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Tidal freshwater wetland soils contain large amounts of organic carbon, some of which is 

mineralized to carbon dioxide (CO2) and methane (CH4) by a diverse consortium of 

anaerobic microorganisms that includes fermenters, syntrophs, and methanogens (MG). 

These microbial groups are tightly linked and often rely on cooperative interspecies 

metabolisms (i.e., syntrophy) to survive. Environmental perturbations can disrupt these 

interactions and thus alter the rates and pathways of carbon cycling. One environmental 

change of particular concern in coastal wetlands is sea level rise, which can result in 

increased episodic saltwater intrusion events into these ecosystems. These events cause 

an influx of sulfate (SO4
-2) to the soils and may stimulate sulfate-reducing bacteria 

(SRB), which can directly compete with syntrophs for energy sources (e.g., fermentation 

products such as butyrate). Since syntroph metabolism generates byproducts that serve as 

the energy source for many MG, this competition can have indirect negative effects on 

methanogenesis. In addition, SRB can directly compete with MG for these byproducts, 
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particularly formate, H2, and/or acetate. The goal of this study was to understand how 

both MG and syntroph-MG consortia respond to and recover from SRB competition 

during an episodic saltwater intrusion event. To achieve this, microcosms containing soil 

slurry from a freshwater wetland were subjected to simulated saltwater intrusion, and 

metabolic inhibitors were used to isolate the activity of the various functional groups. 

This study focused on the breakdown of butyrate, which is a key energy source in 

syntroph-MG consortia metabolisms. The observed changes in butyrate breakdown rates 

and byproduct accumulation during butyrate degradation assays confirmed that butyrate 

breakdown was mediated through syntroph-MG consortia, and that formate, rather than 

H2, was likely used as an electron carrier during syntrophic activity. Additions of SO4
-2 

(as Na2SO4) to the freshwater microcosms stimulated SRB activity and shifted the MG 

community to favor acetoclastic members. These changes were accompanied by a 24% 

increase in CO2 production and an 80% decrease in CH4 production. Interestingly, when 

NaCl was added to achieve similar ionic strength, CH4 production decreased by ~32%, 

suggesting SRB competition is not the only factor affecting methanogenesis. Butyrate 

degradation rates demonstrated that while SRB were strong competitors for butyrate, 

concurrent syntrophic metabolism was possible. Further, data show that SRB were poor 

competitors for acetate, which could explain the increase in acetoclastic MG. Following 

removal of SRB competition, CH4 production recovered but only by ~50% after 28 days, 

which suggests that some MG communities in tidal freshwater wetlands may not be 

resilient to saltwater intrusion events. Over this same time, rates of syntrophic butyrate 

breakdown largely recovered, but butyrate breakdown resulted in the production of less 

CH4 and acetate and more CO2 and formate, indicating saltwater intrusion events may 
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lead to persistent changes in the byproducts and pathways of carbon breakdown in tidal 

freshwater wetlands. 
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Introduction 

Wetlands are globally important ecosystems in terms of climate change because 

they play a large role in the cycling of carbon and greenhouse gases. For example, 

wetlands are estimated to store 15-25% of global soil carbon (Matthews and Fung 1987, 

Mitra et al., 2005, Conrad 2009, Neubauer 2013a). This soil carbon is decomposed by 

microbes, resulting in the production of carbon dioxide (CO2) and methane (CH4). 

Methane is of particular interest because it is a potent greenhouse gas, with 45 times the 

sustained-flux global warming potential of CO2 over a time scale of 100 years (Neubauer 

and Megonigal 2015). Wetlands produce ~23% of the world’s CH4 (Conrad 2009), 

though rates vary considerably across wetland types. For instance, saltmarshes have 

relatively low rates of methanogenesis compared to freshwater wetlands (Odum 1988; 

Poffenbarger et al., 2011), a phenomenon that results from each environment supporting 

different microbial functional groups. In saltmarshes, sulfate (SO4
2-) is abundant and can 

be used by sulfate reducing bacteria (SRB) as the terminal electron acceptor for anaerobic 

decomposition. Freshwater systems, in contrast, have a limited abundance of terminal 

electron acceptors, so decomposition generally proceeds more slowly via fermentation 

and methanogenesis.  

Many coastal freshwater wetlands are experiencing increased saltwater intrusion 

events due to sea level rise induced by climate change. These saltwater intrusion events 

may shift the soil microbial communities and, consequently, change both the rates of 

methanogenesis and carbon cycling (Chambers et al., 2011; Weston et al., 2011; 

Neubauer et al., 2013; Helton et al., 2014). The majority of saltwater intrusion research 

has focused on the changes in tidal freshwater wetlands (TFW) during an intrusion event, 
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but has rarely explored the recovery of these systems after fresh conditions have returned. 

Incorporating recovery into our understanding of saltwater intrusion’s effects on 

microbial communities and their carbon cycling is important as these systems will likely 

not experience sea level rise as just an overall increase in salinity, but as an increase in 

the frequency and duration of episodic saltwater intrusion events (Neubauer and Craft 

2009; Moftakhari et al., 2015; Tully et al., 2019). 

 In freshwater wetland soils, a complex interacting consortium of microorganisms 

mediates decomposition across several steps. Primary fermentation breaks down large 

organic molecules into a variety of low molecular weight acids and alcohols. These 

primary fermentation products then serve as the substrates for secondary fermentation 

and methanogenesis through a series of reactions that are often thermodynamically 

interdependent. For example, the breakdown of many primary fermentation products 

(e.g., butyrate and propionate) is only made possible through the cooperative method of 

interspecies electron transfer between syntrophic bacteria and H2/formate consuming 

(sometimes called “hydrogenotrophic”) methanogens (McInerney et al., 2009; Stams and 

Plugge 2009). Specifically, syntrophic bacteria oxidize fermentation products by 

transferring electrons to an electron-carrier molecule (e.g., by reducing H+ to H2 and/or 

CO2 to formate (HCO2
-)), which is then consumed to low concentrations by 

hydrogenotrophic methanogens (Thiele and Zeikus 1988; De Bok et al., 2004; Stams et 

al., 2006; Stams and Plugge 2009) (Fig. 1). Syntrophic bacteria and hydrogenotrophic 

methanogens often form aggregates (De Bok et al. 2004; Stams and Plugge 2009) where 

the close proximity between microbes allows for the electron-carrier molecules to be 

rapidly consumed to low enough concentrations that the metabolism of the syntrophs 
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remains energetically favorable (Sieber et al., 2012, Krylova and Conrad 1998, Hoehler 

et al., 2001). This syntroph-methanogen interaction is thought to be an important process 

in the regulation of methanogenesis (Conrad et al., 1989; Bae and McCarty 1993; 

Stefanie et al., 1994; McInerney et al., 2009) and an integral component of organic matter 

decomposition in anaerobic environments (McInerney et al., 2009) like those found in 

freshwater wetland soils. 

 Most of our knowledge of syntroph-methanogen interactions comes from simpler 

systems such as mixed cultures (Dwyer et al. 1988) and bioreactors (De Bok et al. 2004, 

McInerney et al. 2008).  We have less information about how these groups actually 

interact in wetlands systems (Conrad 1999), and we know almost nothing about how they 

respond to and recover from saltwater intrusion events. One syntrophic metabolism most 

likely to be affected by saltwater intrusion events is butyrate breakdown. In both 

freshwater and saline environments, many of the organic matter decomposition pathways 

include butyrate as an intermediate (Parkes et al. 1989; Rothfuss and Conrad 1992; 

Glissmann and Conrad 2000; Chauhan et al., 2006, Galand et al., 2010). In freshwater 

wetlands, the only known genera capable of syntrophic butyrate breakdown, 

Syntrophomonas and Syntrophus, are both obligate syntrophs (McInerney et al., 2008; 

Plugge et al. 2011). However, in saline environments where sulfate (SO4
-2) is naturally 

occurring, SRB can thrive and may outcompete butyrate-consuming syntrophs, thereby 

affecting rates of methanogenesis and the relative production of CO2 vs. CH4. In addition 

to competition for butyrate with syntrophic fermenters, SRB can directly compete with 

methanogens for compounds like H2, formate, and acetate (Stams 1994; Muyzer and 

Stams 2008; Chambers et al., 2011) (Fig. 1). These competitive interactions may develop 
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in TFW soils following a saltwater intrusion event and, since saltwater intrusion may be 

an episodic phenomenon (Neubauer and Craft 2009), the resiliency of syntroph–

methanogen relationships to this competitive stress may be important in determining rates 

and pathways of carbon cycling once freshwater conditions have returned.   

The goals of this study were to: (i) understand how both methanogens and the 

syntroph-methanogen consortia respond to SRB competition during an episodic saltwater 

intrusion event, and (ii) to determine whether syntroph-methanogen activity and carbon 

mineralization rates recovered after SRB competition was removed. These objectives 

were addressed in a microcosm study where additions of SO4
-2 to freshwater soil slurries 

were used to stimulate SRB activity. Metabolic inhibitors were used to selectively limit 

the activities of SRB, methanogens, and/or syntrophs, and linkages between each 

functional group were tracked by monitoring CH4 and CO2 production rates and shifts in 

methanogen abundance. In addition, butyrate degradation assays were performed in 

which the rate of butyrate breakdown and the accumulation of the products acetate and 

formate were used to assess syntrophic associations. After ~1 month of exposure to 

elevated SO4
-2, microcosms were amended with molybdate (MoO4

-2) to suppress SRB 

activity, allowing us to evaluate the potential recovery of syntroph-methanogen linkages 

and carbon cycling following an episodic saltwater intrusion event.  
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Methods 

 

Microcosm setup 

The soil used for this experiment was obtained from Cumberland Marsh, a tidal 

freshwater wetland located on the Pamunkey River in Virginia (latitude: 37.55723 ° N, 

longitude: 76.97277 ° W). The Cumberland Marsh plant community is dominated by 

obligate freshwater macrophytes such as Peltandra virginica and Pontederia cordata. 

Soil was collected on October 1, 2015, during low tide by first pushing aside the 

consolidated layer of plant debris and then carefully transferring the top 5 cm to an 

airtight plastic bag. A total of ~3 kg of soil was collected from several locations across 

two 40-m transects. The soil had a gravimetric moisture content of ~85%, a redox 

potential of -130 mV, and an organic matter content of 35%. The salinity of the 

porewater was <0.1 PSU (conductivity <0.2 mS cm-1) and soil bulk density was ~0.2 g 

cm-3. 

Upon return to the lab, soil samples were combined and ~9 L of bulk slurry (30 g 

wet soil per 100 ml water) was made using deoxygenated (1 hr with N2) site porewater. 

The slurry was manually homogenized, filtered through a 2.38 mm sieve to remove roots, 

and then aliquoted (100 ml) into glass serum bottles (170 ml). The serum bottles were 

then sealed with snap-on natural red rubber septa (13 x 20 mm, Wheaton Industries, 

Millville, New Jersey, USA) crimped with an aluminum seal. These microcosms were 

pre-incubated in the dark at 25 °C for 22 days prior to the “initial” sampling event (Fig. 
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2) to allow for the microbial communities to stabilize. All microcosm preparations took 

place inside an anaerobic chamber that was continually flushed with N2.  

 

Experimental design 

During the “initial” sampling event, a subset of microcosms was destructively 

sampled to study soil properties, carbon mineralization rates, and the archaea abundance 

(details in the “Sampling of Bulk Soil Slurries” section below).  A separate set of 

microcosms was used to study butyrate degradation pathways (Fig. 1)(details in the 

“Butyrate Assays” section). The remaining microcosms were randomly assigned to one 

of three treatments: fresh control (no change), SO4
-2 treatment, and NaCl treatment (Fig. 

2). The SO4
-2 treatment was designed to stimulate SRB activity in order to study the 

competitive interactions between SRB, methanogens, and syntrophic bacteria. Using 

Na2SO4, the concentration of SO4
-2 was brought to 4 mM (versus <0.04 mM in fresh 

control microcosms) to mimic SO4
-2 availability in oligohaline waters (0.5 - 5 PSU; 1 - 9 

mS cm-1) (Weston et al. 2011). The NaCl treatment was designed to help determine 

whether any differences observed in the SO4
-2 treatment microcosms were due to the 

effects of SRB activity or due to the changes in ionic strength caused by adding Na2SO4. 

In these microcosms, the concentration of NaCl was brought to 12 mM to generate the 

same ionic strength as the Na2SO4 additions to the SO4
-2 treatment microcosms. All 

microcosms were then incubated for 25 days until the “intrusion” sampling event (Fig. 2), 

when a subset of microcosms from each treatment was removed for sampling and 

butyrate assays. Immediately following the “intrusion” sampling event, half of the 

remaining SO4
-2 treatment microcosms was supplemented with Na2MoO4 (final 
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concentration of 2.5 mM MoO4
-2) to create a "recovery" treatment. Molybdate is well 

established as an inhibitor of SRB (Elshahed and McInerney 2001) and its addition to 

SO4
-2 treatment microcosms allowed us to study how methanogens and syntrophic 

bacteria recovered once SRB competition was removed. The remaining microcosms were 

allowed to incubate for an additional 28 days until the “recovery” sampling event (Fig. 

1).  Sufficient microcosms were established at the start of the experiment to allow five 

replicates for soil analysis for each treatment and time point, and three replicates for each 

inhibitor addition in the corresponding butyrate assays.  

 

Sampling of bulk soil slurries 

At each sampling event, five microcosms from each treatment were destructively 

sampled to determine carbon mineralization rates (CO2 and CH4 production), soil pH, 

salinity, and archaea abundance. These microcosms are referred to as bulk soil slurries 

throughout the paper to distinguish them from microcosms used in butyrate assays 

(described below). Rates of CH4 and CO2 production were measured using methods 

similar to Neubauer et al. (2005). First, each microcosm was shaken and the headspace 

flushed with N2 gas for 30 minutes. Gas samples were collected 4-5 times over the next 

~48 hr by injecting 8 ml of N2 gas and immediately withdrawing an equal volume from 

the headspace with a needle and air-tight syringe. Gas samples were stored in 3 ml Labco 

Exetainers® (Lampeter, Ceredigion, United Kingdom) and later analyzed on a Shimadzu 

GC-2014 gas chromatograph (Shimadzu Scientific Instruments, Columbia, Maryland, 

USA); CH4 was measured with a flame ionization detector and CO2 was measured with a 
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thermal conductivity detector (Shimalite Q column, He carrier; Shinwa Chemical 

Industries Ltd., Fushimi-ku, Kyoto Japan).		

After the gas sampling was complete, the microcosms were opened and the 

contents were transferred to a sterile plastic bag. The pH and conductivity of the soil 

slurries were then measured using a SevenGo Duo pro Model SG78 meter (Mettler 

Toledo, Columbus, Ohio, USA). Soil slurries were immediately transferred to a -80 °C 

freezer for storage until DNA extraction could be performed using the MoBio PowerSoil 

DNA Isolation Kit following manufacturer’s instructions (Carlsbad, California, USA).  

These DNA extracts were analyzed using quantitative PCR (qPCR) targeting 

conserved regions of the 16S rRNA gene. Using the primer pair Arch967F (5’AAT TGG 

CGG GGG AGC AC 3’) and Arch1060R (5’ GGC CAT GCA CCW CCT CTC 

3’)(Karlson et al., 2012), we targeted total archaea, which is the domain where all 

methanogen species are located (Ferry 2010); we considered abundance of this gene as a 

proxy for methanogen abundance.  We also measured the relative abundance of 

Methanosaetaceae (MST), which encompass all known obligate acetoclastic 

methanogens (Ferry 2010), using Mst702F (5’ TAA TCC TYG ARG GAC CAC CA 3’) 

and Mst862R (5’ CCT ACG GCA CCR ACM AC 3’)(Yu et al. 2005).  The ratio of MST 

16S rRNA genes copies to archaea 16S rRNA gene copies was then used as an estimation 

of the fraction of the methanogen community that are not involved in syntrophy. All 

qPCR reactions (15 µl, using 4 ng template DNA) were run in triplicate using 

SsoAdvanced SYBR Green qPCR Supermix (BioRad, Hercules, California, USA) and a 

Bio-Rad CFX384™Real-Time System C1000 thermal cycler; data were analyzed using 

Bio-Rad CFX Manager 3.1. Standard curves were constructed with environmental clones 
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(whose sequences had been confirmed) generated from amplicons using the above 

primers and a pGEM®-T Easy Vector System II (Promega; Madison, Wisconsin, USA). 

Reaction mixtures targeting total archaea included 0.3 µM of each primer; the thermal 

cycling conditions were: 95 °C for 10 min followed by 40 cycles of 15 s at 95 °C and 1 

min at 60 °C (efficiency = 101 %, r2 = 0.99). Reaction mixtures targeting MST included 

0.5 µM of each primer and used the following thermal cycler conditions: 95 °C for 10 

min followed by 45 cycles of 10 s at 94 °C and 30 s at 60 °C (efficiency = 90 %, r2 = 

0.99). In all instances, products were confirmed by examining the melt curve.  

Butyrate assays 

To investigate the breakdown of butyrate and its byproducts (Fig. 1), an additional 

subset of microcosms was selected at each sampling event to receive butyrate additions to 

a final concentration of 2.5 mM (Fig. 2). These microcosms were then divided into 

groups (n=3 in each) to study the activity of various microbial functional groups using 

metabolic inhibitors: methanogens were inhibited using 50 mM BESA (Liu et al. 2011), 

SRB were inhibited using 2.5 mM Na2MoO4 (Elshahed and McInerney 2001), and 

syntrophs were inhibited by adding H2 every other day to a partial pressure greater than 

1.5 kPa (Dwyer et al. 1988). The concentrations and incubation times needed for 

effective metabolic inhibition via BESA and MoO4
-2 were determined experimentally 

(data not shown). BESA was added ~12 days prior and MoO4
-2 was added 12 hours prior 

to the start of the butyrate degradation assays to allow the inhibition to take effect.  

After butyrate and inhibitor additions, gas samples were taken from the headspace 

approximately every other day for ~7 days using the methods described above. After each 

headspace gas sample was taken, 1 ml of slurry was sampled using a needle and syringe. 



 10 

The pH of the slurry sample was determined and used for the calculation of total 

inorganic carbon concentrations (details below). The concentrations of butyrate, acetate, 

formate, and SO4
-2 were determined from the soil slurry samples after filtration (0.22 µm 

pore size) using a Dionex ICS-5000+ ion chromatograph (Thermo Scientific Inc.; 

Waltham, Massachusetts, USA) equipped with a Dionex IonPac™ AS11-HC analytical 

column (2 × 250 mm) with the following elution gradient: 1 mM KOH from 0-8 min, a 

ramp from 8-30 mM KOH from 8-28 min, then a ramp from 30-60 mM KOH from 28-35 

min. The ion chromatography results were interpreted using Chromeleon® 

Chromatography Data System version 7.2.0.3765. 

 

Calculations and statistics 

Treatment effects for bulk soil slurries 

For each microcosm at each sampling point, total CH4 production was examined 

as the sum of gaseous and dissolved CH4. The latter parameter was determined using the 

measured CH4 partial pressure and Henry's law. Total CO2 production rates were 

calculated in a similar way using measured slurry pH to account for speciation between 

dissolved carbonate and bicarbonate. Rates of total CH4 production and total CO2 

production were then calculated using linear regression; samples for which r2 < 0.85 were 

excluded from the final dataset. Total carbon mineralization rate was the sum of the CH4 

production rate and the CO2 production rate. The CH4 portion of the total carbon 

mineralization rate was considered methanogenesis’ contribution to total carbon 

mineralization. 
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Analysis of variance (ANOVA) was used to test for treatment effects on total 

(gaseous + dissolved) CH4 and CO2 production rates, methanogenesis’ contribution to 

total carbon mineralization, methanogen community abundances, and salinities. Because 

preliminary comparisons of individual treatments across sampling events (e.g., CO2 

production rates for the fresh control at the "intrusion" and "recovery" sampling events) 

revealed few significant differences, data from the “intrusion” and “recovery” sampling 

events were combined for this analysis.  Whenever a significant ANOVA results was 

obtained (α = 0.05), Tukey’s HSD test was used for post hoc comparisons. All statistical 

analyses were performed using JMP® Pro, version 12.2.0 (SAS Institute Inc., Cary, 

North Carolina, USA), with the exception of the principal component analysis described 

below. 

 

Butyrate assays 

Butyrate additions were performed and the accumulation of acetate, formate, CO2, 

and CH4 was tracked for seven days. The use of metabolic inhibitors allowed us to 

monitor product formation associated with the various microbial functional groups (Fig. 

1). Results are presented as the proportion of carbon found in each form (butyrate, 

acetate, formate, CO2, and CH4) on each sampling day, relative to the total measured at 

start of the assay. The rate of butyrate degradation during the butyrate assays was 

calculated using linear regressions; samples for which r2 < 0.85 were excluded from the 

final dataset. Data from day 7 were further analyzed to compare accumulation of each 

product across the various treatments/inhibitors using a one-factor ANOVA and Tukey’s 

HSD post hoc tests. Principal component analysis (PCA) was used to visualize these 
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results based on the overall changes in the distribution of the major carbon compounds 

across treatments. Separate PCAs were performed for the “intrusion” and “recovery” 

sampling events using the PAST statistical package (Version 3, Hammer et al. 2001); 

calculations were performed using the normalized variance-covariance matrix. 

Given that butyrate is broken down to acetate, which itself can be further broken 

down to CO2 and CH4 (Fig. 1), the amount of acetate in each microcosm reflects the 

balance between rates of butyrate breakdown and acetate consumption/utilization. The 

percent of generated acetate that was consumed was calculated from the concentrations of 

acetate in the microcosms (measured) and the expected production of acetate (based on 

the measured loss of butyrate, with all concentrations in molar units): 

 

!"#$%$# !"#$%&'( % = 1− !"#$%$# !"#$#%&
!"#$%&#' !"## ∗ 2  × 100 % 

 

 

 

Results 

 

Initial sampling event 

At the “initial” sampling event, the CH4 production rate (0.12 ± 0.02 µmol hr-1
, 

mean ± standard error) in the microcosms was ~5.6% of the total carbon mineralization 

rate (2.2 ± 0.1 µmol hr-1). There was no measurable butyrate and negligible 

concentrations of acetate (3.6 ± 0.3 µM) and formate (2.8 ± 0.2 µM). The soil was 

slightly acidic (6.5 ± 0.1 pH) with a salinity of 0.28 ± 0.03 PSU (conductivity of 0.6 ± 0.1 
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mS cm-1), and a low sulfate concentration in the porewater (40.9 ± 0.8 µM).  The 

abundance of archaea 16S rRNA genes was 2.8 (± 0.2) × 105 copies per ng of DNA and 

the MST:Archaea ratio was 0.75 ± 0.05.  

For the butyrate assays performed at this initial sampling event, the major 

breakdown products were acetate, formate, CO2, and CH4, with the rate of butyrate 

breakdown and the distributions of the end products varying depending on which 

inhibitor was added. When no inhibitor was added (Fig. 3A), the rate of butyrate loss was 

fairly linear with 9.1 ± 0.1 % of the original measured carbon lost per day. After 7 days 

of incubation, 29% of the original carbon remained as butyrate with the balance forming 

acetate (20%), formate (3%), CO2 (18%), and CH4 (19%). There was a fraction of the 

added butyrate carbon unaccounted for (11%), which likely remained in microbial 

biomass. In contrast to the microcosms with no inhibitor, the addition of BESA to inhibit 

methanogenesis led to much slower non-linear butyrate breakdown with only 82% 

remaining at the end of the assay (Fig. 3B). Most of the lost butyrate accumulated as 

acetate (7%) and CO2 (9%), with negligible amounts as formate and CH4 (~0.5% each). 

When H2 additions were used to inhibit syntrophic bacteria (Fig. 3C), the rate of butyrate 

loss (8.8 ± 0.2 % day-1) was similar to what was observed in the absence of any inhibitor 

(Fig. 3A). At the end of the 7 days of incubation, 31% of the original carbon measured 

remained as butyrate, while the other measurable amounts remained as acetate (20%), 

formate (2%), CO2 (9%), or CH4 (17%). Although formate was always a small fraction of 

the total carbon in the microcosms, significantly more formate accumulated when rates of 

butyrate breakdown were high (no inhibitor and H2 addition microcosms) than when 

methanogenesis was inhibited using BESA (Fig. 4A).  
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Intrusion and recovery in bulk soil slurries 

Measurements of the bulk soil slurries during the “intrusion” and “recovery” 

sampling events were pooled to analyze the effect of SRB and to determine the ability of 

the soil slurries to recover in terms of gas production and archaea abundance (Fig. 5). 

During this time, slurry salinity in the fresh controls (0.3 PSU, 0.6 mS cm-1) was 

significantly (ANOVA p < 0.05) lower compared to the other treatments (SO4
-2 

treatment: 0.5 PSU, 1.0 mS cm-1; recovery and NaCl treatments: 0.6 PSU, 1.2 mS cm-1;) 

with little variability across sampling events or between replicate microcosms (all 

standard errors <0.01 PSU, < 0.01 mS cm-1).    

Methane production was suppressed in all three treatments relative to the fresh 

control microcosms (Fig. 5A; p < 0.05). The effect was much greater when SO4
-2 was 

added to stimulate SRB activity (~80% decrease) compared to the NaCl additions (32%), 

where ionic strength but not SO4
2- availability was altered. In microcosms recovering 

from stimulated SRB activity, the CH4 production remained reduced by ~50% compared 

to fresh control microcosms and reduced by ~22% compared to NaCl treatment 

microcosms (Fig. 5A; p= 0.09). The contribution of methanogenesis to the rate of total 

carbon mineralization in recovery microcosms (4.0%) did increase compared to SO4
-2 

treatment microcosms (1.5%). However, the contribution of methanogenesis to the rate of 

total carbon mineralization remained depressed compared to the fresh and NaCl 

microcosms (8.5% and 7.1 % respectively; p < 0.05).  

 Treatment effects on CO2 production rates were more modest (Fig. 5A). The 

addition of SO4
-2 increased CO2 production by 24% relative to the fresh control 
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microcosms, whereas changes in ionic strength associated with NaCl addition decreased 

CO2 production but the effect was not statistically significant. As with CH4 production, 

partial recovery of CO2 production was evident. Rates decreased to a level between that 

of the microcosms with stimulated SRB activity and the fresh controls, and were not 

significantly different from either. 

The abundance of archaeal 16S rRNA genes did not vary significantly across 

treatments (ANOVA p=0.47; Fig. 5B). However, the relative abundance of acetoclastic 

methanogens, represented using the MST:Archaea ratio, increased with stimulated SRB 

activity (SO4
-2 treatment: 0.78 ± 0.05 versus fresh control: 0.57 ± 0.04; p<0.05). After 

SRB were inhibited for 28 days, the ratio (recovery treatment: 0.66 ± 0.03) decreased 

some but was not significantly different from any of the other treatments (Fig. 5B).  

 

Butyrate breakdown during intrusion sampling event 

There were three experimental treatments at the time of the “intrusion” sampling 

event: fresh control, NaCl treatment, and SO4
-2 treatment (Fig. 2). Butyrate was added to 

triplicate microcosms of each type, and the relative abundance of the various carbon 

compounds was tracked for 7 days (Fig. 6A, 6C, and 6D). In the SO4
-2 treatment, where 

SRB activity had been stimulated, the rate of butyrate loss increased by 60% (SO4
-2 

treatment: 13.1 ± 0.1 % loss of original measured C day-1) compared to all microcosms 

without stimulated SRB (8.2 ± 0.1% day-1; ANOVA, p <0.05). In addition, stimulating 

SRB activity resulted in a third less CH4 production (SO4
-2 treatment: 9%; fresh control 

13%; Fig. 6A & D) and three times more CO2 production (SO4
-2 treatment: 55%; fresh 

control: 19%) relative to the fresh control microcosms (ANOVA, p<0.05). The portion of 



 16 

formate in the microcosms (Fig. 4B) with increased SRB showed a pattern similar to the 

fresh controls until ~day 7 when it dropped to <0.7% (attributed to butyrate depletion), 

while the percent acetate removal tended to be similar to the fresh control throughout the 

incubation (Fig. 7A).  

For the SO4
-2 treatment, two additional butyrate assays were set up to help 

disentangle the relative activity of methanogens (inhibited by BESA addition, Fig. 6F) 

and SRB (inhibited by MoO4
-2, Fig. 6E). The inhibition of methanogens caused the rate 

of butyrate loss to decrease 22% (to 10.1 ± 0.4% day-1; ANOVA, p<0.05), and 

production of CH4 to essentially stop (SO4
-2 treatment & BESA: <0.2%; Fig. 6F). The 

inhibition of methanogens also resulted in a decrease in CO2 production by approximately 

half (SO4
-2 treatment & BESA: 25%; SO4

-2 treatment: 54%; Fig. 6D & F), and 

dramatically less formate accumulated throughout the incubation (SO4
-2 treatment & 

BESA < 0.6 %; ANOVA, p<0.05; Fig. 4B). The MoO4
-2 inhibition of SRB in the SO4

-2 

treatment during the butyrate assays caused butyrate loss to decrease by 40% (SO4
-2 

treatment: 13.1 ± 0.1 % loss of original measured C day-1; SO4
-2 treatment & MoO4

-2: 7.6 

± 0.1 % loss of original measured C day-1). The inhibition of SRB also resulted in a 

decrease in CO2 by approximately half (SO4
-2 treatment & MoO4

-2: 28%; SO4
-2 treatment: 

54%; Fig. 6D & E) but no change in CH4 accumulation (SO4
-2 treatment & MoO4

-2: 10%; 

SO4
-2 treatment: 9%). 

Similar additions of MoO4
-2 to microcosms from the fresh control treatment (Fig. 

6B) yielded few differences in the profile of carbon compounds produced compared to 

the butyrate assays for either the fresh control (Fig. 6A) or the NaCl treatment (Fig. 6C). 
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This helps confirm that the changes brought on by the MoO4
-2 addition were directly 

related to a change in activity of SRB. 

 

Butyrate breakdown during recovery sampling event 

At the "recovery" sampling event, the results of the butyrate assays for the fresh 

control (Fig. 8A), NaCl treatment (Fig. 8D), and SO4
-2 treatment (Fig. 8C) were mostly 

similar to what was observed at the "intrusion" sampling (Fig. 6A, 6C, and 6D 

respectively). The rate of butyrate loss in microcosms with stimulated SRB activity 

remained high (SO4
-2 treatment: 11.7 ± 0.1 % day-1) compared to microcosms that had 

never received a SO4
-2 addition (fresh control and NaCl treatment: 8.2 ± 0.1% day-1; 

ANOVA, p<0.05). Stimulated SRB activity still resulted in less CH4 production (SO4
-2 

treatment: 9 %; fresh control 15%) and more CO2 production (SO4
-2 treatment: 51 %; 

fresh control 22%) than in the fresh control microcosms (ANOVA, p < 0.05). However, 

by the time of the recovery sampling event, stimulated SRB activity had resulted in ~50% 

less formate (SO4
-2 treatment: 1.2 %; fresh control 2.2%; Fig. 4C) and a smaller percent 

acetate removal (SO4
-2 treatment: 63 %; fresh control: 73%; Fig. 7B) than in the fresh 

control microcosms (ANOVA, p<0.05).    

In microcosms recovering from stimulated SRB activity (i.e., “recovery” 

treatment, in which SRB were exposed to MoO4
-2 for 28 days), the rate of butyrate loss 

was ~8% less than microcosms that had never received a SO4
-2 addition (Recovery 

treatment: 7.5 ± 0.2 % day-1, fresh control and NaCl treatment: 8.1 ± 0.1% day-1; 

ANOVA, p<0.06). The accumulation of carbon components in this treatment (Fig. 8B) 

differed from both the microcosms with stimulated SRB activity (Fig. 8C) and those 



 18 

without (fresh control and NaCl microcosms; Fig. 8A and 8D). Microcosms recovering 

from stimulated SRB activity had increased percent acetate removal (Fig. 7B) and higher 

rates of formate accumulation (Fig. 4C) compared to all other treatments. Microcosms 

recovering from stimulated SRB activity did not produce significantly more or less CH4 

than either microcosms with stimulated SRB activity or fresh controls (Fig. 8). However, 

microcosms recovering from SRB activity did produce more CO2 than fresh control 

microcosms and less than microcosms with stimulated SRB activity. 

The short and long-term recovery of syntroph-methanogen activity from 

stimulated SRB activity can be examined by comparing the recovery treatment (Fig. 8B) 

to the SO4
-2 treatment to which MoO4

-2 was added 12 hours before butyrate assays (Fig. 

8E). Both showed a similar rate of butyrate loss (recovery treatment: 7.5 ± 0.2 % day-1, 

SO4
-2 treatment & MoO4

-2: 7.5 ± 0.1 % day-1) and no significant differences in the 

accumulation of carbon components (i.e., acetate, formate, CH4, and CO2; ANOVA, p > 

0.05). Further, these two sets of microcosms had similarly high rates of formate 

production (Fig. 4C) and acetate consumption (Fig. 7B). 

 

Principal component analysis  

The PCA was used to help visualize the differences in the distribution of carbon 

compounds across the different microcosms at the end of each butyrate assay. For the 

intrusion sampling event (Fig. 9A, 84% of total variance explained), microcosms 

clustered into three distinct groups. Microcosms without active SRB were all 

characterized by greater butyrate, formate, and CH4. Microcosms with active SRB but 

inhibited methanogens (BESA addition) comprised another group with decreased CH4 
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production and increased acetate accumulation. Microcosms with active SRB and no 

inhibitor comprised the third group, which had the highest levels of butyrate breakdown 

and the greatest accumulation of CO2.    

For the recovery sampling, microcosms also separated into three different groups 

(Fig. 9B, 93% of total variance explained). Microcosms that did not experience SO4
-2 

additions (fresh control and NaCl treatment) form a cluster that is characterized by 

greater CH4 and less CO2 accumulation. Microcosms that had experienced SO4
-2 

additions but whose SRB community were inactive (the "recovery" treatment and the 

"SO4
-2 treatment" to which MoO4

-2 was added as part of the butyrate assay) formed a 

second cluster based on their relatively lower rate of butyrate degradation, greater 

accumulation of formate and CO2 and their decreased accumulation of CH4 and acetate. 

The third group was comprised of microcosms with active SRB communities and was 

characterized by less butyrate, formate, and CH4; and more acetate and CO2. 

 

Discussion 

The current framework for understanding how saltwater intrusion affects 

methanogenesis in TFWs mainly considers how increased SRB activity will impact 

methanogens based on substrate free energy yields, and largely neglects how SRB 

activity may affect broader carbon mineralization pathways and disrupt the tightly 

coupled microbial interactions that govern methane production (e.g., syntroph-

methanogen interactions and competition for fatty-acids). This study begins to address 

these undetermined effects and demonstrates that SRB competition partially disturbs 

syntroph-methanogen breakdown of butyrate (i.e., a common fermentation product) in 
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our TFW system. This is also reflected in an increase in the proportion of the 

methanogenic community that does not participate in tightly coupled syntrophy (i.e., 

acetoclastic methanogens).  

In addition, this work examines the ability of methanogenesis and carbon 

mineralization pathways to recover after saltwater intrusion has receded, which is 

relevant given TFW systems will likely experience sea level rise as an increase in the 

frequency and duration of saltwater intrusion events rather than a simple steady increase 

in salinity. Although we found syntrophic butyrate breakdown largely recovered 

following the removal of SRB competition, there was an alteration to the accumulation of 

byproducts from syntrophic butyrate breakdown and incomplete recovery in terms of 

methanogenesis’ contribution to total carbon mineralization. These results indicate that, 

even after increased SRB activity has abated, intrusion events may have lasting effects on 

carbon mineralization pathways.  

 

Syntrophy in TFWs 

Syntrophic bacteria are able to metabolize fatty acids like butyrate because the 

concentration of breakdown products, specifically formate or H2, is kept below inhibitory 

concentrations via methanogen consumption. This syntroph-methanogen cooperation 

appears to be very important in our study system. When methanogens were inhibited, 

only a small fraction of added butyrate was metabolized (Fig. 3B), whereas slurries with 

active methanogens readily consumed butyrate (Fig. 3A). Interestingly, addition of 

excess H2 to the slurries with active methanogens did not suppress syntrophic butyrate 

breakdown (Fig. 3C), which suggests H2 was not the main electron carrier for these 
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syntrophic associations. Instead, this syntrophic metabolism appeared to be mediated 

through the consumption of formate. If that were the case, we would expect to see little to 

no formate accumulate in the presence of an intact syntroph-methanogen consortia, and 

accumulation of formate at inhibitory levels in microcosms without active methanogens. 

Our data show the opposite pattern – with greater accumulation of formate in both 

treatments with active methanogens compared to the soils with a suppressed methanogen 

community (Fig. 4A) – and it is puzzling why the higher levels of formate accumulation 

did not limit butyrate consumption.  

One possibility for these counterintuitive results is that methanogenic 

consumption of formate took place rapidly in microbial aggregates, which shielded 

syntrophs from inhibitory formate accumulation in the immediate microenvironment. 

Similarly, Krylova and Conrad (1998) observed limited inhibition of propionate 

breakdown when both formate concentrations and H2 additions were measured well 

above inhibitory levels (ΔG values of +60 kJ mol-1) and also hypothesized that microbial 

aggregates shielded syntrophic propionate degraders from inhibitory concentrations.   

 

Response to saltwater intrusion in bulk soil slurries 

Additions of SO4
-2 stimulated SRB activity and increased CO2 production by ~ 

25% while decreasing CH4 production by ~80% (Fig. 5A), which is consistent with 

previous studies on TFWs (Weston et al., 2006; Neubauer et al., 2013a; Neubauer 

2013b). One commonly considered explanation for the decrease in CH4 production is that 

methanogen activity was suppressed due to direct competition with SRB for substrates 

(i.e., H2, formate, and acetate), a hypothesis that is consistent with thermodynamic 
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predictions based on the relative free energy yields of the two processes (Muyzer and 

Stams, 2008). Additionally, the decrease in CH4 production could also be an indirect 

response of the methanogens to SO4
-2 additions that is controlled by competition between 

syntrophs and SRB. If SRB outcompete syntrophs for fermentation products, syntrophic 

production of H2/formate will be limited and therefore restrict the availability of these 

electron donors to methanogens.   

 Our results suggest that short-term saltwater intrusion events do not necessarily 

alter methanogen abundance, but shift the composition of these communities towards 

acetoclastic genera (Fig. 5B). Acetoclastic methanogens do not participate in interspecies 

electron transfer and instead convert acetate directly to CH4 and CO2 without benefiting 

syntrophs. The increased dominance of these organisms after the SO4
-2 addition may 

represent a diversion of fermentation products away from syntrophic-methanogen 

consortia to SRB, and a disruption of syntroph-methanogen interactions. Additionally, 

the increase in the relative abundance of MST may be because acetoclastic methanogens 

in the family MST are more successful competitors with SRB than H2/formate utilizing 

methanogens. Methanogens in the MST family have a high affinity for acetate and have a 

low minimum acetate concentration threshold required for growth (Smith and Ingram-

Smith, 2007) making them well suited to compete with SRB (Omil et al., 1998; Stefanie 

et al., 1994). In contrast, SRB can quickly outcompete hydrogenotrophic methanogens 

for H2/formate (Stefanie et al., 1994) or indirectly limit methanogens access because SRB 

do not produce H2/formate when consuming fermentation byproducts if SO4
-2 is available 

(Martins and Pereira, 2013). However, these competition dynamics may change over 

longer exposure periods (i.e., multiple months to a year). For example, Dang et al. (2019) 
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found that when fresh water marsh soils were transplanted into a saltwater marsh, CH4 

production recovered significantly over 1 year and was correlated with the relative 

abundance of 3 orders of hydrogenotrophic bacteria that were not prevalent in either the 

fresh or salt marsh soils.  

 This study shows that increased ionic strength can also contribute to decreases in 

CH4 production (Fig. 5A), though to a much lesser extent than competition with SRB. 

The salinity in the study site from which our soils were collected is consistently low 

(<0.8 mS cm-1 over the last 2 years, unpublished data), and it may be that the genera in 

the methanogen community were incapable of acclimating to the induced salinity stress. 

Other studies have observed either a decrease in methanogenesis (Chambers et al., 2011) 

or no response (Baldwin et al., 2006) to similar NaCl additions to freshwater wetland 

soils. The range of methanogen salinity tolerance is large (Patel and Roth 1977), and 

selective pressure from regular saltwater intrusion events may determine the resistance of 

the initial methanogen community to salinity stress. 

 

Saltwater intrusion effects on syntrophy  

Under freshwater conditions, there was significant breakdown of butyrate via the 

syntroph-methanogen consortia (see dark blues bars in Fig. 3A, 7A, and 8A). When SO4
-2 

was added to stimulate SRB, the rate of potential butyrate breakdown increased by ~50% 

(Fig. 6D and 8C). Although stimulated SRB activity did greatly diminish the role of 

syntroph-methanogen consortia in butyrate breakdown, syntroph-methanogen consortia 

still remained active in the face of competition from SRB, accounting for 22% of butyrate 

breakdown (compare butyrate loss in Fig. 6D, when syntroph-methanogen consortia were 
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active, and Fig. 6F, when syntroph-methanogen consortia are inhibited). The diminished 

role of syntrophy in microcosms with stimulated SRB is also evident when tracking the 

concentration of the putative syntroph electron carrier formate; within seven days of 

butyrate additions the concentration was significantly less than in those microcosms 

without stimulated SRB activity (Fig. 4B & C). The observed contribution of the 

syntrophy-methanogen consortia may be slightly exaggerated in these assays because the 

excess available butyrate may have decreased the competitive pressure from SRB 

compared to in situ. The diminished but persistent activity of syntrophs in the face of 

SRB competition is an especially important finding in respect to the resilience of butyrate 

metabolisms to saltwater intrusion events in TFW soils. This is because Syntrophomonas 

and Syntrophus, the only known genera capable of syntrophic butyrate breakdown, are 

both obligate syntrophs (McInerney et al., 2008; Plugge et al. 2011) and must either 

successfully compete with SRB or go dormant during saltwater intrusion events. In 

contrast, other syntrophic metabolisms, such as propionate breakdown, can be performed 

by SRB in the genus Syntrophobacter, who are capable of switching from SO4
-2 reduction 

to a syntrophic metabolism when SO4
-2 is absent (McInerney et al., 2008; Plugge et al., 

2011); this metabolic flexibility likely provides functional stability in response to 

saltwater intrusion events.  

 In contrast with how stimulated SRB competed with syntrophs for butyrate, 

stimulated SRB did not appear to compete as aggressively with methanogens for acetate. 

In fact, stimulating SRB activity increased the concentration of acetate (Fig. 9), as has 

been seen in other freshwater wetland soils where SRB were not associated with acetate 

consumption (Achtnich et al., 1995). This increase in acetate availability during 
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stimulated SRB activity may partially explain the relative increase in obligate acetoclastic 

methanogens (MST) in the bulk soil slurries in this experiment (Fig. 5B). In addition, 

when methanogens were inhibited in microcosms with stimulated SRB, the removal of 

acetate was significantly lower on day 3 (SO4
-2 treatment: 98%; SO4

-2 treatment & 

BESA: 82%; ANOVA p <0.05; Fig. 7A) and was ~ 50% less by ~ day 11 (data not 

shown) suggesting methanogens were important consumers of acetate. Given these 

observations, acetoclastic rather than H2/formate-utilizing methanogens may be more 

resistant to saltwater intrusion events. This hypothesis is consistent with the results from 

Omil et al. (1998), who showed persistence of acetoclastic methanogens in bioreactors 

during stimulated SRB activity. Even after 250 days of excess SO4
-2 additions, 

methanogens were still responsible for ~50% of acetate consumption. The lack of 

proclivity for acetate utilization by SRB in this and other studies may be related to the 

relatively lower energy yield per unit SO4
-2 for acetate when compared to other substrates 

(ΔG°’ kJ mol-1 of SO4
-2 for acetate: -47.6; propionate: -50.26; butyrate: -55.6; formate: -

144.4; H2: -151.9; lactate: -160.2;	ΔG°’ values obtained from Muyzer and Stams (2008) 

except formate, which was calculated by Omil et al. (1998)). 

 

Recovery following saltwater intrusion 

In our system, the effects of stimulated SRB activity on carbon dynamics 

remained evident even after the 28-day recovery period.  Specifically, rates of 

methanogenesis in recovery microcosms remained reduced by 50% compared to fresh 

controls and by ~ 22% compared to the NaCl treatment (Fig. 5A, p = 0.09). The 

persistent effect of stimulated SRB activity was also evident on methanogenesis’s 
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contribution to total carbon mineralization. Methanogenesis only accounted for 4% of 

total carbon mineralization in recovery microcosms compared to 7-8% in the fresh 

control and NaCl microcosms 

The recovery of carbon dynamics from saltwater intrusion events in freshwater 

wetlands is poorly understood and rarely examined. The limited data available give 

contradictory results.  For example, Helton et al. (2014) and Dorwick et al. (2006) found 

that methanogenesis can recover from the effects on elevated SO4
-2 within only a few 

months, whereas Gauci et al. (2005) reported incomplete recovery two years after the end 

of SO4
-2 exposure. Part of this discrepancy could be due to the duration (e.g., 4 weeks for 

Dorwick et al. (2006) versus 1 year for Gauci et al. (2005)), magnitude (e.g., 4 mM SO4
-2 

in this study versus ~0.6 mM in Helton et al. (2014)), or frequency of exposure 

(Neubauer and Craft 2009). Regular saltwater intrusion events of low magnitude may 

select for syntroph and methanogen communities capable of acclimating to both 

increased salinity and SRB competition, while sites that experience more intermittent 

intrusion events may be less resilient. The Cumberland TFW syntroph and methanogen 

communities had not experienced a saltwater intrusion event of the magnitude simulated 

in this experiment for 2 years or more (salinity was consistently measured <0.8 mS cm-1), 

which may explain why, after SRB competition was removed for ~28 days, the rate of 

methanogenesis (Fig. 5A) and the contribution of methanogenesis to total carbon 

mineralization did not fully recover and suggests that intrusion events into more pristine 

freshwater wetlands systems may have a persistent effect on carbon dynamics. 

In contrast to our findings for methane production, the rate of potential syntrophic 

butyrate breakdown mostly recovered from stimulated SRB activity; butyrate loss rates 
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were 7.5 ± 0.2 % day-1 in the recovery treatment compared to 8.1 ± 0.1% day-1 in the 

fresh control and NaCl treatments. The resilience of butyrate-utilizing syntrophs in TFW 

environments is plausible given that syntrophic-methanogen consortia appeared to remain 

active when SRB activity was stimulated (discussed above). Interestingly, despite seeing 

near complete recovery of butyrate breakdown rates after SRB activity was removed, 

pronounced changes in the accumulation and production of butyrate-breakdown 

byproducts remained. This is clearly visualized by the distinct grouping of recovery 

treatments from fresh control microcosms on the PCA ordination (Fig. 9B), and indicates 

that SRB competition may have lasting effects on how the microbial community utilizes 

the byproducts of fatty acid breakdown. One possible explanation for the greater 

accumulation of formate and the more depleted acetate concentrations in recovery 

microcosms is persistence of the shift towards acetoclastic metabolisms observed during 

the saltwater intrusion event. However, the MST:Archaea ratios (Fig. 5B) did not remain 

significantly elevated. This may reflect that DNA-based assays do not distinguish 

between active and dormant organisms; targeting RNA to better capture active 

methanogens may elucidate significant changes in methanogen community structure. 

Given the confined trophic nature of methanogens (i.e., the limited use of substrates) and 

the conservation of methanogenic metabolisms to a monophyletic group of organisms 

(Garcia et al., 2000), the methanogen community likely has little functional redundancy 

and the contribution of individual species may be important to overall ecosystem function 

and warrant more detailed examination using higher resolution techniques, such as 16s 

rRNA Illumina sequencing, in understanding the effects of saltwater intrusion events 



 28 

(Allison and Martiny 2008; McGuire and Treseder 2010; Morrissey et al., 2014, Dang et 

al., 2019). 

 

Conclusions 

 This work informs the current understanding of how sea level rise may affect 

methanogenesis in freshwater wetlands, and provides novel insight into the potential 

ecosystem-scale effects of substrate competition between SRB, methanogens, and 

syntrophic bacteria. The failure of methanogenesis to fully recover from SRB activity in 

this microcosm experiment provides evidence that TFWs may not all be resilient to 

saltwater intrusion events and may only slowly recover over months. However, these 

results should be verified in an in situ experiment, as microcosm experiments do not 

allow for the re-introduction of methanogens from the surrounding environment. The 

work also shows that at SO4
-2 concentrations typical of the oligohaline zone, syntrophic 

bacteria and SRB can break down butyrate concurrently. Based on butyrate additions and 

the ratio of MST:Archaea 16s rRNA gene abundance, there is evidence that acetoclastic 

methanogens may be more suited to persist in environments experiencing increased 

saltwater intrusion events and that these events may alter carbon breakdown pathways. 

Syntrophy, or “obligately mutualistic metabolism” as coined by Morris et al. (2013), is 

not confined to microbial metabolisms resulting in methane, but is used throughout the 

microbial community to survive in resource-limited environments. When examining the 

effects of saltwater intrusion, it is important to not focus on microbial functional groups 

as isolated entities but as part of a cooperative microbial metabolism that can determine 

larger carbon and nutrient mineralization rates.     
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Figures 
 
 

 
Figure 1. Pathways of butyrate breakdown in anaerobic environments, the microbial groups responsible 
(white boxes with dashed lines), and the steps affected by the inhibitors BESA, MoO4

-2, and H2 (red Xs). 
Methanogens are “MG,” syntrophic bacteria are “Syntrophs,” and SO4

-2 reducing bacteria are “SRB.” The 
CO2 consumption by formate formation and hydrogenotrophic methanogenesis are not included in the 
diagram. The production and consumption of H2O is also not completely represented. 
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Figure 2. Summary of the treatments, incubation times, and sampling events for this experiment.  Different 
colored bottles correspond to different treatments: Green = “Fresh control” (no amendment), Blue = “SO4

-2 
treatment” (SO4

-2 amendments to stimulate SRB), Purple = “Recovery Treatment” (SO4
-2 amendments to 

stimulate SRB, followed by MoO4
-2 to inhibit them), and Brown = “NaCl Treatment” (NaCl amendments to 

mimic the ionic strength increase due to the SO4
-2 addition). At each sampling event, measurements were 

made of carbon mineralization rates (CO2 and CH4 production), soil pH, salinity, and archaea abundance. 
In addition, butyrate degradation assays were performed for each treatment group. The use of inhibitors 
during the butyrate assay is indicated next to each bottle: a “ ” indicates an assay performed with no 
inhibitor (note: the “Recovery Treatment” received no inhibitor during the butyrate assay, though they did 
receive MoO4

-2 amendments 28 days earlier), a “ ” indicates an assay performed with BESA to inhibit 
methanogens, a “ ”indicates an assay performed with H2 to inhibit syntrophs, and a “ ” indicates an 
assay performed with MoO4

-2 to inhibit SRB.  
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Figure 3. Results of the butyrate degradation assay for the “Fresh Control” treatment from the initial sampling event.  Different colored bars represent the mean 
relative abundance (+ standard error) of each carbon compound as a fraction of the original carbon measured at the beginning of the assay. At the start of the 
assay (day 0), microcosms were amended with butyrate and then incubated with either no inhibitor (A), BESA to inhibit MG activity (B), or H2 to inhibit 
syntrophic bacteria (C).  
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Figure 4. Mean (+ standard error) of formate accumulation as a percent of the original carbon measured at the beginning of the butyrate breakdown assays 
performed during the initial (A), intrusion (B), and recovery sampling events (C). 
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Figure 5. Mean (+ standard error) gas production rates (A) and Archaea community data (B) pooled for the intrusion ("INT") and recovery ("REC") sampling 
events. 
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Figure 6. Results of the butyrate breakdown assays for the intrusion sampling event.  Different colored bars represent the mean relative abundance (+ standard 
error) of each carbon compound as a fraction of the original carbon measured at the beginning of the assay. At the start of the assay (day 0), microcosms were 
amended with butyrate and then incubated with either no inhibitor (A, C, D), MoO4

-2 to inhibit SRB activity (B, E), or BESA to inhibit MG activity (F). 
 
 
 
 
 
 

C) NaCl Treatment

0 3 5 7
0

20

40

60

80

100

D) SO4
-2 Treatment

Days
0 3 5 7

Fr
ac

tio
n 

of
 o

rig
in

al
 c

ar
bo

n(
%

)

0

20

40

60

80

100

A) Fresh Control

0 3 5 7

Fr
ac

tio
n 

of
 o

rig
in

al
 c

ar
bo

n(
%

)

0

20

40

60

80

100

Butyrate
Acetate
Formate
CO2

CH4

Unknown

B) Fresh Control & MoO4
-2

0 3 5 7
0

20

40

60

80

100

F) SO4
-2 Treatment & BESA

Days
0 3 5 7

0

20

40

60

80

100
E) SO4

-2 Treatment & MoO4
-2

Days
0 3 5 7

0

20

40

60

80

100



 46 

 
Figure 7. Mean (+ standard error) of the percent acetate consumed in the butyrate breakdown assays during the intrusion sampling event (A) and the recovery 
sampling event (B).  
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Figure 8. Results of the butyrate breakdown assays for the recovery sampling event. Different colored bars represent the mean relative abundance (+ standard 
error) of each carbon compound as a fraction of the original carbon measured at the beginning of the assay. At the start of the assay (day 0), microcosms were 
amended with butyrate and then either no inhibitor (A, B, C, D), or MoO4

-2 to inhibit SRB activity (E). Note that the “Recovery Treatment” (B) had been 
incubated with the inhibitor MoO4

-2 for 28 days prior to the butyrate assay.  
 
 
 

C) SO4
-2 Treatment

Days
0 2 4 7

Pe
rc

en
t o

f i
ni

tia
l b

ut
yr

at
e 

ca
rb

on

0

20

40

60

80

100

B) Recovery Treatment

0 2 4 7
0

20

40

60

80

100

E) SO4
-2 Treatment & MoO4

-2

Days
0 2 4 7

0

20

40

60

80

100

A) Fresh Control

0 2 4 7

Fr
ac

tio
n 

of
 o

rig
in

al
 c

ar
bo

n(
%

)

0

20

40

60

80

100

Butyrate
Acetate
Formate
CO2

CH4

Unknown

D) NaCl Treatment

Days
0 2 4 7

Fr
ac

tio
n 

of
 o

rig
in

al
 c

ar
bo

n(
%

)

0

20

40

60

80

100



 48 

 
 
 
 

 
Figure 9. Principal components analysis applied to the distribution of carbon substrates (butyrate, acetate, formate, CO2, and CH4) in microcosms on day 7 of 
butyrate degradation assays performed during the intrusion sampling event (A) and the recovery sampling event (B).   
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