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Abstract

This paper presents simple variants of the Block-
Quicksort algorithm described by Edelkamp and
Weiss (ESA 2016). The simplification is achieved
by using Lomuto’s partitioning scheme instead of
Hoare’s crossing pointer technique to partition the
input. To achieve a robust sorting algorithm that
works well on many different input types, the paper
introduces a novel two-pivot variant of Lomuto’s
partitioning scheme. A surprisingly simple twist
to the generic two-pivot quicksort approach makes
the algorithm robust. The paper provides an anal-
ysis of the theoretical properties of the proposed al-
gorithms and compares them to their competitors.
The analysis shows that Lomuto-based approaches
incur a higher average sorting cost than the Hoare-
based approach of BlockQuicksort. Moreover, the
analysis is particularly useful to reason about pivot
choices that suit the two-pivot approach. An exten-
sive experimental study shows that, despite their
worse theoretical behavior, the simpler variants per-
form as well as the original version of BlockQuick-
sort.

1 Introduction

Sorting a sequence of elements in an efficient way is
one of Computer Science’s fundamental problems.
It is one of the most important core routines
in many algorithms, and does not seem to lose
relevance as we get more and more data to work
on every day.

While it has been more than 55 years since the
quicksort algorithm was described by Hoare in [11],
variants of it are still relevant today. This espe-
cially shows when looking at sorting algorithms im-
plemented in the standard libraries of modern pro-
gramming languages, such as C++, which uses a

worst-case aware quicksort variant called introsort
[15], Oracle’s Java, which uses a two-pivot quick-
sort algorithm [23], and Microsoft’s C#, which uses
a traditional median-of-three quicksort approach.

In the pursuit of improving the performance
of quicksort-based implementations, a long line
of papers [16, 23, 13, 3, 21] have looked at the
benefits of introducing more than one pivot in
the algorithm. Here, [13, 3, 21] showed that the
memory access behavior improves with a small
number of pivots — an effect that cannot be
achieved by other more traditional means such as
choosing a pivot from a sample of elements [18].
However, better cache behavior leaves the problem
of branch mispredictions unsolved, which is one
of the largest bottleneck’s in today’s processor
architectures.

As shown by Brodal and Moruz in [6], mispre-
dicting conditional branches, i.e., mispredicting the
outcome of the comparison of two elements of the
input, are a necessity in the regime of comparison-
efficient sorting algorithms. This means other tools
are needed to reduce the performance penalty that
these mispredictions incur, which can be as large
as 15 cycles on a modern Intel i7 CPU [10], and
even larger on other architectures [12]. As we will
describe in Section 2, under certain circumstances
modern processors can avoid branches using so-
called conditional move-operations, among others,
which were used in a number of implementations
of quicksort variants [17, 8, 7, 4]. More detailed
information about these methods is deferred to the
related work part of the introduction.

In the branch-free regime of [17, 7, 4], a lot of
complexity has been introduced to the algorithm.
In fact, Axtmann et al. [4] describe code complex-
ity as the main drawback of their approach, stat-
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ing “formal verification of the correctness of the

implementation might help to increase trust in the

remaining cases.” [4, p. 12]. The BlockQuicksort
approach of Edelkamp and Weiss [7] has a very el-
evated code complexity as well, using about 300
lines of code for the partitioning procedure.

The main contribution of this paper are simple,
fast, and robust variants of branch-free quicksort-
based algorithms. Thus, introducing more com-
plexity is not necessarily required to improve per-
formance. In more detail, the paper presents sim-
pler variants of the BlockQuicksort algorithm de-
scribed in [7]. The difference to BlockQuicksort
lies in utilizing a partitioning scheme that Bent-
ley in [5] attributed to Nico Lomuto, rather than
using the traditional “crossing pointer” partition-
ing scheme by Hoare as in [7]. The description of
the algorithms is provided in Section 3. In there,
we describe a one-pivot and a two-pivot approach.
Introducing an additional pivot allows us to make
the algorithm robust and to avoid some of the com-
mon performance issues of the Lomuto partitioning
scheme, such as the presence of many equal ele-
ments [7].

Theoretical properties of the proposed algo-
rithms are discussed in Section 4. The result of
this analysis allows us, among others, to reason
about good pivot choices for the two-pivot vari-
ant. Comparing the Lomuto-based algorithms to
the Hoare-based approach used in standard Block-
Quicksort, we notice a slightly worse comparison
count and a slightly worse memory behavior with
regard to the “scanned elements/memory accesses”
cost measure discussed in [13, 3, 21]. This makes
the results of the experiments in Section 5 quite
surprising, which show that the proposed variants
can compete with BlockQuicksort. In the same sec-
tion, we speculate about the reasons for this based
on actual measurements from the CPU.

1.1 Related Work
Tuning Quicksort Algorithms Quicksort

implementations (see Section 2 for a description
of the quicksort algorithm) usually use insertion-
sort to sort subproblems that are below a certain
size threshold [18]. Moreover, the pivot is usually
chosen from a small sample of elements. In prac-

tice, it is usually chosen as the median in a sample
of three elements, while theory suggests to choose
it as the median of Θ(

√
n) elements to minimize

comparisons [14].
Super-Scalar Samplesort Sanders and

Winkel [17] provided an engineered implemen-
tation of samplesort, a variant of quicksort in
which many pivots are used to distribute the
input to buckets. They used conditional moves to
traverse the heap-like tree used to find the bucket
of an element. The algorithm uses two phases,
classification and rearranging elements, and needs
extra space in the size of the input.

Tuned Quicksort Elmarsy et al. [8] described
an engineered quicksort variant that uses a branch-
free variant of Lomuto’s partitioning scheme using
conditional moves.

BlockQuicksort BlockQuicksort as intro-
duced by Edelkamp and Weiss in [7] generalizes
Hoare’s partitioning scheme using blocks to handle
misplaced elements. Filling these two blocks, one
block for each of the two pointers used in Hoare’s
partitioning scheme, with references to misplaced
elements is done branch-free using conditional
moves. When these blocks are near-full, elements
are moved into a correct position with regard to
the pivot choice. When the two pointers are close
at the end of the partitioning phase, the code has
to handle many edges cases to produce a correct
partition. To this end, BlockQuicksort uses a
“clean-up phase” when partitioning is done.

Multi-Pivot Quicksort [9, 16, 23, 13, 1, 2, 3,
21] studied benefits of using a small number of piv-
ots in quicksort. This line of research showed that
this approach improves the memory access pattern
drastically [3, 21], an improvement that cannot be
achieved by other means such as choosing a good
pivot by sampling input elements. In short, multi-
pivot quicksort allows to make fewer accesses to
array cells to sort the input, an effect that trans-
lates into better running times. The most popular
multi-pivot algorithm is the two-pivot YBB algo-
rithm [23] used in Oracle’s Java since version 7.

IPS4o [4] provides an in-place samplesort vari-
ant of [17] by combining it with the idea of using
blocks from BlockQuicksort. Instead of two blocks,
they use a large number of blocks, one for each



Algorithm 1 One-Pivot-Quicksort

procedure OnePivotQuicksort(A[1..n])

1: if n > 1 then
2: choosePivot(A[1..n]) ⊲ Pivot resides in A[n]
3: i← partition(A[1..n])
4: OnePivotQuicksort(A[1..i − 1])
5: OnePivotQuicksort(A[i+ 1..n])

bucket. These blocks are filled in a branch-free
way using the classification strategy from [17]. All
elements are moved in blocks and a final rearrange-
ment step is needed to swap blocks to correct po-
sitions. Again, a lot of care is needed in the clean-
up phase. IPS4o lends itself to parallelization, as
demonstrated by the experiments in [4].

1.2 Our Contributions This paper contains
the following contributions:

• We present variants of BlockQuicksort using
Lomuto’s partitioning scheme (Algorithm 4,
Algorithm 5) and evaluate them experimen-
tally. Comparing the implementations, the
proposed variants save lines of code by a factor
5 to 8 times compared to [7] and are easier to
understand.

• We show how using a simple twist in two-pivot
quicksort makes the algorithm more robust
with respect to different input types.
• We analyze theoretical properties of our vari-

ants, which among others allows us to reason
about good pivot choices.

We believe the algorithms to be so simple to be
described in a textbook on Algorithm Engineering.

2 Preliminaries

Outline of a One-Pivot Quicksort Algo-
rithm We assume that the input to be sorted re-
sides in an array A[1..n]. Classical quicksort (Al-
gorithm 1) sorts the array A as follows. If n ≤ 1,
do nothing. Otherwise, choose an element p from
A as pivot. Next, partition the input such that p
resides in A[i], A[1..i−1] contains elements smaller
than p, and A[i + 1..n] contains elements at least
as large as p. Then, sort A[1..i− 1] and A[i+1..n]
recursively.

Algorithm 2 Lomuto Partitioning Scheme

procedure LomutoPartition(A[1..n])

1: p← A[n]
2: i← 1
3: for j← 1; j < n; j← j+ 1 do
4: if A[j] < p then
5: Swap A[i] and A[j]
6: i← i+ 1

7: Swap A[i] and A[n]
8: return i

p< p ≥ p ? · · · ?
↑
i

↑
j

Figure 1: Lomuto invariant: A[1..i − 1] consists
of elements smaller than p, A[i..j − 1] consists of
elements at least as large as p; A[j..n − 1] has not
been looked at, which is depicted by filling this part
of the array with both colors.

Lomuto’s Partitioning Scheme Tradition-
ally, one uses the crossing pointer technique de-
scribed by Hoare [11] to partition the input. A sim-
pler partitioning method communicated to Bentley
by Lomuto1 is given as Algorithm 2.

Lomuto’s partitioning scheme uses two addi-
tional variables i and j and maintains the invari-
ant displayed in Figure 1. The variable j is incre-
mented from 1 to n−1 using a for loop. When A[j]
is inspected, it is compared to the pivot p. If it is
smaller than the pivot, A[i] and A[j] are swapped,
and i is incremented.

As pointed out in [5, 20], Lomuto’s partitioning
scheme is “not as fast as Hoare’s version”. Theoret-
ically speaking, this is because on average, where
the average is taken over all n! permutations of
the set {1, . . . , n}, it makes three times more swaps
than Hoare’s partitioning scheme [19] and “scans”
50% more elements [20].

Outline of a Two-Pivot Quicksort Algo-
rithm Two-pivot quicksort (Algorithm 3) sorts
the array A[1..n] as follows. If n ≤ 1, do nothing.

1To quote [5, Page 110]: A reader of a preliminary draft [of
[5]] complained that the standard two-index method is in fact
simpler than Lomuto’s, and sketched some code to make his point:
I stopped looking after I found two bugs.



Algorithm 3 Two-Pivot-Quicksort

procedure TwoPivotQuicksort(A[1..n])

1: if n > 1 then
2: choosePivot(A[1..n]) ⊲ Pivots A[1] ≤ A[n]
3: (i, j)← partition(A[1..n])
4: TwoPivotQuicksort(A[1..i−1])
5: TwoPivotQuicksort(A[i+1..j−1]) ⊲ Sec. 3.3
6: TwoPivotQuicksort(A[j+1..n])

Otherwise, choose two elements p, q with p ≤ q
from A as pivots. Next, partition the input such
that p resides in position i and q resides in posi-
tion j, A[1..i− 1] contains elements smaller than p,
A[i+ 1..j − 1] contains elements x with p ≤ x ≤ q
and A[j + 1..n] contains elements larger than q.
Then, sort A[1..i−1], A[i+1..j−1], and A[j+1..n]
recursively.

Many different partitioning methods for two-
pivot quicksort exist, see, for example [23, 2].

Avoiding Branch Mispredictions Today,
most CPUs use instruction-level parallelism. As
described in [10, Section 3.13], the biggest prob-
lems in exploiting parallelism come from mispre-
dicted branches or cache misses. Branch mispre-
dictions may occur when the code contains condi-
tional jumps, such as if statements. When reach-
ing a branch, the CPU decides which branch it fol-
lows based on a branch predictor and loads the
instructions following the branch into its pipeline.
When the direction of the branch is mispredicted,
the pipeline has to be flushed and the other direc-
tion has to be executed.

In comparison-based sorting algorithms, most
branches occur when input elements are compared
to each other. Following [7], on modern hardware
these branches can be avoided as follows in C++:

• By using conditional moves (CMOVcc), which
have the form i = (x < y) ? j : i;

• By casting a boolean to an integer (SETcc),
which has the form int i = (x < y);

3 Lomuto BlockQuicksort

3.1 One Pivot Algorithm 4 (BlockLomuto1) de-
scribes the full partitioning method that can be
plugged into the general quicksort procedure de-
scribed as Algorithm 1. See Figure 2 to see the

Algorithm 4 One-Pivot Block Partitioning

procedure BlockLomuto1(A[1..n])

Require: n > 1,Pivot in A[n]
1: p← A[n];
2: integer block[0, . . . ,B− 1], i, j← 1, num← 0
3: while j < n do
4: t← min(B,n− j);
5: for c← 0; c < t; c← c+ 1 do
6: block[num]← c;
7: num← num+ (p > A[j+ c]);

8: for c← 0; c < num; c← c+ 1 do
9: Swap A[i] and A[j+ block[c]]

10: i← i+ 1

11: num← 0;
12: j← j+ t;

13: Swap A[i] and A[n];
14: return i;

p< p ≥ p ? · · · ?
↑
i

↑
j

↑
j+ c

B

1 2 3
↑

num
block

Figure 2: BlockQuicksort with Lomuto’s partition-
ing scheme (Algorithm 4). Picture depicts the sit-
uation where Algorithm 4 is currently on Line 7
with c = 4. So far, the block contains the indexes
1 and 2, representing that A[j+1] and A[j+2] are
smaller than p. In general, given that c has value
c and num is num, block[0..num − 1] contains the
indexes (relative to j) of all misplaced elements in
A[j..j + c]. Unlabeled elements have only half the
width of the array cell depicting p in the picture.

invariant that is kept by the partitioning method.
Algorithm 4 is the straight-forward generaliza-

tion of the standard Lomuto partitioning scheme
discussed in the previous section. In addition to
the pivot p and the two indexes i and j, the algo-
rithm uses an array block that can store B indexes,
and a variable num. Except when there are less than
B elements left to consider (see Line 4), the algo-
rithm considers B elements of the input at a time
in the while loop that starts on Line 3. First, in
Lines 5–7, it fills the block array with the indexes



Algorithm 5 Two-Pivot Block Partitioning

procedure BlockLomuto2(A[1..n])

Require: n > 1, Pivots in A[1] ≤ A[n]
1: p← A[1]; q← A[n];
2: integer block[0, . . . ,B− 1]
3: i, j, k← 2, num<p, num≤q ← 0
4: while k < n do
5: t← min(B,n− k);
6: for c← 0; c < t; c← c+ 1 do
7: block[num≤q]← c;
8: num≤q ← num≤q + (q ≥ A[k + c]);

9: for c← 0; c < num≤q; c← c+ 1 do
10: Swap A[j+ c] and A[k+ block[c]]

11: k← k+ t;
12: for c← 0; c < num≤q; c← c+ 1 do
13: block[num<p]← c;
14: num<p ← num<p + (p > A[j + c]);

15: for c← 0; c < num<p; c← c+ 1 do
16: Swap A[i] and A[j + block[c]]
17: i← i+ 1

18: j← j+ num≤q;
19: num<p, num≤q ← 0;

20: Swap A[i− 1] and A[1];
21: Swap A[j] and A[n];
22: return (i− 1, j);

of the elements that are smaller than the pivot, i.e.,
the elements that are misplaced. This is done in a
branch-free way by the cast to an integer. Next, in
Lines 8-10, all misplaced elements are moved to a
final position in the array, num is reset to 0, and j

is advanced by one block size. After the loop ends,
the pivot is put into place (Line 13) and its position
is returned.

We stress that Algorithm 4 is the full algo-
rithm as used in the experiments. It is easy to
describe and, as we will see, performs as well as
the BlockQuicksort variant using Hoare’s partition-
ing scheme described in [7]. The reader is invited
to compare BlockLomuto1 to their [7, Algorithm 3],
which omits the complicated rearrangement phase.

3.2 Two Pivots Algorithm 5 (BlockLomuto2)
describes a two-pivot version of Algorithm 4, see
Figure 3. Compared to the latter, it uses one more

p q< p p ≤ · · · ≤ q > q ? · · · ?
↑
i

↑
j

↑
k

↑
k+ c

B

1 2 3
↑

num≤q
block

p q< p p ≤ · · · ≤ q > q ? · · · ?
↑
i

↑
j

↑
k

j+ c

num≤q

0 1
↑

num<p

block

Figure 3: Lomuto block partitioning with two
pivots. Top: Algorithm 5 compares elements with
q and is on Line 8 with c = 3, cf. Figure 2. Bottom:
Algorithm compares the num≤q elements at most as
large as q to p. Algorithm is on Line 14 with c = 1.

index to store the beginning of a segment and one
more num variable to store the number of misplaced
elements in a block. The difference to BlockLo-
muto1 lies in the Lines 12–18 of Algorithm 5. Di-
rectly after moving misplaced elements (with re-
spect to q) into a consecutive segment of the array,
the algorithm checks the num≤q elements in this
segment immediately to p using the same block to
store misplaced elements. This can be done since
all misplaced elements w.r.t. q have been moved.
It then moves misplaced elements smaller than p
in the very same fashion. After the rearrangement
phase ends, the two pivots are swapped into place
and their position is returned.

3.3 Handling Equal Elements Algorithm 5
ensures that all elements equal to p or q are stored
between these pivots in the resulting partition.
Thus, if p equals q, the call on Line 5 of Algorithm 3
can be avoided. So, from now on, Line 5 is guarded
by the statement if (p != q).

4 Theoretical Properties of the Algorithms

In this section we analyze the theoretical properties
of the proposed algorithms with respect to the
number of element comparisons they make and
their memory access pattern. The analysis is
provided in a general way that allows us to choose
the pivot(s) from a sample of the array elements.



t = (0, 1, 2) → sort first 5 elements,
pick first and third as pivots.

p q

κ

p< p p ≤ · · · ≤ q q > q

1/6 1/3 1/2

Figure 4: Top: Sampling step with t = (0, 1, 2)
and two pivots. Bottom: Assuming a random per-
mutation, expected sizes of different groups under
the pivot choice. The 5 samples split the input
into 6 different parts of equal size (in expectation).
Thus, a fraction of 1/6 of the remaining elements
are smaller than p, 1/3 are in between p and q, and
1/2 are larger than q.

4.1 Setup of the Analysis The input is a
random permutation of the set {1, . . . , n} which
resides in an array A[1..n]. Fix an integer k ∈ {1, 2}
which denotes the number of pivots. Fix a vector
t = (t0, . . . , tk) ∈ N

k+1. Let κ := κ(t) = k +
∑

0≤i≤k ti be the number of samples. We assume
that κ is a constant independent of n. The general
outline of a k-pivot quicksort algorithm is then as
follows: If n ≤ κ, sort A directly. Otherwise, sort
the first κ elements and then set pi = A[i+

∑

j<i tj ],
for 1 ≤ i ≤ k. Next, partition the input A[κ+1..n]
with respect to the pivots p1, . . . , pk. Subsequently,
by a constant number of swaps, move the elements
residing in A[1..κ] to correct final locations. Finally,
sort the k+1 subproblems recursively. (Algorithm 1
and Algorithm 3 have to be slightly adapted for this
to hold.) See Figure 4 for an example.

4.2 Cost Measures We measure cost in two
ways: we count the number of comparisons with
the pivot(s) and we count the number of array cells
accessed by the respective algorithm when sorting
an input containing n elements.

With regard to comparisons, we define the
following random variables: Let PCMPn denote
the number of comparisons with elements against
pivot p in Algorithm 4, i.e., the number of times
Line 7 is reached. Let CMPn be the number of
comparisons over the whole recursion. Let PCMP′

n

denote the number of comparisons with elements
against the pivots p and q in Algorithm 5 (Line 7
and Line 12) and define CMP′

n accordingly.

With regard to array accesses, we define the
cost as the number of times a cell of the array has
been accessed. (This is identical to the notion of
scanned elements used in [21].) More precisely, for
Algorithm 4, the random variable PMAn counts the
number of times we reach Line 7 (reading A[j+ c])
and Line 9 (reading A[i]). For Algorithm 5, PMA′

n

counts the sum of the number of times Line 7,
Line 12, and Line 14 are reached, i.e., individual
accesses of i, j, and k in the array. We let by MAn

and MA′
n denote the cost over the whole recursion,

respectively.
From Partitioning Cost to Sorting Cost

Computing the average sorting cost from a given
average partitioning cost is straight-forward if the
latter is bounded by a · n+O(1), see [2].

For one-pivot quicksort with pivot p, we let
by a0 := p − 1, a1 := n − p denote the number
of elements smaller/larger than the pivot. For
two-pivot quicksort with pivots p and q, we set
a0 := p − 1, a1 := q − p, a2 := n − q to denote
group sizes in the partition. For a given sequence
t = (t0, . . . , tk) ∈ N

k+1 we define H(t) by

H(t) =

k
∑

i=0

ti + 1

κ+ 1
(Hκ+1 −Hti+1) ,(4.1)

where Hℓ denotes the ℓ-th harmonic number. Let
Pn denote the random variable which counts the
cost of a single partitioning step, and let Cn denote
the cost over the whole sorting procedure. Follow-
ing [3], the average sorting cost E(Cn) follows the
recurrence

E(Cn) = E(Pn)+

(4.2)

∑

a0+···+ak=n−k

(E(Ca0) + · · · + E(Cak)) · Pr(〈a0, . . . , ak〉),

where 〈a0, . . . , ak〉 is the event that the group sizes
are exactly a0, . . . , ak. The probability of this event

for a given vector t is
(a0
t0
)···(ak

tk
)

(n
κ
)

. Now, a result

by Hennequin [9, Proposition III.9] says that for
fixed k and t and average partitioning cost E(Pn) =
a · n+O(1) recurrence (4.2) has the solution

E(Cn) =
a

H(t)
n lnn+O(n).(4.3)



The sampling technique used here does not
preserve randomness in subproblems, since a few
elements have already been sorted during the pivot
sampling step. For the analysis, we ignore that the
unused samples have been seen and get only an
estimate on the sorting cost. See [16] for a detailed
analysis of this situation.

4.3 Analysis
BlockLomuto1 (Algorithm 4) Every ele-

ment in the input that has not been sampled is
compared with the pivot exactly once (Line 7), so
we get PCMPn = n + O(1). Conditioned on the
pivot being p, there are exactly p−1 elements that
are smaller than p in the input. Each of these el-
ements is accessed exactly once in Line 9, thus we
get PMAn = n+p+O(1). If the pivot is chosen ac-
cording to a vector t = (t0, t1), we expect that there
are t0+1

t0+t1+2 ·n+O(1) many elements smaller than p.

Thus, we get E(PMAn) =
(

1 + t0+1
t0+t1+2

)

· n+O(1)
memory accesses on average.

BlockLomuto2 (Algorithm 5) Each unsam-
pled element from the input is compared exactly
once to q (Line 7). Each element that is smaller
than q is then compared to p (Line 12). If the pivots
p and q are chosen according to t = (t0, t1, t2) ∈ N

3,
we expect that a fraction of t0+t1+2

t0+t1+t2+3 elements

are smaller than q. Thus, we obtain E(PCMP′
n) =

(

1 + t0+t1+2
t0+t1+t2+3

)

· n + O(1). Regarding memory

accesses, fix the pivots p, q. Every array cell is
accessed by Line 7 of the algorithm. All array
cells A[j] with j < q are accessed a second time
in Line 12. Finally, all array cells A[j] with j < p
are accessed a third time in Line 14 of the algo-
rithm. These considerations yield E(PMA′

n) =
(

1 + 2t0+t1+3
t0+t1+t2+3

)

· n+O(1).

Comparison with One-Pivot Hoare Parti-
tioning BlockQuicksort [7] uses Hoare’s partition-
ing scheme. It is immediate that in Hoare’s parti-
tioning scheme every element is compared once to
the pivot, and every array cell is accessed exactly
once, as well.

4.4 Comparison to IPS4o IPS4o with 2ℓ pivots
makes ℓ comparisons per element. Thus, it makes
ℓ ·n+O(1) comparisons in the partitioning step. A

Algo AS Cost Best (cost, t)
H1 cmp 2.00n lnn, (0, 0)
H1 0 ma 2.00n lnn, (0, 0)
H1 cmp + ma 4.00n lnn, (0, 0)

H1 cmp 1.71n lnn, (1, 1)
H1 2 ma 1.71n lnn, (1, 1)
H1 cmp + ma 3.43n lnn, (1, 1)

H1 cmp 1.62n lnn, (2, 2)
H1 4 ma 1.62n lnn, (2, 2)
H1 cmp + ma 3.24n lnn, (2, 2)

H1 cmp 1.53n lnn, (5, 5)
H1 10 ma 1.53n lnn, (5, 5)
H1 cmp + ma 3.06n lnn, (5, 5)

L1 cmp 2.00n lnn, (0, 0)
L1 0 ma 3.00n lnn, (0, 0)
L1 cmp + ma 5.00n lnn, (0, 0)

L1 cmp 1.71n lnn, (1, 1)
L1 2 ma 2.57n lnn, (1, 1)
L1 cmp + ma 4.29n lnn, (1, 1)

L1 cmp 1.62n lnn, (2, 2)
L1 4 ma 2.38n lnn, (1, 3)
L1 cmp + ma 4.05n lnn, (2, 2)

L1 cmp 1.53n lnn, (5, 5)
L1 10 ma 2.22n lnn, (4, 6)
L1 cmp + ma 3.78n lnn, (4, 6)

L2 cmp 2.00n lnn, (0, 0, 0)
L2 0 ma 2.40n lnn, (0, 0, 0)
L2 cmp + ma 4.40n lnn, (0, 0, 0)

L2 cmp 1.73n lnn, (0, 1, 2)
L2 3 ma 1.92n lnn, (0, 1, 2)
L2 cmp + ma 3.65n lnn, (0, 1, 2)

L2 cmp 1.62n lnn, (1, 1, 3)
L2 5 ma 1.88n lnn, (0, 2, 3)
L2 cmp + ma 3.51n lnn, (1, 1, 3)

L2 cmp 1.55n lnn, (2, 3, 6)
L2 11 ma 1.77n lnn, (1, 3, 7)
L2 cmp + ma 3.32n lnn, (2, 3, 6)

Table 1: Best asymptotic expected sorting cost
of Hoare’s one-pivot (H1), Lomuto’s one-pivot
(L1), and Lomuto’s two-pivot (L2) algorithm with
regard to a given sample size AS (in addition
to the pivot(s)). For each cost measure (cmp–
comparisons, ma–memory accesses), we explicitly
state the sample vector t for which this cost is
achieved.



rough estimate for the number of array accesses is
obtained by counting three array accesses per array
position; the first during classification, a second
when a block is full and is moved back into the
array, the third when a block is moved to a final
position during the final rearrangement phase.

4.5 Putting Everything Together Using
(4.3) with the cost formulas derived above, we
can reason about the expected sorting cost of
Algorithms 4/5, and compare them to the two
other approaches. Table 1 gives an overview over
the minimum cost achievable with certain sample
sizes; we present a short summary.

First, Lomuto’s partitioning scheme is inferior
to Hoare’s, in particular with regard to the num-
ber of memory accesses. However, choosing piv-
ots from a sample greatly improves the number
of accesses, both for the one- and the two-pivot
variant. While BlockLomuto2 makes slightly more
comparisons, the number of memory accesses im-
proves by around 0.5n ln n for the sample sizes con-
sidered. The pivot choices that achieve the min-
imum cost are the median of the sample (Hoare’s
scheme), the median or the element one larger than
it (BlockLomuto1), and a skewed pivot choice for
BlockLomuto2. E.g., (1, 1, 1) accesses around 9%
more array cells than (0, 1, 2). As a rule of thumb,
the calculations motivate to take the larger pivot
q as the median in a sample, and to choose the
smaller pivot p as the median of all the sampled
elements smaller than q. For a sample size of 5,
BlockLomuto2 makes a factor of 1.18 more memory
accesses than Hoare.

Using 128 pivots from a sample of 257 ele-
ments, taking every second element as a pivot,
IPS4o outperforms its competitors by a large mar-
gin. (The same behavior was observed for other
samplesort-based approaches in [1].) On average,
it makes around 1.51n ln n+O(n) comparisons and
0.65n ln n + O(n) memory accesses. In compari-
son, BlockLomuto2 with a sample of 257 elements
makes 1.45n ln n + O(n) comparisons, but incurs
1.69n ln n+O(n) memory accesses, on average.

5 Experimental Evaluation

This section presents the evaluation of the ex-
periments we conducted with regard to the
performance and other properties of the proposed
algorithms. The implementation was written
in C++, performance counters were obtained
using PAPI2. Our code, the Jupyter notebook
that makes all computations transparent and
which includes additional plots not found in
the paper, as well as raw results are available at
https://bitbucket.org/alenex19_paper48/submission/.

Input Distributions We ran benchmarks
with the following input distributions: Permu-
tation, Sawtooth, RandomDup, Sorted, Reversed,
Equal, and EightDup. Permutation chooses the in-
put as a random permutation of {1, . . . , n}; Saw-
tooth sets A[i] = i mod

√
n, RandomDup uses

A[i] = uniform(n) mod
√
n; Sorted sets A[i] = i,

Reversed sets A[i] = n − i − 1, and Equal uses
A[i] = 1. Finally, EightDup sets A[i] = i8 + n/2
mod n, following [7], resulting in inputs that dupli-
cate the median many times when n is a power of
two. All inputs consisted of 64-bit integers. For
each input size, we ran each algorithm on the same
600 inputs drawn from a certain input distribution.
All figures in the following contain the average over
these trials. We call a running time improvement
significant if it was observed in at least 95% of the
trials.

Machine Details We ran the experiments on
two different machines: Xeon and i7. Xeon is set
up with two 14-core Intel Xeon E5-2690 v4 CPUs
clocked at 2.6 GHz, 35MB L3 Cache and 512GB
of RAM. Xeon was running Ubuntu 16.10 with
Linux kernel 4.4 and the code was compiled with
gcc version 5.4.0. The compiler flags were -O3

-march=native -funroll-loops. All runs used
a single core and a single thread. There are
marginal differences to results obtained on i7, thus
we moved the discussion for this architecture to
Appendix A.

Competitors. To compare the running time
to other implementations, we used the implemen-
tation of BlockQuicksort [7] (BlockQS) available at
https://github.com/weissan/BlockQuicksort

2http://icl.utk.edu/papi/

https://bitbucket.org/alenex19_paper48/submission/
https://github.com/weissan/BlockQuicksort
http://icl.utk.edu/papi/
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Figure 5: Influence of block size B to the running
time for n = 226, Xeon on Permutation.

and the implementation of IPS4o [4] retrieved
from https://github.com/SaschaWitt/ips4o.
Furthermore, we used std::sort from gcc as the
baseline implementation to compare all algorithms
to. The implementations of BlockLomuto1 and
BlockLomuto2 save lines of code by a factor of
5 and 8, resp., compared to BlockQS under a
similarly dense coding style.

5.1 Block Size Figure 5 shows how the block
size influences the sorting time for the one- and
two-pivot variant for 2 ≤ B ≤ 214. Both variants
benefit from large block sizes, decreasing the run-
ning time to sort the input of n = 226 items from
around 7 seconds to around 3 seconds. The mini-
mum is attained for both variants for a block that
can hold up to 1024 items, but there is no big dif-
ference for block sizes around this value. Conse-
quently, we set the block size to B = 1024 for both
implementations.

5.2 Pivot Strategies We implemented different
pivot selection strategies and compared them to
each other. Figure 6 shows the result of this
experiment. For BlockLomuto1, we compare direct
choice, median of 3, and median of medians of 5,
which groups 25 elements in 5 groups, chooses the
median in each, and chooses the median of these
medians as pivot, see [7]. For BlockLomuto2, we
compare direct choice, first two of three elements,
first and third of 5, second and fourth of 5, and
the adaption of the median of medians strategy
described above, in which we take the first and
third element in the sample of 5 medians.
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Figure 6: Running times on Permutation on Xeon

for different pivot choices. Legend entries of the
form p (R of S) are read as follows: For the p-
pivot variant, we sort S elements and choose the
elements R in the sorted sample, e.g., (2, 4 of 5)

means that the second and the fourth element in a
sorted sample of five elements are chosen as pivots;
a * refers to the median of medians sampling.

The plot shows that the pivot selection strat-
egy has big influence on the running time. In par-
ticular, choosing the pivot directly from the input
without sampling performs much worse than even
simple pivot selection strategies. For example, for
BlockLomuto1, there is a difference of a factor 1.14
in running time when choosing the pivot directly
from the input compared to choosing it as the me-
dian of 5 medians. BlockLomuto2 is a factor of
1.16 times slower without sampling than choosing
the first two elements in a sample of three elements,
i.e., looking at one additional element. It is by a
factor of 1.22 slower when pivots are chosen among
the medians of five elements each. In particular,
choosing skewed pivots as predicted in Section 4
provides an improvement for the two-pivot variant.
Choosing the second and fourth element is a fac-
tor of 1.07 slower than choosing the first and third
element.

For the final implementation, we used a
slightly more elaborate pivot selection strategy that
switches between pivot strategies based on the in-
put size. The best thresholds to switch strate-

https://github.com/SaschaWitt/ips4o


gies have been obtained experimentally as well.
While improvements in running time are consis-
tent, they do not exceed a factor of 1.01 compared
to the fastest variant that does not switch strate-
gies, as examplified through the difference between
BlockLomuto2 and 2 (1, 3 of 5∗) in Figure 6.

5.3 Further Tuning Apart from choosing the
block size and pivot selection strategy based on
the experiments described above, the implementa-
tions used in the experiments are identical to Algo-
rithm 4 and Algorithm 5. In contrast to the obser-
vations made in [7, Section 3.2], unrolling the main
loop did not increase performance. We suspect that
this is due to the simplicity of the code that allows
the compiler to unroll the code. Furthermore, we
do not perform the cyclic rotations described in [7]
since they actually increased running time. We sus-
pect that this is due to the CPU pipelining the load-
/store instruction issued in Line 9 of Algorithm 4,
whereas the cyclic shifts described in [7] introduce
read/write dependencies.

5.4 Running Times We discuss the running
times observed on Xeon plotted in Figure 7. In
the following, running time differences are always
stated for the data points associated with 227 items.

On Permutation, IPS4o has the fastest running
time. On average, BlockLomuto1 and BlockLo-
muto2 are a factor of 1.15 times slower, BlockQS is
1.20 times slower; stdsort is a factor of 2.22 slower
than IPS4o. With regard to significant running
time differences, these factors decrease in absolute
value by about 0.02.

For inputs containing many duplicates
(SawTooth, RandomDup, EightDup, Equal),
BlockLomuto1 cannot compete with the other
algorithms; a drawback of Lomuto’s partitioning
scheme that had already been identified in [7].
Thus, we omit it in the plots. In the respective
order of these input types, it was 221, 280, 18571,
21010 times slower than IPS4o. On the other hand,
BlockLomuto2 is robust on all of these input types,
being fastest on RandomDup and Equal, and being
close in performance to BlockQS on the other two.
Only on Sorted and Reversed it is around a factor
2 to 3 slower than the fastest variant. For both

of these input types, stdsort performs very well.
Furthermore, we note that average running times
predict the difference between implementations
very well: Even for random structured inputs
(RandomDup), significant differences that occurred
in at least 95% of the trials made differences
only about a factor of 0.02 smaller than average
running time differences.

Despite their simplicity, the BlockLomuto vari-
ants show very good performance. In particu-
lar, the two-pivot variant is robust on different
input types, achieving robustness with the small
twist introduced in Section 3. On the other hand,
BlockQS achieves robustness with elaborate addi-
tional checks of the input after the main partition-
ing step finishes.

5.5 Practical Observations Comparing our
running time results to the considerations in Sec-
tion 4, it is quite surprising that BlockLomuto1 and
BlockLomuto2 can compete in performance with
BlockQS. In Table 2 we present selected measure-
ments we got from running experiments. Exper-
iments are run on Permutation to report on the
average-case behavior of implementations.

From Section 4, we expect that IPS4o and
BlockQS use fewer instructions than the Lomuto-
variants discussed in this paper. Furthermore, they
are expected to have a better cache behavior.

From Table 2 we see that with regard to L1
cache misses, BlockQS incurs the fewest misses, fol-
lowed by stdsort, BlockLomuto2, IPS4o, and Block-
Lomuto1. So, IPS4o uses too many blocks for all of
them to reside in L1 cache. Looking at L2 cache
misses, IPS4o incurs fewer misses than all other al-
gorithms, as predicted. BlockLomuto2 has a bet-
ter cache behavior than BlockLomuto1, but behaves
worse than BlockQS, which again follows nicely the
memory accesses computed in Section 4.

BlockLomuto1 and BlockLomuto2 branch condi-
tionally in about the same dimension as IPS4o and
BlockQS, and there is a big difference to the num-
ber of branches in stdsort. These branches are
easy to predict, as shown by the low misprediction
rates. Here, LomutoBlock variants make fewer mis-
predictions than BlockQS, and there is a big gap to
the misprediction rate of IPS4o; stdsort mispredicts
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Figure 7: Running time plots on Xeon. The x-axis represents the number of items, the y-axis shows the
running time in nanoseconds scaled by n lnn.



Algorithm L1/L2 CM CB (% MP) INS WOF (%, cycles)

IPS4o .147 / .085 1.080 ( 6.1%) 12.870 2.921 (41.3%, 6.834)
BlockLomuto1 .169 / .143 0.926 (11.7%) 16.456 3.001 (38.7%, 7.758)
BlockLomuto2 .144 / .121 0.884 (10.5%) 17.467 2.579 (32.7%, 7.878)

BlockQS .125 / .102 0.877 (14.7%) 17.566 3.240 (38.7%, 8.354)
stdsort .137 / .115 2.128 (29.0%) 11.769 11.509 (74.0%, 15.550)

Table 2: CPU counter measurements for n = 227 items on 600 trials on Permutation. We use the
abbreviations “CM” for “Cache Misses”, “INS” for “Instructions”, “CB” for “conditional branch
instructions”, “MP” for “mispredicted”, and “WOF” for “cycles without instruction finished”. All
values are normalized by n lnn.

more branches, since comparisons to the pivot have
a prediction rate of around 50%.

With regard to the instruction count, we see
that IPS4o makes by far the fewest instructions
among “branch-free” variants. Somehow surpris-
ingly, the Lomuto-variants incur fewer instructions
than BlockQS. We suspect that this is because of
their simpler structure that simplifies bookkeeping.
Looking at cycles in which no instruction was fin-
ished (because of, e.g., memory stalls or branch mis-
predictions), Lomuto-based variants have slightly
fewer of them compared to BlockQS; around 33–
40% of the total amount of cycles are of this type
for branch-free variants, while they make up 74%
of the cycles for stdsort.

In conclusion, we see that the theoretical dif-
ferences between IPS4o/BlockQS and the Lomuto-
based variants translate into practice, but their eas-
ier structure make them competitive to BlockQS.
No variant can compete with IPS4o, both in theory
and in practice.

6 Conclusion

This paper introduced simple variants of the Block-
Quicksort algorithm by [7] using block-based ver-
sions of Lomuto’s partitioning scheme. The imple-
mentation was shown to be competitive in running
time to the implementation of [7]. A novel twist
to the general two-pivot quicksort approach made
the proposed two-pivot variant particularly robust
with regard to different input distributions. The
paper presented theoretical properties of the algo-
rithms and verified them through experiments.

Due to their simple structure, the proposed al-
gorithms are particularly suited to test further opti-

mizations. For example, it would be nice to inspect
how much can be gained from implementing differ-
ent block operations such as filling the block or re-
arranging elements through vectorized SIMD oper-
ations. In another line of research, having a simple
implementation could allow to formally verify the
correctness of the implementation. Additionally, a
theoretical analysis of handling equal elements as
described in Section 3.3 seems interesting [22].

We remark that a 3-pivot variant of Lomuto’s
scheme did not give any improvements with regard
to observed running times; the same is true for
a two-pivot variant of Hoare’s scheme used in
BlockQuicksort. In particular, handling all the
edges cases correctly made this algorithm very
complicated.

Acknowledgments We thank Armin
Weiss for a useful hint in the two-pivot ver-
sion. We also thank Timo Bingmann who
provided some source code used in the testing
framework. Furthermore, we thank the anonymous
reviewers for their suggestions that helped us in
improving the presentation of this paper.

References

[1] Aumüller, M.: On the Analysis of Two Fundamen-
tal Randomized Algorithms - Multi-Pivot Quick-
sort and Efficient Hash Functions. Ph.D. thesis,
Technische Universität Ilmenau, Germany (2015),
http://www.db-thueringen.de/servlets/DocumentServlet?id=26263

[2] Aumüller, M., Dietzfelbinger, M.: Optimal
partitioning for dual-pivot quicksort. ACM
Trans. Algorithms 12(2), 18:1–18:36 (2016),
http://doi.acm.org/10.1145/2743020

http://www.db-thueringen.de/servlets/DocumentServlet?id=26263
http://doi.acm.org/10.1145/2743020


[3] Aumüller, M., Dietzfelbinger, M., Klaue, P.:
How good is multi-pivot quicksort? ACM
Trans. Algorithms 13(1), 8:1–8:47 (2016),
http://doi.acm.org/10.1145/2963102

[4] Axtmann, M., Witt, S., Ferizovic, D., Sanders,
P.: In-place parallel super scalar samplesort
(ipsssso). In: 25th Annual European Sympo-
sium on Algorithms, ESA 2017, September 4-
6, 2017, Vienna, Austria. pp. 9:1–9:14 (2017),
https://doi.org/10.4230/LIPIcs.ESA.2017.9

[5] Bentley, J.L.: Programming pearls. Addison-
Wesley (1986)

[6] Brodal, G.S., Moruz, G.: Tradeoffs between
branch mispredictions and comparisons for sort-
ing algorithms. In: Proc. of the 9th Interna-
tional Workshop on Algorithms and Data Struc-
tures (WADS’05). pp. 385–395. Springer (2005),
http://dx.doi.org/10.1007/11534273_34

[7] Edelkamp, S., Weiß, A.: Blockquicksort: Avoid-
ing branch mispredictions in quicksort. In:
24th Annual European Symposium on Al-
gorithms, ESA 2016, August 22-24, 2016,
Aarhus, Denmark. pp. 38:1–38:16 (2016),
https://doi.org/10.4230/LIPIcs.ESA.2016.38

[8] Elmasry, A., Katajainen, J., Stenmark, M.:
Branch mispredictions don’t affect mergesort.
In: Experimental Algorithms - 11th Interna-
tional Symposium, SEA 2012, Bordeaux, France,
June 7-9, 2012. Proceedings. pp. 160–171 (2012),
http://dx.doi.org/10.1007/978-3-642-30850-5_15

[9] Hennequin, P.: Analyse en moyenne d’algorithmes:
tri rapide et arbres de recherche. Ph.D. thesis,
Ecole Politechnique, Palaiseau (1991)

[10] Hennessy, J.L., Patterson, D.A.: Computer Archi-
tecture - A Quantitative Approach, 5th Edition.
Morgan Kaufmann (2012)

[11] Hoare, C.A.R.: Quicksort. Comput. J. 5(1), 10–15
(1962)

[12] Kaligosi, K., Sanders, P.: How branch mispredic-
tions affect quicksort. In: Proc. of the 14th Annual
European Symposium on Algorithms (ESA’06).
pp. 780–791. Springer (2006)
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Figure 8: Running time plots on i7. The x-axis represents the number of items, the y-axis shows the
running time in nanoseconds scaled by n lnn.
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