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Abstract: Appropriate experimental design and sample preparation are key steps in metabolomics
experiments, highly influencing the biological interpretation of the results. The sample preparation
workflow for plant metabolomics studies includes several steps before metabolite extraction and
analysis. These include the optimization of laboratory procedures, which should be optimized
for different plants and tissues. This is particularly the case for trees, whose tissues are complex
matrices to work with due to the presence of several interferents, such as oleoresins, cellulose. A good
experimental design, tree tissue harvest conditions, and sample preparation are crucial to ensure
consistency and reproducibility of the metadata among datasets. In this review, we discuss the main
challenges when setting up a forest tree metabolomics experiment for mass spectrometry (MS)-based
analysis covering all technical aspects from the biological question formulation and experimental
design to sample processing and metabolite extraction and data acquisition. We also highlight the
importance of forest tree metadata standardization in metabolomics studies.

Keywords: plant metabolomics; forestry; trees; mass spectrometry; metabolite extraction; GC-MS;
LC-MS; metadata standardization; databases

1. Introduction

Metabolomics is an “omics” technology used to obtain comprehensive information on the
metabolome: a diverse pool of low molecular weight molecules (metabolites), present in a cell or
organism, and at a particular physiological or developmental stage [1]. For the past 20 years, the
number of mass spectrometry (MS)-based metabolomics studies in plants has grown exponentially
and plant metabolomics has established itself as a powerful tool to address biological questions related
to plant growth and development and plant responses to environmental perturbations [2,3]. Despite
the continuous advances in MS technology, the coverage of the plant metabolome is a major challenge
in plant metabolomics research mainly due to the high chemical diversity, broad dynamic range
of concentration, and specific cellular compartmentalization of metabolites. In addition, no single
analytical technology can cover the entire plant metabolome, and different extraction techniques
and combinations of complementary analytical technologies are often employed [4]. In general,
preparing a plant sample for a metabolomics study involves the establishment of a good experimental
design, followed by several standard steps for sample preparation, namely: harvest immediately
followed by quenching, aliquot weighing, metabolite extraction, pre-analytical procedures (if required,
e.g., chemical derivatization), and finally, metabolite analysis [2,5–7]. The standardization of these
metabolomics workflows ensures data consistency and allows the reproducibility of the generated data
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and metadata (information about data origins). Although most steps are common to any metabolomics
experiment, the optimization of laboratory procedures is often adopted, according to the requirement
of the sample (species or tissue) under study. This is particularly the case of metabolomics studies on
tree species. Forest tree metabolomics represents additional challenges when compared to other plant
metabolomics studies. These include an experimental design that takes into account the long life cycle
and the genetic variability of forest tree species as well the presence of interferents that can require
additional steps during sample preparation (e.g., additional concentration steps) [8]. In this review,
we highlight the major challenges when setting up an MS-based forest tree metabolomics experiment.
Although this review is focused mainly on forest tree species, the methodology here reviewed can be
applied to other woody species.

2. Experimental Design for Forest Tree Metabolomics

In a plant metabolomics study, after the formulation of the biological question, experimental design
planning is the first crucial step of the metabolomics workflow. The experimental design includes
the complete planning of the experiment, including plant growth conditions and the treatments to
be applied to the plants. In this section, all the critical steps and important decisions for a good
experimental design are discussed.

2.1. Biological Question Formulation

A plant metabolomics experiment starts with the formulation of a good hypothesis (i.e., biological
question) to plan an appropriate experimental design, sample preparation, and statistical strategies
for data analysis. Without a clear biological question, the observed changes can be misinterpreted
or have multiple possible interpretations that would not reveal important information related to the
biological system. Thus, it is absolutely crucial to understand the biological system under study to
not only select the suitable tissue(s) for analysis but also the appropriate controls. Understanding the
biological system will allow the elaboration of an accurate experimental design, and ultimately, to
answer the biological question. It is important to highlight that frequently (and wrongly) experiments
are designed for other “omics” technologies (i.e., transcriptomics, proteomics), and the leftover samples
are later used for metabolomics analysis. This can extensively compromise the entire metabolomics
analysis because the objective of the study might be different, the number of replicates may not be
sufficient, or the sample storage conditions were not ideal, thereby affecting the stability of metabolites
within the sample [9].

Forests represent a crucial driver to achieve the sustainable development goals (SDG) from
Agenda 2030 of the United Nations through the provision of a wide range of ecosystem goods and
services with a direct impact on socio-economic development and environmental balance [10,11]. In
addition to the direct economic benefits provided by tree species, i.e., timber and non-timber products,
gaming and tourism, forests have an immensurable ecological value, being the major determinants for
water, oxygen, carbon, and energy balance and can be seen as a major opportunity to mitigate climate
change effects [12], i.e., continued drought, increased soil and water salinization and acidification, and
intensification of extreme temperatures [13]. In forest tree metabolomics research, most biological
questions are indeed related to the responses towards the acclimation and adaptation to a permanently
changing environment [14–26] as well as to the identification of potentially active components in tree
species of pharmacological, agricultural, environmental, or industrial importance [27–33].

2.2. Experimental Design

The experimental design should ensure that the analytical data derived from the collected
biological material would allow answering the initially proposed biological question through a reliable
statistical analysis. Therefore, the experimental design (Figure 1) typically includes all variables of
the experiment, from the plant growth and treatments (e.g., plant growth conditions, randomization,
replicates, controls), sample preparation conditions (e.g., harvested tissue, quenching method, pool
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material or not, metabolite extraction protocol), and analytical platform (e.g., GC-MS, LC-MS, mass
spectrometry imaging, targeted or untargeted approach) to statistical treatments [7,9,34]. Added to these
factors, all sources of additional variation (e.g., genotype, sample size, tissue selection, developmental
stage, environmental conditions, batch/block effect) should be investigated and minimized to avoid
misleading conclusions [7,9,35]. The experimental design should also take into account the time
frame of the metabolomics experiment. Because metabolites are highly dynamic (in time and space),
a metabolomics study can reflect the steady state (or instant snap-shot) of the metabolism or its
dynamic time-course evaluation [9,36–38]. In plant metabolomics, due to the destructive nature of
the sampling procedure, most conducted studies are transversal (i.e., cross-sectional), where different
samples are used for each time point, whereas in human metabolomics, longitudinal studies are fairly
common [39,40]. Even if the harvesting procedure is not completely destructive, the wounding effect
in plants should be taken into account as it can affect metabolite profiles. Longitudinal studies in plant
metabolomics include the analysis of volatile organic compounds (VOCs) through non-destructive
headspace techniques (further details in Section 3).
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Forest tree experiments are particularly difficult to execute, mainly because of the tree’s long
life cycle and lack of genomic tools [41], which in turn leads to highly costly, and time-consuming
long-term studies. Thus, a rigorously elaborated experimental design can help to control time and
costs and assure that the experiment and respective derived data are reliable and reproducible [42].

2.2.1. Experimental Conditions

The experimental design should clearly define the experimental conditions of the study (i.e.,
plant growth conditions and treatment(s) to be applied). Plants can be grown under controlled
environmental conditions (e.g., growth chambers, nurseries, greenhouses) or in field conditions. From
growth chamber to field conditions, there is a gradual decrease in the level of environmental control and
a gradual increase in its complexity. Therefore, most metabolomics studies are essentially comparative,
i.e., controls (healthy and/or mock treatments in the case of plant–pathogen interactions) vs. treated
samples, and always provided that plants are grown under the same conditions [35]. However, in
the field, plants are subjected to uncontrolled variations in the environment (e.g., variations in light
intensity, temperature, water availability). Despite the plant’s metabolism degree of plasticity acting as
a buffer against sudden fluctuations in the environment, this complex set of variables deeply impact
the plant’s physiology and metabolism [9], which is often the case of forest tree long-term research.
Hence, care must be taken when making comparisons amongst field-grown individuals or even
when extrapolating results or establishing correlations between trees grown under controlled and
uncontrolled (i.e., field) environmental conditions [43].
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In vitro assays are an alternative biotechnological approach to in vivo field studies as it drastically
reduces the time needed for the experiment to be conducted and eliminates environmental related
fluctuations, allowing the manipulation of single variables in a controlled environment, which is
impossible to achieve in field or greenhouse conditions. In vitro cultures have been applied to forest
tree research, namely in the establishment of co-cultures to study plant–pathogen interactions, namely
co-cultures of Pinus pinaster and Bursaphelenchus xylophilus as an alternative biotechnological approach
to study the pine wilt disease [44] or for rapid clonal propagation of Populus spp. [45]. The analysis of
plant–pathogen interactions poses a particular challenge in metabolomics studies due to the difficulty
in discriminating between plant and pathogen. In this case, in vitro cell co-cultures can be regarded
as an alternative dual metabolomics approach to study such metabolite responses in plant–pathogen
interactions. This technique allows discrimination between plant cells and pathogens and can further
be applied to compare the metabolite response to different pathogenic strains [46]. However, this
biotechnological approach should be regarded as a preliminary tool for forest tree research; it is crucial
to assess if these systems reflect the real physiological conditions of the plant to only later extrapolate the
findings to the whole organism [9]. Another approach to study plant–pathogen interactions, without
the need for cell cultures but also allowing the assessment of the spatial distribution of metabolites in
plant and pathogen, is with mass spectrometry imaging [47]. However, this technique has not yet been
applied in forest tree metabolomics research.

2.2.2. Replicates and Randomization

To compensate for quantitative and qualitative variations in metabolomics analyses, biological
replicates are essential for powerful statistical analysis and reliable biological interpretation of the
results. Technical replicates can compensate for protocol or instrumental variations but do not improve
the statistical analysis of the results [9,48]. In plant metabolomics, the minimum acceptable number of
biological replicates should be six [2,49,50]. The biological replicates should be representative of the
population under study. For a stronger and significant statistical analysis, the number of replicates
needed can be established by power analysis determined from the degree of analytical variance within
the populations under study [50]. Statistical power analysis relates sample size, effect size (i.e., the
difference of two group means divided by the pooled standard deviation) and significance level to
the chance of detecting an effect in a dataset, and thus, should be performed before conducting the
experiment as a key step in the experimental design [51,52]. Information for power analysis can be
obtained through pilot studies or extrapolated from the literature [51]. Sample size determination
modules can be found in bioinformatic tools for metabolite data analysis, such as MetaboAnalyst
3.0, based on the Bioconductor R package Sample Size and Power Analysis (SSPA) and using data
from a pilot metabolomic study [52]. However, power analysis is often avoided, and sample size
determination becomes driven by sample availability [51]. In the case of limited amounts of sample and
high biological variation, pooling samples is a common procedure [7,9,38]. However, this information
should be taken into account when performing the data analysis as it may compromise the quality of the
data (e.g., a pool containing an odd sample or individual not grown under the same exact conditions).

Randomization is critical for reducing experimental error and biological variability. If working
under controlled environmental conditions (e.g., growth chamber), plants should be rotated during
the course of the experiment to compensate for variations in light intensity or ventilation that can
ultimately affect metabolism and the reproducibility of the data [7,9,53,54]. If plants are grown in a
greenhouse or field conditions, variation in environmental conditions is likely to be observed. In all
cases, it is crucial to keep a record of all observed changes in the course of the experiment and include
them in the metadata and storage databases to ensure data reusability [49,54]. A common strategy to
compensate for the impossibility of performing randomization (especially when working with a high
number of individuals) is to arrange plants in a block design [9]. In a block design, the individuals are
divided into homogeneous groups (i.e., blocks), and treatments are assigned randomly within the block.
Treatment comparisons are then performed within blocks because the variability within each block is
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lower than the variability between blocks. Additionally, harvest should be performed randomly in
each block to minimize block effect. The use of an appropriate design is particularly important in forest
tree studies because of the long-term nature of the experiments. The variation between blocks (i.e.,
block factors), such as time, operator, or location, can be later included in the analysis. The randomized
complete block design is the standard design pattern because of its simplicity. In this block design, the
same number of individuals from each treatment and/or genotype is randomly allocated per block,
and act as biological replicates. This block design is most effective when the site is relatively uniform;
however, this is rarely the case in forestry studies. To overcome this limitation, other designs, such as
the spatially-balanced complete block design [55] or the incomplete block design [56], that allow for
better control of heterogeneity are becoming widely popular.

3. Sample Preparation for Forest Tree Metabolomics

In metabolomics, as in any analytical science, the sample preparation protocol has a crucial
impact on the obtained analytical data. The workflow includes the harvest of the biological material
and immediate quenching of metabolism and storing prior sample homogenization and metabolite
extraction [2,6,7,34,53,57]. Sample preparation must be meticulously planned to identify potential
sources of experimental variation and errors that might compromise data analysis, re-usability of the
data, or biological interpretation of the results [6]. To obtain a standard protocol, the sample preparation
method should be validated for the plant tissue under study using technical replicate extractions to
determine the method precision and quantitative reproducibility [57]. In this section, the importance
and challenges of performing harvest and quenching of tree material, especially in field conditions, are
discussed, followed by the most common metabolomic workflows in forest tree metabolomics.

3.1. Harvest and Quenching

The precise time and process of sampling, or harvest, is a decisive step in a metabolomics
experiment because it determines the “metabolic snapshot” of the organism to be analyzed, which
directly influences the biological interpretation of the results [6,7,38]. In addition, the harvest should
be performed as quickly as possible to avoid diurnal variations and the loss of metabolites with high
turnover rates [2,6,7,37,50]. When working with forest tree species, samples are, in most cases, collected
in the field and should be properly stored until lab processing. Ideally, biological samples should be
immediately frozen in liquid nitrogen to avoid loss or degradation of biomolecules. However, this
method is practically impossible to apply to samples harvested in natural ecosystems. In these cases,
the best approach is to use silica gel to dehydrate the samples, thus stopping biochemical reactions [58].
Nevertheless, volatile compounds are often difficult to recover. In addition to the sample storage
under field conditions, data relative to the exact geographical location and edaphic–climatic conditions
should be described in as much detail as possible, to provide a more complete characterization of the
provenance [58].

After the harvest, the second step in sample preparation is to instantly quench metabolism, usually
by flash-freeze, using liquid nitrogen (shock freezing). Quenching is a crucial step in metabolomics
workflows to immediately stop the metabolism and avoid further changes occurring in the sample, such
as metabolite degradation or variations in their concentration, chemical, or physical properties [2,6,34].
Other methods include freeze-drying or the use of ice-cold methanol. Despite the risk of lower
extraction reproducibility when working with frozen fresh samples, freeze-drying is a slower process
that can lead to the production of artifacts, and potentially lead to the irreversible adsorption of
metabolites on cell walls and membranes [36,59]. Freeze-drying can be a convenient method when
weighing large sample sets, but it has been reported to reduce extraction yields by 25% [60]. In a
comparative phytohormone quantification study between fresh-frozen and freeze-dried plant material,
namely needles of P. pinaster, leaves of Eucalyptus globulus, and cotyledons of P. pinea, higher recoveries
were obtained when using fresh material [61]. Freeze drying methods enhance lipid extraction by
eliminating all the water, and consequently, generating a more complex matrix making phytohormone
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quantification in the presence of these interferences difficult. The appropriate sample treatment should
always be evaluated according to the plant tissue under study.

In plant metabolomics, quenching is usually followed by homogenization of the sample, typically
using a pestle and mortar or ball mill for plant–cell–wall breakage and sample weighing. These steps
are always performed under liquid nitrogen to prevent tissue from thawing [2,6,7].

3.2. Metabolite Extraction

The choice of a metabolite extraction protocol is extremely important in metabolomics studies
as it can directly affect the metabolite coverage and metabolite concentration. Ideally, a metabolite
extraction protocol aims to (i) efficiently isolate metabolites from the sample in a high-throughput
manner; (ii) be as non-selective as possible to ensure adequate metabolite coverage; (iii) prevent
metabolite loss or degradation; (iv) be reproducible; (v) remove interferents that can affect the analysis;
(vi) be compatible with the chosen analytical technique; and, when necessary, (vii) concentrate low
abundance metabolites before analysis [2,34,59,62]. Typically, a metabolomics experiment follows
two alternative approaches, targeted or untargeted. In targeted metabolomics, a well-defined group
of known annotated metabolites is identified, whereas an untargeted approach aims to provide an
overview of all the measurable analytes in the biological sample, including unknown compounds.
However, it is important to highlight that, due to the vast variety of metabolites present in the plant
metabolome, at different concentration levels and with distinct physical–chemical properties, it is
impossible to extract the whole range of metabolites using a single extraction protocol [2,6,38].

In a metabolomics extraction protocol, several aspects have to be considered, namely the choice of
an appropriate solvent system, solvent solubility, solvent to sample ratio, duration, and temperature of
the extraction [2,5,6,36,63]. The choice of the appropriate solvent depends not only on the metabolite
properties to be extracted but also has to meet the specific requirements of the analytical platform
to be used (e.g., GC-MS, LC-MS). The exception is the use of headspace extraction (e.g., solid-phase
microextraction, SPME) for the extraction of volatile components without the need for solvents [5,38].
For LC-MS, the only main limitation is that the solvent in which the sample is injected must be miscible
and should be similar to the LC mobile phases used. For the typical reverse-phase separations, solvents
used are generally aqueous eluents with 5–50% of an organic solvent (e.g., methanol, acetonitrile) [6].
Moreover, the addition of stable isotopically labeled internal standards to the extraction buffer (e.g.,
15N and 13C labeling strategies) in targeted plant metabolomics approach is an excellent tool (i) to
monitor extraction reproducibility; (ii) to compensate for ionization suppression/enhancement effects,
accuracy, precision, and matrix effects of an analytical method or during method validation; and (iii)
for normalization in data analysis [9,62,64].

3.2.1. GC-MS Metabolite Profiling

In forest tree research, GC coupled to either a time-of-flight MS (GC-TOF-MS) or a fast scanning
quadrupole MS (GC-qMS) have often been employed for high-throughput plant primary metabolite
profiling allowing the measurement of complex mixtures of primary metabolites (e.g., organic
acids, sugars, sugar alcohols, amino acids) in a single extract [8]. GC-TOF-MS shows numerous
advantages over GC-qMS, namely, higher mass accuracy, higher duty cycles, and faster acquisition
rates that ultimately contribute to a better deconvolution of overlapping peaks and higher sample
throughput [2,3,65].

Despite the low number of publications in forest tree metabolomics, when compared to other
omics studies [66], GC-TOF-MS has been the method of choice for the primary metabolite profiling of
forest tree responses to abiotic and biotic stresses [24,25,58,67–69] as well as other plant growth-related
processes [17,26,70–77]. In these forest tree metabolomics studies, as for plant metabolomics in general,
primary metabolites for GC-TOF-MS analysis are commonly extracted using the well-established
chloroform:methanol:water extraction protocol, with minor optimization variations across studies
(e.g., time of extraction, temperature, solvent ratio, or addition order), and further derivatized with
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N-methyl-N-(trimethylsilyl)trifloracetamide (MSTFA), containing a mixture of fatty acid methyl
esters (FAMEs) with different chain length as time standards (i.e., standard for retention time
calibration) [2,34,50,63]. This two-phase solvent system has the advantage of fractionating the
metabolites from a single sample into a polar aqueous phase (methanol:water) and a lipophilic organic
phase (chloroform), which can be further analyzed separately [63].

Additional GC-qMS studies in forest tree species include the profile of the volatile fraction,
namely volatile organic compounds (VOCs) and essential oil (EO). This volatile fraction is mainly
dominated by terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives, and amino acid
derivatives [78]. Despite the similarity in their qualitative chemical composition, the relative amounts
of metabolites found in these two volatile fractions can differ greatly due to the distinct extraction
processes involved [79]. VOCs are commonly collected with headspace techniques (e.g., SPME), while
EOs are obtained exclusively with hydro-, steam- or dry-distillation, or in the case of citrus fruits,
mechanically without heating [80]. EO screening studies are popular among forest tree species, namely
Eucalyptus and Pinus spp., mainly due to the occurrence of EO chemotypes [81–84]. The non-destructive
nature of headspace techniques, such as SPME, allow for time-course evaluation of VOCs emission
and have been widely applied in forest tree research not only for plant chemotype classification but
also for plant–pathogen interactions or plant–insect communication [85,86]. This technique simply
requires the optimization of the type of fiber, exposure time and temperature, and desorption time and
temperature [87].

3.2.2. LC-MS Metabolite Profiling

In forest tree research, LC-MS instruments have also been used for untargeted secondary metabolite
profiling and phytohormone quantification studies. The focus of these studies was related with abiotic
stress responses [19–24,67,88,89]; and to a smaller extent to biotic stress responses [90,91] and plant
growth and developmental processes [77,92,93].

Metabolite extraction for LC-MS untargeted analysis are usually performed using a simple
protocol based on methanol [19] or methanol:water 80:20, v/v [20,91] or 50:50, v/v [90] as extraction
solvents. However, most untargeted secondary metabolite profiling studies in forest tree metabolomics
research are performed in combination with GC-qMS or GC-TOF-MS primary metabolite profiling,
ultimately allowing for more comprehensive coverage of the tree metabolome. In these cases, the
chloroform:methanol:water two-phase solvent system is used, and the polar phase is evaporated
to dryness and used for both GC-MS (after derivatization) and LC-MS metabolite profiling (after
reconstitution in methanol:water) [21,77,88,89]. To take full advantage of the chloroform:methanol:water
two-phase solvent system, the non-polar metabolites (lipophilic fraction) are analyzed by GC-MS after
derivatization, for example, with tertmethyl–butyl–ether (MTBE) and trimethylsulfoniumhydroxide
(TMSH) [23,92].

LC coupled to triple quadrupole-MS (LC-QqQ-MS) has been often employed in method
development to quantify phytohormones in plant tissues [94]. Delatorre and co-workers [61] developed
and validated an LC-QqQ-MS analytical method to quantify 20 phytohormones in forest tree species
tissues, using 2-propanal:water:hydrochloric acid (2:1:0.002 v/v/v) and dichloromethane for a two-phase
solvent system, a protocol originally described by Pan and co-workers [95]. Other metabolite extraction
protocols for phytohormone quantification in forest tree species include a modified version of the
well-established solvent extraction protocol described by Bieleski [96], namely methanol:water:formic
acid (15:4:1, v/v/v) [97], methanol:water (80:20, v/v) [98,99], methanol:water:acetic acid (90:9:1, v/v/v) [16],
or water:diethyl ether:acetic acid [22]. The Bieleski solvent extraction protocol [96] has been used for
the extraction of phytohormones, particularly cytokines [100].

3.3. Pre-Analytical Requirements

In targeted and untargeted metabolomic approaches, the presence of matrix interferents can hinder
the MS-based metabolite analysis by adding further complexity in regards to metabolite ionization
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and interfering molecules that influence the signal response of the metabolites under study. Although
in targeted approaches, the use of stable isotopically labeled internal standards can compensate
for matrix-induced ionization effects, the availability of standards in untargeted approaches can be
very limited. In both cases, metabolite concentration and further sample clean-up steps to remove
interferents might be necessary. Solid-phase extraction (SPE) is the method of choice in these cases [5].
SPE is a simple sample preparation technique based on the removal of analytes from a liquid sample
by retention on a solid sorbent (e.g., silica, alkylated silica), based on the functional group interactions
of the analytes, flowing solvent, and the solid sorbent [5,6,101]. The retained analytes are subsequently
eluted from the sorbent using a solvent or solvent mixture with sufficient elution strength. Because it
involves the use of large amounts of solvents and requires several steps of concentration, this technique
is time-consuming and not high-throughput, resulting in an added risk of losing components during
the process. To improve sample high-throughput and reproducibility, 96-well solid-phase extraction
plates, and robotic SPE-MS systems have been developed and are commercially available [101]. An
SPE step is often included in sample preparation for MS-based phytohormone analysis in forest tree
studies to remove interfering components from the matrix, such as pigments, resinic acids, terpenes,
carotenoids, flavonoids, cellulose, and lipids, and increase the recovery rates of the phytohormones
under study [61,64,99].

4. The Importance of Forest Tree Metadata Standardization

Advances in high-throughput MS-based platforms have been responsible for the generation of
extremely large metabolomics datasets. For a comprehensive understanding of biochemical pathways
and regulatory networks involved in different plant processes and responses, metabolomics datasets
can be further integrated with other “omics” studies (e.g., transcriptomics, proteomics), providing
the data is available in a standardized and reproducible way. Thus, the description of metabolomics
studies should include all the information needed to allow the repetition of the experiment and the
re-usability of the data.

To promote standardization of all stages of a metabolomics analysis (i.e., experimental design,
biological context, chemical analysis, and data processing) and ensure metadata consistency,
in 2007, members of the metabolomics community established the Metabolomics Standard Initiative
(MSI) [102,103]. The MSI aimed at reporting standards and provide a clear description of the biological
system under study and of the metabolomics analysis workflows to allow data to be efficiently applied,
shared, and reused. A decade later, a set of guideline principles known as the FAIR principles (i.e.,
Findable, Accessible, Interoperable, and Re-usable) were also designed to assure good (meta)data
management by data holders and data publishers [104]. ELIXIR, the European infrastructure for
biological data (https://elixir-europe.org), has also brought together several communities (e.g., plant
sciences, metabolomics) with the common interest of dealing with the increasing complexity of
data, ultimately making data easier to find, analyze and share. Challenges currently faced by the
metabolomics community, namely (i) minimum information standards and early data capture; (ii)
global spectral databases; (iii) tools and standards registries; (iv) compound identifier mapping; (v)
omics data integration, and (vi) metabolite identification, have also been reported by ELIXIR in a
dedicated workshop [105]. However, despite these initiatives, the compliance with these reporting
standards still varies greatly across public repositories [106], and data and metadata sharing remain a
critical issue in metabolomics publications [107,108].

Within the field of plant metabolomics, forest tree metabolomics studies present additional
challenges concerning the standardization of metadata. Forest trees are species with long life cycles,
and details of the experimental metadata (e.g., parental original or field growth conditions) are often
not described. To re-use data derived from these studies, the description of the metadata should
include detailed information of the harvested material (e.g., geographical location, growth conditions,
biological growth stages, and phenological parameters) [8]. These parameters might reflect adaptive
traits mediated by epigenetic changes that affect the material under study [109,110]. Thus, as epigenetic
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changes affect the transcriptome, proteome, and ultimately the metabolome, the integration of these
“omics” data strongly depends on the availability of detailed information of the harvested material.
Plant phenotyping has been developed significantly over the past years due to the progress in novel
sensors, automation tools, and quantitative data analysis methods. Yet, the consequent increase of
data generation is still a struggle for the standardization of data acquisition and its re-usability [111].

The urge for metadata standardization for plant phenotyping experiments has been addressed
by community-driven projects, for example, the MIAPPE project (Minimal Information About a
Phenotypic Experiment), the ISA framework (investigation, study, assay) [112,113] or the GnpIS data
repository (genetic and genomic information system) [114]. MIAPPE is available as a checklist of
metadata to adequately describe a plant phenotyping experiment and as software to validate, store, and
disseminate MIAPPE-compliant data (https://www.miappe.org/). In early 2019, MIAPPE version 1.1
was released as an extended version to include woody plants and compatibility with other phenotyping
frameworks (e.g., ISA framework), which represents an important step towards the standardization of
forest tree metadata. By providing curated databases, and in accordance with the FAIR principles,
these platforms allow data and metadata to be easier to find, integrate, and analyze. Due to the amount
of data generated in forest tree studies, dedicated databases or extensions to existing databases have
been developed. Dedicated tree databases (e.g., PlantGenIE, TreeGenes, and Hardwood Genomics
Project) covering mostly genetic data have now the goal of associating phenotypic and environmental
data [115].

Integrated into crop ontology, the woody plant ontology has been established as an additional
platform for the annotation of forest tree metadata [116]. The woody plant ontology adds a set of
definitions to the existing crop ontology to describe specific tree traits (e.g., secondary growth in wood
and cork formation). Studies with forest tree species, particularly in field experiments, can take several
years to develop, and it is crucial to adequately annotate all metadata across the tree’s long life cycles.
Such case studies that use machine-accessible metadata can be found in the literature. One example is
the forest growth measurements from individual Picea abies trees over the course of 109 years [117].
The metadata file describing the reported data is openly available in an ISA-tab format and can be
further used to analyze and validate forest growth.

5. Conclusion

Metabolomics studies are often regarded as the ultimate response of biological systems to genetic
or environmental alterations. Although most MS-based plant metabolomics research is performed on
crop and non-tree model species, in recent years, studies on forest tree species have generated particular
interest, especially after major genomics breakthroughs in forest tree research (e.g., availability of
the Populus trichocarpa reference genome in 2006). In this area, MS-based metabolomics represents
a unique opportunity to explore the forest tree’s adaptation to environmental fluctuations as well
as other economic and ecological relevant developmental processes. However, and as previously
discussed, to successfully obtain significant data from metabolomics analyses, it is crucial to have
a well-planned experimental design and an appropriate sample preparation. Any metabolomics
study should include, in great detail, a clear description of the design of the experiment as well as of
other technical parameters. Despite the struggles, continuous efforts from the metabolomics scientific
community have been made to ensure data and metadata reproducibility between laboratories and to
promote the availability of curated databases and repositories containing high-quality data (including
dedicated woody species platforms).
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