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ARTICLE OPEN

Biological and practical implications of genome-wide
association study of schizophrenia using Bayesian
variable selection
Benazir Rowe1, Xiangning Chen2,4, Zuoheng Wang 3, Jingchun Chen 2 and Amei Amei 1*

Genome-wide association studies (GWAS) have identified over 100 loci associated with schizophrenia. Most of these studies test
genetic variants for association one at a time. In this study, we performed GWAS of the molecular genetics of schizophrenia (MGS)
dataset with 5334 subjects using multivariate Bayesian variable selection (BVS) method Posterior Inference via Model Averaging
and Subset Selection (piMASS) and compared our results with the previous univariate analysis of the MGS dataset. We showed that
piMASS can improve the power of detecting schizophrenia-associated SNPs, potentially leading to new discoveries from existing
data without increasing the sample size. We tested SNPs in groups to allow for local additive effects and used permutation test to
determine statistical significance in order to compare our results with univariate method. The previous univariate analysis of the
MGS dataset revealed no genome-wide significant loci. Using the same dataset, we identified a single region that exceeded the
genome-wide significance. The result was replicated using an independent Swedish Schizophrenia Case–Control Study (SSCCS)
dataset. Based on the SZGR 2.0 database we found 63 SNPs from the best performing regions that are mapped to 27 genes known
to be associated with schizophrenia. Overall, we demonstrated that piMASS could discover association signals that otherwise would
need a much larger sample size. Our study has important implication that reanalyzing published datasets with BVS methods like
piMASS might have more power to discover new risk variants for many diseases without new sample collection, ascertainment, and
genotyping.

npj Schizophrenia            (2019) 5:19 ; https://doi.org/10.1038/s41537-019-0088-6

INTRODUCTION
Schizophrenia is a severe psychiatric disorder with an estimated
global lifetime prevalence of 0.4−0.75% with no significant
differences across urban, rural, and mixed sites or genders.1,2

While being a low prevalence disorder, it has substantial societal
burden.3 The estimated heritability of schizophrenia ranges from
70 to 90%.4 The common susceptibility variants of such disease
are typically identified by association studies, such as genome-
wide association studies (GWAS). In these studies, single nucleo-
tide polymorphisms (SNPs) are often tested one at a time. In
recent years, genetic studies of schizophrenia have made
substantial progress. Since the report of the major histocompat-
ibility complex (MHC) locus on chromosome 6 in 2009,5 the
number of schizophrenia-associated genetic loci has risen to 5 loci
in 20116 and to 108 loci in 2014.7 This increase in the number of
significant loci could be partially explained by the increase in the
sample size of the studies that led to improvement in the
statistical power of the association tests. However, these studies
also suggest that common variants usually have small to medium
effects that makes them hard to reach the typical GWAS
significance threshold (P= 5 × 10−8). The application of regression
methods on set of genetic variants with appropriate prior
specification may have the potential to uncover the largely
hidden heritability.
It is well known that the single-SNP approach has its advantage

in its simplicity of use, well-established pipeline and low
computational burden. However, one of the major drawbacks is
that it may miss some potential additive effects derived from sets

of SNPs or genes. Methods like Bayesian variable selection (BVS)
take these considerations into account and analyze multiple loci
simultaneously. For diseases with complex genetic architecture,
such as schizophrenia, it is possible that BVS combined with
powerful computing resources might be superior to single-SNP
approach. Indeed, Bayesian methods have demonstrated their
abilities in search for genetic risk factors in schizophrenia and
other complex disorders.8–10 Since then, much have been
developed in the area of Bayesian GWAS.11,12 The Posterior
Inference via Model Averaging and Subset Selection (piMASS)
algorithm is one of such examples.13 It offers a BVS procedure that
is designed for continuous phenotypes with an extension to
binary phenotypes using a probit link function. By considering a
set of genetic variants, piMASS extracts more information beyond
the marginal associations in standard single-SNP analyses while
maintaining reasonable computation time.13 Therefore, piMASS
has potential to uncover more associations through reanalysis of
existing GWAS datasets. In this study, we chose a dataset with a
moderate sample size, molecular genetics of schizophrenia (MGS)
that has previously been analyzed using univariate methods5 and
reanalyzed the dataset using piMASS. We hypothesize that
piMASS can discover more associations when applied to MGS
dataset compared with the single-SNP methodology used in ref. 5

Specifically, we use piMASS to evaluate associations of a set of
genetic variants in a moderate sample size of 5334 subjects (2681
cases and 2653 controls) with binary phenotype using posterior
inclusion probabilities (PIPs)—measures of confidence that
individual variants have nonzero effects, no interaction effects
considered. Such direct comparison with one of the most
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common GWAS methods can shed the light on the utility of
piMASS in analysis of moderate size datasets. We used permuta-
tion test to validate our findings with an independent schizo-
phrenia case–control dataset of similar size (2895 cases and 3836
controls). Our results indicate that compared with single-SNP
approaches, BVS method, such as piMASS, could discover
association signals with a relatively small sample size that might
have been undetectable by single-SNP approaches.

RESULTS
In the discovery dataset MGS, region 29 on chromosome 15
containing SNPs between 83,907,801 and 86,887,657 reached
genome-wide significance after Bonferroni correction (Rank 1,
Pdisc= 1.43 × 10−5, Pvali= 0.001). rs16940789, rs16941261,
rs4887364, rs991728, rs2114252, and rs994068 (Supplementary
Table 1) are among the SNPs with top 1% highest PIP and mapped
to gene NTRK3 in the SchiZophrenia Gene Resource database,
SZGR 2.0 (https://bioinfo.uth.edu/SZGR/), a comprehensive data-
base of variants and genes reported to have an association with
schizophrenia.14 NTRK3 has been shown to be associated with
bipolar and other psychiatric disorders.15–17 The gene encodes a
member of the neurotrophic tyrosine receptor kinase (NTRK)
family, which is involved in nervous system. rs16940789 was also
mapped to gene LINC00052 (an RNA gene that is affiliated with
the noncoding RNA). The locus had not been previously reported
in refs 7,18

Although only one locus surpassed Bonferroni correction
(Pdisc < 7.9 × 10−5), some regions with the empirical p value (Pdisc)
that are close to the cutoff might still be of interest because
Bonferroni correction is known to be too conservative and we
used a design of sliding window with overlapping SNPs. Table 1
lists 12 regions with the best association metric (Pdisc) based on
100,000 permutations using the MGS dataset, as well as their
corresponding empirical p values based on 1000 permutations
using the Swedish Schizophrenia Case–Control Study (SSCCS)
dataset (Pvali). For each of the 12 regions reported in Table 1, we
ranked the 1000 SNPs in terms of the PIP generated from the
initial run using the MGS dataset and listed the top ten SNPs
based on PIP within each region (Supplementary Table 1). The
Manhattan plot of the PIP of individual SNP from the initial run

using the MGS dataset is shown in Fig. 1 using −log10(1-PIP) as the
y-axis.
There are 5 SNPs among the 120 SNPs listed in Supplementary

Table 1 that have been mapped to genes associated with
schizophrenia in the GWAS Catalog19 (Table 2). Average C-scores
based on Combined Annotation-Dependent Depletion (CADD)
method are also listed in Table 2.20 SNPs rs993804 and rs4858697,
located at 3p24.2, are in Linkage Disequilibrium (LD) (R2= 0.45)
and are mapped to the gene AC092422.1 (RARB) (chr3:24687919-
25174305). AC092422.1 (RARB) had been reported to be associated
with schizophrenia and bipolar disorder in a meta-analysis for
genome-wide association data using European–American sam-
ples.21 SNP rs2044117, located at 13q32.3, is mapped to genes
NALCN-AS1 and NALCN. NALCN-AS1 was reported to be associated
with schizophrenia and bipolar disorder.21 The NALCN was
reported to be associated with multiple traits including bipolar
disorder, eating disorder, schizophrenia, adolescent idiopathic
scoliosis, HIV-associated dementia, psychosis, recurrent major
depressive disorder, etc.22–26 SNP rs9554752 is also mapped to
NALCN and it is in LD with rs2044117 (R2= 0.11). SNP rs915071,
located at 14q12, is mapped to genes AL352984.2: LOC105370439
and LOC105370440 that were reported to be associated with
schizophrenia and bipolar disorder.21 The CADD scores for SNPs in
Table 2 range from 0.898 to 9.444. Resulting CADD scores point to
the fact that piMASS alone cannot discover causal variants. The
main reason is that piMASS is a tool for association testing and
hence the SNPs discovered are not necessarily causal. Moreover,
other study characteristics like region-based design and unim-
puted dataset add to the fact that additional steps may be
necessary to investigate the pinpointed regions for causal SNPs.
Based on the permutation test on the discovery dataset, region

5 on chromosome 19 has the second smallest empirical p value
(Rank 2, Pdisc= 1.67 × 10–4, Pvali ≤ 0.001. Among the SNPs having
the highest 1% PIPs within this region, there are six SNPs
(rs2965189, rs2916074, rs4808200, rs4808203, rs4808964, and
rs10419912) and they are in high LD (R2 ≥ 0.93) with rs2905426
located at 19p13.11. The SNP rs2905426 is a variant belongs to a
regulatory region of genes GATAD2A and MAU2. This variant was
previously reported to be associated with schizophrenia from the
Psychiatric Genomic Consortium (PGC) study, where 128 inde-
pendent associations with 108 conservatively defined loci were
identified in a GWAS of up to 36,989 cases and 113,075 controls7

Table 1. Regions with best association metrics (Pdisc) based on permutation test

Chr Regiona Start positionb End positionb Rankc Pdisc
d Pvali

e

15 29 83,907,801 86,887,657 1 1.43E−05 0.001

19 5 15,724,023 22,638,628 2 1.67E−04 <0.001

14 33 86,399,092 90,573,122 3 2.20E−04 <0.001

9 24 34,905,605 70,379,322 4 2.50E−04 0.002

14 6 29,288,170 33,177,081 5 3.00E−04 <0.001

8 30 53,113,091 57,376,926 5 3.00E−04 0.001

20 1 9795 2,715,620 7 3.33E−04 <0.001

18 15 28,642,588 33,646,071 8 5.00E−04 <0.001

15 28 80,260,648 85,190,202 9 5.50E−04 <0.001

1 36 81,955,643 85,727,849 10 5.67E−04 <0.001

13 41 98,395,342 101,641,945 11 6.00E−04 <0.001

3 15 22,010,347 25,354,138 12 7.50E−04 0.001

aRegions were assigned separately to each chromosome starting from 1
bStart position reflects the position of the first SNP included in the region, end position reflects the position of last SNP included in the region
cRank is based on empirical P value calculated from permutation test using the MGS dataset
dEmpirical P value based on 100,000 or less permutations using the discovery dataset (MGS)
eEmpirical P value based on 1000 permutations using the validation dataset (SSCCS)
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(see also refs 27–29). Based on SZGR 2.0 we found 63 SNPs out of
the 120 SNPs that are mapped to 27 genes in the SZGR 2.0
database and shown to be associated with schizophrenia
(Supplementary Table 1).
We also conducted an overlap analysis between MGS and

SSCCS datasets based on a single run of piMASS without the
permutation test. The results of the piMASS analysis of the SSCCS
dataset based on sum of PIPs for each region are presented in
Fig. 2. Figure 3 shows Manhattan plot based on individual PIPs
using −log10(1-PIP) as the y-axis. The overlap analysis suggests
that 46.3% of the pairs were in LD with each other in the
100,000 bp overlap among top 1% of the SNPs of the top 5% of
the regions (Supplementary Table 2). Overlap percentages using
other choices of distance (in bp) are given in Supplementary Table
3. rs7746199 chr6:27261324 belongs to extended MHC region and
has been previously implicated in association with schizophrenia.5

rs7746199 as well as rs2747421, rs2535238, rs375984, rs2747421,
rs2535238, rs375984 SNPs are in the consensus set and are in LD
with rs1153229265 of chr6 reported by PGC7 (Supplementary
Table 4).

DISCUSSION
Guan and Stephens developed a BVS regression model to large-
scale datasets primarily focusing on analysis of quantitative
traits.13 In this study, we used the BVS regression model to
conduct a case–control GWAS of schizophrenia with binary
phenotype for datasets with moderate sample sizes (cases/
controls for MGS and SSCCS datasets are 2681/2653 and 2895/

3836, respectively). We have demonstrated that the BVS methods
can discover association signals that otherwise would need a
much larger sample size to discover.
Application of BVS to the MGS European ancestry case–control

sample produced 17 regions having Pdisc < 8 × 10−4 based on
100,000 permutations. Among them, 12 regions were validated
using the SSCCS dataset with Pvali ≤ 0.002 based on 1000
permutations. The region with the smallest p value, which belongs
to chromosome 15 reached genome-wide significance. SNPs with
the highest PIP from this region are mapping to gene NTRK3 that
encodes a member of the NTRK family and has been reported to
be associated with bipolar and other psychiatric disorders. Five
SNPs among the twelve validated regions are mapped to genes
that are known to be associated with schizophrenia and other
mental disorders, such as bipolar disorder, eating disorder,
adolescent idiopathic scoliosis, psychosis, recurrent major depres-
sive disorder.21–26 A cluster of six SNPs on chromosome 19 are
found to be in high LD with rs2905426, which is mapped to the
regulatory region of GATAD2A and MAU2, genes that are known to
be associated with schizophrenia and bipolar disorder.7

Our BVS analysis of the MGS European ancestry case–control
dataset identified one region that reached genome-wide sig-
nificance, while the original GWAS of the MGS case–control
dataset that used single-SNP approach did not find any significant
signal.5 This result indicates that piMASS method has the potential
to uncover more associations even in moderate sample size
setting, as compared with the single-SNP approach. Our results
suggest that BVS methods, such as piMASS, can be used to
reanalyze published datasets to discover new risk variants for

Table 2. SNPs with their mapped genes

Chr Gene Region SNP Positiona MAFb PIP C-scorec

3 AC092422.1 (RARB) rs993804 25,070,680 0.27 0.059 5.917

3 AC092422.1 (RARB) rs4858697 25,075,091 0.46 0.044 2.97

13 NALCN, NALCN-AS1 rs2044117 101,055,958 0.13 0.124 9.444

13 NALCN rs9554752 101,073,961 0.35 0.040 1.960

14 LOC105370439, LOC105370440 rs915071 31,964,652 0.40 0.738 0.898

aPosition is referred to NHGRI-EBI GWAS Catalog
bMinor allele frequency (MAF) in the 1000 Genomes Phase 3 combined population
cAverage C-score based on Combined Annotation–Dependent Depletion (CADD) method

Fig. 1 Manhattan plot of 1-PIP for the MGS dataset
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many diseases without new sample collection, ascertainment, and
genotyping.
Our analysis produced a single region that achieved genome-

wide significance that has not been reported in large-scale
schizophrenia GWAS. The region is on chromosome 15 containing
SNPs between 83,907,801 and 86,887,657. Among SNPs with top
1% highest PIP in this region is rs16940789 in the genes
LINC00052 and NTRK3.
While we were able to demonstrate the potential superiority of

piMASS over standard GWAS, there are a few ways it could be
further improved. First, performing genotype imputation for both
the discovery and validation datasets could provide more precise
comparison between the two datasets. Imputation enables direct
comparison between datasets, which could be beneficial to the
understanding of the piMASS performance. Second, given that
population stratification and cryptic relatedness are among the

confounding factors in genetic association studies,30,31 a strategy
that accounts for population structure could improve the accuracy
of association discovery and extend the application to datasets
with less homogeneous population structure. Third, comparison of
piMASS with other methods beyond single-SNP approach can
help placing it in a hierarchy of other GWAS tools for real data.
Another potential direction of further research is the extension of
the model to handle categorical response data, thus allowing to
analyze phenotypes with polychotomous scale such as addiction
and other diseases. The classical approach to multinomial
response data is to fit a categorical response regression using
maximum likelihood and make inference about the model based
on the associated asymptotic theory. It has been pointed out that
the inference based on the classical approach is questionable for
small sample sizes and Bayesian methods provided an attractive
alternative.32 Having reached the conclusion that it is possible to

Fig. 3 Manhattan plot of 1-PIP for the SSCCS dataset

Fig. 2 piMASS genome-wide region-based performance of the SSCCS dataset. The sum of posterior inclusion probabilities (PIPs) for each of
the 1244 overlapping regions spanning 22 chromosomes of the SSCCS dataset

B. Rowe et al.
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uncover more associations using single dataset with moderate
sample size, it now makes sense to move on to apply piMASS to
larger, more heterogeneous datasets, imputed datasets and
ultimately perform meta-analysis of the results of the BVS analysis
of multiple datasets.

METHODS
GWAS datasets
In discovery, we performed association analysis using the MGS study
(n= 5334) that consists of 2681 schizophrenia cases and 2653 healthy
controls of European ancestry. Details of the dataset have previously been
described.5 In validation, we chose batches 5 and 6 of the SSCCS dataset
(n= 6731), including 2895 cases and 3836 controls.33 Both MGS and SSCCS
GWAS datasets were downloaded from NIMH Genetic Repository and
Resource (https://www.nimhgenetics.org/) upon approval. The genotypes
were downloaded from NIMH without further quality check because the
genotypes from NIMH were checked and met the standard requirement of
NIMH. The two datasets were genotyped using different platforms: the
MGS was genotyped using the Affymetrix 6.0 chip that includes 638,937
SNPs, and the batches 5 and 6 of the SSCCS were genotyped using the
Illumina OmniExpress chip that includes 646,699 SNPs. In this work, we did
not do any SNP annotation as both datasets are using GRCh37/hg19 as the
human reference genome. While SSCCS dataset has more subjects, its
order of magnitude is approximately the same as of MGS (5334 subjects
with 638,937 SNPs in MGS vs. 6731 subjects with 646,699 SNPs in SSCCS) in
a sense that we expect both datasets to have similar power in detecting
the associations. The genotype of an individual is coded as 0, 1, or 2
whether the subject has 0, 1, or 2 copies of the minor allele. Missing
genotypes were imputed by the sample average of the genotypes at the
position. Phenotypes were recorded as a binary variable indicating
presence or absence of a schizophrenia diagnosis.

Study design
The objective of the current study is to evaluate whether piMASS can
improve the detection of association signals as compared with standard
univariate procedure. To this end, we chose a dataset with a moderate
sample size that has previously been analyzed using univariate methods.5

We did not perform genotype imputation and used the same set of
markers as in the study.5 Guan and Stephens mention that BVS regression
tends to spread the association signal (the PIPs) among the correlated
SNPs.13 Therefore, to apply piMASS, we partitioned the genome-wide data
into smaller regions to capture additive effects of neighboring SNPs. Based
on our computational resources, we set 1000 SNPs as the region in a single
run. Given that we did not impute genotypes, it was more practical to
proceed with regions containing equal number of SNPs. Since piMASS
searches for various model configurations by proposing to add, remove,
and switch covariates in the model, we used a “sliding window” approach
in which each chromosome was cut into regions of 1000 SNPs with the
overlap of 500 SNPs. This ensures that piMASS has the opportunity to
explore models containing all nearby SNPs. This approach produced 1266
regions in the MGS dataset (the number of regions per chromosome are
listed in Supplementary Table 5). A typical region spans around 3–7 million
base pairs.
We tested each region for association with phenotype using piMASS by

performing Markov chain Monte Carlo (MCMC) runs with one million
iterations each. The convergence of the MCMC runs was confirmed by the
Gelman–Rubin statistics being <1.04 (Supplementary Notes). We did not
include covariates to correct for potential population stratification since it
has been noted in the literature that Bayesian regression models
simultaneously fitting multiple SNPs are robust for population stratifica-
tion.34 To distinguish SNPs with the strongest evidence of association, we
use PIP for each SNP. Since nearby SNPs are usually correlated and the PIPs
can spread around correlated SNPs, it is possible that none of the single
SNPs in the region have high PIP but the sum of PIPs would be high
indicating the posterior probability of at least one of the SNPs should be
included in the model. The design of combining multiple loci into a region
helps better explore all possible models. Given that the regions are defined
in terms of fixed number of SNPs, we used the sum of PIPs as the main
measurement of association following analysis.13

piMASS allows user to input parameters (priors) appropriate for the
specific question in a GWAS and therefore utilize the existing domain
knowledge. From the latest GWASs, it is known that more than 100 genetic

loci are associated with schizophrenia, but each locus has very small
effect.5–7 This knowledge can be utilized to specify the ranges of the prior
parameters. In the model, we specified the following two parameters: the
proportion of the phenotypic variance explained by relevant variants and
the proportion of SNPs that we expect to be relevant to the phenotype.
The first parameter represents the estimate of overall signal in the
genotype data, e.g., how much variation in the diagnosis can be explained
by the SNP data. We set a prior on this quantity to be uniformly distributed
from 0.01 to 1% according to the two previous schizophrenia studies.7,35

These two studies suggest that the variants across the genome collectively
explain 18–23% of phenotype variation.7,35 But for each variant, the
variation explained is very small. Ripke et al.7 found 108 variants, the
expected proportion explained by a single variant would be 0.184/108=
0.0017, which falls in the range we used as a priori information in the
model. The prior on the second parameter was set in such a way that the
expected number of SNPs that are relevant to the phenotype ranges from
1 to 5 loci in each region containing a group of 1000 SNPs. One could also
set restriction on the total number of SNPs to be allowed in the model. In
this study, we set it to 5 SNPs due to computation time considerations.
The key feature of prior setting in piMASS is that the number of relevant

variables is no longer necessarily positively correlated to the proportion of
variance explained by them. Such prior structure is proper for the situation
where there are many relevant variables, each has tiny effect and overall
proportion of variability explained by relevant covariates is still small. This
feature of piMASS matches the genetic architecture of schizophrenia
where many loci, each with a very small effect, collectively contribute to
the disease.
In the initial application of piMASS to the MGS dataset, sum of PIPs for

the 1266 regions in the MGS dataset did not show clear separations (Fig. 4).
Therefore, it was not clear which regions contain SNPs that are associated
with the trait. We borrowed frequentist permutation test to determine an
appropriate significance threshold, which would make our results
comparable with those reported previously.5 We used empirical method
based on the Fisher’s concept of a permutation test. Given that 1266
overlapping regions were tested simultaneously, it was necessary to
correct the significance threshold for multiple comparisons. We chose
Bonferroni correction for this purpose. Since our focus is on gene
discovery, we set α= 0.1, being more liberal than the traditional 5% level
to compensate for the well-known conservativeness of Bonferroni multiple
correction. Although the larger α may produce more false positives, we
expect to eliminate them in the validation step of the study. Each region
that survived the significance threshold of p

n ¼ 0:1
1266 � 7:9 ´ 10�5 was

further validated using an independent dataset. The target number of
permutations was set to 100,000. To save computation time, we stopped
permutations for each region once the region’s empirical p value exceeded
the significance threshold.

Validation
The main goal of validation is to check if the results obtained using piMASS
could be replicated in an independent dataset so that the method could
be applied to discover new loci in general. Several regions in the discovery
dataset that performed best in terms of the empirical p values from the
permutation were tested and verified using an independently collected
dataset (SSCCS dataset) with similar sample size. As mentioned above, the
two datasets were genotyped using different platforms with different sets
of SNPs. As we only included the SNPs that belong to the region with the
same position interval, the number of SNPs in each validation region is not
exactly 1000. Accordingly, mean of PIPs is used as a measure of association
to account for the variable number of markers in the discovery and the
corresponding validation regions. We use α= 0.05 and correct for multiple
comparisons based on the number of regions undergoing the validation.
This yields empirical p value based on 1000 permutations for each
validation region. Since the best performing regions based on the
permutation test are in top 2% of all regions according to the initial run
using the MGS dataset (Supplementary Table 6), we also conducted the
separate piMASS analysis of SSCCS dataset with no permutation test,
followed by an overlap analysis of both datasets based on piMASS results
without permutation test. In detail, top 5% of the best performing regions
based on sum of PIPs were selected. For each such region top 1% of the
best performing SNPs based on PIPs were selected, comprising a table of
SNPs with the highest PIP among regions with the highest sum of PIPs for
each dataset. We checked every SNP in each table if it is within 100,000 bp
distance of SNPs from the other dataset. Those SNPs comprise overlap set
between the two datasets. Next, for each pair in the overlap set we
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checked LD between the SNPs in the pair. If two SNPs were in LD, they
were considered in the consensus set. The larger size of the consensus set
points toward consistency of the piMASS method.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary.

DATA AVAILABILITY
The molecular genetics of schizophrenia (MGS) data and batches 5 and 6 of the
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