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ABSTRACT
An initially sufficiently misaligned low-mass protoplanetary disc around an eccentric binary
undergoes damped nodal oscillations of tilt angle and longitude of ascending node. Dissipation
causes evolution towards a stationary state of polar alignment in which the disc lies
perpendicular to the binary orbital plane with angular momentum aligned to the eccentricity
vector of the binary. We use hydrodynamic simulations and analytical methods to investigate
how the mass of the disc affects this process. The simulations suggest that a disc with non-zero
mass settles into a stationary state in the frame of the binary, the generalized polar state, at
somewhat lower levels of misalignment with respect to the binary orbital plane, in agreement
with the analytical model. Provided that discs settle into this generalized polar state, the
observational determination of the misalignment angle and binary properties can be used to
determine the mass of a circumbinary disc. We apply this constraint to the circumbinary
disc in HD 98800. We obtain analytical criteria for polar alignment of a circumbinary ring
with mass that approximately agree with the simulation results. Very broad misaligned discs
undergo breaking, but the inner regions at least may still evolve to a polar state. The long-term
evolution of the disc depends on the evolution of the binary eccentricity that we find tends to
decrease. Although the range of parameters required for polar alignment decreases somewhat
with increasing disc mass, such alignment appears possible for a broad set of initial conditions
expected in protostellar circumbinary discs.

Key words: accretion, accretion discs – hydrodynamics – planets and satellites: formation –
binaries: general.

1 IN T RO D U C T I O N

During the star formation process, misaligned discs around bi-
nary stars may be formed through chaotic accretion (e.g. Bate,
Bonnell & Bromm 2003; McKee & Ostriker 2007; Monin et al.
2007; Bate, Lodato & Pringle 2010; Bate 2018) or stellar flybys
(Clarke & Pringle 1993; Xiang-Gruess 2016; Cuello et al. 2019).
Observations of circumbinary discs suggest misalignments may
be common (e.g. Chiang & Murray-Clay 2004; Winn et al. 2004;
Capelo et al. 2012; Kennedy et al. 2012; Brinch et al. 2016;
Aly, Lodato & Cazzoletti 2018; Aronow et al. 2018; Czekala
et al. 2019). The planet formation process in these discs will
be altered by the torque from the binary that is not present in
the single star case (e.g. Nelson 2000; Mayer et al. 2005; Boss
2006; Martin et al. 2014; Fu, Lubow & Martin 2015a,b, 2017;
Franchini, Martin & Lubow 2019a). Furthermore, giant planets that
form in a misaligned disc may no longer remain coplanar to the

� E-mail: rebecca.martin@unlv.edu

disc (Picogna & Marzari 2015; Lubow & Martin 2016; Martin
et al. 2016). In order to understand the observed properties of
exoplanets, we first need to explain the disc evolution in misaligned
systems.

A misaligned circumbinary disc around a circular orbit binary
undergoes uniform nodal precession with constant tilt. The angular
momentum vector of the disc precesses about the binary angular
momentum vector. For a sufficiently warm and compact disc, the
disc precesses as a solid body (e.g. Larwood & Papaloizou 1997).
Dissipation within the disc leads to alignment with the binary orbital
plane (Papaloizou & Terquem 1995; Lubow & Ogilvie 2000; Nixon,
King & Pringle 2011; Nixon 2012; Facchini, Lodato & Price 2013;
Lodato & Facchini 2013; Foucart & Lai 2013, 2014).

Massless (test) particles that orbit around an eccentric orbit binary
can undergo nodal libration oscillations of the tilt angle and the
longitude of the ascending node, if the particle’s orbital plane is
sufficiently misaligned with the binary’s orbital plane (e.g. Verrier
& Evans 2009; Farago & Laskar 2010; Doolin & Blundell 2011).
Rather than precessing about the angular momentum vector of the
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Polar alignment of a protoplanetary disc with mass 1333

binary, such particles instead precess about the eccentricity vector
of the binary.

Recently, we found that a low-mass warm protostellar circumbi-
nary disc around an eccentric orbit binary can evolve towards polar
(perpendicular) alignment with respect to the binary orbital plane
for sufficiently high initial inclination (Martin & Lubow 2017). The
tilt evolution occurs due to damping of the libration oscillations by
dissipation in the disc and the disc angular momentum aligns to
the eccentricity vector of the binary. Aly et al. (2015) found that
cool discs that orbit binary black hole systems can also undergo
such oscillations and polar alignment. This mechanism operates for
sufficiently large misalignment angle (Aly et al. 2015; Lubow &
Martin 2018; Zanazzi & Lai 2018).

In Lubow & Martin (2018) and Martin & Lubow (2018), with
analytical and numerical models, we extended the parameter space
studied to include different disc properties such as viscosity,
temperature, size, and inclination, and binary properties such as
eccentricity and binary mass ratio. For low initial inclination, a disc
around an eccentric orbit binary undergoes tilt oscillations and non-
uniform precession as it evolves towards alignment with the binary
angular momentum vector (Smallwood et al. 2019).

For an orbiting particle with significant mass, the mass of this
body has an important effect on the evolution of the system because
it can affect the binary orbit, unlike in the low-mass or test particle
case. This regime has previously been explored analytically (Lidov
& Ziglin 1976; Ferrer & Osacar 1994; Farago & Laskar 2010;
Zanazzi & Lai 2018). They found that the stationary misalignment
alignment angle (fixed point) between the binary and particle orbital
planes is reduced below 90◦ and depends on the binary eccentricity
and the particle angular momentum. Although mass of a protostellar
disc is much less than the mass of the binary, a circumbinary disc
can extend to an outer radius that is much greater than the binary
separation. Consequently, the angular momentum of a circumbinary
disc can sometimes be significant compared to the binary angular
momentum.

In this work, we explore for the first time the polar evolution of a
circumbinary disc with significant mass around an eccentric binary
by means of hydrodynamic simulations. We compare those results
to the results for circumbinary particles with mass that effectively
represent a ring with mass. The behaviour of a circumbinary particle
or ring with mass provides some insight into the behaviour of discs.
However, the disc is an extended object that experiences larger
torques at smaller radii, while its angular momentum is typically
dominated by material at larger radii. In addition, for the case of
a disc with significant mass, the binary orbital properties, such as
its eccentricity and semimajor axis, evolve due to two effects: first,
the tidal interaction with the disc, and second, the accretion of
circumbinary disc material.

In Section 2, we explore the evolution of a misaligned circumbi-
nary disc with significant disc mass by means of hydrodynamic
simulations. In Section 3, we consider a model of a ring with
mass and obtain analytical expressions for the (generalized) polar
inclination and the requirements for evolution to the polar state. We
discuss the applications of our results in Section 4 and we draw
conclusions in Section 5.

2 C IRCUMBINARY D ISC SIMULATIONS

In this section, we explore the evolution misaligned circumbinary
disc with significant mass around a binary star system. We apply
the smoothed particle hydrodynamics (SPH; e.g. Price 2012, 2007)
code PHANTOM (Lodato & Price 2010; Price & Federrath 2010;

Price et al. 2018) that has been used extensively for simulations of
misaligned accretion discs (e.g. Nixon 2012; Nixon, King & Price
2013; Martin et al. 2014; Fu et al. 2015a).

2.1 Simulation set-up

Table 1 summarizes the parameters and some results for all of
the simulations that we describe in this section. The binary has
components with masses M1 = M2 = 0.5 M , where the total mass
is M = M1 + M2. The binary orbits with semimajor axis ab and
eccentricity vector eb = (exb, eyb, ezb). The binary orbit is initially
in the x−y plane with eccentricity vector eb = (1, 0, 0). This x−y
plane serves as a reference plane for the orbital elements described
below. The binary begins at apastron separation.

Initially the circumbinary disc is misaligned to the binary or-
bital plane by inclination angle i. The surface density is initially
distributed by a power law �∝R−3/2 between the initial inner
radius Rin = 2 ab up to the initial outer radius Rout. Typically we
take Rout = 5 ab, but we do consider some larger values also. The
initial inner disc truncation radius is chosen to be that of a tidally
truncated coplanar disc (Artymowicz & Lubow 1994). However,
the disc spreads both inwards and outwards during the simulation.
As described in Lubow & Martin (2018), the inner edge of the disc
extends closer to the binary because the usual gap-opening Lindblad
resonances are much weaker on a polar disc around an eccentric
binary than in a coplanar disc around a circular or eccentric orbit
binary (see also Lubow, Martin & Nixon 2015; Miranda & Lai
2015; Nixon & Lubow 2015). We take the Shakura & Sunyaev
(1973) α parameter to be 0.01 in our simulations. The disc viscosity
is implemented in the usual manner by adapting the SPH artificial
viscosity according to Lodato & Price (2010). The disc is locally
isothermal with sound speed cs ∝ R−3/4 and the disc aspect ratio
varies with radius as H/R ∝ R−1/4. Hence, α and the smoothing
length 〈h〉/H are constant over the radial extent of the disc (Lodato
& Pringle 2007). We take H/R = 0.1 at Rin = 2 ab. We examined the
effects of these two parameters in Lubow & Martin (2018). Particles
in the simulation are removed if they pass inside the accretion radius
for each component of the binary at 0.25 ab.

We ignore the effects of self-gravity in our calculations. Self-
gravity can play an important role in cases where apsidal precession
plays an important role in eccentric discs, as occurs for Kozai–
Lidov discs (Batygin, Morbidelli & Tsiganis 2011; Fu et al. 2017).
However, for an initially circular disc, as we assume, we find that
the discs remain quite circular, as is expected since eccentricity
is a constant of motion for ballistic circumbinary particles (in the
quadrupole approximation) (Farago & Laskar 2010). Instead, nodal
precession plays the key role in the dynamics of circumbinary
discs. But self-gravity has no effect on the nodal precession rate
of a flat disc. Provided that the disc is flat, the stationary tilt
condition that we describe in Section 3.2 should be independent of
self-gravity.

Self-gravity could have some influence on the level of warping
and that in turn could affect the tilt evolution time. Narrow discs
are more likely to be affected by self-gravity for a fixed disc
mass, since the surface density is higher. However, the initial
Toomre parameter is Q > 2.3 over the radial extent of the disc
for the narrowest (Rout = 5 ab), highest disc mass (Md = 0.05 M)
that we consider. The value of Q increases over time in our
simulations. Discs of larger radial extent that warp or break may
be affected by self-gravity. However, the wider discs we consider
have larger initial Toomre parameter Q > 3.1 for initial disc
outer radius of 20 ab, and in the regions that warping or breaking

MNRAS 490, 1332–1349 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/490/1/1332/5573825 by Library Periodicals user on 04 D
ecem

ber 2019



1334 R. G. Martin and S. H. Lubow

Table 1. Parameters of the initial circumbinary disc set up for binary with total mass M and separation a. The disc may
be in a circulating (C) or librating (L) state.

Name Figure Md/M i (◦) eb Rout/ab C/L Number of particles Broken

run1 2 0.001 60 0.5 5 L 300 000 No
run2 2 0.01 60 0.5 5 L 300 000 No
run3 2 0.02 60 0.5 5 L 300 000 No
run4 2 0.05 60 0.5 5 L 300 000 No

run5 6 0.05 0 0.5 5 – 300 000 No
run6 6 0.01 0 0.5 5 – 300 000 No
run7 6 0.001 0 0.5 5 – 300 000 No

run8 7 0.05 20 0.5 5 C 300 000 No
run9 7 0.05 40 0.5 5 C 300 000 No
run10 7 0.05 50 0.5 5 C 300 000 No
run11 7 0.05 80 0.5 5 L 300 000 No

run12 8 0.05 20 0.8 5 C 300 000 No
run13 0.05 30 0.8 5 C 300 000 No
run14 8 0.05 40 0.8 5 L 300 000 No
run15 8 0.05 60 0.8 5 L 300 000 No
run16 8 0.05 80 0.8 5 L 300 000 No

run17 9 0.001 60 0.5 10 L 600 000 No
run18 9 0.01 60 0.5 10 L 600 000 No
run19 9 0.02 60 0.5 10 L 600 000 No
run20 9 0.05 60 0.5 10 L 600 000 No

run21 10 0.05 60 0.5 20 L 600 000 Yes

takes place, Q � 10. Thus, self-gravity is not important in our
calculations.

In order to present a large number of simulations in this work, we
choose to use 3 × 105 particles in most of our following simulations.
We found this number to provide sufficient resolution in fig. 1 in
Martin & Lubow (2018) for a time of about 1000 Porb, where Porb

is the orbital period of the binary. Fig. 1 shows the results of a
similar resolution study, but for a disc with more mass. In the
previous work, the convergence test started with a disc mass of
0.001 M , while in this study we use run4 of Table 1 in which the
initial disc mass is 0.05 M . We find that the properties based on
the first two oscillations are fairly well converged, based on the
simulations with 3 × 105 and 1 × 106 particles. Lower resolution
at late times leads to increased viscosity and more damping in the
oscillations. But the behaviour in the two cases is quite similar in that
the oscillations are centred about a binary-disc inclination ibd ∼ 65◦,
rather than almost 90◦ found for the lower mass disc in the earlier
paper.

In order to provide adequate vertical resolution for a disc, we
generally require that the smoothing length h be less than the disc
scale height H (e.g. Armitage & Livio 1996). The disc is resolved
with initial shell-averaged smoothing length per scale height 〈h〉/H
≈ 0.25 for Rout = 5 ab. For simulations with larger initial disc
outer radii Rout = 10 ab and Rout = 20 ab, we use 6 × 105 particles
initially and the disc is initially resolved with 〈h〉/H ≈ 0.26 and
〈h〉/H ≈ 0.31, respectively. The value of 〈h〉/H does not change
significantly over the disc over the times we simulate, as we show
later.

A limitation of our simulations is that the flow in the central gap
region is not well resolved by the SPH code in these intrinsically 3D
flows. The flow in that region takes the form of rapid low-density
gas streams (e.g. Artymowicz & Lubow 1996; Muñoz, Miranda &
Lai 2019; Mösta, Taam & Duffell 2019). This limitation introduces
some uncertainty in the binary evolution.

Figure 1. Resolution study for run4. The inclination of the disc relative to
the binary as a function of time for the high-mass simulation with Md =
0.05 M , initial inclination i = 60◦, eb = 0.5, Rin = 2 ab, and Rout = 5 ab.
The model with the solid line initially has 1 × 106 particles, the dashed line
has 3 × 105, and the dotted line has 1 × 105. The inclinations are measured
at disc radius R = 5 ab.

In order to describe the evolution of the system, we compute the
inclination of the disc relative to the instantaneous binary angular
momentum as

ibd = cos−1(lb · ld), (1)
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Polar alignment of a protoplanetary disc with mass 1335

where lb = (lxb, lyb, lzb) is the unit vector in the direction of the
binary angular momentum and ld = (lxd, lyd, lzd) is a unit vector in
the direction of the disc angular momentum vector. The longitude
of ascending node phase angle for the disc is

φd = tan−1

(
lyd

lxd

)
+ π

2
. (2)

We also determine the phase angle of the eccentricity vector of the
binary projected on to the reference plane. We define this phase
angle as

φb = tan−1

(
eyb

exb

)
+ π

2
. (3)

This phase is plotted as red lines in the figures that we describe later.
The inclination of the binary relative to the reference plane varies
in time and is defined as

ib = cos−1 (lzb) . (4)

This angle is plotted as blue lines in the figures that we describe
later.

2.2 Effect of the disc mass on the disc alignment

We first consider the effect of the disc mass on the standard disc
model parameters shown in run1 of Table 1 that is the same model
presented in Martin & Lubow (2017). The binary is equal mass with
an initial orbital eccentricity of 0.5. The disc is initially inclined by
60◦ to the binary orbital plane. We calculate disc properties by
dividing the disc into 100 bins in spherical radius. Within each bin,
we calculate the mean properties of the particles, such as the surface
density, inclination, longitude of ascending node, and eccentricity.

The top left panel of Fig. 2 shows the evolution of the disc with our
standard parameters in run1. We plot the evolution at a disc radius of
r = 3 ab (solid lines) and r = 5 ab (dashed lines). The disc acts like
a solid body since these lines nearly overlap. As described in Martin
& Lubow (2017), the disc undergoes nodal libration in which the tilt
and longitude of the ascending node oscillate. Dissipation causes
the disc to evolve towards polar alignment where ibd ≈ 90◦. The
disc angular momentum vector aligns with the eccentricity vector
of the binary and the disc approaches a non-precessing state. For
this low-mass disc, there is little evolution of the binary separation,
eccentricity vector (as shown by the red line), or inclination (as
shown by the blue line). The top left panel of Fig. 3 shows the disc
at a time of t = 1000 Porb. The disc is close to polar alignment with
the angular momentum of the disc being close to alignment with
the binary eccentricity vector (shown in red).

The other panels in Fig. 2 show the disc evolution with a
higher initial mass of Md = 0.01 M (top right, run2), Md = 0.02 M

(bottom left, run3), and Md = 0.05 M (bottom right, run4). Now the
effect of the disc on the binary is no longer negligible. The binary
undergoes apsidal precession (as seen by the red line in the phase
angle plot), the binary inclination changes (see the blue lines), and
the magnitude of the eccentricity of the binary oscillates and decays.

For all four disc masses in Fig. 2, the binary and disc phase
angles are nearly the equal. The phase difference undergoes a
small amplitude oscillation. Over this time, the disc is then nodally
librating with respect to the binary, rather than circulating. The
libration indicates that the system is in a state where it lies above
the critical level of misalignment for polar-like behaviour. This
suggests that the system is undergoing evolution towards a polar-
like state as found in the low-mass disc case. There is a small
reduction in binary semimajor axis that becomes larger with disc

mass. In addition, the binary eccentricity has declined somewhat
after about 1000 binary orbits. The eccentricity oscillates, but the
eccentricity decreases overall with disc mass. The reduction of
binary eccentricity suggests that over longer time-scales the disc
might eventually become coplanar with the binary, since the polar
disc mechanism requires a certain level binary eccentricity. Better
resolution is required to study the longer term evolution.

Fig. 4 plots the evolution of the ratio of the angular momentum
of the disc to that of the binary, Jd/Jb for four different simulations
that all have Md = 0.05M, including the case plotted in the lower
right panel of Fig. 2 in the solid line. The ratios oscillate in time
because the eccentricity of the binary oscillates. In all four cases,
the disc angular momentum is quite significant with Jd � 0.3Jb.

Unlike the very low mass disc case, a disc with significant mass
evolves towards a highly misaligned non-precessing state relative
to the binary that is not perpendicular to the binary orbital plane.
We define the stationary inclination angle that the disc is evolving
towards as ibd = is where the disc precession rate relative to the
binary vanishes, i.e. the disc phase angle is stationary (denoted
by subscript s) relative to the binary phase angle. Only in the
massless circumbinary disc case does the disc evolve to exactly
polar alignment with is = 90◦.

As we discuss in Section 3.2, angle is decreases with increasing
particle angular momentum. Consequently, a narrow ring with the
same orbital radius as the particle should also experience a decrease
in the is with increasing ring mass. Similar effects are expected for
a disc. For the disc mass of 0.05 M (bottom right panel of Fig. 2),
the binary-disc inclination oscillations are damping and the disc is
evolving towards ibd = is ≈ 65◦. Thus, the mass of the disc plays
an important role in the stationary orientation of the system. We
discuss this further in Section 4. The top right panel of Fig. 3 shows
the high-mass disc at a time of t = 1000 Porb. The disc is close to
a stationary state in the frame of the binary, the generalized polar
state, that has a lower level of misalignment than the low-mass disc
(shown in the top left panel).

Fig. 5 shows the surface density and the smoothing length as a
function of radius at three different times for run4, the high-mass
disc case. The disc is initially truncated at R = 5 a, but spreads
outwards during the simulation. The disc is well resolved (〈h〉/H
< 1) out to R = 10 a for the duration of the simulation except in
regions of very low density, the innermost and outermost parts of
the disc.

2.3 Binary orbital evolution

The binary orbital evolution is affected by a disc with significant
mass. The evolution of the binary angular momentum is determined
by both the accretion of angular momentum from the disc and
the gravitational torques from the disc. The former leads to an
accretional torque. Due to our limited resolution in the inner gap,
the effects of this torque on the binary evolution are somewhat
uncertain. The effects of the accretional torque on the binary have
been difficult to determine even in 2D simulations (e.g. Muñoz et al.
2019).

The gravitational torque contributions to binary orbit changes
involve the interaction of the disc with binary resonances that in
turn depend on properties of the binary. In the coplanar binary-
disc case for small binary eccentricity, the theory of resonant disc
gravitational torques suggests that the binary eccentricity increases
due to the dominant effects of a single resonance in the disc
(Artymowicz et al. 1991). However, at higher binary eccentricities
many resonances can lie within the disc, some of which cause binary
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1336 R. G. Martin and S. H. Lubow

Figure 2. Simulations of a circumbinary disc around an equal mass binary with initial binary eccentricity eb = 0.5, initial disc inclination i = 60◦, and H/R =
0.1 at the disc inner edge of Rin = 2 ab. The disc outer edge is initially at Rout = 5 ab. In the upper two panels, the solid lines are for a radius of R = 3 ab and
the dashed lines for R = 5 ab. Top left: Md = 0.001 M (run1). Top right: Md = 0.01 M (run2). Bottom left: Md = 0.02 M (run3). Bottom right: Md = 0.05 M

(run4). Upper panels: Inclination of the disc angular momentum vector relative to the binary angular momentum vector, ibd (equation 1). The blue lines plot
the inclination of angular momentum vector of the binary relative to the reference plane, ib (equation 4). Second panels: Precession angles φ. The black lines
show the nodal precession angle for the disc φd (equation 2). The red lines show the binary eccentricity vector phase angle φb (equation 3). Third panels:
Semimajor axis of the binary ab. Lower panels: Magnitude of the eccentricity of the binary, eb.

eccentricity damping. For eccentricities eb ∼ 0.5 or greater, the
binary eccentricity growth rate due to disc resonances may become
very small or even become negative (Lubow & Artymowicz 1992).

Simulations by Artymowicz et al. (1991) found that for an
initially low eccentricity binary, eb = 0.1, the eccentricity of the
binary increased due to gravitational interactions with the disc.
Armitage & Natarajan (2005) confirmed this increase in eccentricity
along with a decreasing semimajor axis and suggested that this
may solve the final parsec problem of merging massive black hole
binaries, at least for extreme mass ratio binaries. More recently, Shi

et al. (2012) performed the first 3D magnetohydrodynamic (MHD)
simulations of a circumbinary disc around an equal mass circular
binary. They found that the MHD stresses allowed accretion on
to the binary resulting in the semimajor axis increasing slowly.
Miranda, Muñoz & Lai (2017) and Muñoz et al. (2019) performed
hydrodynamical simulations with a grid code for a range of binary
eccentricities and found that the binary separation increases in
time.

Because of the sensitivity of the binary evolution to system
parameters, we consider here for comparison the evolution in our
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Polar alignment of a protoplanetary disc with mass 1337

Figure 3. Circumbinary disc around an equal mass binary with initial binary eccentricity eb = 0.5, initial disc inclination i = 60◦ and H/R = 0.1 at the initial
disc inner edge of Rin = 2 ab. The system is shown at a time of t = 1000 Porb. Top left: The low-mass narrow disc case Md = 0.001 M and Rout = 5 ab (run1).
Top right: The high-mass narrow disc with Md = 0.05 M and Rout = 5 ab (run4). Bottom left: The extended disc with Md = 0.05 M and Rout = 10 ab (run20).
Bottom right: The extended disc with Md = 0.05 M and Rout = 20 ab (run21). The z-axis corresponds to the initial binary angular momentum vector. The
viewing angle is rotated about the z-axis so that the binary eccentricity vector lies in the plane of the figure and its direction is shown by the red arrow. The red
circles show the binary components. The colour denotes the gas density with yellow being about three orders of magnitude higher than blue.

SPH models in the coplanar case. The black lines in Fig. 6 show
the evolution of the binary in three coplanar disc simulations for
varying disc mass. The eccentricity of the binary decreases in time
while the semimajor axis also decreases. The eccentricity change is
somewhat insensitive to the mass of the disc while the semimajor
axis decreases more quickly for larger disc mass. For comparison,
in the blue lines in Fig. 6 we also show the binary orbit evolution in
our standard inclination parameters of run1 and the high-mass disc
of run4. A low-mass inclined disc leads to very little binary orbital
evolution over the time-scale of our simulation. The higher mass

disc leads to more binary eccentricity evolution, as we discussed in
the previous subsection.

2.4 Critical inclination for circulating and librating solutions

There is a critical inclination above which the disc is librating and
below which it circulates. In Lubow & Martin (2018), we found
that for a low-mass disc, the critical inclination is close to that
predicted for a test particle orbit. As we discuss in Section 3.3, the
critical inclination for a third body with non-zero mass depends
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1338 R. G. Martin and S. H. Lubow

Figure 4. The evolution of the ratio of the angular momentum of the disc
to the angular momentum of the binary for run4 (solid line), run14 (short-
dashed line), run20 (long-dashed line), and run21 (dot–dashed line).

Figure 5. The surface density (upper) and smoothing length-to-disc scale
height ratio (lower) as a function of radius in the disc for run4 at times t =
0 (solid lines), 500 (dotted lines), and 1000 Porb (dashed lines).

upon the angular momentum of the body. Here, we consider the
critical inclination for two different binary eccentricities.

2.4.1 Initial binary eccentricity e = 0.5

Fig. 7 shows the effect of changing the initial inclination of the
disc for an initially high disc mass of 0.05 M and an initial binary
eccentricity of 0.5. The simulations that have initial inclination 20◦

(top left, run8), 40◦ (top right, run9), and 50◦ (bottom left, run10)
undergo nodal phase circulation of the disc relative to the binary. The

Figure 6. The binary semimajor axis and eccentricity evolution due to a
coplanar circumbinary disc. The initial disc mass is 0.05 M (solid black
lines, run5), 0.01 M (dotted black lines, run6), and 0.001 M (dashed black
lines, run7) and otherwise the same initial disc properties. The blue lines
show for comparison the standard parameters with a disc mass of 0.001 M

and an inclination of 60◦ (dashed blue lines, run1) and a disc mass of 0.05 M

and an inclination of 60◦ (solid blue lines, run4).

disc and the binary are seen to be precessing in opposite directions.
However, for initial inclination of 60◦ (bottom right of Fig. 2, run4)
and 80◦ (bottom right of Fig. 7, run11), the disc is librating relative
to the binary. The precession angles of the binary and the disc are
nearly locked together. Thus, the critical angle between the two
types of solution for these parameters is in the range 50−60◦. A
disc in this librating state is then in a polar-like orbit around the
binary.

For the disc with the initial inclination of 80◦, the tilt oscillations
are in the opposite direction to the lower inclination discs. In
other words, the inclination initially decreases and the eccentricity
increases, vice versa for the lower inclination simulations. The disc
is approaching its generalized polar angle is from above.

2.4.2 Binary eccentricity e = 0.8

Fig. 8 shows the effect of changing the inclination of the disc around
a binary with a higher eccentricity of eb = 0.8. The disc varies from
circulating phase at initial inclination of 20◦ (top left panel, run12)
to librating phase for initial inclination 40◦ (top right panel, run14).
Although we do not show a figure, we also ran a simulation with
an initial inclination of 30◦ and find that it is circulating (see run13
in Table 1). Thus, the critical angle is between 20 and 30◦. This
angle is higher than the critical angle expected for a test particle of
16◦ based on equation 2 of Doolin & Blundell (2011). The angular
momentum evolution of the simulation that begins at 40◦ (run14) is
shown in the short-dashed line in Fig. 4.

2.5 Size of the disc

The size of the disc relative to the binary separation may take a
wide range of values. Protoplanetary discs are thought to extend to
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Polar alignment of a protoplanetary disc with mass 1339

Figure 7. The effect of the initial inclination on the evolution of the high-mass disc with initial mass Md = 0.05 M and eb = 0.5 initially. Top left: Initial
inclination of 20◦ (run8). Top right: Initial inclination of 40◦ (run9). Bottom left: Initial inclination of 50◦ (run10). Bottom right: Initial inclination of 80◦
(run11).

around hundreds of au (e.g. Williams & Cieza 2011). For a close
binary, this may be several hundred binary separations. However, for
a wider binary this may be only a few times the binary separation.
The simulations we have considered so far in this work have a
moderate extent and are relevant to wider binaries. In Martin &
Lubow (2018) we found that extending the outer disc radius, relative
to the binary separation led to warped and even broken discs. If the
sound crossing time-scale over the disc is longer than the precession
time-scale, then the disc is unable to communicate fast enough to
remain as a solid body.

2.5.1 Initial disc outer radius R = 10 ab

Fig. 9 shows the effect of increasing the initial size of the disc to
10 ab compared to 5 ab that we previously described. The figure

shows the same four disc masses as shown in Fig. 2. The qualitative
behaviour of the disc has not changed by increasing the initial disc
radius. In each case, the disc is in a librating state. The two lines
in the inclination and phase angle plots show the disc at a radius
of 3 ab (solid lines) and 10 ab (dashed lines). There is a much more
noticeable difference between these two radii now. That is, there
is more warping in the larger disc. The warping is larger for the
smaller disc mass because the tilt oscillations are larger. For high-
mass broader disc, the generalized polar (stationary) inclination is
is ≈ 60◦ that is slightly lower than for the narrower disc. Thus,
the disc begins very close to its stationary angle is and so there
is little inclination evolution. For the largest disc mass considered
(run20), the evolution of the ratio of the disc angular momentum to
the binary angular momentum is shown in the long-dashed line in
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1340 R. G. Martin and S. H. Lubow

Figure 8. The effect of the initial inclination on the evolution of the high-mass disc with initial mass Md = 0.05 M and eb = 0.8. Top left: Initial inclination
of 20◦ (run12). Top right: Initial inclination of 40◦ (run14). Bottom left: Initial inclination of 50◦ (run15). Bottom right: Initial inclination of 80◦ (run16).

Fig. 4. The lower left panel of Fig. 3 shows the disc at a time of
t = 1000 Porb.

2.5.2 Initial disc outer radius R = 20 ab

The left-hand panel of Fig. 10 shows the high disc initial mass
case of Md = 0.05 M with an even larger initial disc outer radius
of 20 ab (run21). The two lines in the inclination and phase angle
plots show the disc conditions at a radius of 3 ab (solid lines) and
20 ab (dashed lines). There is significant difference in properties
between the two parts of the disc. Hence in the right-hand panel we
show the surface density, inclination and phase angle as a function
of radius at three different times. There is a clear break in the disc

at a radius of about 10 ab. Circumbinary discs simulations around
circular binaries have previously shown this behaviour (Nixon et al.
2012; Nixon & King 2012). The inner and the outer parts of the
disc precess independently and show tilt oscillations on different
time-scales. The inner part of the broken disc at least can still
achieve polar alignment. For this simulation (run21), the evolution
of the ratio of the disc angular momentum to the binary angular
momentum is shown in the dot–dashed line in Fig. 4.

The lower right panel of Fig. 3 shows the broken disc at a time
of t = 1000 Porb. The inner part of the disc is in a generalized
polar aligned state while the outer part remains misaligned. The
lower panel on the right-hand side of Fig. 10 shows the smoothing
length as a function of radius in the breaking disc. At the break, the
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Polar alignment of a protoplanetary disc with mass 1341

Figure 9. Same as Fig. 2 except the initial disc outer radius is 10 ab. The initial mass of the disc is 0.001 M (top left, run17), 0.01 M (top right, run18), 0.02 M

(bottom left, run19), and 0.05 M (bottom right, run20). The solid lines show a radius of R = 3 ab and the dashed lines R = 10 ab.

smoothing length increases because of the small amount of material
in the low-density gap (see Fig. 3). Disc breaking, as we find, can
only be seen in discs with sufficiently high resolution (Nealon, Price
& Nixon 2015).

3 G ENERALIZED POLAR A LIGNMENT O F A
RING WITH MASS

The secular dynamics of a circumbinary particle are identical to
those of a narrow circumbinary ring. In order to understand the
stable polar alignment of a disc with significant mass, in this section
we consider a three-body problem for a circumbinary particle that
takes into account the gravitational effects of the masses of all
three bodies. We first determine the inclination at the centre of

the librating region is, where the ring (particle) nodal phase is
stationary with respect to the binary nodal phase. We then determine
the conditions required for a circumbinary ring to evolve into a
stationary (polar) configuration. The ring model provides insight
into the effects gravitational interactions by the orbiting ring. But
it does not include possible effects due to the radial extension of a
disc or the advection of disc mass and angular momentum on to the
binary.

3.1 Evolution equations

Farago & Laskar (2010) developed a secular theory for the motion
of a circumbinary particle of non-zero mass. The principal approx-
imation is that the binary potential is calculated in the quadrupole
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1342 R. G. Martin and S. H. Lubow

Figure 10. Left: Same as the lower right panel of Fig. 2 except the initial disc outer radius is 20 ab. The initial mass of the disc is 0.05 M (run21). The solid
lines show a radius of R = 3 ab and the dashed lines R = 20 ab. Right: The surface density, inclination, phase angle, and smoothing length-to-disc scale height
ratio as a function of radius at times t = 200 Porb (solid lines), t = 500 Porb (dashed lines), and t = 1000 Porb (dotted lines).

approximation. They utilize a Cartesian coordinate system that is
defined relative to the binary orbit. The orbit changes in time due to
gravitational interactions with the particle. The x-direction is along
the instantaneous eccentricity vector of the binary, the z-direction
is along the instantaneous binary angular momentum, and the y-
direction is orthogonal to the x- and z-directions. The origin lies
at the instantaneous centre of mass of the binary. The equations of
motion of the particle are expressed in terms of a unit vector that lies
along the direction of the ring’s (particle’s) angular momentum that
we denote by tilt vector � = (�x, �y, �z) in this coordinate system.

As shown by Farago & Laskar (2010), the circumbinary ring
semimajor axis, the eccentricity (that we assume to be zero), and
its angular momentum, Jr, are constants of motion. For the binary,
the semimajor axis ab is a constant of motion, while its eccentricity,
angular momentum Jb, and binary-ring mutual inclination i are not
constants of motion. However, the system angular momentum J is
a constant of motion. These properties imply that

J 2
b + 2JbJr cos i = J 2 − J 2

r , (5)

where the LHS is a constant of motion. In this equation, since ab is
a constant of motion, binary angular momentum Jb varies in time
due to variations in binary eccentricity eb as inclination i varies
in time. This equation then determines a relationship between eb

and i. In the limit that Jb 	 Jr, equation (5) implies that Jb and
therefore eb are constants of motion, as applies for a low-mass ring.
In the opposite limit of a very massive ring Jb 
 Jr, we have that
Jbcos i is a constant of motion. This condition holds because the z

component of the binary angular momentum is conserved due to the
static potential imposed by the massive stationary ring. The constant
of motion in this case plays a key role in the study of Kozai–Lidov
oscillations (Kozai 1962; Lidov 1962).

The equations of motion track the variations in time of the
tilt vector � and the binary eccentricity eb. We apply the secular
evolution equations 3.15–3.18 of Farago & Laskar (2010). We make
some changes in variables. We also make use of the ratio of the ring-

to-binary angular momentum

j = Jr

Jb
. (6)

The angular momentum ratio j generally varies in time because
Jb varies in time, while Jr does not change in time. We write the
evolution equations as

d�x

dτ
= (

1 − e2
b

)
�y�z + γr

√
1 − e2

b �y

(
2 − 5�2

x

)
, (7)

d�y

dτ
= − (

1 + 4e2
b

)
�x�z

− γr�x√
1 − e2

b

((
1 − e2

b

) (
2 − 5�2

x

) + 5e2
b�

2
z

)
, (8)

d�z

dτ
= 5e2

b�x�y + 5γre
2
b√

1−e2
b

�x�y�z, (9)

deb

dτ
= 5γreb

√
1 − e2

b�x�y, (10)

where we apply a scaled time equal to τ = α′t for time t in taking
the time derivatives above. Quantity α′ is constant in time and is
defined by equation 3.9 of Farago & Laskar (2010). For our purposes
of determining closed orbits, we do not care about the actual time t
and therefore do not need to know the value of α′. So we use τ as
our time coordinate. Quantity γ r is proportional to the ring angular
momentum and is a constant of motion

γr =
√

1 − e2
b j . (11)

For the purposes of numerically integrating these equations, it is
convenient to set γ r as

γr =
√

1 − e2
b0 j0, (12)
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Polar alignment of a protoplanetary disc with mass 1343

where eb0 and j0 are the initial eccentricity and ring-to-binary
angular momentum ratio, respectively.

3.2 Stationary inclination

We are interested in determining the conditions for � to be stationary
in the �y = 0 plane. We then require that

d�

dτ
= 0, (13)

deb

dτ
= 0 (14)

in equations (7)–(10). For the test particle case, we know that
this occurs when the particle orbit lies perpendicular to the binary
orbital plane so that � = (1, 0, 0). (It also occurs for � = (−1, 0, 0)
corresponding to an anti-alignment of particle angular momentum
with binary eccentricity. But we omit discussion of that orientation.)
In the present case, we take into account the non-zero ring mass.
The stationary condition in the �y = 0 plane is given by

�x =
√

1 − �2
z, (15)

�y = 0, (16)

�z =
− (

1 + 4e2
b

) +
√(

1 + 4e2
b

)2 + 60
(
1 − e2

b

)
j 2

10j
, (17)

as is consistent with appendix A.4 of Farago & Laskar (2010) (see
Appendix A). In this stationary state, the binary eccentricity eb = eb0

and the ring-to-binary angular momentum ratio j = j0 are constant
in time. From equation (17), we can obtain the stationary tilt angle
of the ring relative to the binary using the fact that

cos is = �z. (18)

For small ring angular momentum, j 
 1, we have that

cos is  3j
(
1 − e2

b

)
1 + 4e2

b

. (19)

A zero mass stationary ring is then perpendicular to the binary
orbital plane, as expected. For arbitrary ring mass, in the limit of
high eccentricity close to unity, we have that

cos is  6j (1 − eb)

5
. (20)

The stationary tilt angle is then increases with binary eccentricity.
The stationary angle is achieved at a near perpendicular orientation
for sufficiently large binary eccentricity. In the limit of large ring
angular momentum j 	 1, the stationary inclination is

cos is 
√

3

5

(
1 − e2

b

)
. (21)

Note that in the case of circular binary orbit, the stationary angle
is the critical angle for Kozai–Lidov oscillations of 39.2◦ (Kozai
1962; Lidov 1962).

Fig. 11 shows the stationary inclination as a function of the ratio
of the ring angular momentum to the binary angular momentum for
three different binary eccentricities (using equations 17 and 18). The
dashed lines show the corresponding limit of large particle angular
momentum given in equation (21). With increasing ring angular

momentum and all other parameters fixed, the stationary tilt angle
decreases monotonically to the value in the corresponding dashed
line given by equation (21) at large Jr/Jb. Zanazzi & Lai (2018)
also found that the stationary tilt (fixed point) is less than 90◦ for
a circumbinary particle (ring) with non-zero angular momentum.
They obtained numerical results for this problem with different
conditions for stationary solutions than our conditions given by
equations (13) and (14). Consequently, our analytical solution
(equations 17 and 18) does not agree with their results plotted in
their fig. 7. We compare our analytical stationary inclination to the
numerical hydrodynamical disc simulations in Section 3.4.1.

If the binary mass ratio decreases (keeping everything else fixed),
the angular momentum of the ring compared to the binary is larger,
and therefore j increases. According to equations (17) and (18), this
leads to a lower stationary inclination as seen in Fig. 11. As noted
in Martin & Lubow (2018), the libration period also increases with
the decreasing binary mass ratio. Thus, the time-scale to reach the
generalized polar state is also affected by the binary mass ratio.

3.3 Conditions for polar evolution

We consider here the conditions required for a ring with non-
zero mass to evolve towards a stationary non-coplanar (polar)
orientation. For such evolution to occur, the ring needs to be in
a state where its angular momentum direction l undergoes libration
oscillations about the stationary direction described in Section 3.2.

We determine the minimum inclination required for a librating
orbit, given the binary eccentricity and a measure of the ring-to-
binary angular momentum j. Since this ratio varies in time as Jb

varies, we select a value of j = j0 where the line of ascending notes
is equal to φ = 90◦ and the inclination is smaller than the stationary
value is. The latter condition is applied because a librating orbit of l
forms a closed loop that is double valued in φ corresponding to two
different values of inclination i (see points A and C in Fig. 12). We
select the j value at the smaller value of i (i < is) for the reference
quantity j0. Similarly binary eccentricity eb varies in time and we
apply the value of the reference binary eccentricity eb0 that is the
value of eccentricity at this same phase φ = 90◦ and inclination.

For a given initial value of binary eccentricity eb0, angular
momentum ratio j0, and assumed initial binary-ring inclination i0

< is, we integrate the evolution equations (7)–(10) together with
equation (12). The initial conditions are given by

(�x, �y, �z, eb) = (sin i0, 0, cos i0, eb0). (22)

For a fixed set of values of eb0 and j0, we determine the minimum
value of i0 for which the orbit of � is librating, rather than circulating.
This is done using a bisection method. We sometimes refer to that
librating orbit as the critical orbit.

Fig. 12 plots two critical librating orbits as heavy black lines in a
phase portrait of icos φ versus isin φ. The distance from the origin
to a point on the plot is the mutual inclination i, while the angle
from horizontal to the line from the origin to a point on the plot
is equal to the longitude of ascending node φ. Both plots are for a
system with eb0 = 0.5. The upper plot has j0 = 0.1, while the lower
plot has j0 = 0.3. The grey lines plot the circulating orbits that result
from slightly smaller values of i0 than for the critical orbit. Both
the minimum and maximum values of i along an orbit always occur
where φ = 90◦ corresponding to points A and C in Fig. 12. The
minimum inclination along a librating orbit thus occurs at the initial
time when i = i0 (as described above in equation 22).

Fig. 13 plots as a dotted line the numerically determined mini-
mum tilt angles for critical librating orbits as a function of j0 for
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1344 R. G. Martin and S. H. Lubow

Figure 11. The solid lines show the stationary inclination, is, as a function of the ratio of the ring angular momentum to the binary angular momentum for
binary eccentricity eb = 0.2 (blue), eb = 0.5 (black), and eb = 0.8 (red) found with equations (17) and (18). The dashed lines show the stationary inclination
in the limit that this angular momentum ratio goes to infinity, given by equation (21). The left- and right-hand panels are the same except the right-hand panel
is on a log scale to show the convergence to the dashed lines at large Jr.

three different values of binary eccentricity eb0. In addition, the
solid blue line plots the stationary angle. Notice that the stationary
angles lie above the minimum tilt angles, as expected (point D in
Fig. 12 lies above point A). The minimum tilt angle increases with
j0 for small values j0. It flattens and then decreases for larger values
for j0. If a ring tilt lies above the minimum value given in Fig. 13,
it does not immediately follow that the ring is in a librating state.
The full condition also involves the phase φ as we see below. The
condition on tilt is necessary for libration, but not sufficient.

3.3.1 Lower j/higher eb branch

For sufficiently small values of j or large values of eb, it is possible
to determine the libration conditions analytically. As seen in the
upper panel of Fig. 12 for j small, the critical orbit of � that
separates libration from circulation has a cusp at φ = 0◦ and 180◦

that corresponds to �x = 0 (see points B±). The cusp involves
d�/dτ = 0 on the �x = 0 plane (see also appendix A3 of Farago &
Laskar 2010). Strictly speaking this is a stationary point. But, this
stationary point is unstable, unlike the stationary point in the �y = 0
plane corresponding to polar configuration discussed in Section 3.2.
Since it is unstable, orbits that lie extremely close to it will diverge
away from it, either as a librating or circulating orbit. The librating
orbit that comes infinitesimally close to a stationary point with the
same binary eccentricity is the critical librating orbit.

From equation (7), we have that this �x = 0 stationary point
satisfies

�zs = − 2γr√
1 − e2

bs

(23)

at this stationary point s. From equations (5) and (11), we have that
total angular momentum conservation implies

γ 2 = γ 2
r + 1 − e2

b + 2γr

√
1 − e2

b�z, (24)

where

γ =
√

1 − e2
b Jr

Jb
. (25)

Both γ r and γ are constants of motion. The reason is that the
magnitude of the binary angular momentum varies in time due to
the variations in its eccentricity only. The quantity

√
1 − e2

b/Jb

is then independent of time. We want to express � and eb at this
stationary point as a function of these constants of motion. The
reason is that they can then be determined from the values of � and
eb at any point along the critical librating orbit. In this way, the
value of the Hamiltonian at this stationary point can be determined
in terms of these values anywhere along the critical librating orbit
by using equations (11) and (24).

By using equation (23) and applying equation (24) to this
stationary point, we have that

ebs =
√

1 − γ 2 − 3γ 2
r (26)

and

�zs = − 2γr√
γ 2 + 3γ 2

r

, (27)

which are the same as equations A12 and A15 of Farago & Laskar
(2010).

We consider a secular Hamiltonian based on equation 3.21 of
Farago & Laskar (2010)

H = �2
z + e2

b

(
2 − �2

z − 5�2
x

)
, (28)

where we ignore an overall factor that is independent of � and eb

that is irrelevant to our considerations below.
The value of the Hamiltonian at this stationary point in the �x =

0 plane based on equations (26) and (27) is equal to

Hs = 2
(
1 − γ 2 − γ 2

r

)
. (29)
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Polar alignment of a protoplanetary disc with mass 1345

Figure 12. The icos φ−isin φ plane for orbits with varying initial inclina-
tions and all other parameters held fixed. The black curves are the orbits
for the minimum angle that produces a librating orbit. The grey curves are
for orbits whose inclination is slightly lower and are circulating. Point A on
the black line denotes the point that has the minimum angle for a librating
orbit. Points B± on the black line denotes the location where there is a cusp
and the velocity dl/dτ vanishes. Point C on the black line is the location
of the maximum tilt angle of a librating orbit. Point D marks the location
of the stationary (non-librating) orbit that corresponds to a fixed polar orbit
relative to the binary. The orange line plots an intermediate librating orbit.
The upper plot has a positive value of χ , while the lower plot has a negative
value (see equation 31) that indicates a change in orbit behaviour.

By applying equations (11) and (24), we then have that at any
point on the critical librating orbit that has a Hamiltonian value
infinitesimally close to Hs

Hcr = 2
(
e2

b − 2
(
1 − e2

b

)
j (j + cos i)

)
, (30)

Figure 13. Plots of minimum and stationary tilt angles as a function of the
ratio of ring-to-binary angular momentum Jr/Jb at phase φ = 90◦ (denoted
by j0) and binary eccentricity at this phase eb = eb0. The dotted lines are
the numerically determined minimum tilt angles for libration that leads
to generalized polar alignment. The solid blue lines are the tilts for the
generalized polar alignment (stationary points given by equations 17 and
18). The solid red lines are an analytical determination of the minimum
tilt angle based on equation (33) over a range of Jr/Jb where χ > 0 in
equation (31). The solid green lines are an analytical determination of the
minimum tilt angle based on equation (39) over a range of Jr/Jb where χ <

0. The red and green lines meet at χ = 0.

where we use the fact that �z = cos i. But this equation only holds
if ebs is real in equation (26), which again through the application
of equations (11) and (24), implies that

χ = e2
b − 2

(
1 − e2

b

)
j (2j + cos i) > 0. (31)
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1346 R. G. Martin and S. H. Lubow

But χ is a constant of motion and so this equation also holds at any
point on the critical orbit. For negative values of χ , the stationary
point in the �x = 0 plane does not exist. The condition χ > 0 is
satisfied for sufficiently small values of j or high values of eb close
to unity.

When χ > 0 we have that the d�/dτ = 0 on the �x = 0 plane.
This means that the orbit has a cusp for φ = 0◦ and 180◦. For χ < 0,
there is still a cusp on the critical librating orbit. However, the cusp
does not occur on the �x = 0 plane. Fig. 12 plots the orbits of two
cases with different values of χ . Both plots are for a system with
eb0 = 0.5. The upper plot has j0 = 0.1, while the lower plot has j0 =
0.3. The middle panel of Fig. 13 shows the critical angles for these
cases.

The upper plot of Fig. 12 that has χ > 0 has cusp points at φ =
0◦ and 180◦ as expected. The critical librating orbit then covers a
large 180◦ range of φ. The lower plot with χ < 0 has cusp points
(denoted as points B±) that cover a much smaller range in φ.

Libration requires that H < Hcr. We then obtain the condition

�1 = − (
1 − e2

b

)
(2j + cos i)2 + 5e2

b sin2 i sin2 φ > 0, (32)

where we use �x = sin φsin i and �z = cos i in evaluating H. For
a massless ring we have that j = 0 and we recover equation 51 of
Zanazzi & Lai (2018).

The minimum possible tilt for libration occurs where φ = 90◦. To
find the minimum possible tilt i for libration to occur given values
of eb0 and j0, we use equation (32) with φ = 90◦ and �1 = 0 to
obtain

cos imin =
√

5eb0

√
4e2

b0 − 4j 2
0

(
1 − e2

b0

) + 1 − 2j0

(
1 − e2

b0

)
1 + 4e2

b0

.

(33)

For small j0, the above equation can be expanded as a series to linear
order in j0 to give

sin imin 
√

1 − e2
b0

1 + 4e2
b0

(
1 + 2

√
5eb0 j0√

1 + 4e2
b0

)
. (34)

For a massless ring we have that j0 = 0 and eb = eb0 (constant
binary eccentricity), and we recover the minimum tilt angle given
in equation 2 of Doolin & Blundell (2011). The term proportional
to j0 shows that the minimum angle for libration increases with ring
angular momentum for small j0.

For high binary eccentricity, eb0 close to unity, we have to lowest
order in 1 − eb0 that

sin imin 
√

2

5
(1 + 2j0)

√
1 − eb0. (35)

For large j0 in this equation, libration can occur over a wide range
of tilt angles provided that eb0 � 1 − 5/(8j 2

0 ).

3.3.2 Higher j/lower efb branch

The results in Section 3.3.1 are based on a critical librating orbit that
passes through a stationary point (where d�/dτ = 0) that has the
property that �x = 0. These results apply for χ ≥ 0 in equation (31),
which is based on the requirement that the binary eccentricity be
a real quantity in equation (26). For larger j or lower eb values,
where χ < 0, there does not exist a stationary point with �x = 0.
Instead, as we show below, the critical librating orbit for such larger
j0 cases involves a stationary point with the property that ebs = 0.
The properties of this stationary point are also discussed in section
A2 of Farago & Laskar (2010).

From equation (24) with ebs = 0, we have that

�zs = γ 2 − γ 2
r − 1

2γr
. (36)

Using equation (28) for the Hamiltonian, we have that its value at
this stationary point for the critical librating orbit is then

Hcr =
(

γ 2 − γ 2
r − 1

2γr

)2

. (37)

We proceed as in Section 3.3.1 through the use of equations (11)
and (24) in equation (37) and require that H < Hcr for a librating
orbit to obtain the condition that

�2 = e2
b + 4j

(
1 − e2

b

)
(− cos i + j (−2 + 5 sin2 i sin2 φ)) > 0,

(38)

which is valid for χ < 0 in equation (31). The condition χ < 0 is
satisfied for sufficiently large values of j or small values of eb.

To find the minimum possible tilt i for libration to occur given
values of eb0 and j0, we use equation (38) with φ = 90◦ and �2 =
0 to obtain

cos imin =
√(

1 − e2
b0

) (
1 + 4e2

b0 + 60
(
1 − e2

b0

)
j 2

0

) − (
1 − e2

b0

)
10

(
1 − e2

b0

)
j0

.

(39)

In the limit of large j0, we have to first order

cos imin 
√

3

5
− 1

10j0
, (40)

which approaches the critical angle for Kozai–Lidov oscillations as
j0 goes to infinity.

3.3.3 Summary of analytical conditions for polar alignment

Suppose we have a system with the following parameters at some
instant in time: ring-to-binary angular momentum ratio j = Jr/Jb,
mutual binary-ring inclination i, and longitude of ascending node for
the ring φ. If χ > 0 in equation (31), then equation (32) determines
whether the system undergoes libration. If χ < 0, then equation (38)
determines whether the system undergoes libration. Libration in turn
can lead to alignment to a stationary (polar) configuration.

The dotted lines in Fig. 13 are the minimum tilt angles for
libration imin obtained by numerically integrating the tilt evolution
equations (7)–(10). (The minimum possible tilt for libration occurs
where angle φ = 90◦.) The values of imin given analytically by
equation (33) are plotted with solid red lines in Fig. 13 over the
range of j0 values where χ > 0 in equation (31). The values
of imin given analytically by equation (39) are plotted with solid
green lines in Fig. 13 over the range of j0 values where χ <

0. Notice that the red and green lines pass through the dotted
lines, indicating excellent numerical agreement between the two
independent methods (numerical and analytical) for determining
minimum angles for both branches. Notice also that there is a change
in behaviour of the minimum tilt angle near the largest value of j0

plotted in red that occurs where χ = 0. Fig. 12 shows a major
change in orbital behaviour for the librating orbits with a change in
sign of χ . Fig. 13 shows that for χ < 0 (beyond the red lines), the
minimum tilt does not increase as rapidly with j0 and decreases for
sufficient large j0, as is also indicated by equation (40).
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3.4 Comparison of the analytical criteria to the
hydrodynamical simulations

3.4.1 Stationary inclination

Fig. 4 shows the ratio of the disc angular momentum to the binary
angular momentum for some of the hydrodynamical simulations.
The high-mass disc simulations (Md = 0.05 M) with binary eccen-
tricity eb = 0.5 have initially Jd/Jb = 0.42. In the analytical model
in Fig. 11, this corresponds to a stationary inclination of is = 69.7◦.
This is close to the inclination that the hydrodynamic discs oscillate
about (as shown the bottom right panel of Fig. 2 for initial inclination
60◦ and the bottom right panel of Fig. 7 for initial inclination of
80◦).

For the larger eccentricity binary, eb = 0.8, with the same disc
parameters (Fig. 8), the system has angular momentum ratio initially
Jd/Jb = 0.61 and in the analytical model in Fig. 11, this corresponds
to a stationary inclination of is = 80.6◦. This is in good agreement
with the simulations shown in the top right and bottom left and
right-hand panels of Fig. 8 that are librating.

The simulation with the larger disc size (outer radius 10 a) in the
bottom right panel of Fig. 9 (run20), has initially Jd/Jb = 0.52. In
the analytical model this corresponds to a stationary inclination of
is = 67.1◦. The largest disc size we considered (outer radius 20 a)
in Fig. 10 (run21), has initially Jd/Jb = 0.68 and this corresponds to
is = 64.0◦.

The stationary inclination for the disc is consistently slightly
less than the value predicted for the ring in Fig. 11. However,
the angular momentum of the disc and the binary evolve in the
disc simulations. While the ratio oscillates because the angular
momentum of the binary oscillates, the angular momentum of the
disc generally decreases in time. Furthermore, as described in the
Introduction, the dynamics of a ring are somewhat different from
that of an extended disc.

3.4.2 Condition for polar evolution

For the simulations described in Section 2.4.1 for binary eccentricity
eb = 0.5 and a high-mass disc Md = 0.05 M , the transition from
librating to circulating solutions is in the range 50−60◦. This system
has angular momentum ratio Jd/Jb = 0.42. The critical inclination
between librating and circulating solutions for this high disc angular
momentum in the analytical model is 51◦ using equation (39). For
the same disc parameters except disc mass 0.001 M , we previously
found that the critical angle was in the range 40−50◦ (Martin &
Lubow 2018). This system has angular momentum ratio Jd/Jb =
0.0084. In the analytical model for low angular momentum ratio, the
critical angle for this angular momentum ratio is 38.4◦ (equation 39).
The analytical model slightly underestimates the critical angle.

4 D ISCUSSION

The polar aligned disc observed in HD 98800 by Kennedy et al.
(2019) is within 4◦ of being perpendicular to the binary orbital
plane. The binary has a semimajor axis of ab = 1 au, eccentricity eb

 0.785, and the circumbinary gas disc in carbon monoxide extends
from about 1.6 au out to about 6.4 au. Note that polar aligned discs
have a smaller inner truncation radius than a disc aligned to the
binary orbital plane (Franchini, Lubow & Martin 2019b). The binary
component masses are 0.699 and 0.582 M� (Boden et al. 2005). We
assume that the disc has evolved to a stationary configuration with
tilt is given by equation (17). In making this assumption, we are

assuming that this equation holds for a radially wide disc with
viscosity.

Using the equation (17), we obtain an analytical expression for
the ring (or disc) to binary angular momentum ratio j = Jr/Jb,

j =
(
1 + 4e2

b

)
cos is

3
(
1 − e2

b

) − 5 cos2 is
. (41)

We apply the lower limit to the tilt is = 86◦ and eb = 0.785 to the
above and obtain

Jr  0.21Jb. (42)

Assuming the disc density falls off inversely with radius as R−q

and using the disc inner and outer radii values, we have that

Jr = kMr a
2
b�b, (43)

where �b is the binary orbital frequency, and Mr is the mass of the
ring. Quantity k varies from 2.1 to 1.9 as q varies from 0 to 1.5.
Using the properties of the binary cited above, we have that

Jb = 0.15Ma2
b�b. (44)

Combining equations (42), (43), and (44), we have that Mr 
0.016M. The disc (or ring) mass could be smaller if the tilt is
less than 4◦ from perpendicular. Therefore, the disc mass must be
�0.016M ≈ 0.021 M�, since the mass of the binary is 1.28 M�.
This mass range is quite plausible for protostellar discs.

Solid bodies may form within a gaseous disc that reaches its
stationary inclination is < 90◦. Such bodies will likely remain
within the gaseous disc due to gravitational coupling, unless they
are massive enough to open gaps. As the gas disc dissipates, its tilt
angle can increase until it reaches the polar state at 90◦ misalignment
with respect to the binary. The orbits of the solid bodies will likely
remain coplanar with the disc again due to gravitational coupling,
however, once the gaseous disc mass becomes sufficiently small this
coupling will break down and the solid bodies may decouple from
the gas disc before it reaches its final value of 90◦ inclination. Once
the solid bodies break free of the gas disc their libration speeds
will no longer be coordinated and they will randomize relative to
each other. The random velocities could affect the planet formation
process. Just how this operates is beyond the scope of this paper.

5 C O N C L U S I O N S

In this work, we have investigated the conditions under which the
nodal libration mechanism can operate in a protostellar disc around
an eccentric binary as first described by Martin & Lubow (2017).
We apply both SPH simulations and analytical methods. Such discs
undergo oscillations of the tilt and longitude of ascending node,
similar to test particle orbits. However, for the case of a disc,
dissipation leads to polar alignment of the disc. We have investigated
the effect of a non-zero mass disc on the system evolution. The mass
of the disc affects the outcome of the process because the binary
evolution is affected. The disc affects the binary orbit gravitationally
and through advection of mass and angular momentum. The binary
eccentricity and tilt oscillate. The eventual alignment of disc with
non-zero mass is at an angle less than 90◦. This has significant
implications for planet formation around eccentric binaries and for
the detection properties of such discs.

We applied the secular evolution equations of Farago & Laskar
(2010) to determine conditions related to the polar alignment of
an arbitrary mass ring that orbits around an eccentric orbit binary.
We determined the stationary misalignment angle, the generalized
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1348 R. G. Martin and S. H. Lubow

polar angle, between the ring and binary as a function of system
parameters. In the presence of dissipation, the ring tilt could evolve
to this angle. This angle, given analytically by equations (17)
and (18), decreases monotonically with increasing ratio of ring-to-
binary angular momentum and decreasing binary eccentricity (see
Fig. 11). A very small mass ring lies perpendicular to the binary
orbit plane in the stationary configuration.

We applied the stationary tilt angle equation (17) to constrain
the mass of the circumbinary disc in HD 98800 (see Section 4).
We note that this condition is based on gravitational torques
only and ignores the accretional torque on to the binary. Further-
more, it models the disc as a narrow ring. We did find however
that SPH simulations appear to be in good agreement with the
predictions of equation (17) (Section 3.4.1). In any case, we
found this equation implies that the disc mass is less than about
0.02 M�, in the range of typical protostellar disc masses. More
accurate observational determinations of the tilt angle would be of
benefit.

We determined analytical criteria required for a ring with mass
to evolve to a generalized polar configuration (see Section 3.3.3)
and determined the minimum misalignment inclination angles (see
Fig. 13). For small values of the disc-to-binary angular momentum
ratio j0, the minimum tilt angle increases with j0. But for larger
j0, this angle decreases. The change in behaviour is understood in
terms of a transition between different types of stationary points for
marginally librating orbits. As discussed in Section 3.4, we found
approximate agreement between the results of the SPH simulations
and the analytical model.
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APPENDIX A : STATIONA RY TILT

We derive the conditions for the stationary tilt of the ring relative
to the binary given in equations (15)–(17) of Section 3.2. We
apply the stationary (fixed point) conditions of zero time derivatives
(equations 13 and 14) to the tilt and binary eccentricity evolution
equations (7)–(10). In addition, we apply the condition that �y = 0,
since we are interested in tilts in the x–z plane. Equations (7), (9), and
(10) are trivially satisfied for zero time derivatives. Only equation (8)
for d�y/dτ needs to be considered. This equation implies

�x

[(
1 + 4e2

b

)
�z + γr√

1 − e2
b

((
1 − e2

b

) (
2 − 5�2

x

) + 5e2
b�

2
z

)] = 0.

(A1)

The solution with �x = 0 corresponds to a coplanar system with
the ring rotating either prograde (�z = 1) or retrograde (�z = −1)
relative to the binary.

For �x non-zero, the bracketed term in equation (A1) is zero,
resulting in the same equation as equation A16 of appendix A4 in
Farago & Laskar (2010) with some obvious changes in variable
names. We use the fact that |�| = � = 1 to eliminate �x using �2

x =
1 − �2

z . Equation (A1) can then be solved analytically as a quadratic
equation in �z to obtain two roots

�z =
−(1 + 4e2

b) ±
√(

1 + 4e2
b

)2 + 60
(
1 − e2

b

)
j 2

10j
. (A2)

The solution with the positive sign for the square root has the
property that �z goes to zero as j goes to zero. That is, a low-mass
ring is nearly perpendicular to the binary orbital plane. This solution
is of interest for the purposes of this paper and is used in the text as
equation (17).

The solution with the minus sign for the square root applies to
retrograde rings, since �z < 0. The requirement that �z > −1 implies
that

j >
1 + 4e2

b

2 + 3e2
b

. (A3)

In the limit of large j, we have that

�z = −
√

3
(
1 − e2

b

)
5

. (A4)

With increasing j, tilt component �z increases monotonically from
−1 to the value given by equation (A4). We do not consider the
applications of this stationary solution in this paper.
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