.3 HS-SPME GC-MS quantification of four key compounds in the 2018 crop 
year 

Headspace quantitation was performed with the leaf and flower to determine if 

the DVB/CAR/PDMS fiber could be used as a quick tool to quantify volatiles in the plant 

material.  A SPME method of quantitation would be a quick assay used as a baseline 
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“freshness” test of the stored plant material. This test would ensure that the stored plant 

had a baseline level of volatile terpenes to evaluate the shelf life at different storage 

conditions. This is especially important since the 2017 and 2018 headspace comparison 

of the plant material showed a significant reduction in many of the volatile terpenes that 

could possibly have health benefits. The 2018 crop year had the highest yields; 

therefore, quantitation was performed with four selected terpenes using HS-SPME GC-

MS.  

Table 14. MS Selected Ion Monitoring Parameters for Quantitative Determination of Target 
Compounds 

Compound name Quantitation and Qualification ions 
pinene Quant ion 93, Qual ions 91,92 
(R)-(+)-limonene Quant ion 93, Qual ions 68,67,79 
β-caryophyllene Quant ion 93, Qual ions 91,105,133 
α-caryophyllene Quant ion 93, Qual ions 80,121 

 
HS-SPME-GC-MS conditions were the same as shown in Table 12 (using the 40 

°C temperature parameter only). The headspace quantitation was performed in SIM 

mode using both quantitation and qualifier ions (Table 14).  Calibration curves were 

performed by exposing the SPME fiber in a 20 mL headspace vial to 20 µL of standard 

reference material at six concentration levels.  The concentration of the standard had to 

be adjusted so that it would not saturate the fiber.  Saturation of the fiber caused the 

calibration curve to be nonlinear.  Saturation also extended fiber bake-out times before 

the fiber could again be used for analysis.  For the DVB/CAR/PDMS fiber the standard 

concentrations had to be kept low to prevent fiber saturation and produce linear 

calibration curves. Therefore, the amount of plant material had to be sufficiently reduced 

in the headspace vial as well, so that the volatile components would fall in the range of 

the curve.  The calibration curve ranges, coefficient of determination, and accuracy are 
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listed in the Table 15. To evaluate the accuracy of the HS-SPME method, a matrix 

fortification study was performed to determine if the compounds could be accurately 

recovered from the sample matrix.  To prepare the plant material for fortification, the 

plant material was baked in an oven at 70 °C for 8 hours or until the target terpenes 

were less than the calibration standard 1. The baked sample matrix of the leaf and 

flower was then fortified with a known concentration and the recovery was calculated. 

Table 16 shows the average of 6 measurements, standard deviation (SD), percent 

relative deviation (%RSD) of the target volatile terpenes based on the calibration curves 

generated for both the leaf and flower.    

Table 15. Headspace Method Quantitation Parameters 

Target 
Compound 

Calibration range 
(mg/mL) R2 

Leaf:    
  Accuracy  

Flower:                 
Accuracy  

% recovery (SD) % recovery (SD) 

α-pinene 0.025 – 0.401 0.9982 113 (0.3) 103 (7) 

(R)-(+)-limonene 0.005 – 0.080 0.9979 109 (0.4) 109 (3) 

β-caryophyllene 0.015 - 0.242 0.9935 87 (18) 97 (6) 

α-caryophyllene 0.005 – 0.082 0.9978 79 (13) 88 (6) 

 

Table 16. Headspace Quantitation of Target Terpene Analytes 

Target Compound 

leaf 
average 
(mg/g) 

n=6 

leaf 
SD 

leaf 
RSD  

flower 
average 
(mg/g) 

n=6 

flower 
SD 

Flower 
% RSD  

α-pinene 10.6 2.3 21% 14.0 3.1 22% 

(R)-(+)-limonene 1.3 0.2 13% 1.9 0.3 13% 

β-caryophyllene 18.0 3.0 16% 90.51 18.31 20%1 

α-caryophyllene 5.2 1.2 23% 6.2 1.3 21% 
1β-caryophyllene calculations were performed with 0.02g of flower material and 0.1 g of leaf material 
Note: Used 0.1 g of ground plant material for α-pinene, (R)-(+)-limonene, and α-caryophyllene  
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2.5.4 Discussion of bioactive compounds found in the bedding simulation 
 

Most of compounds found in the bedding simulation had flavor profiles 

associated with them.  The Native Americans may have found the collection of aromatic 

compounds pleasing. Table 17 shows the compound names for all the compounds 

found in the headspace along with the CAS number, FEMA (Flavor and Extract 

Manufacturers Association of the United States) flavor profile and FEMA number. If a 

FEMA number was not available, the flavor profile was acquired from another reference. 

In addition to a pleasant odor, the bedding material also seems to have 

potentially therapeutic properties. Table 18 lists the chemical class, compound name, 

CAS number, potential therapeutic potential as well as a literature reference for all the 

compounds identified in the headspace.   

The Native Americans used pillows stuffed with leaves to prevent asthma 

attacks, so it is not surprising that many of the compounds in the plant have been cited 

in the literature as possessing anti-inflammatory properties. There are also many 

compounds with anti-microbial capabilities. The collection of compounds in the bedding 

material could have also aided asthma sufferers if they were effective in the removal of 

pathogens that may complicate breathing.  Linalool has a dual role of being an 

anxiolytic as well as an anti-inflammatory agent. The sedative properties of linalool 

would certainly be in keeping with the historical use of the plant as a sedative.  
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Table 17. The Flavor Profiles of Compounds in the Headspace 

Compound CAS No FEMA flavor profile or 
reference flavor profile FEMA # or other reference  

methyl salicylate 119-36-8 almond, caramel, 
peppermint, sharp 2745 

ethyl hexanoate 123-66-0 apple peel, brandy, overripe 
fruit, pineapple 2439 

ethyl octanoate 106-32-1 apricot, brandy, fat, floral, 
pineapple 2449 

ethyl nonanoate 123-29-5 floral 2447 
ethyl decanoate 110-38-3 brandy, grape, pear 2432 

α-pinene 7785-70-8 cedar wood, pine, sharp 2902 
camphene 79-92-5 camphor, mothball 2229 

β-myrcene 123-35-3 lemon, grapefruit, musty, 
spicy [77]  

(R)-(+)-limonene 5989-27-5 citrus, mint 2633 
γ-valerolactone 108-29-2 herb 3103 

γ-terpinene 99-85-4 bitter, citrus 3559 
valencene 4630-07-3 citrus, green, wood 3443 
α-selinene 473-13-2 NA1 NA1 

calamenene 483-77-2 NA1 NA1 
α-calacorene 21391-99-1 woody TGSC2 

cadelene 483-78-3 NA1 NA1 
β- caryophyllene 87-44-5 fried, spice, wood 2252 
α- caryophyllene 6753-98-6 woody TGSC2 

α-copaene 3856-25-5 woody, spicy, honey NA1 
γ-muurolene 30021-74-0 woody TGSC2 
α-muurolene 31983-22-9 NA1 NA1 
γ-gurjunene 22567-17-5 NA1 NA1 
δ-cadinene 483-76-1 thyme, herbal, woody, dry TGSC2 

α-amorphene 483-75-0 fruity NA1 

linalool 78-70-6 coriander, floral, lavender, 
lemon, rose 2635 

 1NA indicates that a flavor profile was not found.  
 2Information from The Good Scents Company (TGSC) website accessed May 2019  
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Table 18. Potential Therapeutic Properties of Compounds in the Headspace 

Class Compound CAS No Potential properties References 

ester methyl salicylate 119-36-8 analgesic [78] 

fatty 
acid 
ester 

ethyl hexanoate 123-66-0 antimicrobial [61] 
ethyl octanoate 106-32-1 antimicrobial [61] 
ethyl nonanoate 123-29-5 NA1 NA1 
ethyl decanoate 110-38-3 antimicrobial [61] 

terpenes 

α-pinene 7785-70-8 chemotherapeutic, 
antibacterial [79,80] 

camphene 79-92-5 antibacterial [80] 
β-myrcene 123-35-3 anti-inflammatory [81] 

(R)-(+)-limonene 5989-27-5 anti-inflammatory [81]  
γ-valerolactone 108-29-2 antioxidant [82] 

γ-terpinene 99-85-4 mild sedative [83] 
valencene 4630-07-3 anti-mycobacterial [69] 
α-selinene 473-13-2 NA1 NA1 

calamenene 483-77-2 anti-inflammatory, anti-
plasmodial [84] 

α-calacorene 21391-99-1 antibacterial, antifungal [85] 
cadelene 483-78-3 anti-inflammatory [86] 

β-caryophyllene 87-44-5 

anticancer and 
analgesic, antibacterial, 

antifungal, anti-
inflammatory 

[68]  

α-caryophyllene 6753-98-6 
anti-inflammatory, anti-

inflammatory, 
antimycobacterial 

[69]  

α-copaene 3856-25-5 antibacterial, antifungal, [87] [82] 
γ-muurolene 30021-74-0 anti-inflammatory [88] 
α-muurolene 31983-22-9 antifungal [87] 

γ-gurjunene  22567-17-5 anticancer, anti-
inflammatory [89] 

δ-cadinene 483-76-1 anticancer, antibacterial, 
antifungal [88,90] 

α-amorphene 483-75-0 Anti-inflammatory, 
antifungal [84][91]  

terpene 
alcohol linalool 78-70-6 anxiolytic, anti-

inflammatory [92,93] 
1NA indicates that no therapeutic benefit was found in current literature.  

Table 15 shows that it may be possible to quantitate some of the headspace 

compounds using SPME.  Quantitation of target headspace compounds may be used to 
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model the “freshness” of the bedding material. Freshness tests are indicative of how 

stable the compounds are over time, especially when used in bedding. 

 Characterization of identifiable toxic compounds in smoke condensate 
 

The international Agency for Research on Cancer (IARC) has identified 

formaldehyde as a group 1 carcinogen [94]. This classification means that there is 

sufficient evidence to show that formaldehyde causes cancer in humans. IARC has also 

classified other carbonyl compounds, such as acetaldehyde as possibly carcinogenic 

[94]. It should be noted that the combination of compounds that are identified in the 

smoke output could possibly cause deleterious effects. 

Additionally, the U.S. Food and Drug Administration (FDA) classifies 8 carbonyls 

found in tobacco cigarette smoke, formaldehyde, acetaldehyde, acetone, acrolein, 

propionaldehyde, crotonaldehyde, and 2-butanone, as harmful or potentially harmful 

[95]. There are established methods for determining levels of the 8 key carbonyl 

toxicants in tobacco mainstream smoke. One of these established methods was 

adapted for the analysis of carbonyls in Pseudognaphalium obtusifolium smoke 

extracts.   

2.6.1   Sample preparation of plant material for UPLC-PDA analysis of 
carbonyls in smoke 

 

The plant material must be in a form suitable for smoke collection before smoke 

analysis by UPLC-PDA can take place. To make a smoke extract, the plant material 

must be fashioned into a smoking article then smoked on a smoking machine. The 

following sections describe the smoke collection, extraction, and analysis. 
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 Smoking article preparation and smoking machine setup 
 

For this experiment, smoke condensate was collected using a method adapted 

from the International Organization for Standardization (ISO) method  [40].  For 

comparison purposes the data obtained from the analysis of P. obtusifolium was 

compared to other published smoke data for marijuana and tobacco [96].  

Acidified acetonitrile containing 2,4-dinitrophenylhydrazine (DNPH) was used to 

trap the smoke condensate in glass impingers for carbonyl analysis. A 10-port linear 

smoking machine (Cerulean) was used for smoke condensate collection. The smoking 

machine standardizes the puff volume, puff duration, and puff profile so that testing is 

reproducible.  As mentioned in section 1.5.4, no smoking machine can replicate all the 

patterns of individual smokers. Rather, machine testing seeks to characterize the 

analytes found in smoke and provides a level of standardization across smoke testing 

laboratories. 

 

 
Figure 13. Smoking article fabrication. A) Depicts the Premier Supermatic Cigarette rolling 
machine used to make the smoking articles for the study. The leaf material and smoking article 
is shown in B. 

 

 A smoking article was fabricated with a Premier Supermatic Cigarette rolling 

machine, shown in Figure 13A, using cylindrical paper sleeves without a filter (Figure 13 
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B).  These paper sleeves were packed with ground plant material from the leaves and 

flower separately. The weights for the first experiment are detailed in Table 19. 

Table 19. Smoking Article Weights 

Plant material 
Target carbonyl experiment 

Smoking article 1 
Weight (g) 

Smoking article 2 
Weight (g) 

Leaf rep 1 0.5813 0.5745 
Leaf rep 2 0.6662 0.5659 

Flower rep 1 0.6993 0.5936 
Flower rep 2 0.6223 0.6613 

  

 Sample collection procedures for the smoke extract  
 

To collect the smoke extract, the smoke from the ignited end of the smoking 

article is drawn through the length of the smoking article through a smoke adapter into 

two impingers (see Figure 14.A). Figure 14.B shows two (2) impingers connected to a 

smoking machine containing a solution of 2,4-dinitrophenylhydrazine (DNPH).   As the 

aldehydes and ketones that are part of smoke stream reach the impinger they are 

trapped in the solvent.   

 
Figure 14.  A) Depicts the impinger trapping system used to trap smoke condensate. B) 
Is a depiction of the impinger trapping system when attached to the smoking machine. 

 

A B
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The carbonyls are stabilized by the DNPH derivatizing agent and become 

chromophores (see Figure 15) that are then able to be detected by the Photodiode 

Array (PDA) detector as a signal. 

 

 

 

 

 

After the smoking article was fabricated, the smoking machine conditions were 

setup according to ISO 20778 [40]. Since carbonyls are found primarily in the vapor 

phase, impingers were used to funnel the vapor-phase into the DNPH trapping solution 

shown in Figure 14. A-B.  Derivatization of the free carbonyls in smoke occurs and the 

DNPH-derivatives are formed (Figure 15).  Smoking articles containing the flower 

material and leaf material were smoked and analysed separately. The smoking articles 

were smoked in duplicate to collect one sample. Therefore, four smoking articles for the 

leaf and the flower were prepared to produce two individual samples. 

After smoke collection was complete, the impingers were disconnected from the 

smoking machine. The ISO 21160:2018 protocol was [40] followed with modifications; 

the smoke extract was not filtered, and the ratios were altered so that the sample was 

prepared directly into a 2 mL autosampler vial.  The final autosampler vial contained 

400 µL of smoke extract and 600 µL of tris-(hydroxymethyl)-aminomethane (Trizma) 

+ + H2O 

Aldehyde or Ketone 2,4-dinitrophenylhydrazine (DNPH) DNPH - Derivative 
 

H+ 

Figure 15. Reaction for 2,4-dinitrophenylhydrazine trapping system [101]. 
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solution [40].  The Trizma solution raises the pH of the reaction and thereby stops the 

formation of additional 2,4-dinitrophenylhydrazones which stabilizes the reaction.  

2.6.2 Ultra Performance Liquid Chromatography (UPLC) with Photodiode 
Array detection (PDA) identification of target carbonyls  

 

The 2,4 dinitrophenylhydrazone of the target carbonyls (formaldehyde, 

acetaldehyde, acetone, acrolein, propionaldehyde, crotonaldehyde, 2-butanone, and n-

butyraldehyde) is what is measured by UPLC-PDA. The method used was adapted from 

ISO 21160:2018  with the following differences [40] .  This work differed from the ISO 

method because a UPLC was used instead of a High-Performance Liquid 

Chromatography (HPLC) system. This method also used different method conditions 

such as injection volume, column, mobile phase, and mobile phase gradient. The 

analysis time for this work was also reduced from approximately 44 minutes outlined in 

the ISO method to 10 minutes.  Additionally, an Accustandard certified ISO guide 34 

standard mix containing the eight target carbonyls was used. The elution order of the 

analytes remained the same and the UPLC parameters are listed in Table 20 and 21. 

Table 20. UPLC Parameters 

Parameter Setting 

column InfinityLab Poroshell 
(2.1X100 mm, 2.7 micron) 

Analysis time 10 minutes 
Injection volume 2 µL 

Column temperature 55 ºC 
Auto-sampler temperature 5 ºC 

PDA detection 365 nm 
Weak wash solvent 10 % Acetonitrile in water 
Strong wash solvent acetonitrile 
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Table 21. UPLC Separation Conditions 

Time 
(Min) 

Flow 
Rate 

(mL/min) 

Mobile Phase A 
(10 % Acetonitrile in Water) 

(%) 

Mobile Phase B 
(75:25 Acetonitrile:Methanol) 

(%) 

Initial 0.6 75 25 
3.2 0.6 70 30 
5.5 0.6 60 40 
7.3 0.6 53 47 
8.0 0.6 20 80 
8.5 0.6 0 100 
9.0 0.6 0 100 
9.1 0.6 75 25 

10.0 0.6 75 25 
 
 

Waters TargetLynx software was used to generate a calibration curve to 

calculate response factors for each of the target carbonyl compounds. The calibration 

standards were made by using a certified standard to make serial dilutions of the 

standard solution containing formaldehyde, acetaldehyde, acetone, acrolein, 

propionaldehyde, crotonaldehyde, and 2-butanone in concentrations that bracketed the 

levels of carbonyls in the sample. The correlation coefficient for the eight calibration 

curves were > 0.999.  There was no internal standard used for this evaluation.  Target 

carbonyl concentrations were reported in µg/mL using TargetLynx software. The results 

from the calibration curve were adjusted to report the concentration of the free carbonyl 

(not the hydrazone). Table 22 and Equation 10 show that the concentrations of the 
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standards are based on the ratio of the molecular weight (MW) of the free carbonyl vs. 

the MW of the complex (carbonyl-DNPH derivative). 

 

Table 22. Carbonyl Stock Standards 

Target Carbonyl-DNPH 
complex Cas # 

MW of 
Target 

Carbonyl 

MW of 
Target 

Carbonyl-
DNPH 

complex 

Purity of 
Target 

Carbonyl 

DNPH-
Carbonyl 
complex 

Final 
Conc. 

(µg/mL)  

Free 
Carbonyl  

Final 
Conc. 

(µg/mL)  

formaldehyde-DNPH 1081-15-8 30.03 210.15 100.0 354.4 50.6 
acetaldehyde-DNPH 1019-57-4 44.05 224.18 98.0 4925 967.7 

acetone-DNPH 1567-89-1 58.08 238.21 99.5 1004 244.8 
acrolein-DNPH 888-54-0 56.06 237.15 99.0 419.4 99.1 

propionaldehyde-DNPH 725-00-8 58.08 238.21 99.7 528.8 128.9 
crotonaldehyde-DNPH 1527-96-4 70.09 250.22 98.6 179.5 50.3 

2-butanone-DNPH 958-60-1 72.11 252.23 98.0 344.6 98.5 
butyraldehyde-DNPH 1527-98-6 72.11 252.23 99.6 351.8 100.6 

 

Equation 10. Concentration of the carbonyl standard 

 

CC(µg mL)=⁄ �
CarbMW

ComplexMW
�×�

Complexmg

TVmL
�× �

p
100�×�

1000µg

1mg
� 

 

The concentration of the carbonyl (CC µg/mL) standard is determined by CarbMW, 

the molecular weight of the free carbonyl (not complexed with DNPH), ComplexMW, the 

molecular weight of the carbonyl-DNPH complex (hydrazone), TV, the total volume of 

solution (mL), p, the purity of the neat carbonyl-DNPH complex and Complexmg, the 

mass of the DNPH-complex (mg).  
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The carbonyl concentration (CC) in the smoke was determined according to 

Equation 11. The concentration of the carbonyl (µg/smoking article) is calculated as the 

free carbonyl (see equation 10). 

 

Equation 11 

CCµg smoking article⁄ =Concµ g
mL

× �
TIV ×FV
AV×N �   

 

In this equation, CC represents the carbonyl concentration (µg/smoking article) of the 

free carbonyl in P. obtusifolium smoke and the Concµg/mL, is the calculated concentration 

from the calibration curve. TIV represents the total impinger volume which was 60 mL. 

The aliquot of extraction solution volume removed from impinger (0.4 mL) is denoted by 

AV. FV is the final volume of 1 mL (0.6 mL of Trizma+ 0.4 mL of extraction solution 

removed from impinger). Finally, N, is the number of smoking articles (SA) analyzed, 

which was two in this study. 

  

2.6.3 Discussion of target carbonyl compounds found in the smoke simulation 
 

Toxic compounds form through pyro-synthesis and thermal degradation during 

the burning of a smoking article.  The heat of the combustion and the hot gases being 

produced causes pyrolysis of the plant material located immediately behind the 

combustion zone [41].  Hydrocarbons, aldehydes, alcohols, ketones, and acids  along 

with carbon based nanoparticles are formed by pyro-synthesis and thermal 

decomposition and become part of what is inhaled in the smoke [41]. Additionally, 
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stable volatile materials such as alkaloids, water, and some waxy materials distill 

unchanged into the smoke stream. 

Table 23. Carbonyl Target Yields in Leaf and Flower 

Target 
compound 

Leaf Concentration 
(µg/SA2):SD3 

Flower Concentration 
(µg/SA2):SD3 IARC1 

formaldehyde 28  (±13) 170 (±100) 1 
acetaldehyde 145   (±78) 382 (±210) 2B 
acetone 32 (±16) 70 (±36) NA 
acrolein 26 (±14) 81 (±43) 3 
propionaldehyde 13.1 (±6.2) 30 (±15) NA 
crotonaldehyde 7.5 (±4.2) 33 (±17) 3 
2-butanone 8.7 (±5.0) 20 (±13) NA 
butyraldehyde 7.8 (±3.8) 12.7(±6.1) NA 

1International Agency for Research on Cancer classifications 
Group 1 – Carcinogenic to humans 
Group 2A – Probably carcinogenic to humans 
Group 2B - Possibly carcinogenic to humans 
Group 3- Not classifiable as to its carcinogenicity to humans 
2SA = smoking article 
3SD = standard deviation 

 

The data in Table 23 are from the analysis of 2 smoking articles as mentioned in 

section 2.6.1.2. The large standard deviations can be explained by the non-

standardization of the smoking article process as well as the low number of replicate 

analyses. Even though the material was cryo-ground it still had a fluffy consistency 

which made fabrication of the smoking article challenging. This “fluffiness” made it 

difficult to pack the smoking article the same way each time. On several occasions the 

paper smoking sleeve split due to the pressure of the material.  Table 23 also shows the 

IARC classification of each carbonyl where applicable. 

  An interesting observation in the target carbonyl yield data in Table 23 is that 

the flower has consistently higher concentrations of the target compounds than the leaf. 
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This could also be explained by the non-standardization of smoking article fabrication; 

there is approximately 8 % difference in the total combined weight between the leaf and 

the flower.  When observing the differences in formaldehyde yields for the leaf and 

flower it seems unlikely that the difference is completely due to the difference in weight.  

One suggestion is that the leaf has fewer carbohydrates than the flower. Thermal 

degradation of cellulose is known to be associated with low molecular weight carbonyl 

formation [97].  

To better comprehend the results, the analysis results for P. obtusifolium leaf and 

flower were compared to published values of carbonyl yields from smoking analyses of 

marijuana flower and tobacco leaf.  When compared with yields from marijuana and 

tobacco, the yields from the flower and leaf are present in concentrations that are 

similar. This comparison was able to be made because the smoking protocol and 

smoke extraction process were similar to the method described by Moir et al. [96].   As 

shown in Figure 16, formaldehyde concentrations in the P. obtusifolium flower had 

levels that ranged higher than levels found in tobacco smoke. Acetaldehyde and 

propionaldehyde, had levels in the P. obtusifolium flower that ranged higher than those 

found for the marijuana smoking analysis. Acrolein and crotonaldehyde values were 

higher than marijuana while acrolein values approached levels found in tobacco smoke 

[96]. One important fact to note is that P. obtusifolium had a lower number of replicates 

(n=2) than both tobacco and marijuana which had 7 replicates each [96].  Another 

significant point is that all of these values can change based on how the smoking 

articles is fashioned as well as the growth conditions and how the plant material is 

prepared for testing. 
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Figure 16. Comparison of P. obtusifolium (leaf and flower), marijuana, and tobacco smoke 
carbonyl yields. The comparison values for marijuana and tobacco smoke yields are from work 
done by Moir et al. [96]. 

 

As mentioned earlier, all eight target analytes found in the smoke of P.  

obtusifolium, have been identified by the FDA as being harmful or potentially harmful 

constituents in tobacco products and tobacco smoke.  Additionally, the International 

Agency for Research on Cancer (IARC) has identified formaldehyde as a group 1 

carcinogen (see Table 23) [94,95]. This classification means that there is sufficient 

evidence to show that formaldehyde causes cancer in humans. IARC has also classified 

other compounds on the list of target carbonyls such as acetaldehyde as possibly 

carcinogenic [95]. It should be noted that the combination of hazardous or potentially 
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hazardous chemicals that have been identified in the smoke output could possibly 

cause deleterious effects. 

2.6.4 GC-MS survey of bioactive and toxic compounds in smoke condensate 

In addition to analyzing the carbonyl content of the smoke condensates for P. 

obtusifolium, a smoke extract that captured both particulate-phase and gas-phase 

compounds was also collected and tested using GC-MS.  The mass of total particulate 

matter collected on the pad and carbon monoxide were also measured.    

For the GC-MS analysis, only one impinger was used in the impinger assembly 

instead of the two tandem impingers shown in Figure 14.  Methanol was used as a 

trapping solution for the vapor-phase and a cellulose acetate pad inserted before the 

impinger was used to trap the particulate-phase. The impinger was filled with 10 mL of 

methanol fortified with 50 µL of a 1000 µg/mL stock solution of quinoline as the internal 

standard. The total concentration of quinoline in methanol was 5 µg/mL. 

 The methanol in the impingers was cooled to 0 ºC prior to the start of the smoke 

machine analysis to improve collection efficiency of volatile components.  Three 

smoking articles for each the leaf and the flower were used for one smoke analysis run. 

Therefore, three smoking articles were used to obtain a single smoke analysis value.  

The smoking machine was setup according to the ISO 20778 method [40]. After 

smoke collection was completed, an aliquot of the impinger contents for the leaf and 

flower were filtered through 0.45 µm filter directly into separate 2 mL autosampler vials 

for analysis by GC-MS.  
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After smoking the cellulose acetate pads were weighed for the leaf and flower 

before being placed in separate 40 mL amber bottles. The pads were then fortified with 

a 1000 µg/mL internal standard stock solution of quinoline resulting in an internal 

standard concentration of 5 µg/mL after adding 10 mL of methanol. The pads were then 

vortexed for 10 minutes to extract the particulate phase into the methanol.  The pad for 

the flower and leaf sample was then filtered with a 0.45 µm filter directly into separate 2 

mL autosampler vials for analysis by GC-MS. The estimated concentration (µg/g) was 

determined using the internal standard (ISTD) area and concentration for quinoline; see 

Equations 12 and 13 for an example calculation of styrene in the flower sample. 

Equation 12: Example calculation for the estimated concentration (µg/g) of styrene in 

the flower 

Estimated concentration of target peak (styrene) =
ConcISTD×  PAT

PAISTD
 = 10.6 

µg
mL 

The estimated concentration of the target peak (styrene) is calculated using the 

variables (ConcISTD, PAT, and PAISTD). For this study, the concentration of the ISTD 

(ConcISTD) was 5 µg/mL of quinoline.  The PAT represents the peak area of the target 

peak (styrene peak area = 5.1) and the PAISTD is the peak area of the ISTD (quinoline 

peak area = 2.4). Once the peak estimated concentration (µg/mL) is calculated the 

estimated concentration can then be calculated on a per gram basis as in equation 13 

below. 

Equation 13 

(µg/g)styrene=Estimated conc. (µg/mL) × Ext Vol
sample wgt. = 193 µg/g 
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The estimated concentration (µg/g) of the target peak (styrene) is calculated 

using the estimated concentration (µg/mL) of target peak (example: styrene = 10.6 

µg/mL) an extraction volume (Ext Vol) of 10 mL. The sample weight (sample wgt. = 0.55 

g) was the weight of smoking article prepared with plant material from the flower minus 

the weight of the paper wrapper. A Cerulean 10 port linear smoking machine used 5 

main parameters (2 second puff duration, 30 second puff interval, a puff volume of 55 

cc, and a sine wave) for smoke collection. Table 24 shows the average weight of the 

smoking article and number of smoking articles used for smoke collection. The average 

number of puffs, total particulate matter (TPM) and carbon monoxide (CO) are also 

shown. 

 Table 24. Smoking Article and Smoking Machine Data 
 

Sample Average smoking article weight (g) smoking 
articles (#) Puffs TPM 

(mg/cig) 
CO 

mg/cig 
leaf 0.66 (n=3) 3 11.2 15.1 10.74 

flower 0.55 (n=3) 3 13.9 2.2 9.81 
 

The GC-MS was set up in scan mode. A DB-5MS (30 m x 0.25 mm x 0.25 µm) 

column was used for analysis.  For the leaf smoke extract, approximately 22 % and 

28% of the peaks in the particulate and vapor phase, respectively, were identified. For 

the flower smoke extract, approximately 20 % and 31% of the peaks in the particulate 

and vapor phase respectively were identified.  The results in Tables 25 and 26 

represent leaf and flower compounds trapped by the pad (particulate-phase) and 

impinger (vapor-phase). International Agency for Research on Cancer (IARC) 

classifications are also included where applicable. 
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Table 25. Smoke Analysis Survey of Leaf 

Compound CAS Vapor/Particulate 
Phase 

Estimated 
(µg/g) IARC

1
 

diethyl phthalate 84-66-2 particulate 4 NA2 
vitamin E 59-02-9 particulate 279 NA2 

stigmasterol 83-48-7 particulate 195 NA2 
2-furanmethanol 98-00-0 vapor 29 2B 

furfural 98-01-1 vapor 39 3 
 3-methyl-pyridine 108-99-6 vapor 29 3 
(R)-(+)-limonene 5989-27-5 vapor 46 3 

phenol 108-95-2 vapor 77 3 
5-methyl-2-furaldehyde 620-02-0 vapor 27 NA2 

3-methyl-2-cyclopentenone 2758-18-1 vapor 33 NA2 
3-methylcyclopentane-1,2-dione 765-70-8 vapor 151 NA2 

 3-methyl-phenol 108-39-4 vapor 180 NA2 
 2-methoxy-phenol 90-05-1 vapor 58 NA2 

2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one 28564-83-2 vapor 65 NA2 
catechol 120-80-9 vapor 113 2B 

(E)-5-isopropyl-8-methylnona-6,8-dien-2-one 54868-48-3 vapor 65 NA2 
5-hydroxymethylfurfural 67-47-0 vapor 89 NA2 
2-methoxy-4-vinylphenol 7786-61-0 vapor 33 NA2 

indole 120-72-9 vapor 40 NA2 
3-methyl-indole 83-34-1 vapor 59 NA2 

 3-(3,4-dihydro-2H-pyrrol-5-yl) - pyridine 532-12-7 vapor 22 NA2 
4-methyl-3-phenyl-pyrazole 13808-62-3 vapor 56 NA2 

neophytadiene 504-96-1 vapor 208 NA2 
2,3'-dipyridyl 581-50-0 vapor 31 NA2 

(E)-4-(3-hydroxyprop-1-en-1-yl)-2-methoxyphenol 32811-40-8 vapor 29 NA2 
alloaromadendrene 25246-27-9 vapor 46 NA2 

cotinine 486-56-6 vapor 37 NA2 
(Z,Z,Z)-9,12,15-octadecatrienoic acid 463-40-1 vapor 57 NA2 

scopoletin 92-61-5 vapor 48 NA2 
1International Agency for Research on Cancer classifications: Group 1 - Carcinogenic to humans; Group 
2A - Probably carcinogenic to humans; Group 2B - Possibly carcinogenic to humans; Group 3- Not 
classifiable as to its carcinogenicity to humans 
2NA - No IARC classification 
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Table 26. Smoke Analysis Survey of the Flower 

Compound CAS Vapor/Particulate 
Phase 

Estimated 
(µg/g) IARC

1
 

toluene 108-88-3 particulate 645 3 
2-methyl-2-butenenitrile 4403-61-6 particulate 81 NA2 

o-xylene 95-47-6 particulate 260 NA2 
5-(1-methylethylidene)- 1,3-cyclopentadiene 2175-91-9 particulate 91 NA2 

styrene 100-42-5 particulate 193 2A 
(R)-(+)-limonene 5989-27-5 particulate 410 3 

1,2,4-trimethyl- benzene 95-63-6 particulate 23 NA2 
benzonitrile 100-47-0 particulate 20 NA2 

indene 95-13-6 particulate 19 NA2 
toluene 108-88-3 vapor 376 3 
o-xylene 95-47-6 vapor 231 NA2 
furfural 98-01-1 vapor 29 3 

bicyclo[4.2.0]octa-1,3,5-triene 694-87-1 vapor 151 NA2 
1-ethyl-2-methyl-benzene 611-14-3 vapor 42 NA2 

undecane 1120-21-4 vapor 13 NA2 
(R)-(+)-limonene 5989-27-5 vapor 100 3 

1,2,3-trimethyl- benzene, 526-73-8 vapor 9 NA2 
benzaldehyde 100-52-7 vapor 11 NA2 
benzonitrile 100-47-0 vapor 6 NA2 

indene 95-13-6 vapor 12 NA2 
1International Agency for Research on Cancer classifications: Group 1 - Carcinogenic to humans; Group 2A -
Probably carcinogenic to humans; Group 2B - Possibly carcinogenic to humans; Group 3- Not classifiable as to its 
carcinogenicity to humans 
2NA - No IARC classification 

 

2.6.5 Discussion of compounds found in the smoke simulation 
 

The results of the smoking survey (Tables 25 and 26) are approximates from 

single collections; however, they demonstrate the chemical composition collected from 

P. obtusifolium smoke condensate include many toxic compounds.   The compounds in 

Tables 25 and 26 do not represent a comprehensive listing of all compounds found in 

the smoke of Pseudognaphalium obtusifolium.  This list represents the compounds that 

were able to be identified by spectral match (match quality ≥ 80) or a standard match or 

both.  As mentioned in section 2.6.4, approximately 22 % and 28% of the peaks in the 
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leaf particulate and vapor phase, respectively, were identified and approximately 20 % 

and 31% of the peaks in the flower particulate and vapor phase respectively were 

identified.  Additionally, since this method was a general survey method, compounds 

that were not heat stable or compounds with high molecular weights, as well as non-

volatile compounds may not be able to be identified by GC-MS. Further method 

optimization would be required for a comprehensive analysis and is beyond the scope 

of this research. 

The International Agency for Research on Cancer (IARC) classifications are 

listed beside each compound identified in smoke.  IARC cautions that Group 3 agents 

are not considered safe but rather this is the current classification based on the metrics 

and information they currently have [94]. New studies may support different 

classifications  [94].  Styrene is in group 2A which suggests that it is probably 

carcinogenic to humans.  This data further indicates that inhaling smoke from burning 

carbonaceous materials is known to be injurious to health.  Styrene and toluene are 

volatile organic compounds that can induce inflammation of the lung that may lead to 

pathogenesis [98]. Xylene, (o-xylene, m-xylene, p-xylene) is an aromatic hydrocarbon 

that has been shown to shown to cause harm in many organ systems [99]. It can cause 

throat and nasal irritation in the respiratory system at exposure levels of 200 ppm in 3 -5 

minutes. When exposed to the skin, xylene can also cause dermal erythema, 

vasodilatation, and dryness [99]. 
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3 Conclusion and future work 
 

The goal of this research was to provide a broad-based survey of the chemical 

composition of P. obtusifolium based on historical usage.  As many of the compounds 

identified in this work have known bioactivity, the compounds found can provide insight 

into the potential therapeutic function of this native plant as it was used by indigenous 

populations.  A chemical elucidation of this plant will also be useful for providing 

researchers an additional plant source for bioactive compounds.  

In the tea simulation, using an aqueous extraction technique and GC-MS 

analysis, seventeen compounds were confirmed by spectral match and reference 

standard comparison. Compounds such as carbonyls, esters, fatty alcohols, flavonoids, 

phenols and terpenes were detected. These compounds are associated with many 

therapeutic properties (anti-inflammatory, antibacterial, anticancer properties, etc.).  

Quantitative analysis was also conducted. Concentrations of these compounds ranged 

from 0.006 µg/g to 128 µg/g.  

The headspace analysis with SPME and GC-MS analysis, simulated the herb 

being stuffed into bedding such as a pillow.  For this application, 25 compounds were 

identified by spectral match with 13 compounds also being confirmed by reference 

standard comparison.   Most of the compounds found in the headspace were also of 

therapeutic benefit (see Table 18). Quantitative analysis was also conducted on four 

compounds, α-pinene, (R)-(+)-limonene, β-caryophyllene, and α-caryophyllene.  It was 

also observed, that the concentrations of many compounds varied based on the harvest 

year and/or age of the plant material.  Additionally, there were variations in 



75 
 

concentrations based on whether the plant material was harvested from the leaf or the 

flower.  

The smoke extract was also evaluated in both leaf and flower, and approximately 

57 compounds were identified.  The smoke analysis was performed using a nontargeted 

(full scan GC-MS) and targeted approach (UPLC-PDA).  As part of the targeted 

approach, the P. obtusifolium smoking article was smoked and analyzed for the 

presence of carbonyls, some of which are known carcinogens [94]. Using UPLC-PDA 

detection a derivatization method adapted from methods developed to characterize 

eight target carbonyls in tobacco was employed. This analysis showed that all eight 

target carbonyls were present in levels ranging from 0.1 µg/g to 5 µg/g.   These levels 

were similar or greater than what has been reported in tobacco and marijuana smoke.  

In the non-targeted analysis, compound classes such as benzene, hydrocarbons, lipids, 

and steroids were also observed.  

Table 27 shows the compounds detected across all analyses simulating historical 

usage. Overlap was observed for a few compounds in the tea, bedding, and smoke 

simulations.  

Table 27. Compounds Identified in Usage Forms 
 Compound CAS No Tea Bedding Smoke 

benzaldehyde 100-52-7 X  X 
acrolein 107-02-8   X 

propionaldehyde 123-38-6   X 
butyraldehyde 123-72-8   X 

crotonaldehyde 123-73-9   X 
formaldehyde 50-00-0   X 

5-methyl-2-furaldehyde 620-02-0   X 
5-hydroxymethylfurfural 67-47-0   X 

acetone 67-64-1   X 
acetaldehyde 75-07-0   X 
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Table 28 (continued from Table 27) - Compounds Identified in Usage Forms 

 Compound CAS No Tea Bedding Smoke 
2-butanone 78-93-3   X 

furfural 98-01-1   X 
cotinine 486-56-6   X 

3-(3,4-dihydro-2H-pyrrol-5-yl) - pyridine 532-12-7   X 
2,3'-dipyridyl 581-50-0   X 

undecane 1120-21-4   X 
styrene 100-42-5   X 

5-(1-methylethylidene)- 1,3-cyclopentadiene 2175-91-9   X 
neophytadiene 504-96-1   X 

bicyclo[4.2.0]octa-1,3,5-triene 694-87-1   X 
1,2,3-trimethyl- benzene, 526-73-8   X 
1-ethyl-2-methyl-benzene 611-14-3   X 

o-xylene 95-47-6   X 
1,2,4-trimethyl- benzene 95-63-6   X 

(Z,Z,Z)-9,12,15-octadecatrienoic acid 463-40-1   X 
ethyl octanoate 106-32-1  X  
ethyl decanoate 113-38-3  X  
methyl salicylate 119-36-8  X  
ethyl nonanoate 123-29-5  X  
ethyl hexanoate  123-66-0 X X  

hexyl acetate 142-92-7 X   
ethyl hydrocinnamate  2021-28-5 X   

dimethyl 3,3'-thiodipropanoate 4131-74-2 X   
isoamyl isovalerate 659-70-1 X   

ethyl benzoate 93-89-0 X   
pinostrobin 480-37-5 X   

pinocembrin 480-39-7 X   
indene 95-13-6   X 
indole 120-72-9   X 

3-methyl-indole 83-34-1   X 
4-phenyl-2-butanone 2550-26-7  X   

3-methyl-2-cyclopentenone 2758-18-1   X 
2,3-dihydro-3,5-dihydroxy-6-methyl-4H-

pyran-4-one 
28564-83-2   X 

(E)-5-isopropyl-8-methylnona-6,8-dien-2-one 54868-48-3   X 
3-methylcyclopentane-1,2-dione 765-70-8   X 

scopoletin 92-61-5   X 
benzonitrile 100-47-0   X 

2-methyl-2-butenenitrile 4403-61-6   X 
 3-methyl-phenol 108-39-4   X 
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Table 29 (continued from Table 27 and 28) - Compounds Identified in Usage Forms 

Compound CAS No Tea Bedding Smoke 
phenol 108-95-2   X 

catechol 120-80-9   X 
butylated hydroxytoluene (BHT) 128-37-0 X   

2-methoxy-4-vinylphenol 7786-61-0   X 
menthol 89-78-1 X   

 2-methoxy-phenol 90-05-1   X 
(E)-4-(3-hydroxyprop-1-en-1-yl)-2-

methoxyphenol 32811-40-8   X 

1-dodecanol 112-53-8 X   
2-furanmethanol 98-00-0   X 
diethyl phthalate 84-66-2   X 

4-methyl-3-phenyl-pyrazole 13808-62-3   X 
3-methyl-pyridine 108-99-6   X 

stigmasterol 83-48-7   X 
valencene 4630-07-3  X  

γ-valeraolactone 108-29-2  X  
β-myrcene 123-35-3  X  
γ-gurjunene 22567-17-5  X  

alloaromadendrene 25246-27-9   X 
α-calacorene 21391-99-1  X  
γ-muurolene 30021-74-0  X  
α-muurolene 31983-22-9  X  
α-copaene 3856-25-5  X  
α-selinene 473-13-2  X  

α-amorphene 483-75-0  X  
δ-cadinene 483-76-1  X  
calamenene 483-77-2  X  

cadelene 483-78-3  X  
(R)-(+)-limonene 5989-27-5  X X 
α-caryophyllene 6753-96-6 X X  

linalool 78-70-6 X X  
camphene 79-92-5  X  
α-pinene 80-56-8  X  

β-caryophyllene 87-44-5 X X  
γ-terpinene 99-85-4  X  

(-)-caryophyllene oxide  1139-30-6  X   
toluene 108-88-3   X 

vitamin E 59-02-9   X 
 

Four compounds from this group were identified as being in both the tea and the 

headspace (see Tables 27-29).  Benzaldehyde and (R)-(+)-limonene were the only 
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compounds in smoke that overlapped with compounds found in the tea and headspace 

respectively.   Many of the compounds identified in the smoke are toxic. 

There were also many compounds that were not identified with the analytical 

tools used for this study.  In some cases, peaks were detected but could not be 

identified with the spectral match criteria of ≥ 80. In addition, some compounds may not 

have been a part of the current MS spectral library.   Also, peak overlap could result in 

poor library search results. Additionally, many compounds present in the P. obtusifolium 

may not have not been extracted by the techniques employed in this research. To 

identify more compounds in the plant matrix, sample preparation could be targeted to 

isolate the various chemical groups of interest.  This targeting could include additional 

sample cleanup so that compounds may be differentiated from the larger sample matrix 

that currently hinders the identification of the compounds. Alternative extraction 

techniques could also be explored.  

 Another possible step in constituent identification especially suited for 

compounds in the tea simulation is preparative HPLC with tandem PDA and MS 

capabilities.  In this technique the sample exits the detector(s) and goes to a fraction 

collector instead of going to waste. In this way isolation of and purification of target 

unknowns can be achieved.  This technique is not without complications. Often suitable 

separation parameters take a considerable time to be optimized and often must be 

combined with other spectroscopy techniques such as Nuclear Magnetic Resonance 

(NMR).   
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NMR is not without limitations. NMR requires much larger sample concentrations 

and pure samples that are often constrained by complex plant matrices.  Gas 

chromatography with high resolution (e.g., Time of Flight (TOF)-MS) is another 

technique that may provide principal component identification in complex matrices and 

used to supplement information provided by the GC-MS. High resolution MS can 

facilitate potential compound identification by determining the elemental compositions 

[46]. 

In addition to understanding what compounds are found in P. obtusifolium, 

studies should also be done to identify the optimal time of harvesting so that the levels 

of therapeutic compounds are maximized.  The Croom research account documents 

that the Lumbee did not normally consume the plant until the fall or winter [23]. It was 

recorded by Croom that, “They [Lumbee] only collected the lower dried leaves on the 

plant if gathered in the summer.  The green leaves were thought to make one sick, 

unless they had a strong stomach” [23]. This detail is of interest because there may be 

undesirable effects associated with using the herb collected outside of the harvest time. 

In future work, a chemical profile should be done on the green leaves of the plant before 

harvest to determine if there was any chemical basis for the warning in the Croom 

account [23].  There were additional accounts, though few, that either used the roots or 

the entire plant [19]. The roots and stems should also be analyzed to see if they offer 

the similar chemical profiles to that of the leaves and flowers or offer sources of other 

therapeutic potential [23].   

When using natural sources such as plants as for therapeutic purposes there are 

many questions that need to be answered before we understand how plants influenced 
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medicine in historical native populations.  When studying plants that potentially provide 

therapeutic benefits one main question should be answered - what is the role of this 

herbal remedy? Asking this question opens a myriad of other questions which allows 

the researcher to understand if the herb functioned as a curative, disease prevention, or 

other. Probing herbal plants for curative properties may have its difficulties but at least 

there is a target disease/cure paradigm in which to measure results. Exploring 

preventive cures is often less tangible and therefore more challenging but even more 

important. When we think of food as medicine we understand that a proper diet can 

prevent many ailments, this area of research has been highlighted in recent years 

particularly in the field of nutrigenomics which seeks to elucidate how diet can impact 

the human genome [100].  

The Lumbee Native American tribe used P. obtusifolium as a curative for colds 

and flu symptoms, but it also could have acted as a preventive for asthma.  As 

mentioned earlier, there are reports that the Creek also used this herb to add a 

“perfume” to other medicines [24].  In this case, at least part of the herb’s function was 

to make the preparative medicine more palatable, but it also may have imparted 

synergistic effects.  As many of the plant curatives were combined with other plants to 

provide therapeutic benefits, it is also helpful to recognize how each natural element 

supports efficacy.  These questions require much experimentation and contributions 

from studies such as this work. Eventually, with enough experimental inputs, 

researchers may be able to model the function of each element found in herbal 

preparations to better understand the reason for use.  
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The future is promising; however, as more unknown compounds are identified, 

spectral libraries will be able to be updated which will enhance future searches and 

shorten the time for complex matrix identification. With the identification of more 

unknowns, ethno-pharmacologists will have an advanced chemical profile in which to 

evaluate the effectiveness of plant preparations.  This broad range access to 

information may shorten the time it takes to discover new therapeutic plant compounds.  

One main caveat gleaned from the recreation of the Bald’s Leechbook MSRA cure is 

that a combinatorial effect of multiple agents can be an effective curative [12]. It is also 

interesting to note that the researcher, Christina Lee, who initiated the Bald’s 

Leechbook curative was an associate professor in Viking Studies.  This highlights the 

power and importance of multiple disciplines working together to solve problems. 

Furthermore, since we are presently disconnected from knowing exact historical 

formulations, the ethnobiologist must consider that plants may be misidentified due to 

the variety of common names that exist for an herb. The plant may also be reclassified 

(as in the case of P. obtusifolium).  The ailments that the herb is supposed to treat can 

also be misinterpreted over time. To this end, we must also be willing to revisit and 

reevaluate past failed efforts.   

 Maybe one day in western society, we will seek to understand and embrace 

what nature has already provided. The ever-increasing frequency of drug resistant 

bacterial strains may necessitate or accelerate this need. Maybe one day plant 

preparations can legitimately be recognized by administrative bodies as suitable 

treatments for our most common ailments while also using novel therapeutic 

compounds as scaffolding to develop other useful remedies. 
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5 Appendix 
 

 

Figure A. GC-MS chromatogram of the headspace of the flower at 40°C. The legend for this 
figure is shown in Table A.  Approximately 40 % of the peaks were identified. 

Table A. Legend for Compounds Identified in the Flower Headspace at 40°C. 

Peak # Peak name CAS  Peak # Peak name CAS 
1 α-pinene 80-56-8  9 β-caryophyllene 87-44-5 
2 β-myrcene 123-35-3  10 α-caryophyllene 6753-98-6 
3 (R)-(+)-limonene 5989-27-5  11 α-muurolene 31983-22-9 
4 linalool 78-70-6  12 δ-cadinene 483-76-1 
5 ethyl octanoate 106-32-1  13 calamenene 483-77-2 
6 ethyl nonanoate 123-29-5  14 α-calacorene 21391-99-1 
7 α-copaene 3856-25-5  15 cadelene 483-78-3 
8 ethyl decanoate 113-38-3     
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Figure B. Depicts the five point calibration curve for benzaldehyde where the relative response 
for benzaldehyde represents the peak area/internal standard area.  The internal standard was 1-
octanol. 

 

Figure C. A chromatogram of the benzaldehyde in the flower tea extract with 1-octanol as the 
internal standard. 

 

Slope = 40.46 
y-intercept = 0.11 
R2 = 0.995 
std error = 0.0353 
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