
Cross-Domain Sentence Modeling for
Relevance Transfer with BERT

by

Zeynep Akkalyoncu Yilmaz

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Zeynep Akkalyoncu Yilmaz 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/269021972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Standard bag-of-words term-matching techniques in document retrieval fail to exploit rich
semantic information embedded in the document texts. One promising recent trend in
facilitating context-aware semantic matching has been the development of massively pre-
trained deep transformer models, culminating in BERT as their most popular example
today. In this work, we propose adapting BERT as a neural re-ranker for document re-
trieval to achieve large improvements on news articles. Two fundamental issues arise in
applying BERT to “ad hoc” document retrieval on newswire collections: relevance judg-
ments in existing test collections are provided only at the document level, and documents
often exceed the length that BERT was designed to handle. To overcome these challenges,
we compute and aggregate sentence-level evidence to rank documents. The lack of appro-
priate relevance judgments in test collections is addressed by leveraging sentence-level and
passage-level relevance judgments fortuitously available in collections from other domains
to capture cross-domain notions of relevance. Our experiments demonstrate that models
of relevance can be transferred across domains. By leveraging semantic cues learned across
various domains, we propose a model that achieves state-of-the-art results on three stan-
dard TREC newswire collections. We explore the effects of cross-domain relevance transfer,
and trade-offs between using document and sentence scores for document ranking. We also
present an end-to-end document retrieval system that integrates the open-source Anserini
information retrieval toolkit, discussing the related technical challenges and design deci-
sions.

iii

Acknowledgements

I would like to thank my advisor, Professor Jimmy Lin, for giving me the opportunity
to work on exciting problems and to collaborate with inspiring researchers. Without his
continuing guidance and support, this thesis would not be possible.

I would like to thank the readers of my thesis, Professor Gordon V. Cormack and
Charles L. A. Clarke, for reviewing my work.

I would like to thank Wei Yang, Haotian Zhang and Rodrigo Nogueira for their discus-
sions and insights that contributed greatly to this thesis.

Finally, I would like to thank all the old and new friends who have made my time at
the University of Waterloo an enjoyable experience.

iv

Dedication

This is dedicated to my parents and to my husband, Goktug, for their unwavering love
and support.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Contributions . 4

1.2 Thesis Organization . 5

2 Background and Related Work 6

2.1 Document Retrieval . 6

2.2 Pretrained Language Models . 7

2.2.1 Feature Extraction . 7

2.2.2 Fine-Tuning Approaches . 8

2.3 Machine-Learned Ranking Models . 10

2.3.1 Learning to Rank Methods . 10

2.3.2 Neural Document Retrieval . 11

2.3.3 Comparison of Non-Neural and Neural Methods 15

2.4 Evaluation Metrics . 17

3 Cross-Domain Sentence Modeling for Relevance Transfer 19

3.1 Datasets . 19

vi

3.1.1 Fine-Tuning . 19

3.1.2 Evaluation . 23

3.2 Modeling Relevance with BERT . 23

3.2.1 Relevance Classifier . 24

3.2.2 Input Representation . 24

3.2.3 Fine-Tuning . 25

3.3 Re-ranking with BERT . 26

3.4 Experimental Setup . 27

3.4.1 Training and Inference with BERT 27

3.4.2 End-to-End Document Retrieval . 28

4 Architecture 29

4.1 Anserini . 30

4.2 Main Module . 31

4.3 Integration . 31

4.4 Replicability and Reproducibility . 32

5 Experimental Results 34

5.1 Effect of Training Data . 36

5.2 Number of Sentences . 37

5.3 Comparison to Other Ranking Models . 37

5.4 Per-Query Analysis . 38

5.5 Effect of Length . 41

5.5.1 Query Length . 41

5.5.2 Document Length . 42

5.6 Semantic Matching . 43

6 Conclusion and Future Work 46

References 48

vii

List of Figures

1.1 An example of a query-text pair from the TREC Robust04 collection where
a relevant piece of text does not contain exact query matches. 1

2.1 Architecture combining BERT with an additional output layer for the sen-
tence pair classification task, where E represents the input embedding for
each sentence and Ti the contextual representation of token i. Adapted from
Devlin et al. [19]. 9

2.2 Two types of deep matching architectures: representation-focused (a) and
interaction-focused (b). Adapted from Guo et al. [23]. 11

2.3 Visualization of best AP scores on Robust04 for 108 papers based on non-
neural and neural approaches. Adapted from Yang et al. [68]. 16

3.1 A sample query and relevant tweet pair from the MB dataset. 20

3.2 A sample relevant and non-relevant passage pair for a query from the MB
dataset . 21

3.3 Illustration of BERT input representation adapted from Devlin et al. [19]. . 24

4.1 Architecture of our system featuring tight integration between Python and
the JVM. 29

5.1 Per-query difference in AP between BERT(MS MARCO → MB) and the
BM25+RM3 baseline on Robust04, Core17, and Core18. 39

5.2 Per-query difference in AP between BERT(MS MARCO) and the BM25+RM3
baseline on Robust04, Core17, and Core18. 40

5.3 Attention visualizations of BERT(MS MARCO→ MB) for a sentence with
a high BERT score for the query international art crime. 44

viii

List of Tables

3.1 Statistics about the MB dataset. 20

3.2 Statistics about the MS MARCO dataset. 21

3.3 Statistics about the CAR dataset. 22

5.1 Ranking effectiveness on Robust04. 34

5.2 Ranking effectiveness on Core17. 35

5.3 Ranking effectiveness on Core18. 35

5.4 Average AP with respect to query length on Robust04. 41

5.5 Ranking effectiveness on Robust04 with the shortened MS MARCO and
CAR models indicated with ?. 42

5.6 Retrieval effectiveness on pruned Robust04 which only includes sentences
that do not contain any query terms. 43

ix

Chapter 1

Introduction

Document retrieval refers to the task of generating a ranking of documents from a large
corpus D in response to a query q. In a typical document retrieval pipeline, an inverted
index is constructed in advance from the collection, which often comprises unstructured
text documents, for fast access during retrieval. When the user issues a query, the query
representation is matched against the index, computing a similarity score for each doc-
ument. The top k most relevant documents based on their similarity score are returned
to the user. This procedure may be followed by a subsequent re-ranking stage where the
candidate documents outputted by the previous step are further re-ranked in a way that
maximizes some retrieval metric such as average precision (AP).

Document retrieval systems traditionally rely on bag-of-words term-matching tech-
niques, such as BM25, in their initial stage to judge the relevance of documents in a
corpus. More specifically, the more common terms a document shares with the query,
the more relevant it is deemed to be. As a result, these techniques may fail to detect
documents that do not contain exact query terms, but are nonetheless relevant. For ex-
ample, consider a document that expresses relevant information in a way that cannot be
resolved without external semantic analysis. Figure 1 displays one such query-text pair

Query: international art crime
Text: The thieves demand a ransom of $2.2M for the works and return one of them.

Figure 1.1: An example of a query-text pair from the TREC Robust04 collection where a
relevant piece of text does not contain exact query matches.

1

where terms semantically close to the query need to be identified to establish relevance.
This “vocabulary mismatch” problem represents a long-standing challenge in information
retrieval. To put its significance into context, Zhao et al. [77] show in their paper on term
necessity prediction that, statistically, the average query terms do not appear in as many
as 30% of relevant documents in TREC 3 to 8 “ad hoc” retrieval datasets.

Clearly, the bag-of-words exact matching approach to document retrieval neglects to
exploit rich semantic information embedded in the document texts. To overcome this
shortcoming, a number of models such as Latent Semantic Analysis [17], which map both
queries and documents into multi-dimensional vectors, and measure closeness between the
two based on vector similarity, has been proposed. This innovation has enabled semantic
matching to improve document retrieval by extracting useful semantic signals. With the
advent of neural networks, it has become possible to learn better distributed representa-
tions of words that capture more fine-grained semantic and syntactic information [43, 49].
More recently, massively unsupervised language models that learn context-specific seman-
tic information from copious amounts of data have changed the tide in NLP research (e.g.,
ELMo [50], GPT-2 [53]). These models can be applied to various downstream tasks with
minimal task-specific fine-tuning, highlighting the power of transfer learning from large
pre-trained models. Arguably the most popular example of these deep language repre-
sentation models is the Bidirectional Encoder Representations from Transformers (BERT)
[19]. BERT has achieved state-of-the-art results across a broad range of NLP tasks from
question answering to machine translation.

While BERT has enjoyed widespread adoption within the NLP community, its appli-
cation in information retrieval research has been slower in comparison. Guo et al. [23]
suggest that the lackluster success of earlier deep neural networks in information retrieval
may be owing to the fact that they often do not properly address crucial characteristics
of the “ad hoc” document retrieval task. Specifically, the relevance matching problem
in information retrieval and semantic matching problem in natural language processing
are fundamentally different in that the former depends heavily on exact matching signals,
query term importance and diverse matching requirements. Moving towards transformers
that make heavy use of pretraining, it is still crucial to strike a good balance between exact
and semantic matching in document retrieval. For this reason, we employ both document
scores based on exact matching and semantic relevance scores to determine the relevance
of documents.

In this thesis, we extend our own work [73, 72], presenting a novel way to apply BERT
to “ad hoc” document retrieval on long documents – particularly, newswire articles – with
significant improvements. Following Nogueira et al. [46], we adapt BERT for binary
relevance classification over text to capture notions of relevance. We then deploy the

2

BERT-based re-ranker as part of a multi-stage architecture where an initial list of candidate
documents is retrieved with a standard bag-of-words term-matching technique. The BERT
model is used to compute a relevance score for each constituent sentence, and the candidate
documents are re-ranked by combining sentence scores with the original document scores.

We emphasize that applying BERT to document retrieval on newswire documents is
not trivial due to two main challenges:

• BERT has a maximum input length of 512 tokens, which is insufficient to accommo-
date the overall length of many news articles. To put this into perspective, a typical
TREC Robust04 document has a median length of 679 tokens, and in fact, 66% of
all documents are longer than 512 tokens.

• Most collections provide relevance judgments only at the document level. Therefore,
we only know what documents are relevant for a given query, but not the specific
spans within the document. To further aggravate this issue, a document is considered
relevant as long as some part of it is relevant, and most of the document often has
nothing to do with the query.

We address the abovementioned challenges by proposing two effective innovations:

• Instead of relying solely on document-level relevance judgments, we aggregate sentence-
level evidence to rank documents.

• Since standard newswire collections lack sentence-level judgments to facilitate this
approach, we instead explore leveraging sentence-level or passage-level judgments
that are already available in collections in other domains, such as microblog and
reading comprehension.

To this end, we fine-tune BERT models on these out-of-domain collections to learn
effective models of relevance. Surprisingly, we demonstrate that these models of relevance
can indeed be successfully transferred across domains. It is important to note that the
representational power of neural networks comes at the cost of challenges in interpretabil-
ity. For this reason, we dedicate a portion of this thesis to error analysis experiments in
an attempt to qualify and better understand the cross-domain transfer effects. We also
elaborate on our engineering efforts to ensure reproducibility and replicability in addition
to the technical challenges involved in bridging the worlds of natural language processing
and information retrieval from a software engineering perspective.

3

1.1 Contributions

The main contributions of this thesis can be summarized as follows:

• We present two innovations to successfully apply BERT to “ad hoc” document re-
trieval with large improvements:

– Integrating sentence-level evidence to address the fact that BERT cannot pro-
cess long spans posed by newswire documents

– Exploiting cross-domain models of relevance for collections without sentence- or
passage-level annotations

With the proposed model, we establish state-of-the-art effectiveness on three standard
TREC newswire collections at the time of writing. Our results on Robust04 exceed
the previous highest known score of 0.3686 AP [15] with a non-neural method based
on ensembles, which has stood unchallenged for ten years.

• We explore through various analyses the effects of cross-domain relevance transfer
with BERT as well as the contributions of BM25 and sentence scores to the final
document ranking. We investigate the effect of query and document length on re-
trieval effectiveness with BM25 and BERT, and the reasons behind the significant
improvements introduced with BERT.

• We release an end-to-end pipeline, Birch,1 that applies BERT to document retrieval
over large document collections via integration with the open-source Anserini infor-
mation retrieval toolkit.2 An accompanying Docker image is also included to ensure
that anyone can easily deploy and test our system. We elaborate on the technical
challenges in the integration of NLP and IR capabilities, and the rationale behind
our design decisions.

1https://github.com/castorini/birch
2https://github.com/castorini/anserini

4

https://github.com/castorini/birch
https://github.com/castorini/anserini

1.2 Thesis Organization

The remainder of this thesis is organized in the following order: Chapter 2 reviews related
work and evaluation metrics in document retrieval, pretrained language models and docu-
ment re-ranking models based on machine learning techniques. Chapter 3 introduces the
datasets used for fine-tuning BERT and for evaluating our models, motivates our approach
with detailed information regarding the proposed model, and describes the experimental
setup. Chapter 4 outlines an end-to-end pipeline for document retrieval with BERT by
elaborating on the design decisions and challenges. Chapter 5 presents our results on three
newswire collections—Robust04, Core17 and Core18—and provides further analysis to help
interpret the inner workings of BERT. Chapter 6 concludes the thesis by summarizing the
main contributions and discussing future work.

5

Chapter 2

Background and Related Work

2.1 Document Retrieval

Traditional document retrieval techniques have evolved from the simple Boolean model to
probabilistic models such as the Binary Independence Model (BIM) over time to increase
matching effectiveness. While the BIM performs reasonably well for consistently short text
like titles or abstracts, the development of modern text collections with highly variable
lengths raised the necessity for a model sensitive to both term frequency and document
length [41]. Building on the BIM, Okapi BM25 (commonly dubbed BM25) weighting
was introduced to address the need for such a probabilistic model without introducing
too many additional parameters [28]. BM25 combines inverse document frequency, term
frequency, document length and query term frequency to estimate relevance. Intuitively,
BM25 pays more attention to the rarer terms in a query by increasing their term weight
while dampening the matching signal for words that occur too frequently in a document
with a term saturation mechanism. Term weights are also normalized with respect to the
document length.

In addition to a term weighting scheme, query expansion has also been found to improve
retrieval effectiveness by increasing recall. Unlike manual relevance feedback, pseudo-
relevance feedback allows for automatic local analysis without extended interaction with
the user. RM3 [31] is one such pseudo-relevance feedback mechanism where the original
query is expanded by adding the top terms that appear in the contents of top k most
relevant BM25 documents. While this method still relies on exact matching of query
terms, it partly relieves the problem of synonymy. For instance, a query that contains
the term “assistance” may be augmented with another high-frequency term “support”

6

in pseudo-relevant documents, therefore extending the range of matching. One obvious
danger, however, is that retrieval may be incorrectly biased towards certain terms that
occur frequently in the most relevant documents, but are not directly relevant to the query.
Despite their simplicity, well-tuned BM25+RM3 baselines achieve competitive effectiveness
on TREC collections [34].

The most prominent approach to document retrieval today is to employ these techniques
as the first step in a multi-stage architecture where an initial list of candidate documents
is retrieved with a standard term-matching technique. A more computationally inten-
sive model is then deployed as a re-ranker over the candidate documents to produce a
final ranking. These re-rankers facilitate the architecture to detect and incorporate more
complex relevance signals in the retrieved documents. A panoply of models have been
proposed as re-rankers, including neural models [18] and statistical models based on term
occurrence [35] and document similarity [32, 7].

2.2 Pretrained Language Models

Natural language processing (NLP) tasks have traditionally been addressed with supervised
learning on task-specific datasets. Due to the relatively small size of these datasets, training
deep neural networks in this manner introduces the risk of overfitting on the training data,
and a lack of generalization across different datasets. With the increasing availability of
large corpora, pretrained deep language models have been rapidly gaining traction among
NLP researchers. Language model pretraining has proven extremely effective on many
natural language processing tasks ranging from machine translation [60, 30] to reading
comprehension [39]. The underlying assumption in applying pretrained language models
to downstream NLP tasks is that language modeling inherently captures many facets of
language such as resolving long-term dependencies [36] and hierarchical patterns [22]. In
general, pretrained language models can be applied to downstream tasks in one of two
ways: feature extraction and fine-tuning.

2.2.1 Feature Extraction

To extract features from a pretrained language model, the output layer is removed directly
without any further optimization on the weights. Models based on this approach employ
deep pretrained representations learned with language modeling as additional features in
task-specific architectures. This feature-based approach has the advantage of being easily
incorporated into existing models with significant improvements in performance.

7

Pretrained word embeddings such as word2vec [43], GloVe [49], and fastText [11] rep-
resent the most popular application of widely applicable learned representations in NLP.
Embeddings from Language Models (ELMo) [50] extends traditional word embeddings to
learn context-sensitive features with a deep language model. Therefore, instead of tak-
ing the final layer of a deep LSTM (Long Short-Term Memory) as a word embedding,
ELMo embeddings are learned as a function of all the internal states of a bidirectional
deep LSTM language model. This method is motivated by a thread of work in NLP that
suggests that the higher levels of a deep LSTM capture context [42] and meaning while the
lower levels learn syntactic features well [8]. While traditional pretrained word embeddings
cannot differentiate between homonyms, ELMo can, as it generates different embeddings
for them depending on their context. ELMo embeddings are constructed as a shallow
concatenation of independently trained left-to-right and right-to-left LSTMs. Peters at
al. [50] show that integrating deep contextualized embeddings learned with ELMo into
task-specific architectures significantly improves over the original performance in six NLP
tasks, including question answering on SQuAD [54] and sentiment analysis on the Stanford
Sentiment Treebank (SST-5) [58].

2.2.2 Fine-Tuning Approaches

The fine-tuning approach is inspired by the growing trend of transfer learning from language
models [19]. In this approach, a model architecture is first pretrained with respect to a
language modeling objective, and then applied to downstream NLP tasks by fine-tuning
on external data for the specific task with minimal task-specific parameters. Unlike feature
extraction, the weights of the original model are also optimized while fine-tuning for the
given task. This approach has been shown to greatly boost the performance of many NLP
tasks.

Radford et al. [53] claim that this phenomenon occurs because language models in-
herently capture many NLP tasks without explicit supervision. Therefore, they propose
Generative Pretrained Transformers (GPT-2) to perform zero-shot task transfer on multi-
ple sentence-level tasks from the GLUE benchmark [63] with impressive results. At the core
of GPT-2 lies a multi-layer left-to-right transformer [60] decoder, with each layer consisting
of a multi-head self-attention mechanism and fully connected feed-forward network [52].
The large capacity of the transformer is exploited by pretraining it on the Google BookCor-
pus dataset [78] (800M words) where long contiguous spans of text allow the transformer
to condition on long-range information.

To address the limitation of the unidirectional nature of GPT-2 [53], Bidirectional
Encoder Representations from Transformers (BERT) [19] has introduced a novel way to

8

pretrain bidirectional language models, and has since enjoyed widespread popularity across
the NLP community. Standard language models cannot be conditioned on bidirectional
context as this would cause the model to apply self-attention on the current token in a
multi-layered context. However, BERT enables bidirectional language modeling by condi-
tioning on both left and right context in all layers by employing a new pretraining objective
called “masked language model” (MLM). Conceptually, MLM randomly masks some of the
input tokens, i.e., 15% of tokens in each sequence, at random with the goal of predicting
the masked tokens based only on their left and right context. The final hidden vectors
corresponding to the masked tokens are then fed into a softmax layer over the vocabulary
as in a standard language model. This objective allows the representation to fuse both left
and right context, which is indispensable for token-level tasks such as question answering,
according to the authors. Ablation studies confirm that the bidirectional nature of BERT
is the single most important factor in BERT’s performance. In addition to the novel lan-
guage modeling approach, Devlin et al. [19] also propose a “next sentence prediction” task
for applications that require an understanding of the relationship between two sentences,
such as question answering or language language inference. Essentially, this trains a binary
classifier to determine whether or not one sentence follows another sentence.

Figure 2.1: Architecture combining BERT with an additional output layer for the sentence
pair classification task, where E represents the input embedding for each sentence and Ti
the contextual representation of token i. Adapted from Devlin et al. [19].

9

The underlying architecture of BERT is a multi-layer bidirectional transformer [60]:
The larger BERT model has 24 layers each with 1024 hidden nodes, and 16 self-attention
heads in total. It is pretrained on the union of Google BookCorpus [78] (800M words)
and English Wikipedia (2,500M words). The input representation for BERT is formed
by concatenating the token with segment and position embeddings. Furthermore, the
input may contain a single sentence or a sentence pair separated by the meta-token [SEP],
i.e., separator. Each sequence is prepended with [CLS], corresponding to the “class”
meta-token, whose final hidden state can be used for classification tasks. The words are
represented with WordPiece embeddings [64] with a vocabulary of 30,000 tokens. Originally
proposed for the segmentation problem in Japanese and Korean, the WordPiece model is
used to divide words into small sub-word units in order to handle rare or out-of-vocabulary
words more effectively. Positional embeddings are learned – not hard-coded – for up to
512, which is the maximum input size allowed by BERT.

To fine-tune BERT for classification tasks, a single-layer neural network is added on
top with the class label as the input, and label probabilities are computed with softmax.
The parameters of the additional layer and BERT are fine-tuned jointly to maximize the
log-probability of the correct label. For span-level and token-level prediction tasks, the
final step needs to be modified to account for multiple tokens. Figure 2.1 visualizes the
architecture for fine-tuning BERT for the “sentence pair classification” task that takes two
sentences separated by a [SEP] token as the input.

BERT has been applied to a broad range of NLP tasks from sentence classification to
sequence labeling with remarkable results. Most relevant to the task of document retrieval,
applications of BERT include BERTserini by Yang et al. [69], who integrate BERT with
Anserini for question answering over Wikipedia by fine-tuning BERT on SQuAD, and
Nogueira et al. [46] who adopt BERT for passage re-ranking over MS MARCO.

2.3 Machine-Learned Ranking Models

2.3.1 Learning to Rank Methods

Learning to rank (LTR) methods have arisen in document retrieval to apply supervised
machine learning techniques to automatically learn a ranking model. This trend has started
in response to a growing number of relevance signals, particularly in web search, such as
anchor texts or behavioral log data. In this setup, training samples are extracted from
large amounts of search log data in the form of a list of documents, D and their relevance

10

Figure 2.2: Two types of deep matching architectures: representation-focused (a) and
interaction-focused (b). Adapted from Guo et al. [23].

labels, R, for a number of queries, Q. Unlike traditional ranking models, LTR models
require a good deal of feature engineering, which can be time-consuming and difficult to
generalize.

Existing algorithms for LTR can be categorized into three categories based on their
input representation and loss function: pointwise, pairwise, or listwise. [38] Pointwise algo-
rithms such as McRank [33] approximate the LTR problem as a regression problem where
a relevance score is predicted for each query-document pair. On the other hand, LTR is
framed as a classification problem by pairwise algorithms like RankSVM [27] and Lamb-
daMART [12] with the goal of selecting the more relevant one given a pair of documents.
Listwise algorithms such as ListNet [13] instead optimize the relevance score over the entire
list of documents for a query. Liu [38] claims that listwise LTR approaches often produce
better rankings in practice.

2.3.2 Neural Document Retrieval

With the impressive results achieved by neural networks in many areas such as computer
vision and natural language processing, document retrieval, too, has witnessed a shift from
non-neural methods to neural methods over the last few years. Neural models have espe-
cially been instrumental in facilitating semantic matching in document retrieval. Neural
models developed to address the deep matching problem in document retrieval can be
divided into two broad categories based on their underlying architecture: representation-
based and interaction-based. The high-level differences between these architectures are
illustrated in Figure 2.2.

11

Representation-Based Models

Representation-based approaches first construct a representation from the input vectors
for the query and document with a deep neural network, and then perform matching
between these representations (see Figure 2.2, left). Some representation-based retrieval
models represent words as low-dimensional continuous feature vectors that embody hidden
semantic or syntactic dependencies with word embeddings. Some of the most popular pre-
trained English word embeddings include word2vec [43] trained on Google News, GloVe [49]
on Common Crawl, Wikipedia and Twitter, and fastText [11] on English webcrawl and
Wikipedia. These word embeddings can be learned from scratch for a specific corpus or
pretrained over large corpora and reused with significant improvements over the former op-
tion [59]. There has also been some effort in learning word embeddings to directly capture
relevance matching [74, 21] rather than linguistic features as in word2vec [43] or GloVe [49].
Word embeddings may be used as input to some representation-based retrieval models.

Other representation-based architectures explore alternative ways to represent text for
effective retrieval. DSSM (short for Deep Structured Semantic Models) [25] extends pre-
viously dominant latent semantic models to deep semantic matching for web search by
projecting query and documents into a common low-dimensional space. In order to ac-
commodate a large vocabulary required by the task, the text sequences are mapped into
character-level trigrams with a word hashing layer before computing a similarity matrix
through dot product and softmax layers. While shown effective on a private dataset com-
prised of log files of a commercial search engine, DSSM requires too much training data to
be effective. Moreover, DSSM cannot match synonyms because it is based on the specific
composition of words and not semantic proximity. C-DSSM [57] was proposed as an exten-
sion to DSSM by replacing the multi-layer perceptron with a convolutional layer to devise
semantic vectors for search queries and Web documents. By performing a max pooling
operation to extract local contextual information at the n-gram level, a global vector rep-
resentation is formed from the local features. Shen et al. [57] demonstrate that both local
and global contextual features are necessary for semantic matching for Web search. While
C-DSSM improves over DSSM by exploiting the context of each trigram, it still suffers
from most of the same issues listed above.

Interaction-Based Models

Interaction-based approaches capture local matching signals, and directly compute word-
word similarity between query and document representations (see Figure 2.2, right). In
contrast to more shallow representation-based approaches, this setup allows the deep neural

12

network to learn more complex hierarchical matching patterns across multiple layers. Some
notable examples of these architectures include DRMM [23], KNRM [65] and DUET [45].

DRMM [23], which stands for Deep Relevance Matching Model, maps variable-length lo-
cal interactions of query and document into a fixed-length matching histogram. A feed for-
ward matching network is used to learn hierarchical matching patterns from the histogram
representation, and a matching score is computed for each term. An overall matching score
is obtained by aggregating the scores from each query term with a term gating network.
KNRM (Kernel-based Neural Ranking Model) [65] similarly calculates the word-word sim-
ilarities between query and document embeddings, but converts word-level interactions
into ranking features with a novel kernel pooling technique. Specifically, a feature vector
for each word in the query is constructed from the similarity matrix with k-max pooling.
Ranking features are combined to form a final ranking score through a learning to rank
layer. Unlike DRMM and KNRM, the goal of DUET [45] is to employ both local and dis-
tributed representations, therefore leveraging both exact matching and semantic matching
signals. DUET is composed of two separate deep neural networks that are trained jointly:
one to match the query and the document using a one-hot representation, and another
using learned distributed representations. The former estimates document relevance based
on exact matches of the query terms in the document by computing an interaction matrix
from one-hot encodings. The latter instead performs semantic matching by computing
the element-wise product between the query and document embeddings. Their approach
significantly outperform traditional baselines for web search with lots of click-through logs.

Contextualized Language Models

While the models introduced in Section 2.3.2 successfully leverage semantic information
to varying degrees, they are limited by the size and variability of available training data.
Ideally, these models would be trained on a large number of semantically and syntactically
varied labeled query-document pairs; however, it is impractical to automatically gather a
sufficient number of such training samples at scale without resources only available to large
search companies.

Instead, language models that are pretrained in an unsupervised fashion on massive
unstructured text hold promises for obtaining better query and document representations,
and therefore, achieving unprecedented effectiveness at semantic matching without the need
for more relevance information. Section 2.2 outlines some of the most popular unsupervised
language models that form the basis of effective retrieval architectures. In general, these
language models are deployed as a re-ranker over the initial list of candidate documents
retrieved uusing traditional term-matching techniques described in Section 2.1.

13

Modeling relevance requires an understanding of the relationship between two text
sequences, e.g., the query and the document. Clearly, traditionally language modeling
does not suffice to capture such a relationship. Fortunately, BERT enables such relevance
classification by pre-training a binary “next sentence prediction” task based on its masking
language model approach as discussed in Section 2.2. However, it is still not trivial to apply
BERT to document retrieval because BERT was not designed to handle long spans of text,
such as documents, given a maximum input length of 512 tokens. Partly due to this
inherent challenge, the majority of work on re-ranking with BERT has focused on passage
re-ranking instead of document re-ranking.

Notably, Nogueira et al. [46] proposed to re-rank MS MARCO passages based on a
simple adaptation of BERT to learn a model of relevance, outperforming the previous state
of the art by 27% in MRR@10 (mean reciprocal rank at 10) and replacing the previous
top entry in the leaderboard of the MS MARCO passage retrieval task. Our neural model
is inspired by the BERT re-implementation described in their paper. Padigela et al. [48]
prioritize studying the reasons behind the gains that come with re-ranking MS MARCO
passages with BERT. To investigate re-ranking with BERT, they compare their BERT-
based re-ranker to feature based learning to rank models such as RankSVM [27] and a
number of neural kernel matching models such as KNRM [65] and Conv-KNRM [16], and
conclude that fine-tuning BERT is substantially more effective than either neural model.
They also test a number of hypotheses regarding the behavior of matching with BERT
compared to BM25; specifically, with respect to term frequency and document length.

To our knowledge, Yang et al. [70] are the first to successfully apply BERT to “ad
hoc” document retrieval. They demonstrate that BERT can be fine-tuned to capture rele-
vance matching by following the “next sentence classification” task of BERT on the TREC
Microblog Tracks where document length does not pose an issue. They further propose
overcoming the challenge of long documents by applying inference on each individual sen-
tence and combining the top scores to compute a final document score. Their approach is
motivated by user studies by Zhang et al. [76] which suggest that the most relevant sen-
tence or paragraph in a document provides a good proxy for overall document relevance.
The work of Yang et al. [70] has paved the way for future work that culminated in this
thesis.

More recently, MacAvaney et al. [40] have shifted focus from incorporating BERT as a
re-ranker to using its representation capabilities to improve existing neural architectures.
By computing a relevance matrix between the query and each candidate document at each
layer of a contextualized language model—in particular, ELMo or BERT—sthey report a
high score of NDCG@20 0.5381 on Robust04 by combining CEDR (Contextualized Em-
beddings for Document Ranking) [40] with KNRM [65]. They also propose a joint model

14

that combines the classification mechanism of BERT into existing neural architectures to
help benefit from both deep semantic matching with BERT and relevance matching with
traditional ranking architectures.

A recent arXiv preprint by Qiao et al. [51] also examines the performance and behavior
of BERT when used as a re-ranker for passage ranking on MS MARCO and for document
ranking on the TREC Web Track. Their findings are consistent with those of Nogueira
et al. [46] in that BERT outperforms previous neural models on the passage re-ranking
task on MS MARCO. For “ad hoc” document ranking, they explore using BERT both as
representation-based and interaction-based rankers and in combination with KNRM [65]
and Conv-KNRM [16]. However, they find that their re-ranking TREC Web Track docu-
ments with BERT performs worse than Conv-KNRM and feature-based learning to rank
models trained on user clicks in Bing’s search log.

2.3.3 Comparison of Non-Neural and Neural Methods

Despite growing interest in neural models for document ranking, researchers have recently
raised a concern as to whether or not they have truly contributed to progress [34], at least
in the absence of large amounts of behavioral log data only available to search engine
companies. Some of the models discussed in this section are designed for the web search
task where a variety of other signals are available, such as large amounts of log data and
the webgraph. However, this is not the case for “ad hoc” document retrieval where the
only available data is the document text, which is the main focus of this thesis. The
SIGIR Forum piece by Lin [34] also echoes the general skepticism concerning the empirical
rigor and contributions of machine learning applications in information retrieval. [37, 56]
In particular, Lin et al. [34] lament that comparisons to weak baselines sometimes inflate
the merits of certain neural information retrieval methods.

To rigorously study the current state of document retrieval literature, Yang et al. [68]
recently conducted a thorough meta-analysis of over 100 papers that report results on the
TREC Robust 2004 Track. Their findings are illustrated in Figure 2.3 where the empty
circles correspond to the baselines and filled circles to the best AP scores of each paper.
The solid black line represents the best submitted run at AP 0.333, and the dotted black
line the median TREC run at AP 0.258. The other line is a RM3 baseline run with
default parameters from the Anserini open-source information retrieval toolkit [66, 67] at
AP 0.3903. The untuned RM3 baseline is more effective than ∼60% of all studied papers,
and ∼20% of them report results below the TREC median. More surprisingly, only six
of the papers report AP scores higher than the TREC best, with the highest being by

15

Figure 2.3: Visualization of best AP scores on Robust04 for 108 papers based on non-neural
and neural approaches. Adapted from Yang et al. [68].

Cormack et al. [15] in 2009 at AP 0.3686. Their approach is based on building an ensemble
of multiple TREC runs with reciprocal rank fusion. Among the neural models, the highest
encountered score is by Zamani et al. [75] in 2018 at AP 0.2971. Deviating from the
dominant approach of deploying neural models as re-rankers, Zamani et al. [75] propose
a standalone neural ranking model to learn a latent representation for each query and
document, which is sparse enough to construct an inverted index for the entire collection.
However, their reported result is still much lower than the TREC best and far below the
best reported result of Cormack et al. [15]. Moreover, about half of the neural papers
compare their results to a baseline below the TREC median, which is consistent with the
claims of Lin et al. [34]. Overall, Figure 2.3 exhibits no clear upward trend in terms of AP
on Robust04 from 2005 to 2018.

TREC Common Core 2017 (Core17) [1] and 2018 (Core18) [2] are two of the more
recent document collections that we evaluate our models on, which are not nearly as well-
studied as Robust04 yet. Excluding runs that make use of past labels or require human
intervention, the TREC best run on Core17 is umass baselnrm at AP 0.275 and on Core18
uwmrg at AP 0.276. To our knowledge, Neural Vector Spaces for Unsupervised Information
Retrieval by Van Gysel et al. [24] represents the only major neural model evaluated on
Core17. While their approach has the advantage of not requiring supervised relevance
judgments, their reported results are quite low. Otherwise, evaluation of neural retrieval
methods on both Core17 and Core18 has been limited.

16

2.4 Evaluation Metrics

Comparisons to weak baselines pervade the information retrieval literature [4, 34]. In
this thesis, we make it a priority to systematically compare with competitive baselines to
demonstrate the true merits of our approach. For this reason, we introduce the metrics
that we evaluate our baseline and models with in this section.

Mean Average Precision (MAP)

Precision specifies what fraction of a set of retrieved documents is in fact relevant for a
given query q. By extension, average precision (AP) expresses the average of the precision
values obtained for the set of top k documents for the query. Support that D = {d1, ..., dmj

}
is the set of all relevant documents for a query qj, then AP can be formulated as:

AP =
1

mj

mj∑
k=1

P (Rjk) (2.1)

where Rjk represents the set of top k ranked retrieval results.

The respective AP for each query qj ∈ Q can be aggregated to obtain mean average
precision (MAP) for the overall retrieval effectiveness in the form of an aggregate measure
of quality across all topics:

MAP =

∑|Q|
j=1AP

Q
=

1

Q

|Q|∑
j=1

1

mj

mj∑
k=1

P (Rjk) (2.2)

MAP is known to have especially good discrimination and stability compared to other
evaluation metrics, which makes it the ideal choice for large text collections [41]. It is
hence one of the standard metrics among the TREC community.

Precision at k (P@k)

While MAP factors in precision at all recall levels, certain applications may have a distinctly
different notion for ranking quality. Particularly in the case of web search, the user often
only cares about the results on the first page or two. This restriction essentially requires
measuring precision at fixed low levels of retrieved results, i.e., top k documents – hence
the name for the metric “precision at k”. On the one hand, it eliminates the need for
any estimate of the size of the set of relevant documents because it is only concerned with
the top documents. However, it also produces the least stable results out of all evaluation

17

metrics. Moreover, precision at k does not average well because it is too sensitive to the
total number of relevant documents for a query.

Normalized Discounted Cumulative Gain (NDCG@k)

Cumulative gain (CG) simply computes the sum of relevance labels for all the retrieved
documents, treating the search results as an unordered set. However, since a highly relevant
document is inherently more useful when it appears higher up in the search results, CG
has been extended to discounted cumulative gain (DCG). DCG estimates the relevance
of a document based on its rank among the retrieved documents. The relevance measure
is accumulated from top to bottom, discounting the value of documents at lower ranks.
NDCG at k measures DCG for the top k documents, normalizing by the highest possible
value for a query; therefore, a perfect ranking yields NDCG equals 1.

NDCG is uniquely useful in applications with a non-binary notion of relevance, e.g: a
spectrum of relevance. This makes NDCG comparable across different queries: the NDCG
values for all queries can be averaged to reliably evaluate the effectiveness of a ranking
algorithm for various information needs across a collection. Given a set of queries qj ∈ Q
and relevance judgments Rdj for a document d:

NDCG(Q, k) =
1

|Q|

|Q|∑
j=1

Zkj

k∑
m=1

2Rjm − 1

log2(1 +m)′
(2.3)

where Zkj is the normalization factor.

18

Chapter 3

Cross-Domain Sentence Modeling for
Relevance Transfer

Our model is based on sentence-level relevance modeling and document re-ranking with
BERT. By training BERT as a relevance classifier, we aim to extract valuable semantic
matching signals which can be leveraged to re-rank a list of candidate documents retrieved
with a term-matching technique such as BM25. We also explore applying cross-domain rel-
evance transfer to exploit models of relevance learned on out-of-domain collections, which
is crucial in re-ranking documents that are too long for BERT to directly process. This
chapter introduces the datasets that we use to fine-tune our relevance model and to eval-
uate them on end-to-end document retrieval, and describes the details of our BERT-based
sentence-level relevance classifier and document re-ranker.

3.1 Datasets

3.1.1 Fine-Tuning

In order to model sentence-level relevance with BERT, we need training pairs of queries
and short text, annotated with relevance labels. Fortunately, a number of collections for-
tuitously contain such relevance judgments at the sentence and passage level, which makes
them the ideal choice for training our models. We fine-tune BERT on three such sentence-
and passage-level datasets individually and in combination: TREC Microblog [47], Mi-
croSoft MAchine Reading Comprehension [6] and TREC Complex Answer Retrieval [20].
The details of each dataset are provided below.

19

Query: bbc world service staff cuts
Text: irish times : bbc world service confirms cuts : the bbc world service will shed
around 650 jobs or more
Relevance: 1 (“relevant”)

Figure 3.1: A sample query and relevant tweet pair from the MB dataset.

Type Training Set Validation Set

Number of queries 166 59
Number of tweets 133K 44K

Table 3.1: Statistics about the MB dataset.

TREC Microblog (MB)

The TREC Microblog dataset draws from the Microblog Tracks at TREC from 2011 to
2014, with topics and relevance judgments over tweets. Topics associated with tweets are
treated as queries, and each of the four datasets contains approximately 50 queries. The
nature of this collection differs from newswire documents that we evaluate our models on
in distinct ways: first of all, tweets have much fewer tokens than newswire documents. By
definition, tweets are limited to 280 characters. Furthermore, because queries and tweets in
this dataset are comparable in length, exact matches of query terms occur less frequently
in the tweets than they might in longer documents such as news articles. Therefore,
semantic matching signals may take precedence in improving retrieval effectiveness on
MB. Related to this point, tweets are expressed in a much less formal language than news
articles. Tweets may characteristically contain various abbreviations (partly due to the
aforementioned length constraint), informal conventions such as hashtags or typos; such
informal language may result in term mismatches in the case of exact matching. It may
therefore be helpful to catch other semantic signals with a deep neural network.

We use the MB data1 prepared by Rao et al. [55]. We extract the queries, tweets and
relevance judgments from the dataset, excluding metadata such as query time and URLs
of the tweets. Both queries and tweets are segmented into token sequences. Relevance
judgments in MB are reported on a three-point scale, i.e., (“non-relevant”, “relevant” and

1https://github.com/jinfengr/neural-tweet-search

20

https://github.com/jinfengr/neural-tweet-search

“highly relevant”), however, for the purposes of this work we treat both higher degrees of
relevance as equal [47]. We sample 25% of the data for the validation set, and use the rest
for fine-tuning BERT.

MicroSoft MAchine Reading Comprehension (MS MARCO)

MS MARCO is a large-scale machine reading comprehension and question answering
dataset that is extensively used in the NLP community. MS MARCO [6] features user
queries sampled from Bing’s search logs and passages extracted from web documents. The
dataset is composed of tuples of a query associated with a relevant and non-relevant pas-
sage. On average, each query has one relevant passage. However, some may have no
relevant passage at all as the dataset is constructed from the top 10 passages manually
annotated by human judges. Therefore, some relevant passages might not have been re-
trieved with BM25. MS MARCO can be distinguished from similar datasets by its size and
real-world nature. Similar to MB, MS MARCO is representative of a natural, and noisy,

Type Training Set Validation Set

Number of queries 809K 6.9K
Number of passages 12.M 6.9M

Table 3.2: Statistics about the MS MARCO dataset.

Query: is a little caffeine ok during pregnancy
Relevant Passage: We don’t know a lot about the effects of caffeine during
pregnancy on you and your baby. So it’s best to limit the amount you get each day. If
you’re pregnant, limit caffeine to 200 milligrams each day. This is about the amount
in 1.5 8-ounce cups of coffee or one 12-ounce cup of coffee.
Non-relevant Passage: It is generally safe for pregnant women to eat chocolate
because studies have shown to prove certain benefits of eating chocolate during
pregnancy. However, pregnant women should ensure their caffeine intake is below 200
mg per day.

Figure 3.2: A sample relevant and non-relevant passage pair for a query from the MB
dataset

21

distribution of information needs, unlike other datasets that often contain high-quality text
that may not reflect the use in real life.

Here we focus on the passage-ranking dataset of MS MARCO. Following the settings
in Nogueira et al. [46], we train BERT on approximately 12.8M training samples. The
development set is composed of approximately 6.9K queries, each paired with the top 1000
most relevant passages in the MS MARCO dataset as retrieved with BM25. Similarly,
the evaluation set contains approximately 6.8K queries and their top 1000 passages, but
without the relevance annotations.

TREC Complex Answer Retrieval (CAR)

TREC CAR [20] uses paragraphs extracted from all of the English Wikipedia, except the
abstracts. Each query is formed by concatenating an article title and a section heading,
with all passages under that section considered relevant. The goal of this track is to
automatically collect and condense information for a complex query into a single coherent
summary; the priority is aggregating synthesized information in the form of references,
facts, and opinions. However, CAR is a synthetic dataset in the sense that queries and
documents do not reflect real-world distributions or information needs. Manual annotations
for only the top 5 passages retrieved are provided, meaning some relevant passages may
not be annotated if they rank lower. For this reason, we opt to use automatic annotations
that provide relevance judgments for all possible query-passage pairs.

The dataset has five predefined folds over the queries. Paragraphs corresponding to the
first four folds are used to construct the training set consisting of approximately 3M queries,
and the rest the validation set of around 700K queries. The training pairs are generated
by retrieving the top 10 passages with BM25. A subtle detail to note is that the official
BERT models are pre-trained on the entire Wikipedia dump; therefore, they have also been
trained on documents in the TREC CAR test collection albeit in an unsupervised fashion.
In order to avoid the leak of test data into training, we use the BERT model pre-trained
only on the half of Wikipedia present in CAR training samples [46].

Type Training Set Validation Set

Number of queries 3M 700K
Number of passages 30M 7M

Table 3.3: Statistics about the CAR dataset.

22

3.1.2 Evaluation

We conduct end-to-end document ranking experiments on three TREC newswire collec-
tions: the Robust Track from 2004 (Robust04) [62] and the Common Core Tracks from
2017 and 2018 (Core17 [1] and Core18 [2]).

Robust04

Robust04 draws from the set of documents in TREC Disks 4 and 5, spanning news articles
from Financial Times and LA Times, except the Congressional Record. The collection
comprises 250 topics, with relevance judgments over 500K documents. The goal of the
Robust track is to improve the consistency and robustness of retrieval methods by focusing
“ad hoc” search on poorly performing topics [62]. Notably the distribution of document
lengths in Robust04 is highly skewed, with the majority of documents having fewer than
2K tokens and a couple of documents having more than 10K tokens.

Core17 & Core18

Core17 and Core18 build on the TREC 2017 and 2018 Common Core Tracks, respectively.
The motivation behind these tracks is to build up-to-date test collections based on more
recently created documents. Core17 contains 1.8M articles from the New York Times
Annotated Corpus while Core18 has around 600K articles from the TREC Washington
Post Corpus. Core17 and Core18 have only 50 topics each, which are drawn from the
Robust Track topics. Given their relatively recent release, literature on these collections is
still sparse.

3.2 Modeling Relevance with BERT

We propose modeling sentence-level and passage-level relevance with BERT to capture
semantic signals helpful for relevance prediction. This approach is motivated by the appli-
cation of fine-tuning in NLP where a large transformer model trained for language modeling
can be used for various downstream tasks. In our implementation, we choose BERT as our
base mode. BERT is trained on copious amounts of unsupervised data from the Google
BookCorpus and English Wikipedia with masked language modeling. Although the train-
ing procedure does not involve any explicit objective to extract linguistic features, it has

23

Figure 3.3: Illustration of BERT input representation adapted from Devlin et al. [19].

been shown to implicitly recognize such features as subject-verb agreement and conference
resolution [26, 14], which allows a number of NLP tasks to greatly benefit from features
implicitly encoded in BERT weights.

3.2.1 Relevance Classifier

The core of our model is a BERT-based sentence-level relevance classifier. In other words,
we build a model on top of BERT to predict a relevance score si for a sentence or passage
di given a query q. Because the maximum input length that BERT can handle is 512
tokens, we limit our training data to sentence-level and passage-level datasets. In other
words, di are either tweets drawn from TREC Microblog or passages from MS MARCO
or TREC CAR. Following Nogueira et al. [46], we frame relevance modeling as a binary
classification task. More specifically, we feed query-text pairs into the BERT model with
their respective relevance judgments (i.e., 0 for non-relevant and 1 for relevant). Through
this training process BERT learns to estimate the relevance of an unseen text for a given
query. The details of the input representation to BERT and specifics of fine-tuning BERT
for relevance prediction are discussed at length in the remainder of this chapter.

3.2.2 Input Representation

We form the input to BERT by concatenating the query q and a sentence d into the sequence
[[CLS], q, [SEP], d, [SEP]] . The [SEP] metatoken is used to distinguish between two non-

24

consecutive token sequences in the input, i.e., query and text, and the [CLS] signifies a
special symbol for classification output. Although BERT supports variable length token
sequences, the final input length must be consistent across each batch. Therefore, we pad
each sequence in a mini-batch to the maximum length in the batch.

The complete input embeddings of BERT are comprised of token, segmentation, and
position embeddings. The first is constructed by tokenizing the above sequence with the
proper metatokens in place with the BERT tokenizer. Since BERT was trained based
on WordPiece tokenization, we use the same tokenizer to achieve optimal performance.
WordPiece tokenization may break words into multiple subwords in order to more effi-
ciently deal with out-of-vocabulary words and better represent complex words. During
training, the subwords derived with WordPiece tokenization are reconstructed based on
the training corpus. After tokenization, each token in the input sequence is converted into
token IDs corresponding to the index in BERT’s vocabulary. Tokens that do not exist in
the vocabulary are represented with a special [UNK] token.

The segment embeddings indicate the start and end of each sequence, whether it be a
single sequence or a pair. For relevance classification where we have two texts in the input
sequence, i.e., query and sentence, the segment embeddings corresponding to the tokens of
the first sequence, i.e., the query, are all 0’s, and those for the second sequence, i.e., the
document, are all 1’s. The position embeddings are learned for sequences up to 512 tokens,
and help BERT recognize the relative position of each token in the sequence. The input
representation for a sample short query-sentence pair is shown in Figure 3.3.

3.2.3 Fine-Tuning

A variety of useful deep semantic features are already encoded in pretrained BERT weights.
It is thus possible to fine-tune BERT for a specific downstream task with less data and
time by adding a fully-connected layer on top of the network. Intuitively, the lower layers
of the network have already been trained to capture latent features relevant to the task.

To fine-tune BERT for relevance modeling, we append a single layer neural network to
BERT for classification. This layer consists of K×H randomly initialized neurons where K
is the number of classifier labels and H is the hidden state size. For relevance classification,
we have two labels indicating whether the sentence is relevant or non-relevant for the given
query (K = 2).

The final hidden state corresponding to the first token, i.e., [CLS], provides a H-
dimensional aggregate representation of the input sequence that can be used for classi-
fication. We feed the final hidden state in the model corresponding to [CLS] into the

25

classification layer. The probability that the sentence di is relevant to the query qi is thus
computed with standard softmax:

σ(yi) =
eyi∑
j e

yj
(3.1)

where σ(yi) maps the arbitrary real value yi into a probability distribution. Intuitively,
σ(yi) represents the relevance score for the sentence di. The parameters of BERT and
the additional softmax layer are optimized jointly to maximize the log-probability of the
correct label with cross-entropy loss.

3.3 Re-ranking with BERT

Fine-tuning BERT on relevance judgments of query-text pairs allows us to obtain a model
of relevance so that we can compute sentence-level relevance scores easily on any collection.
However, recall that we train BERT on sentence-level or passage-level datasets so as not to
exceed the maximum input size of BERT. These training datasets come from very different
distributions than the test collections introduced in Chapter 5. In order to predict relevance
on much longer newswire documents, we explore cross-domain relevance transfer by using
models trained on MB, MS MARCO and CAR on newswire collections. Our hypothesis is
that if a neural network with a large capacity such as BERT can capture relevance in one
domain, the model of relevance might successfully transfer to other domains.

To apply cross-domain relevance transfer, we retrieve relevant documents from the
collection to depth 1000 with BM25 and split each document into its constituent sentences
to match the input size of BERT. We then run inference over the sentences with our models
fine-tuned on out-of-domain datasets to compute a score for each sentence. We determine
overall document scores by combining exact and semantic matching signals. Based on
BM25+RM3 document scores we know a ranking of documents based on exact matches
of query terms. Sentence-level scores obtained with BERT reveal other implicit semantic
information not evident to BM25. By combining the two sets of relevance matching signals,
we establish a more diverse notion of relevance, leading to a better ranking of documents.

Therefore, to determine overall document relevance, we combine the top n scores with
the original document score as follows:

sf = α · sdoc + (1− α) ·
n∑

i=1

wi · si (3.2)

26

where sdoc is the original document score and si is the i-th top scoring sentence according
to BERT. In other words, the relevance score of a document comes from the combination
of a document-level term-matching score and relevance evidence contributions from the
top sentences in the document as determined by BERT.

We experiment with the number of top scoring sentences to consider while computing
the overall score, and find that using only the top 3 sentences is often enough. In general,
considering any more does not yield better results. To tune hyperparameters α and the
wi’s in Equation 3.2, we apply five-fold cross-validation over TREC topics. For Robust04,
we follow the five-fold cross-validation settings in Lin [34] over 250 topics. For Core17 and
Core18 we similarly apply five-fold cross validation. We learn parameters α and the wi on
four folds via exhaustive grid search with w1 = 1 and varying α,w2, w3 ∈ [0, 1] with a step
size 0.1, selecting the values that yield the highest AP on the remaining fold.

3.4 Experimental Setup

3.4.1 Training and Inference with BERT

We fine-tune BERTLarge [19] on the datasets introduced earlier in this section: TREC
Microblog, MS MARCO, and TREC CAR. In our implementation we adopt the inter-
face BertForNextSentencePrediction corresponding to BERTLarge from the Hugging-
face transformers (previously known as pytorch-pretrained-bert) library2 as our base
model. The maximum sequence length, i.e., 512 tokens, is used for BERT in all our exper-
iments.

The fine-tuning procedure introduces few new hyperparameters in addition to those
already used in pre-training: batch size, learning rate, and number of training epochs. Due
to the large amount of training data in MS MARCO and TREC CAR, BERT is initially
trained on Google’s TPU’s with a batch size of 32 for 400k iterations. We use Adam [29]
with an initial learning rate of 3 × 10−6, β1 = 0.9 and β2 = 0.999 and L2 decay of 0.01.
Learning rate warmup is applied over the first 10K steps with linear decay of learning rate.
We apply dropout with probability of 0.1 across all layers.

We train all other models using cross-entropy loss for 5 epochs with a batch size of 16.
We conduct all our experiments on NVIDIA Tesla P40 GPUs with PyTorch v1.2.0. We
use the Adam optimizer [29] with an initial learning rate of 1× 10−5, linear learning rate

2https://github.com/huggingface/transformers

27

https://github.com/huggingface/transformers

warmup at a rate of 0.1 and decay of 0.1. We find that applying diminishing learning rates
is especially important in fine-tuning BERT in order to preserve the information encoded
in the original BERT weights and speed up training.

3.4.2 End-to-End Document Retrieval

We retrieve an initial ranking of 1000 documents for each query in Robust04, Core17, and
Core18 using the open-source Anserini information retrieval toolkit based on Lucene 8.
To ensure fairness across all three collections, we use BM25 with RM3 query expansion
with default parameters. Before running inference with BERT to obtain relevance scores,
we preprocess the retrieved documents: first, we clean the documents by stripping any
HTML/XML tags and split each document into its constituent sentences with NLTK’s
Stanford Tokenizer.3 If the length of a sentence with the meta-tokens still exceeds the
maximum input length of BERT, we further segment the spans into fixed sized chunks. In
order to make our results comparable to the baselines and consistent with the literature,
we report retrieval effectiveness in terms of AP, P@20, and NDCG@20.

3https://nlp.stanford.edu/software/tokenizer.shtml

28

https://nlp.stanford.edu/software/tokenizer.shtml

Chapter 4

Architecture

In this chapter, we detail the architecture that allows us to employ the model introduced in
Chapter 3, review each component of the architecture and discuss the design choices behind
their integration. We also touch upon the issue of reproducibility in information retrieval
and our efforts to make our work more reproducible as well as their current limitations.

We apply BERT to document retrieval via integration with the open-source informa-

Query

Results

(Python) (JVM)

Anserini

Inverted Index

Top k candidates

Code Entry Point

Main Module

BERT Re-ranker

Preprocessing

Figure 4.1: Architecture of our system featuring tight integration between Python and the
JVM.

29

tion retrieval toolkit Anserini.1 The architecture of our system, Birch, follows a two-stage
pipeline as shown in Figure 4.1: Anserini is used to retrieve documents from indexed col-
lections with BM25, forming an initial candidate list. Our BERT-based model is deployed
as a re-ranker over the candidate documents to produce a final ranking of documents based
on sentence-level relevance.

4.1 Anserini

Technology transfer between the academic and industrial information retrieval communities
is at times impeded due to a lack of universal set of tools and infrastructure. Most industry
practitioners have adopted Lucene,2 Solr,3 or Elasticsearch4 as the de facto platform in the
development of search applications with the primary objective of scalability. However,
academic systems such as Indri5 and Terrier,6 which prioritize better rankings above all
else with little consideration for operational characteristics, are far more prevalent among
researchers.

Anserini [66] was developed in response to this disconnect to provide a research-focused
information retrieval toolkit on top of the open-source Lucene search library. Anserini facil-
itates efficient full text indexing and search capabilities over large-scale text collections by
providing wrappers and intuitive APIs on top of core Lucene libraries. More importantly,
Anserini makes it possible for researchers and industry practitioners alike to systemati-
cally evaluate their models over standard test collections in a reproducible and comparable
manner.

Related to our work, Anserini can be seamlessly integrated into multi-stage ranking
architectures with large improvements in retrieval effectiveness and low latency as demon-
strated by Nogueira et al. [46] and Yang et al. [69]. Similar to their work, we initially use
Anserini to index our test collections in a multi-threaded manner with Lucene 8.0 (post
commit id 75e36f9). For each test collection, we retrieve an initial ranked list of docu-
ments 1000 for each query with BM25 with RM3 query expansion using default Anserini
parameters.

1http://anserini.io
2https://lucene.apache.org
3https://lucene.apache.org/solr
4https://www.elastic.co
5https://www.lemurproject.org
6http://terrier.org

30

http://anserini.io
https://lucene.apache.org
https://lucene.apache.org/solr
https://www.elastic.co
https://www.lemurproject.org
http://terrier.org

4.2 Main Module

The main Python module lies at the core of our system, encompassing the preprocessing,
training / inference and evaluation components. All the functionalities of our proposed
model discussed in Chapter 3 are implemented in this module in Python using the deep
learning framework PyTorch.7

The preprocessing component of this module consumes the documents retrieved with
Anserini, and converts them into a format that can be used by the main component that
enables training and inference with BERT. On the one hand, the main component can be
used to train BERT as a relevance classifier. This functionality may be used independently
of the overall pipeline to fine-tune BERT on new collections. On the other hand, we
can run inference over the output of the preprocessing module with previously trained
models, producing a list of sentence relevance scores. This component also serves as a
re-ranker where sentence and BM25 document scores are interpolated in order to compute
an overall relevance score for each candidate document. The evaluation component uses
the trec eval tool to assess the retrieval effectiveness of our system.

4.3 Integration

Our two-stage pipeline marries NLP and IR capabilities to implement a document retrieval
system that successfully leverages semantic cues in documents. For an effective integration,
we need to address the the technical challenge of connecting the two components that have
fundamentally different infrastructural requirements. In this section we discuss the design
choices in bridging the worlds of NLP and IR from a software engineering viewpoint.

Anserini, which is responsible for indexing and retrieval in our system, runs on the Java
Virtual Machine (JVM) as it is mostly implemented in Java or provides Python wrappers
on Java. However, our deep learning framework of choice PyTorch, similar to alternatives
such as TensorFlow,8 are implemented in Python with a C++ backend.

There exist two immediate solutions to connecting Python and the JVM. “Loosely-
coupled” integration approaches involve using an intermediary medium between Python
and the JVM. For example, we may pass text files between the two in order to facilitate
communication without direct interaction. However, this is not an efficient solution as

7https://pytorch.org
8https://www.tensorflow.org

31

https://pytorch.org
https://www.tensorflow.org

it requires writing/reading potentially large files to/from disk, not to mention the mem-
ory requirements. Furthermore, this approach requires diligent monitoring to ensure that
changing file formats and APIs do not break code. Integration via REST APIs is plagued
with similar issues as passing intermediate text files. Specifically, it may require frequent
HTTP calls, thus introducing significant overhead. Additionally, imperfect solutions for en-
forcing API contracts risk stability of the system. Ultimately, neither approach is suitable
for rapid experimentation in a research environment.

Therefore, we explore ways to achieve “tightly-coupled” integration. One solution is
to adopt the Java Virtual Machine (JVM) as the primary code entry point, and connect
to PyTorch’s C++ backend via the Java Native Interface (JNI). However, this would result
in two separate code paths (JVM to C++ for execution and Python to C++ for model
development), leading to maintainability issues similar to those mentioned with regard to
REST APis.

For this reason, we finally chose Python as our primary development environment,
integrating Anserini using the Pyjnius Python library9 for accessing Java classes. Pyjnius
was originally developed to facilitate Android development in Python, and allows Python
code to directly manipulate Java classes and objects. Thus, our system supports Python as
the main development language (and code entry point, as shown in Figure 4.1), connecting
to the JVM to access retrieval capabilities of Anserini.

4.4 Replicability and Reproducibility

Over the last decade, it has become increasingly challenging to verify reported results
and compare various performance metrics due to growing number of information retrieval
systems both in academia and the industry. Unlike some fields of computer science where
it is practical to manually corroborate findings or visually inspect results, the amount and
type of data involved in document retrieval deems this approach infeasible. This challenge
has prompted one of the largest IR conferences in the world, SIGIR, to issue a task force to
determine guidelines to establish repeatability, replicability, and reproducibility principles
in IR projects.10

9https://pyjnius.readthedocs.io
10http://sigir.org/wp-content/uploads/2018/07/p004.pdf

32

https://pyjnius.readthedocs.io
http://sigir.org/wp-content/uploads/2018/07/p004.pdf

The first dimension of this movement, repeatability, emphasises a researcher’s ability to
reliably repeat her own runs. The path to this goal is through rigorous logging, good data
management practices and consistent use of virtual environments. We do not delve further
into the details of repeatability as the practices we follow are universal to all research
endeavors.

The second dimension, replicability, highlights the ability of an independent group
to obtain the same results using the researcher’s original artifacts. We strive to make our
work replicable by building a Docker image to accompany our system that allows anyone to
deploy and test our system on any operating system easily. By adhering to the requirements
defined in the SIGIR Open-Source IR Replicability Challenge (OSIRRC), we ensure that
our system can seamlessly work with their evaluation infrastructure in the future. The
OSIRRC jig11 needs to be set up first to run the commands on Docker hub. The OSIRRC
Docker container contract includes three “hooks” for interacting with the system: the init
hook has to be called first, whose purpose is to run any preparatory steps for the retrieval
run including downloading and compiling the source code, downloading pre-built artifacts
such as JAR files and other external resources such as pretrained models. In our case, we
pull the source code, data and pretrained models from Google Cloud Storage buckets; build
Anserini with Maven, and the trec eval tool. Next the index hook is called to, as the
name indicates, build the necessary indexes. Finally, the search hook performs multiple
ad-hoc retrieval runs in a row. Since the GPU hooks necessary for inference with BERT
have not been implemented yet, search relies on pre-computed sentence scores instead of
obtaining them from scratch. Each of the hook scripts accepts a JSON file that defines the
various arguments for the respective script such as path to the relevance judgments file.

Finally, the third dimension, reproducibility, refers to the the ability of an independent
group of researchers to implement the author’s proposed artifacts from scratch with the
same results. This final goal is indeed the hardest to achieve; as a matter of fact, it may even
be impossible in certain cases due to non-determinism. Unfortunately, we found this to be
true with some aspects of our work with BERT as well. For example, the fine-tuning and
inference processes described in Chapter 3 produces slightly different sentence scores (i.e.,
third decimal) unless they are performed on the same GPU. To further aggravate this issue,
these small differences add up over floating point operations, leading to as much as a 0.5
point difference in AP. We try to relieve this issue by releasing our tuned hyperparameters
which help reproduce the same results despite minor differences in sentence scores, and
by reporting results for runs on the same GPU. We intend to study this issue further and
come up with a systematic solution in future work.

11https://github.com/osirrc/jig

33

https://github.com/osirrc/jig

Chapter 5

Experimental Results

Tables 5.1, 5.2, and 5.3 display our main results on Robust04, Core17 and Core18. The
top row (BM25+RM3) corresponds to the BM25 runs with RM3 query expansion using
default Anserini parameters. Although higher scores could be obtained on Robust04 with
tuned parameters, we present untuned runs for the sake of fairness as no careful tuning
has been performed for Core17 or Core18. The remaining five blocks show the retrieval

Model MAP P@20 NDCG@20

BM25+RM3 0.2903 0.3821 0.4407

1S: BERT(MB) 0.3408† 0.4335† 0.4900†

2S: BERT(MB) 0.3435† 0.4386† 0.4964†

3S: BERT(MB) 0.3434† 0.4422† 0.4998†

1S: BERT(CAR) 0.3025† 0.3970† 0.4509
2S: BERT(CAR) 0.3025† 0.3970† 0.4509
3S: BERT(CAR) 0.3025† 0.3970† 0.4509

1S: BERT(MS MARCO) 0.3028† 0.3964† 0.4512
2S: BERT(MS MARCO) 0.3028† 0.3964† 0.4512
3S: BERT(MS MARCO) 0.3028† 0.3964† 0.4512

1S: BERT(CAR→MB) 0.3476† 0.4380† 0.4988†

2S: BERT(CAR→MB) 0.3470† 0.4400† 0.5015†

3S: BERT(CAR→MB) 0.3466† 0.4398† 0.5014†

1S: BERT(MS MARCO→MB) 0.3676† 0.4610† 0.5239†

2S: BERT(MS MARCO→MB) 0.3697† 0.4657† 0.5324†

3S: BERT(MS MARCO→MB) 0.3691† 0.4669† 0.5325†

Table 5.1: Ranking effectiveness on Robust04.

34

Model MAP P@20 NDCG@20

BM25+RM3 0.2823 0.5500 0.4467

1S: BERT(MB) 0.3091† 0.5620 0.4628
2S: BERT(MB) 0.3137† 0.5770 0.4781
3S: BERT(MB) 0.3154† 0.5880 0.4852†

1S: BERT(CAR) 0.2814† 0.5500 0.4470
2S: BERT(CAR) 0.2814† 0.5500 0.4470
3S: BERT(CAR) 0.2814† 0.5500 0.4470

1S: BERT(MS MARCO) 0.2817† 0.5500 0.4468
2S: BERT(MS MARCO) 0.2817† 0.5500 0.4468
3S: BERT(MS MARCO) 0.2817† 0.5500 0.4468

1S: BERT(CAR→MB) 0.3103† 0.5830 0.4758
2S: BERT(CAR→MB) 0.3140† 0.5830 0.4817†

3S: BERT(CAR→MB) 0.3143† 0.5830 0.4807

1S: BERT(MS MARCO→MB) 0.3292† 0.6080† 0.5061†

2S: BERT(MS MARCO→MB) 0.3323† 0.6170† 0.5092†

3S: BERT(MS MARCO→MB) 0.3314† 0.6200† 0.5070†

Table 5.2: Ranking effectiveness on Core17.

Model MAP P@20 NDCG@20

BM25+RM3 0.3135 0.4700 0.4604

1S: BERT(MB) 0.3393† 0.4930 0.4848†

2S: BERT(MB) 0.3421† 0.4910 0.4857†

3S: BERT(MB) 0.3419† 0.4950† 0.4878†

1S: BERT(CAR) 0.3120 0.4680 0.4586
2S: BERT(CAR) 0.3116 0.4670 0.4585
3S: BERT(CAR) 0.3113 0.4670 0.4584

1S: BERT(MS MARCO) 0.3121 0.4670 0.4594
2S: BERT(MS MARCO) 0.3121 0.4670 0.4594
3S: BERT(MS MARCO) 0.3121 0.4670 0.4594

1S: BERT(CAR→MB) 0.3385† 0.4860 0.4785
2S: BERT(CAR→MB) 0.3386† 0.4810 0.4755
3S: BERT(CAR→MB) 0.3382† 0.4830 0.4731

1S: BERT(MS MARCO→MB) 0.3486† 0.4920 0.4953†

2S: BERT(MS MARCO→MB) 0.3496† 0.4830 0.4899†

3S: BERT(MS MARCO→MB) 0.3522† 0.4850 0.4899†

Table 5.3: Ranking effectiveness on Core18.

35

effectiveness of our models trained as described in Chapter 3. The models are labeled to
reflect the fine-tuning procedure where the datasets that BERT was trained on are listed
in order inside parentheses. For example, MS MARCO → MB refers to a model that
was first fine-tuned on MS MARCO and then on MB. The nS preceding the model name
indicates that the top n sentences in each document are interpolated to compute an overall
document score. The main result tables also highlight statistically significant results based
on paired t-tests compared to the BM25+RM3 baseline with a †. We report significance at
the p < 0.01 level, with appropriate Bonferroni corrections for multiple hypothesis testing.

5.1 Effect of Training Data

By fine-tuning BERT on three different datasets alone and in combination, we study the
effect of training data on the power of our learned relevance matching model. As seen in
Tables 5.1, 5.2, and 5.3, the particular source of relevance judgments that we train BERT
on substantially influences retrieval effectiveness across all three test collections.

First of all, we find that fine-tuning BERT on MB alone, i.e., BERT(MB), significantly
outperforms the BM25+RM3 baseline for all metrics on Robust04. We also observe signif-
icant increases in AP on Core17 and Core18, as well as in P@20 and NDCG@20 in some
cases. These results confirm that relevance models learned from tweets can be success-
fully transferred to news articles in spite of the considerable differences in domain. This
surprising finding may be attributed to the relevance matching power enabled with deep
semantic information learned by BERT.

Contrary to the large gains brought by fine-tuning on MB, fine-tuning on CAR or
MS MARCO alone results in marginal gains over the baseline on Robust04. Re-ranking
with these models in fact hurts effectiveness on Core17 and Core18 for most metrics.
The synthetic nature of CAR data especially does not appear to be useful for relevance
modeling on newswire collections. For instance, using BERT(CAR) gives 0.3120 AP on
Core18 compared to the 0.3135 AP of the baseline, which means that the model actually
fails to score relevant sentences highly. As the 2S and 3S results for the same model
show, the effectiveness on Core18 in fact progressively degrades the more sentences are
considered in final score aggregation. Intuitively, these results indicate that using these
models incorrectly disrupts the better order imposed by the baseline.

Results for BERT(MS MARCO) are more surprising since the web passages in the MS
MARCO dataset are “closer” to the news articles in our test collections than tweets in
MB are. Given the proximity of the domains, it would be reasonable to expect relevance

36

transfer between MS MARCO and newswire collections to be more effective. However, our
results reveal that this is not necessarily the case, and fine-tuning on MS MARCO alone
is far less effective for relevance transfer than fine-tuning on MB alone.

Although fine-tuning on only CAR or MS MARCO does not yield large improvements,
we actually obtain considerably higher results by fine-tuning these models further on MB.
With BERT(CAR→ MB) we achieve effectiveness that is slightly better than fine-tuning
on MB alone in some cases. We hypothesize that CAR might have a similar effect to
language pre-training in that it does not directly apply to the downstream document
retrieval task, but provides a better representation that can benefit from fine-tuning on
MB. More surprisingly, fine-tuning on MS MARCO first and then on MB represents our
best model, i.e., BERT(MS MARCO → MB), as shown in the final block of the table.
This model is able to exploit data from both MS MARCO and MB, with a score that is
higher than fine-tuning on each dataset alone.

5.2 Number of Sentences

We consider up to three top scoring sentences in each document to re-rank documents.
Our main results suggest that the top scoring sentence by itself is often a good indicator of
overall document relevance; in fact we achieve the best AP in about half of the experiments
by only considering the most relevant sentence of the document. This finding is consistent
with the results of Zhang et al. [76] who found through user studies that the most relevant
sentence or paragraph in a document provides a reliable proxy for document relevance.

Considering the next most relevant sentence in addition to the top sentence yields a
noticeable increase in some of the experiments, such as BERT(MS MARCO → MB) on
Robust04 and Core18. However, we find that adding a third in fact causes effectiveness to
drop in some cases. Preliminary experiments show that, in general, looking beyond the top
three sentence does not help effectiveness. These results suggest that document ranking
may be distilled into relevance prediction primarily at the sentence level.

5.3 Comparison to Other Ranking Models

In this section we assess our results in the broader context of document ranking literature.
The meta-analysis1 of over 100 papers up until 2019 by Yang et al. [68] currently provides

1https://github.com/lintool/robust04-analysis

37

https://github.com/lintool/robust04-analysis

the most thorough overview of related work on Robust04. Following the same cross-
validation settings as in this thesis to re-rank a strong BM25 baseline, they report the
most effective neural model to be DRMM [23] at 0.3152 AP and 0.4718 NDCG@20. In
comparison, with our best model BERT(MS MARCO → MB) we report the highest AP
that we are aware of on Robust04 at 0.3697. Furthermore, our results also exceed the
highest known score of 0.3686, which is a non-neural method based on ensembles [15].

More recently, MacAvaney et al. [40] reported a high score of 0.5381 NDCG@20 on Ro-
bust04 by integrating contextualized word embeddings into existing neural ranking models.
Our best NDCG@20 on Robust04 at 0.5325 approaches their results with CEDR-KNRM
even though we optimize for AP instead of NDCG@20; they do not report AP. Further-
more, since we are only using Robust04 data for hyperparameter tuning in Eq (3.2), and
not for fine-tuning BERT itself, it is less likely that we are overfitting.

Our best model also achieves a higher AP on Core17 than the best TREC submission
that does not make use of past labels or human intervention (umass baselnrm, 0.275
AP) [1]. Under similar conditions, we beat every TREC submission in Core18 as well
(with the best run being uwmrg, 0.276 AP) [2]. Core17 and Core18 are relatively new
and thus have yet to receive much attention from researchers, but to our knowledge, these
figures represent the state of the art.

5.4 Per-Query Analysis

Our results in Tables 5.1, 5.2, and 5.3 serve as an overview of the effect of training data
on cross-domain relevance transfer. However, they do not reveal much with respect to
the particular strengths and weaknesses of each model compared to the baseline. To gain
further insight into the characteristics of our models, we analyze the per-query retrieval
effectiveness of BERT(MS MARCO) and BERT(MS MARCO → MB) compared to the
baseline on Robust04, Core17 and Core18. We leave a detailed analysis of our other
models for future work.

Figure 5.1 plots the change in AP per query between BERT(MS MARCO → MB)
and the baseline sorted in descending order. BERT(MS MARCO→ MB) performs better
than the baseline for 83%, 88% and 84% of the queries on Robust04, Core17 and Core18
respectively, highlighting the usefulness of relevance signals learned from MS MARCO and
MB with BERT. One of the best performing queries across all three collections is human

stampede while one of the worst is flavr savr tomato. For the query human stampede,
highly ranked documents contain many occurrences of “kill” and “die” as well as references

38

to events where stampedes take place, such as “protests” and “demonstrations”, all of
which seem to help with semantic matching. However, manual inspection of top scoring
sentences for flavr savr tomato show that our model matches terms semantically close
to “tomato” but not relevant to the query phrase itself while the BM25+RM3 baseline
looks for direct query matches, therefore ranking documents correctly.

Repeating the same analysis for our model BERT(MS MARCO), we present the results
in Figure 5.2. This model outperforms the baseline for 53%, 80% and 44% of the Robust04,
Core17 and Core18 queries respectively. Not only does this model perform less accu-
rately for much fewer queries, but it is also less stable than BERT(MS MARCO → MB).

Figure 5.1: Per-query difference in AP between BERT(MS MARCO → MB) and the
BM25+RM3 baseline on Robust04, Core17, and Core18.

39

Figure 5.2: Per-query difference in AP between BERT(MS MARCO) and the BM25+RM3
baseline on Robust04, Core17, and Core18.

BERT(MS MARCO) does not seem to be able to match helpful terms as well on Robust04
or Core18; the top sentences as judged by this model are mostly irrelevant for even the
best performing queries on Robust04 and Core18. It also appears to favor shorter sen-
tences unlike BERT(MS MARCO→ MB), which successfully matches multiple interesting
terms in longer sentences. However, BERT(MS MARCO) recognizes some relevant terms
for the best performing query automobile recalls on Core17, such as “tires”, in longer
sentences.

40

5.5 Effect of Length

5.5.1 Query Length

To investigate the ability of BERT to exploit context-aware representations of the queries,
we study the trend of effectiveness across increasing query lengths on Robust04. We
conjecture that longer queries would give our models richer context to work with, therefore
increasing retrieval effectiveness. To this end, we categorize the 250 titles from the Robust
Track by the number of tokens (excluding stopwords), and calculate the average AP per
query length, i.e., from 1 to 4. The majority of the queries (54%) are composed of three
tokens, and only a small fraction (10%) have either only a single token or four tokens. This
approach is somewhat limited by the narrow range of query lengths, but still gives insight
into the effect of query length on each model’s effectiveness.

The average AP per query length for each model and the number of titles in each
category is shown in Table 5.4. We only report the best results for each model considering
any number of top sentences. The average AP for the BM25+RM3 baseline drops by
29% from a single token query to a query with four tokens, indicating that term-matching
is more effective for fewer number of terms. Furthermore, the improvements introduced
by our models follow a similar pattern to when they are evaluated over all queries as
shown in Table 5.1, with BERT(MS MARCO → MB) being the best model across all
query lengths. Similar to the baseline, BERT(CAR) and BERT(MS MARCO) experience
a gradual decline in AP as the query length increases from 1 to 4, leading to an overall
29% decrease in both. For some other models, the decrease in AP reaches a minimum at
query length 3. Furthermore, the effectiveness of the best models BERT(CAR → MB)

Query Length

Model 1 (11) 2 (90) 3 (135) 4 (14)

BM25+RM3 0.3889 0.2977 0.2789 0.2750

BERT(MB) 0.4145† 0.3589† 0.3269† 0.3470†

BERT(CAR) 0.3978 0.3107† 0.2912† 0.2836

BERT(MS MARCO) 0.3997 0.3111† 0.2913† 0.2837

BERT(CAR→MB) 0.4125 0.3600† 0.3323† 0.3630†

BERT(MS MARCO→MB) 0.4250† 0.3865† 0.3505† 0.4035†

Table 5.4: Average AP with respect to query length on Robust04.

41

and BERT(MS MARCO → MB) degrade much less in comparison, at only 12% and 5%
respectively, showing that they are indeed able to use contextualized query representations
most effectively.

Note that all BERT-based models outperform the baseline across all queries. While
the gains introduced by BERT are statistically significant for query length 2 and 3 for all
models, the difference for single word queries is only significant for BERT(MB). However,
it may not be possible to draw generalizable conclusions from this observation due to the
small sample size for query length 1. It might be helpful to manually inspect rankings for
each query length or to use a different averaging technique less sensitive to sample size in
order to better reason about this observation; however, we leave this for future work.

5.5.2 Document Length

It is interesting to note that fine-tuning on MS MARCO or CAR alone results in marginal
improvements over the baseline, if any, as shown in the second and third blocks of Table
5.1. Considering any number of top scoring sentences, both our models BERT(CAR) and
BERT(MS MARCO) outperform the BM25+RM3 baseline by only 0.012 AP on Robust04
with similar gains in P@20 and NDCG@20. Although still statistically significant, these
improvements are much lower than those gained with fine-tuning on MB (0.05 AP). More-
over, both models in fact perform worse than or same as the baseline on both Core17 and
Core18.

We conjecture that this may be due to the length mismatch between the training and
evaluation text lengths. After splitting documents into chunks that fit the maximum input

Robust04

Model AP P@20 NDCG@20

BERT(MB) 0.3435† 0.4386† 0.4964†

BERT(CAR) 0.3025† 0.3970† 0.4509

BERT(CAR?) 0.3030† 0.3980† 0.4520

BERT(MS MARCO) 0.3028† 0.3964† 0.4512

BERT(MS MARCO?) 0.3300† 0.4309† 0.4906†

BERT(MS MARCO→MB) 0.3697† 0.4657† 0.5324†

Table 5.5: Ranking effectiveness on Robust04 with the shortened MS MARCO and CAR
models indicated with ?.

42

Pruned Robust04

Model AP P@20 NDCG@20

BM25+RM3 0.2903 0.3821 0.4407

2S: BERT(MB) 0.3031† 0.4014† 0.4580†

1S: BERT(CAR) 0.2959 0.3936 0.4480

1S: BERT(MS MARCO) 0.2962 0.3936 0.4483

1S: BERT(CAR→MB) 0.3037† 0.3998† 0.4527

2S: BERT(MS MARCO→MB) 0.3101† 0.4102† 0.4639†

Table 5.6: Retrieval effectiveness on pruned Robust04 which only includes sentences that
do not contain any query terms.

that BERT can handle, the average number of tokens in Robust04, Core17 and Core17
sentences is 19, which is fairly close to the the average number of tokens in tweets, i.e.,
15. However, MS MARCO (56 tokens) and CAR (60 tokens) passages are much longer.
It is possible that the difference in document length may be causing issues with relevance
transfer across domains.

To validate this hypothesis, we divide MS MARCO and CAR passages into chunks
the same size as Robust04 sentences, and train BERT for relevance prediction. For each
condition, we re-tune the weights in Equation 3.2 to maximize AP on the development
fold. We refer to these new models as BERT(CAR?) and BERT(MS MARCO?). The
ranking effectiveness of BERT(CAR?) and BERT(MS MARCO?) is shown in Table 5.5
along with the original models for comparison. For BERT(CAR?), AP only increases by
0.005 upon fine-tuning on the shortened data, and is still not comparable to BERT(MB).
However, the change in document length results in an increase of almost 0.03 AP for
BERT(MS MARCO?) (2S), thus approaching BERT(MB) in all metrics. From these find-
ings we infer that while comparable document length is an important consideration for
cross-domain relevance transfer, there may also be other factors at play that need to be
investigated.

5.6 Semantic Matching

To isolate the contribution of BERT, we filter sentences in Robust04 that do not contain
any of the query terms. This essentially eliminates the impact of exact matching on
the sentence relevance scores, allowing us to verify whether BERT actually successfully

43

Figure 5.3: Attention visualizations of BERT(MS MARCO → MB) for a sentence with a
high BERT score for the query international art crime.

44

leverages semantic cues in the documents. Table 5.6 displays the retrieval effectiveness of
all models on the “pruned” Robust04 dataset. Similar to Table 5.4 we only report the
best results for each model; the number of top sentences used by each model is also stated
explicitly.

As expected, filtering Robust04 sentences leads to a decrease in all metrics across all
models, which confirms that exact matching signals are still valuable in relevance predic-
tions over long documents. However, notice that the all models still perform better than the
baseline; in other words, they indeed successfully perform semantic matching with notable
gains. The improvements over the baseline follow the same trend as the results in Table 5.1
for all models. While BERT(CAR) and BERT(MS MARCO) yield minor improvements
over the baseline when sentences that contain exact query matches are removed, the best
performing model BERT(MS MARCO→ MB) still significantly outperforms the baseline.
Furthermore, the drop in AP caused by filtering sentences is also the highest for the best
performing model, indicating that this model is able to exploit both exact and semantic
matching signals. The overall effectiveness of this model on the original Robust04 dataset
may be owing to the joint relevance matching power demonstrated in this experiment.

To further investigate the semantic matching power of BERT, we visualize the at-
tention of our models at different layers. Having been pretrained on massive amounts
of data for language modeling, we expect BERT to capture various semantic relation-
ships helpful for relevance prediction. Figure 5.3 visualizes the attention of our best
model BERT(MS MARCO → MB) for one of the top scoring sentences for the query
322 international art crime using the library bertviz [61]. Note that the sentence
does not contain any exact matches with the query terms and is nonetheless relevant to
the query. The top three images illustrate the attention for the query term “art” at in-
creasingly deeper layers (0, 6 and 9) and the bottom three for the query term “crime”.
We see that the model attends to related terms such as “renaissance” and “paintings” for
the term “art”, and “robbers” for crime, therefore giving this particular sentence a high
relevance score. On the other hand, these terms are not recognized by term-matching
techniques like BM25 as relevant. This highlights how the semantic knowledge captured
by BERT directly help with relevance modeling on newswire articles.

45

Chapter 6

Conclusion and Future Work

In this thesis, we propose two innovations to successfully apply BERT to document retrieval
with significant improvements on three TREC newswire collections: Robust04, Core17, and
Core18. To overcome the maximum input length restriction imposed by BERT, we focus on
integrating sentence-level evidence to re-rank newswire documents. This approach requires
sentence-level relevance labels to train BERT for relevance prediction; however, relevance
judgments in most test collections are provided only at the document level. We address this
challenge by leveraging sentence-level and passage-level relevance judgments fortuitously
available in out-of-domain collections. We fine-tune BERT with the goal of capturing
cross-domain notions of relevance, which can be used to re-rank the longer documents in
the newswire collections.

We show that relevance models learned with BERT can indeed be transferred across do-
mains in a straightforward manner. Combined with sentence-level relevance modeling, our
simple model achieves state-of-the-art results across all three test collections. Furthermore,
we observe that judging only a small number of most relevant sentences in a document
may be sufficient for effective document re-ranking. Through our analyses we investigate
the successes and failures of BERT in document re-ranking with respect to training data,
query and document length, and semantic matching. Our experiments suggest that both
exact and semantic matching signals are indispensable for effective document ranking; ig-
noring either component leads to a notable decrease in effectiveness. We also find that, in
order to successfully transfer notions of relevance across domains, the sequence length of
fine-tuning and evaluation data must be similar.

Our findings illustrate the deep relevance matching power enabled by BERT. However,
the analyses conducted in this thesis do not come close to fully understanding the effect

46

of BERT in relevance matching. In future work, we aim to delve into a deeper study of
BERT attention by visualizing multiple attention heads across multiple layers for all query
terms. By examining the entropy of attention distribution for different models, we hope to
gain a better understanding of the matching tendencies of BERT. A natural extension to
this work would be to replace BERT with other language models such as RoBERTa [39]
or XLNet [71] to see how different model hyperparameters or training objectives might
affect relevance matching behavior. To further investigate the contribution of semantic
matching with BERT, we also intend to repeat our ranking experiments by relying solely
on sentence scores in the future. Another promising future direction based on our findings
includes extending our efforts to other domains to investigate various other factors that
influence cross-domain relevance transfer. Finally, it might be worthwhile to explore dif-
ferent pruning or distillation techniques to manage the latency and memory requirements
of our system.

47

References

[1] James Allan, Donna Harman, Evangelos Kanoulas, Dan Li, and Christophe Van Gysel.
TREC 2017 Common Core Track Overview. In Proceedings of the 26th Text REtrieval
Conference, 2017.

[2] James Allan, Donna Harman, Evangelos Kanoulas, and Ellen Voorhees. TREC 2018
Common Core Track Overview. In Proceedings of the 27th Text REtrieval Conference,
2018.

[3] Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures
from multiple tasks and unlabeled data. Journal of Machine Learning Research,
6(Nov):1817–1853, 2005.

[4] Timothy G Armstrong, Alistair Moffat, William Webber, and Justin Zobel. Improve-
ments that don’t add up: ad-hoc retrieval results since 1998. In Proceedings of the
18th International Conference on Information and Knowledge Management (CIKM
2009), pages 601–610, 2009.

[5] Nima Asadi and Jimmy Lin. Effectiveness/efficiency tradeoffs for candidate generation
in multi-stage retrieval architectures. In Proceedings of the 36th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 997–
1000, 2013.

[6] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu,
Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg,
Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. MS MARCO: A human gen-
erated MAchine Reading COmprehension dataset. arXiv preprint arXiv:1611.09268v3,
2018.

[7] Jaroslaw Baliński and Czeslaw Dani lowicz. Re-ranking method based on inter-
document distances. Information Processing & Management, 41(4):759–775, 2005.

48

[8] Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass.
What do neural machine translation models learn about morphology? arXiv preprint
arXiv:1704.03471, 2017.

[9] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 3(Jan):993–1022, 2003.

[10] John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adaptation with struc-
tural correspondence learning. In Proceedings of the 2006 Conference on Empirical
Methods in natural language processing, pages 120–128, 2006.

[11] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. Transactions of the Association for Compu-
tational Linguistics, 5:135–146, 2017.

[12] Christopher J Burges. From RankNet to LambdaRank to LambdaMART: An
Overview. In Learning, volume 11, pages 23–581, 2010.

[13] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank:
from pairwise approach to listwise approach. In Proceedings of the 24th International
Conference on Machine learning, pages 129–136. ACM, 2007.

[14] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning.
What does BERT look at? an analysis of BERT’s attention. arXiv preprint
arXiv:1906.04341, 2019.

[15] Gordon V Cormack, Charles L A Clarke, and Stefan Buettcher. Reciprocal rank
fusion outperforms condorcet and individual rank learning methods. In Proceedings
of the 32nd International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’09, pages 758–759, New York, NY, USA, 2009. ACM.

[16] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. Convolutional neural
networks for soft-matching n-grams in ad-hoc search. In Proceedings of the 11th ACM
International Conference on web search and data mining, pages 126–134. ACM, 2018.

[17] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. Indexing by latent semantic analysis. Journal of the American
society for information science, 41(6):391–407, 1990.

[18] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W Bruce
Croft. Neural ranking models with weak supervision. In Proceedings of the 40th

49

International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 65–74. ACM, 2017.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019.

[20] Laura Dietz, Manisha Verma, Filip Radlinski, and Nick Craswell. TREC Complex
Answer Retrieval Overview. In Proceedings of the 26th Text REtrieval Conference
(TREC 2017), 2017.

[21] Debasis Ganguly, Dwaipayan Roy, Mandar Mitra, and Gareth JF Jones. Word em-
bedding based generalized language model for information retrieval. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 795–798. ACM, 2015.

[22] Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco
Baroni. Colorless green recurrent networks dream hierarchically. arXiv preprint
arXiv:1803.11138, 2018.

[23] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. A deep relevance matching
model for ad-hoc retrieval. In Proceedings of the 25th ACM International on Confer-
ence on Information and Knowledge Management, pages 55–64. ACM, 2016.

[24] Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. Neural vector
spaces for unsupervised information retrieval. ACM Trans. Inf. Syst., 36(4):38:1–
38:25, June 2018.

[25] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.
Learning deep structured semantic models for web search using clickthrough data. In
Proceedings of the 22nd ACM International Conference on Information & Knowledge
Management, pages 2333–2338. ACM, 2013.

[26] Ganesh Jawahar, Benôıt Sagot, Djamé Seddah, et al. What does BERT learn about the
structure of language? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics (ACL), 2019.

50

[27] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 133–142. ACM, 2002.

[28] K Sparck Jones, Steve Walker, and Stephen E Robertson. A probabilistic model of
information retrieval: development and comparative experiments: Part 2. Information
Processing & Management, 36(6):809–840, 2000.

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014.

[30] Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining.
arXiv preprint arXiv:1901.07291, 2019.

[31] Victor Lavrenko and W Bruce Croft. Relevance-based language models. In ACM
SIGIR Forum, volume 51, pages 260–267. ACM, 2017.

[32] Kyung-Soon Lee, Young-Chan Park, and Key-Sun Choi. Re-ranking model based on
document clusters. Information Processing & Management, 37(1):1–14, 2001.

[33] Ping Li, Qiang Wu, and Christopher J Burges. McRank: Learning to rank using
multiple classification and gradient boosting. In Advances in Neural Information
Processing Systems, pages 897–904, 2008.

[34] Jimmy Lin. The neural hype and comparisons against weak baselines. In ACM SIGIR
Forum, volume 52, pages 40–51. ACM, 2019.

[35] Yang Lingpeng, Ji Donghong, and Tang Li. Document re-ranking based on auto-
matically acquired key terms in chinese information retrieval. In Proceedings of the
20th International Conference on Computational Linguistics, page 480. Association
for Computational Linguistics, 2004.

[36] Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of LSTMs
to learn syntax-sensitive dependencies. Transactions of the Association for Computa-
tional Linguistics, 4:521–535, 2016.

[37] Zachary C Lipton and Jacob Steinhardt. Troubling trends in machine learning schol-
arship. arXiv preprint arXiv:1807.03341, 2018.

[38] Tie-Yan Liu. Learning to rank for information retrieval. Springer Science & Business
Media, 2011.

51

[39] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly
optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[40] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. CEDR: Con-
textualized embeddings for document ranking. In Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 1101–1104, Paris, France, 2019.

[41] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
information retrieval. Natural Language Engineering, 16(1):100–103, 2010.

[42] Oren Melamud, Jacob Goldberger, and Ido Dagan. context2vec: Learning generic
context embedding with bidirectional lstm. In Proceedings of the 20th SIGNLL Con-
ference on Computational Natural Language Learning, pages 51–61, 2016.

[43] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems, pages 3111–3119, 2013.

[44] Bhaskar Mitra and Nick Craswell. Neural models for information retrieval. arXiv
preprint arXiv:1705.01509, 2017.

[45] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Learning to match using local
and distributed representations of text for web search. In Proceedings of the 26th
International Conference on World Wide Web, pages 1291–1299. International World
Wide Web Conferences Steering Committee, 2017.

[46] Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with BERT. arXiv
preprint arXiv:1901.04085, 2019.

[47] Iadh Ounis, Craig Macdonald, Jimmy Lin, and Ian Soboroff. Overview of the TREC
2011 Microblog Track. In Proceedings of the 20th Text REtrieval Conference, 2011.

[48] Harshith Padigela, Hamed Zamani, and W Bruce Croft. Investigating the successes
and failures of bert for passage re-ranking. arXiv preprint arXiv:1905.01758, 2019.

[49] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors
for word representation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 1532–1543, 2014.

52

[50] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv
preprint arXiv:1802.05365, 2018.

[51] Yifan Qiao, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. Understanding the
behaviors of BERT in ranking. arXiv preprint arXiv:1904.07531, 2019.

[52] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training.

[53] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners.

[54] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:
100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[55] Jinfeng Rao, Wei Yang, Yuhao Zhang, Ferhan Ture, and Jimmy Lin. Multi-perspective
relevance matching with hierarchical convnets for social media search. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 232–240, 2019.

[56] D Sculley, Jasper Snoek, Alexander B Wiltschko, and Ali Rahimi. Winner’s Curse? On
pace, progress, and empirical rigor. In Proceedings of the 6th International Conference
on Learning Representations, 2018.

[57] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. Learning
semantic representations using convolutional neural networks for web search. In Pro-
ceedings of the 23rd International Conference on World Wide Web, pages 373–374.
ACM, 2014.

[58] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Ng, and Christopher Potts. Recursive deep models for semantic composition-
ality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 1631–1642, 2013.

[59] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple
and general method for semi-supervised learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 384–394. Association
for Computational Linguistics, 2010.

53

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, pages 5998–6008, 2017.

[61] Jesse Vig. A multiscale visualization of attention in the transformer model. arXiv
preprint arXiv:1906.05714, 2019.

[62] Ellen M Voorhees. Overview of the TREC 2004 Robust Track. In Proceedings of the
13th Text REtrieval Conference, pages 52–69, 2004.

[63] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. GLUE: A multi-task benchmark and analysis platform for natural language
understanding. arXiv preprint arXiv:1804.07461, 2018.

[64] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s
neural machine translation system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144, 2016.

[65] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. End-
to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 55–64. ACM, 2017.

[66] Peilin Yang, Hui Fang, and Jimmy Lin. Anserini: Enabling the use of Lucene for
information retrieval research. In Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 1253–1256,
2017.

[67] Peilin Yang, Hui Fang, and Jimmy Lin. Anserini: Reproducible ranking baselines
using Lucene. Journal of Data and Information Quality, 10(4):16:1–16:20, October
2018.

[68] Wei Yang, Kuang Lu, Peilin Yang, and Jimmy Lin. Critically examining the “neural
hype”: Weak baselines and the additivity of effectiveness gains from neural ranking
models. In Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 1129–1132, Paris, France, 2019.

[69] Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and
Jimmy Lin. End-to-end open-domain question answering with BERTserini. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association for

54

Computational Linguistics (Demonstrations), pages 72–77, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics.

[70] Wei Yang, Haotian Zhang, and Jimmy Lin. Simple applications of BERT for ad hoc
document retrieval. arXiv preprint arXiv:1903.10972, 2019.

[71] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G Carbonell, Ruslan Salakhutdinov,
and Quoc V Le. XLNet: Generalized autoregressive pretraining for language under-
standing. volume abs/1906.08237, 2019.

[72] Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei Yang, Haotian Zhang, and Jimmy
Lin. Applying BERT to document retrieval with Birch. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, 2019.

[73] Zeynep Akkalyoncu Yilmaz, Wei Yang, Haotian Zhang, and Jimmy Lin. Cross-domain
modeling of sentence-level evidence for document retrieval. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing, 2019.

[74] Hamed Zamani and W Bruce Croft. Relevance-based word embedding. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 505–514. ACM, 2017.

[75] Hamed Zamani, Mostafa Dehghani, W Bruce Croft, Erik Learned-Miller, and Jaap
Kamps. From neural re-ranking to neural ranking: Learning a sparse representation
for inverted indexing. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, pages 497–506. ACM, 2018.

[76] Haotian Zhang, Mustafa Abualsaud, Nimesh Ghelani, Mark D Smucker, Gordon V
Cormack, and Maura R Grossman. Effective user interaction for high-recall retrieval:
Less is more. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, pages 187–196. ACM, 2018.

[77] Le Zhao and Jamie Callan. Term necessity prediction. In Proceedings of the 19th
ACM International Conference on Information and Knowledge Management, pages
259–268. ACM, 2010.

[78] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books. In Proceedings of the IEEE
International Conference on Computer Vision, pages 19–27, 2015.

55

	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Organization

	Background and Related Work
	Document Retrieval
	Pretrained Language Models
	Feature Extraction
	Fine-Tuning Approaches

	Machine-Learned Ranking Models
	Learning to Rank Methods
	Neural Document Retrieval
	Comparison of Non-Neural and Neural Methods

	Evaluation Metrics

	Cross-Domain Sentence Modeling for Relevance Transfer
	Datasets
	Fine-Tuning
	Evaluation

	Modeling Relevance with BERT
	Relevance Classifier
	Input Representation
	Fine-Tuning

	Re-ranking with BERT
	Experimental Setup
	Training and Inference with BERT
	End-to-End Document Retrieval

	Architecture
	Anserini
	Main Module
	Integration
	Replicability and Reproducibility

	Experimental Results
	Effect of Training Data
	Number of Sentences
	Comparison to Other Ranking Models
	Per-Query Analysis
	Effect of Length
	Query Length
	Document Length

	Semantic Matching

	Conclusion and Future Work
	References

