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Abstract
To compare results for radiological prediction of pathological invasiveness in lung adenocarcinoma between radiologists and a deep
learning (DL) system.
Ninety patients (50 men, 40 women; mean age, 66 years; range, 40–88 years) who underwent pre-operative chest computed

tomography (CT) with 0.625-mm slice thickness were included in this retrospective study. Twenty-four cases of adenocarcinoma in
situ (AIS), 20 cases of minimally invasive adenocarcinoma (MIA), and 46 cases of invasive adenocarcinoma (IVA) were pathologically
diagnosed. Three radiologists of different levels of experience diagnosed each nodule by using previously documented CT findings to
predict pathological invasiveness. DL was structured using a 3-dimensional (3D) convolutional neural network (3D-CNN) constructed
with 2 successive pairs of convolution and max-pooling layers, and 2 fully connected layers. The output layer comprises 3 nodes to
recognize the 3 conditions of adenocarcinoma (AIS, MIA, and IVA) or 2 nodes for 2 conditions (AIS andMIA/IVA). Results fromDL and
the 3 radiologists were statistically compared.
No significant differences in pathological diagnostic accuracy rates were seen between DL and the 3 radiologists (P>.11). Receiver

operating characteristic analysis demonstrated that area under the curve for DL (0.712) was almost the same as that for the
radiologist with extensive experience (0.714; P= .98). Comparedwith the consensus results from radiologists, DL offered significantly
inferior sensitivity (P= .0005), but significantly superior specificity (P= .02).
Despite the small training data set, diagnostic performance of DL was almost the same as the radiologist with extensive

experience. In particular, DL provided higher specificity than radiologists.

Abbreviations: 3D-CNN = 3-dimensional convolutional neural network, AIS = adenocarcinoma in situ, AUC = area under the
curve, C1= convolution 1, C2= convolution 2, CAD= computer-aided diagnosis, CI= confidence interval, DL= deep learning, GGN
= ground-glass nodule, IVA = invasive adenocarcinoma, M1 = max pooling 1, M2 = max pooling 2, MIA = minimally invasive
adenocarcinoma, ROC = receiver operating characteristic.
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1. Introduction

CT has been widely used for qualitative and quantitative imaging
of lung cancer. Recent advances in CT techniques have enabled
the provision of thin-slice image data with high image quality
with a short period. As symbolized by the appearance of the term
“big data” in the mid-2000s, large amounts of data are now
easily obtained. In the medical field, clinical data such as CT
images are constantly accumulating. Quick and efficient extrac-
tion of valuable information from among large amounts of
clinical data is thus important. Computer-aided diagnosis (CAD)
systems have the potential to improve the clinical diagnostic
process by offering correct classification decisions and volumetric
measurements, representing promising avenues for providing
accurate, reproducible quantification of lung cancer.[1–3] Semi-
automatic and/or automatic differentiation between benign and
malignant tumors is one of the major tasks of CAD.[4–8]

However, many problems have to be overcome for CAD systems
in terms of the integration and selection of image features because
of the dependence on multiple image-processing tasks.[3,9]
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Recently, improvements in computing capacity, the evolution
of deep learning algorithms, and the appearance of big data have
brought about a boom in tertiary artificial intelligence. Deep
learning (DL), structured by building a model to imitate the
human brain, is one of the artificial intelligence systems based on
neural networks. DL techniques are currently considered state of
the art for the classification of images[10] and applied for some
fields of medical images.[11–14] The neural network begins by
simulating neural cells and trying to simulate the human brain
using a simulation model called a perceptron. A multilayer
perceptron is constructed by making and arranging layers with
perceptrons in which all nodes in the model are fully connected,
allowing the solution of more complicated problems. Artificial
intelligence technology has been applied in the field of thoracic
imaging, and has developed in the following areas[15–30]:
detection of pulmonary nodules; differentiation between benign
and malignant lesions; diagnosis of diffuse lung diseases (i.e.,
retrieval system for resemble cases); and improvement of 3D-
analysis and image quality (e.g., Pixelshine, a noise-reduction
algorithm using machine learning; AlgoMedica, Sunnyvale, CA).
Lung adenocarcinoma is the most common histopathological

subtype of lung cancer. Early diagnosis of pathological
invasiveness using CT may alter the course of treatment of
adenocarcinomas and subsequently improve the prognosis.[21,22]

However, radiological prediction of pathological invasiveness is
very difficult. Moreover, to the best of our knowledge, no CAD
systems have yet been shown to predict pathological invasiveness.
Figure 1. Flowchart of patien
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Under the hypothesis thatDLmight be able to predict pathological
invasiveness, DL intended to be capable of such prediction was
developed in cooperationwith the department of technology inour
institution. The purpose of our study was to compare results for
radiological prediction of pathological invasiveness in lung
adenocarcinoma between radiologists and DL.
2. Materials and methods

2.1. Study population

This study was approved by the internal ethics review board at
our institute. The need to obtain informed consent for this
retrospective review of patient records and images and the use of
patient biomaterials was waived in this study. Consecutive 90
patients (50 men, 40 women; mean age, 66 years; range, 40–88
years) with 90 nodules who had undergone surgery at our
institution between 2009 and 2011 were included (Fig. 1). All
patients had undergone preoperative thin-section CT of the chest.
Patients who had received previous treatments of the lungs or
other organs were excluded from the study. Patients with
histological subtypes other than adenocarcinoma were also
excluded.
Pathological diagnoses were made by 2 independent pathol-

ogists according to the 2015 World Health Organization
(WHO) Classification of lung tumors[23] as adenocarcinoma in
situ (AIS), minimally invasive adenocarcinoma (MIA), or
t population in the study.
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invasive adenocarcinoma (IVA). Histological diagnoses of AIS,
MIA, and IVA were confirmed by consensus decisions.
2.2. CT protocols

Ninety patients underwent scanning using a 64-channel multi-
detector-row CT scanner (Discovery CT750HD; GEHealthcare,
Milwaukee, WI) with the following protocols: detector collima-
tion, 0.625mm; detector pitch, 0.984; gantry rotation period, 0.4
seconds; matrix size, 512�512 pixels; X-ray voltage, 120 kVp;
tube current, auto exposure control (mA); field of view, 34.5cm
for full lung; high-resolution mode with 2496 views per rotation.
All targeted lung CT images were reconstructed using a 20-cm
field of view from thin-section CT images reconstructed with a
high spatial frequency algorithm at 0.625-mm thicknesses using a
30% adaptive statistical iterative reconstruction.
2.3. Subjective evaluation by radiologists

Three chest radiologists (AH [R1], NK [R2], andOH [R3], with 8,
9, and 26 years of experience, respectively) were instructed only to
evaluate each nodule. They independently diagnosed each nodule
by predicting pathological invasiveness from CT findings on a 21-
inch monochrome liquid crystal display monitor without prior
knowledge of histopathological diagnoses. CT findings were
classified according to previously reported criteria[24–31]: irregular
margin; air bronchogramwith disruption and/or irregular dilata-
tion; pleural indentation; and solid component in a part-solid
nodule (size � 5mm or>5mm). In cases of ground-glass nodule
(GGN), nodule density (dense or inhomogeneous) was evaluated
Figure 2. Three-dimensional convolutional neural network (3D-CNN) structure. Th
extraction was constructed using 2 successive pairs of convolution (C1 and C2) a
layers. The first 8000 fully connected layers were classified into 3 nodes (AIS, or
invasive adenocarcinoma, MIA=minimally invasive adenocarcinoma.

3

according to the previous report[27]: dense GGN, with CT value
>�400 Hounsfield unit; and inhomogeneous GGN, complicated
distribution of solid-like portions. Final diagnosis (i.e., AIS, or
MIA, or IVA) was decided comprehensively according to these CT
findings.Nodule distribution (GGN,part-solidGGN, and solid) of
90 nodules was decided by consensus. Total nodule size and solid
component sizeweremeasuredby the principal investigator (M.Y.,
with 17 years of experience).
2.4. Objective evaluation by the deep learning

DL with a 3-dimensional (3D)-convolutional neural network
(CNN) was used in the present study. TensorflowTM (version
0.12.1, Google Inc., Mountain View, CA) was used as the DL
framework. The 3D CT images including a nodule and a
surrounding normal lung parenchyma were classified by the 3D-
CNN. Input data size was 30�30�30 voxels (11.7-mm cube in
real space). The 3D-CNN structure was constructed with 2
successive pairs of convolution (C1 and C2) and max-pooling
layers (M1 andM2), and 2 fully connected layers (Fig. 2). Kernel
sizes were 3�3�3 voxels (C1), 2�2�2 voxels (M1), 2�2�2
voxels (C2), and 3�3�3 voxels (M2). Numbers of convolution
filters were 32 and 64 for each convolution layer (C1 and C2),
respectively. The number of nodes in the first fully connected
layer was 8000. The output layer comprised 3 nodes to recognize
the 3 conditions of adenocarcinoma (AIS, or MIA, or IVA), or 2
nodes for 2 conditions (AIS or MIA/IVA). A rectified linear unit
(ReLU) was used for the activation function in layers other than
the output layer. A softmax function was used for converting
output values to probabilities in the output layer. The CT images
e 3D-CNN structure consisted of feature extraction and classification. Feature
nd max-pooling layers (M1 and M2). The classification was of 2 fully connected
MIA, or IVA) or 2 nodes (AIS or MIA/IVA). AIS=adenocarcinoma in situ, IVA=

http://www.md-journal.com


Table 1

Total nodule size and solid component size for each nodule type.

Total nodule size Solid component size

Nodule type Histology N (mean±SD, range) [mm] (mean±SD, range) [mm]

GGN AIS 16 16.3±6.3, 7–29 0
MIA 3 15.7±11.2, 6–28 0
IVA 5 17.6±2.4, 15–21 0

Part-solid AIS 8 18.0±6.3, 9–26 7.1±3.1, 3–12
MIA 12 19.3±4.8, 13–27 9.3±3.9, 4–16
IVA 20 24.7±4.8, 14–30 17.6±6.5, 8–27

Solid AIS 0 N/A N/A
MIA 5 14.6±5.5, 6–20 14.6±5.5, 6–20
IVA 21 20.1±6.4, 9–30 20.1±6.4, 9–30

AIS= adenocarcinoma in situ, GGN=ground-glass nodule, IVA= invasive adenocarcinoma, MIA=minimally invasive adenocarcinoma, SD= standard deviation.

Table 2

Pathological diagnostic accuracy rates among observers.

Differentiation among AIS, MIA, and IVA

Yanagawa et al. Medicine (2019) 98:25 Medicine
of95nodules (25 cases ofAIS, 20 cases ofMIA, and50 cases of IVA)
scanned under the same conditions were divided into cases of
training data, 85 and test data, 10. To predict pathological
invasiveness, 9-fold cross-validation was performed on 90 cases of
CT image data (Fig. 1). In each training and prediction process, data
was augmented by adding some noise to 85 cases of training data.

2.5. Statistical analyses

The following statistical analyses were performed using com-
mercially available software (MedCalc version 13.1.2.0, 64 bit;
Frank Schoonjans, Mariakerke, Belgium). Accuracy rates among
DL and the 3 radiologists were statistically analyzed using
repeated-measures analysis of variance, conducted with Bonfer-
roni correction applied for multiple comparisons. A receiver
operating characteristic (ROC) analysis was used to determine
area under the curves (AUC) of DL and the 3 radiologists,
respectively: each CT diagnostic performance (i.e., 0=AIS, 1=
MIA/IVA) in DL and the 3 radiologists was used as a variable,
and each pathological diagnosis (i.e., 0=pathological AIS, 1=
pathological MIA/IVA) was used as a classification variable.
Multivariate ROC analysis was performed to determine the
statistical significance of the difference among 4 AUCs (DL and
the 3 radiologists). The additional statistical analysis was
performed using commercially available software (R version
3.4.1, 64 bit; R Core Team, Vienna, Austria [https://www.R-
project.org/]). Sensitivity and specificity among DL and the
consensus result of radiologists were compared using the
McNemar test with Bonferroni correction. Corrected values of
P<.05 were considered significant.
Observer Diagnostic accuracy rates 95% confidence interval

DL 46/90 (51) 40.58–61.64
R1 55/90 (61) 42.83–63.84
R2 48/90 (53) 50.84–71.38
R3 58/90 (64) 54.36–74.53

Differentiation between AIS and MIA/IVA

Observer Diagnostic accuracy rates 95% confidence interval

DL 66/90 (73) 64.02–82.65
R1 72/90 (80) 71.58–88.42
R2 67/90 (74) 65.26–83.63
R3 75/90 (83) 75.48–91.18

AIS=adenocarcinoma in situ, DL=deep learning, IVA= invasive adenocarcinoma, MIA=minimally
invasive adenocarcinoma, R1= radiologist with 8 years of experience, R2= radiologist with 9 years of
experience, R3= radiologist with 26 years of experience.
Figures in parentheses show percent.
3. Results

3.1. Demographics of our study population

Final study population for subjective evaluations by radiologists
included 90 patients with 90 nodules (Fig. 1). Nine data set
groups were created from 95 patients: each data set group
consisted of training data, 85 and test data, 10. As a result of 9-
fold cross-validation, the diagnostic performance of DL for
pathological invasiveness in 90 nodules was obtained. The same
90 nodules were evaluated by each radiologist. Nodule
distribution of 90 nodules was as follows: 24 cases of GGN,
40 cases of part-solid GGN, and 26 cases of solid nodule. The
relationship between nodule type and histopathological results is
summarized in Table 1. GGN and part-solid GGN included all
4

histological subtypes. Solid nodules included only MIA and IVA.
Total nodule size and solid component size for each nodule type
are summarized in Table 1.
3.2. Pathological diagnostic accuracy rates among DL and
the 3 radiologists

In differentiating among AIS, MIA, and IVA, no significant
differences in pathological diagnostic accuracy rates were seen
among all observers (DL, R1, R2, and R3; P>.105). Results are
summarized in Table 2. In 11 cases, only DL could accurately
differentiate among AIS (n=4), MIA (n=6), and IVA (n=1)
(Fig. 3). The 4 cases of AIS comprised 1 GGN and 3 part-solid
GGNs, and the 6 cases of MIA comprised 5 part-solid GGNs and
1 solid nodule. The case of IVA represented GGN.
Similarly, in differentiation between AIS (without pathological

invasiveness) and MIA/IVA (with pathological invasiveness), no
significant differences in pathological diagnostic accuracy rates
were evident among all observers (DL, R1, R2, and R3)
(P>.120). Results are summarized in Table 2.
3.3. Diagnostic performance: differentiation between AIS
and MIA/IVA

Results of multivariate ROC analyses were as follows: the AUC
for DL, 0.712 (95% confidence interval [CI], 0.607–0.803); for

https://www.r-project.org/
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Figure 3. Cases in which only the DL system could achieve accurate diagnosis. Pathologic diagnosis of AIS was made using hematoxilin and eosin stain (A-1) and
elastica-van Gieson stain (A-2). Only the DL system could diagnose this part-solid GGN (total nodule size, 9mm; solid component size, 3mm) as AIS (A-3). All
radiologists misdiagnosed the lesion as MIA. Pathologic diagnosis of MIA was made using hematoxilin and eosin stain (B-1) and elastica-van Gieson stain (B-2).
Only the DL system could diagnose this part-solid GGN (total nodule size, 20mm; solid component size, 12mm) as MIA (B-3). All radiologists misdiagnosed the
lesion as IVA. Pathologic diagnosis of IVA wasmade using hematoxilin and eosin stain (C-1) and elastica-van Gieson stain (C-2). Only the DL system could diagnose
this GGN (total nodule size, 17mm) as IVA (C-3). All radiologists misdiagnosed the lesion as AIS or MIA. AIS=adenocarcinoma in situ, GGN=ground-glass nodule,
IVA= invasive adenocarcinoma, MIA=minimally invasive adenocarcinoma.

Yanagawa et al. Medicine (2019) 98:25 www.md-journal.com
R1, 0.665 (95% CI, 0.557–0.761); for R2, 0.574 (95% CI,
0.465–0.678); and for R3, 0.714 (95% CI, 0.609–0.804). The
AUC (0.712) for DL was almost the same as that (0.714) for the
most experienced radiologist (R3; P= .983), who had a signifi-
cantly higher AUC than the radiologist with the least amount of
experience (R2; P= .026). Compared with the consensus result for
radiologists, DL offered significantly inferior sensitivity (P
= .0005), but significantly superior specificity for diagnosing the
invasiveness of adenocarcinoma (P= .02) (Table 3).
4. Discussion

This study has shown that regardless of the small training data
set, diagnostic performance of DL was almost the same as that of
the most experienced radiologist, who showed a significantly
higher AUC than the radiologist with the least amount of
5

experience. In particular, although the sensitivity of DL was
inferior to that of radiologists, DL provided higher specificity for
diagnosing the invasiveness of adenocarcinoma than radiologists.
In the present study, DL more accurately suggested the
percentage of adenocarcinomas correctly identified as not having
pathological invasiveness. If many more learning cases could be
used as training data, the likelihood that the performance of DL
will exceed that of human beings seems extremely high.
CAD systems can allow radiologists to quantitatively analyze

imaging data but work on the basis of differing algorithms for
feature extraction, selection, and integration, affecting the
differentiating abilities of each CAD system. Moreover, compli-
cated and laborious processes are needed to improve the
performance of CAD systems. On the other hand, particularly
in terms of image recognition, DL systems based on the CNN
structure with convolution and max-pooling layers can provide

http://www.md-journal.com


Table 3

Diagnostic performance among observers: sensitivity and
specificity.

Observer
Point

estimate
95% confidence

interval

R1 Sensitivity 0.955 0.873, 0.991
Specificity 0.375 0.188, 0.594

R2 Sensitivity 0.939 0.852, 0.983
Specificity 0.208 0.071, 0.422

R3 Sensitivity 0.970 0.895, 0.996
Specificity 0.458 0.256, 0.672

DL Sensitivity
∗
0.758 0.636, 0.855

Specificity #0.667 0.447, 0.844
The consensus result

of radiologists
Sensitivity

∗
0.970 0.895, 0.996

Specificity #0.292 0.126, 0.511

DL=deep learning, R1= radiologist with 8 years of experience, R2= radiologist with 9 years of
experience, R3= radiologist with 26 years of experience.
∗
The sensitivity of DL was significantly inferior to the consensus result of radiologists (P= .0005).

# The specificity of DL was significantly superior to the consensus result of radiologists (P= .02).

Yanagawa et al. Medicine (2019) 98:25 Medicine
simple and alternative results (i.e., invasiveness or non-invasive-
ness) without using specific algorithms. In the present study, our
DL system easily achieved an accuracy rate almost identical to
that of radiologists in differentiating not only between AIS, MIA,
and IVA but also between AIS and MIA/IVA. Although no
significant differences in pathological diagnostic accuracy rates
were seen among all observers (DL, R1, R2, and R3), high
dimensional image data from pixel data to whole-image data
could be processed within a few seconds simply by inputting
image data into the DL system. Unlike radiologists, the extreme
and growing processing power represents a key advantage of DL
systems.
In diagnostic performance to differentiate between AIS and

MIA/IVA, the AUC for the DL system was almost the same as
that for the most experienced radiologist, who in turn displayed a
significantly higher AUC than the radiologist with the least
amount of experience. In previous studies into diagnoses for lung
cancer,[15,16] CAD systems using DL techniques were demon-
strated to offer superior diagnostic accuracy of lung cancer and
superior feature extraction for diagnosing pulmonary nodule
compared to conventional CAD. In the future, malignancy
diagnosis and prognostic prediction using DL systems may be
incorporated into our clinical setting. In our study, however,
compared with radiologists, DL showed significantly inferior
sensitivity, but significantly superior specificity. DL has the
possibility of correctly identifying adenocarcinoma without
pathological invasiveness. This result may be due to the fact
that only DL could accurately predict pathological diagnoses that
were sometimes difficult for radiologists to differentiate. Higher
specificity of DL might suppress overdiagnoses of radiologists,
resulting in a positive effect on the management or treatment
strategies. Identifying subgroups of patients without pathological
invasiveness might be helpful in selecting patients suitable for
watchful waiting. Generally, DL systems are functionally black
boxes, meaning that the process by which a DL reaches a
conclusion is unknown. One possible reason was that given the
small number of cases, the cancer characteristics used as training
data happened to be consistent with those only DL can capture.
In other words, DL may not have always captured the essential
features of cancer in this study. Further analysis using a larger
cohort is needed to validate our results.
6

DL systems will provide useful and informative results, but
may not provide a useful alternative for clinicians. DL systems do
not have the ability to manage and decide treatment strategies,
but it is very important for radiologists to be able to beneficially
utilize the information from DL systems. The combination of
radiologists and DL should preferably be superior to DL alone. In
fact, DL systems can provide useful results for nodule
detection,[32] and a deep 3D CNN could achieve high nodule
detection sensitivity even at 0.25 false-positive results per scan.
However, differentiation between benign and malignant lesions
may not necessarily be satisfactory results. Basically, radiologists
often diagnose pulmonary nodules by morphologically evaluat-
ing the margins and internal characteristics according to previous
data.[24–31] Naturally, limitations to diagnostic performance
exist. For example, localized GGN included all pathological
subtypes of adenocarcinoma.[33] However, some radiologists
might not be able to accurately differentiate IVA from GGN on
CT images. Therefore, unlike nodule detection, in differentiating
between benignancy and malignancy, some cases might be
encountered in which a DL system identifies malignant lesions
that the radiologist cannot believe or verify. Much higher
accuracy, sensitivity, and specificity are thus needed for DL to
contribute to the diagnosis of malignancy.
Our study shows several limitations. First, the biggest

limitation is the small dataset. Overfitting is thus one of the
disadvantages to DL, which may be more prominent in cases
with a small number of training samples. Our DL system fit the
present study data well but might not generalize well to unseen
cases. Further studies using a larger training data set are needed
to validate our results. Second, our study was retrospective, and
selection bias was thus inevitable. Third, only primary sites
were evaluated. If data for lymph node metastases and lung
tissues surrounding primary sites had been used for the
construction of DL systems, diagnostic performance might have
been influenced. Analysis of additional training cases would
have been interesting. Finally, 3D data from CT images were
analyzed using the DL system. However, not all cross-sections
from each pathological specimen could be evaluated in the
present study. Therefore, invasive components in pathological
specimens may not necessarily have represented the true
invasive component itself.
In conclusion, despite the small training data set, DL showed

an accuracy rate almost equal to that of radiologists. The AUC of
DL was almost the same as that of the radiologist with the most
experience, which in turn was significantly higher than that of the
radiologist with the least experience. DL systems can predict
pathological invasiveness in lung adenocarcinoma from CT
images, particularly with high specificity. DL can provide useful
and informative results but does not replace the radiologist.
Likewise, DL does not have the ability to manage or decide
treatment strategies, so radiologists need to intelligently use the
information derived from DL. We expect that radiologists will
play important roles in developing and using artificial intelligence
technologies.
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