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Abstract

Given an infinite word x over an alphabet A, a letter b occurring in
x, and a total order σ on A, we call the smallest word with respect to σ
starting with b in the shift orbit closure of x an extremal word of x. In this
paper we consider the extremal words of morphic words. If x = g(fω(a))
for some morphisms f and g, we give two simple conditions on f and
g that guarantees that all extremal words are morphic. This happens,
in particular, when x is a primitive morphic or a binary pure morphic
word. Our techniques provide characterizations of the extremal words of
the Period-doubling word and the Chacon word and give a new proof of
the form of the lexicographically least word in the shift orbit closure of
the Rudin-Shapiro word.

Keywords: Lexicographic order, morphic word, primitive morphic word, ex-
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1 Introduction

Given an infinite word x ∈ AN, it is natural to inquire about the nature of the
lexicographically least words in its shift orbit closure. We call a word y in the
shift orbit closure of x extremal if there exists a total order σ on A and a letter
b ∈ A such that y is the least word with respect to σ beginning in b.
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We get different extremal words depending on the choice of σ and b. For
example, if A = {0, 1} and x is a Sturmian word, it is well-known that the ex-
tremal words with respect to 0 < 1 are 0c and 10c, where c is the characteristic
word whose slope equals that of x, and if we order 1 < 0, then the extremal
words are 1c and 01c; see, for example, [17]. As another example, if x is k-
automatic for some positive integer k, then its extremal words are k-automatic
as well [4]. We refer the reader to [1, 2, 3, 11] for related results.

These considerations motivate the following question: given a morphic word,
is it true that the corresponding extremal words are morphic, too? While we are
not able to solve the question in full generality, we give two fairly general classes
of morphic words in which the answer is affirmative: In Theorem 2 we show that
if x ∈ AN is a pure morphic word generated by a morphism in a certain setMx

defined in (1), then all extremal words of x are morphic. In Theorem 5 we show
that if x is a primitive morphic word, that is, a morphic image of a fixed point
of a primitive morphism, then the extremal words are primitive morphic as well.
We will also show that the extremal words of all binary pure morphic words are
morphic (Theorem 4). Finally, we give characterizations of the extremal words
of the Period-doubling word (Theorem 6) and Chacon word (Theorem 7). Along
the way we show that if x is a pure morphic word generated by a morphism f
and t is in the shift orbit closure of x such that f(t) = t, then t is morphic
(Theorem 1).

2 Preliminaries

We will follow the standard terminology and notation of combinatorics on words
as established, for example, in [5, 15].

Let A be a finite alphabet. We write AN for the set of all infinite words
over A. If X ⊂ A∗, then Xω denotes the set of all infinite words obtained by a
concatenation of words in X.

If f : A∗ → A∗ is a morphism such that f(a) = ax for some letter a ∈ A
and a word x ∈ A+ such that fn(x) 6= ε, the empty word, for all n ≥ 0,
then there exists an infinite word fω(a) := limn→∞ fn(a) such that fn(a) is a
prefix of fω(a) for all n ≥ 0, and it is called a pure morphic word generated
by f . If c : A∗ → B∗ is a coding, that is a letter-to-letter morphism, then
c(fω(a)) is called a morphic word. Notice that fω(a) is a fixed point of f ,
that is f

(
fω(a)

)
= fω(a), but in general a fixed point of a morphism is not

necessarily generated by the morphism (however, see Theorem 1).
A morphism f is called primitive if there exists an integer k ≥ 1 such that

b occurs in fk(a) for all pairs (a, b) ∈ A × A. An infinite word of the form
h
(
fω(a)

)
, where f is primitive and h : A∗ → B∗ is an arbitrary morphism, is

called a primitive morphic word.
It is clear that all ultimately periodic sequences are morphic. The follow-

ing result on morphic words is well-known, see Theorems 7.6.1 and 7.6.3 and
Corollary 7.7.5 in [5].
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Lemma 1. Let x ∈ AN be a morphic word, w ∈ A∗, and g : A∗ → B∗ a
non-erasing morphism. Then the words wx, w−1x, and g(x) are morphic.

Let x ∈ AN be an infinite word. The set of factors of x is denoted by F (x).
We denote by Sx the set of all infinite words y ∈ AN such that F (y) ⊆ F (x).
Thus Sx is the shift orbit closure of x. Endowed with the shift map T : AN → AN,
Sx becomes a symbolic dynamical system, more precisely a subshift, and we
denote this (Sx, T ).

Now we are ready for a key definition of this paper. Let f : A∗ → B∗ be a
morphism and x ∈ AN. We will write

f ∈Mx (1)

if the following condition holds: for each letter b ∈ A, there exists a finite word
pb ∈ B+ such that if y ∈ Sx begins with b, then f(y) begins with pb, and if
a ∈ A with a 6= b, then neither of pa and pb is a prefix of the other. Notice that
then f is necessarily non-erasing.

Example 1. Let us illustrate the above definition with a morphism appearing
in [14]. Let f be given by 0 7→ 02, 1 7→ 02, and 2 7→ 1, and let x be the unique
fixed point of f . It is easy to see that if 0y ∈ Sx, then y must begin with 2; hence
f(0y) begins with 021. Similarly, if 1y ∈ Sx, then y must begin with 0; hence
f(1y) begins with 020. Finally, f(2y) begins with 1 regardless of y. Therefore
we may let p0 = 021, p1 = 020, and p2 = 1, and consequently f ∈Mx.

Example 2. Let f be the morphism 0 7→ 010, 1 7→ 21, 2 7→ 211, and let
x = fω(0). Now we have f 6∈ Mx because f(10 · · · ) = 210 · · · and f(12 · · · ) =
212 · · · , so that if p1 existed, it would have to be a prefix of 21, which is a prefix
of f(2). Therefore no matter how p2 is chosen, one of p1 and p2 is necessarily
a prefix of the other.

Let σ = σA be a total order on an alphabet A, that is, a transitive and
antisymmetric relation for which either (a, b) or (b, a) is in σ for all distinct
letters a, b ∈ A. If (a, b) ∈ σ, we denote a <σ b. The order σ extends to a
lexicographic order on finite and infinite words over A in the usual way. Let
a ∈ A be a letter and x ∈ AN an infinite word in which a occurs. Then there
exists a unique lexicographically smallest word in Sx with respect to σ that
begins with the letter a, and we will denote it by

la,σ,x.

Words of this form are collectively called the extremal words of x or Sx. We
also denote by sa,σ,x the infinite word obtained from la,σ,x by erasing the first
letter, that is,

la,σ,x = a sa,σ,x.

For the remainder of this section, let us fix a morphism f : A∗ → A∗. A
word u ∈ A∗ is called bounded under f if there exists a constant k > 0 such that
|fn(u)| < k for all n ≥ 0. It is clear that every letter occurring in a bounded
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word is bounded. Let Bf ⊂ A denote the set of bounded letters; the letters in
Cf := A \Bf are said to be growing under f .

The following result is proved in [6, Prop. 4.7.62].

Lemma 2. Suppose that x ∈ AN is a pure morphic word generated by f . There
exists a finite subset Q of Cf × B∗f × B∗f × B∗f × B∗f × B∗f × Cf such that

F (x) ∩ CfB∗fCf equals the set of all words of the form c1y1z
k
1xz

k
2y2c2 with

(c1, y1, z1, x, z2, y2, c2) ∈ Q and k ∈ N.

Lemma 3. Suppose that x ∈ AN is a pure morphic word generated by f . If
z ∈ Sx ∩BN

f , then z is ultimately periodic.

Proof. Suppose that z ∈ Sx ∩ BN
f . If x has a suffix that is in BN

f , then it is
ultimately periodic, which is proved in [6, Lemma 4.7.65], and then so is z.
Therefore we may assume that there are infinitely many occurrences of growing
letters in x. Let un be a sequence of factors of x such that un is a prefix of
un+1 for all n ≥ 1 and z = limn→∞ un. Since the first letter of x is necessarily
growing and x has infinitely many occurrences of growing letters, it follows
that each un is a factor of a word wn such that wn ∈ CfB+

f Cf ∩ F (x). Since
the set Q in Lemma ?? is finite, there exist letters c1, c2 ∈ Cf and words
y1, y2, z1, z2, x ∈ B∗f such that wnk

= c1y1z
ik
1 xz

ik
2 y2c2 for some subsequence nk.

By chopping off a prefix of length |y1| and a suffix of length |y2| from unk

if necessary, we may assume that each sufficiently long unk
is a factor of the

biinfinite word q := ωz1.xz
ω
2 , where the the word x occurs in position 0. Now

we have two possibilities: If there exists an integer j ∈ Z such that infinitely
many unk

occurs in q in a position ≥ j, then limk→∞ unk
has suffix zω2 . If no

such j exists, then limk→∞ unk
has suffix zω1 . In the first case z has suffix zω2

and in the second case it has suffix zω1 .

Let Mf ⊂ A denote the set of letters b such that f i(b) = ε for some integer
i ≥ 1, and let t ≥ 1 be the smallest integer such that f t(b) = ε for all b ∈ Mf .
Let

Gf = { f t(a) | a ∈ A such that f(a) = xay for some x, y ∈M∗f }

Notice that each word f t(a) in Gf is a finite fixed point of f because

f t(a) = f t−1(x) · · · f(x)xayf(y) · · · f t−1(y).

In particular, all words in Gf are bounded. The following result is by Head and
Lando [12], see also [5, Theorem 7.3.1].

Lemma 4. Let t ∈ AN be an infinite word. We have f(t) = t if and only if at
least one of the following two conditions holds:

(a) t ∈ Gωf ; or

(b) t = wf t−1(x) · · · f(x)xayf(y)f2(y) · · · for some w ∈ G∗f and a ∈ A such
that f(a) = xay with x ∈M∗f and y /∈M∗f .
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Lemma 5. Let f : A∗ → A∗ be a morphism. If t ∈ AN can be written in the
form t = wxf(x)f2(x)f3(x) · · · , where w ∈ A∗ and x /∈M∗f , then t is morphic.

Proof. Let b be a new letter that does not occur in A. Then the infinite word
bxf(x)f2(x) · · · is morphic as it is generated by a morphism g : (A ∪ {b})∗ →
(A ∪ {b})∗ for which g(b) = bx and g(a) = f(a) for all a ∈ A. Thus it follows
from Lemma 1 that t is morphic.

Theorem 1. Let f : A∗ → A∗ be a morphism, and suppose that x ∈ AN is
a pure morphic word generated by f . If t ∈ Sx satisfies f(t) = t, then t is
morphic.

Proof. According to Lemma 4, either t is in Gωf or it is of the form

t = wf t−1(x) · · · f(x)xayf(y)f2(y) · · · .

In the former case t ∈ BN
f , so t is ultimately periodic by Lemma 3, and thus

morphic. In the latter case t is morphic by Lemma 5.

3 First main result

Lemma 6. Let x ∈ AN be an infinite word and f : A∗ → B∗ a morphism. If
y ∈ BN is in Sf(x), then there exist a letter a ∈ A and an infinite word z such
that az ∈ Sx and y = uf(z), where u is a nonempty suffix of f(a).

Proof. Let Ln denote the length-n prefix of y; then Ln is a factor of f(x) by
the definition of Sf(x). Consequently, if n ≥ maxa∈A|f(a)|, there exist letters
an, bn ∈ A and a word vn ∈ A∗ such that anvnbn occurs in x and we have
Ln = snf(vn)pn, where sn is a nonempty suffix of f(an) and pn is a possibly
empty prefix of f(bn). Since there are only finitely many different possibilities
for an and sn, there exists a letter a ∈ A and a word u such that ani

= a and
sni

= u for infinitely many ni. The set of words {vni
} being infinite, König’s

Lemma implies that there exists an infinite word z such that every prefix of z
is a prefix of some vni . Since each of avni is a factor of x, we have az ∈ Sx.
Furthermore, since each prefix z of z is a prefix of some vni , the word uf(z) is
a prefix of y, and consequently y = uf(z).

Lemma 7. Let f : A∗ → B∗ be a morphism and x ∈ AN such that f ∈ Mx.
Let b ∈ B be a letter that occurs in f(x) and let ρ be a total order on B. Then
there exist a total order σ on A, a letter a ∈ A, and a possibly empty proper
suffix v of f(a) such that

sb,ρ,f(x) = vf(sa,σ,x). (2)

Proof. By Lemma 6, we can write lb,ρ,f(x) = bsb,ρ,f(x) = uf(z), where u is a
nonempty suffix of f(a) for some a ∈ A and az ∈ Sx. Since f ∈ Mx, there
exist words px ∈ B+ for every x ∈ A such that px 6= py whenever x 6= y. Thus
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we can define a total order σ on A such that, for all letters x, y ∈ A, we have
x <σ y if and only if px <ρ py.

We claim that z = sa,σ,x. If this is not the case, then z >σ sa,σ,x because
both az and asa,σ,x = la,σ,x are in Sx and la,σ,x is the smallest word in Sx
starting with the letter a. Therefore z = wyt and sa,σ,x = wxt′ with x, y ∈ A
satisfying y >σ x. Since f(xt) begins with px and f(yt′) begins with py and
neither of px and py is a prefix of the other, we have f(yt) >ρ f(xt′) by the
definition of σ, and this gives

lb,ρ,f(x) = uf(z) = uf(w)f(yt) >ρ uf(w)f(xt′) = uf(sa,σ,x).

But this contradicts the definition of lb,ρ,f(x) because uf(sa,σ,x) starts with the
letter b and is in Sf(x). Therefore we have shown that z = sa,σ,x, and so (2)
holds with v = b−1u.

Lemma 8. Let f : A∗ → A∗ be a morphism and x ∈ AN such that f ∈Mx and
f(x) = x. Then for any total order ρ on A and any letter b ∈ A occurring in x,
there exist a total order σ on A, a letter a ∈ A, words u, v ∈ A∗, and integers
k,m ≥ 1 such that

sb,ρ,x = ufk(sa,σ,x) and sa,σ,x = vfm(sa,σ,x). (3)

Proof. Since f(x) = x, Lemma 7 implies that sb,ρ,x = v0f(sa1,σ1,x) for some
total order σ1 on A, a letter a1 ∈ A, and a possibly empty suffix v0 of f(a1). By
applying Lemma 7 next on sa1,σ1,x and further, we get a sequence of identities

sak,σk,x = vkf(sak+1,σk+1,x) (k ≥ 0),

where we denote a0 = b and σ0 = ρ. Therefore,

sak,σk,x = vkf(vk+1) · · · fm−1(vk+m−1)fm(sak+m,σk+m,x),

for all integers k ≥ 0 and m ≥ 1. Since there are only finitely many different
letters and total orders on A, there is a choice of k and m such that ak = ak+m
and σk = σk+m. Thus by denoting a = ak, σ = σk,

u = v0f(v1) · · · fk−1(vk−1), and v = vkf(vk+1) · · · fm−1(vk+m−1),

we have the identities in (3).

Lemma 9. Let f : A∗ → A∗ be a morphism and x ∈ AN such that f ∈Mx and
f(x) = x. Then for any total order ρ on A and any letter b ∈ A occurring in x,
there exist a finite word w ∈ A+, an infinite word t ∈ Sx, and an integer m ≥ 1
such that

lb,ρ,x = wt (4)

and either

t = fm(t) (5)
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or

t = lim
n→∞

xfm(x)f2m(x) · · · fnm(x) (6)

for some finite word x ∈ A+.

Proof. According to Lemma 8, there exist a total order σ on A, a letter a ∈ A,
words u, v ∈ A∗, and integers k,m ≥ 1 such that

sb,ρ,x = ufk(sa,σ,x) and sa,σ,x = vfm(sa,σ,x).

Denote w = bu and t = fk(sa,σ,x). Then t ∈ Sx and Eq. (4) holds. By denoting
x = fk(v), we get t = xfm(t). If x = ε, then we have t = fm(t), and Eq. (5)
holds. If x 6= ε, then

t = xfm(t) = xfm(x)f2m(t) = · · · = xfm(x)f2m(x) · · · fnm(x)f (n+1)m(t),

for all integers n ≥ 0. The morphism f is non-erasing because f ∈ Mx, and
therefore the words xfm(x)f2m(x) · · · fnm(x) get longer and longer as n grows.
Thus Eq. (6) holds.

Here is the first main result of this paper.

Theorem 2. Let f : A∗ → A∗ be a morphism. If x ∈ AN is a pure morphic
word generated by f and f ∈Mx, then all extremal words in Sx are morphic.

Proof. Let ρ be a total order on A and b ∈ A a letter occurring in x. We
will show that lb,ρ,x is morphic. Lemma 9 says that there exist a finite word
w ∈ A+, an infinite word t ∈ Sx, and an integer m ≥ 1 such that lb,ρ,x = wt
and either t = fm(t) or t = limn→∞ xfm(x)f2m(x) · · · fnm(x) for some finite
word x ∈ A+. Since fm generates x, the claim that t is morphic follows in the
former case from Theorem 1 and in the latter case from Lemma 5.

Theorem 3. Let f : A∗ → A∗ and g : A∗ → B∗ be morphisms and x ∈ AN such
that f, g ∈ Mx. If x is a pure morphic word generated by f , then all extremal
words in Sg(x) are morphic.

Proof. Let ρ be a total order ρ on B and b ∈ B. According to Lemma 7, there
exists a total order σ on A, a letter a ∈ A, and a word v ∈ B∗ such that

sb,ρ,g(x) = vg(sa,σ,x)

Thus it follows from Theorem 2 and Lemma 1 that lb,ρ,g(x) is morphic.
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4 Extremal words of binary pure morphic words

In this section we show that the extremal words of binary pure morphic words
are morphic.

Lemma 10. Let f : {0, 1}∗ → {0, 1}∗ be a morphism such that f(01) 6= f(10).
Then f ∈Mx for every x ∈ {0, 1}N.

Proof. Let us denote u = f(0) and v = f(1). We have two possibilities:
Case 1. The word u is not a prefix of vω. Then there exists an integer n ≥ 0

such that u = vnpas and v = pbt, where p, s, t ∈ {0, 1}∗ and a, b ∈ {0, 1} with
a 6= b. Now it is easy to see that, for every y ∈ {0, 1}N, the word f(1y) begins
with vnpb and f(0y) begins with vnpa. Therefore f ∈ Mx because we may
choose p1 = vnpb and p0 = vnpa.

Case 2. The word u is a prefix of vω. Then v = xy and u = vnx for some
integer n ≥ 0 and words x, y. Now it is easy to see that, for every y ∈ {0, 1}N,
the word f(0y) begins with (xy)nxxy and f(1y) begins with (xy)nxyx. Since
f(01) 6= f(10), it follows that xy 6= yx. Denote xy = pas and yx = pbt with
a, b distinct letters. Then f ∈ Mx because we may let p0 = (xy)nxpa and
p1 = (xy)nxpb.

Theorem 4. If x ∈ {0, 1}N is a binary pure morphic word, then all extremal
words of x are morphic.

Proof. Let f be a binary morphism that generates x. If f(01) = f(10), then
x is purely periodic, and the claim holds. If f(01) 6= f(10), then f ∈ Mx by
Lemma 10, so that x is morphic by Theorem 2.

There are exactly two total orders on the binary alphabet {0, 1}; let ρ denote
the natural order 0 <ρ 1 and ρ the other order 1 <ρ 0. The following lemma
simplifies the search for the extremal words of a binary pure morphic word, and
we will use it later.

Lemma 11. If x ∈ {0, 1}N is a recurrent word in which both 0 and 1 occur,
then

l1,ρ,x = 1l0,ρ,x l0,ρ,x = 0l1,ρ,x. (7)

Therefore also

s1,ρ,x = 0s0,ρ,x s0,ρ,x = 1s1,ρ,x. (8)

Proof. Consider the first equation in (7). On the one hand, 1l0,ρ,x is in Sx
because the recurrence of x implies that al0,ρ,x is in Sx for some a ∈ {0, 1} and
if a equaled 0, then the inequality 0l0,ρ,x < l0,ρ,x would contradict the definition
of l0,ρ,x. On the other hand, 1l0,ρ,x must equal l1,ρ,x because otherwise l1,ρ,x <
1l0,ρ,x, which implies 1−1l1,ρ,x < l0,ρ,x, and this contradicts the definition of
l0,ρ,x. The second equation in (7) is proved similarly. The identities (8) follow
immediately from (7).
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5 Second main result

In this section we assume that x = x1x2x3 · · · , where xi ∈ A, is a primitive
morphic word and show that the extremal words of x are primitive morphic.
The techniques used in this section are completely different from those used in
the previous sections, and they rely on the notion of return words.

Let u be a factor of x. Let i and j be positive integers such that i < j and
the word u is a prefix of xixi+1xi+2 · · · and xjxj+1xj+1 · · · but not a prefix
of xkxk+1xk+2 · · · whenever i < k < j. Then the words xixi+1 · · ·xj−1 and
xixi+1 · · ·xj−1u are called, respectively, a first return and a first complete return
to u. The former is also simply referred to as a return word of u.

The set of all return words of u in x is denoted by Ru. Since x is prim-
itive morphic, the number of return words of u is finite; see [9]. Write Au =
{1, 2, . . . , |Ru|}

Fix a bijection σu : Au → Ru. If y is in the shift orbit closure Sx of x
and begins in u, then y can be uniquely factorized over the set Ru. Thus
there exists a unique sequence Du(y) = a1a2a3 · · · with ai ∈ Au such that
y = σu(a1)σu(a2)σu(a3) · · · . We call Du(y) a derived word of y.

Let us define

Xu =
{
Du(y) | y ∈ Sx, y begins in u

}
The symbolic dynamical system (Xu, T ), where T is the shift map of infinite
words, is a so-called induced system of the subshift (Sx, T ). A result by Holton
and Zamboni [13, Thm. 8.2] says that the number of different sets Xu is finite.

Another result we will need is the following characterization of primitive
morphic words by Durand [9]: An infinite word is primitive morphic if and only
if the number of its derived words is finite.

Now we are ready to prove the second main result of this paper.

Theorem 5. Let x ∈ AN be a primitive morphic word. If y is an extremal word
in the shift orbit closure of x, then y is primitive morphic.

Proof. Suppose that y is extremal with respect to a total order ≤ on A. Let
u be a prefix of y. There is a natural linear ordering ≤u on the set Au given
by: for m,n ∈ Au, write m ≤u n if and only if σu(m)u ≤ σu(n)u. Note that as
σu(m)u and σu(n)u are distinct complete returns to u, they are never prefixes
of one another and hence are comparable. It is readily checked that the derived
word Du(y) is an extremal word in Xu with respect to ≤u for each prefix u of y.
Since the number of extremal words in Xu is finite, and there are only finitely
many sets Xu, this means that there are only finitely many derived words Du(y)
when u is a prefix of y. Thus y is primitive morphic.

6 Extremal words of the Period-doubling word

Let f denote the morphism 0 7→ 01, 1 7→ 00 and let d = fω(0) denote the
period-doubling word [8, 5, 16]. According to Lemma 10, we have f ∈Md.
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Let ρ denote the natural order 0 <ρ 1 and ρ the reversed order 1 <ρ 0.
Using the observation that neither 0000 nor 11 occur in d and Lemma 11, the
reader has no trouble verifying that the following words start as shown.

s0,ρ,d = 00100 · · · s1,ρ,d = 010100 · · · (9)

s1,ρ,d = 0001 · · · s0,ρ,d = 1010100 · · ·. (10)

Lemma 7 implies that s0,ρ,d = vf(sa,σ,d) for some a ∈ {0, 1}, proper suffix
v of f(a), and σ ∈ {ρ, ρ}. The only possible such factorization has to be of the
form s0,ρ,d = 0f(01 · · · ), so from (9) and (10) we see that sa,σ,d = s1,ρ,d. Thus

s0,ρ,d = 0f(s1,ρ,d).

We can deduce similarly that

s1,ρ,d = f(001 · · · ) = f(s0,ρ,d). (11)

Therefore s0,ρ,d = 0f2(s0,ρ,d), which implies

f2(l0,ρ,d) = 01l0,ρ,d. (12)

We claim that l0,ρ,d is the fixed point of the morphism g : 0 7→ 0001 and 1 7→
0101. Let us denote the unique fixed point of g by z, that is z = gω(0). An easy
induction proof shows that 01g(w) = f2(w)01 for all w ∈ {0, 1}∗. Therefore

01z = 01g(z) = f2(z).

Thus by (12), both z and l0,ρ,d satisfy the same relation 01x = f2(x), which is
easily seen to admit a unique solution; thus z = l0,ρ,d. Hence, using (11) and
Lemma 11, the following result is obtained.

Theorem 6. Let d denote the period-doubling word and let z denote the unique
fixed point of the morphism 0 7→ 0001, 1 7→ 0101. Then we have

l0,ρ,d = z l1,ρ,d = 1z

l1,ρ,d = 0−1f(z) l0,ρ,d = f(z).

7 Extremal words of the Chacon word

The Chacon word [10, 18] is the fixed point c = fω(0), where f is the morphism
0 7→ 0010, 1 7→ 1. Lemma 10 guarantees that f ∈Mx. Let ρ denote the natural
order 0 <ρ 1 and ρ the reversed order 1 <ρ 0 as before.

As in Section 6, we use the observation that neither 0000 nor 11 occur in c
and Lemma 11, to deduce that the following words start as shown.

s0,ρ,c = 001000101 · · · s1,ρ,c = 010010 · · ·
s1,ρ,c = 0001000101 · · · s0,ρ,c = 1010010 · · · .
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Applying Lemma 7 as in the previous section, we find

s0,ρ,c = f(001 · · · ) = f(s0,ρ,c).

Since s0,ρ,c begins with 0, we thus have s0,ρ,c = c and l0,ρ,c = 0c.
Similarly, recalling that s0,ρ,c = 1s1,ρ,c by Lemma 11, we deduce using

Lemma 7 that

s1,ρ,c = 0f(10 · · · ) = 0f(s0,ρ,c) = 01f(s1,ρ,c).

Therefore l1,ρ,c can be expressed as l1,ρ,c = τgω(b), where b is a new symbol, g
is a morphism for which g(b) = b01 and g(a) = f(a) for a ∈ {0, 1}, and τ(b) = 1

and τ(a) = a for a ∈ {0, 1}. Thus a final application of Lemma 11 allows us to
wrap up the results of this section as follows.

Theorem 7. Let c denote the Chacon word. Then we have

l0,ρ,c = 0c l1,ρ,c = τgω(b)

l1,ρ,c = 10c l0,ρ,c = 0τgω(b),

where g and τ are the morphisms given above.

8 The least word in the shift orbit closure of the
Rudin-Shapiro word

In this section, we give a new proof for the form of the lexicographically smallest
word in the shift orbit closure of the Rudin-Shapiro word. This result was first
derived in [7]. Considerations in this section are more involved than the ones in
the previous sections because a coding is needed in the definition of the Rudin-
Shapiro word. In what follows, we denote the natural order on letters 0, 1, 2, 3
by ρ. Thus we have 0 <ρ 1 <ρ 2 <ρ 3.

Let f and g be the morphisms

f :


0 7→ 01

1 7→ 02

2 7→ 31

3 7→ 32

and g :


0 7→ 0

1 7→ 0

2 7→ 1

3 7→ 1

Denote

u = fω(0) = 0102013101023202010201313231013101020131 · · ·

and

w = g(u) = 0001001000011101000100101110001000010010 · · ·.

Then w is the Rudin-Shapiro word, and our goal is to prove the identity l0,ρ,w =
0w. To that end, we need the next two lemmas. Let us denote Σ4 = {0, 1, 2, 3}.
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Lemma 12. Let σ and σ′ be two total orders on Σ4. If σ and σ′ order the pairs
(0, 3) and (1, 2) in the same way, i.e., 0 <σ 3 iff 0 <σ′ 3 and 1 <σ 2 iff 1 <σ′ 2,
then ld,σ,u = ld,σ′,u for all d ∈ Σ4.

Proof. Suppose that ld,σ,u = uat and ld,σ′,u = ubt′ with distinct letters a, b ∈
Σ4. Since σ and σ′ agree on (0, 3) and (1, 2), it follows that either a ∈ {0, 3}
and b ∈ {1, 2}, or vice versa. Furthermore, if c denotes the last letter of u, then
both ca and cb occur in u. This contradicts the fact that none of the words 00,
03, 11, 12, 21, 22, 30, 33 occur in u.

The next lemma is interesting in its own right. It was also proved in [7].

Lemma 13. We have l0,ρ,u = u.

Proof. Since clearly f ∈Mu, Lemma 7 implies that there exist a letter a ∈ Σ4,
a proper suffix v of f(a), and a total order σ on Σ4 such that s0,ρ,u = vf(sa,σ,u).
An easy case analysis based on the observation that 00 does not occur in u yields
s0,ρ,u = 10201 · · · = 1f(10 · · · ), and hence

v = 1 and sa,σ,u = 10 · · · .

Since v = 1 is a suffix of f(a), we have a = 0 or a = 2. Furthermore since
la,σ,u starts with a1, we must have a = 0 because 21 does not occur in u. Thus
s0,ρ,u = 1f(s0,σ,u).

Next we claim s0,σ,u = s0,ρ,u. We prove this by showing that 0 <σ 3 and
1 <σ 2; then the claim follows from Lemma 12. If, contrary to what we want to
show, we have 2 <σ 1, then l0,σ,u would begin with 02, contradicting the fact
that s0,σ,u begins with 1. Consequently we have 1 <σ 2. Furthermore if 3 <σ 0,
then l0,σ,u would begin with 013, contradicting the fact that s0,σ,u begins with
10. Therefore s0,σ,u = s0,ρ,u.

Now the identity s0,ρ,u = 1f(s0,ρ,u) implies l0,ρ,u = f(l0,ρ,u), so that l0,ρ,u
is the unique iterative fixed point of f that starts with 0, that is l0,ρ,u = u.

Finally, we are ready to prove the main result of this subsection.

Theorem 8. Let w denote the Rudin–Shapiro word. Then l0,ρ,w = 0w.

Proof. Let h = g ◦ f be the composition of g and f . Then

h : 0 7→ 00 1 7→ 01 2 7→ 10 3 7→ 11.

According to Lemma 6, there exist a letter a ∈ Σ4 and an infinite word
z ∈ ΣN

4 such that az ∈ Su and l0,ρ,w = uh(z), where u is a nonempty suffix of
h(a). Since l0,ρ,w clearly starts with 0000 and 00 does not occur in u, it follows
that u = 0, z = 01 · · · , and a = 2.

On the other hand, it is easy to see that 2u ∈ Su. Since u = l0,ρ,u by
Lemma 13, we have u ≤ρ z, and so 2u ≤ρ 2z. Furthermore, since h preserves ρ,
that is to say if x, y ∈ {0, 1, 2, 3}∗ with x <ρ y, then h(x) <ρ h(y), we have
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h(2u) ≤ρ h(2z), which gives 0h(u) ≤ρ 0h(z) = l0,ρ,w. Hence we must have
0h(u) = l0,ρ,w, and so

l0,ρ,w = 0h(u) = 0g(u) = 0w.

9 Conclusion

We have shown that if x = g(fω(a)) such that either f, g ∈ Mfω(a) or f is
primitive, then all extremal words of x are morphic. We also know from a
previous work of Allouche et al. [4] that the extremal words of automatic words
are automatic. However, there are morphic words that do not fall into any of
these classes, so it remains an open problem whether all extremal words of all
morphic words are morphic.
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Unicersity Press, Cambridge, 2010.

[7] J. Currie. Lexicographically least words in the orbit closure of the Rudin–
Shapiro word. Theoret. Comput. Sci. 412 (2011), 4742–4746.

[8] D. Damanik. Local symmetries in the period-doubling sequence. Discrete
Appl. Math. 100 (2000), 115–121.

[9] F. Durand. A characterization of substitutive sequences using return words.
Discrete Math. 179 (1-3) (1998), 89–101.

13



[10] S. Ferenczi. Les transformations de Chacon: combinatoire, structure
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