
Algorithms for Adaptive

Game-playing Agents

A dissertation submitted in compliance with the requirements

for the degree of Doctor of Philosophy

by

Niels Orsleff Justesen

Supervisor:

Sebastian Risi

IT University of Copenhagen

Submitted 31st of August, 2019

i

Abstract

Several games have been promoted by researchers as key challenges in the research field

of Artificial Intelligence (AI) through the years, with the ultimate goal of defeating the

best human players in these games. Recent developments in deep learning have enabled

computers to learn strong policies for many games, where previous methods have fallen

short. However, the most complex games, such as the Real-time Strategy (RTS) game

StarCraft (Blizzard Entertainment, 1998), are still not mastered by AI. We identify three

properties of adaptivity that we believe are required to fully master the most difficult

games with AI. These properties are: (1) intra-game adaptivity: the ability to adapt to

opponent strategies within a game, (2) inter-game adaptivity: the ability to intelligently

switch strategy in-between games, and (3) generality: the ability to generalize to many

different, and most likely unseen, variations (such as different levels). We analyze the

shortcomings of state-of-the-art game-playing algorithms in regards to adaptation and

present novel algorithmic approaches to each property. Several of the presented approaches

also attempt to overcome the difficulty of learning adaptive policies in games with sparse

rewards. The main contributions in this dissertation are: (a) a continual evolutionary

planning algorithm that performs online adaptive build-order planning in StarCraft, (b)

an imitation learning approach to intra-game adaptive build-order planning in StarCraft,

resulting in the first (to the best of our knowledge) neural-network-based bot that plays

the full game, (c) a novel imitation learning method for learning behavioral repertoires

from demonstrations, which allows for inter-game adaptivity, (d) an automatic reward

shaping technique for reinforcement learning that automatically assigns feedback values

based on the temporal rarity of pre-defined events, that works as a form of curriculum

learning and regularization technique to avoid overfitted behaviors in games with sparse

rewards, (e) a new reinforcement learning framework that incorporates procedural content

generation to generate new training levels each episode that get progressively harder as

the agent improves, which is shown to overcome sparse rewards and increase the generality

of the learned policy, (f) a pragmatic way of evaluating the fairness of game competitions

between humans and AI that further highlights the importance of adaptation, and (g)

a new challenge and competition for AI that is based on the board game Blood Bowl,

which is orders of magnitude more complex than the game go and requires a high level of

ii

generality. These contributions bring a new perspective on the AI challenge of playing

complex games that has a focus on adaptation. We believe this perspective is crucial to

achieving strong and robust game-playing AI. Our contributions may potentially have an

impact on many important real-world problems beyond games, such as robotic tasks in

changing environments with complex interactions that require a high level of adaptivity.

iii

Resumé

Spil har været et uundværligt testmiljø indenfor kunstig intelligens siden forskningsfeltets

oprindelse i 1956. Forskere i feltet har gennem årene promoveret adskillige spil som vigtige

udfordringer, hvor det endelige mål er at slå de allerbedste spillere med et computerprogram.

Nye fremskridt indenfor maskinlæring har for nyligt gjort det muligt at opnå menneskeligt

niveau med kunstig intelligens i flere spil, hvor tidligere metoder har fejlet. Dog er

de mest komplekse spil, såsom StarCraft (Blizzard Entertainment, 1998), stadig ikke

mestret af kunstig intelligens. Vi identificerer tre tilpasningsevner, som vi mener er

en forudsætning for, at kunstig intelligens kan mestre de mest komplekse spil. Disse

tilpasningsevner er: (1) intra-spil-tilpasning: evnen til at justere sin strategi i løbet af et

spil, (2) inter-spil-tilpasning: evnen til at skifte strategi imellem spil, og (3) generalitet:

evnen til at generalisere til mange forskellige, og typisk ukendte, varianter af samme spil.

Vi undersøger begrænsninger ved state-of-the-art spilalgoritmer i forhold til tilpasning

og præsenterer nye algoritmer, som kan opnå de nævnte tilpasningsevner. Derudover,

forbedrer flere af metoderne også læring i spil med få gevinster. De primære bidrag i denne

afhandling er: (a) en continual evolutionary planning algoritme, der løbende planlægger

den fremtidige build-order i StarCraft, (b) en imitation learning metode til intra-spil

tilpassende build-order planlægning i StarCraft som har resulteret i den første bot, der

spiller StarCraft med et neuralt netværk, (c) en ny imitation learning metode, som lærer

et repertoire af opførsler fra demonstrationer, hvilket kan bruges til inter-spil tilpasning,

(d) en automatisk reward shaping metode til reinforcement learning, der automatisk

tildeler feedback-værdier baseret på frekvensen af prædefinerede hændelser, og som virker

som en form for curriculum learning og regularization metode for at opnå opførsler i

svære spil med forbedret generalitet, (e) et nyt reinforcement learning framework, som

inkorporerer procedural content generation til at generere nye træningsbaner hver episode,

som bliver gradvist sværere, når agenten forbedrer sig, hvilket forbedrer læring i spil med

få gevinster, og samtidig øger agentens generalitet, (f) en pragmatisk måde at evaluere

retfærdigheden af konkurrencer mellem mennesker og kunstig intelligens, som yderligere

fremhæver vigtigheden af de tre nævnte tilpasningsevner, og (g) en ny udfordring indenfor

kunstig intelligens som er baseret på brætspillet Blood Bowl, der i høj grad er mere

komplekst end spillet go og kræver et højt niveau af generalitet. Afhandlingen bidrager

iv

samlet set med et nyt perspektiv på udfordringerne ved at spille komplekse spil med

kunstig intelligens, som fokuserer på tilpasning. Vi mener, at dette perspektiv er afgørende

for at opnå stærk og robust kunstig intelligens i spil. Vores bidrag kan potentielt også få

indvirkning på vigtige problemer i den virkelige verden, såsom robotopgaver i skiftende

miljøer med ukendte agenter, hvor det i høj grad er nødvendigt at kunne tilpasse sin

opførsel.

v

Acknowledgments

First and foremost, I would like to thank my supervisor Sebastian Risi for giving me advice

and encouragement throughout my time as his student. I am grateful that Sebastian

always provided me with valuable feedback on my work so promptly.

Special thanks also goes out to the co-authors of the papers in this dissertation, which are

Sebastian Risi, Julian Togelius, Jean-Baptiste Mouret, Philip Bontrager, Ruben Rodriguez

Torrado, Ahmed Khalifa, Michael S. Debus, Miguel Gonzalez Duque, Daniel Cabarcas

Jaramillo, Tobias Mahlmann, Lasse Møller Uth, Christopher Jakobsen, and Peter David

Moore.

I would also like to show my gratitude to Julian Togelius and Jean-Baptiste Mouret for

their supervision during my two research stays abroad and to all the members of the

different research groups that I have collaborated with, for their feedback, inspiring ideas,

and friendship. These include the Robotics, Evolution, and Art (REAL) lab and Center

for Computers Games Research (CCGR) at the IT University of Copenhagen, the Game

Innovation Lab at New York University Tandon School of Engineering, and team Larsen

at INRIA in Nancy. In this regard, I am also thankful for the financial support from the

Elite Research travel grant from The Danish Ministry for Higher Education and Science.

Finally, I would like to thank the numerous researchers who took the time to comment

on drafts of the papers in this dissertation, including Chen Tessler, Diego Pérez-Liébana,

Ethan Caballero, Hal Daumé III, Jonas Busk, Kai Arulkumaran, Malcolm Heywood, Marc

G. Bellemare, Marc-Philippe Huget, Mike Preuss, Nando de Freitas, Nicolas A. Barriga,

Olivier Delalleau, Peter Stone, Santiago Ontañón, Tambet Matiisen, Yong Fu, Yuqing

Hou, and Miguel Gonzalez Duque.

vi

Contents

1 Introduction 1
1.1 Contributions . 5
1.2 List of Papers . 7
1.3 Outline . 9
1.4 Notes on Style and Notation . 9

2 Background 11
2.1 Neural Networks . 11
2.2 Training Neural Networks with Gradient Descent 19
2.3 Reinforcement Learning . 24
2.4 Evolutionary Algorithms . 31
2.5 Search Algorithms . 38

3 State-of-the-art in AI for Video-game Playing 45
3.1 AI for Real-Time Strategy Games . 45
3.2 Playing Video Games with Deep Neural Networks 50

4 Continual Evolutionary Planning 75
4.1 Approach . 76
4.2 Experiments . 83
4.3 Discussion . 87
4.4 Summary . 88

5 Learning Build-order Planning in StarCraft from Replays 89
5.1 Approach . 90
5.2 Results . 95
5.3 Discussion . 99
5.4 Summary . 101

6 Behavioral Repertoire Imitation Learning 103
6.1 Dimensionality Reduction . 106
6.2 Universal Policies . 106
6.3 Approach . 107
6.4 Experiments . 109
6.5 Discussion . 115
6.6 Summary . 116

7 Rarity of Events 119
7.1 Rarity of Events . 120

vii

viii Contents

7.2 Experiments . 121
7.3 Discussion . 129
7.4 Summary . 131

8 Procedural Content Generation for Reinforcement Learning 133
8.1 Related Work . 134
8.2 Parameterized Level Generator . 136
8.3 Procedural Level Generation for Deep Reinforcement Learning 138
8.4 Experiments . 139
8.5 Exploring the Distribution of Generated Levels 143
8.6 Discussion . 144
8.7 Summary . 146

9 When Are We Done with Games? 147
9.1 The Blackbox Approach . 149
9.2 A Prototypical Human Competition . 151
9.3 Game Extrinsic and Intrinsic Factors . 154
9.4 Critique of AI Achievements in Games 156
9.5 Adaptation in Fair Competitions . 162
9.6 Summary . 162

10 Discussion 165
10.1 Intra-game and Inter-game Adaptivity 166
10.2 Generality . 168
10.3 Overcoming Sparse Rewards . 168

11 Future Directions 171
11.1 MAP-Elites for Noisy Domains . 171
11.2 Diverging Policies using Rarity of Events 177
11.3 Blood Bowl: A New Board Game Challenge and Competition for AI . . . 183

12 Conclusions 203

Appendix 237

List of Figures

2.1.1 A two-layered fully-connected neural network visualized as a computational
graph with two input values, one hidden layer of three units using ReLU
activations and one output layer with a single unit using a sigmoid activation. 13

2.1.2 A visualization of commonly used activation functions in hidden layers of
artificial neural networks: sigmoid, the hyperbolic tangent (tanh), and the
rectified linear unit (ReLU). 14

2.1.3 A simple example of convolution (usually denoted by an asterisk) followed
by ReLU activations and max pooling. Here, a striding of one is used,
no padding, and a max pooling window size of four. The kernel thus
makes four interactions with the input feature map, producing four values
in the output. The first interaction between the input and the kernel is
highlighted: 1× 1 + 0× 2 + 0× 2 + 1× 0 = 1. 16

2.1.4 Two visualizations of an RNN where A is a recurrent hidden layer. (Left) in
the style of a circuit diagram. (Right) as an unfolded computational graph.
The illustration is from Christopher Olah’s excellent visual explanation of
RNNs: https://colah.github.io/posts/2015-08-Understanding-LSTMs/. . . . 17

2.1.5 A visualization an LSTM module (or cell) which has an forget gate, an
input gate, and an output gate. The illustration is from Christopher
Olah’s excellent visual explanation of RNNs: https://colah.github.io/posts/
2015-08-Understanding-LSTMs/. 18

2.2.1 A visualization of a neural network using multi-task learning with one
task-dependant output layer for each task and one general hidden layer. . 24

2.4.1 A simple of example of single-point and two-point crossover operations on
two parent genotypes in {0, 1}8, each resulting in two offspring. 32

2.4.2 Final points visited in a deceptive navigation task by (a) novelty search
and (b) objective-based search, starting at the green dot and the objective
is the distance to the goal (the red dot). The figures are from Lehman and
Stanley (2011a). 36

2.4.3 A 2D behavior-performance map of voxel-based virtual creatures found
by MAP-Elites. Here, the performance metric is walking speed. The
map consist of behavioral niches each with a unique solution. The map is
illuminated by the fitness of these solutions. This figure is from Mouret
and Clune (2015). 38

2.5.1 A search tree produced by the Minimax algorithm with the minimax values
shown on each node. Here, the optimal choice is to go right, because the
minimum value we can obtain is -7 and thus higher than -10 when going
left. This illustration is made by Nuno Nogueira. 40

ix

x List of Figures

2.5.2 The four phases of one iteration in Monte Carlo Tree Search. The figure is
from Chaslot et al. (2008a). 42

2.5.3 An example of uniform crossover when using evolutionary planning to
evolve actions sequences for the game Hero Academy. Two action sequences
(top) results in a new action sequence (bottom). This figure is from Justesen
et al. (2017). 44

3.2.1 An example of a typical network architecture used in deep reinforcement
learning for game-playing with pixel input. The input usually consists of
a preprocessed screen image, or several stacked or concatenated images,
which is followed by a couple of convolutional layers (often without pooling),
and a few fully connected layers. Recurrent networks have a recurrent
layer, such as LSTM or GRU, after the fully connected layers. The output
typically consists of one unit for each unique combination of actions in
the game, and actor-critic methods also have one for the state value V (s).
Examples of this architecture, without a recurrent layer and with some
variations, are Mnih et al. (2013, 2015); Nair et al. (2015); Van Hasselt
et al. (2016); Schaul et al. (2016); Osband et al. (2016); Mnih et al. (2016);
Wang et al. (2017a); Rusu et al. (2016b); Salimans et al. (2017); Bellemare
et al. (2017); Fortunato et al. (2018); Wang et al. (2016b); Hessel et al.
(2018); Wu et al. (2017b); Such et al. (2017); Conti et al. (2018); Espeholt
et al. (2018), and examples with a recurrent layer are Hausknecht and
Stone (2015); Mnih et al. (2016); Jaderberg et al. (2017). 51

3.2.2 Influence diagram of the deep learning techniques discussed in this paper.
Each node is an algorithm while the color represents the game benchmark.
The distance from the center represents the date that the original paper
was published on arXiv. The arrows represent how techniques are related.
Each node points to all other nodes that used or modified that technique.
Arrows pointing to a particular algorithm show which algorithms influenced
its design. Influences are not transitive: if algorithm a influenced b and b
influenced c, a did not necessarily influence c. AlphaStar and OpenAI Five
are described in this section but are not on this diagram as they are very
recent approaches that have not yet been peer-reviewed. 52

3.2.3 Screenshots of selected games and frameworks used as research platforms
for research in deep learning. 53

3.2.4 The AlphaStar League. First, imitation learning is applied on human
demonstrations. Then, several iterations of reinforcement learning is applied
where several new agents are created as copies, assigned different reward
functions and then matched against each other. This figure is from (Vinyals
et al., 2019). 69

4.0.1 Continual Online Evolutionary Planning (COEP) continually evolves future
build orders while UAlbertaBot executes the best one found so far. . . . 76

4.1.1 Two-point crossover for two parent build orders and the resulting offspring.
Notice that the build in the bottom right corner remains in the genotype
but becomes inactive because its requirements are no longer met. 78

List of Figures xi

4.1.2 A build order with ten builds, which is manipulated by the four mutation
operators. Builds are highlighted (red) if they are changed during an
operation. (a) Shows the initial build order, (b) the result of a clone
mutation from index 5 to 8, (c) a swap mutation on index 1 and 3, which
swaps the two builds, (d) an add mutation on index 7, which adds a dragoon
and recursively adds its requirements first and (e) a remove mutation at
index 2 that moves the build to the end of the build order. 79

4.2.1 The average fitness over generations for Online Evolutionary Planning using
a different mutation operator. Opaque coloring shows standard deviations. 85

4.2.2 A visualization of Continual Online Evolutionary Planning’s (COEP) ability
to perform successful intra-game adaptation by continually adjusting the
Protoss build order in-game against the built-in Terran bot. The upper plot
shows the number of zealots, dragoons, marines and firebats over time and
the lower plot shows the highest fitness in the population. Green vertical
lines indicate when the game state was updated. The four screenshots in
the top show critical situations in the game. Early in the game the bot
observes a group of Terran marines and continues to produce zealots to
counter them. Shortly after, these zealots fight against a large group of
Terran firebats and many zealots die. COEP quickly adapts its strategy to
switch production to dragoons as they are superior to firebats. A video of
this game can be found here: https://youtu.be/SCZbDpIaqmI. 86

5.1.1 An overview of the data preprocessing that converts StarCraft replays into
vectorized state-action pairs. (a) shows the process of extracting data from
replay files into an SQL database, which was done by (Robertson and
Watson, 2014). (b) shows our extended data processing that first extracts
events from the database into files (c) containing builds, kills and observed
enemy units. All events are then run through a forward model to generate
vectorized state-action pairs with normalized values (d). 92

5.1.2 Neural Network Architecture. The input layer consists of a vectorized
state containing normalized values representing the number of each unit,
building, technology, and upgrade in the game known to the player. Only a
small subset is shown on the diagram for clarity. Three inputs also describe
the player’s supplies. The neural network has four hidden fully-connected
layers with 128 units each using the ReLU activation function. These layers
are followed by an output layer using the softmax activation function and
the output of the network is the prediction of each build being produced
next in the given state. 94

5.2.1 The prediction of the next build being a Nexus (a base expansion) predicted
by the trained neural network. Each data point corresponds to one
prediction from one state. These states have only one Nexus and are
taken from the test set. The small spike around 11 and 12 probes shows
that the network predicts a fast expansion build order if the Protoss player
has not build any gateways at this point. 97

xii List of Figures

5.2.2 The opening build order learned by the neural network when playing against
the built-in Terran bot (the build order also depends on the enemy units
observed). The number next to each build icon represents the probability
of the build being produced next, and points on the timescale indicate
when the bot requests the network for the next build. In this example
the network follows the greedy strategy, always picking the build with the
highest probability. 98

6.0.1Behavioral Repertoire Imitation Learning (BRIL) trains a policy
π(s, b) supervised on a data set of state-actions pairs augmented with
behavioral descriptors in R2 for each demonstration. When deployed,
a system can adapt its behavior by modulating b. High-dimensional
behavioral spaces can be reduced using dimensionality reduction, as low-
dimensional behavioral descriptions allow for faster adaption. 104

6.4.1Visualizations of the 2D behavioral space of Terran army unit
combinations in 7,777 Terran versus Zerg replays. Each point
represents a replay from the Terran player’s perspective. The space was
reduced using t-SNE. (a) The data points are illuminated (black is low
and yellow is high) by the ratio of Marines, Marauders, Hellions, or Siege
Tanks produced in each game. (b) 62 clusters found by DBSCAN. Cluster
centroids are marked with a circle and the cluster number and outliers
are black. The noticeable cluster 2 has no army units. (c) The similarity
between the behaviors of the human players and our approach with four
different feature inputs, corresponding to the coordinates of centroids of
cluster 10, 11, 30, and 32. The behavior of our approach is averaged over
100 games against the easy Zerg bot and its nearest human behavior is
marked with a star. The behavior of the learned policy can be efficiently
manipulated to change its behavior. Additionally, we can control the
behavior such that it resembles the behavior of a human demonstration. . 111

6.4.2 Screenshots of typical army compositions produced by our trained BRIL
policy with behavioral features corresponding to the centroids of cluster 10,
11, 30 and 32. BRIL (C10) executes early timing pushes with Hellions and
Cyclones, BRIL (C11) is aggressive with Marines only, BRIL (C30) creates
mixed armies with many Marines and Siege Tanks, and BRIL (C32) also
creates mixed armies but with less Marines and more Widow Mines. . . . 114

7.2.1 The five VizDoom scenarios. Scenarios with multiple spawning positions
randomly select one of them at the start of an episode. The episode ends
when the goal armor, which only appears in My Way Home and Deadly
Corridor, is picked up. The agent periodically loses health when standing
on acid floors. 123

7.2.2 From top-left to bottom-right: Screenshot from Deathmatch, My Way
Home, Health Gathering Supreme, and Deadly Corridor. Notice that in
some scenarios the agent cannot shoot. The scenario Health Gathering is
similar to Health Gathering Supreme but without walls within the room. 124

List of Figures xiii

7.2.3 The reward per episode of A2C and A2C+RoE during training in five
VizDoom scenarios (smoothed). A2C is trained from the environment’s
extrinsic reward while A2C+RoE uses our proposed method without access
to the reward. The drop in performance seen in the My Way Home scenario
is discussed in-depth in Section 7.2.4.1. 126

7.2.4 Episodic mean occurrence during training for a subset of the event types
in the five VizDoom scenarios. Notice the last spike in the My Way Home
scenario with A2C+RoE, in which the policy ignores the final goal (armor
pickup) to prioritize continuous movement around the maze. 126

7.2.5 Heat maps showing the proportional time spent at each location on the
map in the Deathmatch scenario and its five variations. The values are
based on evaluating the two trained policies 100 times each and clipped
at 0.025. The heat maps show that the A2C-policy prefers to stay near
the plasma gun, even in the map variations where it is not present, while
the A2C+RoE-policy has learned distinct behaviors for each weapon type.
The results in Table 7.2.1 shows that the A2C+RoE-policy is able to reach
high scores in these variations event though it was never trained on them. 128

8.2.1 Procedurally generated levels for Solarfox, Zelda, Frogs, and Boulderdash
with various difficulties between 0 and 1. For each game, human-designed
levels are shown as well. 137

8.4.1 Smoothed mean scores and level difficulties during training across five
repetitions of Progressive PCG in Zelda, Solarfox, Frogs, and Boulderdash.
One standard deviation is shown in opaque. *Only three repetitions of
PPCG and one of PCG 1 for Solarfox. 141

8.5.1 Visualization of the level distributions and how they correlate to human-
designed levels (white circles). Levels were reduced to two dimensions using
PCA and clustered using DBSCAN (ε = 0.5 and a minimum of 10 samples
per cluster). Outliers are black and centroids are larger. 144

9.2.1 A prototypical human vs. human competition consisting of one or more
series between two teams or individuals. Each series consists of multiple
game instances of the same orthogame. 152

9.4.1 A typical AI vs. human competition consisting of one series between two
teams or individuals. The series often consist of identical game instances,
or a limited set of game instances, of the same orthogame. 161

11.1.1The corrected collection size, total normalized quality, and the mean number
of elite evaluations for (a) Rastrigin with noisy performance measures and
(b) feature measures, and (c) for the BipedalWalker. 175

11.1.2Examples of estimated and corrected performance-behavior maps for (a)
Rastrigin with noisy performance measures and (b) feature measures, and
(c) for the BipedalWalker. When behavioral measures are noisy, we can see
how solutions drifts to areas of higher performance over time. This effect
is smaller when using more evaluations. 176

xiv List of Figures

11.2.1Visualizations of an expanding archive with behavioral feature dimensions
f1, f2, and f3. (a) A new solution (the green dot) must compete with
neighboring elites (red dots) to enter the archive. The size of the cell
(dotted lines) surrounding the new solution is determined by a constant
factor of each dimension’s length. (b) The length of f2 is increased as a
new solution (green dot) exceeds the previous bound. Because the size of
the feature space is altered, the size of the future cells surrounding new
solutions is also changed. 179

11.2.2A dimensionality-reduced behavioral space using PCA of the policies in the
archive. The colors correspond to the different instances of A2C which are
the same on the plots above. The size of the dots represent the fitness of
each solution. 182

11.3.1The game board in FFAI after both teams have set up. The blue team just
kicked the ball to the red team and assumed a defensive cover formation,
while the red team is in an offensive wedge formation, protecting the wings
against blitzing opponents. 186

11.3.2Effects of tackle zones on different dice rolls visualized in FFAI. (a) The red
Lineman can block one of two blue Linemen. When blocking the top-most
blue Lineman, two block dice are used due to the two assisting red Blitzers
in the top, while it only gets one block die when blocking the bottom-most
Lineman. (b) The red Catcher can move to seven adjacent free squares.
Since it is already in a blue player’s tackle zone, a Dodge roll is required.
The player has AG = 3, which makes the dodge successful on a roll of 3+.
However, this number is increased by one for each opponent tackle zone
covering the target square. (c) A red human Thrower can attempt to pass
the ball to four nearby team-mates. Two of these team-mates are in the
quick pass range where a pass will be accurate on a roll of 3+ while the
other two are in the short pass range requiring a roll of 4+. If the pass is
accurate, the ball can be caught on 3+ with an additional modifier for each
opponent tackle zone covering the catching player. Note that (b) and (c)
show the required dice rolls after modifiers have been added. 187

11.3.3The 28 spatial feature layers in the FFAI Gym observation. Each layer
has a name, which is shown above the visualization. Here, black squares
represent a value of 1 and white squares represent a value of 0. 197

11.3.4Touchdowns per episode of A2C during training in the three smallest FFAI
Gym environments: (a) FFAI-1-v1, (b) FFAI-1-v3, and (c) FFAI-1-v5,
which features 1, 3, and 5 players on the pitch for each team. Simple
renderings of each environment is shown above the plots. The agent plays
against an agent that takes random actions. The touchdowns are smoothed
over 200,000 steps. The red and green lines show the touchdowns per
episode the Random and Endzone baselines. We see that A2C learns a
policy that is better that the baselines in all three environments. 198

List of Tables

1.0.1An overview of adaptive game-playing algorithms that are
presented in this dissertation. RL refers to reinforcement learning
and IL refers to imitation learning. : The method is capable of achieving
this property. Note that imitation learning and evolutionary planning do
not learn from environmental feedback and thus do not suffer from the
difficulty of sparse rewards. (): More investigation is needed to determine
whether the method has this property. Macro-based BRIL imitates human
behaviors including their intra-game adaptivity. However, when using fixed
behavioral features in BRIL, that enables inter-game adaptation, the intra-
game adaptivity may be reduced. Our experiments with Rarity of Events
(RoE) suggests that RoE technique results in balanced behaviors with
increased generality. MAP-based reinforcement learning with diverging
policies is based on an intrinsic reward mechanism (in our case RoE) which
have shown to overcome sparse rewards. However, it is yet unknown if
the proposed divergence technique has either a positive or negative effect
on learning in games with sparse rewards. COEP: Continual evolutionary
planning. PCG/PPCG: (progressive) procedural content generation. DP:
Diverging Policies. AS: Adaptive Sampling. DE: Drifting Elites. 4

3.2.1 Human-normalized scores reported with various deep reinforcement learning
algorithms in ALE on 57 Atari games using the 30 no-ops evaluation metric.
References in the first column refer to the paper that included the reported
results, while the last column references the paper that first introduced
the specific algorithm. Note, that the reported scores use various amounts
of training time and resources, thus not entirely comparable. Successors
typically use more resources and less wall-clock time. *Hyper-parameters
was tuned for every game leading to higher scores for UNREAL. 59

4.1.1 Unit matchup table that values how strong units are against each other
which is a critical part of the heuristic applied. Values are in the range [0, 2]. 81

4.1.2 Upgrade and tech multipliers, which give units additional value in the
heuristic. 81

xv

xvi List of Tables

4.2.1 Unit combinations of evolved build orders found by Online Evolutionary
Planning after 100 generations. Results are averaged over 50 evolutionary
runs. Some units are excluded from the results for brevity. Each row
represents one scenario containing the Terran units on the left as well as
a Protoss nexus, pylon and four probes. The Protoss units on the right
are the average unit combination of the evolved build orders. For each
unit type, the average count as well as the standard deviation is shown.
The main result is that by following the implemented heuristics, Online
Evolutionary Planning is able to evolve build orders that can effectively
counter the opponent’s strategy. 83

4.2.2 Number of wins, draws and losses by Continual Online Evolutionary
Planning (COEP) against each of the three races controlled by the built-in
bot in StarCraft. The bottom row shows results of COEP with a random
fitness function. 85

4.2.3 Number of wins, draws and losses by Continual Online Evolutionary
Planning (COEP) against three scripted Protoss opening strategies
performed by UAlbertaBot. 86

5.2.1 The top-1, top-3 and top-10 error rates of trained networks (averaged over
five runs) with different combinations of inputs. (a) is the player’s own
material, (b) is material under construction, (c) is the progress of material
under construction, (d) is the opponent’s material and (e) is supply. The
input layer is visualized in Figure 5.1.2. Probe is a baseline predictor that
always predicts the next build to be a probe and Random samples from a
uniform distribution. The best results (in bold) are achieved by using all
the input features. 96

5.2.2 The win percentage of UAlbertaBot with the trained neural network as
a production manager against the built-in Terran bot. The probabilistic
strategy selects actions with probabilities equal to the outputs of the
network while the greedy network always selects the action with the highest
output, and random always picks a random action. The blind probabilistic
network does not receive information about the opponent’s material (inputs
are set to 0). UAlbertaBot playing as Protoss with the scripted dragoon
rush strategy wins 100% of all games against the built-in Terran bot. . . 97

5.2.3 The average number of different unit types produced by the two different
action selection strategies against the built-in Terran bot. The results show
that the greedy strategy executes a very one-sided unit production while
the probabilistic strategy is more varied. 98

6.4.1 Test accuracy and loss for Imitation Learning (IL), BRIL, and IL trained
on clusters 10, 11, 30 and 32. Results show no significant difference between
the IL and BRIL in terms of prediction accuracy. BRIL is, however, able
to express multiple behaviors based on the additional input (see Table 6.4.2).112

List of Tables xvii

6.4.2 Results in StarCraft using Imitation Learning (IL) on the whole training set,
IL on individual clusters (C10, C11, C30, and C32), Behavioral Repertoire
Imitation Learning (BRIL) with fixed behavioral features corresponding to
centroids in C10, C11, C30, and C32. Additionally, results are shown in
which UCB1 selects between the four behavioral features in-between games.
Each variant played 100 games against the easy Zerg bot. These results
demonstrate that by using certain behavioral features, the BRIL policy
outperforms the traditional IL approach as well as IL on behavioral clusters. 113

6.4.3 Results in StarCraft using Imitation Learning (IL) on the whole training set,
IL on individual clusters (C10, C11, C30, and C32), Behavioral Repertoire
Imitation Learning (BRIL) with fixed behavioral features corresponding to
centroids in C10, C11, C30, and C32. Additionally, results are shown in
which UCB1 selects between the four behavioral features in-between games.
Each variant played 100 games against the easy Zerg bot. The nearest
demonstration in the entire dataset was found based on the bot’s mean
behavior (normalized army unit combination) and the distance to each
cluster centroid are shown. These results demonstrate that the behavioral
features of the learned BRIL policy can be manipulated and controlled
towards a desired behavior. 114

7.2.1 Shown are average scores based on evaluating the best policies found for
A2C and A2C+RoE 100 times each. The best results are shown in bold.
The five last rows show how the policies that were trained on the original
Deathmatch scenario generalize to five variations where only one weapon
type is available. Standard deviations are shown for each experiment and
two-tailed p-values from unpaired t-tests. 127

8.4.1 Test results of A2C under different training regimens: a single human-
designed level (Level 0 and Level 4), several human-designed levels (Level
0-3), procedurally generated levels with a fixed difficulty (PCG 0.5 and
PCG 1), and PPCG that progressively adapts the difficulty of the levels
to match the agent’s performance. Random refers to results of an agent
taking uniformly random actions and Max shows the maximum possible
score. Scores are in red if the training level is the same as the test level.
The best scores for a game, that is not marked red, are in bold. *Only
three repetitions of PPCG and one of PCG 1 were made for Solarfox so far.140

11.3.1The positional players allowed on a Human team. MA=Movement
Allowance, ST=Strength, AG=Agility, AV=Armour value. The Ogre
is a special type of player called Big Guys and its skills are not explained
here. 189

A3.1 Experimental configurations for A2C and A2C+RoE. 16 worker threads
were used in Deathmatch. 238

Chapter 1

Introduction

Several games have been promoted by researchers as key challenges in the research field

of Artificial Intelligence (AI) through the years, with the ultimate goal of defeating the

best human players in these games. Traditional board games stood the test at first,

including checkers, backgammon, and chess. Shannon (1988) wrote in his seminal paper

on computational chess, that “chess is generally considered to require ‘thinking’ for skillful

play; a solution of this problem will force us either to admit the possibility of a mechanized

thinking or to further restrict our concept of ‘thinking’” and similarly Simon and Chase

(1988) wrote “if one could devise a successful chess machine one would seem to have

penetrated the core of human intellectual endeavor”. After IBM’s computer program

Deep Blue defeated the chess world champion Gerry Gasparov in 1997 (Campbell et al.,

2002) we do not yet seem to have “penetrated the core of human intellectual endeavor”,

while we certainly have become aware of the opportunities of AI. Since Gasparov’s defeat,

there has been a race toward mastering even more complex games with AI. Recent

developments in machine learning, using deep artificial neural networks (LeCun et al.,

2015), have allowed computer algorithms through reinforcement learning and imitation of

human demonstrations to master several advanced games, including go (Silver et al., 2016)

and several Atari arcade games given only the raw screen pixels as input (Mnih et al.,

2015). Researchers have considered the real-time strategy (RTS) game StarCraft (Blizzard

Entertainment, 1998) to be one of the hardest games for computers to play (Čertickỳ and

Churchill, 2017; Yannakakis and Togelius, 2018a), which could suggest that this game is

the final grand challenge for AI in games before moving on to more difficult real-world

1

2

problems. The AI challenge of mastering RTS games, such as StarCraft, was first proposed

by Buro (2003) and later, large research companies such as Facebook (Synnaeve et al.,

2016), DeepMind (Vinyals et al., 2017), Samsung1, and Tencent (Sun et al., 2018) have

pursued the goal of developing algorithms that can master StarCraft. Additionally, the

corporation OpenAI has attempted to master the game Dota 2 (OpenAI, 2017) that

shares many of the same challenges as StarCraft.

In this dissertation, the focus lies on some of the remaining challenges of developing

game-playing AI for the most difficult games, such as StarCraft and Dota 2. These games

are difficult for AI to master for several reasons. They have large state and action spaces

as well as sparse feedback signals (rewards), making it difficult for both search algorithms

and reinforcement learning to explore them adequately. In this dissertation, I argue (in

Chapter 9) that before AI can fully master a game, it must compete in a setting similar

to human competitions which typically involves series of matches with different variations

(different maps/levels, heroes/characters, etc.) and against different players/teams. Such

a setting requires players to adapt in several ways, and I believe this focus on adaptation

brings a new perspective on the challenge of mastering complex games with AI and

highlights the shortcomings of current algorithms. I have identified the following three

ways in which players must be able to adapt before they can master the most complex

games:

• Intra-game adaptivity: The ability to adapt to opponent strategies within a game.

Prior to the work presented in this dissertation, StarCraft bots usually followed a

hard-coded strategy throughout the entire game (Ontanón et al., 2013; Churchill

et al., 2016). Fixed policies like these can easily be exploited within the game by an

intra-game adaptive player, e.g. a trained human player.

• Inter-game adaptivity: The ability to intelligently switch strategy in-between

games. Complex games, including most RTS games, are usually non-transitive,

meaning that if strategy A is preferred over strategy B (written A > B), and B > C,

it is not necessarily true that A > C. The simplest example of a non-transitive game

is Rock-Paper-Scissors. In non-transitive games, there are typically no dominant

strategy and players must instead rely on mixed strategies, i.e. sampling from a

1https://github.com/TeamSAIDA/SAIDA

3

distribution of known strategies. A key challenge in these games is to avoid being

exploited by the opponent and at the same time to attempt to exploit the opponent’s

weaknesses. Such exploitable weaknesses include being unaware of certain strategies

and simply being unable to execute a strategy properly. I argue that selecting

from a large repertoire of diverse and strong strategies allows for strong inter-game

adaptation.

• Generality: The ability to generalize to many different, and most likely unseen,

variations of the game. These variations include different starting positions,

levels/maps, graphics, and available heroes/characters that may change in-between

a series of matches. I argue that players must be able to play well in all sensible

variations to fully master a game. In Chapters 7 and 8, we show how a state-of-the-art

reinforcement learning algorithm overfits to small training sets of levels.

This dissertation explores new approaches to achieve artificial agents with these three

properties of adaptivity in complex games with large state and action spaces and sparse

rewards. The contributions are all described in the next section while I briefly highlight

the main algorithmic approaches next. Table 1.0.1 gives an overview of these algorithms

and their properties. I first present a variant of evolutionary planning and apply it

to build-order planning as a module in a scripted StarCraft bot (Chapter 4). This

system demonstrates intra-game adaptivity by continually planning high-level actions

throughout the game, which are usually hard-coded in StarCraft bots. In the same setup,

I present a neural-network-based approach to playing StarCraft. Here, a neural network is

trained to imitate human build-order actions that naturally express human-like intra-game

adaptation, while this approach alone is incapable of inter-game adaptation (Chapter 5).

A third approach that I propose for the build-order task is called Behavioral Repertoire

Imitation Learning (BRIL), which learns a large repertoire of diverse behaviors from

human demonstrations (Chapter 6). Our experiments show that using BRIL, a bot can

express inter-game adaptation by selecting intelligently between the learned behaviors

(strategies) when playing a series of matches against the same opponent. Imitation

learning alone cannot exceed human skill level or explore strategies that are not present

in the demonstration set, and thus methods within reinforcement learning is explored as

well. Here, I present an automatic reward shaping technique called Rarity of Events that

4

adapts the reward signals to the temporal rarity of predefined events (Chapter 7). This

approach is shown to be useful to overcome sparse rewards and requires limited domain

knowledge and limited tweaking. Additionally, our results suggest that the learned policies

have improved generality. I also propose a new framework for reinforcement learning

in games in which a new level is generated for each play-through (episode) to achieve

better generalization (Chapter 8). In this framework, I show how the difficulty of the

generated levels can be matched to the performance of the learning agent to overcome

sparse rewards, allowing agents to master games that were otherwise too complex to learn

directly. In the chapter containing ongoing work (Chapter 11), I describe a variant of

MAP-Elites for noisy domains, such as games, and a new quality-diversity reinforcement

learning algorithm.

Properties of Adaptivity
Intra-game Inter-game Overcomes

Method adaptivity adaptivity Generality sparse rewards

Macro-based COEP (Chapter 4)

Macro-based IL (Chapter 5)

Macro-based BRIL (Chapter 6) ()

RoE (Chapter 7) ()

RL+PCG (Chapter 8)

RL+PPCG (Chapter 8)

MAP-based RL + DP (Chapter 11) ()
MAP-Elites + AS + DE Chapter 11)

Table 1.0.1: An overview of adaptive game-playing algorithms that are
presented in this dissertation. RL refers to reinforcement learning and IL refers
to imitation learning. : The method is capable of achieving this property. Note that
imitation learning and evolutionary planning do not learn from environmental feedback and
thus do not suffer from the difficulty of sparse rewards. (): More investigation is needed
to determine whether the method has this property. Macro-based BRIL imitates human
behaviors including their intra-game adaptivity. However, when using fixed behavioral
features in BRIL, that enables inter-game adaptation, the intra-game adaptivity may
be reduced. Our experiments with Rarity of Events (RoE) suggests that RoE technique
results in balanced behaviors with increased generality. MAP-based reinforcement learning
with diverging policies is based on an intrinsic reward mechanism (in our case RoE) which
have shown to overcome sparse rewards. However, it is yet unknown if the proposed
divergence technique has either a positive or negative effect on learning in games with
sparse rewards. COEP: Continual evolutionary planning. PCG/PPCG: (progressive)
procedural content generation. DP: Diverging Policies. AS: Adaptive Sampling. DE:
Drifting Elites.

1.1. Contributions 5

1.1 Contributions

This dissertation takes a new perspective on the challenges of developing artificial game-

playing agents in complex games. The traditional metrics used to measure the complexity of

games have usually focused entirely on computational complexity, including the branching

factor and the size of the state and action spaces. I suggest that several other factors

are equally important, such as the league structures employed in human competitions

of the game, which typically require players to adapt their playing style throughout

repeated matches against multiple opponents. Another important factor is the span of

different game variations, which in some games require players to compete in unseen

variations of the game (e.g. on a completely new level). This dissertation investigates

the challenges introduced by these factors and proposes concrete algorithmic solutions

along with experimental evaluations and analyses. The list of contributions contains work

from several different research collaborations, which are, however, closely connected to

the three adaptive properties described in the previous section. The main contributions

can be summarized as follows:

• A continual evolutionary planning algorithm that can be used for

adaptive long-term planning in real-time games. This approach is similar

to Rolling Horizon Evolutionary Algorithms with EA-shift that was independently

developed by Gaina et al. (2017b). However, some algorithmic differences remain

as our implementation ran the evolutionary algorithm in a separate process and

received periodic state updates from a bot that used the planner’s output. This

algorithm demonstrates promising intra-game adaptivity in StarCraft.

• A modular neural-network-based approach to playing StarCraft wherein

a neural network takes high-level decisions that are performed by several

micro-management modules. This approach, is to the best of our knowledge, the

first bot that, in collaboration with scripted modules, plays the full game of StarCraft

with a neural network. This approach offers a feasible StarCraft AI approach that

requires fewer computational resources compared to end-to-end learning methods.

Our approach trained the neural network using imitation learning from human

demonstrations while several other researchers (Tang et al., 2018; Sun et al., 2018)

6 1.1. Contributions

later extended this approach with reinforcement learning to beat the best bot

developed by Blizzard Entertainment (which is cheating in several ways).

• A novel imitation learning method that learns a repertoire of different

behaviors from a set of demonstrations. This approach is simple and yet

powerful as it allows the user to manually design a behavioral space and then train

a single policy that can express multiple behaviors through a simple modulation

technique. I demonstrate that this method allows for inter-game adaptation to find

the optimal behavior of a modular bot against a fixed opponent. I believe this

approach is also promising for automatic testing of games, as just one system could

express a whole space of different players.

• An automatic reward shaping technique that adapts to the rarity of

predefined events. Using this approach, there is no need to manually specify

the reward values, something that can be difficult in many games. This technique

is applied to the video game Doom and it was able to learn strong policies for

scenarios with sparse rewards. Our results showed that the learned polices had

mixed behaviors with superior generalization in a set of test environments.

• An exploration of overfitting in deep reinforcement learning through the

use of procedural content generation. I show that policies learned with deep

reinforcement learning, in four out of four games in the General Video Game AI

framework, were unable to generalize to new levels of the same game. To deal with

this problem, I present a new framework in reinforcement learning in which a new

level is generated each new episode, matching the generated levels to the current

training performance of the agent. This approach learned strong policies for games

that could not otherwise be learned. This work shifts the focus in reinforcement

learning from the learning algorithm to the challenge of procedurally generating

variations of the environment to improve the generality of the agent and to overcome

sparse rewards.

• A pragmatic way of evaluating the fairness of game competitions between

humans and AI that is based on a black-box view on the competitors and

treats both intrinsic and extrinsic factors of the competition format. This

evaluation framework is applied to evaluate the fairness of recent game competitions

1.2. List of Papers 7

between humans and AI, including matches with AlphaStar (in StarCraft) and

OpenAI Five (in Dota 2). The shortcomings, that our evaluation framework marks

as violations, further highlight the importance of our focus on adaptation.

• A new game challenge and competition for AI that is based on the board

game Blood Bowl. This board game is several orders of magnitude more complex

than previously studied board games in AI as it has a large and complicated

observation space, a variable action space and immensely sparse reward signals.

Additionally, to play the full game in human-like league or tournament constructs,

a policy would need to adapt to millions of different team configurations, requiring

a very high-level of generality.

1.2 List of Papers

This dissertation is based on ten papers. Eight of the papers were published in conference

or workshop proceedings, one paper was published in a scientific journal, and one pre-print

paper titled Learning a Behavioral Repertoire from Demonstrations has not yet been

submitted for peer-review. All nine published papers have been peer-reviewed following

high academic standards. Pre-print versions of all ten papers are made available on my

website www.njustesen.com/publications. The nine peer-reviewed and accepted papers

included in this dissertation are:

• Niels Justesen, and Sebastian Risi. Continual Online Evolutionary Planning for

In-Game Build Order Adaptation in StarCraft. Proceedings of the Genetic and

Evolutionary Computation Conference. ACM, 2017.

• Niels Justesen, and Sebastian Risi. Learning Macromanagement in StarCraft from

Replays using Deep Learning. IEEE Conference on Computational Intelligence and

Games (CIG). IEEE, 2017.

• Niels Justesen, and Sebastian Risi. Automated Curriculum Learning by Rewarding

Temporally Rare Events. 2018 IEEE Conference on Computational Intelligence and

Games (CIG). IEEE, 2018.

• Niels Justesen, Sebastian Risi, and Julian Togelius. Blood Bowl: The Next Board

8 1.2. List of Papers

Game Challenge for AI. Foundations of Digital Games. ACM, 2018.

• Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian

Togelius, and Sebastian Risi. Illuminating Generalization in Deep Reinforcement

Learning through Procedural Level Generation. NeurIPS Workshop on Deep

Reinforcement Learning, 2018.

• Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. Deep Learning

for Video Game Playing. IEEE Transactions on Games, 2019.

• Niels Justesen, Sebastian Risi, and Jean-Baptiste Mouret. MAP-Elites for Noisy

Domains by Adaptive Sampling. Proceedings of the Genetic and Evolutionary

Computation Conference Companion. ACM, 2019.

• Niels Justesen, Michael S. Debus, and Sebastian Risi. When Are We Done with

Games?. 2019 IEEE Conference on Games (CoG). IEEE, 2019.

• Niels Justesen, Lasse Møller Uth, Christopher Jakobsen, Peter David Moore, Julian

Togelius, and Sebastian Risi. Blood Bowl: A New Board Game Challenge and

Competition for AI 2019 IEEE Conference on Games (CoG). IEEE, 2019.

This dissertation has a chapter that is based on work that is not yet peer-reviewed and

just recently has been uploaded as pre-print to www.arXiv.org:

• Niels Justesen, Miguel Gonzalez Duque, Daniel Cabarcas Jaramillo, Jean-Baptiste

Mouret, Sebastian Risi Learning a Behavioral Repertoire from Demonstrations.

arXiv preprint arXiv:1907.03046, 2019.

It should be noted that the paper Playing Multi-Action Adversarial Games: Online

Evolution vs. Tree Search (Justesen et al., 2017), not listed above, was published in the

IEEE Transactions on Computational Intelligence and AI in Games (TCIAIG) journal in

2017 (during my time as a Ph.D. candidate) but it has been excluded from this dissertation

as it contains contributions that have already been credited in my master thesis (Justesen,

2015).

1.3. Outline 9

1.3 Outline

The introduction of this dissertation is followed by a background chapter that is rather

inclusive to encompass the theory and methods that are applied in the main chapters.

The background chapter describes neural networks, search algorithms, and optimization

algorithms used for game-playing. The background is followed by a review of the state-of-

the-art within AI for RTS games as well as video-game playing approaches that rely on

deep neural networks. The main chapters are structured such that they each represent

one publication, while their background section and most of their related work sections

have been lifted into the main background chapter of this dissertation. The main chapters

are followed by a discussion and a chapter describing future directions, which includes

two papers and some preliminary results of ongoing projects. This dissertation finally

concludes on the main contributions.

1.4 Notes on Style and Notation

In this introduction, I have mainly used “I” to refer to myself, while I will use “we” in the

main chapters to acknowledge the collaborative work of the co-authors on the papers that

this dissertation is based on. While the work presented has been lead by myself, I also

want to acknowledge that it was done under the supervision of Sebastian Risi, and partly

Julian Togelius and Jean-Baptiste Mouret.

In several chapters, I present algorithms in pseudo code, while I have put a great effort

into explaining the algorithms in plain text and through simple equations. The pseudo

code is thus only included to offer a precise description in case the reader is interested in

specific details or wants to re-implement the algorithm. I have also strived to publish all

the code of the presented experiments on my Github profile: https://github.com/njustesen.

This dissertation is not math-heavy, while I do use a few equations to explain the

fundamentals of the algorithms in a precise way. Here, vectors and matrices are given a

bold font, where matrices usually are capitalized. For example, linear combination of a

weight matrixW and input vector x is written y = Wx. Scalar variables are not in bold,

10 1.4. Notes on Style and Notation

such as the element at position (i, j) in W , which is written Wi,j. Random variables are

capitalized. Sets are written in this notation S, except the set of real numbers R.

In the notation used by Sutton and Barto (1998), both capital and lower-case letters

are used for state-value and value functions in reinforcement learning algorithms: V (s),

Q(s), v(s), and q(s), to denote whether they refer to a tabular value or not. To make this

simpler, these functions are always capitalized.

Chapter 2

Background

This background chapter describes the methods and theory that are applied and extended

in the main chapters of this dissertation, including neural networks, search algorithms, and

optimization algorithms. This chapter should not be read as a comprehensive introduction

to algorithms and machine learning, as the scope is limited to methods that are typically

applied to game-playing AI.

2.1 Neural Networks

Machine learning, in general, deals with algorithms that learn to solve tasks from data.

Two fundamental tasks studied in machine learning are classification and regression. In

classification, the goal is to learn a mapping function f : Rn → {1, . . . , k}, segregating

the input space into k categories (also called classes). In regression, the goal is to learn

a mapping function f : Rn → R, predicting a scalar value for a given input. These

mapping functions can be learned in various ways that can be distinguished between

non-parametric and parametric methods. The k-nearest neighbors classification algorithm

(k-NN) is an example of a non-parametric algorithm that assigns a class to an input value

based on a plurality vote of the k nearest neighbors in a known data set. A classic example

of a parametric function approximator is the linear regression model f(x) = w>x + b,

where x ∈ Rn is the input vector, w ∈ Rn is a vector of parameters called weights,

and b is an additional scalar parameter called bias or intercept. Linear models cannot

11

12 2.1. Neural Networks

express non-linear relationship in the data and are thus very limiting in many situations.

Multi-layered artificial neural networks, or just neural networks, is a widely popular class

of non-linear parametric function approximators. This section describes different types of

neural networks that are popular for various tasks including video game playing.

2.1.1 Feed-Forward Neural Networks

Artificial Neural Networks (ANNs) are models that are, as the name suggests, loosely

inspired by biological neural networks, however, much simplified. Following this analogy,

ANNs can thus be understood as a network, consisting of neurons that are connected by

synapses that propagates a flow of information through the network. These connections

can either be small or large, determining the strength of the signals that are passed on

to the connected neurons. Strong connections thus put strong attention to the features

represented by their input signal. ANNs can also be seen as either computational graphs

of transformational operations, or mathematically as an extension to the linear regression

model explained earlier.

A feed-forward neural network consists of multiple layers of transformational functions,

each consisting of a linear combination of input values and weights followed by a non-linear

activation function. A three-layered feed-forward neural network can be described as

f(x) = f (3)(f (2)(f (1)(x))), where f (j) refers to the neural network’s jth layer. Note, that

we here use the counting terminology suggested in Bishop (2006), and thus the input

vector is not considered a layer as it does not involve any transformations. Each layer,

except for the output layer, is called a hidden layer. Figure 2.1.1 shows a fully-connected

feed-forward neural network with two layers.

A layer in a feed-forward neural network takes D input variables x1, . . . xD equal to the

output of the previous layer, where the first layer simply takes the input vector. The first

step involved in forward-propagation of a neural network is to compute linear combinations

of the input features and set of parameters, such that zj =
∑i=1

D Wjixi + bj, where W is

a weight matrix and b is a vector of bias parameters for this layer. The output of a layer

(called activations) is computed by transforming z using a differentiable and non-linear

function g(·) (called an activation function). If a linear function is used in all hidden

2.1. Neural Networks 13

Input Hidden layer Output

h1

h2

h3

i1

i2

Figure 2.1.1: A two-layered fully-connected neural network visualized as a computational
graph with two input values, one hidden layer of three units using ReLU activations and
one output layer with a single unit using a sigmoid activation.

layers, then the neural network is a linear function, despite having multiple layers, since a

function of linear functions is also linear. The forward propagation of an entire layer can

also be described as a simple affine transformation between the input and the weights

f(x) = g(W>x+ b) = [o1, . . . , oM]>. Layers that use this form of forward propagation

are called dense or fully-connected, as all input unit are densely connected to all output

units.

The activation function can be any non-linear function, while simple and differentiable

functions are preferred as they allow for efficient calculations of the gradient. A popular

activation function is the logistic sigmoid function S(z) = 1
1+exp(z)

which squashes the value

into the range [0, 1]. The sigmoid activation function (which is sometimes also denoted

by σ) is thus useful to apply in the output layer when performing binary classification

tasks. The hyperbolic tangent, tanh(z) = sinh(z)
cosh(z)

= exp(2z)−1
exp(2z)+1

is another squashing function

but in the range [−1, 1]. While logistic activation functions historically have been very

popular, they run into the problem of saturation when the input is far from 0, making

gradient-based learning difficult. A simpler activation function is the rectified linear unit,

ReLU(z) = max{0, z}. It is simpler because it is a piece-wise linear function with constant

derivatives. ReLU thus has no saturation problem when z > 0 as the derivative is always

1, while gradient-based learning, for this particular activation, becomes impossible when

z < 0, as the derivative here is 0. This issue can be mitigated by initializing biases to

values larger than 0. ReLU, or variations of it, is recommended as the default activation

function in hidden layers of feed-forward neural networks, while tanh, and sigmoid, for

14 2.1. Neural Networks

some tasks, are used in the output layer, as well as in some recurrent neural networks

(Goodfellow et al., 2016). The three activation functions that have been described are

visualized in Figure 2.1.2.

The softmax activation function is a special exponential squashing function that normalizes

a vector z ∈ RK into a probability distribution also in RK using σ(z)i = exp(zi)∑K
j=1 exp(zj)

, such

that
∑K

i=1 σ(z)i = 1. This activation function is e.g. useful in classification tasks such

that the output represents the probabilities of assigning a data example, represented by

the input, to each of K classes.

4 2 0 2 4
1.0

0.5

0.0

0.5

1.0 tanh
sigmoid
ReLU

Figure 2.1.2: A visualization of commonly used activation functions in hidden layers of
artificial neural networks: sigmoid, the hyperbolic tangent (tanh), and the rectified linear
unit (ReLU).

It has been shown that feed-forward neural networks, with a single hidden layer with

sufficiently many units and non-linear activations, are a class of universal function

approximators; i.e. it has the capability of approximating any continuous function

(Hornik et al., 1989). The number of units needed in the hidden layer may, however,

grow exponentially with the number of inputs. Deep networks, with multiple hidden

layers, allow the computations of the same units to be reused exponentially in terms of

network depth (Montufar et al., 2014). While there exist some theoretical work on how to

select the architectural hyper-parameters (Lu et al., 2017), these values are often found

experimentally, e.g. using grid search or random search (Bergstra and Bengio, 2012).

2.1. Neural Networks 15

2.1.2 Convolutional Neural Networks

When the data of interest is structured in a grid -like structure, such as 2-D images or 1-D

time series, they often contain spatial relationship between values that are nearby in the

grid. Here, it is thus useful to have a model that can recognize several different spatial

patterns across the whole grid. For example, when the task is to detect dogs in images, it

is useful to be able to recognize hair throughout the whole image. While a fully-connected

neural networks can approximate any function of interest, its weights are tied to specific

locations. Thus, a unique set of weights must be learned for every location in the grid

where a local pattern might occur. Parameter sharing is the idea of reusing weights across

the data grid and this is exactly what the convolution operation does. Convolutional

neural networks (CNNs) have several layers of convolution and they have significantly

improved the performance of neural networks in image classification tasks (LeCun et al.,

1998; Krizhevsky et al., 2012).

A convolutional layer consist of several sparse weight matrices, called kernels or filters, that

are able to detect local patterns. Both the input and output of a convolutional layer consist

of several feature maps (grid-structured data). When convolution is applied, the kernels

stride across the input feature maps, resulting in multiple interactions for each set of

kernel weights. Each interaction computes the sum of the element-wise products between

the kernel and the input area. The value in the output feature map at position (i, j), can

be formally described by the following formula (this formulation is from Goodfellow et al.

(2016)):

S(i, j) = (I ∗K)(i, j) =
M∑
m=1

N∑
n=1

Ii+m,j+nKm,n,

where I is two-dimensional input feature map being traversed by a M ×N kernel. This

process results in multiple feature layers, if multiple kernels are used. The number of

kernels used, their window size, and how many values to skip when striding, are important

hyper-parameters that can vary between layers. Additionally, one can apply padding to

the input feature maps, e.g. to maintain the same dimension in the input and output.

Convolution consists of linear combinations and is thus usually followed by a non-linear

16 2.1. Neural Networks

activation function. It can be useful to apply a non-parameterized pooling operation

to reduce the dimensionality based on statistical summaries of values in local areas of

the feature map. Max pooling express how much a pattern is represented in the input

which is especially useful in classification tasks. However, the reduction also means that

information about the locations is lost, which might be why it is not so common to use

pooling in many control problems, such as video game-playing (see Chapter 3). Figure

2.1.3 shows a simple example of convolution followed by non-linearity and max pooling.

In fact, experiments by Springenberg et al. (2014) have shown that max pooling layers

can be completely replaced by convolutional layers with increased striding in many object

recognition tasks. If the activation function is monotonously increasing, which most of

the commonly used ones are, then the operation is commutative with max-pooling.

1 2

1

0

0

0 1

2 0 2

1 1 -1

1 4

3 -1

Kernel Input Output
feature map

4

Max pooling

*

1 4

3 0

Non-linearity
(ReLU)

Figure 2.1.3: A simple example of convolution (usually denoted by an asterisk) followed
by ReLU activations and max pooling. Here, a striding of one is used, no padding, and a
max pooling window size of four. The kernel thus makes four interactions with the input
feature map, producing four values in the output. The first interaction between the input
and the kernel is highlighted: 1× 1 + 0× 2 + 0× 2 + 1× 0 = 1.

2.1.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) is a class neural networks for sequential data of the

form x(1), . . . ,x(τ), such as text strings or sequences of images. The naive implementation

to handle such data would be a fully-connected neural network that treats each element

of each feature vector x(i) as a unique input feature with its own set of parameters. This

restricts the length of the sequence τ to be fixed and we run into the same issue as with

fully-connected networks for spatial data as there are no parameter sharing. Humans

also do not have to reconsider all past events to take decisions but instead rely on the

persistent state of thoughts that are continuously updated as time goes.

2.1. Neural Networks 17

h(t) = f(h(t−1),x(t)),

where both x(t) and h(t−1) are weighted input features. This recurrent procedure allows

the neural network to utilize parameter sharing and the sequence length τ is not restricted

to a fixed size. This can be visualized either as a feedback loop that propagates the hidden

state to itself, or the network can be unrolled to show the temporal propagation of hidden

states in an unfolded computational graph (see Figure 2.1.4).

Figure 2.1.4: Two visualizations of an RNN where A is a recurrent hidden layer. (Left)
in the style of a circuit diagram. (Right) as an unfolded computational graph. The
illustration is from Christopher Olah’s excellent visual explanation of RNNs: https:
//colah.github.io/posts/2015-08-Understanding-LSTMs/.

Backpropagation of RNNs is basically the same as for feedforward neural networks as long

as the gradient is backpropagated in the unfolded computational graph. This procedure

is also referred to as Backpropagation through time (BPTT).

RNNs run into the problem of learning long-term dependencies as the error signal that flow

through time tend to either vanish or explode exponentially. The next section will provide

more details on error signals and the problem of vanishing and exploding gradients. The

Long Short-Term Memory (LSTM) cell (Hochreiter and Schmidhuber, 1997) is designed to

overcome these problems by introducing three sigmoid gates (visualized on Figure 2.1.5)

that are parameterized by weight matrices Wf ,Wt,Wo ∈ Rh×d and Uf ,Ut,Uo ∈ Rh×h,

where d is the number of the input features and h is the number of hidden units, as well

as three bias vectors bf , bi, bo ∈ Rh. An LSTM layer in a neural network typically consist

of multiple cells, where each cell can be treated as a hidden unit in a hidden layer. The

cell operations thus operate as a layer taking a vector xt as input at time step t. A forget

gate (ft) determine how much of the stored cell state from the previous time step ct−1 to

keep, an input gate (it) determines how much of the new candidate value (Equation 2.1.4)

to add to the cell state, and an output gate (ot) determines how much of the new cell

18 2.1. Neural Networks

state to output and set as the cell’s hidden state. Each gate is computed as follows (using

the notation in (Cho et al., 2014)):

ft = σ(Wfxt +Ufht−1 + bf) (2.1.1)

it = σ(Wixt +Uiht−1 + bi) (2.1.2)

ot = σ(Woxt +Uoht−1 + bo) (2.1.3)

Using these gates, a cell state ct and a hidden state ht can be computed:

ct = ft ◦ ct−1 + it ◦
Candidate value︷ ︸︸ ︷

σ(Wcxt +Ucht−1 + bc) (2.1.4)

ht = ot ◦ tanh(ct) (2.1.5)

The hidden state ht is passed to the next layer while it is also used as recurrent input

to itself at the next time step together with ct. LSTMs thus have two states that

flows through time and learns weights that determine when to store and release memory.

Different variants of LSTMs exist (Gers and Schmidhuber, 2000), including the simpler

variant called the Gated Recurrent Unit (GRU) that only has two gates (Cho et al., 2014).

Figure 2.1.5: A visualization an LSTM module (or cell) which has an forget gate, an
input gate, and an output gate. The illustration is from Christopher Olah’s excellent visual
explanation of RNNs: https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

2.2. Training Neural Networks with Gradient Descent 19

2.2 Training Neural Networks with Gradient

Descent

Deep learning is a large family of algorithms and techniques that allows multi-layered

neural networks to be optimized efficiently (LeCun et al., 2015). Deep learning is typically

based on variants of the optimization technique called gradient descent, that updates

the parameters in small steps following the negative gradient of the loss function. It is

called deep learning, because neural networks can more easily solve complex tasks when

structured in multiple layers, thus becoming deep. The Backpropagation algorithm is

used to efficiently compute gradients in layered neural networks and is the backbone of

gradient descent. Stochastic Gradient Descent (SGD) is a variant that is typically used

for large data sets in deep learning. Deep neural networks can of course be optimized with

many other optimization algorithms, e.g. evolutionary algorithms which are described in

Section 2.4.

The following section will describe backpropagation and Stochastic Gradient Descent

(SGD) as well as techniques to improve generalization beyond the training set. It is not

the goal here to give a broad overview to the many aspects of deep learning but rather to

provide an introduction to the basic optimization techniques that are fundamental to the

methods presented in the following chapters, such as deep reinforcement learning.

2.2.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a popular algorithm for optimizing the parameters

of a differentiable model. Let us consider the supervised learning setting where the goal is

to approximate the mapping function f : X → Y between data examples X and their

labels Y . The goal of the optimization process is to reduce a loss function that determines

how well the model is performing. In regression, one would typically employ the mean

squared error (MSE):

L(f(x; θ),y) =
1

N

N∑
i=1

(ŷ − y)2i ,

20 2.2. Training Neural Networks with Gradient Descent

between N predicted labels ŷ and true labels y of the data examples x. The loss

function L can be seen as a fully differentiable computational graph that is based on f ,

where the set of partial derivatives ∂L
∂w

, for each w ∈ θ, tells us how the loss function

will change as a function of each weight. These partial derivatives form the gradient

g = 1
N
∇θ

∑n
i=1 L(f(x; θ),y), which we can use to make a gradient update θt+1 ← θt− ηg,

where η is a small value called the learning rate or step size, e.g. η = 0.01. This process

is called gradient descent, as the gradient is being followed in a descending direction to

decrease the loss. The learning rate η controls the magnitude of each gradient update,

and is an important and sometimes tricky hyper-parameter to set. If η is too low, learning

becomes slow, and if η is too high, it will overshoot the minimum and fail to converge.

The backpropagation of errors algorithm, or just backpropagation, is applied to compute

the gradient of each parameter in an efficient way. The algorithm computes the partial

derivatives of each layer starting from the output and working its way backwards by

reusing the computed derivatives along the way. This procedure is based on the chain

rule of calculus, which is used to calculate the derivatives of functions that are composed

of other functions. The chain rule of calculus states that if z = f(y) and y = g(x), then
dz
dx

= dz
dy
· dy
dx
. As a small example, let us consider the linear combination z = Wx + b

followed by an activation function g(z) = y. Given the partial derivative of some loss L

with respect to y, we can compute ∂L
∂Wij

(the gradient of any weight Wij with respect to

the loss L) using the chain rule. This is done by chaining the partial derivatives:

∂L

∂Wij

=
∂L

∂y
· ∂y
∂z
· ∂z

∂Wij

.

Notice, that ∂y
∂z

can be computed just once for all the weights. The strength of

backpropagation is exactly this, to reuse the partial derivatives going backward through

the computational graph. We can similarly also compute ∂L
∂xi

for all the input features and

then perform the above procedure again for each unit in the preceding layer by starting

a new chain from ∂L
∂xi

. Implementations of the backpropagation algorithm follows the

procedure described here, while they make use of several matrix operations to improve

the efficiency.

A major issue when relying on gradients to update parameters in deep neural networks are

2.2. Training Neural Networks with Gradient Descent 21

the vanishing and exploding gradient problems that we briefly mentioned when describing

LSTMs. Because of the chain rule, the gradients of the first layers of a deep network are

products of the gradients of all the proceeding layers. If these gradients are generally

small, then the final computed gradient decreases exponentially with the number of layers

in front of it, i.e. the gradient vanishes. In contrast, if the gradients in the proceeding

layers are generally large, then the final computed gradient increases exponentially, i.e. it

explodes. These effect makes it difficult to learn the parameters in the first layers. Logistic

activation functions, such as sigmoid and tanh easily saturate, causing gradients to vanish.

The ReLU activation function limits the effect of these problems as they only saturate

in one direction. Residual networks (He et al., 2016b) can also overcome these issues by

having layers with so-called skip-connections, such that layer i is connected to both layer

i+ 1 and layer i+ k, i.e. skipping k layers.

The gradient descent algorithm follows a simple procedure. First, the gradient of the

loss is computed for all data examples, and then a gradient update is performed. This

procedure is then continued until some stopping criteria is met. When all data examples

are used to compute the gradient, an accurate estimate of the true gradient is obtained.

This can, however, be very inefficient because neural networks with many parameters

require a large number of updates to converge. By the law of large numbers, it is sufficient

to sample a so-called mini-batch of data examples instead, if we accept some inaccuracy

in the estimated gradient. In fact, it is often more efficient to do many inaccurate updates

rather than a few accurate updates. Stochastic Gradient Descent (SGD) follows this

procedure and is much more efficient when optimizing neural networks than the naive

gradient descent algorithm. Here, the batch size, i.e. the number of data examples sampled

for each update, is an important hyper-parameter.

An important improvement to the basic SGD algorithm is to maintain a momentum of

the gradient updates performed. The momentum is an exponentially decaying average of

the gradients which limits the effect of using sampled mini-batches. A further extension

is the maintenance of adaptive learning rates for each parameter in the network which

perform the same functionality as momentum and thus replaces it. AdaGrad adjusts the

learning rates with respect to the partial derivatives of each parameter, such that large

derivatives results in rapid decreases (Duchi et al., 2011). AdaGrad is, however, designed

22 2.2. Training Neural Networks with Gradient Descent

for convex functions as it is unable to increase the learning rates again, which can result in

premature convergence in more complex optimization landscapes. Adadelta (Zeiler, 2012),

RMSprop (Hinton et al., 2012), and Adam (Kingma and Ba, 2014) solves the issues of

AdaGrad in various ways by maintain a momentum-like decaying average of the gradients.

These variants are all considered robust optimization algorithms for neural networks, as

of today.

2.2.2 Generalization

Machine learning models usually go through a training phase and are thereafter expected

to perform well on new data examples that was not part of the set of training examples.

If a model performs well on a training set but has poor performance on a test set, then

it is said to be overfitting. This generally happens if the training set is too small or

the model has too many parameters. In cases where a model is too simple to fit the

training data adequately, it is said to be underfitting. In both cases, the model will have

poor generalization and it is thus ideal to find a balance in-between the two extremes. A

model’s ability to generalize can be measured by setting aside a test set that is not used

in training and then compare the model’s performance on the two sets. When separating

the data, it is important that the data points are independent and identically distributed

(i.i.d). This process is called cross-validation and can be repeated several times with

different partitions. If data and computational resources are abundant, then generalization

is generally not a problem in a supervised setting, but this is rarely the case. Instead

several techniques exists to achieve good generalization, and some are described in the

next sections.

2.2.2.1 Regularization

The complexity of a model is related to the number of parameters and the expressivity of

the model and it has great impact on its ability to fit the training data (Hawkins, 2004).

If the complexity is too large, there is a risk that the model will overfit. Regularization is

a collection of techniques that aims to improve generalization, typically by maintaining a

complex model while preventing it not to overfit during training.

2.2. Training Neural Networks with Gradient Descent 23

L2 regularization is a straightforward technique that adds a penalty term ‖w‖2 to the

loss function, such that when the model is optimized towards having few large activations

values, as they typically result in an overfitted model. By using the L2 regularization

term, the model is simultaneously optimized to have a low complexity and and a high

performance.

Another popular and simple regularization technique is dropout where a portion of the

activations in each layer is randomly dropped (set to zero) during training (Srivastava

et al., 2014). This idea is interestingly inspired by the concept of co-adaptation in sexual

reproduction, where genes are more robust, and thus preferred, if they can co-exist together

with many different combinations of other genes. Using dropout, a neural network is thus

not able to rely on particular activations for particular training examples (a common reason

for overfitting), but must instead learn to utilize a random mix of multiple activations.

Other regularization techniques include early stopping, wherein overfitting is measured

throughout training on a third held-out data set (called the validation set) and then

training is stopped as soon as the validation loss had not decreased for a number of epochs.

Data augmentation is another technique wherein new training examples are generated

based on the original dataset. For image data, simple transformations such as rotation

and image manipulation can be done, while this technique is tricky for some other data

types.

2.2.2.2 Transfer & Multi-task Learning

Transfer learning (Pan and Yang, 2009; Tan et al., 2018) and multi-task learning (Caruana,

1997) are two techniques that are related to generalization as they both aim at improving

learning in a target domain after having learned from a set of source domains. It can

e.g. be beneficial in an image classification task to first learn a classifier on a large set of

source objects (e.g. different animals) and then learn a classifier for the target object (e.g.

a cat), especially if the number of examples in the target data set is small. This approach

thus relaxes the criteria that all training data used to train a model must come the same

distribution (Tan et al., 2018). A network-based deep transfer learning technique is to

first train a deep neural network for task A, then reuse the first layers in the network

to construct a new network model that is trained on task B (Tan et al., 2018). Usually,

24 2.3. Reinforcement Learning

the first layers represent general knowledge and deep layers represent domain specific

knowledge. This procedure can be repeated over several tasks. In multi-task learning

(Caruana, 1997), layers are not removed, but a new output layer is simply added for each

task.

Figure 2.2.1: A visualization of a neural network using multi-task learning with one
task-dependant output layer for each task and one general hidden layer.

2.3 Reinforcement Learning

The previous section described the basics of training deep neural networks using gradient

descent. The training setting considered so far has been supervised learning, in which

a data set of data points X and labels Y is given, and a mapping function f : X → Y

is learned. For many interactive problems, in which a system takes actions based on

the observed state of the environment, it is impractical to collect a sufficient number of

demonstrational examples of a desired behavior, and thus supervised learning becomes

intractable. For these problems it can be necessary to let a parameterized system interact

with the environment and then gradually adjust its parameters based on the observed

quality of its actions. Reinforcement Learning is a class of optimization algorithms that

takes this approach. More precisely, it learns a policy (mapping between states and

actions) by taking actions in an environment and adjust the policy based on feedback

provided by the environment. Reinforcement learning can be combined with deep learning

2.3. Reinforcement Learning 25

to approximate the policy function with a neural network, and this combination is typically

called deep reinforcement learning. In contrast to approximate solutions, reinforcement

learning algorithms can also learn in a tabular setting, in which the policy function

maintains a stored value for all state-action pairs. However, this approach does not scale

to most interesting problems, including most games.

Reinforcement learning methods can be separated into two distinct classes; model-based

and model-free. In model-based reinforcement learning, the learning algorithm has access

to the dynamics of the environment; it can foresee the outcomes of taking actions in a

given state. Such a model of the world is rarely available and indeed, some model-based

methods attempt to learn it, e.g. the work on world models by Ha and Schmidhuber

(2018). In this dissertation, only model-free reinforcement learning methods are used.

This section describes the basics of reinforcement learning, starting with and introduction

to Markov Decision Processes, which provides a good framework with a set of notations used

in reinforcement learning. Then, basic reinforcement learning algorithms are described,

including temporal difference learning and Q-learning. Finally, modern deep reinforcement

learning techniques are described, including deep Q-learning, the policy gradient algorithm

REINFORCE and the actor-critic methods A3C and A2C.

2.3.1 Markov Decision Processes

Markov decision processes (MDPs) provide a formal framework and notation for describing

reinforcement learning problems and algorithms in a simple and precise way. MDPs are

sequential decision problems in which an environment, that has a state, is manipulated by

an agent taking actions. At each time step t, the agent selects an action at to perform,

which results in the environment transitioning from state st to a new state st+1 along with

a feedback signal rt+1 called reward that is sent back to the agent. This process follows

an underlying distribution p(s′, r|s, a) for all s′, s ∈ S, r ∈ R ⊂ R, and a ∈ A. This

distribution describes all the dynamics of the environment from which we can compute

both the state-transition function p(s′|s, a), and the reward distributions r(s|a) and

r(s, s′|a). The main problem of MDPs is to find a policy π that maximizes the expected

future reward, which is often discounted with a factor γ ∈ {0, 1}, such that immediate

26 2.3. Reinforcement Learning

rewards are more valuable than future rewards. The discounted future reward Gt at time

step t is thus defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γK−1Rt+k,

where K is the number of steps in the episode.

If states include all important information about the past that makes a difference for the

future (Sutton and Barto, 1998), then the MDP has the Markov Property. This is not

usually the case in video games, where screen images often represent a partial observation

of the whole state, and thus the agent will need to remember important information

about past states. If the MDP does not have the Markov Property, it is often useful to

make a distinction between the true hidden states S, that is unknown to the agent, and

partial state observations that the agent has access to. It is thus common to use the term

observation instead of state when solving MDPs with hidden information. An MDP is

either episodic, if there exists a set of states that terminates the process, or continuous, if

the process never terminates. Most games can thus be modelled as episodic MDPs.

2.3.2 Temporal Difference Learning

A central idea in many reinforcement learning algorithms is that of Temporal Difference

(TD) learning which is a method for learning the state-value function Vπ(St) = Eπ[Gt|St =

s] of a policy π. When following π and Gt is observed, one can compute the TD

error λ at every step, which is the difference between the observed and expected value

δt = Gt − V (St). In the tabular setting, the following update rule can then be used:

V (St) ← V (St) + αδt, where α is a small learning rate. When using differentiable

function approximators, such as neural networks, we can perform a gradient update on

our parameters: θt+1 ← θt + δt∇V (st).

TD-learning can be used with Monte Carlo rollouts for episodic tasks such that an entire

episode is executed where after the error is computed and the update rule is applied for

every step. One-step TD learning is at the other extreme, as it performs the updates

at every step during an episode. Since the future rewards are not yet known when the

2.3. Reinforcement Learning 27

updates are performed, a so-called bootstrapping technique is applied to estimate the value

of the next state. Because of the following equality:

Vπ(s) = Eπ[Gt|St = s] = Eπ[Rt + γGt+1|St = s] = Eπ[Rt + γVπ(St+1)|St = s],

one-step TD uses the update rule V (S) ← Rt + γVπ(St+1). Monte Carlo methods and

one-step TD are two extremes that span a large set of intermediate update rules; usually

the most efficient method is in between the two. These methods can be expressed as

n-step TD, where Gt is bootstrapped after n steps, or by λ-returns, where λ ∈ {0, 1}

assigns discounted weights to future returns. The algorithm based on λ-returns is called

TD(λ), where TD(0) is the same as one-step TD, and TD(1) is the same as using Monte

Carlo rollouts.

2.3.3 Q-learning

Learning a state-value function is not by itself enough to learn a policy. The famous

Q-learning algorithm by Watkins and Dayan (1992) is an extension to TD learning that

learns a state-action value function Qπ(St, At) = Eπ[Gt|St = s, At = a] of a policy π,

instead of a state-value function. Policies can be derived from Q, e.g. by greedily selecting

the action with the highest value: maxaQ(St, a). The update step for Q-learning is similar

to that of TD-learning but with Gt = Rt + γmaxaQ(St+1, a). The trajectories are sampled

using an exploration policy, that is usually ε-greedy: it selects actions greedily with a

probability ε and random otherwise.

Because the exploration policy is different from the policy of which Q is estimated (unless

ε = 1), Q-learning is an off-policy algorithm. An on-policy variant is SARSA (State-

Action-Reward-State-Action), where Gt = Rt + γQ(St+1, at+1), such that the Q-function

estimates the state-action value function of the exploration policy after taking at+1 in the

next state st+1.

Q-learning can easily be used with function approximators such as neural networks similarly

to TD learning. However, the more recent variant called Deep Q-learning by Mnih et al.

(2013) improves the stability when training deep neural networks. A convolutional neural

28 2.3. Reinforcement Learning

Algorithm 1 Deep Q-learning with Experience Replay from Mnih et al. (2013)
usually express
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1,M do

Initialise sequence s1 = {x1} and preprocessed sequenced φ1 = φ(s1)
for t = 1, T do

With probability ε select a random action at . ε-greedy
otherwise select at = maxaQ

∗(φ(st), a; θ)
Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions (φj, aj, rj, φj+1) from D

Set yj =

{
rj for terminal φj+1

rj + γmaxa′ Q(φj+1, a
′; θ) for non-terminal φj+1

Perform a gradient descent step on (yj −Q(φj, aj; θ))
2

network trained with Deep Q-learning is called a Deep Q-Network (DQN). The complete

Deep Q-learning algorithm is described in Algorithm 1. During training, state-transitions

(φt, at, rt, φt+1) are appended to a replay memory buffer with a capacity of N tuples. Here,

φt is a processed representation of state st, e.g. grey-scaled or down-scaled. Mini-batches

are then sampled from the buffer to update Q similarly to standard supervised learning

using deep neural networks. More variations of deep Q-learning and their performances

on game benchmarks is covered in Chapter 3.

2.3.4 Policy Gradient

Instead of deriving a policy from a learned action value function, policy gradient methods

learn a policy directly that is parameterized by θ, such that π(a|s,θ) is the probability

of taking action a in s with parameters θ. The policy distribution is often expressed by

having a neural network with softmax activations in the final layer. The policy π can then

be used probabilistically for exploration, which reflects the policy better than ε-greedy.

The policy is updated by performing gradient ascent based on a performance measure

J(θ). The policy gradient theorem (Sutton et al., 2000) states the following proportional

relationship:

2.3. Reinforcement Learning 29

∇J(θ) ∝
∑
s∈S

µ(s)
∑
a∈A

Qπ(s, a)∇π(a|s, θ),

where µ(s), for all s ∈ S, is the state distribution of π. While µ(s) is unknown, states is

expected to be encountered in this proportion as π is the exploration policy. We can thus

remove it and use the following update rule:

θ ← θ + α
∑
a∈A

Qπ(s, a)∇π(a|s, θ)

Rather than computing the state-action value for all a ∈ A, the REINFORCE policy

gradient algorithm by Williams (1992) simplifies the rule to consider only that sampled

action. To arrive at the update rule used in REINFORCE, we consider the following

equality which holds as long as we sample from the same policy:

Eπ[Gt] = Eπ[Q(St, At)] = Eπ

[∑
a∈A

Qπ(St, a)π(a|St, θ)

]
.

To use Gt instead of the unweighted sum over actions
∑

a∈AQπ(s, a) (as in the previous

update rule) we simply divide by the probability of sampling At, arriving at the following

update rule:

θ ← θ + αGt
∇π(At|St, θ)
π(At|St, θ)

.

This update rule can then be simplified to θ ← θ + αGt∇ lnπ(At|St, θ).

2.3.5 Actor-Critic Methods

REINFORCE updates the policy based only on Gt, not taking into account how good

this value is compared to taking the other actions. This can be a problem if all action

values are high in a particular state, as the gradient update would increase the likelihood

of taking all actions with little differentiation. This problem can be solved by using a

30 2.3. Reinforcement Learning

baseline b(St), such that the gradient magnitude is determined by the error δ = Gt− b(St).

The baseline is often a simultaneously learned parameterized state value function v̂(St),

such that δ is computed similarly as in TD learning. Both the policy and the state-value

function is thus updated using gradient ascent/descent. Given that v̂(St) is somewhat

accurate, the policy update is now relative to the value of other actions. This relative

value is also called the advantage At = Qπ(St, At)− Vπ(St); the advantage of taking an

action in a state relative to the other actions.

Policy gradient methods with a state-value baseline and n-step bootstrapping are called

actor-critic methods. The policy is the actor and the state-value function is the critic.

An efficient actor-critic algorithm for training deep neural networks is the Asynchronous

Advantage Actor-Critic (A3C) algorithm by Mnih et al. (2016) that distributes the actor

and critic parameters to a number of parallel worker processes that each interact with

a copy of the environment. Each worker performs asynchronous gradient updates and

sends these gradients back to a master thread. The master thread performs updates

on its own set of parameters based on all the accumulated gradients and periodically

re-distributes them to the workers as they will diverge over time. The bottleneck of A3C

lies in the inter-process communication when transferring gradients and parameters back

and forth, thus limiting its ability to scale to a large number of workers or parameters.

A simpler variant is the synchronous Advantage Actor-Critic (A2C) algorithm, that was

first used in Wu et al. (2017b). A2C similarly maintains a global set of parameters in a

master process and worker processes maintain a copy of the environment but no model.

Instead, workers send their observed state and reward at every step to the master process

and then receives the next action to perform. The master process queries the policy in

batches upon receiving observations from all the workers, making the algorithm efficient

on modern hardware. Additionally, gradient updates are only done on the master process

in contrast to A3C. Both variants use the following gradient update rules on the two sets

of parameters θπ and θv:

θπ ← θπ + απ(Gt − V (St;θv))∇θπ ln π(Ai|Si;θπ)

θv ← θv + αv∇θv(Gt − V (Si;θv))
2

where Gt is the n-step bootstrapped value estimate: Gt =
∑n

i=0 γ
iRt+i.

2.4. Evolutionary Algorithms 31

2.4 Evolutionary Algorithms

Evolutionary algorithms (EA) are a family of population-based optimization algorithms

that are inspired by natural evolution. A population of candidate solutions (also called

individuals or genomes) is maintained, wherein new solutions are constantly formed using

operations such as genetic recombination and mutation to introduce new innovations. A

fitness-based selection mechanism forces the least fit solutions to be replaced at every

generation by more fit solutions. A solution is represented by a genotype; its low-level

encoding, e.g. in {0, 1}n or Rn. One can think of the genotype as the DNA of a solution.

The phenotype, on the other hand, is the observable characteristics of a solution.

EAs differ from other classes of optimization algorithms in several aspects. First of

all, they do not rely on assumptions about the search space, such as differentiability or

convexity, and are therefore a class of black box optimization algorithms. Another feature

that makes EAs unique is the maintenance of a population of solutions that allows for

diversification, which is useful to overcome local optima.

This section will describe a few basic EAs including genetic algorithms and evolution

strategies, followed by specific algorithms that makes use of diversification, including

multi-objective EAs, novelty-search, and MAP-Elites.

2.4.1 Genetic Algorithms

Genetic algorithms (GAs) (Holland, 1975) are among the simplest EAs. They maintain N

solutions in a population and uses three main operators in each generation: reproduction,

crossover, and mutation. Reproduction involves the selection of parents in the current

population that will be used for breeding offspring for the next generation. Parents

are selected according to their fitness, such that the genetic material of fit solutions is

maintained. Traditionally, this is done through fitness proportionate selection where

the probability pi of selecting solution i as parent is pi = fi/Σ
N
j=1fj, where fi is the

fitness of the ith solution. Truncation selection is another selection mechanism that

first sorts the population by fitness and then removes the least fit solutions, such that

the population has been truncated to a proportion p. The remaining solutions are then

32 2.4. Evolutionary Algorithms

selected uniformly for reproduction or used an equal number of times. When two parents

are selected, a crossover operator recombines their genotypes. This is traditionally done

through single-point crossover, where a crossover point on the genotype strings of two

parents is sampled. Two new genotypes are then created by swapping the genetic material

on one side of this point. K-point crossover does the same but with k crossover points

instead. Figure 2.4.1 shows an example of single-point and two-point crossover. Uniform

crossover is another operator that simply selects each gene from the parents with equal

probability. During the copying process, or as an additional step afterward, mutations

are introduced to add new genetic material into the gene pool. Mutation can simply be

done by inserting a randomly sampled gene, with some small probability, instead of the

gene inherited from the parents. Algorithm 2 describes a GA with fitness proportionate

selection and Algorithm 3 describes a GA with truncation selection.

1	1	0	1	1	1	0	1	0
0	0	1	0	1	0	0	1	1

0	0	1	1	1	1	0	1	0
1	1	0	0	1	0	0	1	1

1	1	0	1	1	1	0	1	0
0	0	1	0	1	0	0	1	1

0	0	0	1	1	1	0	1	1
1	1	1	0	1	0	0	1	0

Single-point	crossover Two-point	crossover

Parents

Offspring

A A B

Figure 2.4.1: A simple of example of single-point and two-point crossover operations on
two parent genotypes in {0, 1}8, each resulting in two offspring.

Algorithm 2 Genetic Algorithm (GA) with fitness proportionate selection
Initialize a population P of N random solutions
Evaluate the fitness of all solutions in P
while termination criterion is not fulfilled do
P ′ = ∅
while P ′ contains less than N solutions do

parent1, parent2 ← SelectParent(P), SelectParent(P) . with pi = fi/Σ
N
j=1fj

child1, child2 ← Crossover(parent1, parent2)
child1, child2 ← Mutate(child1), Mutate(child2)
evaluate fitness of child1 and child2
P ′ ← P ′ ∪ {child1, child2}

P ← P ′
Evaluate the fitness for all solutions in P

GAs do not rely on assumptions about the search space. which can be seen as a weakness

of the algorithm as it searches in the neighborhood of known solutions in a rather

uninformed/random manner. It can thus be more useful to apply other algorithms that

2.4. Evolutionary Algorithms 33

do make assumptions about the search space to reduce the number of evaluations in an

efficient manner. Some variants of Evolution Strategies, which are described next, does

this well in continuous spaces. GAs can, however, be useful when optimizing a discrete

non-differential objective function f : {1, . . . , K}n → R.

Algorithm 3 Genetic Algorithm (GA) with truncation selection
Initialize a population P of random solutions
Evaluate the fitness of all solutions in P
while termination criterion is not fulfilled do

Truncate P to a proportion p of the fittest solutions . E.g. p = 1/2
P ′ = ∅
while P ′ is not filled do

parent1, parent2 ← SelectParent(P), SelectParent(P) . E.g. uniformly
child1, child2 ← Crossover(parent1, parent2)
child1, child2 ← Mutate(child1), Mutate(child2)
evaluate fitness of child1 and child2
P ′ ← P ′ ∪ {child1, child2}

P ← P ∪ P ′

2.4.2 Evolution Strategies

Evolution Strategies (ES) (Rechenberg, 1978) is a class of EAs that usually searches for

solutions in continuous spaces, i.e. optimizing a function f : Rn → R. In the case where

ES is applied to a discrete solutions space, it can be seen as a variant of a GA with

truncation selection. However, most ES variants assumes a continuous space.

ES comes in two traditional variants that are described in Algorithm 4 as well as numerous

newer improvements. One of the traditional variants is (µ+ λ)-ES, wherein a population

of µ+ λ individuals is the basis for the next generation, such that solutions are selected

at the end of each generation from both the parent population and the newly created set

of offspring. In (µ, λ)-ES, the population contains only µ solutions, where the solutions

for the next generation is selected only from the set of λ offspring. (µ+ λ)-ES is possibly

the most common of the two as is it, in contrast to µ + λ, guarantees a monotonically

improvement. In both variants, the initial population is drawn from a multivariate normal

distribution in Rn and the mutation operator adds a random perturbation vector drawn

from another multivariate normal distribution with zero mean and constant variance.

34 2.4. Evolutionary Algorithms

Algorithm 4 (µ+ λ)-ES and (µ, λ)-ES
Initialize a population P of µ solutions
Evaluate the fitness for all solutions in P
while termination criterion is not fulfilled do

Reproduce and mutate a set P ′ of λ offspring
Evaluate the fitness of the solutions in P ′
if (µ+ λ)-selection then

Select the (µ+ λ) best fit solutions in P ∪ P ′ as the new population P
else

Select the µ best fit solutions in P ′ as the new population P

The simplest ES algorithm is the (1, 1)-ES that maintains just one solution in the

population and produces one new offspring each generation. This is also called a hill-

climbing algorithm. When optimizing deep neural networks, it has become popular to use

a variant of (1, λ)-ES, i.e. it only maintains one set of parameters θ, with a reproduction

operation consisting only of Gaussian perturbations (Salimans et al., 2017). This variant

belongs to the class of Natural Evolution Strategies (NES) that estimates a gradient of

the objective function over λ perturbations of θ. In Salimans et al. (2017), the gradient

is approximated by computing a fitness-weighted average of the λ offspring. θ is then

updated using gradient ascent. NES algorithms differ in the way they estimate the gradient

and the distribution used to sample perturbations (Wierstra et al., 2014).

The covariance matrix adaptation evolution strategy (CMA-ES) is a highly-praised

improvement to ES that adapts the variance of the distribution used to sample

perturbations. The perturbation distribution thus becomes ellipsoid-shaped corresponding

to the eigenvectors of the covariance matrix computed from the data points in the current

generation, such that new points are sampled in a non-uniform direction towards the

promising solutions. CMA-ES is an efficient algorithm in non-linear non-convex problems

but it does not scale well with the number of dimensions n in the solutions space as the

covariance matrix requires O(n2) computations. CMA-ES is thus usually not used to

optimize large neural networks.

2.4.3 Multi-objective Evolutionary Algorithms

Multi-objective EAs (MOEAs) is a class of algorithms for problems with multiple objectives

with the goal of finding solutions along the optimal Pareto frontier, such that none of the

2.4. Evolutionary Algorithms 35

solutions are dominated. In the two-objective case, with objectives f1 and f2, a solution A

is dominated by another known solution B if f1(B) > f1(A) and f2(B) > f2(A). Solutions

along a Pareto front forms a Pareto set which are the optimally known solutions, from

which the user can make a trade-off. The Non-dominated Sorting Genetic Algorithm II

(NSGA-II) is an efficient MOEA (Deb et al., 2002). Multi-objective EAs is not the focus

in this dissertation but they are to some degree related to the family of quality-diversity

algorithms that are discussed and applied several times.

2.4.4 Quality Diversity

In deceptive problems, progression towards higher fitness sometimes leads to solutions

that are further from the objective (Goldberg, 1987). Objective-based search are thus

susceptible to converge to local optima that are far from the global optimum. Whitley

(1991) argues that all challenging optimization problems are to some degree deceptive.

The problem with deception is that important stepping stones toward the objective are

not properly reflected by the objective function (Lehman and Stanley, 2011c). Novelty

Search (Lehman and Stanley, 2011a) introduces a rather counter-intuitive approach to

deceptive problems, which is to abandon the objective completely. Instead, the search is

focused toward novelty; solutions that behave differently from previously found solutions

receive a high fitness.

The novelty search algorithm simply replaces the normally static fitness function with a

dynamically adjusting novelty metric. This metric relies on a distance function between

two solutions in a domain-specific behavioral space, such that new solutions that are

far from prior solutions receive a high fitness. The novelty of a solution is equal to the

sparseness of the behavioral neighborhood, which is computed as the average distance (in

the behavioral space) to the k-nearest neighbors. If the measured novelty of an individual

is above a certain threshold, then it is permanently added to an archive that represents

previously found solutions. Individuals in the both archive and the current population are

then used to compute the novelty scores. Novelty search has been shown to outperform

objective-based search in deceptive navigation (see Figure 2.4.2) and locomotion tasks,

despite the objective being unknown to novelty search (Lehman and Stanley, 2011a)). In

the navigation task, the behavioral description of a solution is equal to the 2D coordinate

36 2.4. Evolutionary Algorithms

Goal

Start

(b) Objective search

Goal

Start

(a) Novelty search

Figure 2.4.2: Final points visited in a deceptive navigation task by (a) novelty search
and (b) objective-based search, starting at the green dot and the objective is the distance
to the goal (the red dot). The figures are from Lehman and Stanley (2011a).

of the final point visited in the maze.

Searching for novelty alone does not guarantee that high-performing solutions are found,

especially if solutions with similar behavioral characteristics can differ widely in terms of

performance. As soon as novelty search has found some solutions that occupy a behavioral

niche, it will no longer add new solutions with the same behavioral characteristics, even if

their performance is better. Novelty Search with Local Competition (NSLC) (Lehman and

Stanley, 2011b) is an extension that employs a multi-objective EA with both a performance

and a novelty objective. Here, the performance metric is a local competition between the

new solution and the k-nearest neighbors in the behavioral space. The idea here is to

focus the search on optimizing the quality of solutions in every niche instead of just the

best niches. NSLC thus aims at optimizing both the quality and the diversity of solutions

in the archive. This idea has given rise to a new family of EAs called Quality-Diversity

(QD) algorithms (Pugh et al., 2016). While traditional optimization algorithms aim at

finding the optimal solution to a problem, novelty search aims at finding a set of solutions

that behave as different as possible. QD algorithms thus combine these two goals and

attempt to find a set of high-performing solutions that each behaves differently (Pugh

et al., 2016).

MAP-Elites (Mouret and Clune, 2015) is a QD-algorithm that differs from NSLC in several

aspects. First, it does not maintain a population throughout the evolutionary run, only

an archive divided into cells that reflects regions (niches) of the behavioral space. The

procedure of MAP-Elites is straight-forward (see Algorithm 5. Individuals are iteratively

sampled from the archive, mutated, and evaluated. If the new solution outperforms the

elite in its behavioral niche (corresponding to a cell in the archive) it becomes the new

2.4. Evolutionary Algorithms 37

elite of that niche. MAP-Elites is also called an illumination algorithm as it aims to find

the highest-performing solution in every niche of the behavioral space, i.e. illuminate

the whole behavioral space, while NSLC merely balances the novelty and performance

objectives.

Algorithm 5 MAP-Elites (Mouret and Clune, 2015)
(P ← ∅,X ← ∅) . Create an archive of {solutions X and their performances P }
for iter = 1→ I do . Repeat for I iterations.

if iter < G then . Initialize by generating G random solutions
x′ ←random_solution()

else
x←random_selection(X) . Randomly select an elite x from X
x′ ←random_variation(x) . Create an offspring x′ of parent x

b′ ←feature_descriptor(x′) . Simulate x′ and record its feature descriptor b′
p′ ←performance(x′) . Record the performance p′ of x′
if P(b′) = ∅ or P(b′) < p′ then . If x′ is best in the cell
P(b′)← p′ . store the solution x′ in the archive
X (b′)← x′

A key advantage of QD-algorithms is that they produce a large set of spatially related

solutions that gives a system the ability to switch between solutions when deployed.

Figure 2.4.3 shows an example of this in the form of a behavior-performance map. As the

solutions have spatial relationships, in a usually low-dimensional behavioral space, efficient

optimization algorithms for continuous spaces can be used for this adaptation, such as

the intelligent trial-and-error (IT&E) algorithm (Cully et al., 2015). IT&E relies on a

pre-computed archive of solutions with their prior fitness and behavioral characteristics

which are used to construct a prior distribution of the objective function, which is also

called a behavior-performance map. A Bayesian optimizer is then used to sample a point

in the map, record the observed performance and compute a posterior distribution of the

objective function. This process is then continued until a satisfying solution is found.

38 2.5. Search Algorithms

%
 b

on
e

% voxels filled

fit
ne

ss

3-legged triped
 (muscle legs)

3-legged triped
 (muscle legs)

used in arXiv

Figure 2.4.3: A 2D behavior-performance map of voxel-based virtual creatures found
by MAP-Elites. Here, the performance metric is walking speed. The map consist of
behavioral niches each with a unique solution. The map is illuminated by the fitness of
these solutions. This figure is from Mouret and Clune (2015).

2.5 Search Algorithms

Games can be seen as a tree of sequential decisions that can be explored online (as the

game is being played). Search algorithms can explore this tree of possible future outcomes

to either find one promising action or to schedule a plan of several actions. This section

describes such algorithms for game-playing, including A*, Minimax, Monte Carlo Tree

Search (MCTS), and evolutionary planning algorithms. We distinguish these algorithms

from optimization as search algorithms are applied online (during the game) in contrast

to optimization that typically attempts to find solutions (e.g. policies) offline.

Fundamental to AI for game-playing are tree search algorithms, that start with a game

state s ∈ S and creates a search tree by iteratively (or recursively) creating branches to

possible outcomes (other game states) for each available action in A. This procedure

2.5. Search Algorithms 39

requires a forward model, that simulates a state-transition function f : S ×A → S which

may follow a non-deterministic probability distribution p(s′|s, a) for all s, s′ ∈ S and

a ∈ A.

The most basic class of tree search algorithms are uninformed search, such as depth-first

or breadth-first search. Best-first search algorithms, on the other hand, performs informed

search and requires a heuristic to select from which node in the tree to expand from next.

This heuristic evaluates the game state represented by the node, e.g. by the distance to

the original game state (of the root node) or the estimated chances of winning in the

game state. Such heuristics can either be manually hand-crafted of learned through data.

Tree search algorithms can either be implemented as open loop and closed loop search

Perez Liebana et al. (2015). In closed loop search, nodes store the state and a branch

is added for each possible outcome from a node. This is trivial for deterministic games

while it can result in a high number of branches in stochastic games. In open loop search,

states are not store in the nodes, but only the statistics. Here, actions are still stored

in the edges that lead do nodes in the search tree, while the encountered state can be

different at each traversal. Open loop search is thus useful in stochastic games to limit

the number of branches at every node.

This section will describe a few informed tree search algorithms that are useful for game-

playing as well as an alternative evolutionary planning approach that instead of building

a search tree evolves complete action sequences. The sections describing A*, Minimax,

and MCTS are not critical prerequisites to follow the main chapters of this dissertation,

while they provide a brief introduction to several game-playing algorithms that can be

useful to be aware of.

2.5.1 A* Path-finding Algorithm

A well-known best-first search for path-finding is A* by Hart et al. (1968). The algorithm

maintains a set of known states that have not yet been fully expanded, starting with the

current state. A state is expanded by adding all reachable states to the unexpanded set.

At each iteration of the algorithm the most promising state in this set is explored further.

States are valued using and evaluation function f(s) = g(s) + h(s), where g(s) is the cost

40 2.5. Search Algorithms

of travelling from the starting state to s and h(s) is an admissible heuristic of the minimal

remaining cost before reaching the goal. The heuristic is admissible if the minimum cost

of all possible paths from s to the goal is higher than h(s), for all s ∈ S. A* alone can

play games wherein a single character has to navigate in a simple environment, such as

Super Mario Bros (Nintendo, 1985) (Togelius et al., 2010).

2.5.2 Minimax

The Minimax algorithm is useful in adversarial turn-based games as it takes into account

that the opponent has agency as well. The algorithm is based on the two strategies

in zero-sum games, maxi maxj vai,aj (maximin) and maxj maxi vai,aj (minimax) where

two players select actions ai and aj and vai,aj ∈ R is the outcome that player 1 tries to

maximize and player 2 tries to minimize. Player 1 thus follows the maximin strategy

trying to maximize the minimum outcome after player 2 selects an action and player 2

follows the minimax strategy trying to minimize the maximum outcome after player 1

selects next.

+∞10 5 -10 7 5 -5-7-∞

10 5 -10 -7

10 -10

-∞

-7

-7-10

5

5

-70 (max)

1 (min)

2 (max)

3 (min)

4 (max)
Figure 2.5.1: A search tree produced by the Minimax algorithm with the minimax
values shown on each node. Here, the optimal choice is to go right, because the minimum
value we can obtain is -7 and thus higher than -10 when going left. This illustration is
made by Nuno Nogueira.

Alpha-beta pruning is an improvement of Minimax that safely ignores sub-trees entirely

of actions that are already known to be worse than another action at the same level. This

can be done when a part of the sub-tree is explored.

For most interesting games, Alpha-beta pruning is not able to reach the end of the game

2.5. Search Algorithms 41

and thus a heuristic is used to evaluated the game state at a certain depth. The top chess-

playing programs today used Alpha-beta pruning with several additional improvements

while the algorithm falls short in most games that are more complex.

2.5.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a best-first search that uses stochastic sampling as

a heuristic (Chaslot et al., 2008a; Coulom, 2006), and has been successfully applied to

games with large branching factors such as Civilization II (Branavan et al., 2011), Magic

the Gathering (Cowling et al., 2012), and Settlers of Catan (Szita et al., 2009). The

algorithm starts with a root node representing the current game state. Four phases are

sequentially executed in iterations until a given time budget is used or a satisfying goal

state is reached. In the selection phase, the tree is traversed from the root node using

a tree policy until a node with unexpanded children is reached. In the expansion phase,

a child node is expanded from the selected node. In the simulation phase (also called

rollout), the remaining part of the game, from the expanded node’s game state, is played

out using a default policy. In the backpropagation phase, the outcome of the game is

backpropageted up the tree until the root node is reached.

1. Selection: The tree is traversed from the root node using a tree policy until a node

with unexpanded children is reached. Edges going from nodes represent actions

available at the node’s game state.

2. Expansion: A child node is expanded from the selected node.

3. Simulation: A simulation of the remaining part of the game from the expanded

node’s game state is played out using a default policy. These simulations are also

called rollouts.

4. Backpropagation: The result of the game is backpropageted up the tree until the

root node is reached. The visit count of each node is also incremented which affects

the selection process in the following iterations.

The tree policy determines how the search balances exploration and exploitation during

the selection phase. Usually the Upper Confidence Bounds (UCB) algorithm is used,

42 2.5. Search Algorithms

Figure 2.5.2: The four phases of one iteration in Monte Carlo Tree Search. The figure
is from Chaslot et al. (2008a).

which selects the node that maximizes:

UCB1 = Xj + C

√
2 lnn

nj
,

where n is the visit count of the current node, nj is the visit count of the child j, C

is a constant determining the amount of exploration versus exploitation and Xj is the

normalized value of child j. The default policy is used during rollouts to select actions,

which can be a complex scripted policy or one that selects random actions. An ε-greedy

strategy can also be used to select a random action at probability ε and at probability

1− ε follows some predefined policy.

Numorous variants of MCTS have been applied to many different games (Browne et al.,

2012) where other tree-search algorithms have failed. To allow MCTS to be applied to

games with increasingly higher branching factors, a variety of different MCTS variations

has been developed. Numerous enhancements exist for MCTS to handle large branching

factors, such as First-Play Urgency (FPU) (Gelly and Wang, 2006), which encourages

exploitation in the early stages by assigning a fixed score to unvisited nodes. Another

enhancement that has been shown to improve MCTS in go is Rapid Action Value

Estimation (RAVE) (Helmbold and Parker-Wood, 2009) which updates statistics in nodes,

with a decreasing effect, when their corresponding action is selected during rollouts.

Portfolio Greedy Search (Churchill and Buro, 2013) and Hierarchical Portfolio Search

2.5. Search Algorithms 43

(Churchill and Buro, 2015) introduced a script-based approach, which have also been

applied to MCTS in StarCraft (Justesen et al., 2014). NaïveMCTS builds a tree where

each node corresponds to a combination of actions, and the exploration policy is based on

a naive assumption that a unit’s actions are independent of other units’ actions (Ontanón,

2013). Portfolio Greedy Search and NaïveMCTS require that actions must be tied to

units, as is common in real-time strategy games. Progressive strategies have been used to

limit the search space with success in go (Chaslot et al., 2008b) by focusing the search

using domain knowledge and then slowly unpruning nodes. Several progressive pruning

methods have shown to improve MCTS for go (Bouzy, 2005), where the idea is to prune

nodes that are statistically inferior to their siblings. Sequential halving splits the time

budget into a number of phases wherein exploration happens in a uniform manner and

after each phase the worst half of the nodes are eliminated (Karnin et al., 2013). MCTS

can use macro-actions (repeated actions) to reduce the depth of the search tree, which

can be beneficial in domains that require continuous control (Powley et al., 2012).

2.5.4 Evolutionary Planning

Evolutionary algorithms have been used to evolve controllers for numerous games (Risi

and Togelius, 2015) where fixed behaviors are evolved offline in a training phase. Perez

et al. (2012) introduced Rolling Horizon Evolutionary Algorithms (RHEAs) that runs

online while the agent is playing to evolve the future action sequences. RHEAs have

been applied, with good results, to a number of real-time environments including the

Physical Traveling Salesman Problem and many games in the General Video Game AI

(GVG-AI) framework (Gaina et al., 2017a; Levine et al., 2013). RHEAs evolve a sequence

of actions for a fixed number of steps into the future. After the agent’s time budget is

used, the first action in the most fit action sequence is performed where after new actions

sequences are evolved from scratch one step further into the future, i.e. the horizon is

“rolling”. The evolved action sequences are evaluated by simulating these in a forward

model and evaluating the outcome. Online evolutionary planning, originally called online

evolution, (Justesen et al., 2016, 2017) is a similar formulation of RHEAs that is suited

for multi-action adversarial games as the entire time budget is spent to evolve an action

sequence for a complete turn, which is then executed to end. A portfolio-based version

44 2.5. Search Algorithms

of evolutionary planning has also been tested for small-scale battles in StarCraft (Wang

et al., 2016a) using scripted behaviors instead of actions. Evolutionary planning will be

used throughout this dissertation to refer to the class of planning algorithms that is based

on evolutionary algorithms, encompassing both RHEAs, online evolutionary planning,

and their variants.

Figure 2.5.3: An example of uniform crossover when using evolutionary planning to
evolve actions sequences for the game Hero Academy. Two action sequences (top) results
in a new action sequence (bottom). This figure is from Justesen et al. (2017).

Chapter 3

State-of-the-art in AI for Video-game

Playing

This chapter describes state-of-the-art AI methods for game-playing. This survey of

methods does not include all methods for all games. Instead we focus on methods that

are used to play RTS games as well as well as game-playing methods that employ deep

neural networks, as the contributions of this dissertation build on work in these two areas.

First, classic methods for playing RTS games, that are not based on deep neural networks,

are reviewed. Then, a broad survey is presented on methods that do employ deep neural

networks for game-playing, across many different game genres, including RTS games. The

reader should be aware that many of the surveyed methods were published in parallel

with, or after, the work in this dissertation was published.

3.1 AI for Real-Time Strategy Games

Strategy games are games where the player controls multiple characters or units, and

the objective of the game is to prevail in some sort of conquest or conflict. Usually, but

not always, the narrative and graphics reflect a military conflict, where units may be

e.g. knights, tanks or battleships. The key challenge in strategy games is to lay out and

execute complex plans involving multiple units. This challenge is in general significantly

harder than the planning challenge in classic board games such as chess mainly because

45

46 3.1. AI for Real-Time Strategy Games

multiple units must be moved at any time and the effective branching factor is typically

enormous. The planning horizon can be extremely long, where actions that are taken at

the beginning of a game impact the overall strategy. In addition, there is the challenge of

predicting the moves of one or several adversaries, who have multiple units themselves.

Real-time strategy games (RTS) are strategy games which are usually understood to not

progress in discrete turns, but where actions can be taken at any point in time. In fact,

most RTS games do implement turns, by having 24 or more steps every second where

each player can take actions. RTS games add the challenge of time prioritization to the

already substantial challenges of playing strategy games.

Researchers have considered RTS games, and StarCraft in particular, to be the hardest

games for computers to play (Čertickỳ and Churchill, 2017; Yannakakis and Togelius,

2018a). The challenge of creating artificial agents for RTS games were first proposed

by Buro (2003). In this dissertation, several experiments use the RTS games StarCraft

as a testbed. This section first gives a brief introduction to the game, then provides a

background on several different StarCraft playing bots and the techniques used. This

section describes classic approaches to RTS games that does not apply neural networks,

while we will return to RTS games in the next section that include approaches to game-

playing using neural networks.

3.1.1 StarCraft

StarCraft is a real-time strategy (RTS) game released by Blizzard Entertainment in 1998.

Its expansion set StarCraft: Brood War was released later the same year and became

extremely popular as an e-sport. The sequel StarCraft II was released in 2010 with the

same core gameplay but has a more modern interface as well as several new units and

maps. In this dissertation, we use both StarCraft: Brood War (Blizzard Entertainment,

1998) and StarCraft II: Legacy of the Void (Blizzard Entertainment, 2015), while StarCraft

will be used to refer to these games collectively.

Players control one of three races in StarCraft, Terran, Protoss and Zerg, each with

their own strengths and weaknesses. Each player starts with four workers (even more in

StarCraft II) that can gather resources and construct buildings, as well as a base that

3.1. AI for Real-Time Strategy Games 47

can produce more workers. As the game progresses each player produces combat units,

buildings, technologies, and upgrades (jointly referred to as builds) until one player is

able to overrun the opponent’s base. Advanced builds require that some basic builds are

produced first and these requirements form a tree structure called a tech tree1. A major

part of a player’s strategy is the order of builds produced, i.e. the build order, which

determines the number and combination of units the player will have throughout the

game.

StarCraft provides incomplete information about the game state, since the opponent’s

base is initially hidden and must be explored by scouting units. This, combined with

the fact that multiple agents must be controlled in real-time, makes it a challenging

environment for decision making agents. The decision-making process can be split into

micro-management and macro-management tasks. We define micro-management as

the tactical control of individual units and buildings, and macro-management as the

strategic planning of what builds to produce and in which order..

Bots can communicate with the StarCraft: Brood War game using the Brood War

Application Programming Interface (BWAPI)2. BWAPI allows other C++ programs to

access the game state in StarCraft: Brood War as well as giving commands to units, and

is used by all the bots in the aforementioned competitions.

3.1.2 Modular StarCraft Bots

The game has become an important benchmark in the field of game AI with several

competitions such as the AIIDE StarCraft AI Competition3, the CIG StarCraft RTS

AI Competition4 and the Student StarCraft AI Competition5. Many challenges must be

overcome to succeed in these competitions, such as terrain analysis, pathfinding, and

build order scheduling. Up to 2016, the most successful StarCraft bots relied mainly

on hard-coded strategies (Ontanón et al., 2013; Churchill et al., 2016). Many of these

1The tech trees for the three races in StarCraft:Brood War: https://liquipedia.net/starcraft/Technology_
tree and for StarCraft II: https://liquipedia.net/starcraft2/Terran_Tech_Tree, https://liquipedia.net/
starcraft2/Protoss_Tech_Tree, and https://liquipedia.net/starcraft2/Zerg_Tech_Tree.

2http://bwapi.github.io/
3http://www.cs.mun.ca/~dchurchill/starcraftaicomp/
4https://liquipedia.net/starcraft/CIG
5http://sscaitournament.com/

48 3.1. AI for Real-Time Strategy Games

bots implement hard-coded build orders and are only able to adapt by following some

predefined rules. The problem with hard-coded approaches is that the bot is limited to a

fixed set of strategies, but more importantly the ability to adapt to what happens in the

game is restricted as well. While a hard-coded approach can be successful against many

other bots, it is easy for human players to counter these strategies.

Most StarCraft bots have a modular design, in which the tasks are divided into smaller

sub-problems (i.e. a divide and conquer strategy). These modules often form hierarchy of

abstraction that enables the top-level modules to perform macro-management tasks while

lower level modules perform micro-management. The open source UAlbertaBot6 by David

Churchill is an example of such an approach. The strategy manager maintains the strategy

and communicates to the production manager what build order to follow. The production

manager then takes care of assigning workers and buildings to produce the next builds

in the queue, which happens simultaneously while the combat manager controls units in

battle and the scout manager controls any scouting units. A strategy for UAlbertaBot

can be described in a configuration file as a scripted build order; a hard-coded strategy

followed by the bot. The modular design is described in more detail in Ontanón et al.

(2013).

3.1.3 Build-order Optimization and Adaptation in

StarCraft

There exist several approaches to build-order search and optimization for StarCraft.

Churchill and Buro (2011) implemented a depth-first branch & bound algorithm that

finds the shortest possible time span to achieve a given goal (i.e. a list of units the build

order should obtain). The problem of optimizing opening build-orders has also been

approached with multi-objective evolutionary algorithms (Kuchem et al., 2013; Köstler

and Gmeiner, 2013; Blackford and Lamont, 2014) by encoding the genotype as a list of

builds. The strength of these methods is that they do not evolve build orders to reach

one goal, but several. While these approaches to build-order optimization work well,

even when compared to professional players, they are only designed to find an opening

6https://github.com/davechurchill/ualbertabot

3.1. AI for Real-Time Strategy Games 49

build-order and do not take the opponent’s strategy into account as the game progresses.

Synnaeve and Bessiere (2011) showed promising results for adaptive build-order planning;

their approach can predict the opponent’s strategy from the noisy observations in the

game using a Bayesian model. However, their approach relies on hard-coded rules on top

of the prediction model and it is unknown how well it will work when integrated into a bot.

Another approach, by Garćıa-Sánchez et al. (2015), demonstrates how a complete strategy

can be evolved, including both macro-management and micro-management behaviors.

The evolved strategies are however static and do not change during a game. Some

attempts have been made to predict the opponent’s strategy from partial information

(Cho et al., 2013; Synnaeve and Bessiere, 2011), but it has not been demonstrated how

these approaches can be applied to build-order planning.

The most recent StarCraft AI competition results, at the time of writing, are from the

AIIDE 2018 StarCraft AI Competition7. Here, a few new advanced modular bots appeared.

The second place bot, CherryPi from Facebook AI Research used inter-game build-order

adaptive optimization technique: “CherryPi has 8-13 strategies per matchup. It selects

one at the start of the game based on history against the current opponent, using a

bandit model with time-decaying weights on previous games. Using a pre-trained model,

and given the current state of the game, it estimates the expected likelihood of winning

(“value”) with each of the available strategies, and under certain conditions will switch to

the strategy with the highest value. This can produce “mixed” strategies by switching

back and forth”8. This is an interesting intra-adaptive approach that is limited by a small

set of pre-defined strategies, while it also allows for inter-game adaptation.

Interestingly, the winner did not use any build-order adaptation but instead learned the

optimal timing for a well executed all-in attack: “SAIDA basically plays the mechanic

Terran in all games. it starts with a stable defense-first strategy and after mid stage of

game, it seeks the best rush timing and win the game with a powerful one-shot attack.”9

7http://www.cs.mun.ca/~dchurchill/starcraftaicomp/2018/
8http://www.cs.mun.ca/~dchurchill/starcraftaicomp/2018/aiide/AIIDE2018_StarcraftAICompetition.

pdf
9http://www.cs.mun.ca/~dchurchill/starcraftaicomp/2018/aiide/AIIDE2018_StarcraftAICompetition.

pdf

50 3.2. Playing Video Games with Deep Neural Networks

3.2 Playing Video Games with Deep Neural

Networks

In this section, recent advances in deep learning for video game playing and employed

game research platforms are reviewed. This review is written from the perspective

of different types of games, the challenges they pose for deep learning, and how deep

neural networks can be used to play these games. A variety of review articles on deep

learning exists (Goodfellow et al., 2016; LeCun et al., 2015; Schmidhuber, 2015), as well

as surveys on reinforcement learning (Sutton and Barto, 1998), neuroevolution in games

(Risi and Togelius, 2015) and deep reinforcement learning (Li, 2018), here we focus on

these techniques applied to deep neural networks for video game playing.

In particular, we focus on game problems and environments that have been used extensively

for deep-learning-based game AI, such as Atari/ALE, Doom, Minecraft, StarCraft, and

car racing. Additionally, we review existing work that aim to play a particular video game

well (in contrast to board games such as go), from pixels or feature vectors, without an

existing forward model.

It is important to note that there are many uses of AI in and for games that are not

covered here; Game AI is a large and diverse field (Yannakakis and Togelius, 2018b, 2015;

Miikkulainen et al., 2006; Galway et al., 2008; Muñoz-Avila et al., 2013). Instead, we

focus on methods that apply deep neural networks for playing video games well, while

there is plenty of research on playing games in a believable, entertaining or human-like

manner (Hingston, 2012). AI is also used for modeling players’ behavior, experience or

preferences (Yannakakis et al., 2013), or generating game content such as levels, textures

or rules (Shaker et al., 2016).

Figure 3.2.2 shows an influence diagram with the reviewed methods and their relations to

earlier methods. Each method in the diagram is colored to show the game benchmark.

Screenshots from some of these games are shown in Figure 3.2.3.

The video games that are discussed here have to a large extent supplanted an earlier

generation of simpler control problems that long served as the main reinforcement learning

benchmarks but are generally too simple for modern reinforcement learning methods. In

3.2. Playing Video Games with Deep Neural Networks 51

LSTM

...

...

Input Convolution Convolution Convolution Fully connected Recurrency Output

Left
Stay

Right

Figure 3.2.1: An example of a typical network architecture used in deep reinforcement
learning for game-playing with pixel input. The input usually consists of a preprocessed
screen image, or several stacked or concatenated images, which is followed by a couple of
convolutional layers (often without pooling), and a few fully connected layers. Recurrent
networks have a recurrent layer, such as LSTM or GRU, after the fully connected layers.
The output typically consists of one unit for each unique combination of actions in the
game, and actor-critic methods also have one for the state value V (s). Examples of this
architecture, without a recurrent layer and with some variations, are Mnih et al. (2013,
2015); Nair et al. (2015); Van Hasselt et al. (2016); Schaul et al. (2016); Osband et al.
(2016); Mnih et al. (2016); Wang et al. (2017a); Rusu et al. (2016b); Salimans et al. (2017);
Bellemare et al. (2017); Fortunato et al. (2018); Wang et al. (2016b); Hessel et al. (2018);
Wu et al. (2017b); Such et al. (2017); Conti et al. (2018); Espeholt et al. (2018), and
examples with a recurrent layer are Hausknecht and Stone (2015); Mnih et al. (2016);
Jaderberg et al. (2017).

such classic control problems, the input is a simple feature vector, describing the position,

velocity, and angles etc. Popular platforms for such problems are rllab (Duan et al., 2016),

which includes classic problems such as pole balancing and the mountain car problem,

and MuJoCo (Multi-Joint dynamics with Contact), a physics engine for complex control

tasks such as the humanoid walking task (Todorov et al., 2012).

3.2.1 Arcade Games

Classic arcade games, of the type found in the late seventies’ and early eighties’ arcade

cabinets, home video game consoles and home computers, have been commonly used

as AI benchmarks within the last decade. Representative platforms for this game type

are the Atari 2600, Nintendo NES, Commodore 64 and ZX Spectrum. Most classic

arcade games are characterized by movement in a two-dimensional space (sometimes

represented isometrically to provide the illusion of three-dimensional movement), heavy

use of graphical logics (where game rules are triggered by the intersection of sprites

or images), continuous-time progression, and either continuous-space or discrete-space

movement. The challenges of playing such games vary by game. Most games require fast

52 3.2. Playing Video Games with Deep Neural Networks

2014

2015

2016

2017

Atari Montezuma’s
Revenge

RoboCupMs Pac-Man Racing Doom Minecraft StarCraft 2D Billiard Text
Adventure

2018

DDPG+
Mixing Policy

Targets

TSCL

Rainbow

Noisy
Net-DQN

Noisy
Net-A3C

ACKTR

UNREALGORILA

Bootstrapped
DQN Dueling

DQN

H-DQN

A3C +
Curriculum
Learning

H-DRLN

LSTM-DQN

Object-centric
Prediction

UCT To
Classification

DQN-CTS

DRQN

DQN +
SLAM

DFP
RMQN/
FRMQN

Direct
Perception

Zero
Order

BiCNet

COMA

DRQN +
Auxiliary
Learning

Prioritized
DQN

DQN-
PixelCNN

Double
DQN

Scalable
Evolutionary
Strategies

DQN

HRA

DDPG +
Inverse

Gradients

DDPG

C51

IQL

ACER

A2C
IMPALA

Deep
GA

NS-ES

NSR-ES

Progressive
Networks

A3C
TRPO

PPO

DQfD

Ape-X
DQN

Ape-X
DQfD

Macro-action
CNNFQ/PPO

DRRN

Affordance
Based Action

Selection

Golovin
AE-DQN

Macro-action
SL

Figure 3.2.2: Influence diagram of the deep learning techniques discussed in this paper.
Each node is an algorithm while the color represents the game benchmark. The distance
from the center represents the date that the original paper was published on arXiv. The
arrows represent how techniques are related. Each node points to all other nodes that
used or modified that technique. Arrows pointing to a particular algorithm show which
algorithms influenced its design. Influences are not transitive: if algorithm a influenced
b and b influenced c, a did not necessarily influence c. AlphaStar and OpenAI Five are
described in this section but are not on this diagram as they are very recent approaches
that have not yet been peer-reviewed.

3.2. Playing Video Games with Deep Neural Networks 53

ALE
(Breakout)

VizDoom Project Malmo
(Minecraft)

TORCS StarCraft: Brood WarGVGAI
(Zelda)

Figure 3.2.3: Screenshots of selected games and frameworks used as research platforms
for research in deep learning.

reactions and precise timing, and a few games, in particular, early sports games such as

Track & Field (Konami, 1983) rely almost exclusively on speed and reactions. Many games

require prioritization of several co-occurring events, which requires some ability to predict

the behavior or trajectory of other entities in the game. This challenge is explicit in e.g.

Tapper (Bally Midway, 1983) but also in different ways part of platform games such as

Super Mario Bros (Nintendo, 1985) and shooters such as Missile Command (Atari Inc.,

1980). Another common requirement is navigating mazes or other complex environments,

as exemplified clearly by games such as Pac-Man (Namco, 1980) and Boulder Dash (First

Star Software, 1984). Some games, such as Montezuma’s Revenge (Parker Brothers,

1984), require long-term planning involving the memorization of temporarily unobservable

game states. Some games feature incomplete information and stochasticity, others are

completely deterministic and fully observable.

The most notable game platform used for deep learning methods is the Arcade Learning

Environment (ALE) (Bellemare et al., 2013). ALE is built on top of the Atari 2600

emulator Stella and contains more than 50 original Atari 2600 games. The framework

extracts the game score, 160×210 screen pixels and the RAM content that can be used as

input for game playing agents. ALE was the main environment explored in the first deep

reinforcement learning papers that used raw pixels as input. By enabling agents to learn

from visual input, ALE thus differs from classic control problems in the reinforcement

learning literature, such as the Cart Pole and Mountain Car problems and. An longer

overview and discussion of the ALE environment can be found in (Machado et al., 2018).

Another platform for classic arcade games is the Retro Learning Environment (RLE) that

currently contains seven games released for the Super Nintendo Entertainment System

(SNES) (Bhonker et al., 2017). Many of these games have 3D graphics and the controller

allows for over 720 action combinations. SNES games are thus more complex and realistic

54 3.2. Playing Video Games with Deep Neural Networks

than Atari 2600 games but RLE has not been as popular as ALE.

The General Video Game AI (GVG-AI) framework (Perez-Liebana et al., 2016) allows for

easy creation and modification of games and levels using the Video Game Description

Language (VGDL) (Schaul, 2013). There are currently over 160 games in GVG-AI,

each with five levels. The VGDL game definition specifies objects in the game and

interaction rules such as rewards and effects of collisions. A level is defined as an ASCII

grid where each character represents an object. This allows for quick development of

games and levels making the framework ideal for research purposes (Perez-Liebana et al.,

2018). The GVGAI framework has been integrated with the OpenAI Gym environment

(Rodriguez Torrado et al., 2018). While GVG-AI originally provides a forward model that

allows agents to use search algorithms, the GVG-AI Gym only provides the pixels of each

frame, the incremental reward, and whether the game is won or lost.

3.2.1.1 Reinforcement Learning Methods in ALE

This section will give describe advancements of reinforcement learning methods that have

been demonstrated in ALE and an overview is given in Table 3.2.1.

Deep Q-Network (DQN) was the first learning algorithm that showed human expert-level

control in ALE (Mnih et al., 2013). DQN was tested in seven Atari 2600 games and

outperformed previous approaches, such as SARSA with feature construction (Bellemare

et al., 2015) and neuroevolution (Hausknecht et al., 2014), as well as a human expert

on three of the games. DQN is based on Q-learning, where a neural network model

learns to approximate Qπ(s, a) that estimates the expected return of taking action a in

state s while following a behavior policy µ. A simple network architecture consisting

of two convolutional layers followed by a single fully-connected layer was used as a

function approximator. A key mechanism in DQN is experience replay (Lin, 1993), where

experiences in the form {st, at, rt+1, st+1} are stored in a replay memory and randomly

sampled in batches when the network is updated. This enables the algorithm to reuse and

learn from past and uncorrelated experiences, which reduces the variance of the updates.

DQN was later extended with a separate target Q-network which parameters are held

fixed between individual updates and was shown to achieve above human expert scores in

29 out of 49 tested games (Mnih et al., 2015).

3.2. Playing Video Games with Deep Neural Networks 55

Deep Recurrent Q-Learning (DRQN) extends the DQN architecture with a recurrent layer

before the output and works well for games with partially observable states (Hausknecht

and Stone, 2015).

A distributed version of DQN was shown to outperform a non-distributed version in 41 of

the 49 games using the Gorila architecture (General Reinforcement Learning Architecture)

(Nair et al., 2015). Gorila parallelizes actors that collect experiences into a distributed

replay memory as well as parallelizing learners that train on samples from the same replay

memory.

One problem with the Q-learning algorithm is that it often overestimates action values

because it uses the same value function for action-selection and action-evaluation. Double

DQN, based on double Q-learning (Hasselt, 2010), reduces the observed overestimation

by learning two value networks with parameters θ and θ′ that both use the other network

for value-estimation, such that the target Yt = Rt+1 + γQ(St+1,maxaQ(St+1, a; θt); θ
′
t)

(Van Hasselt et al., 2016).

Another improvement is prioritized experience replay from which important experiences

are sampled more frequently based on the TD-error, which was shown to significantly

improve both DQN and Double DQN (Schaul et al., 2016).

Dueling DQN uses a network that is split into two streams after the convolutional layers

to separately estimate state-value V π(s) and the action-advantage Aπ(s, a), such that

Qπ(s, a) = V π(s) + Aπ(s, a) (Wang et al., 2016b). Dueling DQN improves Double DQN

and can also be combined with prioritized experience replay.

Double DQN and Dueling DQN were also tested in the five more complex games in the

RLE and achieved a mean score of around 50% of a human expert (Bhonker et al., 2017).

The best result in these experiments was by Dueling DQN in the game Mortal Kombat

(Midway, 1992) with 128%.

Bootstrapped DQN improves exploration by training multiple Q-networks. A randomly

sampled network is used during each training episode and bootstrap masks modulate the

gradients to train the networks differently (Osband et al., 2016).

Robust policies can be learned with DQN for competitive or cooperative multi-player

games by training one network for each player and play them against each other in the

56 3.2. Playing Video Games with Deep Neural Networks

training process (Tampuu et al., 2017). Agents trained in multiplayer mode perform very

well against novel opponents, whereas agents trained against a stationary algorithm fail

to generalize their strategies to novel adversaries.

Multi-threaded asynchronous variants of DQN, SARSA and Actor-Critic methods can

utilize multiple CPU threads on a single machine, reducing training roughly linear to

the number of parallel threads (Mnih et al., 2016). These variants do not rely on a

replay memory because the network is updated on uncorrelated experiences from parallel

actors which also helps to stabilize on-policy methods. The Asynchronous Advantage

Actor-Critic (A3C) algorithm is an actor-critic method that uses several parallel agents

to collect experiences that all asynchronously update a global actor-critic network. A3C

outperformed Prioritized Dueling DQN, which was trained for 8 days on a GPU, with

just half the training time on a CPU (Mnih et al., 2016).

An actor-critic method with experience replay (ACER) implements an efficient trust

region policy method that forces updates to not deviate far from a running average of

past policies (Wang et al., 2017a). The performance of ACER in ALE matches Dueling

DQN with prioritized experience replay and A3C without experience replay, while it is

much more data efficient.

A3C with progressive neural networks (Rusu et al., 2016b) can effectively transfer learning

from one game to another. The training is done by instantiating a network for every new

task with connections to all the previous learned networks. This gives the new network

access to knowledge already learned.

The Advantage Actor-Critic (A2C), a synchronous variant of A3C (Mnih et al., 2016),

updates the parameters synchronously in batches and has comparable performance while

only maintaining one neural network (Wu et al., 2017b). Actor-Critic using Kronecker-

Factored Trust Region (ACKTR) extends A2C by approximating the natural policy

gradient updates for both the actor and the critic (Wu et al., 2017b). In Atari, ACKTR

has slower updates compared to A2C (at most 25% per time step) but is more sample

efficient (e.g. by a factor of 10 in Atlantis) (Wu et al., 2017b). Trust Region Policy

Optimization (TRPO) uses a surrogate objective with theoretical guarantees for monotonic

policy improvement, while it practically implements an approximation called trust region

(Schulman et al., 2015). This is done by constraining network updates with a bound on

3.2. Playing Video Games with Deep Neural Networks 57

the KL divergence between the current and the updated policy. TRPO has robust and

data efficient performance in Atari games while it has high memory requirements and

several restrictions. Proximal Policy Optimization (PPO) is an improvement on TRPO

that uses a similar surrogate objective (Schulman et al., 2017), but instead uses a soft

constraint (originally suggested in Schulman et al. (2015)) by adding the KL-divergence

as a penalty. Instead of having a fixed penalty coefficient, it uses a clipped surrogate

objective that penalizes policy updates outside some specified interval. PPO was shown to

be more sample efficient than A2C and on par with ACER in Atari, while PPO does not

rely on replay memory. PPO was also shown to have comparable or better performance

than TRPO in continuous control tasks while being simpler and easier to parallelize.

IMPALA (Importance Weighted Actor-Learner Architecture) is an actor-critic method

where multiple learners with GPU access share gradients between each other while being

synchronously updated from a set of actors (Espeholt et al., 2018). This method can

scale to a large number of machines and outperforms A3C. Additionally, IMPALA was

trained, with one set of parameters, to play all 57 Atari games in ALE with a mean

human-normalized score of 176.9% (median of 59.7%) (Espeholt et al., 2018). Experiences

collected by the actors in the IMPALA setup can lack behind the learners’ policy and thus

result in off-policy learning. This discrepancy is mitigated through a V-trace algorithm

that weighs the importance of experiences based on the difference between the actor’s

and learner’s policies (Espeholt et al., 2018).

UNREAL (UNsupervised REinforcement and Auxiliary Learning) algorithm is based

on A3C but uses a replay memory from which it learns auxiliary tasks and pseudo-

reward functions concurrently (Jaderberg et al., 2017). UNREAL only shows a small

improvement over vanilla A3C in ALE, but larger improvements in other domains (see

Section 3.2.3). Distributional DQN takes a distributional perspective on reinforcement

learning by treating Q(s, a) as an approximate distribution of returns instead of a single

approximate expectation for each action (Bellemare et al., 2017). The distribution is

divided into a so-called set of atoms, which determines the granularity of the distribution.

Their results show that the more fine-grained the distributions are, the better are the

results, and with 51 atoms (this variant was called C51) it achieved mean scores in ALE

almost comparable to UNREAL.

58 3.2. Playing Video Games with Deep Neural Networks

In NoisyNets, noise is added to the network parameters and a unique noise level for each

parameter is learned using gradient descent (Fortunato et al., 2018). In contrast to ε-greedy

exploration, where an agent either samples actions from the policy or from a uniform

random distribution, NoisyNets use a noisy version of the policy to ensure exploration,

and this was shown to improve DQN (NoisyNet-DQN) and A3C (NoisyNet-A3C).

Rainbow combines several DQN enhancements: Double DQN, Prioritized Replay, Dueling

DQN, Distributional DQN, and NoisyNets, and achieved a mean score higher than any of

the enhancements individually (Hessel et al., 2018).

Evolution Strategies (ES) are black-box optimization algorithms that rely on parameter-

exploration through stochastic noise instead of calculating gradients and were found to be

highly parallelizable with a linear speedup in training time when more CPUs are used

(Salimans et al., 2017). 720 CPUs were used for one hour whereafter ES managed to

outperform A3C (which ran for 4 days) in 23 out of 51 games, while ES used 3 to 10 times

as much data due to its high parallelization. ES only ran a single day and thus their full

potential is currently unknown. Novelty search is a popular algorithm that can overcome

environments with deceptive and/or sparse rewards by guiding the search towards novel

behaviors (Lehman and Stanley, 2008). ES has been extended to use Novelty Search

(NS-ES) which outperforms ES on several challenging Atari games by defining novel

behaviors based on the RAM states (Conti et al., 2018). A quality-diversity variant called

NSR-ES that uses both novelty and the reward signal reach an even higher performance

(Conti et al., 2018). NS-ES and NSR-ES reached worse results on a few games, possibly

where the reward function is not sparse or deceptive.

A simple genetic algorithm with a Gaussian noise mutation operator evolves the parameters

of a deep neural network (Deep GA) and can achieve surprisingly good scores across

several Atari games (Such et al., 2017). Deep GA shows comparable results to DQN,

A3C, and ES on 13 Atari games using up to thousands of CPUs in parallel. Additionally,

random search, given roughly the same amount of computation, was shown to outperform

DQN on 4 out of 13 games and A3C on 5 games (Such et al., 2017). While there has

been concern that evolutionary methods do not scale as well as gradient descent-based

methods, one possibility is separating the feature construction from the policy network;

evolutionary algorithms can then create extremely small networks that still play well

3.2. Playing Video Games with Deep Neural Networks 59

Results Mean Median Orig. paper on arXiv
DQN (Wang et al. (2016b)) 228% 79% 2013, Mnih et al. (2013)
Double DQN (DDQN) (Wang et al. (2016b)) 307% 118% 2015, Van Hasselt et al. (2016)
Dueling DDQN (Wang et al. (2016b)) 373% 151% 2015, Wang et al. (2016b)
Prior. DDQN (Wang et al. (2016b)) 435% 124% 2015, Schaul et al. (2016)
Prior. Duel DDQN (Wang et al. (2016b)) 592% 172% 2015, Schaul et al. (2016)
A3C (Jaderberg et al. (2017)) 853% N/A 2016, Mnih et al. (2016)
UNREAL (Jaderberg et al. (2017))* 880% 250% 2016, Jaderberg et al. (2017)
NoisyNet-DQN (Hessel et al. (2018)) N/A 118% 2017, Fortunato et al. (2018)
Distr. DQN (C51) (Bellemare et al. (2017)) 701% 178% 2017, Bellemare et al. (2017)
Rainbow (Hessel et al. (2018)) N/A 223% 2017, Hessel et al. (2018)
IMPALA (Espeholt et al. (2018)) 958% 192% 2018, Espeholt et al. (2018)
Ape-X DQN (Horgan et al. (2018)) N/A 434% 2018, Horgan et al. (2018)

Table 3.2.1: Human-normalized scores reported with various deep reinforcement learning
algorithms in ALE on 57 Atari games using the 30 no-ops evaluation metric. References in
the first column refer to the paper that included the reported results, while the last column
references the paper that first introduced the specific algorithm. Note, that the reported
scores use various amounts of training time and resources, thus not entirely comparable.
Successors typically use more resources and less wall-clock time. *Hyper-parameters was
tuned for every game leading to higher scores for UNREAL.

(Cuccu et al., 2018).

A few supervised learning approaches have been applied to arcade games. In Guo et al.

(2014) a slow planning agent was applied offline, using Monte-Carlo Tree Search, to

generate data for training a CNN via multinomial classification. This approach, called

UCTtoClassification, was shown to outperform DQN. Policy distillation (Rusu et al.,

2016a) or actor-mimic (Parisotto et al., 2016) methods can be used to train one network

to mimic a set of policies (e.g. for different games). These methods can reduce the size of

the network and sometimes also improve the performance. A frame prediction model can

be learned from a dataset generated by a DQN agent using the encoding-transformation-

decoding network architecture; the model can then be used to improve exploration in

a retraining phase (Oh et al., 2015). Self-supervised tasks, such as reward prediction,

validation of state-successor pairs, and mapping states and successor states to actions

can define auxiliary losses used in pre-training of a policy network, which ultimately can

improve learning (Shelhamer et al., 2016).

The training objective provides feedback to the agent while the performance objective

specifies the target behavior. Often, a single reward function takes both roles, but for some

games, the performance objective does not guide the training sufficiently. The Hybrid

60 3.2. Playing Video Games with Deep Neural Networks

Reward Architecture (HRA) splits the reward function into n different reward functions,

where each of them are assigned a separate learning agent (Van Seijen et al., 2017). HRA

does this by having n output streams in the network, and thus n Q-values, which are

combined when actions are selected. HRA was able to achieve the maximum possible

score in less than 3,000 episodes.

3.2.1.2 Montezuma’s Revenge

Environments with sparse feedback remain an open challenge for reinforcement learning.

The game Montezuma’s Revenge is a good example of such an environment in ALE and

has thus been studied in more detail and used for benchmarking learning methods based

on intrinsic motivation and curiosity. The main idea of applying intrinsic motivation is to

improve the exploration of the environment based on some self-rewarding system, which

eventually will help the agent to obtain an extrinsic reward. DQN fails to obtain any

reward in this game (receiving a score of 0) and Gorila achieves an average score of just

4.2. A human expert can achieve 4,367 points and it is clear that the methods presented

so far are unable to deal with environments with such sparse rewards. A few promising

methods aim to overcome these challenges.

Hierarchical-DQN (h-DQN) (Kulkarni et al., 2016) operates on two temporal scales, where

one Q-value function Q1(s, a; g), the controller, learns a policy over actions that satisfy

goals chosen by a higher-level Q-value function Q2(s, g), the meta-controller, which learns

a policy over intrinsic goals (i.e. which goals to select). This method was able to reach an

average score of around 400 in Montezuma’s Revenge where goals were defined as states in

which the agent reaches (collides with) a certain type of object. This method, therefore,

must rely on some object detection mechanism.

Pseudo-counts have been used to provide intrinsic motivation in the form of exploration

bonuses when unexpected pixel configurations are observed and can be derived from

CTS density models (Bellemare et al., 2016) or neural density models (Ostrovski et al.,

2017). Density models assign probabilities to images, and a model’s pseudo count of

an observed image is the model’s change in prediction compared to being trained one

additional time on the same image. Impressive results were achieved in Montezuma’s

Revenge and other hard Atari games by combining DQN with the CTS density model

3.2. Playing Video Games with Deep Neural Networks 61

(DQN-CTS) or the PixelCNN density model (DQN-PixelCNN) (Bellemare et al., 2016).

Interestingly, the results were less impressive when the CTS density model was combined

with A3C (A3C-CTS) (Bellemare et al., 2016). In Random Network Distillation (RND)

a fixed randomly initialized target network produces a k-dimensional output from the

agent’s training observations and a predictor network is trained to distil the target network

(Burda et al., 2018). It is thus expected that the prediction error is high when the novelty

of the observation is high, and it can thus be used as an exploration bonus to train the

policy. RND achieved an average score of 8,152 in Montezuma’s Revenge which is higher

than the average human score of 4,753. A potential issue with RND in games is that

many dangerous states gives a high reward because they are typically rare. Go-Explore is

a quite different algorithm that stores down-sampled observations in a archive (similar to

MAP-Elites) together with the trajectories that lead to them. In a final step, a robust

policy is learned to imitate the trajectories which can deal with stochasticity. Go-Explore

reached an impressive average score above 43,000 points in Montezuma’s Revenge and

above 650,000 points when using domain knowledge to construct the cell division in the

archive. While Go-Explore was tested in the stochastic version Montezuma’s Revenge it

state-exploration phase was done in a deterministic version of the game.

Ape-X DQN is a distributed DQN architecture similar to Gorila, as in actors are separated

from the learner. Ape-X DQN was able to reach state-of-art results across the 57 Atari

games using 376 cores and 1 GPU, running at 5̃0K FPS (Horgan et al., 2018). Deep

Q-learning from Demonstrations (DQfD) draw samples from an experience replay buffer

that is initialized with demonstration data from a human expert and is superior to

previous methods on 11 Atari games with sparse rewards (Hester et al., 2018). Ape-X

DQfD combines the distributed architecture from Ape-X and the learning algorithm from

DQfD using expert data and was shown to outperform all previous methods in ALE as

well as beating level 1 in Montezuma’s Revenge (Pohlen et al., 2018).

To improve the performance, Kaplan et al. (2017) augmented the agent training with text

instructions. An instruction-based reinforcement learning approach that uses both a CNN

for visual input and RNN for text-based instruction, inputs managed to achieve a score of

3,500 points. Instructions were linked to positions in rooms and agents were rewarded

when they reached those locations, demonstrating a fruitful collaboration between a

62 3.2. Playing Video Games with Deep Neural Networks

human and a learning algorithm. Experiments in Montezuma’s Revenge also showed that

the network learned to generalize to unseen instructions that were similar to previous

instructions.

Similar work demonstrates how an agent can execute text-based commands in a 2D

maze-like environment called XWORLD, such as walking to and picking up objects, after

having learned a teacher’s language (Yu et al., 2017). An RNN-based language module is

connected to a CNN-based perception module. These two modules were then connected

to an action-selection module and a recognition module that learns the teacher’s language

in a question answering process.

3.2.2 Racing Games

A challenge that is common in all racing games is that the agent needs to control the

position of the vehicle and adjust the acceleration or braking, using fine-tuned continuous

input, so as to traverse the track as fast as possible. Doing this optimally requires at

least short-term planning, one or two turns forward. If there are resources to be managed

in the game, such as fuel, damage or speed boosts, this requires longer-term planning.

When other vehicles are present on the track, there is an adversarial planning aspect

added, in trying to manage or block overtaking; this planning is often done in the presence

of hidden information (position and resources of other vehicles on different parts of the

track). A popular environment for visual reinforcement learning with realistic 3D graphics

is the open racing car simulator TORCS (Wymann et al., 2000). This section will review

methods applied to this platform.

There are generally two paradigms for vision-based autonomous driving highlighted in

Chen et al. (2015); (1) end-to-end systems that learn to map images to actions directly

(behavior reflex), and (2) systems that parse the sensor data to make informed decisions

(mediated perception). An approach that falls in between these paradigms is direct

perception where a CNN learns to map from images to meaningful affordance indicators,

such as the car angle and distance to lane markings, from which a simple controller can

make decisions (Chen et al., 2015). Direct perception was trained on recordings of 12

hours of human driving in TORCS and the trained system was able to drive in very

3.2. Playing Video Games with Deep Neural Networks 63

diverse environments. Amazingly, the network was also able to generalize to real images.

End-to-end reinforcement learning algorithms such as DQN cannot be directly applied to

continuous environments such as racing games because the action space must be discrete

and with relatively low dimensionality. Instead, policy gradient methods, such as actor-

critic (Degris et al., 2012) and Deterministic Policy Gradient (DPG) (Silver et al., 2014)

can learn policies in high-dimensional and continuous action spaces. Deep DPG (DDPG)

is a policy gradient method that implements both experience replay and a separate target

network and was used to train a CNN end-to-end in TORCS from images (Lillicrap et al.,

2016).

The aforementioned A3C methods have also been applied to the racing game TORCS

using only pixels as input (Mnih et al., 2016). In those experiments, rewards were shaped

as the agent’s velocity on the track, and after 12 hours of training, A3C reached a score

between roughly 75% and 90% of a human tester in tracks with and without opponent

bots, respectively.

While most approaches to training deep networks from high-dimensional input in video

games are based on gradient descent, a notable exception is an approach by Koutník et al.

(2013), where Fourier-type coefficients were evolved that encoded a recurrent network

with over 1 million weights. Here, evolution was able to find a high-performing controller

for TORCS that only relied on high-dimensional visual input.

An imitation learning approach called Generative Adversarial Imitation Learning (GAIL)

use a Generative Adversarial Network (GAN), wherein a policy network (the generator)

is trained to fool a discriminator by producing state-action samples that imitates human

behaviors (Ho and Ermon, 2016). InfoGAIL (Li et al., 2017) extends GAIL by learning

salient semantic features in an unsupervised manner in the style of InfoGAN (Chen et al.,

2016), which has been used to find semantic features in images of hand-written letters

and digit, as well as photos of faces. InfoGAN (and InfoGAIL) achieves this by adding

an additional term to the generator’s loss, such that it attempts to maximize the mutual

information between a subset of the noise variables and the observations, such that the

latent space becomes less entangled. InfoGAIL was capable of learning a variety of car

driving behaviors in TORCS (Li et al., 2017).

64 3.2. Playing Video Games with Deep Neural Networks

3.2.3 First-Person Shooters

More advanced game environments have recently emerged for visual reinforcement learning

agents in a First-Person Shooters (FPS). In contrast to classic arcade games such as those

in the ALE benchmark, FPSes have 3D graphics with partially observable states and are

thus a more realistic environment to study. Usually, the viewpoint is that of the player-

controlled character, though some games that are broadly in the FPS categories adopt an

over-the-shoulder viewpoint. The design of FPS games is such that part of the challenge is

simply fast perception and reaction, in particular, spotting enemies and quickly aiming at

them. But there are other cognitive challenges as well, including orientation and movement

in a complex three-dimensional environment, predicting actions and locations of multiple

adversaries, and in some game modes also team-based collaboration. If visual inputs are

used, there is the challenge of extracting relevant information from pixels. Among FPS

platforms are ViZDoom, a framework that allows agents to play the classic first-person

shooter Doom (id Software, 1993–2017) using the screen buffer as input (Kempka et al.,

2016). DeepMind Lab is a platform for 3D navigation and puzzle-solving tasks based on

the Quake III Arena (id Software, 1999) engine (Beattie et al., 2016).

Kempka et al. (2016) demonstrated that a CNN with max-pooling and fully connected

layers trained with DQN can achieve human-like behaviors in basic scenarios. In the Visual

Doom AI Competition 201610, a number of participants submitted pre-trained neural

network-based agents that competed in a multi-player deathmatch setting. Both a limited

competition was held, in which bots competed in known levels, and a full competition

that included bots competing in unseen levels. The winner of the limited track used a

CNN trained with A3C using reward shaping and curriculum learning (Wu and Tian,

2017). Reward shaping tackled the problem of sparse and delayed rewards, giving artificial

positive rewards for picking up items and negative rewards for using ammunition and

losing health. Curriculum learning attempts to speed up learning by training on a set

of progressively harder environments (Bengio et al., 2009). The second-place entry in

the limited track used a modified DRQN network architecture with an additional stream

of fully connected layers to learn supervised auxiliary tasks such as enemy detection,

with the purpose of speeding up the training of the convolutional layers (Lample and

10http://vizdoom.cs.put.edu.pl/competitions/vdaic-2016-cig

3.2. Playing Video Games with Deep Neural Networks 65

Chaplot, 2017a). Position inference and object mapping from pixels and depth-buffers

using Simultaneous Localization and Mapping (SLAM) also improve DQN in Doom

(Bhatti et al., 2016).

The winner of the full deathmatch competition implemented a Direct Future Prediction

(DFP) approach that was shown to outperform DQN and A3C (Dosovitskiy and Koltun,

2017). The architecture used in DFP has three streams: one for the screen pixels, one

for lower-dimensional measurements describing the agent’s current state, and one for

describing the agent’s goal, which is a linear combination of prioritized measurements.

DFP collects experiences in a memory and is trained with supervised learning techniques

to predict the future measurements based on the current state, goal and selected action.

During training, actions are selected that yield the best-predicted outcome, based on the

current goal. This method can be trained on various goals and generalizes to unseen goals

at test time.

Navigation in 3D environments is one of the important skills required for FPS games and

has been studied extensively. A CNN+LSTM network was trained with A3C extended

with additional outputs predicting the pixel depths and loop closure, showing significant

improvements (Mirowski et al., 2016).

The UNREAL algorithm, based on A3C, implements an auxiliary task that trains the

network to predict the immediate subsequent future reward from a sequence of consecutive

observations. UNREAL was tested on fruit gathering and exploration tasks in OpenArena

and achieved a mean human-normalized score of 87%, where A3C only achieved 53%

(Jaderberg et al., 2017).

The ability to transfer knowledge to new environments can reduce the learning time

and can in some cases be crucial for some challenging tasks. Transfer learning can be

achieved by pre-training a network in similar environments with simpler tasks or by using

random textures during training (Chaplot et al., 2016). The Distill and Transfer Learning

(Distral) method trains several worker policies (one for each task) concurrently and shares

a distilled policy (Teh et al., 2017). The worker policies are then regularized to stay close

to the shared policy. Distral was applied to 3D navigation tasks in the DeepMind Lab.

The Intrinsic Curiosity Module (ICM), consisting of several neural networks, computes

66 3.2. Playing Video Games with Deep Neural Networks

an intrinsic reward each time step based on the agent’s inability to predict the outcome

of taking actions. It was shown to learn to navigate in complex Doom and Super Mario

levels only relying on intrinsic rewards (Pathak et al., 2017a).

3.2.4 Open-World Games

Open-world games such as Minecraft (Mojang, 2011) or the Grand Theft Auto (Rockstar

Games, 1997–2013) series are characterized by very non-linear gameplay, with a large

game world to explore, either no set goals or many goals with unclear internal ordering,

and large freedom of action at any given time. Key challenges for agents are exploring

the world and setting goals which are realistic and meaningful. As this is a very complex

challenge, most research use these open environments to explore reinforcement learning

methods that can reuse and transfer learned knowledge to new tasks. Project Malmo is

a platform built on top of the open-world game Minecraft, which can be used to define

many diverse and complex problems (Johnson et al., 2016).

The Hierarchical Deep Reinforcement Learning Network (H-DRLN) architecture

implements a lifelong learning framework, which is shown to be able to transfer knowledge

between simple tasks in Minecraft such as navigation, item collection, and placement

tasks (Tessler et al., 2017). H-DRLN uses a variation of policy distillation (Rusu et al.,

2016a) to retain and encapsulate learned knowledge into a single network.

Neural Turing Machines (NTMs) are fully differentiable neural networks coupled with

an external memory resource, which can learn to solve simple algorithmic problems such

as copying and sorting (Graves et al., 2014). Two memory-based variations, inspired by

NTM, called Recurrent Memory Q-Network (RMQN) and Feedback Recurrent Memory

Q-Network (FRMQN) were able to solve complex navigation tasks that require memory

and active perception (Oh et al., 2016).

The Teacher-Student Curriculum Learning (TSCL) framework incorporates a teacher

that prioritizes tasks wherein the student’s performance is either increasing (learning) or

decreasing (forgetting) (Matiisen et al., 2017). TSCL enabled a policy gradient learning

method to solve mazes that were otherwise not possible with a uniform sampling of

subtasks.

3.2. Playing Video Games with Deep Neural Networks 67

3.2.5 Real-Time Strategy Games

In this section, we will return to RTS games and survey recent approaches that employ

deep neural networks to play these games. Most of the work using neural networks for

RTS games are in StarCraft. Here, TorchCraft is a commonly used library built on top of

BWAPI that connects the scientific computing framework Torch to StarCraft to enable

machine learning research for this game (Synnaeve et al., 2016). Additionally, DeepMind

and Blizzard (the developers of StarCraft) have developed a machine learning API to

support research in StarCraft II with features such as simplified visuals designed for

convolutional networks (Vinyals et al., 2017). This API contains several mini-challenges

while it also supports the full game setting. µRTS (Ontanón, 2013) and ELF (Tian et al.,

2017) are two minimalistic RTS game engines that implement some of the features that

are present in RTS games.

The previous sections described methods that learn to play games end-to-end, i.e. a neural

network is trained to map states directly to actions. Real-Time Strategy (RTS) games,

however, offer much more complex environments, in which players have to control multiple

agents simultaneously in real-time on a partially observable map. Additionally, RTS

games have no in-game scoring and thus the reward is determined by who wins the game.

For these reasons, learning to play RTS games end-to-end have been deemed infeasible in

the foreseeable future by some researchers and instead, sub-problems and smaller RTS

variants were used at first.

For the simplistic RTS platform µRTS, a CNN was trained as a state evaluator using

supervised learning on a generated data set and used in combination with Monte Carlo Tree

Search (Stanescu et al., 2016; Barriga et al., 2017). This approach performed significantly

better than previous evaluation methods.

Deep learning methods for StarCraft have mainly focused on micromanagement (unit

control) or build-order planning and has ignored other aspects of the game. The problem

of delayed rewards in StarCraft can be circumvented in combat scenarios; here rewards

can be shaped as the difference between damage inflicted and damage incurred (Usunier

et al., 2016; Foerster et al., 2017; Peng et al., 2017; Foerster et al., 2018). States and

actions are often described locally relative to units, which is extracted from the game

68 3.2. Playing Video Games with Deep Neural Networks

engine. If agents are trained individually it is difficult to know which agents contributed

to the global reward (Chang et al., 2003), a problem known as the multi-agent credit

assignment problem. One approach is to train a generic network that controls each unit

separately and search in policy space using Zero-Order optimization based on the reward

accrued in each episode (Usunier et al., 2016). This strategy was able to learn successful

policies for armies of up to 15 units.

Independent Q-learning (IQL) simplifies the multi-agent reinforcement learning problem

by controlling units individually while treating other agents as if they were part of the

environment (Tan, 1993). This enables Q-learning to scale well to a large number of agents.

However, when combining IQL with recent techniques such as experience replay, agents

tend to optimize their policies based on experiences with obsolete policies. This problem is

overcome by applying fingerprints to experiences and by applying an importance-weighted

loss function that naturally decays obsolete data, which has shown improvements for some

small combat scenarios (Foerster et al., 2017).

The Multiagent Bidirectionally-Coordinated Network (BiCNet) implements a vectorized

actor-critic framework based on a bi-directional RNN, with one dimension for every agent,

and outputs a sequence of actions (Peng et al., 2017). This network architecture is unique

to the other approaches as it can handle an arbitrary number of units of different types.

Counterfactual multi-agent (COMA) policy gradients is an actor-critic method with a

centralized critic and decentralized actors that address the multi-agent credit assignment

problem with a counterfactual baseline computed by the critic network (Foerster et al.,

2018). COMA achieves state-of-the-art results, for decentralized methods, in small combat

scenarios with up to ten units on each side.

Chapter 5 presents a deep learning approach to build-order planning in StarCraft using

macro-based supervised learning approach to imitate human strategies. In this approach,

a trained network is integrated as a high-level module used in an existing bot that is

capable of playing the full game with an otherwise hand-crafted behavior. Another macro-

based approach, here using reinforcement learning instead of supervised learning, called

Convolutional Neural Network Fitted Q-Learning (CNNFQ), was trained with Double

DQN for build-order planning in StarCraft II and was able to win against medium-level

scripted bots on small maps (Tang et al., 2018). Another macro-based reinforcement

3.2. Playing Video Games with Deep Neural Networks 69

learning method that uses Proximal Policy Optimization (PPO) for build order planning

and high-level attack planning was able to outperform the built-in bot in StarCraft II at

level 10 (Sun et al., 2018). This is particularly impressive as the level 10 bot cheats by

having full vision of the map and faster resource harvesting. The results were obtained

using 1920 parallel actors on 3840 CPUs across 80 machines and only for one matchup on

one map. This system won a few games against Platinum-level human players but lost all

games against Diamond-level players. The authors report that the learned policy “lacks

strategy diversity in order to consistently beat human players” (Sun et al., 2018).

The first neural network that successfully could play StarCraft II end-to-end (from raw

observations to raw actions) was AlphaStar (Vinyals et al., 2019). Here, an advanced

LSTM-based neural network model is trained on a single map and only for the Protoss

versus Protoss matchup. First, imitation learning was applied to learn from a large set of

human demonstrations. Then, several agents, with their own reward function and network

parameters, participated in a long tournament structure (called AlphaStar League) in a

reinforcement learning phase to learn a diverse set of robust strategies. Each agent played

up to 200 years of real-time StarCraft in the training phase, each using 16 TPUs (Vinyals,

2019). The successes of AlphaStar are discussed further in Chapter 9.

Figure 3.2.4: The AlphaStar League. First, imitation learning is applied on human
demonstrations. Then, several iterations of reinforcement learning is applied where several
new agents are created as copies, assigned different reward functions and then matched
against each other. This figure is from (Vinyals et al., 2019).

Defense of the Ancients (DotA) is originally a mod to WarCraft III (Blizzard Entertainment,

70 3.2. Playing Video Games with Deep Neural Networks

2002) while it is now more common to play Dota 2 (Valve Corporation, 2013). DotA and

Dota 2 are multiplayer online battle arena (MOBA) games, a genre similar to RTS games,

but with two teams of players, and each player controls an individual hero rather than

an entire army. OpenAI Five (OpenAI, 2017) is a system that controls a team of five

heroes in Dota 2, with one neural network policy for each player. While Dota 2 is much

more complex than e.g. Atari games, the developers found that the same techniques (here

the Proximal Policy Optimization algorithm) with enormous amounts of computation

was enough to reach human-level performance. OpenAI Five played around 180 years of

real-time Dota 2 per day in the training phase, using 256 GPUs and 128,000 CPU cores

(OpenAI, 2018a). The successes of OpenAI Five will also be discussed further in Chapter

9.

3.2.6 Team Sports Games

Popular sports games are typically based on team-based sports such as soccer, basketball,

and football. These games aim to be as realistic as possible with life-like animations and

3D graphics. Several soccer-like environments have been used extensively as research

platforms, both with physical robots and 2D/3D simulations, in the annual Robot World

Cup Soccer Games (RoboCup) (Asada et al., 2000). Keepaway Soccer is a simplistic

soccer-like environment where one team of agents try to maintain control of the ball while

another team tries to gain control of it (Stone and Sutton, 2001). A similar environment

for multi-agent learning is RoboCup 2D Half-Field-Offense (HFO) where teams of 2-3

players either take the role as offense or defense on one half of a soccer field (Hausknecht

et al., 2016).

Deep Deterministic Policy Gradients (DDPG) was applied to RoboCup 2D Half-Field-

Offense (HFO) (Hausknecht and Stone, 2015). The actor network used two output streams,

one for the selection of discrete action types (dash, turn, tackle, and kick) and one for each

action type’s 1-2 continuously-valued parameters (power and direction). The Inverting

Gradients bounding approach downscales the gradients as the output approaches its

boundaries and inverts the gradients if the parameter exceeds them. This approach

outperformed both SARSA and the best agent in the 2012 RoboCup. DDPG was also

applied to HFO by mixing on-policy updates with 1-step Q-Learning updates (Hausknecht

3.2. Playing Video Games with Deep Neural Networks 71

and Stone, 2016) and outperformed a hand-coded agent with expert knowledge with one

player on each team.

3.2.7 Physics Games

As video games are usually a reflection or simplification of the real world, it can be

fruitful to learn an intuition about the physical laws in an environment. A predictive

neural network using an object-centered approach (also called fixations) learned to run

simulations of a billiards game after being trained on random interactions (Fragkiadaki

et al., 2016). This predictive model could then be used for planning actions in the game.

A similar predictive approach was tested in a 3D game-like environment, using the Unreal

Engine, where ResNet-34 (He et al., 2016b) (a deep residual network used for image

classification) was extended and trained to predict the visual outcome of blocks that were

stacked such that they would usually fall (Lerer et al., 2016).

3.2.8 Text Adventure Games

A classic text adventure game is a form of interactive fiction where players are given

descriptions and instructions in text, rather than graphics, and interact with the storyline

through text-based commands (Sweetser, 2008). These commands are usually used to

query the system about the state, interact with characters in the story, collect and use

items, or navigate the space in the fictional world.

These games typically implement one of three text-based interfaces: parser-based, choice-

Based, and hyperlink-based (He et al., 2016a). Choice-based and hyperlink-based interfaces

provide the possible actions to the player at a given state as a list, out of context, or as

links in the state description. Parser-Based interfaces are, on the other hand, open to any

input and the player has to learn what words the game understands. This is interesting

for computers as it is much more akin to natural language, where you have to know what

actions should exist based on your understanding of language and the given state.

Unlike some other game genres, like arcade games, text adventure games have not had

a standard benchmark of games that everyone can compare against. This makes a lot

72 3.2. Playing Video Games with Deep Neural Networks

of results hard to directly compare. A lot of research has focused on games that run

on Infocom’s Z-Machine game engine, an engine that can play a lot of the early, classic

games. Recently, Microsoft has introduced the environment TextWorld to help create a

standardized text adventure environment (Côté et al., 2018).

Text adventure games, in which both states and actions are presented as text only, are

a special video game genre. A network architecture called LSTM-DQN (Narasimhan

et al., 2015) was designed specifically to play these games and is implemented using

LSTM networks that convert text from the world state into a vector representation, which

estimates Q-values for all possible state-action pairs. LSTM-DQN was able to complete

between 96% and 100% of the quests on average in two different text adventure games.

To be able to improve on these results, researchers have moved toward learning language

models and word embeddings to augment the neural network. An approach that combines

reinforcement learning with explicit language understanding is Deep Reinforcement

Relevance Net (DRRN) (He et al., 2016a). This approach has two networks that learn word

embeddings. One embeds the state description, the other embeds the action description.

Relevance between the two embedding vectors is calculated with an interaction function

such as the inner product of the vectors or a bilinear operation. The Relevance is then

used as the Q-Value and the whole process is trained end-to-end with Deep Q-Learning.

This approach allows the network to generalize to phrases not seen during training which

is an improvement for very large text games. The approach was tested on the text games

Saving John and Machine of Death, both choice-based games.

Taking language modeling further, Fulda et. al. explicitly modeled language affordances

to assist in action selection (Fulda et al., 2017). A word embedding is first learned from a

Wikipedia Corpus via unsupervised learning (Mikolov et al., 2013) and this embedding

is then used to calculate analogies such as song is to sing as bike is to x, where x can

then be calculated in the embedding space (Mikolov et al., 2013). The authors build a

dictionary of verbs, noun pairs, and another one of object manipulation pairs. Using the

learned affordances, the model can suggest a small set of actions for a state description.

Policies were learned with Q-Learning and tested on 50 Z-Machine games.

The Golovin Agent focuses exclusively on language models (Kostka et al., 2017) that

are pre-trained from a corpus of books in the fantasy genre. Using word embeddings,

3.2. Playing Video Games with Deep Neural Networks 73

the agent can replace synonyms with known words. Golovin is built of five command

generators: General, Movement, Battle, Gather, and Inventory. These are generated by

analyzing the state description, using the language models to calculate and sample from a

number of features for each command. Golovin uses no reinforcement learning and scores

comparable to the affordance method.

Most recently, Zahavy et al. (2018) proposed another DQN method. This method uses a

type of attention mechanism called Action Elimination Network (AEN). In parser-based

games, the actions space is very large. The AEN learns, while playing, to predict which

actions that will have no effect for a given state description. The AEN is then used to

eliminate most of the available actions for a given state and after which the remaining

actions are evaluated with the Q-network. The whole process is trained end-to-end and

achieves similar performance to DQN with a manually constrained actions space. Despite

the progress made for text adventure games, current techniques are still far from matching

human performance.

Outside of text adventure games, natural language processing has been used for other

text-based games as well. To facilitate communication, a deep distributed recurrent Q-

network (DDRQN) architecture was used to train several agents to learn a communication

protocol to solve the multi-agent Hats and Switch riddles (Foerster et al., 2016). One of

the novel modifications in DDRQN is that agents use shared network weights that are

conditioned on their unique ID, which enables faster learning while retaining diversity

between agents.

3.2.9 OpenAI Gym & Universe

OpenAI Gym is a large platform for comparing reinforcement learning algorithms with a

single interface to a suite of different environments including ALE, GVG-AI, MuJoCo,

Malmo, ViZDoom and more (Brockman et al., 2016a). OpenAI Universe is an extension

to OpenAI Gym that currently interfaces with more than a thousand Flash games and

aims to add many modern video games in the future11.

11https://universe.openai.com/

74 3.2. Playing Video Games with Deep Neural Networks

Chapter 4

Continual Evolutionary Planning

This chapter looks at intra-game adaptivity in StarCraft and presents a new evolutionary-

based approach called Continual Online Evolutionary Planning (COEP) and apply it to

build-order planning in StarCraft. Evolutionary algorithms have previously been applied to

the problem of optimizing build orders offline (Kuchem et al., 2013; Köstler and Gmeiner,

2013; Blackford and Lamont, 2014) to find static opening build orders. In contrast, COEP

runs continually during the game (i.e. online) to search for build-order plans that adapts

to the opponent’s strategy (see Figure 4.0.1). To our knowledge, no system, prior to

the publication of this work (Justesen and Risi, 2017a), could perform in-game adaptive

build-order planning in StarCraft. Ontanón et al. (2013) has previously highlighted this

shortcoming as well: “No bot is capable of observing the opponent and autonomously

synthesize a good plan from scratch to counter the opponent strategy”. COEP is unique as

it runs continually to optimize the future build-order plan while the game is being played,

taking available information about the opponent’s strategy into account. The experiments

presented in this chapter builds on the modular UAlbertaBot, by replacing the module

that is responsible for build-order planning (i.e. which unit/building/upgrade to produce

and in which order) with our evolutionary planner. Tasks such as controlling units in

combat are performed by other modules in UAlbertaBot and are in themselves an activate

research area (Churchill and Buro, 2013; Justesen et al., 2014; Wang et al., 2016a). A

series of experiments demonstrate that COEP can outperform the game’s built-in bot as

well as some scripted opening build-orders performed by UAlbertaBot.

75

76 4.1. Approach

Resulting
game state

UAlbertaBot

Continual Online
Evolutionary Planning

Build-Order
Forward Model

Game state

Game state Actions

Next build

Game state and
build orderStarCraft: Brood W

ar

Figure 4.0.1: Continual Online Evolutionary Planning (COEP) continually evolves
future build orders while UAlbertaBot executes the best one found so far.

4.1 Approach

We present a new adaptive planning algorithm called Continual Online Evolutionary

Planning (COEP) which extends traditional evolutionary planning. We apply this to

the StarCraft build-order tasks such that each individual in the population represents

a candidate build order with a fixed length. To evaluate the fitness of individuals, a

build-order forward model simulates the resulting game state after executing a build order

(Section 4.1.1). The fitness function (Section 4.1.2) takes into account the unit composition

of the resulting game state and current available information about the opponent’s units.

The most prominent difference to traditional evolutionary planning is that COEP runs

continually and in parallel with the rest of the bot, forming a communication line between

the two parts. When the bot is ready to produce a new build, it requests the planner

which take the first build from the build order of the currently most fit candidate in the

population. Simultaneously, the game state (state in Algorithm 6) is updated such that

build orders are generated and evaluated based on new information of the game state.

Furthermore, if builds have gone into production since the last update, individuals are

updated such that the first build in each build-order is discarded. This idea is similar to

EA-shift that was independently developed and published later by Gaina et al. (2017b).

4.1. Approach 77

Algorithm 6 Continual Online Evolutionary Planning (COEP)
1: COEP continually creates a new population and runs evolution for number of

generations. State is updated by the bot as soon as new information is obtained
and the best found build order can be retrieved from the champion (the most fit
individual).

2: procedure COEP(GameState s) . s is the initial game state.
3: champion = NULL . Accessible by bot
4: state = s . Accessible by bot
5: while game is not over do
6: pop = ∅ . Create new population
7: if champion is not NULL then pop.Push(champion)
8: for i = Size(pop) to POP_SIZE do
9: g = Genome(s)
10: g.buildOrder = legal build order from s
11: g.fitness = Fitness(s, genome.buildOrder)
12: pop.Push(genome)
13: for i = 1 to GENERATIONS do
14: Reduce pop based on elitism rules
15: Reproduce offspring using crossover
16: Mutate some offspring
17: Evaluate fitness of offspring
18: Add offspring to pop
19: champion = most fit individual

COEP runs a fixed number of generations after which it restarts using a new population.

These restarts are intended to prevent the evolution getting stuck in local optima, which

would prevent the bot from adapting to the continuously changing game state. When

populations are restarted, the most fit individual of the previous population is transferred

to the new population but excluded from the reproduction phase. In this way, COEP can

attempt to evolve new build orders while keeping the best from the last population until

a superior solution is found. This idea is similar to case-injected genetic algorithms, in

which solutions to previously solved problems are periodically injected into the population

(Louis and McDonnell, 2004; Louis and Miles, 2005).

Crossover is applied directly to build orders from two randomly sampled parents

(Figure 4.1.1). If some builds within a build order of an offspring are illegal, the forward

model simply ignores them.

Four different mutation operators are tested to ensure that existing build orders can be

reorganized effectively (Figure 4.1.2): Clone: Two indices a and b are randomly selected.

Build at position a becomes the same as the build at position b. Swap: Two random

78 4.1. Approach

Figure 4.1.1: Two-point crossover for two parent build orders and the resulting offspring.
Notice that the build in the bottom right corner remains in the genotype but becomes
inactive because its requirements are no longer met.

builds swap position. Add: One random build is randomly inserted. For each unmet

requirement, each required build is recursively added in front, such that the first build is

moved backwards and eventually out of the build order. Remove: One random build is

moved to the end of the build order and all builds after the moved build’s initial position

slide one step forward.

4.1.1 Forward Model

A forward model can predict the outcome of taking some actions in a given game state,

which we use to evaluate the fitness of build orders. The forward model used here does

not need to implement all the game rules since we are only concerned with build-order

planning and we are not concerned with how units move and attack. Such a build-order

forward model was implemented for the Protoss and Terran race and the source code is

available online1. The forward model (Appendix A1) iterates the given build order and

tries to add each build to the given game state in order; if the requirements of a build are

not satisfied it is simply ignored.

A few constants are used by the forward model: The avaerage minerals and gas collection

speed per frame by workers were estimated to 0.05 and 0.07 respectively. Similar values

of 0.045 and 0.07 were used by (Churchill and Buro, 2011). The amount of minerals

gathered decreases if more than ten workers mine at each base, such that workers 11–20

1https://github.com/njustesen/coep-starcraft/

4.1. Approach 79

Figure 4.1.2: A build order with ten builds, which is manipulated by the four mutation
operators. Builds are highlighted (red) if they are changed during an operation. (a) Shows
the initial build order, (b) the result of a clone mutation from index 5 to 8, (c) a swap
mutation on index 1 and 3, which swaps the two builds, (d) an add mutation on index
7, which adds a dragoon and recursively adds its requirements first and (e) a remove
mutation at index 2 that moves the build to the end of the build order.

only gather half as many minerals, 21–30 a third, etc.

COEP receives information available about the current game state from the bot, which

includes the number of all known friendly and enemy units, buildings, technologies and

upgrades as well as the current frame number. The technologies and upgrades researched

by the opponent are not known and are thus excluded. Also note that the game state

only includes the partial knowledge about the enemy units that the player has obtained.

Additionally, the game state includes a list of friendly builds that are in production as

well as the frame number in which they are completed.

4.1.2 Fitness

Building on the forward model, which predicts the resulting game state after applying a

build order, the fitness of a build order is determined by how desirable this future game

80 4.1. Approach

Algorithm 7 Discounted Accumulated Fitness
1: Determines the fitness of a genome by calculating the discounted accumulated fitness

of several steps of stepSize frames for a total of horizon frames. A discount factor in
γ ≤ 1 is used to prioritize short-term army production.

2: procedure Fitness(Genome g, GameState s, int horizon, int stepSize)
3: state = Clone(s)
4: step = 0
5: while state.frame < s.frame + horizon do
6: next = Min(s.frame + horizon, state.frame + stepSize)
7: build = next unbuilt build in g.buildOrder
8: state = Predict(state, [build], next)
9: g.fitness += Heuristic(state) ×step
10: step += 1

state is for the player. A challenge with this naive approach is that, at least in real-time

games, the longer one tries to predict into the future the more uncertain the outcome

becomes. For example, a build order with a very strong economy in the beginning and a

large unit production in the end would give a high fitness, even though the player has no

army and is defenseless during most of the evaluated period.

Therefore, the fitness function introduced here performs an evaluation several times during

the time span of the build order in addition to incorporating a discount factor (similarly

to discounted returns in MDPs) that values short-term rewards higher than long-term

rewards. In other words, instead of applying the forward model one time on the entire

build order, it is applied in several steps on subsets. Within each step, the heuristic

of the intermediate game state is accumulated into the final fitness of the build order

(Algorithm 7).

The fitness function is based on a heuristic that can evaluate how desirable game states

are. The game state in StarCraft is seen from a player perspective and is thus only

partially visible (see Section 4.1.1). Designing an optimal heuristic for StarCraft is

extremely challenging and highly dependent on the micro-management modules of the bot.

The simple heuristic used here, evaluates both players’ unit composition based on basic

knowledge about combat units in StarCraft. Some units are superior against particular

units while inferior against others (e.g. the powerful Zerg ultralisk, a ground melee unit, is

defenseless against a Protoss scout, a flying ranged unit). To express how strong each unit

type is against any other unit type a unit matchup table is introduced (Table 4.1.1). For

example, the Terran firebat (short-ranged unit) is valued 0.4 against a Protoss dragoon

4.1. Approach 81

Zealot Dragoon Dark Templar Scout
Marine 0.7 0.5 0.6 1.6
Firebat 1.3 0.1 0.8 0.7
Vulture 1.6 0.7 1.6 0.7
Goliath 0.9 0.7 0.9 1.5
Siege Tank 0.8 1.4 0.5 0.9

Table 4.1.1: Unit matchup table that values how strong units are against each other
which is a critical part of the heuristic applied. Values are in the range [0, 2].

Zealot Dragoon Scout
Ground Armor 1.02 1.02 -
Plasma Shields 1.02 1.02 1.02
Air Armor - - 1.02
Singularity Charge - 1.25 -

Table 4.1.2: Upgrade and tech multipliers, which give units additional value in the
heuristic.

(long-ranged unit) to express its weakness in this matchup. The value of a dragoon against

a firebat is the same, but inverted: 2− 0.4 = 1.6. Attributes such as damage types, unit

size, and whether they are invisible or can detect invisible units are also considered.

Upgrades and technologies can improve the strength of some units, which is reflected

in Table 4.1.2. The values in this table are multiplied with the matchup value from

Table 4.1.1 to determine the final values. For example, a Protoss dragoon has a final

value against a Terran firebat of 1.6 × 1.25 = 2, if the Singularity Charge upgrade has

been researched. Note that upgrade bonuses are not added to enemy units. We define a

function matchup that performs these calculations given a friendly unit type x and enemy

unit type y (e.g. matchup(dragoon, firebat) = 1.6; matchup(firebat, dragoon) = 0.4). The

value for player p of a unit matchup of friendly units of type x and enemy units of type y

is:

value(p, x, y) = matchup(x, y)× n(x)× n(y)×
(

1− n(x)

N(p)

)
,

where matchup(p, x, y) refers to the unit matchup table, n(y) and n(x) is the number of

units of type y and x, and N(p) is the number of all units controlled by player p. The idea

is that a player should strive to optimize all four components of this function to achieve

a good unit combination. This heuristic prefers a balanced unit composition, in which

units individually have high unit matchup values against the enemy units. The first three

82 4.1. Approach

components increase if the player has many units that counter the enemy units while the

last component (1 − n(x)
N(p)

) increases if the player has a balanced mix of unit types. It

should be noted that n(x) in the last component is further divided by 2 if x is a worker.

The heuristic used to evaluate a state s with players p1 and p2 is the sum of matchup

values for all permutations of the unit types up1 and up2 controlled by the two players:

heuristic(s) =

up1∑
x

up2∑
y

value(p1, x, y)− value(p2, y, x).

After prior experimentation with this heuristic we found it necessary to penalize expansions

while having few workers as well as not expanding while having many workers. The

expansion penalty in state s is equal to numOfBases× 14−MineralWorkers(s). Likewise,

a penalty for having too many supply buildings was found necessary. A complete

implementation of the heuristic can be found in the source code2.

4.1.3 Integration with UAlbertaBot

Because of UAlbertaBot’s modular design it is simple to replace the existing production

manager module with the presented COEP approach; all other modules in the bot are kept

unchanged. UAlbertaBot is an open source StarCraft bot developed by David Churchill3

that won the annual AIIDE StarCraft AI Competition in 2013. The bot consists of

numerous hierarchical modules, such as an information manager, building manager and

production manager. The production manager is responsible for managing the build order

queue, i.e. the order in which the bot produces new builds. This architecture enables us

to replace the production manager with our neural network, such that whenever the bot is

deciding what to produce next, the network predicts what a human player would produce.

The modular design of UAlbertaBot is described in more detail in (Ontanón et al., 2013).

The new production manager requests the COEP planner for a build whenever a new

build is being produced in the game or if 600 frames have passed.

2https://github.com/njustesen/coep-starcraft
3https://github.com/davechurchill/ualbertabot

4.2. Experiments 83

4.2 Experiments

The experiments are split into two parts, where the first part consists of experiments that

tests the ability of Online Evolutionary Planning (OEP), without the continual extension,

to evolve strong build orders for static game states in StarCraft. Without the continual

extension, the algorithm runs normally for a fixed number of generations using the same

game state and then terminates. In the second part, COEP is applied to UAlbertaBot

and is then tested in a total of 900 StarCraft games against the game’s built-in bot as

well as UAlbertaBot with four scripted opening build orders. The games were played on

the two-player map Astral Balance and all the game replays are made available4.

The configuration of COEP can be seen in Appendix A2. It takes on average 156±18 ms.

for the algorithm to run one generation on a regular laptop (2,6 GHz Intel Core i5).

Terran units Average unit combinations of evolved build orders.

10 10 0 0 0 0 0 0 7.5± 2.8 8.2± 4.2 1.2± 2.0 2.3± 2.3 0.0± 0.0 0.1± 0.4
10 0 10 0 0 0 0 0 2.2± 2.0 11.8± 5.0 0.5± 0.9 2.3± 2.6 0.4± 0.7 0.3± 0.9
10 0 0 8 0 0 0 0 1.0± 1.0 7.5± 3.5 0.0± 0.1 1.6± 2.1 1.2± 1.5 1.4± 1.6
10 0 0 4 0 4 0 0 2.9± 1.9 3.5± 2.7 0.3± 0.1 2.6± 2.9 0.6± 1.1 1.4± 1.6
10 0 0 0 4 4 0 0 6.1± 3.0 2.8± 2.8 0.6± 1.8 3.2± 2.7 0.1± 0.4 0.6± 1.0
10 0 0 0 0 0 4 2 0.8± 1.0 9.7± 3.7 0.0± 0.3 1.6± 1.6 0.4± 0.7 0.6± 1.0

Table 4.2.1: Unit combinations of evolved build orders found by Online Evolutionary
Planning after 100 generations. Results are averaged over 50 evolutionary runs. Some
units are excluded from the results for brevity. Each row represents one scenario containing
the Terran units on the left as well as a Protoss nexus, pylon and four probes. The Protoss
units on the right are the average unit combination of the evolved build orders. For each
unit type, the average count as well as the standard deviation is shown. The main result
is that by following the implemented heuristics, Online Evolutionary Planning is able to
evolve build orders that can effectively counter the opponent’s strategy.

4.2.1 Results: Online Evolutionary Planning

Online Evolutionary Planning (OEP) was tested, without the continual extension, on

its ability to evolve build orders to counter different enemy unit combinations. More

specifically, OEP had to find effective build orders for a Protoss player against a Terran

player. Six different scenarios were created (Table 4.2.1) all with one nexus (main base),
4http://bit.ly/2omfT5G

84 4.2. Experiments

four probes (workers) and one pylon (supply building) for the Protoss player, each with

a different set of units for the Terran player. For each of the six scenarios, OEP ran for

100 generations with a horizon of 12 minutes. Table 4.2.1 shows the unit combination

of the best evolved build orders averaged over 50 independent evolutionary runs. The

results demonstrate that OEP is capable of evolving diverse unit combinations that clearly

depend on the combination of enemy units. For example, in the scenario shown in row

six, the algorithm avoids zealots and dark templars (both ground melee units) against

wraiths and battlecruisers (both flying units). In scenario 2 the algorithm prefers dragoons

(long-ranged units) against firebats (short-ranged units). The reason why zealots and

dragoons are so dominant in the evolved build orders is that they are cheaper units that

can be produced early in the game. Referencing the values in the unit matchup table

(Table 4.1.1) shows that the evolved build orders produce matching unit combinations.

To determine the importance of the introduced mutation operators, we ran 50 independent

evolutionary runs for 100 generations with only one of the four mutation operators enabled,

compared to all of them enabled (Figure 4.2.1). Interestingly, the clone and swap operators

where the most efficient, but significantly less effective than as all four operators together

(p < .01; two-tailed Mann-Whitney U Test). The algorithm was also tested with uniform

crossover, single-point crossover and two-point crossover, but no significant change in

performance was detected.

4.2.2 Results: Continual Online Evolutionary Planning

In the previous experiments, it was shown that OEP is capable of evolving build orders

to counter the opponent’s strategy. In the following experiments, COEP is applied to

UAlbertaBot to perform in-game build-order planning, playing as the Protoss race. COEP

uses the same configuration as in the previous experiment as well as 100 generations in

each loop. The bot played a total of 300 games against the built-in bots in StarCraft, 100

against each of the three races. Our bot won 275 games (91.7%) with 5 games (1.7%)

ending in a draw. A summary of the results can be seen in Table 4.2.2. Each iteration of

COEP, which consists of initializing a new population and running 100 generations, takes

on average 9.96±0.8 seconds. COEP was also tested with a random fitness function, which

performs significantly worse, corroborating the heuristic chosen in this paper. In most

4.2. Experiments 85

Figure 4.2.1: The average fitness over generations for Online Evolutionary Planning
using a different mutation operator. Opaque coloring shows standard deviations.

games, the bot demonstrated the ability to adapt to the opponent’s strategy efficiently

enough to win. An example of such adaption is shown in Figure 4.2.2. The upper plot

displays the number of zealots, dragoons, marines and firebats in the game. It is clear

that our system (controlling the Protoss units) prefers zealots against the enemy marines

but switches to a unit combination dominated by dragoons when firebats are spotted.

This adaption rule can be seen in Tables 4.1.1 and 4.2.1. The bottom plot shows the

highest fitness in the population over time as well as the times the COEP’s game state

was updated.

Protoss Terran Zerg

COEP 83/4/13 96/0/4 96/1/3
COEP Random Fitness 1/0/99 0/0/100 4/0/96

Table 4.2.2: Number of wins, draws and losses by Continual Online Evolutionary
Planning (COEP) against each of the three races controlled by the built-in bot in
StarCraft. The bottom row shows results of COEP with a random fitness function.

The final experiment compared our adaptive approach with four scripted protoss strategies

played by UAlbertaBot. This test is more challenging as these scripts employ established

opening strategies, optimized to destroy the enemy early in the game. Zealot, dragoon,

and dark templar rushes are aggressive strategies, in which the player tries to obtain an

army of only one type of unit as fast as possible to surprise the opponent. Still COEP

86 4.2. Experiments

was competitive against these challenging openings, winning 52% of all games (draws

counted as half a win). The most challenging for COEP were the very fast zealot rush,

which does not allow much time to adapt. These results are summarized in Table 4.2.3.

Being competitive to established opening rushes is quite impressive, given that COEP

finds build-order plans online with no scripted starting point.

Figure 4.2.2: A visualization of Continual Online Evolutionary Planning’s (COEP)
ability to perform successful intra-game adaptation by continually adjusting the Protoss
build order in-game against the built-in Terran bot. The upper plot shows the number of
zealots, dragoons, marines and firebats over time and the lower plot shows the highest
fitness in the population. Green vertical lines indicate when the game state was updated.
The four screenshots in the top show critical situations in the game. Early in the game the
bot observes a group of Terran marines and continues to produce zealots to counter them.
Shortly after, these zealots fight against a large group of Terran firebats and many zealots
die. COEP quickly adapts its strategy to switch production to dragoons as they are superior
to firebats. A video of this game can be found here: https://youtu.be/SCZbDpIaqmI.

Zealot rush Dragoon Rush Dark Templar Rush
COEP 19/0/81 60/0/40 73/7/20

Table 4.2.3: Number of wins, draws and losses by Continual Online Evolutionary
Planning (COEP) against three scripted Protoss opening strategies performed by
UAlbertaBot.

4.3. Discussion 87

4.3 Discussion

In some cases, COEP can struggle, such as when it has to adapt to the very aggressive

zealot rush. Since our heuristic only takes the enemy units, and not production buildings

into account, COEP’s ability to adapt is slightly delayed, which is devastating during

rushes. In the future we plan to extend COEP to also take buildings into account.

Designing the heuristic has been challenging as it needs to correlate with the playing style

of the underlying bot. UAlbertaBot implements a specific behavior, which has its own

quirks when it comes to controlling larger groups of units or when it expands to new

bases. The strategies preferred by our implementation involve large armies with various

unit types which require more advanced micro-management compared to the simpler rush

strategies. UAlbertaBot also displayed difficulties using more advanced units such as

reavers, high templars and shuttles, which limits the range of possible unit combinations

for our approach. UAlbertaBot was probably not designed to have an adaptive build

order module which requires a great deal of generality in its implementation. Developing

a more advanced and general StarCraft bot, or improving upon an existing bot, as well as

fully incorporating COEP are important next steps.

A promising direction would be to improve evolutionary planning such that it learns a

heuristic in a training phase. Work in this direction has recently been published by Tong

et al. (2019), where a policy and value network is trained while evolutionary planning

(here Rolling Horizon Evolution) performs rollouts assisted by the policy network. This

approach could perhaps learn the quirks of UAlbertaBot, while it would require a diverse

set of opponent players to achieve an inter-game adaptive policy.

After the publication of the work presented in this chapter, Churchill et al. (2019) published

a continual extension of their earlier work where they used a recursive depth-first search

algorithm for build-order planning (Churchill and Buro, 2011). In their extension, an

Army Integral Evaluation method is introduced that attempts to minimize the integral

between the future army value curve and the curve for the maximum possible army

value for any build-order. This approach is similar to our discounted accumulated fitness

function and it would be interesting to compare the effect of these two methods. Their

army value heuristic is only based on resources spent on army units and does not consider

88 4.4. Summary

enemy units, making it unable to adapt to the opponent’s strategy.

Instead of having a complete reactive approach it might be fruitful to imagine what the

opponent is doing along with our own planning. Introducing co-evolution by also evolving

build-orders for the opponent player, could perhaps provide a more preventive behavior.

4.4 Summary

This chapter presented a variation of Evolutionary Planning called Continual Online

Evolutionary Planning (COEP) that can perform intra-game adaptive build-order planning

in StarCraft. COEP implements a discounted accumulated fitness function that favors

short-term army production over long-term rewards. COEP was applied to an existing

StarCraft bot called UAlbertaBot, where it replaced the existing macro-management

module. The results demonstrate that COEP is capable of intra-game adaptive build-order

planning, continually adapting to the changes in the game. While COEP still struggles

against some very aggressive rushes, it outperforms the built-in bot in StarCraft: Brood

War with a 91.7% win rate and can compete with a number of scripted opening build

orders performed by UAlbertBot.

Chapter 5

Learning Build-order Planning in

StarCraft from Replays

In this chapter, we will explore a neural network based approach to the build-order

planning task in StarCraft. In the previous chapter, build-order plans were evolved online

to adapt to the opponent. Here, we train a neural network using imitation learning to

predict human build-order decision from demonstrational data extracted from replay files

(i.e. game logs) of highly skilled human players. The trained neural network is combined

with the existing StarCraft bot UAlbertaBot, as in the previous chapter, and is responsible

for deciding what unit, building, technology, or upgrade to produce next, given the current

state of the game. While our approach does not achieve state-of-the-art results on its own,

it is a promising first step towards neural network based methods for build-order planning

in RTS games, as the same system setup could be used with reinforcement learning as

well. The approach and results presented here, are to our knowledge the first published

approach using deep learning in a system that plays the full StarCraft game.

By imitation human strategic decisions based on game state descriptions that include

knowledge about the opponent units and buildings, we expect the learned neural network

to be capable of inter-game adaptation. Additionally, by sampling from the learned action

distribution, instead of sampling deterministically, the build order planner will express

the wide range of behaviors that is expressed in the data set. While this does not qualify

as an intelligent inter-game adaptive behavior, it makes it less exploitable by an adaptive

opponent.

89

90 5.1. Approach

5.1 Approach

This section describes the presented approach in four parts. First, the data set and

extraction procedure is described. Then, the employed neural network architecture is

presented, followed by the training procedure. Finally, the integration with UAlbertaBot

are detailed.

5.1.1 Dataset

This section gives an overview of the dataset used for training and how it has been created

from replay files. A replay file for StarCraft contains every action performed throughout

the game by each player, and the StarCraft engine can recreate the game by executing

these actions in the correct order. To train a neural network to predict the build-order

decisions made by players, state-action pairs are extracted from replay files, where a state

describes the current game situation and an action corresponds to the next build produced

by the player. Additionally, states are encoded as a vector of normalized values to be

processed by our neural network.

Replay files are in a binary format and require preprocessing before knowledge can be

extracted. The dataset used in this paper is extracted from an existing dataset. Synnaeve

and Bessiere (2012) collected a repository of 7,649 replays by scraping the three StarCraft

community websites GosuGamers, ICCup and TeamLiquid, which are mainly for highly

skilled players including professionals. A large amount of information was extracted from

the repository and stored in an SQL database by Robertson and Watson (2014). This

database contained state changes, including unit attributes, for every 24 frames in the

games. Our dataset is extracted from this database, and an overview of the preprocessing

steps is shown in Figure 5.1.1.

From this database, we extract all events describing material changes throughout every

Protoss versus Terran game, including when (1) builds are produced by the player, (2)

units and buildings are destroyed and (3) enemy units and buildings are observed. These

events take the perspective of one player and thus maintain the concept of partially

observable states in StarCraft. The set of events thus represent a more abstract version

5.1. Approach 91

of the game only containing information about material changes and actions that relate

to build-prder decisions. The events are then used to simulate abstract StarCraft games

via the build-order forward model presented in Section 4.1.1. Whenever the player takes

an action in these abstract games, i.e. produces something, the action and state pair is

added to our dataset. This simulation step using the forward model can be skipped if the

original replays are simulated in the actual game engine. The recorded state describes

the player’s own material in the game: the number of each unit, building, technology,

and upgrade present and under construction, as well as enemy material observed by the

player.

The entire state vector consists of a few sub-vectors described here in order, in which the

numbers represent the indexes in the vector:

1. 0-31: The number of units/buildings of each type present in the game controlled

by the player.

2. 32-38: The number of each technology type researched in the game by the player.

3. 39-57: The number of each upgrade type researched in the game by the player. For

simplicity, upgrades are treated as a one-time build and our state description thus

ignores level 2 and 3 upgrades.

4. 58-115: The number of each build in production by the player.

5. 116-173: The progress of each build in production by the player. If a build type is

not in production it has a value of 0. If several builds of the same type are under

construction, the value represents the progress of the build that will be completed

first.

6. 174-206: The number of enemy units/buildings of each type observed.

7. 207-209: The number of supplies used by the player and the maximum number of

supplies available. Another value is added which is the supply left, i.e. the difference

between supply used and maximum supplies available.

All values are normalized into the interval [0, 1]. The preprocessed dataset contains 2,005

state-action files with a total of 789,571 state-action pairs. Six replays were excluded

because the Protoss player used the rare mind control spell on a Terran SCV that allows

92 5.1. Approach

Justesen et. alRobertson et. al

BWAPI

Event files State-action filesSQL databaseReplay files

protoss_build:{
 13: [Probe],
 377: [Probe],
 ...
},
protoss_lost : {
 2244: [Probe],
 6018: [Zealot],
...
},
terran_spotted:{
 2088: [(1413568, Supply Depot)],
 2184: [(1207, Barracks)],
 ...
},
terran_lost : {
 3456: [(1195, SCV)],
 4856: [(1413573, Marine)],
...
}

Event file State-action file

Probe: 0,0,0,0.0625,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0...
Probe: 0,0,0,0.0625,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0...
Probe: 0,0,0,0.0782,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0...
Probe: 0,0,0,0.0938,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0...
Pylon: 0,0,0,0.1094,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0...
Probe: 0,0,0,0.1094,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0...
Probe: 0,0,0,0.125,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0,0,0,0,0,0,0,0,0...
Gateway: 0,0,0,0.1406,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0156,0,0,0,0...
Probe: 0,0,0,0.1406,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0156,0,0,0,0,0...
Assimilator: 0,0,0,0.1563,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0...
Probe: 0,0,0,0.1406,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0,0,0,0...
Probe: 0,0,0,0.1406,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0,0,0,0...
Assimilator: 0,0,0,0.1719,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0...
Probe: 0,0,0,0.1719,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0,0,0,0...
Probe: 0,0,0,0.1875,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0.0156...
Cyber Core: 0,0,0,0.2031,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156...
Probe: 0,0,0,0.2031,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0.031,0...
Probe: 0,0,0,0.2188,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0.031,0...
Pylon: 0,0,0,0.2344,0,0,0,0,0,0,0,0,0,0,0,0,0.0156,0,0.0156,0.031,0...
...

Forward
model

(a) (b)

(c) (d)

Replay
file parser

Figure 5.1.1: An overview of the data preprocessing that converts StarCraft replays
into vectorized state-action pairs. (a) shows the process of extracting data from replay
files into an SQL database, which was done by (Robertson and Watson, 2014). (b) shows
our extended data processing that first extracts events from the database into files (c)
containing builds, kills and observed enemy units. All events are then run through a
forward model to generate vectorized state-action pairs with normalized values (d).

the Protoss player to produce Terran builds. While the data preprocessing required for

training is a relatively long process, the same data can be gathered directly by a playing

(or observing) bot during a game.

5.1.2 Network Architecture

Since our dataset contains neither images nor sequential data, a simple multi-layered

network architecture with fully-connected layers is used. Our game state contains all the

material produced and observed by the player throughout the game, unless it has been

destroyed, and thus there is no need for recurrent connections in our model. The network

that obtained the best results has four hidden layers. The input layer has 210 units, based

on the state vector described in Section 5.1.1, which is followed by four hidden layers of

128 units with the ReLU activation function. The output layer has one output neuron for

each of the 58 build types a Protoss player can produce and uses the softmax activation

5.1. Approach 93

function. The output of the network is thus the probability of producing each build in

the given state.

5.1.3 Training

The dataset of 789,571 state-action pairs is split into a training set of 631,657 pairs (80%)

and a test set of 157,914 pairs (20%). The training set is exclusively used for training

the network, while the test set is used to evaluate the trained network. The state-action

pairs, which come from 2,005 different Protoss versus Terran games, are not shuffled prior

to the division of the data to avoid that actions from the same game end up in both the

training and test set.

The network is trained on the training set, which is shuffled before each epoch. Xavier

initialization is used for all weights in the hidden layers and biases are initialized to zero.

The learning rate is 0.0001 with the Adam optimization algorithm (Kingma and Ba, 2014)

and a batch size of 100. The optimization algorithm uses the cross entropy loss function

−
∑

i y
′
i log(yi), where y is the output vector of the network and y′ is the one-hot target

vector. The problem is thus treated as a classification problem, in which the network

tries to predict the next build given a game state. In contrast to classical classification

problems, identical data examples (states) in our dataset can have different labels (builds),

as human players execute different strategies and also make mistakes while playing. Also,

there is no correct build for any state in StarCraft, but some builds are much more likely

to be performed by players. The network could also be trained to predict whether the

player is going to win the game, but how to best incorporate this in the decision-making

process is an open question. Instead here we focus on predicting actions made by human

players, similarly to the supervised learning step in AlphaGo (Silver et al., 2016).

5.1.4 Integration with a StarCraft Bot

We build on the UAlbertaBot, which has a production manager that manages a queue of

builds that the bots must produce in order. The production manager, which normally uses

a goal-based search, is modified to use the network trained on replays instead. Whenever

94 5.1. Approach

5 2 1 41 0 1 0 0 0 0 133 6 1 0 .3 .7 0 0 0 .4.5 0 1 4 54 47 312 11

.05 .26 .02 .61 .00 .01 .00 .00

(a) Own material (b) Material under construction (c) Progress of material under construction (d) Opp. material (e) Supply

4 hidden layers
each with 128 units

(ReLU)

Output layer
with 58 units

(Softmax)

Input layer with 210 units.

Figure 5.1.2: Neural Network Architecture. The input layer consists of a vectorized state
containing normalized values representing the number of each unit, building, technology,
and upgrade in the game known to the player. Only a small subset is shown on the diagram
for clarity. Three inputs also describe the player’s supplies. The neural network has four
hidden fully-connected layers with 128 units each using the ReLU activation function.
These layers are followed by an output layer using the softmax activation function and
the output of the network is the prediction of each build being produced next in the given
state.

the module is requested (by other modules) for the next build to produce, the request

is forwarded along, with a description of the current game state, to the neural network

which then returns a probability distribution of the build prediction. Since the network

is only trained on Protoss versus Terran games, it is only tested in this matchup. Our

approach can, however, easily be applied to the other matchups as well. UAlbertaBot

does not handle some of the advanced units well, so these where simply excluded from the

output signals of the network. The excluded units are: archons, carriers, dark archons,

high templars, reavers and shuttles.

Two action selection policies were tested:

Greedy action selection: The build with the highest probability is always sampled.

This approach creates a deterministic behavior with a low variation in the units produced.

A major issue of this approach is that rare builds such as upgrades will likely never be

sampled.

Probabilistic action selection: Builds are sampled with the probabilities of the softmax

output units of the network. In the example in Figure 5.1.2, a probe will be selected with

a 5% probability and a zealot with 26% probability. With a low probability, this approach

5.2. Results 95

will also select some of the rare builds, and can express a wide range of strategies. Another

interesting feature is that it is stochastic and harder to predict, and thus exploit, by the

opponent.

5.2 Results

5.2.1 Build Prediction

The best network architecture we found managed to reach a top-1 error rate of 54.6%

on the test set (averaged over five training runs), which means that it is able to guess

the next build around half the time, and with top-3 and top-10 error rates of 22.92% and

4.03%. For a simple comparison to a few baselines, an approach that always predicts the

next build to be a probe, which is the most common build in the game for Protoss, has

a top-1 error rate of 73.9% and thus performs significantly worse. Predicting randomly

with uniform probabilities achieves a top-1 error rate of 98.28%. Some initial experiments

with different input layers show that we obtain worse error rates by omitting parts of the

state vector that we described in Section 5.1.1. For example, when opponent material

is omitted, the top-1 error increases to an average of 58.17%. Similarly, omitting the

material under construction (together with the progress) increases the average top-1 error

rate to 58.01%. The results of these experiments are summarized in Table 5.2.1 with

error rates averaged over five training runs for each input layer design. The top-1, top-3

and top-10 error rates in the table show the networks’ ability to predict using one, three

and ten guesses respectively, determined by their output. All networks were trained for

50 epochs as the error rates stagnated prior to this point. Overfitting is minimal with a

difference less than 1% between the top-1 training and test errors.

To gain further insights into the learned model, the predictions of building a new base

given a varying number of probes (workers) is plotted in Figure 5.2.1. States are taken

from the test set in which the player has only one base. The network successfully learned

that humans usually create a base expansion when they have around 20-30 probes, which

is aligned our understanding of expansion timings for Protoss.

96 5.2. Results

Input Top-1 error Top-3 error Top-10 error
a+b+c+d+e 54.60% ± 0.12% 22.92% ± 0.09% 4.03% ± 0.14%
a+b+c+e 58.17% ± 0.16% 24.92% ± 0.10% 4.23% ± 0.04%
a+d 58.01% ± 0.42% 24.95% ± 0.31% 4.51% ± 0.16%
a 60.81% ± 0.09% 26.64% ± 0.11% 4.65% ± 0.21%
Probe 73.90% ± 0.00% 73.90% ± 0.00% 73.90% ± 0.00%
Random 98.28% ± 0.04% 94.87% ± 0.05% 82.73% ± 0.08%

Table 5.2.1: The top-1, top-3 and top-10 error rates of trained networks (averaged over
five runs) with different combinations of inputs. (a) is the player’s own material, (b) is
material under construction, (c) is the progress of material under construction, (d) is the
opponent’s material and (e) is supply. The input layer is visualized in Figure 5.1.2. Probe
is a baseline predictor that always predicts the next build to be a probe and Random
samples from a uniform distribution. The best results (in bold) are achieved by using all
the input features.

5.2.2 Playing StarCraft

UAlbertaBot is tested playing the Protoss race against the built-in Terran bot, with

the trained network as production manager. Both the greedy and probabilistic actions

selection strategies are tested in 100 games in the two-player map Astral Balance. The

results, summarized in Table 8.4.1, demonstrates that the probabilistic strategy is clearly

superior, winning 68% of all games. This is significant at p ≤ 0.05 according to the

two-tailed Wilcoxon Signed-Rank. The greedy approach, which always selects the action

with the highest probability, does not perform as well. While the probabilistic strategy is

promising, it is important to note that when UAlbertaBot plays as Protoss and follows

the hand-designed dragoon rush strategy, it wins 100% of all games against the built-in

Terran bot. However, the dragoon rush is fixed and is thus highly exploitable by adaptive

players.

To further understand the difference between the two approaches, the builds selected by

each selection strategy are analyzed. A subset of these builds are shown in Table 5.2.3.

The probabilistic strategy clearly expresses a more varied strategy than the greedy one.

Protoss players often prefer a good mix of zealots and dragoons as it creates a good

dynamic army, and the greedy strategy clearly fails to achieve this. Additionally, with the

greedy approach, the bot never produces any upgrades, because they are too rare in a

game to ever become the most probable build. The blind probabilistic approach (which

5.2. Results 97

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

N
ex

us
 p

re
d

ic
tio

n

of probes

Figure 5.2.1: The prediction of the next build being a Nexus (a base expansion) predicted
by the trained neural network. Each data point corresponds to one prediction from one
state. These states have only one Nexus and are taken from the test set. The small spike
around 11 and 12 probes shows that the network predicts a fast expansion build order if
the Protoss player has not build any gateways at this point.

Action selection Wins vs. Built-in Terran
Probabilistic 68/100
Probabilistic (blind) 59/100
Greedy 53/100
Random 0/100
UAlbertaBot (dragoon rush) 100/100

Table 5.2.2: The win percentage of UAlbertaBot with the trained neural network as a
production manager against the built-in Terran bot. The probabilistic strategy selects
actions with probabilities equal to the outputs of the network while the greedy network
always selects the action with the highest output, and random always picks a random
action. The blind probabilistic network does not receive information about the opponent’s
material (inputs are set to 0). UAlbertaBot playing as Protoss with the scripted dragoon
rush strategy wins 100% of all games against the built-in Terran bot.

ignores knowledge about the opponent by setting these inputs to zero) reached a lower

win rate of just 59%, further corroborating that the opponent’s units and buildings are

important for build-order decision making. We also tested the probabilistic approach

against UAlbertaBot with the original production manager configured to follow a fixed

marine rush strategy, which was the best opening strategy for UAlbertaBot when playing

Terran. Our approach won 45% of 100 games, demonstrating that it can play competitively

against this aggressive rush strategy, learning from human replays alone.

Figure 5.2.2 visualizes the learned opening strategy with greedy action selection. While

the probabilistic strategy shows a better performance in general (Table 8.4.1), the strategy

98 5.2. Results

1.000 0.999 0.999

0.001

0 5 366 670 947 1114 1322 1650 1879 2037

0.987

0.010

0.003

0.475

0.519

0.005

0.980

0.020

0.879

0.117

0.004

0.098

0.870

0.025

0.006

0.001

0.989

0.003

0.006

0.001

0.001

0.358

0.006

0.616

0.001

0.006

0.002

2328 2471

0.998

0.001

0.001

0.922

0.002

0.043

0.021

0.002

0.011

2775

0.164

0.001

0.132

0.021

0.002

0.680

Frame

Probe

Nexus PylonGatewayAssimilator

Forge ZealotCybernetics Core

Figure 5.2.2: The opening build order learned by the neural network when playing
against the built-in Terran bot (the build order also depends on the enemy units observed).
The number next to each build icon represents the probability of the build being produced
next, and points on the timescale indicate when the bot requests the network for the next
build. In this example the network follows the greedy strategy, always picking the build
with the highest probability.

Units produced Upgrades researched

Action selection
Probabilistic 50.84 14.62 17.3 1.00 3.56 0.11 0.13 0.32 0.03 0.07 0.01
Greedy 70.12 1.46 32.75 0.00 2.40 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.2.3: The average number of different unit types produced by the two different
action selection strategies against the built-in Terran bot. The results show that the
greedy strategy executes a very one-sided unit production while the probabilistic strategy
is more varied.

performed by the greedy action selection is easier to analyze because it is deterministic

and has a one-sided unit production. The learned build order shown in Figure 5.2.2 is

a One Gate Cybernetics Core opening with no zealots before the cybernetics core. This

opening was performed regularly against the built-in Terran bot, which does not vary

much in its strategy. The opening is followed by a heavy production of dragoons and a

few observers. A base expansion usually follows the first successful confrontation. Some

losses of the greedy approach were caused by UAlbertaBot not being able to produce more

buildings, possibly because there was no more space left in the main base. A few losses

were also directly caused by some weird behavior in the late game, where the bot (ordered

by the neural network) produces around 20 pylons directly after each other. Generally, the

neural network expresses a behavior that often prolongs the game, as it prefers expanding

bases when leading the game. This is something human players also tend to do, but since

UAlbertaBot does not handle the late game very well, it is not a good strategy for this

particular bot.

5.3. Discussion 99

The behavior of the probabilistic strategy is more difficult to analyze, as it is stochastic.

It usually follows the same opening as the greedy approach, with small variations, but

then later in the game, it begins to mix its unit production between zealots, dragoons

and dark templars. The timings of base expansions are very different from game to game

as well as the use of upgrades.

5.3 Discussion

This chapter demonstrated that build-order tasks in StarCraft can be learned from replays

using deep learning, and that the learned policy can be used to outperform the built-in

bot in StarCraft. In this section, we discuss the short-comings of this approach and give

suggestions for future research that could lead to strong StarCraft bots.

The built-in StarCraft bot is usually seen as a weak player compared to humans. It gives

a sufficient amount of competition for new players but only until they begin to learn

established opening strategies. A reasonable expectation would be that UAlbertaBot,

using our trained network, would defeat the built-in bot almost every time. By analyzing

the games played, it becomes apparent that the performance of UAlbertaBot decrease

in the late game. It simply begins to make mistakes as it takes weird micromanagement

decisions when it controls several bases and groups of units. The strategy learned by our

network further enforces this faulty behavior, as it prefers base expansions and heavy unit

production (very similar to skilled human players) over early and risky aggressions. The

trained network was also observed to make a few faulty decisions, but rarely and only

in the very late game. The reason for these faults might be because some actions were

excluded, since UAlbertaBot does not handle these builds well, and because there are

fewer data examples for rare late game situations.

Despite the presented approach not achieving a skill level on pair with humans, it should be

fairly straightforward to extend it further with reinforcement learning. Supervised learning

on replays can be applied to pre-train networks, ensuring that the initial exploration

during reinforcement learning is sensible, which proved to be a critical step to surpass

humans in the game go (Silver et al., 2016). Reinforcement learning is especially promising

for a modular-based bot as it could optimize the build-order policy to fit the fixed

100 5.3. Discussion

micromanagement policy. Additionally, learning a build-order policy to specifically beat

other bots that are competing in a tournament is a promising future direction. After this

work was published (Justesen and Risi, 2017b), Tang et al. (2018) applied reinforcement

learning to a similar setup as described here, achieving high win rates against the level 7

(out of 10) built-in bot in StarCraft II. Sun et al. (2018) further extended the approach

of Tang et al. (2018) in a bot called TStarBots which is able to outperform the built-in

level 10 bot that actually cheats by harvesting resources faster and by having access to

information that is normally hidden. The downside of these extensions are that they learn

very particular rush strategies that are likely to be exploitable by other players than the

bot they trained against, as it only plays one particular strategy. The authors report that

the learned policy “lacks strategy diversity in order to consistently beat human players”

(Sun et al., 2018).

This chapter also introduces a new benchmark for machine learning, where the goal is to

predict the next unit, building, technology or upgrade that is produced by a human player

given a game state in StarCraft. An interesting extension to the presented approach,

which could potentially improve the results, could involve including positional information

as features for the neural network. The features could be graphical and similar to the

minimap in the game that gives an abstract overview of where units and buildings are

located on the map. Regularization techniques such as dropout (Srivastava et al., 2014)

or L2 regularization (Nowlan and Hinton, 1992) could perhaps reduce the error rate of

deeper networks and ultimately improve the playing bot. We test some of these ideas in

the next chapter.

Finally, it would be interesting to apply our trained network to a more sophisticated

StarCraft bot that is able to manage several bases well and can control advanced units such

as spell casters and shuttles. This is currently among our future goals, and hopefully this

bot will participate in the coming StarCraft competitions. Since this work was published,

we have developed our own bot and done some preliminary testing against two skilled

human players. While the bot played well in two rather long games, they eventually lost.

A summary with videos is available online1.

1https://njustesen.com/2017/10/18/playing-starcraft-against-humans-with-a-neural-network/

5.4. Summary 101

5.4 Summary

This chapter presented an approach that learns from StarCraft replays to predict the next

build produced by human players. 789,571 state-action pairs were extracted from 2,005

replays of highly skilled players. We trained a neural network with supervised learning on

this dataset, with the best network achieving top-1 and top-3 error rates of 54.6% and

22.9%. To demonstrate the usefulness of this approach, the open source StarCraft bot

UAlbertaBot was extended to use such a neural network as a production manager, thereby

allowing the bot to produce builds based on the networks predictions. Two action selection

strategies were introduced: A greedy approach that always selects the action with the

highest probability, and a probabilistic approach that selects actions corresponding to the

probabilities of the network’s softmax output. The probabilistic strategy proved to be

the most successful and managed to achieve a win rate of 68% against the games built-in

Terran bot. Additionally, we demonstrated that the presented approach was able to play

competitively against UAlbertaBot with a fixed rush strategy. The presented approach

stands in contrast to AlphaStar (Vinyals et al., 2019) that was announced two years

later. AlphaStar learns the game end-to-end and achieves a high skill level. Our approach

requires less computational resources and remain a practical alternative to AlphaStar,

and we believe that this line of work deserves to be explored further.

102 5.4. Summary

Chapter 6

Behavioral Repertoire Imitation

Learning

Reinforcement learning has critical shortcomings when reward signals are sparse or

interaction with the environment is expensive. There are several attempts to mitigate

these shortcomings, including curriculum learning (Bengio et al., 2009; Graves et al.,

2016; Matiisen et al., 2017), reward shaping (Ng et al., 1999), curiosity-driven exploration

(Pathak et al., 2017b), diversification (Conti et al., 2018; Eysenbach et al., 2018), and

Imitation Learning (Bakker and Kuniyoshi, 1996).

In this chapter, we focus on imitation learning, extending on the work from the previous

chapter. Traditional imitation learning techniques result in a single policy, which usually

expresses an “averaged” behavior among all the behaviors present in the dataset. We see

this as a major limitation of imitation learning. It would be more desirable to instead

learn a diverse set of policies, expressing all the different types of behaviors present in

the dataset. Additionally, having a repertoire of different behaviors allows for inter-game

adaptation while the system is deployed.

An imitation learning approach called Generative Adversarial Imitation Learning (GAIL)

use a Generative Adversarial Network (GAN), wherein a policy network (the generator)

is trained to fool a discriminator by producing state-action samples that imitates human

behaviors Ho and Ermon (2016). Two extensions of GAIL can learn diverse behaviors

similarly to our work. Wang et al. (2017b) employs a variational auto-encoder to map

103

104

demonstration sequences to an embedding vector (behavioral features) that is used to

condition the policy network and the discriminator. This approach was applied to a robot

arm for reaching tasks where different behaviors (reached positions) could be interpolated

after training. InfoGAIL is another extension to GAIL that also learns a repertoire of

behaviors (Li et al., 2017). InfoGAIL learns salient semantic features in an unsupervised

manner in the style of InfoGAN (Chen et al., 2016), which has been used to find semantic

features in images of hand-written letters and digit, as well as photos of faces. While our

approach requires a manually designed behavioral dimensions, this can give the user more

control over the learned policy; different behavioral spaces can be beneficial for different

purposes. InfoGAN was capable of learning a variety of car driving behaviors in TORCS

(Chen et al., 2016). A latent space that has been learned in an unsupervised manner

does, however, not necessarily reflect that space behaviors that is useful for strategic

adaptation, in contrast to a manually defined behavioral space. The approach presented

in this chapter is not based on GANs but instead extends traditional supervised imitation

learning conditioned with a low-dimensional behavioral description that is suitable for

fast adaptation in strategy games.

Figure 6.0.1: Behavioral Repertoire Imitation Learning (BRIL) trains a policy
π(s, b) supervised on a data set of state-actions pairs augmented with behavioral descriptors
in R2 for each demonstration. When deployed, a system can adapt its behavior by
modulating b. High-dimensional behavioral spaces can be reduced using dimensionality
reduction, as low-dimensional behavioral descriptions allow for faster adaption.

105

Addressing the limitations of current imitation learning methods, we present a new IL

approach called Behavioral Repertoire Imitation Learning (BRIL), which is inspired by

Quality-Diversity (QD) algorithms (Pugh et al., 2016; Mouret and Clune, 2015) and

reinforcement learning methods that learn multiple different behaviors. In contrast to

traditional optimization techniques, QD-algorithms attempt to find a diverse set of high-

quality solutions rather than a single optimal solution. When QD-algorithms search in

policy space, they typically discover hundreds or thousands of different policies controlled

by different neural networks. BRIL instead learns a behavioral repertoire using a single

model that can be manipulated to express multiple behaviors, similarly to reinforcement

learning algorithms that learn a single policy for multiple goals (Schaul et al., 2015;

Andrychowicz et al., 2017). BRIL consists of a multi-step process (see Figure 6.0.1)

wherein the experimenter: (1) extracts state-action pairs (similarly to many imitation

learning approaches), (2) designs a set of behavioral dimensions to form a behavioral space

(similarly to many QD algorithms) and determines the behavioral description (coordinates

in the space) for each demonstration, (3) merges the data to form a dataset of state-

action-behavior triplets, and (4) trains a model to predict actions from state-behavior

pairs through supervised learning. When deployed, the model can act as a policy and the

behavior of the model can be manipulated by changing its behavioral input features.

BRIL is tested on the build-order planning problem in StarCraft from Chapter 5. The

results in this chapter demonstrate that the behavior of the learned policy can be efficiently

manipulated without further training. Additionally, the behavior of the learned policy can

be optimized online with the Upper Confidence Bounds (UCB1) algorithm, outperforming

a traditional imitation learning approach when tested against one of the built-in bots.

We believe this approach can be particularly useful when modeling human players in a

game, where the policy should express the entire range of distinct behaviors instead of the

average of all. We hypothesize that this property can allow a system to be more robust to

exploitation, which is a concern for AI system in many games. Furthermore, BRIL could

be useful in applications beyond games, e.g. in adaptive and resilient robotics.

106 6.1. Dimensionality Reduction

6.1 Dimensionality Reduction

Principal Component Analysis (PCA) is a popular dimensionality reduction method that

finds a new set of dimensions, also called the principal components, from a set of data

points. The number of dimensions can then be reduced by selecting only a subset of the

principal components that explain the maximal variance of the data points. Reducing

the dimensionality of a dataset from n to p dimensions, where n ≥ p, using PCA consists

of several fairly simple steps. First, the data is standardized, a covariance matrix is

computed, and the eigenvectors and eigenvalues of the covariance matrix are found. These

eigenvectors correspond to the principal components and the eigenvalues represent how

well they each explain the variance in the data. The eigenvectors are thus sorted in

descending order by their eigenvalues and the first p eigenvectors are selected to form a

new matrix called a feature vector with columns equal to the eigenvectors. The original

dataset, structured as a matrix with the data points as columns, can then be transformed

into the reduced space by multiplying it with the transpose of the feature matrix.

PCA can, however, not capture non-linear relationships in the data, in contrast to

more advanced methods such as t-Distributed Stochastic Neighbor Embedding (t-SNE)

(Maaten and Hinton, 2008) or UMAP (McInnes et al., 2018). In the case where only the

similarities (or dissimilarities) are known, rather than coordinates in the behavioral space,

Multidimensional Scaling (MDS) can be a useful method (Jaworska and Chupetlovska-

Anastasova, 2009). For example, if behaviors are described as sequences of actions, which

cannot easily be transformed into coordinates, it is possible to compute their similarities

instead.

6.2 Universal Policies

In value-based reinforcement learning, on typically learns a state value function Vπ(s) or a

state-action value functionQπ(s, a) for a policy π. Universal Value Function Approximators

(UVFA) instead learn a joint distribution Vπ(s, g) or Qπ(s, a, g) over all goals G (Schaul

et al., 2015). UVFA can be learned using supervised learning from a training set of

optimal values such as V ∗g (s) or Q∗g(s, a), or alternatively, it can be learned through

6.3. Approach 107

reinforcement learning by switching between goals both when generating trajectories and

when computing gradients. Hindsight Experience Replay is an extension to UVFAs, which

performs an additional gradient update with the goal being replaced by the terminal state;

this modification can give further improvements when it is infeasible to reach the goals

(Andrychowicz et al., 2017). An extension to Generative Adversarial Imitation Learning

(GAIL) augments each trajectory with a context (Merel et al., 2017), which specifies the

agent’s sub-goals that can be modulated at test-time.

In our approach, we are not considering goals, but rather behaviors, with the aim of

learning a universal policy π(s, b) over states s ∈ S and behaviors b ∈ B in a particular

behavioral space. We are thus combining the QD approach of designing a behavioral

space with the idea of learning a universal policy to express behaviors in this space.

6.3 Approach

This section describes two approaches to learning behavioral repertoires using imitation

learning. We first describe how a behavioral space can be formed from demonstrations.

Then we introduce a naive imitation learning approach that first clusters the

demonstrations based on their coordinates in the behavioral space, and then applies

traditional imitation learning on the clusters. Finally, BRIL is introduced, which learns

a single policy augmented with a behavioral feature input rather than learning multiple

policies for each behavioral cluster. BRIL consists of a number of steps which are depicted

in Fig. 6.0.1.

6.3.1 Behavioral Spaces from Demonstrations

A behavioral space consists of a number of behavioral dimensions that are typically

determined by the experimenter. For example, in StarCraft, behavioral dimensions can

correspond to the ratio of each army unit produced throughout the game to express the

strategic characteristics of the player. A behavioral space can require numerous dimensions

to be able to express meaningful behavioral relationships between interesting solutions

for a problem. Intuitively, if the problem is complex, more dimensions can give a finer

108 6.3. Approach

granularity in the diversity of solutions. However, there is a trade-off between granularity

and adaptation, as low-dimensional spaces are easier to search in. We thus propose

the idea of first designing a high-dimensional behavioral space and then reducing the

number of dimensions through dimensionality reduction techniques. In our preliminary

experiments, it has shown beneficial to reduce the space to two dimensions, as it allows for

easy visualization of the data distribution and it also seems to be a good trade-off between

granularity and adaptation speed. In preliminary experiments with one-dimensional

behavioral spaces, we noticed that nearby solutions could be wildly different.

6.3.2 Imitation Learning on Behavioral Clusters

A naive imitation learning approach, that learns behavioral repertories, trains n policies

on n behaviorally diverse subsets of the demonstrations. This idea is similar to the state-

space clustering by Thurau et al. (2004), but here we cluster data points in a behavioral

space instead. When a behavioral space is defined, each demonstration can be defined

by a particular behavioral description (a coordinate in the Rn dimensional space), where

afterwards a clustering algorithm can split the dataset into several subsets. Hereafter,

traditional imitation learning can be applied to each subset with the goal of learning one

policy for each behavioral cluster. This approach creates a discrete set of policies similarly

to current QD algorithms. However, it introduces a difficult dilemma: if the clusters are

small, there is a risk of overfitting to these reduced training sets. On the other hand, if

the clusters are large but few, the granularity of behaviors is lost.

6.3.3 Learning Behavioral Repertoires

QD algorithms typically fill an archive with diverse and high-quality solutions, sometimes

resulting in thousands of policies stored in a single run, which increases the storage

requirements in training as well as in deployment. To reduce the storage requirement,

one can decrease the size of the archive, with the trade-off of losing granularity in the

behavioral space. The main approach introduced here, called Behavioral Repertoire

Imitation Learning (BRIL), solves these issues and reduces overfitting by employing a

universal policy instead, in which a single policy is conditioned on a behavioral description.

6.4. Experiments 109

In contrast to QD algorithms, the goal of BRIL is not to optimize neither quality nor

diversity directly. Instead, BRIL attempts to imitate and express the diverse range of

behaviors and the quality that exists in a given set of demonstrations. Additionally, BRIL

produces a continuous space of policies which is potentially more expressive than a discrete

set.

BRIL extends the traditional imitation learning setting through the following approach.

First, behavioral characteristics of each demonstration are determined. If the

dimensionality of these descriptions is large, it can be useful to reduce the space as

described in the earlier section. A training set of state-action-behavior triplets is

then constructed, such that the behavior is equal to the behavioral description of the

corresponding demonstration. Then, a policy π(s, b) is trained supervised on this dataset

to map states and behaviors to actions. Using this approach, the training set is not

reduced to small behavioral clusters.

When the trained policy is deployed, the behavioral feature input can be modulated with

the goal of manipulating its behavior. The simplest approach is to fix the behavioral

features throughout an episode, evaluate the episodic return, and then consider new

behavioral features for the next episode. This approach should allow for inter-game

adaptation, which is explored in our experiments. One could also manipulate the behavioral

features during an episode e.g. by learning a meta-policy.

6.4 Experiments

This section presents the experimental results of applying BRIL to the game of StarCraft.

Policies are trained to control the build order planning module of a relatively simple

scripted StarCraft bot1 that plays the Terran race. While the policy is trained off-line,

our experiments attempt to optimize the playing strength of this bot online, in-between

games, by manipulating its behavior.

1https://github.com/njustesen/sc2bot

110 6.4. Experiments

6.4.1 Behavioral Feature Space

The behavioral space for a StarCraft build-order policy can be designed in many ways.

Inspired by the AlphaStar League Strategy Map (Vinyals et al., 2019), the behavioral

features are constructed from the army composition, such that the dimensions represent

the ratios of each unit type. We achieve this by traversing all demonstrations in the data

set, counting all the army unit creation events, and computing the relative ratios. Each

demonstration thus has an n-dimensional behavioral feature description, where n = 15 is

the number of army unit types for Terran.

To form a 2D behavioral space, which allows for easier online search and analysis, we apply

the T-distributed Stochastic Neighbor Embedding (t-SNE). We have also experimented

with the PCA, but for this dataset, the separation of points was less distinguishable.

Fig. 6.4.1 visualizes the points of all the demonstrations in this 2D space, and Fig. 6.4.1a

shows four plots where the points are colored to show the ratios of Marines, Marauders,

Hellions, and Siege Tanks that was produced in the games.

6.4.2 Clustering

For the baseline approach that applies imitation learning on behavioral clusters, we use

density-based spatial clustering of applications with noise (DBSCAN) with ε = 0.02 and

a minimum number of samples per cluster of 30. We performed a grid-search on these

two parameters to find the most meaningful data separation; however, the clustering is

not perfect due to the large number of outliers. The clusters are visualized in Fig. 6.4.1b,

where outliers are colored black.

6.4.3 Prediction Accuracy

Data from StarCraft 2 replays are extracted with sc2reaper2, a tool built using the

StarCraft II Learning Environment inspired on the MSC Database by Wu et al. (2017a).

2https://github.com/miguelgondu/sc2reaper

6.4. Experiments 111

M
ar

in
es

M
ar

au
de

rs
H

el
lio

ns
Si

eg
e

Ta
nk

s
Sim

ilarities of our approach w
ith feature input corresponding to cluster centroids

(a) (c)(b)

Figure 6.4.1: Visualizations of the 2D behavioral space of Terran army unit
combinations in 7,777 Terran versus Zerg replays. Each point represents a replay
from the Terran player’s perspective. The space was reduced using t-SNE. (a) The data
points are illuminated (black is low and yellow is high) by the ratio of Marines, Marauders,
Hellions, or Siege Tanks produced in each game. (b) 62 clusters found by DBSCAN.
Cluster centroids are marked with a circle and the cluster number and outliers are black.
The noticeable cluster 2 has no army units. (c) The similarity between the behaviors of
the human players and our approach with four different feature inputs, corresponding to
the coordinates of centroids of cluster 10, 11, 30, and 32. The behavior of our approach
is averaged over 100 games against the easy Zerg bot and its nearest human behavior is
marked with a star. The behavior of the learned policy can be efficiently manipulated to
change its behavior. Additionally, we can control the behavior such that it resembles the
behavior of a human demonstration.

7,777 replays of Terran vs. Zerg were processed, extracting state-action pairs every half a

second resulting in a dataset of 1,625,671 state-action pairs.

These states contain an abstraction of the game state similar to the work in Chapter

5. The abstraction includes: 1) the agent’s resources, supply, units and technologies,

2) a tally of the enemy’s units that have been observed, and 3) the agent’s units and

technologies in progress, including how far they are from being completed.

Once the replays were post-processed for clustering, the dataset was split into

training/test/validation following a 60% / 10% / 30% split per cluster. Three groups

112 6.4. Experiments

Method Mean test accuracy Mean test loss # of replays
IL 48.090± 0.080 1.775± 0.003 7777
BRIL 48.167 ± 0.083 1.768 ± 0.003 7777
IL (C10) 32.608± 0.417 2.096± 0.013 189
IL (C11) 71.326± 0.316 1.088± 0.008 74
IL (C30) 45.709± 0.499 1.976± 0.020 149
IL (C32) 45.855± 0.681 1.770± 0.006 97

Table 6.4.1: Test accuracy and loss for Imitation Learning (IL), BRIL, and IL trained on
clusters 10, 11, 30 and 32. Results show no significant difference between the IL and BRIL
in terms of prediction accuracy. BRIL is, however, able to express multiple behaviors
based on the additional input (see Table 6.4.2).

of neural networks were trained, all with three hidden layers and 256 hidden nodes per

layer: (1) One baseline model trained on the whole dataset with no augmentation of

behavioral features, (2) a BRIL model on the whole dataset with two extra input nodes

for the augmented behavioral features (i.e. the coordinates in Fig. 6.4.1b), and (3) several

cluster baseline models trained on demonstrations from their respective clusters without

the augmented behavioral features.

These experiments were carried out ten times per model. Table 6.4.1 shows the mean

test accuracy and mean test loss over these ten models for the baseline imitation learning

approach, the novel BRIL approach, and four different cluster baselines (Clusters 10, 11,

30 and 32), which were selected for their wildly different behaviors. The results show

that augmenting by behavioral features has no significant effect on the test accuracy or

loss. However, the next section shows how our new approach is able to express different

behaviors with a single neural network.

6.4.4 Performance in StarCraft

We applied the trained policy models as build order modules in a scripted StarCraft II

Terran bot called sc2bot. It is important to note that this is a very simplistic bot with

several flaws and limitations. Therefore, the main goal of our experiments here is not to

achieve human-level performance in StarCraft, but rather to test if BRIL allows us to

do manipulate its behavior and enables inter-game adaptation. The build order module,

here controlled by one of our policies, is queried with a state description and returns a

build order action, i.e. which building, research, or unit to produce next. The worker and

building modules of the bot perform these actions accordingly, while assault, scout, and

6.4. Experiments 113

army modules control the army units. Importantly, policies we test act in a system that

consists of both the bot, the opponent bot, and the game world. When we want to utilize

our method for adaptation, we are thus not only adapting to the opponent but also the

peculiarities of the bot itself.

Distance to cluster centroid
Method Wins C10 C11 C30 C32
IL 41/100 0.58 0.22 0.39 0.75
IL (C10) 3/100 0.05 0.76 0.81 0.71
IL (C11) 7/100 0.74 0.00 0.52 0.96
IL (C30) 18/100 0.76 0.21 0.31 0.79
IL (C32) 0/100 0.71 0.94 0.57 0.04
BRIL (C10) 27/100 0.21 0.85 0.81 0.60
BRIL (C11) 76/100 0.70 0.05 0.53 0.95
BRIL (C30) 47/100 0.60 0.31 0.29 0.65
BRIL (C32) 16/100 0.42 0.72 0.53 0.36

Wins for each option
Method Wins C10 C11 C30 C32
BRIL (UCB1) 61/100 5/14 47/59 8/18 1/9

Table 6.4.2: Results in StarCraft using Imitation Learning (IL) on the whole training
set, IL on individual clusters (C10, C11, C30, and C32), Behavioral Repertoire Imitation
Learning (BRIL) with fixed behavioral features corresponding to centroids in C10, C11,
C30, and C32. Additionally, results are shown in which UCB1 selects between the four
behavioral features in-between games. Each variant played 100 games against the easy
Zerg bot. These results demonstrate that by using certain behavioral features, the BRIL
policy outperforms the traditional IL approach as well as IL on behavioral clusters.

We will first focus on the results of the traditional IL approach. Table 6.4.2 shows

the number of wins in 100 games on the two-player map CatalystLE as well as the

corresponding average behaviors (i.e. the army unit ratios). Our bot played as Terran

against the built-in Easy Zerg bot. The traditional IL approach won 41/100 games and IL

on behavioral clusters showed very poor performance with a maximum of 18/100 wins by

the model trained on C30. We hypothesize that the poor win rate of this naive approach

are due to their training sets being too small such that the policies do not generalize

to many of the states explored in the test environment. Besides the number of wins,

we compute the nearest demonstration in the entire data set from the average behavior,

and use it as an estimate of the policy’s position in the 2D behavioral space. From the

estimated point, we calculate the distance to each of the four cluster centroids. This

analysis revealed that the policies trained on behavioral clusters express behaviors close to

the clusters they were trained on (see the distances to the cluster centroids in Table 6.4.3).

114 6.4. Experiments

Combat units produced
Method Wins Marines Marauders Hellions S. Tanks Reapers
IL 41/100 44.1 ± 50.5 0.7 ± 3.2 2.6 ± 7.6 1.7 ± 6.5 0.3 ± 1.1
IL (C10) 3/100 1.1 ± 2.3 0.1 ± 0.3 3.11 ± 6.1 0.1 ± 0.4 0.1 ± 0.33
IL (C11) 7/100 18.8 ± 38.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IL (C30) 18/100 43.5 ± 62.6 0.9 ± 5.4 0.2 ± 1.3 0.0 ± 0.2 0.2 ± 0.8
IL (C32) 0/100 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 9.9 ± 18.5
BRIL (C10) 27/100 2.4 ± 4.9 0.0 ± 0.0 14.6 ± 18.9 4.0 ± 5.2 0.2 ± 0.6
BRIL (C11) 76/100 81.4 ± 50.1 0.0 ± 0.1 0.2 ± 0.1 0.9 ± 2.4 0.3 ± 0.6
BRIL (C30) 47/100 41.6 ± 36.4 2.4 ± 6.7 0.7 ± 2.5 4.1 ± 7.8 0.5 ± 1.2
BRIL (C32) 16/100 7.1 ± 11.4 1.7 ± 6.5 3.2 ± 8.3 6.7 ± 9.7 0.8 ± 1.5

Combat units produced
Method Wins Marines Marauders Hellions Siege Tanks Reapers
BRIL (UCB1) 61/100 52.1 ± 47.7 0.5 ± 3.2 4.3 ± 12.5 2.5 ± 6.2 0.3 ± 1.3

Table 6.4.3: Results in StarCraft using Imitation Learning (IL) on the whole training
set, IL on individual clusters (C10, C11, C30, and C32), Behavioral Repertoire Imitation
Learning (BRIL) with fixed behavioral features corresponding to centroids in C10, C11,
C30, and C32. Additionally, results are shown in which UCB1 selects between the four
behavioral features in-between games. Each variant played 100 games against the easy
Zerg bot. The nearest demonstration in the entire dataset was found based on the bot’s
mean behavior (normalized army unit combination) and the distance to each cluster
centroid are shown. These results demonstrate that the behavioral features of the learned
BRIL policy can be manipulated and controlled towards a desired behavior.

Figure 6.4.2: Screenshots of typical army compositions produced by our trained BRIL
policy with behavioral features corresponding to the centroids of cluster 10, 11, 30 and
32. BRIL (C10) executes early timing pushes with Hellions and Cyclones, BRIL (C11) is
aggressive with Marines only, BRIL (C30) creates mixed armies with many Marines and
Siege Tanks, and BRIL (C32) also creates mixed armies but with less Marines and more
Widow Mines.

6.5. Discussion 115

Table 6.4.2 and 6.4.3 also shows the results for BRIL with the coordinates of the four

cluster centroids as behavioral features. BRIL (C11) achieves a win rate of 76/100,

thus outperforming traditional IL. These results demonstrate that the model can be

tuned to achieve a higher performance than traditional IL, at least in this particular test

environment. Analyzing the behavior of the bot with the behavioral features of C11 reveals

that it performs an all-in Marine push, similarly to the behavior of the demonstrations

in C11 (notice the position of C11 on Fig. 6.4.1.b and the illumination of Marines on

Fig. 6.4.1.a). With the behavioral features of C30, the approach reached a higher win

rate than traditional IL; however, this difference was not significant. We also notice that

for both BRIL and IL on behavioral clusters, the average expressed behavior is closest

to the cluster centroid that it was modulated to behave as, among the four clusters we

selected. The results show that the behavior of the learned BRIL policy can be successfully

controlled. However, the distances are on average larger than for IL on behavioral clusters.

Figure 6.4.2 shows screenshots of typical army compositions produced by the BRIL policy

with the four different behavioral features used.

6.4.5 Inter-game Adaptation

The final test aims to verify that we can indeed use BRIL for inter-game adaptation. We

thus apply the UCB1 algorithm to select behavioral features from the discrete set of four

options: {C10, C11, C30, C32} (i.e. the two-dimensional feature descriptions of these

cluster centroids). This approach enables the algorithm to switch between behavioral

features in-between games based on the return of the previous one, which is 1 for a win

and 0 otherwise. The adaptive approach achieves 61/100 wins by identifying the behavior

of C11 as the best option. Not surprisingly, the win rate is lower than when having the

behavioral features of C11 fixed, but it outperforms traditional IL.

6.5 Discussion

We proposed two new IL methods in this chapter, one which learns a policy that is trained

on only one behavioral cluster of data points and one which learns a single modifiable

116 6.6. Summary

policy on the whole dataset. Our results suggest that policies trained on small behavioral

clusters overfit and are thus unable to generalize beyond the states available in the

cluster. This drawback might be solved with fewer and larger clusters at the cost of losing

granularity in the repertoire of policies. If data is abundant, this approach may also work

better while we still suspect the same overfitting would occur. BRIL, on the other hand,

is simple to implement and results in a continuous distribution of policies by adjusting the

behavioral features. Additionally, the results suggest that BRIL generalizes better, most

likely because it learns from the whole training set. However, that generality potentially

comes with the cost of higher divergence between the expected behavior (corresponding to

the behavioral input features) and the resulting behavior when tested. While an important

concern, a divergence is somewhat expected since the test environment is very different

from that of the training set (different maps and opponents). Further investigation is also

required to analyze if the inter-game adaptive properties of BRIL comes with a cost of

poorer intra-game adaptivity, as there is a chance, that the behaviors are inflexible and

does not react to the opponent in-game.

Previous work showed how IL can kick-start learning before applying reinforcement

learning (Silver et al., 2016; Vinyals et al., 2019). With BRIL, one can easily form a

population of diverse solutions instead of just one, which may be a promising approach

for domains with a plethora of strategic choices like StarCraft. Promising future work

could thus combine BRIL with ideas from AlphaStar to automatically form the initial

population of policies used in the AlphaStar League.

6.6 Summary

We introduced a new method called Behavioral Repertoire Imitation Learning (BRIL)

and our results demonstrate its usefulness for inter-game adaptation. By labeling each

demonstration d ∈ D with a behavior descriptor confined within a pre-defined behavioral

space, BRIL can learn a policy π(s, b) over states s ∈ S and behaviors b ∈ B. In

our experiments, a low-dimensional representation of the behavioral space was obtained

through dimensionality reduction. The results here demonstrate that BRIL can learn

a policy that, when deployed, can be manipulated by conditioning it with a behavioral

6.6. Summary 117

feature input b, to express a wide variety of behaviors. Additionally, the observed behavior

of the policy resembles the behavior characterized by b. Furthermore, a BRIL trained

policy can be optimized online by searching for optimal behavioral features in a given

setting. In our experiments, a policy trained with BRIL was optimized online beyond

the performance reached by traditional IL, using UCB1 to select among a set of discrete

behavioral features. Our results suggest that BRIL is useful learning method for inter-game

adaptive game-playing agents. Future work will show if InfoGAIL (Li et al., 2017) can

achieve the same property in strategy games and explore the advantages of each method.

118 6.6. Summary

Chapter 7

Rarity of Events

Deep reinforcement learning and deep neuroevolution have achieved impressive results

learning to play video games (Chapter 3) and controlling both simulated and physical

robots (Chebotar et al., 2017; Mirowski et al., 2016; Andrychowicz et al., 2017; Gu et al.,

2016). These approaches, however, struggle to learn in environments where feedback

signals (also called rewards) are sparse and/or delayed. A popular way to overcome this

issue is to shape the reward function with prior knowledge such that the agent receives

additional rewards to guide its learning process (Ng, 2003; Laud, 2004; Lample and Chaplot,

2017b). This approach can be time-consuming and requires substantial domain knowledge.

Additionally, it is especially difficult to apply reward shaping for complex environments,

as the particular reward values are difficult to determine. However, it is typically easy to

define the events that should result in a positive reward. In this chapter, we propose a

simple method that automatically shapes the reward values of pre-defined events during

the training phase with the goal of performing a form of curriculum learning that adapts

the reward values to the agent’s performance. The only required domain knowledge is

the specification of a set of positive events that can happen in the environment (e.g.

picking up items, moving, winning etc.), which is typically easy to implement, especially

for games. The method introduced here rewards a reinforcement learning agent by the

rarity of experienced events such that rare events have a higher value than frequent events.

In our experiments, we completely discard the extrinsic reward and instead motivate the

agent intrinsically to explore rare (pre-defined) events. As the agent first experiences

certain types of events that are relatively easy to learn (e.g. moving around and picking

119

120 7.1. Rarity of Events

up common items) they will slowly become less rewarding, pushing the agent to explore

less common events that are potentially harder to achieve. The hope is that by rewarding

events for their rarity, the system performs a form of automated curriculum learning, by

scaling the reward values based on how obtainable each event is.

The goal of this approach is to learn through a process of curiosity rather than optimizing

toward a difficult pre-defined goal. We apply our method, called Rarity of Events (RoE),

to learn agent behaviors from raw pixels in the VizDoom framework (Kempka et al., 2016).

While our approach could be applied to any reward-based learning method and possibly

also fitness-based evolutionary methods, we train deep convolutional networks through

the actor-critic algorithm A2C Mnih et al. (2016). In the future, RoE could offer a new

way to learn versatile behaviors in increasingly complex environments such as StarCraft

Vinyals et al. (2017).

This chapter does not focus directly on adaptation but rather the issue of enabling

reinforcement learning to learn in complex games with sparse rewards. However, as a side

effect, our results suggest that RoE can be a useful method to avoid overfitted behaviors

that are unable to generalize to changes in the environment.

7.1 Rarity of Events

This section describes Rarity of Events (RoE) and its integration with A2C in VizDoom.

The reward function in RoE adapts throughout training to the policy’s ability to explore

the environment. By rewarding events based on how often they occur during training, the

agent is intrinsically motivated toward exploring new parts of the environment rather than

aiming for a single goal that might be difficult to obtain directly. In effect, the approach

performs a form of curriculum learning since events are rewarded based on the agent’s

current ability to obtain them. As the agent learns, it becomes less interested in events

that are frequent and curious about newly discovered events.

Our method requires a set of pre-defined events, and the reward Rt(εi) for experiencing

one of these events εi at time t is determined by its temporal rarity 1
µt(εi)

, where µt(εi) is

the temporal episodic mean occurrence of εi at time t, i.e. how often εi occurs per episode

7.2. Experiments 121

at the moment. The mean occurrences of events are clipped to be above a lower threshold

τ (we used 0.01 such that the maximum reward for any event is 100). For a vector of

event occurrences x, such that xi is the number of times εi occurred in a game step, the

reward is the sum of all event rewards:

Rt(x) =

|x|∑
i=1

xi
1

max(µt(εi), τ)
. (7.1.1)

The rarity measure 1
µt(εi)

is not arbitrary but is designed such that all events have equal

importance. If any event εi is experienced n times during an episode, and n = µt(εi)

(which is the expected amount), then the accumulated reward for εi is 1 regardless of the

rarity. This means that in theory all events have equal importance. In practice, the policy

might learn that some events have a negative or positive influence on the occurrence of

others.

There are arguably many ways to determine the temporal episodic mean occurrence

µt(εi); here we employ a simple approach that nevertheless achieves the desired outcome.

Whenever an episode during training reaches a terminal state, a vector ε containing the

occurrence of events in this episode is added to a buffer of size N . The size of the buffer

determines the adaptability of the reward function. If N is small, the agent quickly

becomes bored of new events as it easily forgets their rarity in the past. If N is large, the

agent will stay curious for a longer period of time. The temporal episodic mean occurrence

µt(ε) is then determined as the mean of all records in the buffer, i.e. the episodic mean of

the last N episodes.

7.2 Experiments

7.2.1 Policy

The presented reward shaping approach can be applied to most (if not all) reinforcement

learning methods that learn from a reward signal. It could potentially also be applied to

evolutionary approaches such as Evolution Strategies by defining fitness as the sum of

122 7.2. Experiments

rewards in an episode. A standard policy network is employed that has three convolutional

layers followed by a fully connected layer of 512 units, and a policy and value output. We

use filter sizes of [32, 64, 32] with strides [4, 2, 1], ReLU activations for hidden layers, and

softmax for the policy output.

The input is a single frame of 160×120 pixels in grayscale, cropped by removing 10 pixels

on top/bottom and 30 pixels on the sides and then resized to 80×80. In most of the

scenarios, the agent can perform four actions: attack, move forward, turn left, and turn

right. In this case, the policy output has 24 = 16 values to allow any combination of

the four actions. The event buffer is updated whenever a worker reaches a terminal

state. The rewards from VizDoom, which vary between -100 and 100, are normalized to

[0, 1]. Rewards based on our approach are not normalized and vary between [0, 100] (due

to τ = 0.01), while for all events where µt(εi) ≥ 1 the reward will be between 0 and 1

(following Equation 7.1.1 in Section 7.1).

7.2.2 Events in Doom

We track 26 event types in VizDoom by implementing a function that determines which

events occur in every state transition (i.e. in each time step). The event types include

movement (one unit), shooting (decrease in ammo), picking up an item (one event for each

item type; health pack, armor, ammo, and weapons 0–9), killing (one for each weapon

type 0–9 as well as one regardless of weapon type). Movement events are triggered when

the agent has traveled one unit from the position of the last movement event (or the initial

position if the agent has not yet moved).

7.2.3 VizDoom Test Scenarios

This section describes the five VizDoom scenarios used in our experiments. They all have

sparse and/or delayed rewards and are therefore a good test domain for our approach.

The scenarios are from the original VizDoom repository1 from Kempka et al. (2016).

For each scenario we also detail the extrinsic reward from the environment, which is used

1https://github.com/mwydmuch/ViZDoom/tree/master/scenarios

7.2. Experiments 123

Figure 7.2.1: The five VizDoom scenarios. Scenarios with multiple spawning positions
randomly select one of them at the start of an episode. The episode ends when the goal
armor, which only appears in My Way Home and Deadly Corridor, is picked up. The
agent periodically loses health when standing on acid floors.

when training models without RoE. Some of these extrinsic rewards were rescaled to be

coherent across scenarios. If not stated otherwise, the agent can move forward, turn left,

turn right, and shoot. Screenshots from these scenarios are shown in Figure 7.2.2, with

top-down views in Figure 7.2.1.

Health Gathering: The goal is to survive as long as possible in a square room with an

acid floor that deals damage periodically. Medkits spawn randomly in the room and can

help the agent to survive as they heal when picked up. The agent is rewarded 1 for every

time step it is alive, and -100 for dying. The maximum episode length is 2,100 time steps.

The agent cannot shoot.

124 7.2. Experiments

Health Gathering Supreme: Same as Health Gathering but within a maze.

My Way Home: The goal is to pick up an armor, which gives a reward of 100 and ends

the scenario immediately. The agent cannot shoot and is rewarded -0.1 for every time step

it is alive. The agent starts an episode at one of the randomly chosen spawn locations

with a random rotation.

Deadly Corridor: Similarly to My Way Home, the goal is to pick up an armor, which

gives a reward of 100 and ends the scenario immediately. The armor is located at the end

of a corridor, which is guarded by enemies on both sides. The agent must kill most, if not

all of the enemies to reach it, and receives a -100 reward if it dies. The original reward

shaping function (the distance to the armor) has been removed to make it harder and

to compare RoE with a baselines that does not use any reward shaping. The maximum

episode length is 2,100 time steps.

Figure 7.2.2: From top-left to bottom-right: Screenshot from Deathmatch, My Way
Home, Health Gathering Supreme, and Deadly Corridor. Notice that in some scenarios
the agent cannot shoot. The scenario Health Gathering is similar to Health Gathering
Supreme but without walls within the room.

Deathmatch: The agent spawns in a large battle arena with an open area in the middle

and four rooms, one in each direction that contain either medkits and armor, or weapons

7.2. Experiments 125

(chainsaw, super shotgun, chaingun, rocket launcher, and plasma gun) and ammunition

for each weapon. The maximum episode length is 4,200 time steps. The agent is rewarded

the following amounts when killing an enemy: Zombieman (100), ShotgunGuy (300),

MarineChainsawVzd (300), Demon (300), ChaingunGuy (400), HellKnight (1,000). These

enemies spawn randomly on the map when the scenario starts.

To test how well the approach can adapt to new scenarios, five variations of Deathmatch

were also created that only include a certain weapon type. These scenarios are called

Deathmatch Chainsaw, Deathmatch Chaingun, Deathmatch Shotgun, Deathmatch Plasma,

and Deathmatch Rocket to denote which weapon that remains on the map. The ammunition

for the other weapons was also removed.

7.2.4 Results

We tested A2C with Rarity of Events (A2C+RoE) on the five VizDoom scenarios described

in Section 7.2.3. The Deathmatch variations were not used for training. As a comparison

baseline, A2C was also trained using the extrinsic reward from the environment as

described in Section 7.2.3. Due to computational constraints we only trained each method

once on each scenario.

When training with A2C+RoE, the agent did not have access to the extrinsic reward

throughout training but only the intrinsic reward based on the temporal rarity of the

pre-defined events. The algorithms ran for 107 time steps for each scenario and 7.5× 107

for the Deathmatch scenario. For both A2C and A2C+RoE we save a copy of the model

parameters whenever the mean extrinsic reward across all workers improves. The last copy

is considered to be the final model that we use in our tests. The complete configurations

for A2C and A2C+RoE are described in Appendix A3 and the code for the experiments

and trained models are available on GitHub2. Videos of the learned policies are available

on YouTube3.

2https://github.com/njustesen/rarity-of-events
3https://youtu.be/YG-lf732a0U

126 7.2. Experiments

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

10

20

30

40

50

60

70
Deadly Corridor

0.0 2.5 5.0 7.5
1e7

0

1000

2000

3000

4000

5000
Deathmatch

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

500

1000

1500

2000

2500

Re
wa

rd
 /

Ep
iso

de

Health Gathering

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

200

400

600

800

1000

1200
Health Gathering Supreme

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

20

40

60

80

100
My Way Home

A2C A2C+RoE

Figure 7.2.3: The reward per episode of A2C and A2C+RoE during training in five
VizDoom scenarios (smoothed). A2C is trained from the environment’s extrinsic reward
while A2C+RoE uses our proposed method without access to the reward. The drop in
performance seen in the My Way Home scenario is discussed in-depth in Section 7.2.4.1.

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

10

20

30

40
Deadly Corridor

0.0 0.2 0.4 0.6 0.8 1.0
Time step 1e7

0

10

20

30

40
Deadly Corridor

0.0 2.5 5.0 7.5
1e7

0

100

200

300

400
Deathmatch

0.0 2.5 5.0 7.5
Time step 1e7

0

100

200

300

400
Deathmatch

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

20

40

60

80

100

A2
C

Ev
en

ts
 /

Ep
iso

de

Health Gathering

0.0 0.2 0.4 0.6 0.8 1.0
Time step 1e7

0

20

40

60

80

100

A2
C+

Ro
E

Ev
en

ts
 /

Ep
iso

de

Health Gathering

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

10

20

30

40

50

60
Health Gathering Supreme

0.0 0.2 0.4 0.6 0.8 1.0
Time step 1e7

0

10

20

30

40

50

60
Health Gathering Supreme

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

5

10

15

20

25
My Way Home

0.0 0.2 0.4 0.6 0.8 1.0
Time step 1e7

0

5

10

15

20

25
My Way Home

Kills Moves Medkit pickups Armor pickups Shots

Figure 7.2.4: Episodic mean occurrence during training for a subset of the event types
in the five VizDoom scenarios. Notice the last spike in the My Way Home scenario
with A2C+RoE, in which the policy ignores the final goal (armor pickup) to prioritize
continuous movement around the maze.

7.2.4.1 Learned Policies

The A2C baseline did not learn a good policy in Health Gathering Supreme and Deadly

Corridor, and only improved slightly in Health Gathering (Figure 7.2.3). A2C learned

a weak policy in three out of five scenarios, which demonstrates that they are indeed

difficult to master guided by the extrinsic rewards alone. In My Way Home, A2C does

learn a strong behavior that consistently locates and picks up the armor but only after 8–9

million training steps. In Deathmatch, A2C learned a very high-performing behavior that

directly walks to the plasma gun (the most powerful weapon in this scenario) and shoots

from cover toward the center of the map. The behavior is simple but effective until it runs

out of ammunition, after which it attempts to find more ammunition and sometimes fails.

7.2. Experiments 127

Our approach A2C+RoE learns effective behaviors in all five scenarios. The learned

behavior in Deathmatch does not exclusively use the powerful plasma gun, which results

in a slightly but not significantly worse performance than A2C (p = 0.125 using two-tailed

t-test). The policy is still effective with over 10 kills per episode. These kills are spread

across all weapons that are available, resulting in a behavior that is more varied (and

interesting to watch). As we will show in Section 7.2.4.2, the versatile behavior learned

by A2C+RoE allows it to adapt to critical changes in Deathmatch in contrast to policies

trained through A2C.

Scenario A2C A2C+RoE t-test
Health Gathering 399 ± 107 1261 ± 533 p < 0.0001
Health Gathering Supr. 305 ± 60 1427 ± 645 p < 0.0001
Deadly Corridor 0.00 ± 0.0 40 ± 49 p < 0.0001
My Way Home 96.69 ± 0.12 97.89 ± 0.01 p < 0.0001
Deathmatch 4611 ± 2595 4062 ± 2442 p = 0.1250
Deathmatch Chainsaw 1025 ± 809 3750 ± 3130 p < 0.0001
Deathmatch Chaingun 1487 ± 1189 2852 ± 2038 p < 0.0001
Deathmatch Shotgun 1375 ± 941 1832 ± 1752 p = 0.0226
Deathmatch Plasma 4538 ± 1537 3248 ± 2701 p < 0.0001
Deathmatch Rocket 616 ± 583 1463 ± 1449 p < 0.0001

Table 7.2.1: Shown are average scores based on evaluating the best policies found for
A2C and A2C+RoE 100 times each. The best results are shown in bold. The five last rows
show how the policies that were trained on the original Deathmatch scenario generalize to
five variations where only one weapon type is available. Standard deviations are shown
for each experiment and two-tailed p-values from unpaired t-tests.

The episodic mean occurrence of events (Figure 7.2.4) allows us to analyze how the policies

change over time. In Health Gathering and Health Gathering Supreme, A2C+RoE quickly

learns to move ∼80 and ∼30 units per episode, respectively. This behavior might explain

why the agent also quickly learns to pick up medkits. A2C, on the other hand, learns the

relationship between movement, medkits, and survival at a much slower pace, at least in

the Health Gathering scenario. In Deadly Corridor A2C+RoE discovers an interesting

behavior. After the agent learns to kill all six enemies (the red line) and to pick up armor

(purple line), it still manages to increase the movement and the shooting events; the agent

learned to walk back to its initial position while shooting and then afterwards to return

to pick up the armor. This result is not unexpected as the agent is intrinsically motivated

to experience as many events as possible during an episode.

In My Way Home, after the A2C+RoE policy has learned to routinely pick up the armor,

128 7.2. Experiments

it shifts into a different behavior toward the end of training. The agent learned to avoid

the armor to instead continuously move around in the maze. We suspect that the policy

would shift back to the previous behavior if training was continued, as the movement

reward is now decreasing and the armor reward is increasing. Since our rarity measure is

temporal, loops between these two behaviors could emerge as well. As policies with the

highest extrinsic reward are saved during training, these sudden changes do not affect the

final policy. In fact, one might argue that this is a useful feature of RoE: a network that

has converged to some optimum can escape it to find other interesting behaviors.

A2
C

Deathmatch DM Chainsaw DM Shotgun DM Chaingun DM Rocket DM Plasma

A2
C+

Ro
E

0.000

0.005

0.010

0.015

0.020

0.025

Figure 7.2.5: Heat maps showing the proportional time spent at each location on the
map in the Deathmatch scenario and its five variations. The values are based on evaluating
the two trained policies 100 times each and clipped at 0.025. The heat maps show that
the A2C-policy prefers to stay near the plasma gun, even in the map variations where it
is not present, while the A2C+RoE-policy has learned distinct behaviors for each weapon
type. The results in Table 7.2.1 shows that the A2C+RoE-policy is able to reach high
scores in these variations event though it was never trained on them.

7.2.4.2 Ability to Generalize

A2C+RoE motivates the agent intrinsically to learn a balanced policy that strives to

experience a good mix of events. Reinforcement learning algorithms that exclude pre-

training or proper reward shaping, including our A2C baseline, can easily converge into

local optima with very narrow behaviors. In this context, narrow refers to behaviors

that act in a very particular way, only utilizing a small subset of the features in the

environment. This handicap prevents the learned policies from adapting to critical changes

in the environment as they only know one way of behaving.

7.3. Discussion 129

To test for such adaptivity, the learned policies are evaluated on five Deathmatch variations

in which critical weapons and ammunition packs have been removed. Note that the

policies were not directly trained on these variations. The results in Table 7.2.1 show

that A2C+RoE learned a policy that significantly outperforms A2C (p < 0.0001 using

two-tailed t-test) in four out of five Deathmatch variations. A2C+RoE learned a policy

that is more versatile, capable of using all the weapons in the map, which is the reason it

can easily adapt. Figure 7.2.5 shows heat maps (i.e. the proportional time spent at each

map location) during the evaluations of the two policies on Deathmatch and its variations.

The A2C+RoE policy expresses different strategies depending on the weapon available on

the map, while the A2C policy mostly circles around the plasma gun location, regardless

of it actually being there. However, if the plasma gun is present, A2C alone does execute

a fairly effective strategy, shooting toward enemies in the middle of the map.

The heat maps show that the A2C policy has learned to stay at only one location on the

map from which it can pick up the powerful plasma gun and thereafter shoot efficiently

toward enemies in the middle of the map (see the video of the learned policies). In the

Deathmatch variations, in which the map only contains two weapons of the same type,

the A2C-policy fails to adapt to use the other weapons and instead walks around the area

where the plasma gun would have been located.

The A2C+RoE policy has learned to explore a larger part of the maps in a more uniform

way (Figure 7.2.5,bottom). In the different Deathmatch variations, a clear change in

behavior can be observed when only a certain type of weapon is available. For example,

in the DM Rocket scenario, the agent lures enemies into the map’s top and bottom room

while efficiently using the rocket’s splash damage.

7.3 Discussion

While the presented approach worked well in VizDoom it will be important to test its

generality in other domains in the future. RoE is designed to work well in challenging

environments that have a plethora of known events and sparse and/or delayed rewards.

Video games are thus a very suitable domain and we plan to test RoE in Montezuma’s

Revenge and StarCraft in future work. For domains in which reward shaping is not

130 7.3. Discussion

necessary, i.e. the extrinsic reward smoothly leads to an optimal behavior, our approach

might add less value. We imagine that RoE should also work well in domains with deceptive

reward structures, just as novelty search outperformed traditional evolutionary algorithms

in mazes with dead ends (Lehman and Stanley, 2011a) or deceptive meta-learning tasks

(Risi et al., 2010). Novelty search and RoE have the ability to learn interesting behaviors

without the need for a goal. In the future, our approach could also be extended to reward

the agent for both the rarity of events as well as the environment’s original objective,

inspired by Quality-Diversity algorithms.

The specification of adequate events is intimately tied to the success of our approach;

events that lead to direct negative performance should be avoided. For example, if

the extrinsic reward is negative when the agent wastes ammunition, it should not be

intrinsically rewarded for shooting event. A benefit of the presented method is that events

that contribute to the occurrence of other events (e.g. such as movement leads to medkit

pickups), can lead to a system that performs automated curriculum learning. However,

it is not guaranteed that this effect will occur, and it might require a bit of trial and

error during the specification of events. Some events can also be contradicting, such as

killing with the chainsaw and killing with the plasma gun, as the agent cannot do both

at the same time. Our approach is designed to learn a policy that can balance their

occurrences which results in a more versatile behavior. Important future work will test

how RoE scales to hundreds or even thousands of events. A promising testbed for such

experimentation is StarCraft, for which events can easily be defined as the production of

each unit and building type, as well as killing different opposing unit types. We believe

that reinforcement learning methods that are guided by intrinsic motivation are key to

solving these challenging environments.

The A2C baseline reached the best performance in the original Deathmatch. However, it

can be argued whether it learned to actually play Doom, or just learned to follow a fixed

sequence of actions that lead to the same behavior every time. While it can be useful to

find a niche behavior with high performance, learning a rich and versatile behavior has

particular relevance for video games. Here, behaviors that explore the game’s features

could potentially help for automatic game testing and also lead to more human-like

behaviors for NPCs.

7.4. Summary 131

Regarding our implementation of the RoE approach, future work will also explore other

variations in determining the episodic mean occurrence of events, such as discounting

the mean occurrences over time. With this modification, event occurrences older than N

episodes (the event buffer only holds N event occurrences) would still effect the intrinsic

reward.

It is important to note that since we save the best model based on the mean extrinsic

reward across all worker threads, increasing the number of threads should make the

evaluation less noisy by reducing the chances of accidentally overriding the best model

with a worse performing one. This hypothesis still needs to be confirmed, but the number

of threads was already increased from 4 to 16 in the longer Deathmatch scenario to speed

up learning.

7.4 Summary

We introduced Rarity of Events (RoE), a simple reinforcement learning approach that

determines reward based on the temporal rarity of pre-defined events. This approach

was able to reach high-performing scores in five challenging VizDoom scenarios with

sparse and/or delayed rewards. Compared to a traditional A2C baseline, the results are

significantly better in four of the five scenarios. Importantly, the presented approach is

able to not only receive a high final reward, but also discovers versatile behavior that can

adapt to critical changes in the environment, which is challenging for the baseline A2C

approach. In our experiments, the extrinsically motivated baseline either fails to learn

anything useful or learns a behavior that is unable to adapt to changes in the environments

it has been trained on. In the future, the presented RoE approach could allow more

complex scenarios to be solved, for which it is infeasible to learn from extrinsic rewards

without manual reward shaping and curriculum learning.

132 7.4. Summary

Chapter 8

Procedural Content Generation for

Reinforcement Learning

The results in the previous chapter suggest that deep reinforcement learning algorithms

easily overfit to their training environment, resulting in policies that do not generalize

well to related problems or even different instances of the same problem. Even small game

modifications can often lead to dramatically reduced performance, leading to the suspicion

that the networks only learn to react to a small subset of the relevant state space, rather

than general strategies (Kansky et al., 2017; Zhang et al., 2018). This chapter presents

four contributions in an attempt to illuminate and overcome the issues of overfitting in

deep reinforcement learning.

First, we show that deep reinforcement learning overfits to a large degree on 2D arcade

games when trained on a fixed set of levels. These results are important because similar

setups are particularly popular to use as benchmarks in deep reinforcement learning

research (e.g. the Arcade Learning Environment (Bellemare et al., 2015)). Our findings

suggest that policies trained in such settings merely memorize certain action sequences

rather than learning general strategies to solve the game.

Second, we show that it is possible to improve generality by introducing Procedural

Content Generation (PCG) (Shaker et al., 2016), more specifically procedurally generated

levels, in the training loop. However, we found that this can lead to overfitting on a higher

level, to the distribution of generated levels presented during training. Our experiments

133

134 8.1. Related Work

investigate both types of overfitting and the effect of several level generators for multiple

games.

Third, we introduce a particular form of PCG-based reinforcement learning, which we call

Progressive PCG, where the difficulty of levels is increased gradually to match the agent’s

performance. While similar techniques of increasing difficulty do exist, they have not been

combined with a PCG-based approach in which agents are evaluated on a completely new

level every time a new episode begins. Our approach applies constructive level generation

techniques, rather than pure randomization, and we study the effect of several level

generation methods.

Fourth, we analyze distributions of procedurally generated levels using dimensionality

reduction and clustering to understand their resemblance to human-designed levels and

how this impacts generalization.

It is important to note that the primary goal of this chapter is not to achieve strong

results on human levels, but rather to gain a deeper understanding of overfitting and

generalization in deep reinforcement learning, which is an important and neglected area in

AI research. We believe the work presented in this chapter makes a valuable contribution

in this regard, suggesting that a PCG-based approach could be an effective tool to study

these questions from a fresh perspective.

8.1 Related Work

Randomization of objects in simulated environments has shown to improve generality

for robotic grasping to such a degree that the robotic arm could generalize to realistic

settings as well (Tobin et al., 2017). Low-fidelity texture randomization during training

in a simulated environment has allowed for autonomous indoor flight in the real world

(Sadeghi and Levine, 2016). Random level generation has been applied to video games to

enable generalization of reinforcement learning agents (Beattie et al., 2016; Graves et al.,

2016; Groshev et al., 2017; Klimov, 2016). Several reinforcement learning approaches

exist that manipulate the reward function instead of the structure of the environment

to ease learning and ultimately improve generality, such as Hindsight Experience Replay

8.1. Related Work 135

(Andrychowicz et al., 2017).

The idea of training agents on a set of progressively harder tasks is an old one and

has been rediscovered several times within the wider machine learning context. Within

evolutionary computation, this practice is known as incremental evolution (Gomez and

Miikkulainen, 1997; Togelius and Lucas, 2006). For example, it has been shown that while

evolving neural networks to drive a simulated car around a particular race track works

well, the resulting network has learned only to drive that particular track; but by gradually

including more difficult levels in the fitness evaluation, a network can be evolved to drive

many tracks well, even hard tracks that could not be learned from scratch (Togelius

and Lucas, 2006). Essentially the same idea has later been independently invented as

curriculum learning (Bengio et al., 2009). Similar ideas have been formulated within a

coevolutionary framework as well (Brant and Stanley, 2017).

Several machine learning algorithms also gradually scale the difficulty of the problem.

Automated curriculum learning includes intelligent sampling of training samples to

optimize the learning progress (Graves et al., 2017). Intelligent task selection through

asymmetric self-play with two agents can be used for unsupervised pre-training (Sukhbaatar

et al., 2017). The POWERPLAY algorithm continually searches for new tasks and new

problem solvers concurrently (Schmidhuber, 2013) and in Teacher-Student Curriculum

Learning (Matiisen et al., 2017) the teacher tries to select sub-tasks for which the slope of

the learning curve of the student is highest. Reverse curriculum generation automatically

generates a curriculum of start states, further and further away from the goal, that adapts

to the agent’s performance (Florensa et al., 2017).

A protocol for training reinforcement learning algorithms and evaluate generalization

and overfitting, by having large training and test sets, was proposed in (Zhang et al.,

2018). Their experiments show that training on thousands of levels in a simple video

game enables the agent to generalize to unseen levels. Our (contemporaneous) work here

differs by implementing an adaptive difficulty progression along with near endless content

generation for several complex video games.

136 8.2. Parameterized Level Generator

8.2 Parameterized Level Generator

Constructive level generators were designed for four hard games in GVG-AI: Boulderdash,

Frogs, Solarfox and Zelda. These were picked because tree-search algorithms do not perform

well in these, and we thus consider them hard (Bontrager et al., 2016). Constructive level

generators are popular in game development because they are relatively fast to develop

and easy to debug (Shaker et al., 2016). They incorporate game knowledge to make sure

the output level is directly playable without additional testing. Alternatively, answer set

programming could allow for automatic generation of levels following a set of restrictions

(Neufeld et al., 2015). Generative adversarial networks could perhaps also be used to

expand a small training set of levels (Volz et al., 2018). Our level generators are designed

after analyzing the core components in the human-designed levels for each game and

include a controllable difficulty parameter.

Boulderdash Level Generator: This game is a GVG-AI port of “Boulder Dash” (First

Star Software, 1984). Here the player tries to collect at least ten gems and then exit through

the door while avoiding falling boulders and attacking enemies. The level generation in

Boulderdash works as follows: (1) Generate the layout of the map using Cellular Automata

(Johnson et al., 2010). (2) Add the player to the map at a random location. (3) Add a

door at a random location. (4) Add at least ten gems to the map at random locations.

(5) Add enemies to the map at random locations in a similar manner to the third step.

Frogs Level Generator: Frogs is a GVG-AI port of “Frogger” (Konami, 1981). In Frogs,

the player tries to move upwards towards the goal without drowning in the water or

getting run over by cars. The level generation in Frogs follow these steps: (1) Add the

player at the lowest empty row in the level. (2) Add the goal at the highest row in the

level. (3) Assign the intermediate rows either as roads, water, or forest. (4) Add cars to

rows with a road and wood logs rows with water.

Solarfox Level Generator: Solarfox is a GVG-AI port of “Solar Fox” (Midway Games,

1981). In Solarfox, the player is continuously moving in one of four directions (North,

South, East, and West). The goal is to collect all the gems while avoiding the borders of

the level as well as bullets from enemies in the north and the south. The level generation

for Solarfox follow these steps: (1) Add the player in the middle of the map. (2) Add

8.2. Parameterized Level Generator 137

some gems either in the upper half, left half, or upper left quarter. (3) Replicate the same

pattern of gems on the remaining parts of the map.

Zelda Level Generator: Zelda is a GVG-AI port of the dungeon system in “The Legend

of Zelda” (Nintendo, 1986). In Zelda, the goal is to grab a key and exit through a door

without getting killed by enemies. The player can use their sword to kill enemies for

higher scores. The level generation in Zelda works as follows: (1) Generate the map layout

as a maze using Prim’s Algorithm (Buck, 2015). (2) Remove some of the solid walls in

the maze at random locations. (3) Add the player to a random empty tile. (4) Add the

key and exit door at random locations far from the player. (5) Add enemies in the maze

at random locations far away from the player.

Difficulty 0 Difficulty 0.25 Difficulty 0.5 Difficulty 0.75 Difficulty 1

Difficulty 0 Difficulty 1

Difficulty 0 Difficulty 0.5 Difficulty 1

Human level 0

Human level 0

Human level 0

Human level 0Difficulty 0 Difficulty 0.25 Difficulty 0.5 Difficulty 0.75 Difficulty 1 Human level 4

Fr
og
s

Ze
ld
a

So
la
rf
ox

B
ou
ld
er
da
sh

Figure 8.2.1: Procedurally generated levels for Solarfox, Zelda, Frogs, and Boulderdash
with various difficulties between 0 and 1. For each game, human-designed levels are shown
as well.

The difficulty of the levels created by the generator can be controlled with a difficulty

parameter that is in the interval [0, 1]. Figure 8.2.1 shows the effect of the difficulty

parameter in the four games. Increasing the difficulty has three effects: First, the area in

the level where the player can move through (active level size) increases, except in Zelda

and Solarfox where the level size is fixed. Second, the number of objects that can kill

the player and/or the number of objects that the player can collect is increased. Third,

138 8.3. Procedural Level Generation for Deep Reinforcement Learning

the layout of the level gets more complex to navigate. The space of possible levels for

each game, using our generators, is around 108 at low difficulty to 1024 at high difficulties.

Difficult levels have more possible configurations as they typically have more elements.

8.3 Procedural Level Generation for Deep

Reinforcement Learning

In a supervised learning setting, generality is obtained by training a model on a

large dataset, typically with thousands of examples. Similarly, our hypothesis is that

reinforcement learning algorithms should achieve generality if many variations of the

environment are used during training, rather than just one.

We present a novel reinforcement learning framework wherein a new level is generated

whenever a new episode begins, which allows us to algorithmically design the new level to

match the agent’s current performance. This framework also enables the use of search-

based PCG techniques, that e.g. learn from existing level distributions (Volz et al., 2018),

which could in the future reduce the dependency on domain knowledge. However, only

constructive PCG is explored here.

When the learning algorithm is presented with new levels continuously during training,

it must learn general strategies to improve. Learning a policy this way is more difficult

than learning one for just a single level and it may be infeasible if the game rules and/or

generated levels have sparse rewards. To ease the learning, we also introduce Progressive

PCG (PPCG), an approach where the difficulty of the generated levels is controlled by

the learning algorithm itself. In this way, the level generator will initially create easy

levels and progressively increase the difficulty as the agent learns. In the implementation

of PPCG, levels are initially created with the lowest difficulty of 0. If the agent wins

an episode, the difficulty is incremented such that future levels during training become

harder. The difficulty is increased by α for a win and decreased by the same amount

for a loss. In our experiments, we use α = 0.01. For distributed learning algorithms,

the difficulty setting is shared across all processes such that the outcome of all episodes

influences the difficulty of future training levels. We compare PPCG to a simpler method,

8.4. Experiments 139

also using procedurally generated levels, but with a constant difficulty level. We refer to

this approach as PCG X, where X refers to the fixed difficulty setting.

8.4 Experiments

To evaluate the presented approach, we employ the reinforcement learning algorithm

Advantage Actor-Critic (A2C) (Mnih et al., 2016), specifically the implementation from the

Open AI Baselines, together with the GVG-AI Gym framework. The neural network has

the same architecture as in (Mnih et al., 2016) with three convolutional layers and a single

fully-connected layer. A2C is configured to use 12 parallel workers, a step size of tmax = 5,

no frame skipping following (Rodriguez Torrado et al., 2018), and a constant learning

rate of 0.007 with the RMS optimizer (Ruder, 2016). The code for our experiments is

available online1.

We compare four different training approaches. Lv X: Training level is one of the five

human-designed levels. Lv 0-3: Several human-designed levels (level 0, 1, 2, and 3) are

sampled randomly during training. PCG X: Procedurally generated training levels with

a constant difficulty X. Progressive PCG (PPCG): Procedurally generated training

levels where the difficulty is adjusted to fit the performance of the agent.

Each training setting was repeated four times and tested on two sets of 30 pre-generated

levels with either difficulty 0.5 and 1 as well as the five human-designed levels. The

training plots on Figure 8.4.1 and the test results in Table 8.4.1 are averaged across the

four trained models where each model was tested 30 times on each test setup (thus a total

of 120 test episodes per test set for each training setup). All four training approaches were

tested on Zelda. Only PCG 1 and PPCG were tested on Solarfox, Frogs, and Boulderdash

due to computational constraints. The trained agents are also compared to an agent

taking uniformly random actions and the maximum possible score for each test set is

shown as well.

1https://github.com/njustesen/a2c_gvgai

140 8.4. Experiments

8.4.1 Training on a few Human-Designed Levels

Zelda
Training PCG 0.5 PCG 1 Lv 0 Lv 1 Lv 2 Lv 3 Lv 4
Max. 4.40 6.87 8.00 8.00 8.00 10.00 8.00
Random 0.38 0.22 0.26 0.17 -0.11 -0.07 0.18
60M steps:

Level 0 0.28 0.51 6.97 -0.45 -0.53 0.07 -0.58
Level 4 0.56 0.07 -0.51 0.99 0.04 -0.35 5.93
Level 0-3 1.98 2.37 6.95 7.17 7.20 8.17 1.91
PCG 0.5 3.45 4.00 2.21 2.28 0.92 2.27 0.15
PCG 1 0.27 3.56 2.40 1.37 1.49 2.88 -0.62
PPCG 3.44 4.28 2.67 3.35 2.43 1.89 0.96
100M steps:

PCG 1 3.05 4.38 2.49 1.54 1.18 2.04 -0.29
PPCG 3.82 4.51 2.71 3.74 2.84 1.90 0.88

Solarfox*
Max. 30.83 51.83 32.00 32.00 34.00 70.00 62.00
Random -3.68 -4.55 -5.49 -4.80 , -5.41 2.03 1.13
40M steps:

PCG 1 20.70 32.43 22.00 21.83 26.00 43.96 28.16
PPCG 16.08 21.40 16.87 10.26 12.02 27.37 20.00

Frogs
Max. 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Random 0.01 0.00 0.00 0.00 0.00 0.00 0.00
40M steps:

PCG 1 0.01 0.00 0.00 0.00 0.00 0.00 0.00
PPCG 0.81 0.57 0.00 0.00 0.00 0.00 0.00

Boulderdash
Max. 31.50 29.80 48.00 52.00 58.00 48.00 44.00
Random 6.29 3.71 0.85 2.58 3.5 0.65 2.66
60M steps:

PCG 1 14.63 8.32 5.39 10.28 5.85 5.08 8.27
PPCG 11.78 4.86 3.44 0.98 0.68 0.41 3.32

Table 8.4.1: Test results of A2C under different training regimens: a single human-
designed level (Level 0 and Level 4), several human-designed levels (Level 0-3),
procedurally generated levels with a fixed difficulty (PCG 0.5 and PCG 1), and PPCG
that progressively adapts the difficulty of the levels to match the agent’s performance.
Random refers to results of an agent taking uniformly random actions and Max shows
the maximum possible score. Scores are in red if the training level is the same as the
test level. The best scores for a game, that is not marked red, are in bold. *Only three
repetitions of PPCG and one of PCG 1 were made for Solarfox so far.

Policies trained on just one level in Zelda (Lv 0 and Lv 4 in Table 8.4.1) reach high scores

on the training level but have poor performance on all test levels (human-designed and

procedurally generated). It is clear that these are prone to memorization and cannot

8.4. Experiments 141

adapt well to play new levels. The scores on the training levels are close to the maximum

scores achievable while the scores on the test levels are often lower than the random

policy, a clear indication of overfitting in reinforcement learning. Policies trained on four

human-designed levels in Zelda also achieve high scores on all four training levels. The

testing scores are marginally higher than when trained on a single level, on both the

human-designed level 4 and the PCG levels.

0.0 0.5 1.0
Steps 1e8

0

2

4

6

Sc
or

e

Score
Difficulty

0.0

0.2

0.4

0.6

0.8

1.0

Di
ffi

cu
lty

(a) PPCG in Zelda

0 2 4
Steps 1e7

10

0

10

20

30

Sc
or

e
Score
Difficulty

0.0

0.2

0.4

0.6

0.8

1.0

Di
ffi

cu
lty

(b) PPCG in Solarfox*

0 2 4
Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Score
Difficulty

0.0

0.2

0.4

0.6

0.8

1.0

Di
ffi

cu
lty

(c) PPCG in Frogs

0 2 4
Steps 1e7

0

5

10

15

20

Sc
or

e

Score
Difficulty

0.0

0.2

0.4

0.6

0.8

1.0

Di
ffi

cu
lty

(d) PPCG in Boulderdash

Figure 8.4.1: Smoothed mean scores and level difficulties during training across five
repetitions of Progressive PCG in Zelda, Solarfox, Frogs, and Boulderdash. One standard
deviation is shown in opaque. *Only three repetitions of PPCG and one of PCG 1 for
Solarfox.

8.4.2 Training on Procedurally Generated Levels

Agents trained on procedurally generated levels with a fixed difficulty learned a general

behavior within the distribution of procedurally generated levels, with mediocre scores in

Zelda, Solarfox, and Boulderdash, while no progress was observed in Frogs. These results

match similar observations by Rodriguez Torrado et al. (2018), in which DQN and A2C

fail to learn anything on just one level in Frogs after 1 million training steps. While PCG

142 8.4. Experiments

1, here with 40 million steps, also fails to learn Frogs, PPCG achieves a score of 0.57 (57%

win rate) in the test set of procedurally generated levels with difficulty 1 (comparable to

human levels in difficulty - see Figure 8.2.1). In Zelda, PCG 1 was able to achieve strong

scores while PPCG is slightly better. Interestingly, for the two cases where PPCG is able

to reach difficulty 1 during training (Frogs and Zelda), it outperforms PCG 0.5 on PCG

1. As PPCG never reaches the most difficult levels during training in Boulderdash and

Solarfox, this is to be expected. In Boulderdash, the agents trained with PCG 1 reach

decent scores (8.34 on average) on levels with difficulty 1. PPCG reached high scores

during training but failed to win as the difficulty reached 0.2 and thus trained only on

easy levels.

8.4.3 Generalization on Human-designed Levels

The results demonstrate that introducing procedurally generated levels allows the trained

behaviors to generalize to unseen levels within the training distribution. It is, however,

interesting whether they also generalize to the five human-designed levels in GVG-AI.

In Zelda, PCG and PPCG are decent in the human-designed levels while best in the

procedurally generated levels. In Frogs, PCG and PPCG are unable to win in the human-

designed levels indicating a clear discrepancy between the two level distributions. In

Boulderdash, PCG 1 achieved on average 5.08–10.28 points (out of 20) in the human-

designed levels compared to 8.32–14.63 in the procedurally generated levels. PPCG

performs worse in this game since it never reached a difficulty level similar to the human-

designed levels. Similarly, in Solarfox, PCG 1 achieved on average a higher score than

PPCG on the five human-designed levels. PCG 1, however, shows remarkable generalization

in Solarfox with similar scores in human-designed and procedurally generated levels.

8.4.4 Qualitative Analysis of Agent Replays

In Zelda, PPCG has learned to reliably strike down and avoid enemies but only sometimes

collects the key and exits through the door. Whether this is due to the difficulties of

navigating in tricky mazes or a lack of motivation towards the key and door is currently

8.5. Exploring the Distribution of Generated Levels 143

unclear. In Solarfox, PCG 1 has learned to effectively pick up the diamonds and avoid

fireballs, occasionally getting hit while trying to avoid them. This behavior is remarkably

human-like. Sometimes the agent wins in the human-designed levels, which is quite

impressive. PPCG jiggles a lot around the starting location to collect nearby diamonds,

most likely because the easy procedurally generated levels have diamonds near the starting

location, and it never reached the hard levels during training. In Frogs, PPCG always

moves towards the goal while it sometimes dies when crossing the water with only a few

logs being available. We suspect that navigation in this game is learned more easily than

in other games as the goal in Frogs is always at the top of the screen. In Boulderdash,

PCG 1 learned to fight and pick up nearby diamonds, also under boulders, while it does

not seem to be capable of long-term planning. It often dies fighting enemies or moving

boulders and thus dies rather quickly in most level. Often dying from boulders and

enemies can explain why PPCG never reached a difficulty higher than 0.2; it simply gets

killed early when these entities are introduced in the levels.

8.5 Exploring the Distribution of Generated

Levels

We do not expect agents to play well on levels that are dissimilar from their training

distribution. To investigate the distribution of the procedurally generated levels, and how

the structure of these correlate with human-designed levels, we generated 1000 levels with

difficulty 1 for each game. The high-dimensional structure of levels was compressed to two

dimensions using principal component analysis (PCA), and afterward clustered with the

density-based spatial clustering of applications with noise (DBSCAN). The transformed

space of levels is visualized in Figure 8.5.1. For PCA to work on GVG-AI levels, they

have been transformed into a binary 3D array of shape (tile_type, height, width) and

then reshaped into a 1D array. The human-designed levels were included in both the

transformation and clustering processes.

The generated levels for Solarfox are clustered in three wide groups: (1) levels with only

green diamonds, (2) levels with both green and blue diamonds, and (3) levels with only

144 8.6. Discussion

(a) Zelda (b) Solarfox (c) Frogs (d) Boulderdash

Figure 8.5.1: Visualization of the level distributions and how they correlate to human-
designed levels (white circles). Levels were reduced to two dimensions using PCA and
clustered using DBSCAN (ε = 0.5 and a minimum of 10 samples per cluster). Outliers
are black and centroids are larger.

blue diamonds. None of the human-designed levels use both types of diamonds and thus

only belong to two of the clusters. For Zelda, only one cluster is discovered without

outliers. The generated levels in Frogs have been clustered into 19 groups. This is due to

the high structural effect of roads and rivers that goes across the level. It is noticeable how

level 4 is the most distant outlier. This is because level 4 has a river on the starting row

which is a level variation not captured by the level generator for Frogs. Level 0–3 are near

the same small cluster while the generated levels are spread across many isolated clusters.

It is not exactly clear why PCG 1 and PPCG fail to play on all the human-designed

Frogs levels while the level distribution is remarkably different from the other games. In

Boulderdash, similarly to Zelda, only one cluster emerges, but here, all human-designed

levels are distant outliers. This effect is most likely a result of the fixed amount of open

space in the human-designed levels with padding of only one tile while the generated

levels are more varied and cave-like.

8.6 Discussion

The results of our experiments affirm the original concern with the way reinforcement

learning research is often evaluated and reported. When it is reported that an algorithm

has learned a policy that can play a game, it may simply mean that this policy has found

optimal actions for a very small subspace of the possible observations the game offers.

8.6. Discussion 145

This boils down to the network mapping observations in this subspace to actions without

learning general concepts of the game. Table 8.4.1 shows this with the huge disparity

between the performance on the training levels compared to the test levels. If the goal of

the agent is to learn how to play a game, then this work shows that it must be evaluated

in several variations of the game.

Incorporating procedurally generated levels in the training loop also presents a variety

of new and interesting challenges. One such challenge is how to scale the difficulty of

the levels to smoothen the learning curve in PPCG. In Frogs, it was very effective to

apply padding to easy levels, creating smaller levels in the beginning, while it was not

sufficient for Boulderdash. Another challenge is how to ensure that the distribution of

procedurally generated levels matches another distribution, in this case human-designed

levels. We have provided a tool using dimensionality reduction and clustering, which

can be used to improve the design of constructive level generators or perhaps guide

search-based level generators in future work. While the results vary across the four games,

analyzing when the PCG-based approach works and when it fails gave valuable insights

into the generalization abilities of these reinforcement learning algorithms. We believe

that search-based PCG is an interesting area for future work that could ultimately lead

to reinforcement learning agents with more general policies. We believe that this study is

also relevant for robotics; learning to generalize from simulation to real-world scenarios

where pure randomization of the environment is insufficient.

We have demonstrated the need to focus on generality when applying reinforcement

learning to games. However, obtaining generality across multiple levels in a game can be

harder on some games than in others. We suggest two new dimensions in game complexity:

(1) the number of different initial states and (2) the diversity of initial states. If a game has

many initial states, and these are structurally different, the game has a high complexity.

Chess and go have two initial states (starting as black or white) that are almost identical,

and thus have a low complexity along these two dimensions. The GVG-AI games used in

this chapter, when played in an unknown level, are all very complex along these dimensions,

as there are millions of different initial states. Interestingly, StarCraft is usually played on

a pool of around six to eight different maps, each with a few different starting positions.

StarCraft thus have a relatively low number of initial states, while many of them are

146 8.7. Summary

widely different.

8.7 Summary

We explored how policies learned with deep reinforcement learning generalize to levels that

were not used during training. The results demonstrate that agents trained on just one or

a handful of levels often fail to generalize to new levels. We presented a new approach

that incorporates a procedural level generator into the reinforcement learning framework,

in which a new level is generated for each episode. A variant of this approach, Progressive

PCG (PPCG), shows that by dynamically adapting the difficulty of the generated levels

during training, the agent gradually learns to solve more complex levels than when

trained directly on the most difficult levels. This technique was able to achieve a win

rate of 57% in difficult Frogs levels, compared to 0% for the non-progressive approach.

Additionally, in Zelda, PPCG reached superior performance across procedurally generated

levels and human-designed levels. In Solarfox and Boulderdash, the level difficulty of

PPCG never reached the maximum during training and here training on procedurally

generated levels with a fixed difficulty setting resulted in the highest performance. The

results presented in this chapter also highlight the important challenge of ensuring that

the training distribution resembles the test distribution. We have provided a tool that

can assist with the second challenge, using dimensionality reduction and clustering to

visualize the difference between two distributions of video game levels.

Chapter 9

When Are We Done with Games?

In this chapter, we take a close look at recent successes AI in complex games and make

an attempt to evaluate the fairness of the employed human vs. AI competitions. With

DeepMind’s ’AlphaGo’ beating the world’s best go player Lee Sedol, ’OpenAI Five’

(OpenAI, 2017) beating a team of professionals in a restricted game of Dota 2, and

DeepMind’s ’AlphaStar’ (Vinyals et al., 2019) beating the professional StarCraft II player

Grzegorz ’MaNa’ Komincz, it may seem that AI has now achieved all of these long-standing

goals that were set forth by the research community, which are also the foundation of

the problems explored in this dissertation. So where does this leave us? Are we, as AI

researchers, done with games? It should be noted here, that the results of AlphaStar and

OpenAI Five were announced after most of the work in this dissertation were submitted

and the technical details and results of both approaches are not yet published.

This chapter provides a discussion of designing and evaluating fairness in human vs. AI

game competitions. Ultimately, we argue that a claim of superiority of AIs over humans is

unfounded, until AIs compete with and beat humans in competitions that are structurally

the same as common human vs. human competitions. These competitions are, after all,

designed to erase particular elements of unfairness within the game, the players, or their

environments. We take a black-box approach that ignores some dimensions of fairness

such as learning speed and prior knowledge, focusing only on perceptual and motoric

fairness. Additionally, we introduce the notions of game extrinsic factors, such as the

competition format and rules, and game intrinsic factors, such as different mechanical

systems and configurations within one game. We apply these terms to critically review

147

148

the aforementioned AI achievements and observe that game extrinsic factors are rarely

discussed in this context, and that game intrinsic factors are significantly limited in AI

vs. human competitions in digital games. These highlight critical limitations of current

game-playing methods that we have addressed in this dissertation.

Claimed AI achievements in games were also reviewed by Canaan et al. (2019a), focusing

on how researchers and the media have portrayed the achieved results. Additionally, they

proposed six dimensions of fairness in human vs. AI game competitions: 1) Perceptual: do

the two competitors use the same input space? 2) Motoric: do the two competitors use the

same output space? 3) Historic: did the two systems spend the same amount of time on

training? 4) Knowledge: do the two systems have the same access to declarative knowledge

about the game? 5) Compute: do the two systems have the same computational power?

6) Common-sense: do the agents have the same knowledge about other things? Based on

their six dimensions of fairness, they concluded that “a completely fair competition can

only be achieved against an artificial system that is essentially equivalent to a flesh and

blood human”. We will return to their evaluation in a later paragraph.

Our main critique of current evaluation procedures is twofold. AI superiority in games

cannot be claimed without carefully treating the game extrinsic and intrinsic factors, such

as the competition’s structure and rules, and the game’s configurations. First of all, it

is necessary that AIs compete in a game’s extrinsic tournament structures, as already

employed in human vs. human competitions. Thus, to formulate a proper competition

between humans and AI systems, we argue that we must first study the extrinsic game

factors that are in play when humans are competing and then formulate an experimental

setup that imitates them, without limiting the game’s intrinsic variables, such as maps,

races, heroes, etc., as is currently be done.

Through the discussion of two areas (the competitors perceptual and motoric abilities;

and the game’s extrinsic and intrinsic factors) we hope to show that, so far, no fair

competition between AIs and human has been won by an AI in Dota 2 and StarCraft

II. We argue that, if these factors are accounted for in the future, and we ignore the

competitors individual characteristics of knowledge acquisition (considering them as black

boxes), we can construct a competition that is capable of producing a fair evaluation of

the competitors’ output. This output can then form the basis for future discussions on AI

9.1. The Blackbox Approach 149

vs. human intelligence. For instance, if the AI wins in our hypothetically fair competition,

does this mean it is more intelligent? If the human wins, what are the areas in which the

AI has to improve? Are there still other factors that we did not observe and account for?

In this manner, our current approach does not claim ultimate correctness, but constitutes

a step forward in the area of human vs. AI competition, by critically evaluating the

current state and proposing areas of consideration for future competitions. Thus, our

approach is different from Canaan et al. (2019a) in that they claim the impossibility of

a fair competition due to differences in the competitors, which we simply treat as black

boxes in order to focus on the competition setup instead.

While we focuses on claims of super-human performance in games, there are other claims

made in this context that are worth discussing; for example, whether a system has learned

from tabula rasa (Marcus, 2018). Due to our black-box approach, these questions will not

be discussed here.

In particular, we aim to address the game AI community and its discussion of how to

create a competition that enables us to claim AI superiority. The implications for players,

communities, game designers and game studies researchers outside of AI are outside the

scope of this discussion. Furthermore, we limit the scope to only consider AI systems

in the role of playing a game competitively. It is, however, important to not neglect

that AI/CI has many other roles for games such as procedural content generation, player

modeling, and data mining (Yannakakis, 2012). When we ask the question are we done

with games?, we are thus only concerned with the traditional branch of AI in games where

the goal is to create a system that plays competitively.

9.1 The Blackbox Approach

We propose a pragmatic way of evaluating AI against human intelligence in game

competitions. To be able to do this, some obvious differences have to be pointed out

and disregarded. First of all, for the purpose of comparability, we consider AI systems

as black boxes. Their training, knowledge, common sense and idiosyncratic function

will not be considered. Treating an AI as a black box thus disregards four of the six

dimensions of fairness introduced by Canaan et al. (2019a). This leaves us with perceptual

150 9.1. The Blackbox Approach

and motoric fairness as they deal with the system’s interaction with the game. In fact,

human vs. human competitions also take this approach: we ignore how contestants have

prepared for the competition and their IQ scores are not considered important. Only

in few cases (e.g. weight in boxing or gender in physical sports) is it deemed necessary

to impose further restrictions and limitations. In the case of electronic sports (eSports),

gender segregation is a topic of an ongoing debate, which to cover would exceed our scope.

However, to explicate the ’obvious differences’ that will be disregarded, a discussion of

types of potential superintelligences by Nick Bostrom is useful. While his position on the

emergence of superintelligences and its consequences are arguable, we deem his threefold

distinction as useful here, to describe and understand ways in which machines are simply

and obviously different from humans.

In the book Superintelligence Bostrom (2014) distinguishes three different forms of possible

superintelligences (Bostrom, 2014, p.63) that we will use to explicate the aforementioned

differences. Speed intelligence describes a superintelligence that “[...] can do all that a

human intellect can do, but much faster” (Bostrom, 2014, p. 64). AI systems can usually

speed up matches and play them much faster than a human player can. It is thus an

obvious difference that AIs can train/evolve faster than humans if the number of games

over time (not the learning outcome) is the measure of speed. Collective intelligence

describes “a system composed of a large number of smaller intellects such that the system’s

overall performance across many very general domains vastly outstrips that of any current

cognitive system” (Bostrom, 2014, p. 65). In the context of learning, many machine

learning algorithms fit this description, as AI systems usually are trained in several parallel

instances to ultimately combine the gathered information into one system – an option

that a human player does not have. In fact, AlphaGo, OpenAI Five, and AlphaStar all

relied heavily on these advantages. AlphaGo played 1,280,000 games against itself using

50 GPUs (Silver et al., 2016), OpenAI Five played around 180 years of real-time Dota per

day on 256 GPUs and 128,000 CPU cores (OpenAI, 2018a), and for AlphaStar, a league

of agents each agent played up to 200 years of real-time StarCraft, each using 16 TPUs

(Vinyals, 2019).

Finally, Bostrom describes quality superintelligence as one system that is “[...] at least as

fast as a human mind and vastly qualitatively smarter” (Bostrom, 2014, p. 68). Simply put,

9.2. A Prototypical Human Competition 151

this resembles the difference between two humans with different IQs; or more theoretically,

the encounter with an alien race that “thinks on a different level”, incomprehensible to us.

This quality super intelligence is one potential interpretation of the outcomes of a fair

competition between AIs and humans.

Especially when it comes to learning and training, the AIs have advantages over humans

in what Bostrom called speed and collective intelligence. During training, developers can

speed up games to a degree which exceed human capabilities. In addition to that, one

version of a system can play hundreds of games simultaneously and gather the gained

information afterward. This is a strength of artificial intelligence that we should embrace

and not handicap. This factor is thus ignored by our black box approach.

As discussed here, AI systems and humans are different in many regards, and we agree

with the conclusion of Canaan et al. (2019a) that a final, holistic comparison of the two

is nonsensical. However, we want to discuss what happens if we exclude the obvious

differences (as partially done in human vs. human competitions as well). Our interest

lies in an evaluation of whether, or to what extent, the competitions between AI systems

and humans were actually carried out on equal grounds. In other words, we exclude the

characteristics of the participants, to evaluate the characteristics of the competition.

To be able to discuss an AI vs. human competition within games, we need a prototypical

example of a human vs. human competition and a rudimentary distinction of how such

competitions regulate game extrinsic and intrinsic factors. The purpose of this is to

establish certain terms that enable an in-depth discussion and comparison of AI vs.

human competitions and their idiosyncratic structures.

9.2 A Prototypical Human Competition

For the following discussion, some definitions of terms are necessary. First of all, the

questions what a game is and what should be considered parts of games have been

considered in many publications (Arjoranta, 2014; Suits, 2014; Avedon and Sutton-Smith,

1971; Caillois, 2001; Juul, 2011; Stenros, 2017) as well as some heated debates (Frasca, 2003;

Murray, 2005; Aarseth, 2014a; Keogh, 2014). The authors behind these discussions accept

152 9.2. A Prototypical Human Competition

Figure 9.2.1: A prototypical human vs. human competition consisting of one or more
series between two teams or individuals. Each series consists of multiple game instances
of the same orthogame.

that ultimately defining games might be an impossible task that bears normative and

discriminatory potential. However, for the current purpose of structuring our argument

and observations, we will develop a makeshift model of game intrinsic and extrinsic factors.

This model is based on previous research on the ontology of games (Aarseth and Calleja,

2015), and metagames (Carter et al., 2012; Debus, 2017).

The cybermedia model of Aarseth and Calleja (2015) constitutes a descriptive model that

covers games but intentionally also other phenomena. They describe games as a player’s

perspective on a cybermedia object, which consists of a materiality, a sign system, and a

mechanical system. Especially in the case of the mechanical system, it is possible that

one cybermedia object contains several systems. Their example is World of Warcraft

(Blizzard Entertainment, 2004), which contains multiple mechanical systems, such as

questing, raiding, PvP arena, and PvP battlegrounds.

To avoid the confusion that the term game brings with it and to avoid the processual

perspective on games that Aarseth (2014b) take1, we will use the term “orthogame” by

Carter et al. (2012) instead of “cybermedia objects” (Aarseth and Calleja, 2015). The

orthogame describes “[...] what players collectively consider to be the ’right and correct

game’” (Carter et al., 2012). We understand the orthogame as the digital artifact installed

on a computer or physical artifact as used for play (including its rules). This explicitly

1One of the unsolved problems regarding games is the question whether they are objects of processes.
The ontological commitment of a process perspective onto games is that the player constitutes an element
of the game itself; a perspective that the authors do not share in the current endeavor.

9.2. A Prototypical Human Competition 153

excludes the player from the object itself. It is important to note that especially digital

orthogames have various different ’starting configurations’, i.e. maps or chosen races. These

starting configurations determine individual game instances: subsets of the orthogame

with one particular configuration. A series occurs between two teams or individuals across

multiple instances of the orthogame, i.e. a best-of-five series. Finally, all of these concepts

are encompassed by an “added metagame” (Debus, 2017, p. 5). Added metagames are

structures regulating leagues, ladders, tournaments, competitions, etc.

We will now put these terms into work in an example of a StarCraft II instance. It must

be noted that it is a prototypical example and a more detailed model could be drawn (as

discussed at the end of this section). However, the developed terms will still be applicable

in those cases, even though the structure could be expanded. Figure 9.2.1 illustrates this

prototypical version of a human vs. human competition.

In our example, two players are competing for the world championship in StarCraft II.

Over the course of the last months, they both proceeded through an added metagame: a

ladder, as well as a KO system in the finals, which are held at a physical location. Now

they face off in the grand final. The grand final is constituted by a best-of-five series. This

means that the players face each other at least three times, playing the same orthogame

(StarCraft II), but different instances of it. These instances (circle, triangle, and diamond

shapes) are usually determined by one of two processes. On the one hand, there exists a

“material metagame” (Debus, 2017, p. 5), which encompasses drafting armies or heroes in

some games. In our StarCraft II example, there is a map selection procedure before a

series, where players can veto maps that will be removed from the map pool. On the other

hand, the particular configurations can be regulated by the added metagame beforehand,

such as 1 vs. 1 competitions in Dota 2. These limit the orthogame to a particular player

composition (two players) and a spatial layout (middle lane only). Thus, the example

actually constitutes a combination of both processes, through the limitation of a map

pool in StarCraft II (added metagame restriction), and the subsequent selection of maps

from the pool by the players (material metagame process).

We can expand the model and include the whole added metagame of the world

championships by adding more series to Figure 9.2.1, as indicated by the additional ’series’

frame. These additional series, in turn, consist of (potentially) differently configured

154 9.3. Game Extrinsic and Intrinsic Factors

instances of the orthogame, played by different players. Another possible constellation is

an added metagame between the same players but within different orthogames. However,

we further argue that the function of added metagames is to regulate game extrinsic and

intrinsic factors within the added metagame, with the purpose of balancing and fairness.

We will elaborate on these concepts in the following sections.

9.3 Game Extrinsic and Intrinsic Factors

To reiterate the previous section, we can split a competition into three general areas:

the added metagame, series within the added metagame and instances of an orthogame

played within the series. We argue that the function of the added metagame is to regulate

both, the format of the series (extrinsic factors), as well as the particular configurations

of the orthogame (intrinsic factors). The extrinsic and intrinsic factors of regulation is

exemplified in the following sections.

9.3.1 Fairness: Game Extrinsic Factors

Added metagames generally regulate two game extrinsic areas in a competition: the

structure or format of the competition and the competitors participating in it. An

example of an added metagame are ladder system, as implemented in many contemporary

online multiplayer games, such as League of Legends (Riot Games, 2009), Heroes of the

Storm (Blizzard Entertainment, 2015) or StarCraft II. In the world championship of

soccer, a mini-league system, in which teams play in discrete groups, and a KO round,

in which teams eliminate each other in best-of-one series, are combined. Other sports

require the finalists of a competition to face each other in several instances, for example, a

best-of-five-series. The aim of this is to minimize arbitrary factors that could predetermine

a victory as much as possible. In chess, for example, the white player starts the game

with a slight advantage. To balance white’s advantage, an extrinsic system (the series) is

employed, which guarantees that both players will start with white. Another potential

reason for the implementation of series is to negate factors such as day to day performance,

weather, or home turf advantage. In other words, these regulations aim to make sure the

9.3. Game Extrinsic and Intrinsic Factors 155

best player wins and not a player that was lucky to gain a game extrinsic advantage.

Yet in other sports, as well as eSports, it is common to divide participants into groups,

depending on their physical attributes. In boxing, for example, the added metagame

divides participants into groups by weight. In nearly every sport it is also common to

distinguish between youth- and adult-leagues. The intention here is not only to make the

individual instances more interesting for the spectators but also to prevent injuries. A

similar, but a more controversial division is related to the participants’ gender (Teetzel,

2006). This division is also employed in eSports, where its usefulness is a topic of ongoing

debate. We will discuss the necessity of limiting ’physical’ capabilities of participants in

AI vs. human competitions in the section "Critique of AI Achievements in Games."

9.3.2 Fairness: Game Intrinsic Factors

As discussed earlier, contemporary digital game artifacts contain multiple mechanical

systems. Aarseth and Calleja (2015) mention raiding, questing and player vs. player

(PvP) as examples in World of Warcraft. Different models identify different (types of)

elements of games for different purposes (Bjork and Holopainen, 2004; Wolf, 1997; Aarseth

et al., 2003). Elverdam and Aarseth (2007), for example, identify dimensions of games

for the purpose of classification. These include the players’ relation, virtual and physical

space, struggle (including the game’s goals), and more. The individual categories are less

important than the observation that contemporary video game can rarely be described in

only one manner. While it is easy to argue that chess particularly requires two opposed

players, it is impossible to make the same general statement about the digital artifact

StarCraft II, which contains the potential player compositions of single-player, two-player,

multi-player, and multi-team (Elverdam and Aarseth, 2007).

Another game intrinsic factor is different maps (e.g. in StarCraft II), which would be

comparable to different boards in chess or go. These maps influence the individual

strategies, but also the available player numbers. While StarCraft II also allows playing

three different races, it is common for a player to stick to one race throughout their

’career’. In Dota 2, however, players need to be able to play a range of different heroes,

as each series includes the drafting and banning of heroes from a pool of (as of writing)

156 9.4. Critique of AI Achievements in Games

around 115 heroes. Selecting heroes can be considered a “material metagame” (Debus,

2017) to determine the configuration of the game instance. Added metagames can also

regulate clear orthogame intrinsic content, such as available items inside of Dota 2. In

some cases, items that heroes use to increase their strength of abilities were banned by

leagues, as they were considered overpowered or were simply bugged.

When comparing AI and human intelligence in games, the here discussed multifacetedness

of games must be considered and both participants’ capabilities of engaging with the

artifact as a whole need to be examined. This insight leads us to the next section, in which

we examine particular games and competitions within them, using the here developed

distinction of game extrinsic and intrinsic factors, as well as the prototypical human vs.

human added metagame.

9.4 Critique of AI Achievements in Games

In this section we will review a few selected milestone achievements of AI in games,

focusing on particular systems and their comparisons to human professionals. We will

discuss the fairness of these competitions and whether it is valid to claim that the AI

systems are super-human using the black box approach and the coherence of game extrinsic

and intrinsic factors. The goal is to identify to what extent the presented milestones

adhere to or deviate from the prototypical human vs. human added metagame. Any

deviations, we argue, indicates an unfairness in the competition (for either side) and a

claim of superiority must be treated carefully in these cases.

9.4.1 AlphaGo

AlphaGo, developed by DeepMind, is the first go-playing system to win against professional

go players without handicap on a full-sized board. The first of these games were against

the 2-dan European go champion Fan Hui in 2015, where AlphaGo won 5-0 (Silver et al.,

2016). The 9-dan 18-time world champion Lee Sedol was the next target for AlphaGo, and

a five-game match was scheduled in 2016 with a one million dollar prize and following the

official rules: Chinese ruleset, a 7.5-point komi, and two-hour time limit for each player.

9.4. Critique of AI Achievements in Games 157

Prior to the match, the Fan Hui games were published allowing Lee Sedol to prepare

against AlphaGo.2 AlphaGo won 4-1 with a loss in game four, showing a weakness in

the system that might be exploitable. A new version of AlphaGo called ’Master’ was

anonymously registered to the ’Tygem’ and ’FoxGo’ go servers, playing a total of 50 game

instances, with a shorter time limit than usual game instances, against professional and

top players, winning all of them3. AlphaGo’s last game instances were at the Future of

Go Summit, where AlphaGo won against several top players including the highest ranked

player Ke Jie and a team of five human players, without losing a single game. After this

event, AlphaGo was retired4.

We argue that AlphaGo ultimately competed fairly in non-restricted matches against

numerous top professional players both online and in settings similar to human competitions

both in terms of game intrinsic and extrinsic factors.

9.4.2 OpenAI Five

In 2016, the company OpenAI decided to pursue the challenge of beating human

professionals in the multiplayer online battle arena (MOBA) game Dota 2 (OpenAI,

2018b). Dota 2 is a fast-paced real-time game, has partially observable states, high-

dimensional observation and action spaces, and has long time horizons (OpenAI, 2018a).

Normally in Dota 2, two teams of five players play against each other while there also

is a one vs. one (1v1) variant. In 2017, OpenAI developed a bot capable of playing the

1v1 version that beat the former professional player ’Blitz’ 3-0, the professional players

’Pajkatt’ 2-1, ’CC&C’ 3-0, the top 1v1 player ’Sumail’ 6-0, and ’Dendi’ 2-0. The standard

(or most popular) variant of Dota 2 is played in teams of five players. However, because

there exist serious 1v1 Dota competitions, the added metagame does adhere to at least

an existing version of the added human vs. human metagame, mimicking a termination

tournament with five players. The bot was updated by the developers between each series

(OpenAI, 2017); possibly bugs were fixed and control parameters were tuned. ’Sumail’

also played against the previous version of the bot and won this time 2-1. It can be argued

2https://web.archive.org/web/20160214135238/https://gogameguru.com/
an-younggils-pro-go-videos-alphago-vs-fan-hui-game-2/

3https://www.nature.com/news/google-reveals-secret-test-of-ai-bot-to-beat-top-go-players-1.21253
4https://deepmind.com/research/alphago/alphago-vs-alphago-self-play-games/

158 9.4. Critique of AI Achievements in Games

that altering the bot in-between game instances is a violation of the black-box approach,

as it effectively becomes a new system. However, human players usually have the ability

to discuss strategies with a coach in-between game instances, so perhaps an AI should also

be allowed to be influenced by a ’coach’. In any case, it depends on whether the developers

that are modifying it, are considered part of the entity that is competing, which we would

argue, they are not. Human modification of the AI system should thus not take place

within a series of individual game instances, or even whole added metagames. Because

both positions (for and against human intervention) are arguable, it appears necessary to

develop an explicit regulation in this area for future human vs. AI competitions.

These series were played under standard 1v1 tournament rules. The bot had direct access

to the features of the game artifact from the API, instead of being presented to the visual

representation of the game artifact. The bot could only access the same information

that would have been available to a human player but it was structured differently. For

instance, humans have to infer the position of heroes and thus estimate the distances

between units, which are important for ranged attacks, while the bot can access the exact

positions and thus calculate the exact distances, instantly. This arguably goes against

perceptual fairness because the input space should be the same. Here, the input space

includes the same information for both the AI system and the human, but by perceiving

the game state in a different way than humans, the AI system might have an advantage

or disadvantage. The bot had access to the same actions as human players and they

were performed at similar frequencies but with a quicker reaction time of 80ms (OpenAI,

2018c). The reaction time was, however, reduced in later competitions.

After the 1v1 win, OpenAI let the bot play thousands of games against various players,

where several exploits were found to overcome the bot (OpenAI, 2017). This setup mimics

a human ladder where we would expect experienced human players not to have trivial

exploits. The AI, however, would quickly descend the ladder due to these discovered

exploits.

In 2018, a newer version of the bot named OpenAI Five was able to beat a team consisting

of 99.95th percentile players ’Blitz’, ’Cap’, ’Fogged’, ’Merlini’, and ’MoonMeander’ (some

are former professionals) in a restricted version of the 5v5 game (OpenAI, 2018c). This

series was named the OpenAI Five Benchmark. Some of the restrictions include a fixed

9.4. Critique of AI Achievements in Games 159

hero pool of 18 heroes (instead of 117) resulting in 11 million possible game instances, no

summons/illusions, and no Scan. The reaction time was increased from 80ms to 200ms in

an attempt to match that of humans. The bot won the first two game instances where

it did the hero drafting itself and lost the third game where the audience did the draft.

The restricted hero pool is a significant limitation of the game intrinsic factors, effectively

reducing the possible game instances to a much smaller subset than are usual in human

vs. human competitions.

’OpenAI Five’ later played two show series against the two teams of top professionals ’paiN

Gaming’ and ’Big God’ and lost.5 In 2019, ’OpenAI Five’ won a best-of-three series 2-0

(the OpenAI Five Finals) against the Dota team OG, which consists of top-professional

players. In this series, the hero pool was further restricted to just 17 heroes (OpenAI,

2019). Playing against just one team mimics the final series of a tournament but not

an entire tournament, ignoring the game extrinsic factors of complete added metagame

structures.

After the win against OG, the OpenAI Five Arena allowed anyone to play against OpenAI

Five. These games had the same restrictions as earlier. OpenAI Five won 7,215 games and

lost 42 (99.4% win rate) against a total of 15,019 players6. One team, mainly consisting

of the players ’ainodehna’, ’backtoashes’, ’CANYGODXXX’, ’.tv/juniorclanwar’, and

’gazeezy’, was able to reach a ten game winning streak.

The OpenAI Arena is basically an extensive ladder setup cohering to game extrinsic

factors. A ladder challenges the bot to be robust to many different strategies and playing

styles. The fact that it won almost every game but one team was able to beat it repeatedly

is interesting. If this result was due to a trivial exploit, then most teams, knowing about

the exploit, would be able to beat it; for a human opponent this would not be the case.

However, the bot won 99.4% of the games in an extrinsically fair setup, which we would

not expect even from human world champions. The criteria for being the best Dota 2

team on a ladder is not to have a 100% win rate, and we thus should not impose that

expectation on the bot.

5https://liquipedia.net/dota2/The_International/2018/OpenAI_Showmatches
6https://arena.openai.com/#/results

160 9.4. Critique of AI Achievements in Games

9.4.3 AlphaStar

In 2019, DeepMind played their bot AlphaStar against the two top professional players

Dario ’TLO’ Wünsch and Grzegorz ’MaNa’ Komincz and won both series 5-0 (Vinyals,

2019). All games in these two series were Protoss vs. Protoss on the standard medium-sized

map CatalystLE.

It was claimed that these series adhered to professional match conditions (Vinyals, 2019),

while this is in fact not the case. Tournaments never use just a single map for a whole

series but instead a predefined map pool, thus the competition did not adhere to the game

extrinsic factors. Additionally, in professional tournaments, players face multiple players

controlling any of the three races, and not just Protoss.

After the match ’MaNa’ also mentioned that he made a few mistakes because they played

an earlier version of StarCraft II than the one he was used to; he also did not warm up,

which he would usually do (Komincz, 19:50). The actions per minute (APM) count of

AlphaStar was around 280, which is lower than professional players, and with a reaction

time of 350ms on average. AlphaStar had only access to visual information from the

game, similarly, but not exactly identical, to the screen pixels presented to human players

(Vinyals et al., 2017). This is arguably a violation of the game intrinsic factors, similarly

to OpenAI Five, since AlphaStar has a different input space than human players have. It

is, however, a weak violation since AlphaStar’s representation of the game state has the

same information, while it is just structured differently.

Importantly, AlphaStar was not restricted to the limited view of the camera, which a

human player has to control manually. As DeepMind puts it: “it could observe the

attributes of its own and its opponent’s visible units on the map directly, without

having to move the camera - effectively playing with a zoomed out view of the game”

(Vinyals, 2019). ’MaNa’ expressed this as being “very unfair” (Komincz, 1:17:15). This is,

however, a clear advantage of AlphaStar on both the levels of perceptional capabilities and

motoric necessities. Furthermore, it could even be argued that this alters the “perspective

dimension” (Elverdam and Aarseth, 2007) of StarCraft II from vagrant to omnipresent,

which is arguably an alteration of the orthogame itself.

Later, the professional player ’MaNa’ played against a prototype of AlphaStar that

9.4. Critique of AI Achievements in Games 161

Figure 9.4.1: A typical AI vs. human competition consisting of one series between two
teams or individuals. The series often consist of identical game instances, or a limited set
of game instances, of the same orthogame.

controlled the camera as well, in a single-game series and won. He found a weakness in

AlphaStar during a Warp Prism harassment with Immortals, continuously warping in

units, picking them up, and escaping. Whether this weakness was due to the camera

control or if it was a critical exploit of AlphaStar is not known. It may, however, seem

that he won the last game because it was played at a later date than the others and he

had time to prepare against its style. Specifically, he said that “We (‘TLO’ and ‘MaNa’)

noticed that the agent sticks to the basic units a lot. It’s very confident in its micro,

and it should be, it’s great micro, but it doesn’t really transition out of it.” (Komincz,

1:19:15). ’MaNa’ said his new plan was to “... defeat AlphaStar with simply better unit

composition rather than unit control” (Komincz, 1:20:20). We notice here, that in the two

5-0 wins against ’TLO’ and ’MaNa’, they did not have a chance to scrutinize any recorded

games played by AlphaStar, which professional player typically can do before important

human vs. human series. In contrast, the developers of AlphaStar picked and knew the

opponent in advance. ’MaNa’ said, commenting on his first series against AlphaStar: “I

was completely in the dark ... I don’t know what to expect. If you are a StarCraft player

you are familiar with people you are playing on the ladder ... you know what their styles

are.” (Komincz, 18:40). Compared to a prototypical human vs. human competition, this

is an unusual setup of the competition, as professional players know each others’ play

styles before playing. To observe the problem from another angle: human vs. human

added metagames never keep their participants secret from their participants, as was the

case in ’MaNa’ vs. AlphaStar.

162 9.5. Adaptation in Fair Competitions

9.5 Adaptation in Fair Competitions

Fair human vs. AI game competitions, as we have formulated them here, undoubtedly

require players to be adaptive. When competitions consists of multiple series of matches

against multiple different opponents using a wide range of game variations, players

cannot have fixed behaviors. Successful players must change their strategy in-between

games (inter-game adaptation) to counter opponent strategies in series of matches. The

ability to generalize to a large set of game variations also seem to be a requirement in

fair competitions. In StarCraft, there are three different race matchups for each race

(excluding random), and usually a pool of around six maps. In Dota 2, only one map is

used but with 115 different heroes, players need to generalize their playing style to team

combinations that they have not yet played or played against.

As we claim that adaptivity and generality are required to master fair competitions in

complex games, it highlights the importance of the work in this dissertation. Learning to

generalize on multiple levels/maps (Chapter 8) and learning a diverse set of behaviors

(Chapter 6) seem to be particularly important.

9.6 Summary

We introduced a black box approach that can be used when designing and evaluating

human vs. AI game competitions as well as the notions of game extrinsic and intrinsic

factors. We applied these to discuss the fairness of recent AI achievements of AlphaGo,

OpenAI Five, and AlphaStar. It appears that the added metagame’s role in an AI vs.

human competition has a different focus than in the human vs. human competitions. The

added metagame in a human vs. human competition regulates mostly the bigger structure

of extrinsic factors, such as a sequence of series, number of instances in a series and

groupings due to a physical difference between the competitors. The added metagame’s

role in the AI vs. human competitions, however, is focused on the regulation of game

intrinsic factors. This means, in competitions between AIs and humans in digital games,

the orthogame is so far always limited to either one particular configuration or a very

small number of possible configurations, compared to human vs. human competitions. A

9.6. Summary 163

visualization of this setup is shown in Figure 9.4.1. OpenAI Five, for example, is capable

of playing only 17 out of (approximately) 115 heroes of Dota. Thus, the orthogame (Dota

2) in the competition between OpenAI Five and humans had to be limited to these 17

heroes.

OpenAI Five had direct access to game state variables while humans must infer positions,

attack ranges, and health from a raw visual representation, which ultimately leads

to ’educated guesses’ more than factual knowledge. AlphaStar, in fact, used a visual

representation but a different one than what is presented to humans. Furthermore, OpenAI

Five and AlphaStar are incapable of ’misclicking’, which is the act of giving a command

unintended by the player. These two factors constitute imbalances in the perceptual and

motoric capabilities of the competitors, which must be accounted for in the future. To

have a fair competition, the AIs must be handicapped through their interaction with the

game to imitate how humans are interacting with it, i.e. if humans have imprecise and slow

means of interacting with the game it should be the same for the AI system. It can be

argued that this is something that naturally occurs in human vs. human competition, as

every human participant is implicitly restricted to human capabilities. Thus, the addition

of a handicap to the AI simply constitutes an explicit correction through game extrinsic

factors.

We thus conclude that we are not done with games. The games proposed as ultimate AI

challenges, Dota 2 and StarCraft II, are not yet mastered by AI. As we identified, so far AI

vs. human competitions are different in that (1) the AIs do not compete in a tournament

structure, but are simply matched with the best (available) human player and (2) they

limit the orthogame in particular ways, such as range of maps, heroes or races. To be

able to claim that ’We are done with games’ the AI has to engage in a fair competition

with humans that is constituted by the same external factors, such as several matches

against the same opponent, as well as different opponents. Additionally, it should not

limit game internal factors, such as only allowing certain playable heroes or maps. Only

then, the claim that AI is superior to humans in games is justified, given that StarCraft

II and DotA 2 are and remain the most complex games to beat.

We are, however, not neglecting the significant progress made towards achieving the goals,

as no system before OpenAI Five and AlphaStar could win against professionals in any

164 9.6. Summary

competition in these games. The fact that game intrinsic factors have been severely

limited suggests that current AI methods cannot cope with the complexities introduced by

varying game configurations. This limitation was explored in Chapter 8. Game extrinsic

factors have also been largely ignored, pointing at a new area to consider when comparing

humans and AI systems in games.

An ultimate goal that would demonstrate that an AI system can fully master a game,

beyond the extrinsic factors of human vs. human competitions, would be to allow anyone

to play against it over a long period of time. This setup would be similar to OpenAI Arena,

without restricting any intrinsic game factors. This goal was to some degree achieved

by AlphaGo when it played on the ’Tygem’ and ’FoxGo’ go servers without losing, and

without restricting the intrinsic factors. It should be noted that AlphaStar has later been

tested (after this paper was published on arXiv) on the StarCraft ladder (anonymously

against top human players) on multiple maps and against multiple races, similarly to

the OpenAI Arena setup. We are not aware of the exact details of these experiments

and their results but it is clear that these tests pay more attention to both intrinsic and

extrinsic factors. Interestingly, when playing anonymously on the ladder, players do not

need to perform inter-game adaptation, as in offline StarCraft tournaments. Here, it is

interesting to note, that offline tournament structures with multiple series of matches are

always employed in the StarCraft II World Championship Series7 and The International

Dota 2 championships8. It thus seems that these tournament structures are preferred

when determining the best human player, suggesting that they should also be employed

when evaluating super-human AI performance in these two games.

7https://wcs.starcraft2.com/en-us/
8http://www.dota2.com/international/overview/

Chapter 10

Discussion

This dissertation contains several contributions toward the goal of surpassing human level

game-playing in the most complex games such as StarCraft. This ambitious goal has

not yet been reached (in fair competitions) while the work presented here takes small

steps in promising new directions with a focus on adaptation. This focus was highly

disregarded prior to this dissertation, where the performance of human-level game-playing

AI was mainly evaluated on restricted settings where adaptation is less needed. Without

evaluating the adaptivity of a game-playing AI system, the AI system might outperform

humans merely due to fast and precise execution, which is a trait that machines naturally

excel in. Strategic reasoning, which includes adaptation, is, however, an intellectual

trait that is much more valuable to achieve. An AI system that can outplay humans in

StarCraft with super-human micromanagement control is a major achievement due to the

complexity of the control problem while it would be an absolute astonishing achievement

to have an AI system that can continuously outmaneuver human players in such games

through strategic adaptation. The contributions of this dissertation take small steps

in this direction. x It is worth discussing AlphaStar (Vinyals et al., 2019) and how it

compares to our contributions. AlphaStar was announced after most of the work in

this dissertation was published, and the technical details and results of AlphaStar still

remain to be peer-reviewed. The currently announced version of AlphaStar can only play

one matchup and on one map. The StarCraft systems presented in Chapters 4, 5, and

6 can play on most maps, while they do not adapt their playing style to the different

map features. AlphaStar was, however, capable of winning against a human player in

165

166 10.1. Intra-game and Inter-game Adaptivity

a restricted setup, which is still a truly amazing achievement. AlphaStar performs a

weak variant of inter-game adaptation where a different policy (that was trained with

a unique objective) is sampled at every game. Simple adaptation mechanisms could be

applied to intelligently select between these policies, similarly to our approach in Chapter

6. AlphaStar’s ability to perform intra-game adaptation is hard to analyze with the

currently available information, while it is clear that many of the games are won through

superior micromanagement (see Chapter 9). In the shadow of AlphaStar’s success, the

contributions in this dissertation may seem pointless, as the systems we developed did not

win against human players in StarCraft. Here, it is important to consider that AlphaStar

was developed by a team of more than 30 researchers and engineers with easy access to

computational resources (Churchill et al., 2019), which undoubtedly have an impact on

the quality of their experimental results. Our approaches may as well be able to achieve

better results if they are scaled to use more computational resources together with a

higher quality of engineering. AlphaStar and OpenAI Five both rely on fundamental

machine learning techniques such as traditional imitation learning and reinforcement

learning algorithms. Our work is shown to improve such traditional algorithms in terms

of the achieved win rate or game score in a setting that requires adaptivity. It would thus

be promising to combine our techniques with AlphaStar or OpenAI Five with the goal of

achieving super-human performance in fair competitions.

The three properties of adaptivity that were identified in the introduction, as well as

the challenge of overcoming sparse rewards, are discussed next in the context of our

contributions.

10.1 Intra-game and Inter-game Adaptivity

A static policy that can only execute one strategy regardless of the opponent’s strategy

is usually exploitable by adaptive policies. When reinforcement learning is applied to a

training setting against a single fixed opponent, there is a risk of learning such a static

policy. For example, Sun et al. (2018) applied reinforcement learning to StarCraft against

the built-in Blizzard bot, and the policy learned a rush strategy that did not adapt

to the opponent. In Chapter 7, our baseline reinforcement learning algorithm learned

10.1. Intra-game and Inter-game Adaptivity 167

a non-adaptive policy using just one weapon, which was very effective in the training

setting, but most likely exploitable by human players. Reinforcement learning thus seem

to overfit to the training opponents, requiring a large set of diverse agents to train against.

AlphaStar avoids overfitting through the AlphaStar League (Vinyals et al., 2019) where

it plays against other reinforcement learning agents that are trained in parallel with

different objectives. BRIL (Chapter 6) learns a diverse set of behaviors from human

demonstrations which could serve as a simple way of seeding such a league with diverse and

human-like policies. Imitation learning methods (explored in Chapter 5) has the property

of imitating humans and should thus achieve intra-game adaptivity automatically, in the

same way humans adapt in-game. This is a powerful feature of imitation learning, where

reinforcement learning require a sophisticated training setting. Vanilla imitation learning

is, however, by design incapable of achieving super-human performance alone. Applying

imitation learning and reinforcement in parallel (Harmer et al., 2018) could provide the

strengths of both approaches to achieve a strong policy with intra-game adaptivity.

There seems to be a trade-off between how well a policy expresses a certain type of

strategy and how well it adapts. One could argue that a policy designed to execute a

rush strategy in StarCraft should be able to adapt into a non-rush strategy. Rather, a

high-level mechanism could be employed to switch (in-game) between static low-level

policies. How to apply such mechanism for both intra-game and inter-game adaptivity is

an interesting direction worth exploring.

An agent can perform inter-game adaptivity by either having access to an adjustable

policy (Chapter 6) or a set diverse policies (Section 11.1 and 11.2). The first approach

has clear advantages in terms of storage while it may also have the opportunity to be

more expressive since it is possible interpolate almost infinitely between two behavioral

descriptions. Additionally, it may be easier to learn multiple behaviors for the same game

with a single set of model parameters (depending on the optimization procedure employed)

allowing the algorithm to reuse general feature representations across multiple behaviors.

It would be insightful to investigate these two potential advantages further.

While I have studied adaptation in a competitive game setting, it is also be a useful

property in real-world cooperative settings, e.g. when robots interact with other agents

with unknown behaviors/incentives. Recently, Canaan et al. (2019b) demonstrated how

168 10.2. Generality

a diverse set of policies allow for inter-game adaptation in the cooperative card game

Hanabi.

10.2 Generality

In Chapter 8, I demonstrated how reinforcement learning agents trained on just one

level were unable to generalize to unseen levels of the same game. We then introduced

procedural content generation to present the agent with a completely new level at each

training episode. This allowed the agents to achieve higher scores on unseen levels in

several games. Using deep reinforcement learning from pixels it is hard to imagine how the

agent can learn a general policy without training on a large set of levels. However, humans

can easily transfer the knowledge learned in one level to another. Learning general policies

without procedurally generating new training levels is also an interesting direction.

Learning policies that generalize to unseen levels in complex games such as StarCraft

using reinforcement learning and procedural content generation would be an interesting

experiment. To investigate this further, one could apply PPCG (Chapter 8) to progressively

increase the size and difficulty of the training levels and in that way measure how far we

can get with limited resources.

The challenge of achieving generality across several unseen levels in games has gained more

interest along with several new game AI challenges such as the OpenAI Retro Contest

(Nichol et al., 2018), the Unity Obstacle Tower Challenge (Juliani et al., 2019), and

CoinRun (Cobbe et al., 2018). We believe this trend will continue toward robust methods

that may allow policies trained in simulation to overcome the reality gap in robotic tasks.

10.3 Overcoming Sparse Rewards

Learning in environments with sparse rewards is difficult and thus most approaches, as

well as the ones introduced in this dissertation, employs some mechanism that provides

additional feedback to the agent. Procedural content generation can be used to generate

smaller and simpler environments in the beginning of the learning phase (Chapter 8),

10.3. Overcoming Sparse Rewards 169

resulting in more frequent feedback. A different approach is to modify the reward function

to provide an intrinsic reward signal. Our approach called Rarity of Events (RoE) (Chapter

7) is similar to other approaches that intrinsically reward the agent for experiencing rare

situations. Our reward mechanism is based on the temporal rarity of pre-defined events

while Bellemare et al. (2016); Ostrovski et al. (2017); Burda et al. (2018) are all based on

the rarity of patterns in the raw observations. While it requires some domain knowledge to

determine the events in RoE, it is usually simple to implement and allows the experimenter

to specify the desired behavior on a high-level. Intrinsic rewards based on raw observations

does not allow the experimenter to guide the performance toward a certain behavior

while it is a more general approach. We believe RoE is specifically well suited for game

developers that want an easy and yet flexible method that is easy to understand and

implement.

We trained a build-order planner for StarCraft using imitation learning and applied it

to a modular bot. This modular approach is suited for reinforcement learning as it

greatly reduces the observation and action space as well as the number of interactions;

each module only takes periodically actions based on selected features of the game state.

Our approach could be extended such that all high-level modules are replaced by neural

networks, sending high-level commands to low-level scripted modules that execute raw

actions in the game. This idea seems feasible but requires a good amount lot of engineering

and experimentation. Sun et al. (2018) implemented another kind of extension to our

work wherein a single network was responsible for all high-level tasks, thus replacing

several modules in the bot. We believe that such modular bots with both high-level neural

networks trained with either imitation learning or reinforcement learning and low-level

scripted modules deserves to be explored further. For example, the approach by Sun et al.

(2018) could be extended with a training setting with procedural content generation to

improve the generality on different levels and BRIL could be applied to ensure strategic

robustness against a diverse set of training opponent. While AlphaStar was trained

end-to-end (from raw observations to raw actions) and it was able to overcome sparse

rewards (on one map), the optimization procedure requires computational resources that

are not accessible by most researcher and game developers. The modular approach is

thus an interesting alternative to end-to-end learning in these complex games. It would

be interesting to investigate if the approach by Sun et al. (2018), with our proposed

170 10.3. Overcoming Sparse Rewards

improvements, could reach the same skill level as AlphaStar by using far less training

resources.

Chapter 11

Future Directions

11.1 MAP-Elites for Noisy Domains

We have argued in this dissertation that a large set of diverse and high-quality policies

enables inter-game adaptation. MAP-Elites (Mouret and Clune, 2015) is a popular

Quality-Diversity algorithm that aims to fill (illuminate) an entire behavioral space with

high-quality solutions and it is thus seem to be perfectly suited for our problem. The work

presented here investigate the effect of noise on diversity, performance, and robustness of

the solutions found by MAP-Elites, which has not been studied in depth despite most

games and real-world problems are stochastic. To deal with the issues introduced by

noise we propose an adaptive sampling technique that gradually increases the number of

samples used in each solution evaluation.

We formulate the QD-optimization problem as the maximization of M(x1, · · · , xN) =
N∑
i=1

E(F (xi)), where xi are the parameters of the solution in cell i within a user-defined

feature space divided into N cells (or niches), F (x) = f(x) + δf(x), where f(x) is the

true performance/quality of x and δf is noise from an unknown distribution. The features

determining which cell x belongs to is sampled from B(x) = b(x) + δb(x) and M(·) refers

to the total expected quality and is maximal when the archive is filled with high-quality

solutions.

A common approach to deal with noise in evolutionary algorithms is to evaluate each

solution multiple times and take the average of all the performance measurements, also

171

172 11.1. MAP-Elites for Noisy Domains

known as explicit averaging (Paenke et al., 2006). For QD-algorithms, the same can be

done to determine the behavioral features. Explicit averaging introduces several issues

for an elitist algorithm like MAP-Elites: (1) The number of evaluation trials is usually

found experimentally by balancing between inaccurate estimations, leading to unstable

solutions, and longer running times for the algorithm, (2) domains with a high level of

noise require many trials to reach accurate results, which require more computation, and

(3) the algorithm will over time over-estimate the fitness and thus prioritize unstable

solutions.

11.1.1 Adaptive Sampling & Drifting Elites

Intuitively, we need to re-evaluate more at the end of the evolutionary process (to get

precise results) than at the beginning (when a rough approximate is acceptable). We

thus propose an adaptive sampling approach along with an early-stopping rule. Previous

adaptive sampling methods for EAs (Cantú-Paz, 2004) are not directly applicable to

MAP-Elites. The approach for evaluating a solution is shown in Algorithm 9, where lines

in gray are unnecessary when B(x) = b(x).

Algorithm 8 MAP-Elites with adaptive sampling and drifting elites for noisy
performance measures and feature descriptors.
1: procedure Evaluate(x)
2: e← ∅ . The elite to challenge
3: V ← ∅ . Visited cells
4: while e = ∅ (|xP | < |eP |) do
5: b, p ← Simulate(x) . Measure behavior and perf.
6: xB ← xB ∪ {b}, xP ← xP ∪ {p}
7: e← A(xB) . Get current elite from archive A
8: c← CellIndex(A, eB) . The cell occupied by e
9: if e = ∅ then
10: return
11: else if xP < eP then . Mean perf. of x and e is compared
12: V (c)← V (c) + 1 . Increment visit count
13: b, p ← Simulate(e) . Re-evaluate e once
14: eB ← eB ∪ {b}, eP ← eP ∪ {p}
15: c′ ← CellIndex(A, eB)
16: if c 6= c′ then
17: Remove e from cell c . Elite is drifting
18: Evaluate(e) . Resume evaluation of e
19: e← A(xB)
20: if e 6= ∅ xP < eP then
21: return
22: if V (c) > |V |

2 |xP | < |eP | then
23: return

11.1. MAP-Elites for Noisy Domains 173

In this scheme, solutions are evaluated until one of the following occurs: 1) The solution

is estimated to be in an empty cell, 2) the solution has been evaluated the same number

of times as the corresponding elite and the solution has a higher mean performance, or

3) the mean performance is lower than the corresponding elite’s. If feature measures are

noisy, case number 3 is only activated if the solution has visited the current cell more than

50% of the time; we believe it has settled. In case 1 and 2, the solution is added to the

archive in the corresponding cell and in case 3 the solution is discarded. When discarding

a solution, the elite is evaluated one additional time to improve our estimations.

As solutions in the archive are re-evaluated over time and thus their behavioral descriptors

change, solutions will have to be moved to new cells; i.e. they are drifting. A naive

implementation of this idea will leave behind empty cells whenever solution drift. Our

solution to this is to store the k best solutions in each cell while only treating the fittest

one as the elite. When an elite is moved to a new cell it will continue its evaluation

procedure and the second most-fit solution in the cell becomes the new elite. We observed

improvement by using k = 10 instead of k = 1 but saw no difference when using k = 100.

11.1.2 Experiments

We test three domains: (1) 6-D Rastrigin with noisy performance measures and

deterministic feature measures: f(x) = 10n+
∑n

i=1 [x2i − 10 cos(2πxi)] where x in [−5, 10],

n = 6, F (x) = f(x) +N (0, 625), and B(x) = b(x); where b(x) is equal to the two first

values in x. 2) 6-D Rastrigin with noisy performance measures and noisy feature measures,

such that F (x) = f(x) + N(0, 625) and B(x) = b(x) +N (0, 0.01), and 3) the OpenAI

Gym BipedalWalker environment (Klimov, 2016) which is stochastic and thus no artificial

noise is added. The variances of the added noise were determined by randomly sampling

the search space.

We use the CVT variant of MAP-Elites (Vassiliades et al., 2018)), a batch size of 100,

random initialization of 1, 000 solutions, and for the mutation operator, sigma iso was set

to 0.01 and sigma line to 0.2, with 25, 000 samples to generate the CVT archive. We use

5, 000 niches in the two Rastrigin experiments; for the BipedalWalker the number of niches

is set to 1, 000 and the neural network has 24 inputs, two fully-connected layers of 256 tanh

174 11.1. MAP-Elites for Noisy Domains

units, and 4 outputs. Initial parameters are sampled uniformly random within [−0.5, 0.5]

([0, 1] for Rastrigin). We compare our approach to three baselines with explicit averaging

of n = 1, n = 10, and n = 100. Rastrigin experiments were repeated three times each,

while the BipedalWalker experiment was executed once. To analyze the solutions found

by each algorithm we correct the archives by re-evaluating every elite (either by using the

true value for Rastrigin or re-evaluating each elite 100 times for the BipedalWalker) and

move them to their correct cells. This sometimes leaves cells empty (see Figure 11.1.1).

Figure 11.1.1 shows the corrected collection size, total normalized quality (the sum of

all solution qualities normalized from the range [−250, 0] for Rastrigin and [−50, 300] for

the BipedalWalker) and the number of elite evaluation trials. For Rastrigin with noisy

performance measures our approach results in the best total normalized quality compared

to the three baselines. For the baselines on Rastrigin with noisy performance and feature

measures, the collection size and total quality degrade over time as unstable solutions

populate the archive. While it seems that n = 100 is best here, if we were able to stop

early, it requires many re-evaluations to monitor the degradation. For the BipedalWalker

the same trend is not as apparent, only for n = 1. The best results here were obtained

by n = 10 followed by our approach. These results suggest that the adaptive sampling

approach needs to be controlled better as it may be domain-specific and depend on other

hyper-parameters. How to control the growth of evaluation trials remain a challenge for

future work while our results demonstrate the potential of adaptive sampling in elitist

QD-algorithms.

11.1.3 Conclusions

Our results show that the traditional MAP-Elites algorithm does not handle noisy fitness

and behavior evaluations well, as the true collection size and quality degrades due to

over-estimations. One solution is to simply increase the number of trials used in the

evaluations. However, finding the right balance between accuracy and running speed

can be tricky. We have presented a variant of MAP-Elites that used adaptive sampling

to automatically increase the number of trials as the algorithm runs. This approach

achieves satisfying results on our artificial benchmark function Rastrigin. To also deal

with noisy behavior evaluations, we introduce the idea of storing multiple elites in each cell

11.1. MAP-Elites for Noisy Domains 175

(a) Rastrigin with noisy performance measures

(b) Rastrigin with noisy performance and feature measures

Collection Size Total Norm. Quality # Elite Evaluations

Ours

n=100

n=10

n=1

Ours

n=100

n=10

n=1

Ours

n=100

n=10

n=1

(c) BipedalWalker

Figure 11.1.1: The corrected collection size, total normalized quality, and the mean
number of elite evaluations for (a) Rastrigin with noisy performance measures and (b)
feature measures, and (c) for the BipedalWalker.

176 11.1. MAP-Elites for Noisy Domains

Total Norm. Quality # Elite EvaluationsCollection Size

Es
tim

at
ed

Co
rr

ec
te

d

n=1 n=10 n=100 Ours

Ours

n=100

n=10

n=1

(a) Rastrigin with noisy performance measures

(b) Rastrigin with noisy performance and feature measures

Es
tim

at
ed

Co
rr

ec
te

d

n=1 n=10 n=100 Ours

Collection Size Total Norm. Quality # Elite Evaluations

(c) BipedalWalker

Es
tim

at
ed

Co
rr

ec
te

d
n=1 n=10 n=100 Ours

(a) Rastrigin with noisy performance measures

(b) Rastrigin with noisy performance and feature measures

(c) Bipedal Walker

Figure 11.1.2: Examples of estimated and corrected performance-behavior maps for (a)
Rastrigin with noisy performance measures and (b) feature measures, and (c) for the
BipedalWalker. When behavioral measures are noisy, we can see how solutions drifts to
areas of higher performance over time. This effect is smaller when using more evaluations.

11.2. Diverging Policies using Rarity of Events 177

as we can then re-evaluate them and move them to other cells if needed, without leaving

behind an empty cell. This approach looks promising while it can be outperformed by our

baseline with a certain number of trials. We believe that adaptive sampling is promising

for MAP-Elites in noisy domains and future work should look into better mechanisms for

adapting the number of trials.

11.2 Diverging Policies using Rarity of Events

The goal of traditional reinforcement learning algorithms is to find the optimal policy

for a given training environment with a given reward function. The policy found by

reinforcement learning might be optimal, or near-optimal, in the training environment, but

usually performs far worse when employed in other environments (as we saw in Chapter

7 and 8). Quality-Diversity algorithms have been successful for many problems but are

usually implemented using black-box optimization techniques that are inefficient when

evaluation episodes are stochastic, as we saw in the previous section, or long, which is

the case in most games. Here, we present a novel QD algorithm wherein a number of

parallel instances of a reinforcement learning algorithm train on a fixed environment

while they are rewarded to behave differently. The parallel instances submit copies of

its intermediate policy to a shared archive during training when it shows novel and

high-quality performance. To ensure diversity, each instance is rewarded by exploring

behaviors that are novel compared to policies submitted to the archive by other instances,

with the aim that it leads to divergence in the behavioral space. Our preliminary results

in the game Doom show that this approach leads to divergence, resulting in a diverse

set of high-quality policies. The implemented approach is based on a new map-based

reinforcement learning approach and a multi-policy variant of Rarity of Events (from

Chapter 7).

11.2.1 Map-based Reinforcement Learning

Previous map-based reinforcement learning algorithms (Kume et al., 2017) imitate the

process of the original MAP-Elites algorithm, neglecting that parameter updates in

178 11.2. Diverging Policies using Rarity of Events

reinforcement learning are guided by a fixed reward function which is very different from

the randomized perturbations and crossover operators employed in evolutionary search.

With reinforcement learning, we expect that learning will follow a guided path that will

be similar in several repeated trials from the same some point in parameter space. We

thus speculate that re-initializing to previously encountered parameters in reinforcement

learning (Kume et al., 2017) has minimal effect on the search for diversity. We will attempt

to overcome this issue while relying on the strengths of gradient-based reinforcement

learning rather than settling on random and inefficient exploration of the parameter space.

We first propose a simple modification to the previous map-based reinforcement learning

algorithms, that in itself will not serve as a good QD-algorithm, but can serve as a

foundation for several interesting variations. This map-based algorithm implements a

weaker form of MAP-Elites; it is only used for storing solutions, and not for retrieval and

re-initialization. The algorithm is thus unaffected by the map, while it is still populated

by diverse policies throughout training. The behavioral features and performance of the

current policy are periodically evaluated, averaged across several episodes, and stores

policies to the archive following the original procedure. This algorithm can run sequentially,

maintaining the map between runs, or run asynchronously with multiple instances of

reinforcement learning algorithms sharing the same map. The asynchronous variant is

applied in our experiments.

11.2.2 Expanding Archives

MAP-Elites stores high-performing solutions in a multi-dimensional archive consisting of

rigid cells, i.e. cells have a fixed size and location throughout the optimization process.

A drawback of having rigid cells, is that the experimenter has to specify the lower and

upper limit of each dimension manually. If the span is too small, solutions lying outside of

the bounds will share niches on the edge, despite being different. If the span is too large,

fewer niches will be considered due to a low resolution in the area of interest.

To deal with these limitations, we propose an expandable archive that does not explicitly

use cells. Instead, a virtual cell is imposed on the behavioral space when a new solution is

encountered, wherein a local competition between the solutions within the cell takes place.

11.2. Diverging Policies using Rarity of Events 179

f1

f2

f3

(a)

f1

f2

f3

(b)

Figure 11.2.1: Visualizations of an expanding archive with behavioral feature dimensions
f1, f2, and f3. (a) A new solution (the green dot) must compete with neighboring elites
(red dots) to enter the archive. The size of the cell (dotted lines) surrounding the new
solution is determined by a constant factor of each dimension’s length. (b) The length of
f2 is increased as a new solution (green dot) exceeds the previous bound. Because the
size of the feature space is altered, the size of the future cells surrounding new solutions is
also changed.

The length of the virtual cell along any dimension is determined by dividing the maximum

encountered value along this dimension with a constant representing the number of cell

divisions along dimensions. The virtual cell is then centered on the newly encountered

solution, forming the perimeter of the neighborhood. If the new solution outperforms all

existing solutions within the virtual cell, it will replace all of them in the archive. The

expandable archive approach with virtual cells is visualized on Figure 11.2.1. Because

expandable archives do not feature fixed cells, it can be seen as a combination MAP-Elites

and novelty search with local competition.

11.2.3 Diverging Policies using Rarity of Events

Our approach is a multi-policy variant of Rarity of Events (RoE) for Quality-Diversity

optimization. RoE assumes a set of n predefined events E that can occur in a state

transition. Each state transition gives the usual state-action-reward triplet as well as

a vector x containing n scalars representing the number of occurrences of each event

(typically 0 or 1 for each event type). In RoE, all the accumulated numbers of events

during an episode are recorded in a fixed-sized FIFO buffer from which the episodic mean

occurrence ε at iteration is computed by averaging all event vectors in the buffer. The

mean occurrence is thus a temporal measure because the buffer only holds recent event

vectors. The reward function Rk at iteration k in RoE is conditioned on ε = [ε0, ε1, ..., εn],

180 11.2. Diverging Policies using Rarity of Events

and given a vector of event occurrences in one step x = [x0, x1, ..., xn], is defined by:

R(x|ε) =
n∑
i=1

xi
1

max(εi, τ)
, (11.2.1)

where τ is a small threshold (e.g. 0.01) to handle events that have not occurred. Due to

this reward scheme, agents are incentivized toward new behaviors, involving events that

are rare relative to itself. The agent effectively attempts to diverge from its own behavior.

So far, the description follows the traditional RoE with one policy (with a slightly different

notation). However, in the variant presented here, multiple instances of a reinforcement

learning algorithm run in parallel, sharing the same buffer while the episodic events are

labelled with the ID of the instance it came from. The key idea in our multi-policy

variant, is that policies do not have access to their own records when computing ε. This

should allow each instance to diverge, not away from its own behavior, but away from the

behaviors of the other instances, ultimately to converge to their own niche.

We combine this new multi-policy variant or RoE with Map-based reinforcement learning,

such that all instances submit solutions to a shared archive. Additionally, we let the

archive act as the buffer containing episodic events to reduce redundancy. The episodic

occurrences is a vector of scalars corresponding to the number of occurrences of each of

the pre-defined events in an episode, and a behavior is the number of occurrences per step.

Each feature in the behavioral space is thus defined by the per-step ratio of each event.

We still maintain the temporally by only considering a fixed number of recently added

elites. There is a key difference between using a buffer and an elitist archive for RoE.

With a buffer, each instance would diverge from the others’ current behaviors, and with

an archive, each instance would diverge from the others’ last high-performing behaviors.

11.2.4 Experiments

The synchronous actor-critic (A2C) reinforcement learning algorithm is applied to the

Deathmatch scenario in Doom with the same parameters as specified in Chapter 7. We

test our new map-based reinforcement learning approach with n diverging policies, using

n = 2, n = 3, and n = 4. Here, the fitness, which determines when to replace solutions in

11.2. Diverging Policies using Rarity of Events 181

Algorithm 9 Map-based Reinforcement Learning with Diverging Policies
(X ← ∅,P ← ∅) . Shared multi-dimensional map of elites: solutions X , and their performances P
for i = 0, k do . k instances running in parallel

Initialize parameters θ
R ← ∅ . History of accumulated rewards
B ← ∅ . History of episodic behaviors
for k = 0, 1, 2, ... do
ε← mean event occurrences in X not labelled i . Explained in Section 11.2.3
Collect trajectories Dk on policy π(θk) . Using Rarity of Events with rewards based on ε

terminal episode e in Dk

Append accumulated reward of e to R
Append episodic behavior of e to B . Apply behavioral feature descriptor
if k ≥ N then . Do not store solutions before N episodes.

p← Avg(R) . Estimated fitness of π(θk)
b← Avg(B) . Estimated behavioral features of π(θk)
if P(b) = ∅p > P(b) then
P(b)← p, X (b)← θk . Labelled i

Pop the oldest element in R and B . To maintain a fixed size
Perform gradient update to obtain θk+1 . Algorithm-specific gradient update

the archive, corresponds to the mean reward across the workers in A2C. Figure 11.2.2

shows the reward per episode for each instance and dimensionality-reduced behavioral

space (using PCA) of the policies found by each instance. It is clear to see that the

instances have diverged in the behavioral space such that each instance occupy a niche.

11.2.5 Conclusions

Our results confirm that our new approach can result in diverging policies which we believe

are useful for learning behavioral repertoires with reinforcement learning. Additionally,

this approach could be useful to multi-player games such as StarCraft, and possible

directly applicable to AlphaStar’s league system, to ensure that different policies behave

differently while the compete with each other. While Rarity of Events is well suited for

this new approach, other intrinsic motivation methods could possibly be applied as well,

such as Random Network Distillation (Burda et al., 2018). Future work will explore the

robustness of this approach and its ability to produce strong and diverse solutions through

reinforcement learning.

182 11.2. Diverging Policies using Rarity of Events

0 1 2 3 4 5
Frame 1e7

0

10

20

30

40

50

Re
wa

rd
 /

Ep
iso

de

0 1 2 3 4 5
Frame 1e7

0

10

20

30

40

50

Re
wa

rd
 /

Ep
iso

de

0 1 2 3 4 5
Frame 1e7

0

10

20

30

40

50

Re
wa

rd
 /

Ep
iso

de
(a) Reward per episode of the parallel instances of A2C in Doom which uses our Map-based
Reinforcement Learning with Diverging Policies approach. It is noticeable that some niches in
the behavioral space (see the plots below) occupy policies which are stronger than policies in
other niches.

(b) caption of the four small images

Figure 11.2.2: A dimensionality-reduced behavioral space using PCA of the policies in
the archive. The colors correspond to the different instances of A2C which are the same
on the plots above. The size of the dots represent the fitness of each solution.

11.3. Blood Bowl: A New Board Game Challenge and Competition for AI 183

11.3 Blood Bowl: A New Board Game

Challenge and Competition for AI

The advancements made in AI for game-playing has led to a common misconception that

computers can now play all interesting board games. We thus propose the popular board

game Blood Bowl (Games Workshop, 1986) as the next grand board game challenge for

AI. The turn-wise branching factor of Blood Bowl is several orders of magnitude larger

than those of classic board games, and our experiments have shown that a random agent

was unable to score any points in 350,000 Blood Bowl matches, making it infeasible to

apply vanilla reinforcement learning. In retrospect, recent AI game challenges such as go

and most Atari games are in fact particularly suitable for deep reinforcement algorithms

as they have image, or image-like, observations as well as a fixed action space. Blood Bowl

does not have these properties, as observations consist of both spatial and non-spatial

information and the available actions depend on the game state, similarly to the StarCraft

II Learning Environment (SC2LE) (Vinyals et al., 2017).

Besides the high complexity of Blood Bowl, the game also requires agents to be highly

adaptive. With 24 customizable teams, and millions of possible starting formations, the

space of initial game states is much larger than for most complex games. This feature

allows Blood Bowl to be a fruitful testbed for adaptive game-playing methods.

To facilitate this challenge, we present the Fantasy Football AI (FFAI) framework, a

Python implementation of Blood Bowl with an API for scripted bots and several OpenAI

Gym environments, including scaled down versions of Blood Bowl. We also describe a

scripted Blood Bowl bot called GrodBot and present preliminary results of training a

deep reinforcement learning agent in three smaller variants of Blood Bowl. Additionally,

we detail the plans for several future AI competitions using FFAI.

11.3.1 Game Overview

Blood Bowl is a board game designed by Jervis Johnson in 1986 and published by Games

Workshop. It is a so-called fantasy football game (not to be confused with the American

184 11.3. Blood Bowl: A New Board Game Challenge and Competition for AI

football manager games) that is played on a board of 26× 15 squares mimicking a football

/ rugby-like pitch (Figure 11.3.1). Two players each control a team of miniatures and the

goal is to score the most touchdowns. We will refer to players as coaches (or sometimes

teams in a traditional sports-like manner) and the miniatures on the board as players.

Each coach can field 11 players on the board where after coaches take turns to move all

their players. Players can either move, pass, hand-off, block (attempt to knock down

opposing players), blitz (move and block) or foul (stomp on down players) during their

player turn. When the ball carrier reaches the opponent’s end zone their team/coach

scores a point.

11.3.1.1 Game Rules

The rules of Blood Bowl have gone through major alterations since the first release in

1986, especially in the 2nd edition (1988), and 3rd edition (1994), where after the rules

were periodically updated by the Blood Bowl Rules Committee (2002-2009) resulting in

the Living Rulebook 6 (LRB6) (Johnson, 2016). The 2016 Edition of Blood Bowl came

with a new ruleset very similar to LRB6. We will at all times refer to the rules in the

LRB6 as they have been distributed online for free by Games Workshop and are thus easy

to obtain.

An important concept in Blood Bowl that plays a role in most aspects of the game is

the tackle zone. A player’s tackle zone consists of the eight surrounding squares in which

it is risky for opponent players to perform actions. Examples of the effects of tackle

zones are shown in Figure 11.3.2. Many coaches make use of the famous Cage formation,

wherein the ball carrier is surrounded by team-mates, usually positioned on the diagonally

adjacent squares, such that any opponent trying to block the ball carrier has to make

a hard Dodge roll. Players that are prone, hypnotized, etc. do not have a tackle zone.

Another important concept is that players can get knocked down either as a result of a

block or a failed move near opponent players. When a player is knocked down, an armor

roll is typically required: two 6-sided dice (D6) are rolled, and if the result is higher than

the player’s Armor Value (AV) attribute its armor is broken. If this occurs, an injury roll

is made to determine if the player is stunned (becomes prone and inactive for one turn),

knocked out of the game (may return at next kickoff), or injured/dead (will not return).

11.3. Blood Bowl: A New Board Game Challenge and Competition for AI 185

11.3.1.2 Turns

A game of Blood Bowl is separated into two halves, each with eight turns for each coach

alternating back and forth. The game starts with a kick-off, where each coach sets up a

maximum of eleven players on their respective halves of the pitch and the kicking team

places the ball on the receiving team’s half. Hereafter, the receiving team’s turn starts.

Within a turn, each player on the team, that is not stunned, can take one of six player

actions: Move, Pass, Hand-off, Block (attempt to knock down opposing players), Blitz

(move and block), or Foul (stomp on prone players). If a player at any point stands in the

opponent’s endzone with the ball, it is a touchdown; the scoring team scores one point

and both teams must set up for kick-off again. When there are no more turns in the first

half, each team similarly sets up again for kick-off. When the second half is over, the

team with the most touchdowns wins, or if it is a tie, the game ends in a draw. A critical

rule in Blood Bowl is the turnover rule. If any player fails a dice roll, such that the acting

player falls over, fails to pick up, or catch the ball, the coach’s turn ends immediately.

11.3.1.3 Setup

Before each kickoff, the kicking/defending team first sets up a maximum of eleven players

on their half of the pitch. It often happens that a coach cannot field eleven players

because of injuries. Besides the maximum number of players on the pitch, there must be

a maximum of two players on each wing and a minimum of three players on the line of

scrimmage. An example of a defensive zone formation (the blue team) and an offensive

wing formation (the red team) is shown in Figure 11.3.1. Notice that the offensive team

has one player positioned to get the kicked ball in the backfield. Coaches usually have

their own repertoire of formations that are tailored to their strategy and playing style.

11.3.1.4 Movement and Dodging

Moving players into positions that give tactical advantage is perhaps the most important

part of Blood Bowl. Unless a player is stunned or takes a block action, it is allowed to

move a number of squares equal to its Movement Allowance (MA) attribute. For example,

186 11.3. Blood Bowl: A New Board Game Challenge and Competition for AI

Figure 11.3.1: The game board in FFAI after both teams have set up. The blue team
just kicked the ball to the red team and assumed a defensive cover formation, while the red
team is in an offensive wedge formation, protecting the wings against blitzing opponents.

a Halfling can only move five squares while a Wood Elf Catcher can move eight squares.

To move from a square that is within an opponent tackle zone, a player has to pass a

Dodge roll that depends on its Agility (AG) attribute (thus also called an Agility roll).

The higher the agility, the higher the chance is for the roll to succeed. Moving from an

opponent tackle zone into other opponent tackle zones add further modifiers to the roll.

An example of a tough dodging situation for a red Catcher is shown in Figure 11.3.2b.

Also, notice in Figure 11.3.1 how the defending blue team has positioned itself such that

the red team cannot easily run through its cover defense. When a player has moved the

number of squares equal to its MA, it has the option to make up to two risky Going For

It (GFI) moves, allowing the player to move an additional square on a roll of 2 or more.

Players that fail a dodge or GFI roll are knocked down. If a player moves to a square

with a ball an Agility roll must be made to attempt to pick it up.

11.3.1.5 Blocking, Blitzing and Fouling

Another important part of Blood Bowl is blocking. In fact, some coaches focus more on

blocking, attempting to knock out opponent players, than worrying about the ball. A

player taking the Block action can perform a block on an adjacent standing opponent.

If the two players have the same value in their Strength (ST) attribute, one block die

11.3. Blood Bowl: A New Board Game Challenge and Competition for AI 187

(a) (b) (c)

Figure 11.3.2: Effects of tackle zones on different dice rolls visualized in FFAI. (a)
The red Lineman can block one of two blue Linemen. When blocking the top-most blue
Lineman, two block dice are used due to the two assisting red Blitzers in the top, while it
only gets one block die when blocking the bottom-most Lineman. (b) The red Catcher
can move to seven adjacent free squares. Since it is already in a blue player’s tackle zone,
a Dodge roll is required. The player has AG = 3, which makes the dodge successful on
a roll of 3+. However, this number is increased by one for each opponent tackle zone
covering the target square. (c) A red human Thrower can attempt to pass the ball to four
nearby team-mates. Two of these team-mates are in the quick pass range where a pass
will be accurate on a roll of 3+ while the other two are in the short pass range requiring
a roll of 4+. If the pass is accurate, the ball can be caught on 3+ with an additional
modifier for each opponent tackle zone covering the catching player. Note that (b) and
(c) show the required dice rolls after modifiers have been added.

is rolled. If one player is stronger than the other, two (and sometimes three) block dice

are rolled, where after the stronger player’s coach must choose one of the rolled dice to

take effect. A block die has six sides with the following outcomes: 1) Attacker Down: the

attacking player is knocked down, 2) Both Down: both players are knocked down unless

they have the Block skill, 3-4) Push: a player is pushed one square back, 5) Defender

Stumbles: the defender is pushed and knocked down unless it has the Dodge skill. 6)

Defender Down: the defender is pushed and knocked down. A player on the blocking

team can assist the block if it inside blocked player’s tackle zone but not in any other

tackle zones of the blocked player’s team. Likewise, an opponent player can assist the

blocked player if it is within the blocking player’s tackle zone but not in any other tackle

zone of the blocking player’s team. Each assist on each side adds one to the attacker or

defenders ST. Figure 11.3.2a shows an example where a red lineman can get two assists

by blocking the top-most blue lineman while the opponent gets a single assist, resulting

in two block dice. One Blitz action can be taken each turn, which corresponds to a Move

action wherein the player can perform one Block action. Similarly, one Foul action can

be made each turn which consists of a Move action followed by a foul. A foul (kicking

a player that is down) can only be done to prone players and do not require a block

188 11.3. Blood Bowl: A New Board Game Challenge and Competition for AI

roll. Instead, an armor roll and eventually an injury roll is made directly where assists

are applied to modify the armor roll. However, kicking players that are down is strictly

against the rules, and thus if either the armor roll or the injury roll is doubles the referee

spots the foul and sends the fouling player out of the game.

11.3.1.6 Passing and Hand-offs

A player taking the Pass action can first move as if it was a Move action and thereafter

pass the ball. A pass consists of three parts. First, the passer declares a target square.

Then the opponent coach declares a player that stands between the passer and the target

(if any) who will attempt to intercept the ball. Interceptions are hard and require an

Agility roll with additional modifiers. If the interception is successful, the intercepting

player catches the ball and it is a turnover. If not, the passer must make an Agility

roll that depends on the range to the target and the number of opponent tackle zones

the passer is in. If that fails, the ball is either fumbled to a nearby square or becomes

inaccurate and is scattered three random squares from the target. Otherwise, the ball

lands on the target square. If there is a player on the square the ball lands on, that

player must finally attempt to catch it by passing an Agility roll. If the pass does not

result in a catch by a team-mate it is a turnover. An example of a pass situation is shown

in Figure 11.3.2c where both the Agility roll for passing and catching is shown for each

friendly player. A Hand-off action is similar to a Pass action with a few differences. The

ball can only be “passed” to an adjacent square with a team-mate, the “pass” is always

accurate, and it cannot be intercepted. A maximum of one pass and one hand-off actions

can be performed each turn.

11.3.1.7 Teams and Races

The board game Blood Bowl comes with two teams: Humans and Orcs. The Human

team does not have any particular strengths nor weaknesses while the Orcs are stronger,

have more armor, are slower, and less agile. Each team can be built from a restricted set

of positional players (different types of players) with different attributes and skills; any

Human team can have up to 16 Linemen, 4 Catchers, 2 Throwers, 4 Blitzers, and 1 Ogre.

11.3. Blood Bowl: A New Board Game Challenge and Competition for AI 189

Qty Title MA ST AG AV Skills
0-16 Linemen 6 3 3 8
0-4 Catchers 8 2 3 7 Dodge, Catch
0-2 Throwers 6 3 3 8 Sure Hands, Pass
0-4 Blitzers 7 3 3 8 Block
0-1 Ogre 5 5 2 9 Loner, Bone-head, Mighty Blow, Thick Skull

Throw Team-Mate

Table 11.3.1: The positional players allowed on a Human team. MA=Movement
Allowance, ST=Strength, AG=Agility, AV=Armour value. The Ogre is a special type of
player called Big Guys and its skills are not explained here.

Table 11.3.1 shows each positional player’s attributes and skills. There are 24 teams in

LRB6, all with their own strengths and weaknesses. In competitive play, teams are built

starting with a treasury of 1 million or 1.1 million gold coins, where after the roster is

created by buying from the available positional players.

11.3.2 Competitive Play

Blood Bowl is very popular among competitive tabletop gamers with 161,080 recorded

tabletop tournament matches registered by NAF1, the international association of Blood

Bowl coaches and organizers of the Blood Bowl world cup. NAF also maintains the

ranking of competitive Blood Bowl coaches based on their participation in tournaments2.

Not all teams are balanced to be equally good. For example, the Undead team has the

record low loss rate of 31.9% and the Ogres team has the highest loss rate of 58.6%.

Blood Bowl is also played competitively in leagues where players (the miniatures) are

rewarded experience points for completing passes, scoring touchdowns, and causing

casualties. Players can then level up when enough experience points are reached, resulting

in new skills or attribute increases. Players can also gain permanent injuries that reduce

their value. The coach can in-between matches decide to fire old players and hire new

players. A team thus progresses throughout a league, making each league match a unique

experience.

A video game adaptation with 3D graphics was released by Cyanide Studios in 2009

which features online play. The video game includes an AI which is far from human-level;

1http://naf.talkfantasyfootball.org/total_for_all_competitions.html
2https://www.thenaf.net/rankings/glicko-rankings/

190 11.3. Blood Bowl: A New Board Game Challenge and Competition for AI

it presumably follows a set of scripted rules combined with a pathfinding algorithm.

FUMBBL (the acronym combines the football term Fumble with BBL; Blood Bowl

League) is a community-driven online league with more than 2,500,000 recorded matches3.

Matches in FUMBBL are played using an unofficial game client with simple 2D graphics4.

The source code is kept secret by the developers to prevent cheating.

11.3.3 Game Variants

Blood Bowl has several variants using extensions of the core rules5. Dungeon Bowl (Games

Workshop, 1988) is, as the name suggests, Blood Bowl in a dungeon. There are no fixed

rules on the structure of this dungeon, only that it is grid-based, has setup zones and

endzones for each team. The rules also include trapped chests, teleporters, lava pits,

monsters, etc. that makes every game unique. Other variants exist, such as Death Bowl

that allows four teams to play on a cross-shaped pitch with two balls. Street Bowl, Blood

Bowl Sevens, Blitz Bowl are smaller variants of Blood Bowl, with a smaller game board

and fewer players.

11.3.4 Characteristics

This section contains a short analysis of Blood Bowl using the game characteristic

dimensions defined by Yannakakis and Togelius (2018a). These dimensions include

observability (perfect or non-perfect information), stochasticity (deterministic or

stochastic), and time granularity (turn-based or real-time). Additionally, we consider at

the state representation.

Blood Bowl has perfect information as the board state is fully observable and coaches

have no hidden information. The game has an optional rule that allows coaches to have

secret special play cards but these are rarely used in competitions.

Blood Bowl is stochastic as most of the interesting actions require dice rolls to succeed.

Coaches have a limited number of re-roll tokens they can use to re-roll a failed roll.

3https://fumbbl.com/p/stats
4https://fumbbl.com/
5https://www.thenaf.net/blood-bowl/variants/

11.3. Blood Bowl: A New Board Game Challenge and Competition for AI 191

Experienced Blood Bowl coaches usually start their turn with safe actions that require

easy or no dice rolls and postpone risky actions to the end of their turn.

Blood Bowl is a turn-based and a multi-action game as coaches take turns to move

multiple players on the board. Other multi-action games that have been the basis for

research on AI methods are Arimaa (Syed and Syed, 2003) and Hero Academy (Robot

Entertainment, 2012) (Justesen et al., 2017). What makes Blood Bowl even more

complicated than these is that players can be moved several steps each turn, making it

a nested multi-action game. A turn consists of multiple player actions which consists

of multiple individual actions. Blood Bowl can be played with a maximum time limit

for each turn, usually of two to four minutes per turn, and is sometimes enforced in

competitive play.

The state representation is especially relevant for deep learning methods. Go and most

Atari games are particularly suitable for deep learning methods as they have an image, or

image-like, state representation as well as a fixed action space, which is not the case for

Blood Bowl. Here, the state is represented by players on the board, each with multiple

dimensions (player attributes, whether it is standing, knocked down etc.), a dugout for

both coaches with reserve, knocked out, and injured players, weather conditions, and

occasionally information on a dice roll, etc. The state representation thus consists of both

multi-layered spatial features and non-spatial features very similar to SC2LE (Vinyals

et al., 2017). Another similarity shared with SC2LE is that the action space varies

between steps.

11.3.5 Complexity

To get a grasp of the complexity of Blood Bowl we will first attempt to estimate the

branching factor analytically and then empirically measure it relative to the game-play of

two baseline agents in FFAI.

The size of the action space in Blood Bowl depends on the state and varies between 1

and 395. Sometimes the coach has to select between a few dice results and other times

one of the 395 squares on the board to kick or pass the ball to. In most situations, the

coach has to select one of up to eight adjacent squares to move a player to or select

192 11.3. Blood Bowl: A New Board Game Challenge and Competition for AI

one of six different action types for a player. A reasonable estimation of the average

step-wise branching factor is 10 and the average number of steps in a complete player

action could be around 5. The number of unique action sequences for just one player

action is thus 105. With 10 players able to take actions in a fixed order, the average

turn-wise branching factor is 105×10 = 1050. As players can take actions any order, this is a

lower-bound estimate. In comparison, the turn-wise branching factor is around 30 in chess

and 300 in go. Long action sequences with sparse scores make both search algorithms and

reinforcement learning harder to apply. A game of Blood Bowl consists of approximately

10× 5× 32 = 1600 steps, using the previous estimations multiplied by 32 turns.

We performed an experiment in FFAI, simulating 100 games with two agents that samples

actions uniformly. 169.8 actions were taken on average by each agent (10.6 actions per

turn) with a step-wise branching factor of 29.8. This gives us a turn-wise branching factor

of around 1030. Randomly sampled actions are not representative for human play and we

thus also performed an experiment with the scripted bot GrodBot (which is described in

Section 11.3.7.2). However, this experiment only includes 10 games because GrodBot runs

much slower than the random bot. Here, the measured average step-wise branching factor

was 17.2 with 41.6 actions per turn and thus the turn-wise branching factor is around

1742 = 4.8× 1051.

The branching factor was estimated for one setup of Blood Bowl with two simple Human

teams while the game has many possible setups; a coach can choose among 24 races to

play and has the option to customize the roster. Especially in leagues, it is typical to play

against a team with a unique combination of players that the coach has never encountered

before, which contrasts sharply with classic board games that have just one or a few initial

game states. We describe these different setups in more details in Section 11.3.9.2.

11.3.6 Motivation

There are several motivations for proposing Blood Bowl as a new AI challenge. First of

all, Blood Bowl is, due to its high complexity, significantly harder for AIs to play than

classic board games. Having a hard task that is focused on tactical planning, long-term

planning, and careful risk management, without dealing with the array of challenges in

11.3. Blood Bowl: A New Board Game Challenge and Competition for AI 193

real-time video games, is of high value. We can effectively do research on an environment

that is fast, easy modifiable and lies somewhere in the large gap between go and StarCraft

in terms of complexity. Exploring video games, which are more similar to real-world

problems, are obviously very useful to use as AI test beds. However, by staying in the

realm of board games, it is easier to compare the cognitive level of AI systems to humans,

which has been argued to be impossible in video games (Canaan et al., 2019a). Another

main motivation for proposing Blood Bowl is its expressiveness. Every game of Blood

Bowl is never the same. Not only because it quickly branches out to new situations, but

because the number of possible initial board states is astronomical, taking into account the

number of permutations of players on each of the 24 teams and the relatively non-restricted

freedom to set up the players on the board. Additionally, Dungeon bowl introduces the

possibility of playing in new and unseen dungeons. These challenges are not in classic

board games.

Game Engine Existing Blood Bowl implementations are closed source and do not have an

AI interface. Thus, we have developed our own game engine named the Fantasy Football

AI (FFAI) client6. Figure 11.3.1 shows a screenshot of a part of the user interface in FFAI

with our own 2D graphics7. FFAI is implemented in Python allowing a simple way to

interface with popular machine learning libraries. We considered implementing the engine

in C++ with a Python interface on top, but the state updates in Blood Bowl are fairly

simple, and thus fast, even in Python. FFAI implements the Open AI Gym interface

for reinforcement learning algorithms (Brockman et al., 2016b). The observation object

includes several spatial feature layers as well as several non-spatial features. Aside from

the reinforcement learning interface, the engine itself can be used as a forward model.

One game step with a randomly sampled action takes on average 0.9ms on a regular

laptop and a complete game takes on average 0.16s. While the forward model is rather

fast itself, the game state object is object-oriented and thus slow to clone. Tree search is

possible, but not very feasible using the current data structure. A simpler array-based

data structure could be implemented while it would complicate the game logic. FFAI also

comes with a simple web application that implements a user interface for humans to play

against other humans, online or local, or against bots.

6https://github.com/njustesen/ffai
7Nicholas Kelsch has the copyright to the player icons.

194 11.3. Blood Bowl: A New Board Game Challenge and Competition for AI

11.3.6.1 Competition Functionalities

To support AI competitions, FFAI comes with built-in functionalities to handle a sequence

of games between two bots, restricting and penalizing hanging or crashing bots. FFAI

can be configured with time limits for a complete turn, a single action taking place in

the opponent’s turn (such as block die selection or skill usage - we refer to this as an

opponent procedure), initialization, and termination procedures. The game waits for the

acting agent to return an action where after it can be penalized in several ways:

• Delay of Game: the acting agent fails to end its turn, or returns an action during

an opponent procedure, within the time limit. If a Delay of Game penalty occurs,

actions are randomly taken by the system until the turn or opponent procedure

ends.

• No Response: if there is a Delay of Game and the agent responded later than a

specified disqualification threshold, it will be disqualified directly.

• Crash: if the acting agent crashed, it will be disqualified directly. In the unexpected

case that FFAI crashed during an internal procedure, the game will end in draw.

FFAI also saves a report of the competition with aggregated results and a list of individual

game results.

11.3.6.2 Replays

We are currently working on a module for FFAI to replay matches from FUMBBL. This

would enable us to extract state and action pairs from the 2,500,000 available FUMBBL

matches which can be used for imitation learning. Here, the goal is to learn a policy

function that maps states to actions using traditional supervised learning techniques, thus

imitating the playing styles expressed in the dataset. This technique has been applied

to several games, including StarCraft (Justesen and Risi, 2017b), and Candy Crush

Saga (Gudmundsson et al., 2018). Currently, individual replays can be fetched from the

FUMBBL API. However, this process is slow and we are thus planning to release publicly

available data sets in the future.

11.3. Blood Bowl: A New Board Game Challenge and Competition for AI 195

11.3.7 Baseline Agents

11.3.7.1 Random Agent

FFAI comes with an agent that samples actions from a uniform distribution. To be more

precise, it first samples a legal action type uniformly and if that action type requires a

position as well, such as a movement action, a legal position is sampled uniformly as well.

When setting up, it randomly selects between two predefined formations on the offense

and two on the defense. In 350,000 games against itself, no touchdowns were scored and

thus all games ended in a draw. Games in which random agents practically never score

points or wins are extremely challenging for many algorithms such as Monte Carlo Tree

Search and Q-learning as they rely on random exploration. Thus, we do not expect vanilla

implementations of such algorithms to score any points either.

11.3.7.2 GrodBot

GrodBot8 is a scripted bot with an estimated skill level slightly higher than a rookie

player. GrodBot repeatedly evaluates all possible moves for all players. The move with

the highest score is then executed at each step in the game. The end turn action is always

assigned a score of zero so that the turn will be passed when no positive actions are left.

The scoring of moves first applies pathfinding to identify the set of possible squares a

player can reach along with a probability of success for moving there. The probability

of successfully moving to each reachable square is thus the maximum probability of all

possible paths leading to it; we always follow the optimal path. GrodBot maintains a

list of possible purposes, their values, and some rules that apply modifiers to the values

(e.g. it is preferred to pass the ball to an unused team-mate close to the end-zone rather

than a used team-mate in the backfield). The final score for a move is then computed by

multiplying the probability of success with the modified value of the move. Each purpose

was initially valued using an experienced Blood Bowl player’s intuition where after it was

gradually improved by playing GrodBot against itself and tune the values in an ad-hoc

manner. GrodBot’s move purposes are:

8https://github.com/njustesen/ffai/blob/master/examples/grodbot.py

196 11.3. Blood Bowl: A New Board Game Challenge and Competition for AI

• Move to a receiving position

• Move to the ball

• Move to a player holding the ball somewhere safe or towards the end zone

• Move to a player to form a defensive sweep position

• Move to a player to form a defensive screening position

• Move to a player to form an offensive screening position

• Move to a player to form a cage around the ball

• Move to a player to exert an opponent tackle zone

• Foul an opponent on the ground

• Blitz an opponent (preferably the ball carrier)

• Hand-off the ball to a team-mate

• Pass the ball to a team-mate

• Block an adjacent opponent using two block dice

The probability of a successful move in Blood Bowl depends on a number of different factors,

such as the number of tackle zones it moves through, or whether or not the player needs to

attempt a GFI. We do not believe there is a useful admissible heuristic for path finding in

Blood Bowl and we therefore apply Dijkstra’s algorithm. The cost function is probability-

based in the interval [0,1] and is not additive. For sequences of moves, their costs are

simply multiplied. In general, if C({s1, s2}) is the cost of the path going from square s1

to square s2 and the following cost of going from s2 to s3 is C({s2, s3}), then the total

cost of the path from s1 to s3 is C({s1, s2, s3}) = 1− (1−C({s1, s2}))× (1−C({s2, s3})).

The probabilities of success are multiplied and subtract from 1 to convert them back to

the probability of failure, i.e. the cos). GrodBot’s path-finding functionality has become a

part of FFAI and can easily be used by other bots.

We tested GrodBot in ten games against the random baseline (five as the away team and

five as the home team) where both agents controlled the basic human team. Grodbot won

all ten games with an average of 4.2 touchdowns and 1 inflicted casualty a game. The

11.3. Blood Bowl: A New Board Game Challenge and Competition for AI 197

random agent scores 0 touchdowns and had 0.6 inflicted casualties per game. The number

of inflicted causalities also include casualties inflicted by the crowed, failed dodges, etc.

11.3.8 FFAI Gym

Figure 11.3.3: The 28 spatial feature layers in the FFAI Gym observation. Each layer
has a name, which is shown above the visualization. Here, black squares represent a value
of 1 and white squares represent a value of 0.

198 11.3. Blood Bowl: A New Board Game Challenge and Competition for AI

(a) (b) (c)

A2C

Endzone basline

Random basline

Figure 11.3.4: Touchdowns per episode of A2C during training in the three smallest
FFAI Gym environments: (a) FFAI-1-v1, (b) FFAI-1-v3, and (c) FFAI-1-v5, which features
1, 3, and 5 players on the pitch for each team. Simple renderings of each environment
is shown above the plots. The agent plays against an agent that takes random actions.
The touchdowns are smoothed over 200,000 steps. The red and green lines show the
touchdowns per episode the Random and Endzone baselines. We see that A2C learns a
policy that is better that the baselines in all three environments.

11.3.8.1 The Gym Interface

OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms

by implementing a simple interface to handle communication between the agent and the

environment (Brockman et al., 2016b). FFAI comes with several Gym environments, one

with the original game board and 11 players on each side and several smaller variants

(see Figure 11.3.4). In these environments, the agent faces the random agent (see

Section 11.3.7.1), which probably will lead to sub-optimal behaviors against stronger

agents. It is, however, easy to modify the FFAI Gym implementation to e.g. support

self-play, which is an effective learning method in two-player board games (Silver et al.,

2018). Both agents control a basic Human team, but this can also be modified easily.

For simplicity, the agent always plays as the home team, playing on the right side of the

field. This limitation can easily be resolved after training by simply flipping the board

and swapping a few values in the observations, if it has to play as the away team.

The observation space is split into three parts; (1) a vector containing 50 non-spatial

normalized values representing the score, turn number, half, re-rolls left, etc. (2) a one-hot

encoded vector representing the procedure (phase) the game is in, e.g. Setup, Turn,

PlayerAction, and Push, and (3) a set of 2D feature layers, each with one value per square

11.3. Blood Bowl: A New Board Game Challenge and Competition for AI 199

on the board such as whether a square is occupied by the ball or by a player controlled

by the agent or the opponent. All 28 features layers can be seen in Figure 11.3.3 for the

same game state. The design of the observation space is very similar to that of SC2LE

(Vinyals et al., 2017) as it also has spatial and non-spatial components.

The action space has two parts: (1) the type of the action to perform among 31 choices

such as Block, Select Both Down (block dice result), Use Reroll, Heads (for the coin toss),

etc., and (2) a position, which is only relevant for some action types, e.g. a Block action

requires a position to determine which opponent player to block.

The built-in reward function only gives a reward of 1 when winning the game, −1 when

losing, and 0 otherwise. The complete game state is, however, accessible in the environment

to allow for reward shaping.

11.3.8.2 Preliminary Results with A2C

We applied the deep reinforcement learning algorithm synchronous advantage actor-critic

(Mnih et al., 2016) (A2C) on the three smallest/easiest Gym environments in FFAI, which

has a board of 4× 3, 12× 5, and 16× 9 squares with 1, 3, and 5 fielded players on each

team, respectively (see Figure 11.3.4). On the two smaller environments, we used only

touchdowns as rewards. However, on the larger one, touchdowns are rarely obtained, and

thus the following reward shaping was used (rewards are shown in brackets): winning (5),

touchdown (4), knock out opponent (3), push opponent into the crowd (3), completion

(3), cause opponent fumble (2), knock down opponent (2), handoff (2), opponent failing a

dodge (1), moving ball carrier closer to the opponent endzone (1), and gaining the ball

(1).

We use a convolutional neural network with an additional fully-connected input stream to

handle the non-spatial features. We use all the 28 spatial feature layers from FFAI for the

convolutional input stream and all the 50 non-spatial features (in the current version of

FFAI there are now 50 non-spatial features) for the fully-connected input stream. The

convolutional stream has two layers, one with 16 filters of size 3× 3 (mimicking the tackle

zone area around a player), and a second layer with 32 filters of size 2× 2. Both layers use

stride 1 and padding, preserving the spatial structure of the observation. The non-spatial

200 11.3. Blood Bowl: A New Board Game Challenge and Competition for AI

input stream consists of a single fully connected layer of size 25 which is concatenated

with the flattened convolutional stream followed by a single fully-connected layer and

two output streams for the critic and the policy. When actions are sampled from the

policy distribution, we use a masking technique to filter out illegal actions before applying

softmax.

A2C was configured to use eight parallel workers, a learning rate of 0.001, a discount

factor γ = 0.99, entropy coefficient of 0.01, value loss coefficient of 0.5, max. gradient

normalization of 0.5, and steps per update tmax = 10. We used the RMSprop optimizer

tieleman2012lecture with ε = 1e-8 and α = 0.99. Figure 11.3.4 shows the touchdowns

per episode during training, where it reached an average around 8/5/3 in the three

environments. A random baseline agent scores around 0.2/0.0/0.0 touchdowns per episode,

and a simple endzone baseline that always goes toward the endzone with the ball scores

around 1.8/0.9/1.3 touchdowns/episode. The code is made available online9. When

observing the trained agents play10 we can see that it plays quite well but not optimal.

11.3.9 AI Competition

11.3.9.1 Bot Bowl I

Based on our analysis of Blood Bowl we believe it can offer a new and exciting testbed for

AI due to the high complexity of the game while still resembling many classic board games.

To encourage researchers and hobbyists to explore algorithms that can play Blood Bowl, we

are organizing an annual AI competition with progressively more difficult challenges using

FFAI. The first competition, Bot Bowl I11, was held at the IEEE Conference on Games in

August 2019. The competition allowed all types of methods, including controllers that

are scripted, search-based, neural network-based, as well as hybrids combining several of

these approaches. Bot Bowl only featured a pre-fixed Human team, to keep the format of

the first competition simple. The submitted agents played in a round-robin tournament

with ten matches against each other and the two best agents (with the most wins) played

9https://github.com/lasseuth1/blood_bowl2/
10https://youtu.be/xk4AMutyuaA & https://youtu.be/7xmwB8hn3qM
11https://bot-bowl.com/bot-bowl/

11.3. Blood Bowl: A New Board Game Challenge and Competition for AI 201

in a final series. The competition had four entries and we added our random baseline

agent into the mix. Two entries were extensions of our preliminary results using A2C

(Section 11.3.8.2) where one of the agents achieved an impressive five wins and five ties

against the random baseline. The two finalists were GrodBot (11.3.7.2) and EvoGrod (an

extension of GrodBot with evolved constants), and here GrodBot won. There was a clear

difference in performance between the scripted bots and the reinforcement learning bots.

We hope to see even more entries in Bot Bowl II.

11.3.9.2 Future Competition Formats

Future competitions can be extended in several exciting directions that will add further

challenges for the competitors. Four concrete ideas are:

• All teams: The most obvious extension of the current competition format is to

allow all teams. This addition will require a higher flexibility with less hard-coded

strategies and formations.

• Custom rosters: To align our competition format with real Blood Bowl

tournaments, competitors should be allowed to buy players for their roster from

a starting treasury. As agents need to generalize to possibly unseen teams, it will

further require agents to rely less on hard-coded strategies.

• League format: In Blood Bowl leagues, players get star player points and can gain

new skills when leveling up between games. Additionally, players can get permanent

injuries. This format thus adds a meta-game, as agents must manage their team

in-between games, selecting new skills when players level up, hire new players, etc.

• Dungeon Bowl: Instead of playing on the same board, competitions could be

played on procedurally generated dungeons using the official Dungeon Bowl rules

while building on the numerous algorithms for dungeon generation in the procedural

content generation literature (Van Der Linden et al., 2014; Liapis et al., 2015;

Shaker et al., 2016). By playing on procedurally generated unseen dungeons in the

competition, agents need to either use extensive forward search or learn a policy on

a vast training set of dungeons in a similar fashion to our approaches in Chapter 8.

These four suggestions for future competitions add new challenges that all require agents

202 11.3. Blood Bowl: A New Board Game Challenge and Competition for AI

to generalize to new game variations (such as different levels), something that current

reinforcement learning algorithms struggle with.

Chapter 12

Conclusions

This dissertation explored a new perspective on the challenges of creating artificial

game-playing agents in complex games. This perspective is based on three properties of

adaptivity that I believe any player must have to master the most complex games that

involve multiple players. These properties are (see the introduction for longer descriptions):

(1) intra-game adaptivity: the ability to adapt to opponent strategies within a game,

(2) inter-game adaptivity: the ability to intelligently switch strategy in-between games,

and (3) generality: the ability to generalize to many different, and most likely unseen,

variations of the game (e.g. different levels).

I show that intra-game adaptivity can be achieved in the real-time strategy game StarCraft

through a continual variant of evolutionary planning (Chapter 4) or imitation learning

(Chapter 5). This was achieved using a modular approach, in which the two approaches

only deal with high-level build-order decisions and low-level tasks are performed by

scripted modules. This modular approach was later taken by Tang et al. (2018) and Sun

et al. (2018), in which reinforcement learning was applied, and one the resulting bot by

Sun et al. (2018) was able to outperform the best (cheating) bots developed by Blizzard

Entertainment (the developers of StarCraft).

I also presented an extension to the modular approach based on imitation learning

called Behavioral Repertoire Imitation Learning (BRIL) in which a large repertoire of

diverse policies are learned from human demonstrations (Chapter 6). Our experiments

demonstrate how BRIL can be used for inter-game adaptation by switching between

203

204

different policies in-between games. I also present preliminary work on an extension to

MAP-Elites for noisy domains, such as games, which could be useful for learning a large set

of diverse and strong policies without human demonstrations (Section 11.1). MAP-Elites

is, however, very sample inefficient and thus I have explored how several parallel instances

of a reinforcement learning algorithm can efficiently learn diverse behaviors by forcing

them to diverge in a behavioral space (Section 11.2).

Reinforcement learning is a promising approach to learning strong policies in games, and

they seem to scale well to large state and action spaces as more computational resources

are applied (Vinyals et al., 2019; OpenAI, 2018a). Still, these methods are very data

inefficient, and small research or game development teams may not have access to such

resources. To overcome sparse rewards with limited domain knowledge and tweaking by

the experimenter, I have presented an automatic reward shaping approach called Rarity of

Events (RoE), in which the rewards of a set of predefined events, dynamically adjusts to

match the rarity of their occurrence, such that rare events are more rewarding (Chapter

7). Several scenarios with sparse rewards were solved faster with RoE, and the learned

policies expressed better generality in a number of test scenarios as they tend to express

a balanced behavior. RoE can thus be seen as a form of regularization technique for

reinforcement learning.

I have also demonstrated that reinforcement learning overfits when trained on just one

or a few game levels (Chapter 8). This is perhaps not surprising but it highlights how

a reinforcement learning trained on a single level, such as AlphaStar (Vinyals et al.,

2019) and OpenAI Five (OpenAI, 2018a), may not learn general concepts about the

game but rather overfitted behaviors that are tied to the particular configuration used

in training. I argue that to fully master a game, one must be able to compete similarly

to how humans compete in the game, which typically involves series of matches against

multiple players and with different variations of the game (e.g. different levels/maps)

for each match (Chapter 9). To deal with these challenges I presented a new framework

for reinforcement learning in which a new level is generated for each episode (Chapter

8). Using a constructive level generator, we were able to achieve general policies with

reasonable test performance on unseen levels. In games with sparse rewards, we further

had to dynamically adjust the difficulty of the generated levels to match the performance

205

of the learning agent. Using this approach, we were able to achieve strong policies in

games that were otherwise infeasible to learn due to their sparse rewards. Our results

also highlight the challenges of generating levels that allows the agents to generalize to a

different distribution of levels.

Finally, I presented Blood Bowl as a new board game challenge and competition for AI

(Chapter 11.3). Blood Bowl is one of the most complex board games that exist and it

demonstrates that board games are not yet passé for AI research. I have implemented the

game rules in python and developed an interface for scripted bots as well as an OpenAI

Gym implementation for reinforcement learning algorithms. I aim to run and extend

this competition annually in the coming years and I hope it will become useful to future

research on adaptive game-playing agents in complex games.

This dissertation has surveyed state-of-the-art within research in game-playing algorithms

and presented promising new approaches to the problem of achieving artificial game-

playing agents in complex games. Several approaches have been studied for each property

of adaptivity in the context of games with sparse rewards (see and overview in Table

1.0.1 in the introduction). It remains a challenge for the future, how to best combine

these approaches to achieve strong game-playing agents with all four properties that can

outperform the best human players in fair competitions, in the most difficult games.

206

Bibliography

Aarseth, E. (2014a). Ludology. In Wolf, M. J. P., editor, The Routledge Companion to

Video Game Studies. Routledge.

Aarseth, E. (2014b). Ontology. In Wolf, M. J. P., editor, The Routledge companion to

video game studies, pages 510–518. Routledge.

Aarseth, E. and Calleja, G. (2015). The word game: The ontology of an undefinable

object. In Foundations of Digital Games Conference.

Aarseth, E., Smedstad, S. M., and Sunnanå, L. (2003). A multidimensional typology of

games. In DiGRA Conference.

Andrychowicz, M., Crow, D., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B.,

Tobin, J., Abbeel, O. P., and Zaremba, W. (2017). Hindsight experience replay. In

Advances in Neural Information Processing Systems, pages 5055–5065.

Arjoranta, J. (2014). Game definitions: A wittgensteinian approach. Game Studies: the

international journal of computer game research, 14.

Asada, M., Veloso, M. M., Tambe, M., Noda, I., Kitano, H., and Kraetzschmar, G. K.

(2000). Overview of robocup-98. AI magazine, 21(1):9.

Avedon, E. M. and Sutton-Smith, B. (1971). The study of games. John Wiley & Sons.

Bakker, P. and Kuniyoshi, Y. (1996). Robot see, robot do: An overview of robot imitation.

In AISB96 Workshop on Learning in Robots and Animals, pages 3–11.

Barriga, N. A., Stanescu, M., and Buro, M. (2017). Combining strategic learning and

tactical search in real-time strategy games.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., Lefrancq,

207

208 Bibliography

A., Green, S., Valdés, V., Sadik, A., et al. (2016). Deepmind lab. arXiv preprint

arXiv:1612.03801.

Bellemare, M., Naddaf, Y., Veness, J., and Bowling, M. (2015). The arcade learning

environment: An evaluation platform for general agents. In Twenty-Fourth International

Joint Conference on Artificial Intelligence.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016).

Unifying count-based exploration and intrinsic motivation. In Advances in Neural

Information Processing Systems, pages 1471–1479.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on

reinforcement learning. In Proceedings of the International Conference on Machine

Learning (ICML).

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning.

In Proceedings of the 26th annual international conference on machine learning, pages

41–48. ACM.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13(Feb):281–305.

Bhatti, S., Desmaison, A., Miksik, O., Nardelli, N., Siddharth, N., and Torr, P. H. (2016).

Playing doom with SLAM-augmented deep reinforcement learning. arXiv preprint

arXiv:1612.00380.

Bhonker, N., Rozenberg, S., and Hubara, I. (2017). Playing SNES in the retro learning

environment.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Bjork, S. and Holopainen, J. (2004). Patterns in game design. Charles River Media.

Blackford, J. and Lamont, G. B. (2014). The real-time strategy game multi-objective

build order problem. In AIIDE.

Bibliography 209

Bontrager, P., Khalifa, A., Mendes, A., and Togelius, J. (2016). Matching games and

algorithms for general video game playing. In Twelfth Artificial Intelligence and

Interactive Digital Entertainment Conference, pages 122–128.

Bostrom, N. (2014). Superintelligence: paths, dangers, strategies. Oxford University Press.

Bouzy, B. (2005). Move-pruning techniques for monte-carlo go. In Advances in Computer

Games, pages 104–119. Springer.

Branavan, S., Silver, D., and Barzilay, R. (2011). Non-linear monte-carlo search in

Civilization II. AAAI Press/International Joint Conferences on Artificial Intelligence.

Brant, J. C. and Stanley, K. O. (2017). Minimal criterion coevolution: a new approach

to open-ended search. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 67–74. ACM.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and

Zaremba, W. (2016a). OpenAI gym. arXiv preprint arXiv:1606.01540.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and

Zaremba, W. (2016b). OpenAI gym.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen,

P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A survey of monte

carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in

games, 4(1):1–43.

Buck, J. (2015). Mazes for Programmers: Code Your Own Twisty Little Passages.

Pragmatic Bookshelf.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2018). Exploration by random

network distillation. arXiv preprint arXiv:1810.12894.

Buro, M. (2003). Real-time strategy games: A new AI research challenge. pages 1534–1535.

Caillois, R. (2001). Man, play, and games. University of Illinois Press.

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. (2002). Deep Blue. Artificial intelligence,

134(1-2):57–83.

210 Bibliography

Canaan, R., Salge, C., Togelius, J., and Nealen, A. (2019a). Leveling the playing field-

fairness in ai versus human game benchmarks. arXiv preprint arXiv:1903.07008.

Canaan, R., Togelius, J., Nealen, A., and Menzel, S. (2019b). Diverse agents for ad-hoc

cooperation in Hanabi. arXiv preprint arXiv:1907.03840.

Cantú-Paz, E. (2004). Adaptive sampling for noisy problems. In Proc. of GECCO.

Carter, M., Gibbs, M., and Harrop, M. (2012). Metagames, paragames and orthogames:

A new vocabulary. In Proceedings of the international conference on the foundations of

digital games, pages 11–17. ACM.

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75.

Čertickỳ, M. and Churchill, D. (2017). The current state of StarCraft AI competitions

and bots. In Thirteenth Artificial Intelligence and Interactive Digital Entertainment

Conference.

Chang, Y.-H., Ho, T., and Kaelbling, L. P. (2003). All learning is local: Multi-agent

learning in global reward games. In NIPS, pages 807–814.

Chaplot, D. S., Lample, G., Sathyendra, K. M., and Salakhutdinov, R. (2016).

Transfer deep reinforcement learning in 3D environments: An empirical study. Deep

Reinforcement Learning Workshop, NIPS 2016.

Chaslot, G., Bakkes, S., Szita, I., and Spronck, P. (2008a). Monte-carlo tree search: A

new framework for game AI. In AIIDE.

Chaslot, G. M. J., Winands, M. H., van den Herik, H. J., Uiterwijk, J. W., and Bouzy,

B. (2008b). Progressive strategies for monte-carlo tree search. New Mathematics and

Natural Computation, 4(03):343–357.

Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G., Schaal, S., and Levine, S. (2017).

Combining model-based and model-free updates for trajectory-centric reinforcement

learning. arXiv preprint arXiv:1703.03078.

Chen, C., Seff, A., Kornhauser, A., and Xiao, J. (2015). Deepdriving: Learning affordance

for direct perception in autonomous driving. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2722–2730.

Bibliography 211

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P. (2016).

Infogan: Interpretable representation learning by information maximizing generative

adversarial nets. In Advances in neural information processing systems, pages 2172–2180.

Cho, H.-C., Kim, K.-J., and Cho, S.-B. (2013). Replay-based strategy prediction and

build order adaptation for StarCraft AI bots. In Computational Intelligence in Games

(CIG), 2013 IEEE Conference on, pages 1–7. IEEE.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,

and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for

statistical machine translation. arXiv preprint arXiv:1406.1078.

Churchill, D. and Buro, M. (2011). Build order optimization in StarCraft. In Seventh

Artificial Intelligence and Interactive Digital Entertainment Conference.

Churchill, D. and Buro, M. (2013). Portfolio greedy search and simulation for large-scale

combat in StarCraft. In Computational Intelligence in Games (CIG), 2013 IEEE

Conference on, pages 1–8. IEEE.

Churchill, D. and Buro, M. (2015). Hierarchical portfolio search: Prismata’s robust

AI architecture for games with large search spaces. In Proceedings of the Artificial

Intelligence in Interactive Digital Entertainment Conference, pages 16–22.

Churchill, D., Buro, M., and Kelly, R. (2019). Robust continuous build-order optimization

in starcraft. In Proceedings of the IEEE Conference on Games (COG).

Churchill, D., Preuss, M., Richoux, F., Synnaeve, G., Uriarte, A., Ontanón, S., and

Certickỳ, M. (2016). Starcraft bots and competitions.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. (2018). Quantifying

generalization in reinforcement learning. arXiv preprint arXiv:1812.02341.

Conti, E., Madhavan, V., Such, F. P., Lehman, J., Stanley, K., and Clune, J. (2018).

Improving exploration in evolution strategies for deep reinforcement learning via a

population of novelty-seeking agents. In Advances in Neural Information Processing

Systems, pages 5032–5043.

Côté, M.-A., Kádár, A., Yuan, X., Kybartas, B., Barnes, T., Fine, E., Moore, J.,

212 Bibliography

Hausknecht, M., Asri, L. E., Adada, M., Tay, W., and Trischler, A. (2018). Textworld:

A learning environment for text-based games. arXiv preprint arXiv:1806.11532.

Coulom, R. (2006). Efficient selectivity and backup operators in monte-carlo tree search.

In International Conference on Computers and Games, pages 72–83. Springer.

Cowling, P. I., Ward, C. D., and Powley, E. J. (2012). Ensemble determinization in monte

carlo tree search for the imperfect information card game Magic: The gathering. IEEE

Transactions on Computational Intelligence and AI in Games, 4(4):241–257.

Cuccu, G., Togelius, J., and Cudre-Mauroux, P. (2018). Playing atari with six neurons.

arXiv preprint arXiv:1806.01363.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). Robots that can adapt like

animals. Nature, 521(7553):503.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary

computation, 6(2):182–197.

Debus, M. S. (2017). Metagames: on the ontology of games outside of games. In

Proceedings of the 12th International Conference on the Foundations of Digital Games,

page 18. ACM.

Degris, T., Pilarski, P. M., and Sutton, R. S. (2012). Model-free reinforcement learning

with continuous action in practice. In American Control Conference (ACC), 2012, pages

2177–2182. IEEE.

Dosovitskiy, A. and Koltun, V. (2017). Learning to act by predicting the future. In

Proceedings of the International Conference on Learning Representations.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking

deep reinforcement learning for continuous control. In Proceedings of the 33rd

International Conference on Machine Learning (ICML).

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for

online learning and stochastic optimization. Journal of Machine Learning Research,

12(Jul):2121–2159.

Bibliography 213

Elverdam, C. and Aarseth, E. (2007). Game classification and game design: Construction

through critical analysis. Games and Culture, 2(1):3–22.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu,

V., Harley, T., Dunning, I., Legg, S., and Kavukcuoglu, K. (2018). IMPALA: Scalable

distributed deep-RL with importance weighted actor-learner architectures. In Dy, J.

and Krause, A., editors, Proceedings of the 35th International Conference on Machine

Learning, volume 80 of Proceedings of Machine Learning Research, pages 1407–1416,

Stockholmsmässan, Stockholm Sweden. PMLR.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. (2018). Diversity is all you need:

Learning skills without a reward function. arXiv preprint arXiv:1802.06070.

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., and Abbeel, P. (2017). Reverse

curriculum generation for reinforcement learning. arXiv preprint arXiv:1707.05300.

Foerster, J., Nardelli, N., Farquhar, G., Torr, P., Kohli, P., Whiteson, S., et al. (2017).

Stabilising experience replay for deep multi-agent reinforcement learning. In Proceedings

of the International Conference on Machine Learning.

Foerster, J. N., Assael, Y. M., de Freitas, N., and Whiteson, S. (2016). Learning to

communicate to solve riddles with deep distributed recurrent q-networks. arXiv preprint

arXiv:1602.02672.

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. (2018).

Counterfactual multi-agent policy gradients. In Proceedings of the Thirty-Second AAAI

Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of

Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances

in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,

pages 2974–2982.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M., Osband, I., Graves, A., Mnih,

V., Munos, R., Hassabis, D., Pietquin, O., Blundell, C., and Legg, S. (2018). Noisy

networks for exploration. In International Conference on Learning Representations.

Fragkiadaki, K., Agrawal, P., Levine, S., and Malik, J. (2016). Learning visual predictive

214 Bibliography

models of physics for playing billiards. In International Conference on Learning

Representations (ICLR).

Frasca, G. (2003). Ludologists love stories, too: notes from a debate that never took place.

In DiGRA conference.

Fulda, N., Ricks, D., Murdoch, B., and Wingate, D. (2017). What can you do with a rock?

affordance extraction viaword embeddings. In Proceedings of the 26th International

Joint Conference on Artificial Intelligence, pages 1039–1045. AAAI Press.

Gaina, R. D., Liu, J., Lucas, S. M., and Pérez-Liébana, D. (2017a). Analysis of vanilla

rolling horizon evolution parameters in general video game playing. In European

Conference on the Applications of Evolutionary Computation, pages 418–434. Springer.

Gaina, R. D., Lucas, S. M., and Perez-Liebana, D. (2017b). Rolling horizon

evolution enhancements in general video game playing. In 2017 IEEE Conference

on Computational Intelligence and Games (CIG), pages 88–95. IEEE.

Galway, L., Charles, D., and Black, M. (2008). Machine learning in digital games: a

survey. Artificial Intelligence Review, 29(2):123–161.

Garćıa-Sánchez, P., Tonda, A., Mora, A. M., Squillero, G., and Merelo, J. (2015). Towards

automatic starcraft strategy generation using genetic programming. In Computational

Intelligence and Games (CIG), 2015 IEEE Conference on, pages 284–291. IEEE.

Gelly, S. and Wang, Y. (2006). Exploration exploitation in go: UCT for monte-carlo

go. In NIPS: Neural Information Processing Systems Conference On-line trading of

Exploration and Exploitation Workshop.

Gers, F. A. and Schmidhuber, J. (2000). Recurrent nets that time and count. In Proceedings

of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN

2000. Neural Computing: New Challenges and Perspectives for the New Millennium,

volume 3, pages 189–194. IEEE.

Goldberg, D. E. (1987). Simple genetic algorithms and the minimal. Deceptive Problem,

Genetic Algorithms and Simulated Annealing, pages 74–88.

Gomez, F. and Miikkulainen, R. (1997). Incremental evolution of complex general behavior.

Adaptive Behavior, 5(3-4):317–342.

Bibliography 215

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and Kavukcuoglu, K. (2017).

Automated curriculum learning for neural networks. arXiv preprint arXiv:1704.03003.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv preprint

arXiv:1410.5401.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska,

A., Colmenarejo, S. G., Grefenstette, E., Ramalho, T., Agapiou, J., et al. (2016).

Hybrid computing using a neural network with dynamic external memory. Nature,

538(7626):471–476.

Groshev, E., Goldstein, M., Tamar, A., Srivastava, S., and Abbeel, P. (2017).

Learning generalized reactive policies using deep neural networks. arXiv preprint

arXiv:1708.07280.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). Continuous deep Q-learning

with model-based acceleration. In International Conference on Machine Learning, pages

2829–2838.

Gudmundsson, S. F., Eisen, P., Poromaa, E., Nodet, A., Purmonen, S., Kozakowski, B.,

Meurling, R., and Cao, L. (2018). Human-like playtesting with deep learning. In 2018

IEEE Conference on Computational Intelligence and Games (CIG), pages 1–8. IEEE.

Guo, X., Singh, S., Lee, H., Lewis, R. L., and Wang, X. (2014). Deep learning for real-time

atari game play using offline monte-carlo tree search planning. In Advances in neural

information processing systems, pages 3338–3346.

Ha, D. and Schmidhuber, J. (2018). World models.

Harmer, J., Gisslén, L., del Val, J., Holst, H., Bergdahl, J., Olsson, T., Sjöö, K., and

Nordin, M. (2018). Imitation learning with concurrent actions in 3d games. In 2018

IEEE Conference on Computational Intelligence and Games (CIG), pages 1–8. IEEE.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science and

Cybernetics, 4(2):100–107.

216 Bibliography

Hasselt, H. V. (2010). Double q-learning. In Advances in Neural Information Processing

Systems, pages 2613–2621.

Hausknecht, M., Lehman, J., Miikkulainen, R., and Stone, P. (2014). A neuroevolution

approach to general atari game playing. IEEE Transactions on Computational

Intelligence and AI in Games, 6(4):355–366.

Hausknecht, M., Mupparaju, P., Subramanian, S., Kalyanakrishnan, S., and Stone, P.

(2016). Half field offense: An environment for multiagent learning and ad hoc teamwork.

In AAMAS Adaptive Learning Agents (ALA) Workshop.

Hausknecht, M. and Stone, P. (2015). Deep recurrent q-learning for partially observable

mdps. In AAAI Fall Symposium on Sequential Decision Making for Intelligent Agents

(AAAI-SDMIA15).

Hausknecht, M. and Stone, P. (2016). On-policy vs. off-policy updates for deep

reinforcement learning. In Deep Reinforcement Learning: Frontiers and Challenges,

IJCAI 2016 Workshop.

Hawkins, D. M. (2004). The problem of overfitting. Journal of chemical information and

computer sciences, 44(1):1–12.

He, J., Chen, J., He, X., Gao, J., Li, L., Deng, L., and Ostendorf, M. (2016a). Deep

reinforcement learning with a natural language action space. In Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), volume 1, pages 1621–1630.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778.

Helmbold, D. P. and Parker-Wood, A. (2009). All-moves-as-first heuristics in monte-carlo

go. In IC-AI, pages 605–610.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,

D., Piot, B., Azar, M. G., and Silver, D. (2018). Rainbow: Combining improvements in

deep reinforcement learning. In AAAI.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan,

Bibliography 217

J., Sendonaris, A., Dulac-Arnold, G., et al. (2018). Deep q-learning from demonstrations.

In Proceedings of AAAI.

Hingston, P. (2012). Believable Bots: Can Computers Play Like People? Springer.

Hinton, G., Srivastava, N., and Swersky, K. (2012). Neural networks for machine learning

lecture 6a overview of mini-batch gradient descent. Cited on, 14.

Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning. In Advances in

Neural Information Processing Systems, pages 4565–4573.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,

9(8):1735–1780.

Holland, J. H. (1975). Adaptation in natural and artificial systems ann arbor. The

University of Michigan Press, 1:975.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., Van Hasselt, H., and

Silver, D. (2018). Distributed prioritized experience replay. In International Conference

on Learning Representations (ICLR).

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are

universal approximators. Neural networks, 2(5):359–366.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., and

Kavukcuoglu, K. (2017). Reinforcement learning with unsupervised auxiliary tasks. In

International Conference on Learning Representations (ICLR).

Jaworska, N. and Chupetlovska-Anastasova, A. (2009). A review of multidimensional

scaling (mds) and its utility in various psychological domains. Tutorials in quantitative

methods for psychology, 5(1):1–10.

Johnson, J. (2016). Blood bowl handbook: Blood bowl living rulebook 6.0.

Johnson, L., Yannakakis, G. N., and Togelius, J. (2010). Cellular automata for real-time

generation of infinite cave levels. In Proceedings of the 2010 Workshop on Procedural

Content Generation in Games, page 10. ACM.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. (2016). The malmo platform for

218 Bibliography

artificial intelligence experimentation. In International joint conference on artificial

intelligence (IJCAI), page 4246.

Juliani, A., Khalifa, A., Berges, V.-P., Harper, J., Henry, H., Crespi, A., Togelius, J., and

Lange, D. (2019). Obstacle tower: A generalization challenge in vision, control, and

planning. arXiv preprint arXiv:1902.01378.

Justesen, N. (2015). Artificial intelligence for hero academy. Master’s thesis.

Justesen, N., Mahlmann, T., Risi, S., and Togelius, J. (2017). Playing multi-action

adversarial games: Online evolutionary planning versus tree search. IEEE Transactions

on Computational Intelligence and AI in Games.

Justesen, N., Mahlmann, T., and Togelius, J. (2016). Online evolution for multi-

action adversarial games. In European Conference on the Applications of Evolutionary

Computation, pages 590–603. Springer.

Justesen, N. and Risi, S. (2017a). Continual online evolution for in-game build order

adaptation in StarCraft. In The Genetic and Evolutionary Computation Conference

(GECCO).

Justesen, N. and Risi, S. (2017b). Learning macromanagement in StarCraft from replays

using deep learning. In 2017 IEEE Conference on Computational Intelligence and

Games (CIG), pages 162–169. IEEE.

Justesen, N., Tillman, B., Togelius, J., and Risi, S. (2014). Script-and cluster-based uct

for StarCraft. In Computational Intelligence and Games (CIG), 2014 IEEE Conference

on, pages 1–8. IEEE.

Juul, J. (2011). Half-real: Video games between real rules and fictional worlds. MIT press.

Kansky, K., Silver, T., Mély, D. A., Eldawy, M., Lázaro-Gredilla, M., Lou, X., Dorfman, N.,

Sidor, S., Phoenix, S., and George, D. (2017). Schema networks: Zero-shot transfer with

a generative causal model of intuitive physics. In Proceedings International Conference

on Machine Learning.

Kaplan, R., Sauer, C., and Sosa, A. (2017). Beating atari with natural language guided

reinforcement learning. arXiv preprint arXiv:1704.05539.

Bibliography 219

Karnin, Z., Koren, T., and Somekh, O. (2013). Almost optimal exploration in multi-armed

bandits. In Proceedings of the 30th International Conference on Machine Learning

(ICML-13), pages 1238–1246.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaśkowski, W. (2016). Vizdoom:

A doom-based ai research platform for visual reinforcement learning. In Computational

Intelligence and Games (CIG), 2016 IEEE Conference on, pages 1–8. IEEE.

Keogh, B. (2014). Across worlds and bodies: Criticism in the age of video games. Journal

of Games Criticism, 1(1):1–26.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Klimov, O. (2016). Bipedalwalkerhardcore-v2. http://gym.openai.com/.

Komincz, G. M. DeepMind Starcraft 2 demonstration - MaNa’s personal experience.

Kostka, B., Kwiecieli, J., Kowalski, J., and Rychlikowski, P. (2017). Text-based adventures

of the golovin ai agent. In Computational Intelligence and Games (CIG), 2017 IEEE

Conference on, pages 181–188. IEEE.

Köstler, H. and Gmeiner, B. (2013). A multi-objective genetic algorithm for build order

optimization in starcraft ii. KI-Künstliche Intelligenz, 27(3):221–233.

Koutník, J., Cuccu, G., Schmidhuber, J., and Gomez, F. (2013). Evolving large-scale

neural networks for vision-based reinforcement learning. In Proceedings of the 15th

annual conference on Genetic and evolutionary computation, pages 1061–1068. ACM.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems,

pages 1097–1105.

Kuchem, M., Preuss, M., and Rudolph, G. (2013). Multi-objective assessment of pre-

optimized build orders exemplified for starcraft 2. In Computational Intelligence in

Games (CIG), 2013 IEEE Conference on, pages 1–8. IEEE.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J. (2016). Hierarchical

220 Bibliography

deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation.

In Advances in Neural Information Processing Systems, pages 3675–3683.

Kume, A., Matsumoto, E., Takahashi, K., Ko, W., and Tan, J. (2017). Map-based multi-

policy reinforcement learning: enhancing adaptability of robots by deep reinforcement

learning. arXiv preprint arXiv:1710.06117.

Lample, G. and Chaplot, D. S. (2017a). Playing FPS games with deep reinforcement

learning. In AAAI Conference on Artificial Intelligence.

Lample, G. and Chaplot, D. S. (2017b). Playing FPS games with deep reinforcement

learning. In AAAI, pages 2140–2146.

Laud, A. D. (2004). Theory and application of reward shaping in reinforcement learning.

Technical report.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lehman, J. and Stanley, K. O. (2008). Exploiting open-endedness to solve problems

through the search for novelty. In ALIFE, pages 329–336.

Lehman, J. and Stanley, K. O. (2011a). Abandoning objectives: Evolution through the

search for novelty alone. Evolutionary computation, 19(2):189–223.

Lehman, J. and Stanley, K. O. (2011b). Evolving a diversity of virtual creatures through

novelty search and local competition. In Proceedings of the 13th annual conference on

Genetic and evolutionary computation, pages 211–218. ACM.

Lehman, J. and Stanley, K. O. (2011c). Novelty search and the problem with objectives.

In Genetic programming theory and practice IX, pages 37–56. Springer.

Lerer, A., Gross, S., and Fergus, R. (2016). Learning physical intuition of block towers by

example. In International Conference on Machine Learning, pages 430–438.

Levine, J., Congdon, C. B., Ebner, M., Kendall, G., Lucas, S. M., Miikkulainen, R.,

Schaul, T., Thompson, T., Lucas, S. M., Mateas, M., et al. (2013). General video game

playing. Artificial and Computational Intelligence in Games, 6:77–83.

Bibliography 221

Li, Y. (2018). Deep reinforcement learning. arXiv preprint arXiv:1701.07274.

Li, Y., Song, J., and Ermon, S. (2017). InfoGAIL: Interpretable imitation learning from

visual demonstrations. In Advances in Neural Information Processing Systems, pages

3812–3822.

Liapis, A., Holmgård, C., Yannakakis, G. N., and Togelius, J. (2015). Procedural personas

as critics for dungeon generation. In European Conference on the Applications of

Evolutionary Computation, pages 331–343. Springer.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and

Wierstra, D. (2016). Continuous control with deep reinforcement learning. International

Conference on Learning Representations (ICLR), arXiv:1509.02971.

Lin, L.-J. (1993). Reinforcement learning for robots using neural networks. PhD thesis,

Fujitsu Laboratories Ltd.

Louis, S. J. and McDonnell, J. (2004). Learning with case-injected genetic algorithms.

IEEE Transactions on Evolutionary Computation, 8(4):316–328.

Louis, S. J. and Miles, C. (2005). Playing to learn: Case-injected genetic algorithms for

learning to play computer games. IEEE Transactions on Evolutionary Computation,

9(6):669–681.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural

networks: A view from the width. In Advances in neural information processing systems,

pages 6231–6239.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine

learning research, 9(Nov):2579–2605.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., and Bowling,

M. (2018). Revisiting the arcade learning environment: Evaluation protocols and open

problems for general agents. Journal of Artificial Intelligence Research, 61:523–562.

Marcus, G. (2018). Innateness, alphazero, and artificial intelligence. arXiv preprint

arXiv:1801.05667.

222 Bibliography

Matiisen, T., Oliver, A., Cohen, T., and Schulman, J. (2017). Teacher-student curriculum

learning. arXiv preprint arXiv:1707.00183.

McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform manifold approximation

and projection for dimension reduction. arXiv preprint arXiv:1802.03426.

Merel, J., Tassa, Y., Srinivasan, S., Lemmon, J., Wang, Z., Wayne, G., and Heess, N.

(2017). Learning human behaviors from motion capture by adversarial imitation. arXiv

preprint arXiv:1707.02201.

Miikkulainen, R., Bryant, B. D., Cornelius, R., Karpov, I. V., Stanley, K. O., and

Yong, C. H. (2006). Computational intelligence in games. Computational Intelligence:

Principles and Practice, pages 155–191.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A. J., Banino, A., Denil, M.,

Goroshin, R., Sifre, L., Kavukcuoglu, K., et al. (2016). Learning to navigate in complex

environments. arXiv preprint arXiv:1611.03673.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and

Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In

International Conference on Machine Learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and

Riedmiller, M. (2013). Playing atari with deep reinforcement learning. In NIPS Deep

Learning Workshop.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,

A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control

through deep reinforcement learning. Nature, 518(7540):529–533.

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. (2014). On the number of linear

regions of deep neural networks. In Advances in neural information processing systems,

pages 2924–2932.

Mouret, J.-B. and Clune, J. (2015). Illuminating search spaces by mapping elites. arXiv

preprint arXiv:1504.04909.

Bibliography 223

Muñoz-Avila, H., Bauckhage, C., Bida, M., Congdon, C. B., and Kendall, G. (2013).

Learning and game AI. In Dagstuhl Follow-Ups, volume 6. Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik.

Murray, J. H. (2005). The last word on ludology v narratology in game studies. In

International DiGRA Conference.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., De Maria, A.,

Panneershelvam, V., Suleyman, M., Beattie, C., Petersen, S., et al. (2015). Massively

parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296.

Narasimhan, K., Kulkarni, T. D., and Barzilay, R. (2015). Language understanding for

textbased games using deep reinforcement learning. In In Proceedings of the Conference

on Empirical Methods in Natural Language Processing. Citeseer.

Neufeld, X., Mostaghim, S., and Perez-Liebana, D. (2015). Procedural level generation

with answer set programming for general video game playing. In 2015 7th Computer

Science and Electronic Engineering Conference (CEEC), pages 207–212. IEEE.

Ng, A. Y. (2003). Shaping and policy search in reinforcement learning. PhD thesis,

University of California, Berkeley.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward

transformations: Theory and application to reward shaping. In ICML, volume 99, pages

278–287.

Nichol, A., Pfau, V., Hesse, C., Klimov, O., and Schulman, J. (2018). Gotta learn fast: A

new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720.

Nowlan, S. J. and Hinton, G. E. (1992). Simplifying neural networks by soft weight-sharing.

Neural computation, 4(4):473–493.

Oh, J., Chockalingam, V., Satinder, and Lee, H. (2016). Control of memory, active

perception, and action in minecraft. In Proceedings of The 33rd International Conference

on Machine Learning, volume 48, pages 2790–2799.

Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S. (2015). Action-conditional video

prediction using deep networks in atari games. In Advances in Neural Information

Processing Systems, pages 2863–2871.

224 Bibliography

Ontanón, S. (2013). The combinatorial multi-armed bandit problem and its application

to real-time strategy games. In Proceedings of the Ninth AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, pages 58–64. AAAI Press.

Ontanón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., and Preuss, M. (2013).

A survey of real-time strategy game AI research and competition in StarCraft. IEEE

Transactions on Computational Intelligence and AI in games, 5(4):293–311.

OpenAI (2017). More on dota 2. https://openai.com/blog/more-on-dota-2/.

OpenAI (2018a). Openai five. https://blog.openai.com/openai-five/.

OpenAI (2018b). Openai five. https://openai.com/five/.

OpenAI (2018c). Openai five benchmark. https://openai.com/blog/openai-five-benchmark/.

OpenAI (2019). How to train your openai five. https://openai.com/blog/

how-to-train-your-openai-five/.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016). Deep exploration via

bootstrapped DQN. In Advances In Neural Information Processing Systems, pages

4026–4034.

Ostrovski, G., Bellemare, M. G., van den Oord, A., and Munos, R. (2017). Count-based

exploration with neural density models. pages 2721–2730.

Paenke, I., Branke, J., and Jin, Y. (2006). Efficient search for robust solutions by means

of evolutionary algorithms and fitness approximation. IEEE Trans. on Evolutionary

Computation, 10(4):405–420.

Pan, S. J. and Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on

knowledge and data engineering, 22(10):1345–1359.

Parisotto, E., Ba, J. L., and Salakhutdinov, R. (2016). Actor-mimic: Deep multitask and

transfer reinforcement learning.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017a). Curiosity-driven exploration

by self-supervised prediction. In ICML.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017b). Curiosity-driven exploration

Bibliography 225

by self-supervised prediction. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, pages 16–17.

Peng, P., Yuan, Q., Wen, Y., Yang, Y., Tang, Z., Long, H., and Wang, J. (2017). Multiagent

bidirectionally-coordinated nets for learning to play StarCraft combat games. arXiv

preprint arXiv:1703.10069.

Perez, D., Rohlfshagen, P., and Lucas, S. M. (2012). Monte-carlo tree search for the

physical travelling salesman problem. In Applications of Evolutionary Computation,

pages 255–264. Springer.

Perez Liebana, D., Dieskau, J., Hunermund, M., Mostaghim, S., and Lucas, S. (2015).

Open loop search for general video game playing. In Proceedings of the 2015 Annual

Conference on Genetic and Evolutionary Computation, pages 337–344. ACM.

Perez-Liebana, D., Liu, J., Khalifa, A., Gaina, R. D., Togelius, J., and Lucas, S. M.

(2018). General video game AI: a multi-track framework for evaluating agents, games

and content generation algorithms. arXiv preprint arXiv:1802.10363.

Perez-Liebana, D., Samothrakis, S., Togelius, J., Lucas, S. M., and Schaul, T. (2016).

General Video Game AI: Competition, Challenges and Opportunities. In Thirtieth

AAAI Conference on Artificial Intelligence, pages 4335–4337.

Pohlen, T., Piot, B., Hester, T., Azar, M. G., Horgan, D., Budden, D., Barth-Maron,

G., van Hasselt, H., Quan, J., Večerík, M., et al. (2018). Observe and look further:

Achieving consistent performance on atari. arXiv preprint arXiv:1805.11593.

Powley, E. J., Whitehouse, D., and Cowling, P. I. (2012). Monte carlo tree search with

macro-actions and heuristic route planning for the physical travelling salesman problem.

In Computational Intelligence and Games (CIG), 2012 IEEE Conference on, pages

234–241. IEEE.

Pugh, J. K., Soros, L. B., and Stanley, K. O. (2016). Quality diversity: A new frontier for

evolutionary computation. Frontiers in Robotics and AI, 3:40.

Rechenberg, I. (1978). Evolutionsstrategien. In Simulationsmethoden in der Medizin und

Biologie, pages 83–114. Springer.

226 Bibliography

Risi, S., Hughes, C. E., and Stanley, K. O. (2010). Evolving plastic neural networks with

novelty search. Adaptive Behavior, 18(6):470–491.

Risi, S. and Togelius, J. (2015). Neuroevolution in games: State of the art and open

challenges. IEEE Transactions on Computational Intelligence and AI in Games.

Robertson, G. and Watson, I. D. (2014). An improved dataset and extraction process for

Starcraft AI. In FLAIRS Conference.

Rodriguez Torrado, R., Bontrager, P., Togelius, J., Liu, J., and Perez-Liebana, D. (2018).

Deep reinforcement learning for general video game AI. In Computational Intelligence

and Games (CIG), 2018 IEEE Conference on. IEEE.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pascanu, R.,

Mnih, V., Kavukcuoglu, K., and Hadsell, R. (2016a). Policy distillation. International

Conference on Learning Representations (ICLR).

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu,

K., Pascanu, R., and Hadsell, R. (2016b). Progressive neural networks. arXiv preprint

arXiv:1606.04671.

Sadeghi, F. and Levine, S. (2016). Cad2rl: Real single-image flight without a single real

image. arXiv preprint arXiv:1611.04201.

Salimans, T., Ho, J., Chen, X., and Sutskever, I. (2017). Evolution strategies as a scalable

alternative to reinforcement learning. arXiv preprint arXiv:1703.03864.

Schaul, T. (2013). A video game description language for model-based or interactive

learning. In Computational Intelligence in Games (CIG), 2013 IEEE Conference on,

pages 1–8. IEEE.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal value function

approximators. In International conference on machine learning, pages 1312–1320.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience replay.

In International Conference on Learning Representations, Puerto Rico.

Bibliography 227

Schmidhuber, J. (2013). Powerplay: Training an increasingly general problem solver by

continually searching for the simplest still unsolvable problem. Frontiers in psychology,

4:313.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks,

61:85–117.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy

optimization. In International Conference on Machine Learning, pages 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal

policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Shaker, N., Togelius, J., and Nelson, M. J. (2016). Procedural Content Generation in

Games. Springer.

Shannon, C. E. (1988). Programming a computer for playing chess. In Computer chess

compendium, pages 2–13. Springer.

Shelhamer, E., Mahmoudieh, P., Argus, M., and Darrell, T. (2016). Loss is its own reward:

Self-supervision for reinforcement learning. In International Conference on Learning

Representations.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).

Mastering the game of go with deep neural networks and tree search. Nature,

529(7587):484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,

Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning

algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–

1144.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).

Deterministic policy gradient algorithms. In Proceedings of the 31st International

Conference on Machine Learning (ICML-14), pages 387–395.

Simon, H. and Chase, W. (1988). Skill in chess. In Computer chess compendium, pages

175–188. Springer.

228 Bibliography

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for

simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).

Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine

Learning Research, 15(1):1929–1958.

Stanescu, M., Barriga, N. A., Hess, A., and Buro, M. (2016). Evaluating real-time strategy

game states using convolutional neural networks. In IEEE Conference on Computational

Intelligence and Games (CIG 2016).

Stenros, J. (2017). The game definition game: A review. Games and Culture, 12(6):499–

520.

Stone, P. and Sutton, R. S. (2001). Keepaway soccer: A machine learning test bed. In

Robot Soccer World Cup, pages 214–223. Springer.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., and Clune, J. (2017).

Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep

neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567.

Suits, B. (2014). The Grasshopper-: Games, Life and Utopia. Broadview Press.

Sukhbaatar, S., Lin, Z., Kostrikov, I., Synnaeve, G., Szlam, A., and Fergus, R. (2017).

Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint

arXiv:1703.05407.

Sun, P., Sun, X., Han, L., Xiong, J., Wang, Q., Li, B., Zheng, Y., Liu, J., Liu, Y., Liu, H.,

et al. (2018). TStarBots: Defeating the cheating level builtin AI in StarCraft II in the

full game. arXiv preprint arXiv:1809.07193.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction, volume 1.

MIT press Cambridge.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gradient

methods for reinforcement learning with function approximation. In Advances in neural

information processing systems, pages 1057–1063.

Sweetser, P. (2008). Emergence in games. Cengage Learning.

Bibliography 229

Syed, O. and Syed, A. (2003). Arimaa-a new game designed to be difficult for computers.

ICGA Journal, 26(2):138–139.

Synnaeve, G. and Bessiere, P. (2011). A bayesian model for plan recognition in rts games

applied to StarCraft. arXiv preprint arXiv:1111.3735.

Synnaeve, G. and Bessiere, P. (2012). A dataset for StarCraft AI\ & an example of armies

clustering. arXiv preprint arXiv:1211.4552.

Synnaeve, G., Nardelli, N., Auvolat, A., Chintala, S., Lacroix, T., Lin, Z., Richoux, F.,

and Usunier, N. (2016). Torchcraft: a library for machine learning research on real-time

strategy games. arXiv preprint arXiv:1611.00625.

Szita, I., Chaslot, G., and Spronck, P. (2009). Monte-carlo tree search in Settlers of Catan.

In Advances in Computer Games, pages 21–32. Springer.

Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., Aru, J., and

Vicente, R. (2017). Multiagent cooperation and competition with deep reinforcement

learning. PloS one, 12(4):e0172395.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). A survey on deep

transfer learning. In International Conference on Artificial Neural Networks, pages

270–279. Springer.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents.

In Proceedings of the tenth international conference on machine learning, pages 330–337.

Tang, Z., Zhao, D., Zhu, Y., and Guo, P. (2018). Reinforcement learning for build-order

production in StarCraft II. In 2018 Eighth International Conference on Information

Science and Technology (ICIST), pages 153–158. IEEE.

Teetzel, S. (2006). On transgendered athletes, fairness and doping: An international

challenge. Sport in Society, 9(2):227–251.

Teh, Y., Bapst, V., Pascanu, R., Heess, N., Quan, J., Kirkpatrick, J., Czarnecki, W. M.,

and Hadsell, R. (2017). Distral: Robust multitask reinforcement learning. In Guyon, I.,

Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,

R., editors, Advances in Neural Information Processing Systems 30, pages 4497–4507.

Curran Associates, Inc.

230 Bibliography

Tessler, C., Givony, S., Zahavy, T., Mankowitz, D. J., and Mannor, S. (2017). A deep

hierarchical approach to lifelong learning in minecraft. In Proceedings of the Thirty-

First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,

California, USA., pages 1553–1561.

Thurau, C., Bauckhage, C., and Sagerer, G. (2004). Imitation learning at all levels of

game-ai. In Proceedings of the international conference on computer games, artificial

intelligence, design and education, volume 5.

Tian, Y., Gong, Q., Shang, W., Wu, Y., and Zitnick, C. L. (2017). Elf: An extensive,

lightweight and flexible research platform for real-time strategy games. In Guyon, I.,

Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,

R., editors, Advances in Neural Information Processing Systems 30, pages 2656–2666.

Curran Associates, Inc.

Tobin, J., Zaremba, W., and Abbeel, P. (2017). Domain randomization and generative

models for robotic grasping. arXiv preprint arXiv:1710.06425.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based

control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International

Conference on, pages 5026–5033. IEEE.

Togelius, J., Karakovskiy, S., and Baumgarten, R. (2010). The 2009 mario ai competition.

In IEEE Congress on Evolutionary Computation, pages 1–8. IEEE.

Togelius, J. and Lucas, S. M. (2006). Evolving robust and specialized car racing skills.

In Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, pages 1187–1194.

IEEE.

Tong, X., Liu, W., and Bin, L. (2019). Enhancing rolling horizon evolution with policy

and value networks. In 2019 IEEE Conference on Games (COG). IEEE.

Usunier, N., Synnaeve, G., Lin, Z., and Chintala, S. (2016). Episodic exploration for

deep deterministic policies: An application to starcraft micromanagement tasks. arXiv

preprint arXiv:1609.02993.

Van Der Linden, R., Lopes, R., and Bidarra, R. (2014). Procedural generation of dungeons.

IEEE Transactions on Computational Intelligence and AI in Games, 6(1):78–89.

Bibliography 231

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double

q-learning. In AAAI, pages 2094–2100.

Van Seijen, H., Laroche, R., Fatemi, M., and Romoff, J. (2017). Hybrid reward architecture

for reinforcement learning. In Advances in Neural Information Processing Systems 30,

pages 5396–5406. Curran Associates, Inc.

Vassiliades, V., Chatzilygeroudis, K., and Mouret, J.-B. (2018). Using centroidal voronoi

tessellations to scale up the multidimensional archive of phenotypic elites algorithm.

IEEE Trans. on Evolutionary Computation, 22(4):623–630.

Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M., Jaderberg, M., Czarnecki, W. M.,

Dudzik, A., Huang, A., Georgiev, P., Powell, R., Ewalds, T., Horgan, D., Kroiss,

M., Danihelka, I., Agapiou, J., Oh, J., Dalibard, V., Choi, D., Sifre, L., Sulsky, Y.,

Vezhnevets, S., Molloy, J., Cai, T., Budden, D., Paine, T., Gulcehre, C., Wang, Z.,

Pfaff, T., Pohlen, T., Wu, Y., Yogatama, D., Cohen, J., McKinney, K., Smith, O.,

Schaul, T., Lillicrap, T., Apps, C., Kavukcuoglu, K., Hassabis, D., and Silver, D.

(2019). AlphaStar: Mastering the Real-Time Strategy Game StarCraft II. https:

//deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., Makhzani,

A., Küttler, H., Agapiou, J., Schrittwieser, J., et al. (2017). StarCraft II: A new

challenge for reinforcement learning. arXiv preprint arXiv:1708.04782.

Vinyals, O. e. a. (2019). AlphaStar: Mastering the real-time strategy game StarCraft II.

Volz, V., Schrum, J., Liu, J., Lucas, S. M., Smith, A., and Risi, S. (2018). Evolving mario

levels in the latent space of a deep convolutional generative adversarial network. In

Proceedings of the Genetic and Evolutionary Computation Conference, pages 221–228.

ACM.

Wang, C., Chen, P., Li, Y., Holmgård, C., and Togelius, J. (2016a). Portfolio online

evolution in StarCraft. In Twelfth Artificial Intelligence and Interactive Digital

Entertainment Conference, pages 114,120.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., and de Freitas, N.

(2017a). Sample efficient actor-critic with experience replay.

232 Bibliography

Wang, Z., Merel, J. S., Reed, S. E., de Freitas, N., Wayne, G., and Heess, N. (2017b).

Robust imitation of diverse behaviors. In Advances in Neural Information Processing

Systems, pages 5320–5329.

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., and de Freitas, N. (2016b).

Dueling network architectures for deep reinforcement learning. In Proceedings of the

33rd International Conference on Machine Learning (ICML).

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

Whitley, L. D. (1991). Fundamental principles of deception in genetic search. In

Foundations of genetic algorithms, volume 1, pages 221–241. Elsevier.

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., and Schmidhuber, J. (2014).

Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8(3-4):229–256.

Wolf, M. J. (1997). Inventing space: Toward a taxonomy of on-and off-screen space in

video games. Film Quarterly (ARCHIVE), 51(1):11.

Wu, H., Zhang, J., and Huang, K. (2017a). Msc: A dataset for macro-management in

StarCraft II. arXiv preprint arXiv:1710.03131.

Wu, Y., Mansimov, E., Grosse, R. B., Liao, S., and Ba, J. (2017b). Scalable trust-region

method for deep reinforcement learning using kronecker-factored approximation. In

Advances in neural information processing systems, pages 5285–5294.

Wu, Y. and Tian, Y. (2017). Training agent for first-person shooter game with actor-critic

curriculum learning. In ICLR 2017.

Wymann, B., Espié, E., Guionneau, C., Dimitrakakis, C., Coulom, R., and Sumner, A.

(2000). TORCS, the open racing car simulator. Software available at http://torcs.

sourceforge. net.

Yannakakis, G. N. (2012). Game ai revisited. In Proceedings of the 9th conference on

Computing Frontiers, pages 285–292. ACM.

Bibliography 233

Yannakakis, G. N., Spronck, P., Loiacono, D., and André, E. (2013). Player modeling. In

Dagstuhl Follow-Ups, volume 6. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Yannakakis, G. N. and Togelius, J. (2015). A panorama of artificial and computational

intelligence in games. IEEE Transactions on Computational Intelligence and AI in

Games, 7(4):317–335.

Yannakakis, G. N. and Togelius, J. (2018a). Artificial Intelligence and Games. Springer.

http://gameaibook.org.

Yannakakis, G. N. and Togelius, J. (2018b). Artificial Intelligence and Games. Springer.

Yu, H., Zhang, H., and Xu, W. (2017). A deep compositional framework for human-like

language acquisition in virtual environment. arXiv preprint arXiv:1703.09831.

Zahavy, T., Haroush, M., Merlis, N., Mankowitz, D. J., and Mannor, S. (2018). Learn

what not to learn: Action elimination with deep reinforcement learning. arXiv preprint

arXiv:1809.02121.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. (2018). A study on overfitting in deep

reinforcement learning. arXiv preprint arXiv:1804.06893.

234 Bibliography

Appendix

235

237

A1 StarCraft Build-order Forward Model

Algorithm 10 StarCraft Build-Order Forward Model
MineralWorkers(s) and GasWorkers(s) return the number of workers gathering
minerals and gas, respectively, in s.
1: Predict(s, buildOrder, endFrame) returns the resulting game state of producing

the builds in buildOrder from state s until frame endFrame is reached.
2: procedure Predict(GameState s, BuildType[] buildOrder, int endFrame)
3: for each BuildType type in buildOrder do
4: nextFrame = ProduceFrame(s, type)
5: if nextFrame ≤ endFrame then
6: Progress(s, nextFrame)
7: Build(s, type)
8: else
9: Progress(s, endFrame)
10: return s . The altered game state.
11: procedure ProduceFrame(GameState s, BuildType type)
12: Returns the latest frame in which all requirements, resources, and production

buildings/units are available in s in order to produce type.
13: procedure Progress(GameState s, int toFrame)
14: t = toFrame - s.frame
15: s.minerals += t × MINE_SPEED × MineralWorkers(s)
16: s.gas += t × GAS_SPEED × GasWorkers(s)
17: for each Build b in s.underProduction do
18: if not b.done and toFrame ≥ b.doneAt then
19: Add one build of type b.type to s
20: b.done = true
21: procedure Build(GameState s, BuildType type)
22: b = Build()
23: b.type = type
24: b.doneAt = s.frame + type.buildTime
25: s.underProduction.Push(b)
26: s.minerals -= type.mineralCost
27: s.gas -= type.gasCost
28: s.supply += type.supplyCost

A2 Configuration of COEP

• Population size: 64

• Mutation operators and rates:

– Clone: 0.5

238

– Swap: 0.5

– Add: 0.5

– Remove: 0.5

• Crossover operator: Two-point crossover

• Survival rate: 0.25

• Fitness function:

– Step size: 2 minutes (one fastest) = 9810 frames

– Horizon: 8 minutes (one fastest) = 11429 frames

– Discount: 0.9

A3 Configuration of A2C+RoE

A2C
Learning rate 7e-4
γ (discount factor) 0.99
Entropy coefficient 0.01
Value loss coefficient 0.5
Learning rate 0.0007
Max. gradient-norm 0.5
Worker threads 4 (16 in DM)
tmax (Steps per. update) 20
Batch size 64
Frame skip 4

RMSprop Optimizer
ε 1e-5
α 0.99

RoE
N (event buffer size) 100
τ (mean threshold) 0.01

Table A3.1: Experimental configurations for A2C and A2C+RoE. 16 worker threads
were used in Deathmatch.

